US20050252230A1 - Freezer case including self-conforming baffles - Google Patents

Freezer case including self-conforming baffles Download PDF

Info

Publication number
US20050252230A1
US20050252230A1 US10/847,749 US84774904A US2005252230A1 US 20050252230 A1 US20050252230 A1 US 20050252230A1 US 84774904 A US84774904 A US 84774904A US 2005252230 A1 US2005252230 A1 US 2005252230A1
Authority
US
United States
Prior art keywords
fan
freezer
evaporator
baffle
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/847,749
Inventor
Neelkanth Gupte
Jamie Lorzadeh
Daren Decker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taylor Commercial FoodService LLC
Original Assignee
Carrier Comercial Refrigeration Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Comercial Refrigeration Inc filed Critical Carrier Comercial Refrigeration Inc
Priority to US10/847,749 priority Critical patent/US20050252230A1/en
Assigned to CARRIER COMMERCIAL REFRIGERATION, INC. reassignment CARRIER COMMERCIAL REFRIGERATION, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUPTE, NEELKANTH S., DECKER, DAREN, LORZADEH, JAMIE
Priority to PCT/US2005/014798 priority patent/WO2005116549A2/en
Publication of US20050252230A1 publication Critical patent/US20050252230A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary

Definitions

  • the present invention relates generally to a freezer including flexible baffles proximate to the evaporator that are in a vertical position due to gravity during a defrost mode to prevent moisture from escaping into the freezer compartment and deflect due to the airflow created by a fan during normal operation to allow air to flow without hindrance.
  • the freezer includes an evaporator that cools the air in the freezer. Warm and humid air from the freezer compartment is drawn into the evaporator by a fan. In the evaporator, the warm air from the freezer compartment exchanges heat with the exterior air, cooling the air. The cooled air is then returned to the freezer compartment.
  • a defrost mode is occasionally performed to melt the frost and ice formed on the evaporator fins.
  • the fan is turned off and a heater is turned on. The heat generated by the heater melts the ice and frost on the evaporator, generating a significant amount of moisture. If the moisture enters the freezer compartment, frost can form on the frozen food and affect the appearance of the frozen food.
  • a reach-in glass door freezer includes a freezer compartment that stores and freezes frozen items, such as food. Warm and humid air from the freezer compartment enters a fan panel through a return air grill. A fan draws the air through an evaporator for cooling. The cooled air then exits the fan panel through a rear duct and reenters the freezer compartment to cool the frozen items.
  • a first baffle is located in the fan panel between the return air grill and the fan and a second baffle is located in the fan panel between the rear duct and the evaporator.
  • the baffles are made of a lightweight and flexible material and are moveable between a flexed position and a vertical non-flexed position.
  • the airflow created by the fan deflects the baffles to the flexed position to allow the air to flow through the fan panel unhindered.
  • Moisture on the fins of the evaporator can form frost and ice that increases resistance to the airflow through the evaporator.
  • a defrost mode is performed to melt the ice and frost.
  • the fan is turned off and a heater is activated to melt the ice and frost.
  • the baffles drop to a vertical, straight position due to gravity.
  • the vertical baffles create resistance in the airflow and prevent heat and moisture generated by the heater from entering the freezer compartment and forming frost on the frozen items.
  • the heater is then turned off and the fan is activated to again cool the freezer compartment.
  • the force of the airflow created by the fan deflects the baffles to the flexed position, allowing the air to flow through the fan panel without any resistance.
  • FIG. 1 schematically illustrates the reach-in glass door freezer of the present invention
  • FIG. 2 schematically illustrates the fan panel of the freezer during normal operation
  • FIG. 3 schematically illustrates the fan panel of the freezer during a defrost mode
  • FIG. 4 schematically illustrates a second embodiment of the baffles of the present invention during normal operation
  • FIG. 5 schematically illustrates the second embodiment of the baffles of the present invention during a defrost mode.
  • FIG. 1 illustrates an example reach-in glass door freezer 10 .
  • a glass door 12 is pivotally attached to the freezer 10 by a hinge 14 and is moveable between an open position and a closed position.
  • the freezer 10 defines a freezer compartment 16 that stores and freezes frozen items 18 , such as food.
  • the frozen items 18 are stacked on shelves 20 in the freezer compartment 16 .
  • the shopper pivots the door 12 to the open position and obtains the desired frozen item 18 .
  • the shopper then closes the door 12 to maintain the cool air in the freezer compartment 16 .
  • the freezer 10 further includes a fan panel 22 .
  • Warm and humid air from the freezer compartment 16 enters the fan panel 22 through a return air grill 24 .
  • a fan 26 draws the air inside the fan panel 22 through an evaporator 28 for cooling.
  • the warmed air from the freezer compartment 16 exchanges heat with the exterior air, cooling the air in the evaporator 28 to between approximately ⁇ 10°and ⁇ 20°F.
  • the cooled air then exits the fan panel 22 through a rear duct 30 and reenters the freezer compartment 16 to cool the frozen items 18 .
  • a first baffle 32 and a second baffle 34 are located in the fan panel 22 to prevent moisture from entering the freezer compartment 16 during a defrost mode.
  • the first baffle 32 is located between the fan 26 and the return air grill 24 and a second baffle 34 is located between the evaporator 28 and the rear duct 30 .
  • the baffles 32 and 34 are made of a lightweight and flexible material and are moveable between a flexed position during normal operation (shown in FIG. 2 ) and a vertical, non-flexed, straight position during the defrost mode (as shown in FIG. 3 ).
  • FIG. 2 illustrates the baffles 32 and 34 during normal operation.
  • the airflow created by the fan 26 deflects the baffles 32 and 34 to the flexed position. Because the baffles 32 and 34 are deflected, the air flowing through the fan panel 22 can flow unhindered, reducing the pressure drop in the airflow and preventing misdistribution of the airflow. That is, since the baffles 32 and 34 are not straight and vertical, they do not interrupt the airflow.
  • a defrost mode is performed to defrost and melt the frost and ice formed on the fins 42 of the evaporator 28 and decrease resistance of the airflow through the evaporator 28 .
  • a defrost mode is initiated when a defrosting sensor 44 detects a condition that necessitates defrosting. For example, defrosting is needed when the defrosting sensor 44 detects frost and ice on the fins 42 of the evaporator 28 .
  • FIG. 3 illustrates the fan panel 22 when the freezer 10 is operating in the defrost mode.
  • the fan 26 is off and a heater 38 in the fan panel is activated.
  • the fan 26 does not create an airflow when the fan 26 is off, and the baffles 32 and 34 drop to a straight vertical position due to gravity.
  • the baffles 32 and 34 create resistance in the airflow and prevent heat and moisture generated by the heater 38 from exiting the rear duct 30 and the return air grill 24 of the fan panel 22 and entering the freezer compartment 16 .
  • the water that melts from the fins 42 of the evaporator 28 falls to a drain pan 40 and drains towards the front the freezer 10 .
  • the heater 38 is turned off and the fan 26 is activated to again cool the air in the freezer compartment 16 .
  • the force of the airflow generated by the fan 26 deflects the baffles 32 and 34 to the flexed position shown in FIG. 2 , allowing air to flow through the fan panel 22 without any resistance.
  • FIG. 4 schematically illustrates an alternative baffle 132 including a plurality of baffle segments 134 .
  • a portion 136 of each baffle segment 134 is attached to a vertical support 138 .
  • the baffle segments 134 pivot to the position shown in FIG. 4 . In this position, the air can flow uninterrupted between the baffle segments 134 and through the fan panel 22 .
  • the baffle segments 134 drop and become substantially vertical to prevent moisture from entering the freezer compartment 16 .
  • each baffle segment 134 has a length such that the baffles segments 134 overlap when in the non-flexed position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Defrosting Systems (AREA)

Abstract

A freezer includes a freezer compartment in which frozen items are stored and frozen. Air from the freezer compartment is drawn into a fan panel by a fan. The air is cooled in an evaporator and then returned to the freezer compartment. Flexible baffles are provided in the fan panel. During normal operation, the airflow created by the fan deflects the baffles, allowing the air to flow through the fan panel unhindered. When ice and frost forms on the evaporator, a defrost mode is initiated to melt the ice with heat generated by a heater. The fan is turned off, and the baffles drop to a straight vertical position due to gravity. The vertical baffles create resistance in the airflow and prevent the heated air and moisture generated by the heater from entering the freezer compartment and forming frost on the frozen items.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates generally to a freezer including flexible baffles proximate to the evaporator that are in a vertical position due to gravity during a defrost mode to prevent moisture from escaping into the freezer compartment and deflect due to the airflow created by a fan during normal operation to allow air to flow without hindrance.
  • Reach-in glass door freezers are commonly used in grocery stores to store and freeze frozen food in a freezer compartment. The freezer includes an evaporator that cools the air in the freezer. Warm and humid air from the freezer compartment is drawn into the evaporator by a fan. In the evaporator, the warm air from the freezer compartment exchanges heat with the exterior air, cooling the air. The cooled air is then returned to the freezer compartment.
  • During normal operation, moisture on the evaporator forms frost and ice, reducing the gap between the evaporator fins and increasing resistance to the airflow through the evaporator. A defrost mode is occasionally performed to melt the frost and ice formed on the evaporator fins. During the defrost mode, the fan is turned off and a heater is turned on. The heat generated by the heater melts the ice and frost on the evaporator, generating a significant amount of moisture. If the moisture enters the freezer compartment, frost can form on the frozen food and affect the appearance of the frozen food.
  • In prior freezers, rigid baffles are positioned proximate to the evaporator to prevent the moisture generated during the defrost mode from entering the freezer compartment. A drawback to employing fixed baffles is that they block the airflow during normal operation, causing an excessive pressure drop and misdistribution of the airflow.
  • Hence, there is a need in the art for freezer that employs flexible baffles to prevent moisture from entering the freezer compartment during a defrost mode, but allows unhindered airflow during normal operation, as well as overcomes the other drawbacks of the prior art.
  • SUMMARY OF THE INVENTION
  • A reach-in glass door freezer includes a freezer compartment that stores and freezes frozen items, such as food. Warm and humid air from the freezer compartment enters a fan panel through a return air grill. A fan draws the air through an evaporator for cooling. The cooled air then exits the fan panel through a rear duct and reenters the freezer compartment to cool the frozen items.
  • A first baffle is located in the fan panel between the return air grill and the fan and a second baffle is located in the fan panel between the rear duct and the evaporator. The baffles are made of a lightweight and flexible material and are moveable between a flexed position and a vertical non-flexed position.
  • During normal operation, the airflow created by the fan deflects the baffles to the flexed position to allow the air to flow through the fan panel unhindered. Moisture on the fins of the evaporator can form frost and ice that increases resistance to the airflow through the evaporator.
  • A defrost mode is performed to melt the ice and frost. The fan is turned off and a heater is activated to melt the ice and frost. When the fan is turned off, the baffles drop to a vertical, straight position due to gravity. The vertical baffles create resistance in the airflow and prevent heat and moisture generated by the heater from entering the freezer compartment and forming frost on the frozen items.
  • After defrosting is complete, the heater is then turned off and the fan is activated to again cool the freezer compartment. The force of the airflow created by the fan deflects the baffles to the flexed position, allowing the air to flow through the fan panel without any resistance.
  • These and other features of the present invention will be best understood from the following specification and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The various features and advantages of the invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawing that accompany the detailed description can be briefly described as follows:
  • FIG. 1 schematically illustrates the reach-in glass door freezer of the present invention;
  • FIG. 2 schematically illustrates the fan panel of the freezer during normal operation;
  • FIG. 3 schematically illustrates the fan panel of the freezer during a defrost mode;
  • FIG. 4 schematically illustrates a second embodiment of the baffles of the present invention during normal operation; and
  • FIG. 5 schematically illustrates the second embodiment of the baffles of the present invention during a defrost mode.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • FIG. 1 illustrates an example reach-in glass door freezer 10. A glass door 12 is pivotally attached to the freezer 10 by a hinge 14 and is moveable between an open position and a closed position. The freezer 10 defines a freezer compartment 16 that stores and freezes frozen items 18, such as food. The frozen items 18 are stacked on shelves 20 in the freezer compartment 16.
  • When a shopper wants to obtain one of the frozen items 18, the shopper pivots the door 12 to the open position and obtains the desired frozen item 18. The shopper then closes the door 12 to maintain the cool air in the freezer compartment 16.
  • As further shown in FIGS. 2 and 3, the freezer 10 further includes a fan panel 22. Warm and humid air from the freezer compartment 16 enters the fan panel 22 through a return air grill 24. A fan 26 draws the air inside the fan panel 22 through an evaporator 28 for cooling. In the evaporator 28, the warmed air from the freezer compartment 16 exchanges heat with the exterior air, cooling the air in the evaporator 28 to between approximately −10°and −20°F. The cooled air then exits the fan panel 22 through a rear duct 30 and reenters the freezer compartment 16 to cool the frozen items 18.
  • A first baffle 32 and a second baffle 34 are located in the fan panel 22 to prevent moisture from entering the freezer compartment 16 during a defrost mode. The first baffle 32 is located between the fan 26 and the return air grill 24 and a second baffle 34 is located between the evaporator 28 and the rear duct 30. The baffles 32 and 34 are made of a lightweight and flexible material and are moveable between a flexed position during normal operation (shown in FIG. 2) and a vertical, non-flexed, straight position during the defrost mode (as shown in FIG. 3).
  • FIG. 2 illustrates the baffles 32 and 34 during normal operation. The airflow created by the fan 26 deflects the baffles 32 and 34 to the flexed position. Because the baffles 32 and 34 are deflected, the air flowing through the fan panel 22 can flow unhindered, reducing the pressure drop in the airflow and preventing misdistribution of the airflow. That is, since the baffles 32 and 34 are not straight and vertical, they do not interrupt the airflow.
  • During normal operation, moisture on the fins 42 of the evaporator 28 can freeze to form frost and ice. As the amount of frost and ice on the fins 42 of the evaporator 28 increases, the gap between the fins 42 decreases and increases resistance to the airflow through the evaporator 28. A defrost mode is performed to defrost and melt the frost and ice formed on the fins 42 of the evaporator 28 and decrease resistance of the airflow through the evaporator 28.
  • In one example, a defrost mode is initiated when a defrosting sensor 44 detects a condition that necessitates defrosting. For example, defrosting is needed when the defrosting sensor 44 detects frost and ice on the fins 42 of the evaporator 28.
  • FIG. 3 illustrates the fan panel 22 when the freezer 10 is operating in the defrost mode. During the defrost mode, the fan 26 is off and a heater 38 in the fan panel is activated. The fan 26 does not create an airflow when the fan 26 is off, and the baffles 32 and 34 drop to a straight vertical position due to gravity. In the vertical position, the baffles 32 and 34 create resistance in the airflow and prevent heat and moisture generated by the heater 38 from exiting the rear duct 30 and the return air grill 24 of the fan panel 22 and entering the freezer compartment 16. By preventing the escape of moisture and fog into the freezer compartment 16, the development of frost on the frozen items 18 is minimized. The water that melts from the fins 42 of the evaporator 28 falls to a drain pan 40 and drains towards the front the freezer 10.
  • After defrosting is complete, the heater 38 is turned off and the fan 26 is activated to again cool the air in the freezer compartment 16. When the fan 26 is activated, the force of the airflow generated by the fan 26 deflects the baffles 32 and 34 to the flexed position shown in FIG. 2, allowing air to flow through the fan panel 22 without any resistance.
  • FIG. 4 schematically illustrates an alternative baffle 132 including a plurality of baffle segments 134. A portion 136 of each baffle segment 134 is attached to a vertical support 138. When the fan 26 is activated, the baffle segments 134 pivot to the position shown in FIG. 4. In this position, the air can flow uninterrupted between the baffle segments 134 and through the fan panel 22. When the fan 26 is turned off during a defrost mode, the baffle segments 134 drop and become substantially vertical to prevent moisture from entering the freezer compartment 16. As shown exaggerated in FIG. 5, each baffle segment 134 has a length such that the baffles segments 134 overlap when in the non-flexed position. By employing baffles segments 134, the amount of noise generated by the baffle 132 is reduced.
  • The foregoing description is only exemplary of the principles of the invention. Many modifications and variations of the present invention are possible in light of the above teachings. The preferred embodiments of this invention have been disclosed, however, so that one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.

Claims (16)

1. A freezer comprising:
a fan chamber;
a fan in said fan chamber that draws air into said fan chamber; and
at least one flexible baffle in said fan chamber moveable between a flexed position when said fan is active and a non-flexed position when said fan is inactive.
2. The freezer as recited in claim 1 further including a door pivotally attached to the freezer between an open position and a closed position.
3. The freezer as recited in claim 1 further including a freezer chamber and an evaporator in said fan chamber and said fan draws said air into said evaporator, and wherein said air flowing through said evaporator rejects heat to a fluid medium, and said air cooled in said evaporator is provided to said freezer chamber.
4. The freezer as recited in claim 3 wherein said fan chamber includes an inlet and an outlet, and said at least one baffle comprises a first baffle and a second baffle, and said first baffle is located between said inlet and said fan and said second baffle is located between said evaporator and said outlet.
5. The freezer as recited in claim 3 wherein said fluid medium is air.
6. The freezer as recited in claim 3 further including a heater, and wherein said heater operates to generate heat when said fan is inactive.
7. The freezer as recited in claim 6 wherein said at least one baffle is in said straight position when said heater operates to prevent moisture from entering said freezer chamber from said fan chamber.
8. The freezer as recited in claim 6 further including a defrost sensor, and said heater operates to generate heat when said defrost sensor detects a defrosting condition of said evaporator.
9. The freezer as recited in claim 8 wherein said defrosting condition is frost on said evaporator.
10. The freezer as recited in claim 1 wherein said fan creates an airflow when active, and said airflow deflects said at least one baffle to said flexed position.
11. The freezer as recited in claim 1 wherein said at least one baffle is in said straight position when said fan is inactive due to gravity.
12. The freezer as recited in claim 1 wherein said at least one baffle includes a plurality of baffle segments attached to a baffle structure, and said plurality of baffle segments are pivotable between said flexed position and said non-flexed position.
13. A freezer comprising:
a freezer chamber;
a fan chamber having an inlet and an outlet;
a fan in said fan chamber that draws air into said inlet of said fan chamber;
an evaporator in said fan chamber and said fan draws said air into said evaporator, and wherein said air flowing through said evaporator rejects heat to a fluid medium, and said air cooled in said evaporator exits said fan chamber through said outlet and is provided to said freezer chamber; and
a heater that operates when said fan is inactive; and
at least one flexible baffle in said fan chamber moveable between a flexed position when said fan is active and a non-flexed position when said fan is inactive.
14. The freezer as recited in claim 13 further including a heater that operates to generate heat when said fan is inactive.
15. A method of controlling an airflow comprising the steps of:
activating a fan to deflect at least one baffle to a flexed position;
sensing a defrosting condition; and
deactivating the fan when the step of sensing detects the defrosting condition to undeflect the at least one baffle to a non-flexed position.
16. The method as recited in claim 15 further including the step of cooling air in an evaporator, and the step of sensing includes sensing a defrosting condition of the evaporator.
US10/847,749 2004-05-17 2004-05-17 Freezer case including self-conforming baffles Abandoned US20050252230A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/847,749 US20050252230A1 (en) 2004-05-17 2004-05-17 Freezer case including self-conforming baffles
PCT/US2005/014798 WO2005116549A2 (en) 2004-05-17 2005-04-28 Freezer case including self-conforming baffles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/847,749 US20050252230A1 (en) 2004-05-17 2004-05-17 Freezer case including self-conforming baffles

Publications (1)

Publication Number Publication Date
US20050252230A1 true US20050252230A1 (en) 2005-11-17

Family

ID=35308105

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/847,749 Abandoned US20050252230A1 (en) 2004-05-17 2004-05-17 Freezer case including self-conforming baffles

Country Status (2)

Country Link
US (1) US20050252230A1 (en)
WO (1) WO2005116549A2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239518A (en) * 1979-06-12 1980-12-16 Tyler Refrigeration Corporation Refrigerated case with movable fan panel
US5941085A (en) * 1997-06-30 1999-08-24 Daewoo Electronics Co., Ltd. Refrigerator having an apparatus for defrosting
US6182453B1 (en) * 1996-04-08 2001-02-06 Worldwide Water, Inc. Portable, potable water recovery and dispensing apparatus
US6408636B1 (en) * 2000-10-16 2002-06-25 Larry Backes Method and apparatus for preventing ice build up around a freezer door
US20020134087A1 (en) * 2000-03-14 2002-09-26 Urch John Francis Heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239518A (en) * 1979-06-12 1980-12-16 Tyler Refrigeration Corporation Refrigerated case with movable fan panel
US6182453B1 (en) * 1996-04-08 2001-02-06 Worldwide Water, Inc. Portable, potable water recovery and dispensing apparatus
US5941085A (en) * 1997-06-30 1999-08-24 Daewoo Electronics Co., Ltd. Refrigerator having an apparatus for defrosting
US20020134087A1 (en) * 2000-03-14 2002-09-26 Urch John Francis Heat exchanger
US6408636B1 (en) * 2000-10-16 2002-06-25 Larry Backes Method and apparatus for preventing ice build up around a freezer door

Also Published As

Publication number Publication date
WO2005116549A2 (en) 2005-12-08
WO2005116549A3 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JPH08327208A (en) Refrigerator and circulating method of cold air in refrigerator
WO2013084460A1 (en) Refrigerator
US8359876B2 (en) Refrigerated display merchandiser with microchannel evaporator oriented to reliably remove condensate
JP5313857B2 (en) refrigerator
JP5315179B2 (en) refrigerator
US20070277539A1 (en) Continuously Operating Type Showcase
US9046291B2 (en) User-selectable operating modes for refrigeration appliances
JP2010133590A (en) Refrigerator-freezer
JP5966145B2 (en) refrigerator
US20040055321A1 (en) Rear load refrigerated display case
EP1713358B1 (en) Freezing furniture and an insert therefor
JP4023458B2 (en) Heat exchanger
CN108444176A (en) Refrigerator and its control method
US20050252230A1 (en) Freezer case including self-conforming baffles
JP3649875B2 (en) Low temperature showcase
JP5031045B2 (en) Freezer refrigerator
KR101408769B1 (en) Refrigerator with Defrost Heater and Control Method thereof
JPS6211276B2 (en)
JP5586547B2 (en) refrigerator
JP2001263912A (en) Refrigerator
JP2011058693A (en) Refrigerator
CN112378146A (en) Refrigerator with a door
JP2019132503A (en) refrigerator
JP2740408B2 (en) Cooling storage
KR100435818B1 (en) Chilling Device

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARRIER COMMERCIAL REFRIGERATION, INC., NORTH CARO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GUPTE, NEELKANTH S.;LORZADEH, JAMIE;DECKER, DAREN;REEL/FRAME:015359/0840;SIGNING DATES FROM 20040325 TO 20040507

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION