US20050244379A1 - Immunomodulatory oligonucleotides - Google Patents

Immunomodulatory oligonucleotides Download PDF

Info

Publication number
US20050244379A1
US20050244379A1 US11/127,803 US12780305A US2005244379A1 US 20050244379 A1 US20050244379 A1 US 20050244379A1 US 12780305 A US12780305 A US 12780305A US 2005244379 A1 US2005244379 A1 US 2005244379A1
Authority
US
United States
Prior art keywords
odn
cpg
cells
subject
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/127,803
Inventor
Arthur Krieg
Dennis Klinman
Alfred Steinberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Iowa Research Foundation UIRF
US Department of Health and Human Services
Coley Pharmaceutical Group Inc
Original Assignee
University of Iowa Research Foundation UIRF
US Department of Health and Human Services
Coley Pharmaceutical Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/386,063 external-priority patent/US6194388B1/en
Application filed by University of Iowa Research Foundation UIRF, US Department of Health and Human Services, Coley Pharmaceutical Group Inc filed Critical University of Iowa Research Foundation UIRF
Priority to US11/127,803 priority Critical patent/US20050244379A1/en
Assigned to THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES reassignment THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KLINMAN, DENNIS
Assigned to CPG IMMUNOPHARMACEUTICALS, INC. reassignment CPG IMMUNOPHARMACEUTICALS, INC. LETTER OF AGREEEMENT Assignors: STEINBERG, ALFRED D.
Assigned to UNIVERSITY OF IOWA RESEARCH FOUNDATION reassignment UNIVERSITY OF IOWA RESEARCH FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KRIEG, ARTHUR M.
Assigned to COLEY PHARMACEUTICAL GROUP, INC. reassignment COLEY PHARMACEUTICAL GROUP, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CPG IMMUNOPHARMACEUTICALS, INC.
Publication of US20050244379A1 publication Critical patent/US20050244379A1/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: UNIVERSITY OF IOWA
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/47064-Aminoquinolines; 8-Aminoquinolines, e.g. chloroquine, primaquine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants

Definitions

  • oligodeoxyribonucleotides are able to enter cells in a saturable, sequence independent, and temperature and energy dependent fashion (reviewed in laroszewski, J. W., and J. S. Cohen. 1991.
  • Lymphocyte ODN uptake has been shown to be regulated by cell activation.
  • Spleen cells stimulated with the B cell mitogen LPS had dramatically enhanced ODN uptake in the B cell population, while spleen cells treated with the T cell mitogen Con A showed enhanced ODN uptake by T but not B cells (Krieg, A. M., F. Gmelig-Meyling, M. F. Gourley, W. J. Kisch, L. A. Chrisey, and A. D. Steinberg. 1991. “Uptake of oligodeoxybonucleotides by lymphoid cells is heterogeneous and inducible”. Antisense Research and Development 1:161).
  • poly (I,C) which is a potent inducer of IFN production as well as a macrophage activator and inducer of NK activity
  • I,C a potent inducer of IFN production as well as a macrophage activator and inducer of NK activity
  • Guanine ribonucleotides substituted at the C8 position with either a bromine or a thiol group are B cell mitogens and may replace “B cell differentiation factors” (Feldbush, T. L., and Z. K. Ballas. 1985. “Lymphokine-like activity of 8-mercaptoguanosine: induction of T and B cell differentiation”. J. Immunol. 134:3204; and Goodman, M. G. 1986. “Mechanism of synergy between T cell signals and C8-substituted guanine nucleosides in humoral immunity: B lymphotropic cytokines induce responsiveness to 8-mercaptoguanosine”. J. Immunol. 136:3335).
  • 8-mercaptoguanosine and 8-bromoguanosine also can substitute for the cytokine requirement for the generation of MHC restricted CTL.
  • Miller, T. L., 1985. cited supra augment murine NK activity (Koo, G. C., M. E. Jewell, C. L. Manyak, N. H. Sigal, and L. S. Wicker. 1988. “Activation of murine natural killer cells and macrophages by 8-bromoguanosine”. J. Immunol. 140:3249), and synergize with IL-2 in inducing murine LAK generation (Thompson, R. A., and Z. K. Ballas. 1990.
  • LAK lymphokine-activated killer cells. V. 8-Mercaptoguanosine as an IL-2-sparing agent in LAK generation”. J. Immunol. 145:3524).
  • the NK and LAK augmenting activities of these C8-substituted guanosines appear to be due to their induction of IFN (Thompson, R. A., et al. 1990. cited supra).
  • a 5′ triphosphorylated thymidine produced by a mycobacterium was found to be initogenic for a subset of human ⁇ T cells (Constant, P., F. Davodeau, M.-A. Peyrat, Y. Poquet, G. Puzo, M.
  • CREB cAMP response element binding protein
  • ATF activating transcription factor
  • CREB/ATF family of transcription factors is a ubiquitously. expressed class of transcription factors of which 11 members have so far been cloned (reviewed in de Groot, R. P., and P. Sassone-Corsi: “Hormonal control of gene expression: Multiplicity and versatility of cyclic adenosine 3′,5′-monophosphate-responsive nuclear regulators”. Mol. Endocrin. 7:145, 1993; Lee, K. A. W., and N. Masson: “Transcriptional regulation by CREB and its relatives”. Biochim. Biophys. Acta 1174:221, 1993.).
  • CREB/ATF proteins all belong to the basic region/leucine zipper (Zip) class of proteins. All cells appear to express one or more CREB/ATF proteins, but the members expressed and the regulation of mRNA splicing appear to be tissue-specific. Differential splicing of activation domams can determine whether a particular CREB/ATF protein will be a transcriptional inhibitor or activator. Many CREB/ATF proteins activate viral transcription, but some splicing variants which lack the activation domain are inhibitory.
  • CREB/ATF proteins can bind DNA as homo- or hetero-dimers through the cAMP response element, the CRE, the consensus form of which is the unmethylated sequence TGACGTC (binding is abolished if the CpG is methylated) (Iguchi-Ariga, S. M. M., and W. Schaffner: “CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation”. Genes & Develop. 3:612, 1989.).
  • CREB/ATF proteins appear to regulate the expression of multiple genes through the CRE including immunologically important genes such as fos, jun B, Rb-1, IL-6, IL-1(Tsukada, J., K Saito, W. R. Waterman, A. C. Webb, and P. E. Auron: “Transcription factors NF-IL6 and CREB recognze a common essential site in the human prointerleukin 1 ⁇ gene”.
  • Ehrlich “Binding of AP-1/CREB proteins and of MDBP to contiguous sites downstream of the human TGF-B1 gene”. Biochim. Biophys. Acta 1219:55, 1994.), TGF- ⁇ 2, class II MHC (Cox, P. M., and C. R. Goding: “An ATF/CREB binding motif is required for aberrant constitutive expression of the MHC class II DRa promoter and activation by SV40 T-antigen”. Nucl. Acic Res. 20:4881, 1992.), E-selectin, GM-CSF, CD-8 ⁇ , the germline Ig ⁇ constant region gene, the TCR V ⁇ gene, and the proliferating cell nuclear antigen (Ruang, D., P. M.
  • CREB protein kinase A
  • CBP protein kinase A
  • CBP basal transcription factor
  • TFIIB basal transcription factor
  • CREB also has been reported to interact with dTAFII 110, a TATA binding protein-associated factor whose binding may regulate transcription (Ferreri, K., G. Gill, and M. Montminy: “The cAMP-regulated transciption factor CREB interacts with a component of the TFIID complex”.
  • CREB/ATF proteins can specifically bind multiple other nuclear factors (Hoeffler, J. P., J. W. Lustbader, and C.-Y. Chen: “Identification of multiple nuclear factors that interact with cyclic adenosine 3′,5′-monophosphate response element-binding protein and activating transcription factor-2 by protein-protein interactions”. Mol. Endocrinol. 5:256, 1991) but the biologic significance of most of these interactions is unknown. CREB is normally thought to bind DNA either as a homodimer or as a heterodimer with several other proteins.
  • CREB monomers constitutively activate transcription Krajewski, W., and K. A. W. Lee: “A monomeric derivative of the cellular transcription factor CREB functions as a constitutive activator”. Mol. Cell. Biol. 14:7204,1994.).
  • cytomegalovirus immediate early promoter one of the strongest known mammalian promoters, contains eleven copies of the CRE which are essential for promoter function (Chang, Y.-N., S. Crawford, J. Stall, D. R. Rawlins, K.-T. Jeang, and G.S. Hayward: “The palindromic series I repeats in the simian cytomegalovirus major immediate-early promoter behave as both strong basal enhancers and cyclic AMP response elements”. J. Virol. 64:264, 1990).
  • HTLV-1 Human T lymphotropic virus-I
  • Tax the retrovirus which binds to CREB/ATF proteins and redirects them from their normal cellular binding sites to different DNA sequences (flanked by G- and C-rich sequences) present within the HTLV transcriptional enhancer
  • the instant invention is based on the finding that certain oligonucleotides containing unmethylated cytosine-guanine (CpG) dinucleotides activate lymphocytes as evidenced by in vitro and in vivo data Based on this finding, the invention features, in one aspect, novel immunostimulatory oligonucleotide compositions.
  • CpG cytosine-guanine
  • an immunostimulatory oligonucleotide is synthetic, between 2 to 100 base pairs in size and contains a consensus mitogenic CpG motif represented by the formula: 5′ X 1 X 2 CGX 3 X 4 3′
  • CpG containing immunostimulatory oligonucleotides are preferably in the range of 8 to 40 base pairs in size.
  • Prolonged immunostimulation can be obtained using stabilized oligonucleotides, particularly phosphorothioate stabilzed oligonucleotides.
  • Enhanced immunostimulatory activity has been observed where X 1 X 2 is the dinucleotide GpA and/or X 3 X 4 is the dinucleotide is most preferably TpC or also TpT. Further enhanced immunostimulatory activity has been observed where the consensus motif X 1 X 2 CGX 3 X 4 is preceded on the 5′ end by a T.
  • lymphocytes can either be obtained from a subject and stimulated ex vivo upon contact with an appropriate oligonucleotide; or a non-methylated CpG containing oligonucleotide can be administered to a subject to facilitate in vivo activation of a subject's lymphocytes.
  • Activated lymphocytes stimulated by the methods described herein (e.g. either ex vivo or in vivo), can boost a subject's immune response.
  • the immunostimulatory oligonucleotides can therefore be used to treat, prevent or ameliorate an immune system deficiency (e.g., a tumor or cancer or a viral, fungal, bacterial or parasitic infection in a subject.
  • immunostimulatory oligonucleotides can also be administered as a vaccine adjuvant, to stimulate a subjects response to a vaccine.
  • the ability of immunostimulatory cells to induce leukemic cells to enter the cell cycle suggests a utility for treating leukemia by increasing the sensitivity of chronic leukemia cells and then administering conventional ablative chemotherapy.
  • the invention features neutral oligonucleotides (i.e. oligonucleotide that do not contain an unmethlylated CpG or which contain a methylated CpG dinucleotide).
  • a neutralizing oligonucleotide is complementary to an immunostimulatory sequence, but contains a methylated instead of an unmethylated CpG dinucleotide sequence and therefore can compete for binding with unmethylated CpG containing oligonucleotides.
  • the methylation occurs at one or more of the four carbons and two nitrogens comprising the cytosine six member ring or at one or more of the five carbons and four nitrogens comprising the guanine nine member double ring.
  • 5′ methyl cytosine is a preferred methylated CpG.
  • the invention features useful methods using the neutral oligonucleotides.
  • in vivo administration of neutral oligonucleotides should prove useful for treating diseases such as systemic lupus erythematosus, sepsis and autoimmune diseases, which are caused or exacerbated by the presence of unmethylated CpG dimers in a subject
  • methylation CpG containing antisense oligonucleotides or oligonucleotide probes would not initiate an immune reaction when administered to a subject in vivo and therefore would be safer than corresponding unmethylated oligonucleotides.
  • the invention features immunoinhibitory oligonucleotides, which are capable of interfering with the activity of viral or cellular transcription factors.
  • immunoinhibitory oligonucleotides are between 2 to 100 base pairs in size and contain a consensus immunoinhibitory CpG motif represented by the formula: 5′ GCGXnGCG 3 ′
  • X is a pyrimidine.
  • immunoinhibitory oligonucleotides are preferably in the range of 8 to 40 base pairs in size. Prolonged immunostimulation can be obtained using stabilized oligonucleotides, particularly phosphorothioate stabilized oligonucleotides.
  • the invention features various uses for immunoinhibitory oligonucleotides.
  • Immunoinhibitory oligonucleotides have antiviral activity, independent of any antisense effect due to complementarity between the oligonucleotide and the viral sequence being targeted.
  • oligonucleotide or “oligo” shall mean multiple nucleotides (i.e. molecules comprising a sugar (e.g. ribose or deoxyribose) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g. cytosine (C), thymine (T) or uracil (U)) or a substituted purine (erg. adenine (A) or guanine (G)).
  • oligonucleotide refers to both oligoribonucleotides (ORNs) and oligodeoxyribonucleotides (ODNs).
  • oligonucleotide shall also include oligonucleosides (i.e. an oligonucleotide minus the phosphate) and any other organic base containing polymer Oligonucleotides can be obtained from existing nucleic acid sources (e.g. genomic or cDNA), but are preferably synthetic (e.g. produced by oligonucleotide synthesis).
  • A“stabilized oligonucleotide” shall mean an oligonucleotide that is relatively resistant to in vivo degradation (e.g. via an exo- or endo-nuclease).
  • Preferred stabilized oligonucleotides of the instant invention have a modified phosphate backbone.
  • Especially preferred oligonucleotides have a phosphorothioate modified phosphate backbone (i.e. at least one of the phosphate oxygens is replaced by sulfur).
  • oligonucleotides include: nonionic DNA analogs, such as alkyl- and aryl-phosphonates (in which the charged phosphonate oxygen is replaced by an alkyl or aryl group), phosphodiester and alkylphosphotriesters, in which the charged oxygen moiety is alkylated. Oligonucleotides which contain a diol, such as tetraethyleneglycol or hexaethyleneglycol, at either or both termini have also been shown to be substantially resistant to nuclease degradation.
  • an “immunostimulatory oligonucleotide”, “immunostimulatory CpG containing oligonucleotide”, or “CpG ODN” refer to an oligonucleotide, which contains a cytosine, guanine dinucleotide sequence and stimulates (e.g. has a mitogenic effect) on vertebrate lymphocyte.
  • Preferred immunostimulatory oligonucleotides are between 2 to 100 base pairs in size and contain a consensus mitogenic CpG motif represented by the formula: 5′ X 1 X 2 CGX 3 X 3 3′ wherein C and G are unmethylated, X 1 , X 2 , X 3 and X 4 are nucleotides and a GCG trinucleotide sequence is not present at or near the 5′ and 3′ termini.
  • the immunostimulatory oligonucleotides range between 8 to 40 base pairs in size.
  • the immunostimulatory oligonucleotides are preferably stabilized oligonucleotides, particularly preferred are phosphorothioate stabilized oligonucleotides.
  • X 1 X 2 is the dinucleotide GpA.
  • X 3 X 4 is preferably the dinucleotide TpC or also TpT.
  • the consensus motif X 1 X 2 CGX 3 X 4 is preceded on the 5′ end by a T. Particularly preferred consensus sequences are TGACGTT or TGACGTC.
  • neutral oligonucleotide refers to an oligonucleotide that does not contain an unmethylated CpG or an oligonucleotide which contains a methylated CpG dinucleotide.
  • a neutralizing oligonucleotide is complementary to an immunostimulatory sequence, but contains a methylated instead of an unmethylated CpG dinucleotide sequence and therefore can compete for binding with unmethylated CpG containing oligonucleotides.
  • the methylation occurs at one or more of the four carbons and two nitrogens comprising the cytosine six member ring or at one or more of the five carbons and four nitrogens comprising the guanine nine member double ring.
  • 5′ methyl cytosine is a preferred methylated CpG.
  • immunoinhibitory oligonucleotide or “immunoinhibitory CpG containing oligonucleotide” is an oligonucleotide that.
  • Preferable immunoinhibitory oligonucleotides are between 2 to 100 base pairs in size and can be represented by the formula: 5′GCGXnGCG 3 ′
  • X is a pyrimidine.
  • immunoinhibitory oligonucleotides are preferably in the range of 8 to 40 base pairs in size. Prolonged immunostimulation can be obtained using stabilized oligonucleotides, particularly phosphorothioate stabilized
  • “Palindromic sequence” shall mean an inverted repeat (i.e. a sequence such as ABCDEED′C′B′A′ in which A and A′ are bases capable of forming the usual Watson-Crick base pairs. In vivo, such sequences may form double stranded structures.
  • oligonucleotide delivery complex shall mean an oligonucleotide associated with (e.g. ionically or covalently bound to; or encapsulated within) a targeting means (e.g. a molecule that results in higher affinity binding to target cell (e.g. B-cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells).
  • a targeting means e.g. a molecule that results in higher affinity binding to target cell (e.g. B-cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells.
  • oligonucleotide delivery complexes include oligonucleotides associated with: a sterol (e.g. cholesterol), a lipid (e.g. a cationic lipid, virosome or liposome), or a target cell specific binding agent (e.g. a ligand recognized by target cell specific receptor).
  • Preferred complexes must be sufficiently stable in vivo to prevent significant uncoupling prior to internalization by the target cell.
  • the complex should be cleavable under appropriate conditions within the cell so that the oligonucleotide is released in a functional form.
  • an “immune system deficiency” shall mean a disease or disorder in which the subject's immune system is not functioning in normal capacity or in which it would be useful to boost a subject's immune response for example to eliminate a tumor or cancer (e.g. tumors of the brain, lung (e.g. small cell and non-small cell), ovary, breast, prostate, colon, as well as other carcinomas and sarcomas) or a viral (e.g. HIV, herpes), fungal (e.g. Candida sp.), bacterial or parasitic (e.g. Leishmania, Toxoplasma ) infection in a subject.
  • a tumor or cancer e.g. tumors of the brain, lung (e.g. small cell and non-small cell), ovary, breast, prostate, colon, as well as other carcinomas and sarcomas) or a viral (e.g. HIV, herpes), fungal (e.g. Candida sp.), bacterial or parasitic (e.g
  • a “disease associated with immune system activation” shall mean a disease or condition caused or exacerbated by activation of the subject's immune system. Examples include systemic lupus erythematosus, sepsis and autoimmune diseases such as rheumatoid arthritis and multiple sclerosis.
  • a “subject” shall mean a human or vertebrate animal including a dog, cat, horse, cow, pig, sheep, goat, chicken, monkey, rat, mouse, etc.
  • ODN 1 and 2 were synthesized. These ODNs, including the two original “controls” (ODN 1 and 2) and two originally synthesized as “antisense” (ODN 3D and 3M; Krieg, A. M. J. Immunol. 143:2448 (1989)), were then examined for in vitro effects on spleen cells (representative sequences are listed in Table 1).
  • ODN that contained CpG dinucleotides induced B cell activation and IgM secretion; the magnitude of this stimulation typically could be increased by adding more CpG dinucleotides Table 1; compare ODN 2 to 2a or 3D to 3Da and 3Db). Stimulation did not appear to result from an antisense mechanism or impurity. ODN caused no detectable activation of ⁇ or other T cell populations.
  • the optimal stimulatory motif was determined to consist of a CpG flanked by two 5′ purines (preferably a GpA dinucleotide) and two 3′ pyrimidines (preferably a TpT or TpC dinucleotide). Mutations of ODN to bring the CpG motif closer to this ideal-proved stimulation (e.g. compare ODN 2 to 2e; 3M to 3Md) while mutations that disturbed the motif reduced stimulations (e.g compare ODN 3D to 3Df; 4 to 4b, 4c and 4d). On the other hand, mutations outside the CpG motif did not reduce stimulation (e.g. compare ODN 1 to 1d, 3D to, 3Dg; 3M to 3Me).
  • ODNs shorter than 8 bases were non-stimulatory (e.g. ODN 4e).
  • ODN 4e the most stimulatory sequence identified was TCAACGTT (ODN 4) which contains the self complementary “palindrome” AACGTT.
  • ODN containing Gs at both ends showed increased stimulation, particularly if the the ODN were rendered nuclease resistant by phosphorothioate modification of the terminal internucleotide linkages.
  • ODN 1585 (5′ GGGGTCAACGTTCAGGGGGG 3′ (SEQ ID NO:1)), in which the first two and last five internucleotide linkages are phosphorothioate modified caused an average 25.4 fold increase in mouse spleen cell proliferation compared to an average 3.2 fold increase in proliferation induced by ODN 1638, which has the same sequence as ODN 1585 except that the 10 Gs at the two ends are replaced by 10 As.
  • the effect of the G-rich ends is cis; addition of an ODN with poly G ends but no CpG motif to cells along with 1638 gave no increased proliferation.
  • ODN 4b,4c octamer ODN containing a 6 base palindrome with a TpC dinucleotide at the 5′ end were also active if they were close to the optimal motif (e.g. ODN 4b,4c). Other dinucleotides at the 5′ end gave reduced stimulation (eg ODN 4f, all sixteen possible dinucleotides were tested). The presence of a 3′ dinucleotide was insufficient to compensate for the lack of a 5′ dinucleotide (eg. ODN 4g). Disruption of the palindrome eliminated stimulation in octamer ODN (eg., ODN 4h), but palindromes were not required in longer ODN.
  • lymphocyte activation The kinetics of lymphocyte activation were investigated using mouse spleen cells. When the cells were pulsed at the same time as ODN addition and harvested just four hours later, there was already a two-fold increase in 3 H uridine incorporation. Stimulation peaked at 12-48 hours and then decreased. After 24 hours, no intact ODN were detected, perhaps accounting for the subsequent fall in stimulation when purified B cells with or without anti-IgM (at a submitogenic dose) were cultured with CpG ODN, proliferation was found to synergistically increase about 10-fold by the two mitogens in combination after 48 hours.
  • CpG-ODN-induced cycling in more than 95% of B cells (Table 2).
  • Splenic B lymphocytes sorted by flow cytometry into CD23 ⁇ (marginal zone) and CD23+ (follicular) subpopulations were equally responsive to ODN-induced stimulation, as were both resting and activated populations of B cells isolated by fractionation over Percoll gradients.
  • CpG ODN peripheral blood mononuclear cells
  • PBMCs peripheral blood mononuclear cells
  • CLL chronic lymphocytic leukemia
  • Control ODN containing no CpG-dinucleotide sequence showed no effect on the basal proliferation of 442 cpm and 874 cpm (proliferation measured by 3 H thymidine incorporation) of the human cells.
  • a phosphorothioate modified CpG ODN 3Md SEQ ID NO: 25
  • a phosphorothioate modified CpG ODN 3Md induced increased proliferation of 7210 and 86795 cpm respectively in the two patients at a concentration of just 1 ⁇ M. Since these cells had been frozen, they may have been less responsive to the oligos than fresh cells in vivo.
  • cells from CLL patients typically are non-proliferating, which is why traditional chemotherapy is not effective.
  • Certain B cell lines such as WEHI-231 are induced to undergo growth arrest and/or apoptbsis in response to crosslinking of their antigen receptor by anti-IgM (Jakway, J. P. et al., “Growth regulation of the B lymphoma. cell line WEHI-231 by anti-immunoglobulin, lipopolysaccharide and other bacterial products” J. Immunol 137: 2225 25 (1986); Tsubata, T., J. Wu and T. Honjo: B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40 .” Nature 364:645 (1993)).
  • WEHI-231 cells are rescued from this growth arrest by certain stimuli such as LPS and by the CD40 ligand. ODN containing the CpG motif were also found to protect WEHI-231 from anti-IgM induced growth arrest, indicating that accessory cell populations are not required for the effect.
  • CpG ODN cytokines and prostaglandins in vitro and in vivo were measured. Unlike LPS, CpG ODN were not found to induce purified macrophages to produce prostaglandin PGE2. In fact, no apparent direct effect of CpG ODN was detected on either macrophages or T cells. In vivo or in whole spleen cells, no significant increase in the following interleukins: IL-2, IL-3, L-4, or IL-10 was detected within the first six hours. However, the level of IL-6 increased strikingly within 2 hours in the serum of mice injected with CpG ODN. Increased expression of IL-12 and interferon gamma (IFN- ⁇ ) by spleen cells was also detected within the first two hours.
  • IFN- ⁇ interferon gamma
  • mice were injected once intraperitoneally with PBS or phosphorothioate CpG or non-CpG ODN at a dose of 33 mg/kg (approximately 500 ⁇ g/mouse).
  • Pharmacokinetic studies in mice indicate that this dose of phosphorothioate gives levels of approximately 10 ⁇ g/g in spleen tissue (within the effective concentration range determined from the in vitro studies described herein) for longer than twenty-four-hours (Agrawal, S. et al. (1991) Proc. Natl. Acad. Sci. USA 91:7595).
  • Spleen cells from mice were examined twenty-four hours after ODN injection for expression of B cells surface activation markers Ly-6A/E, Bla-1, and class II MHC using three color flow cytometry and for their spontaneous proliferation using 3 H. thymidine. Expression of all three activation markers was significantly increased in B cells from mice injected with CpG ODN, but not from mice injected with PBS or non-CpG ODN. Spontaneous 3 H thymidine incorporation was increased by 2-6 fold in spleen cells from mice injected with the stimulatory ODN compared to PBS or non-CpG ODN-injected mice. After. 4 days, serum IgM levels in mice injected with CpG ODN in vivo were increased by approximately-3-fold compared to controls. Consistent with the inability of these agents to activate T cells, there was minimal change in T cell expression of the IL-2R or CD-44.
  • Degradation of phophodiester ODN in serum is predominantly mediated by 3′ exonucleases, while intracellular ODN degradation is more complex, involving 5′ and 3′ exonucleases and endonucleases.
  • Example 4 experiments were conducted to determine whether CpG containing oligonucleotides stimulated the activity of natural killer (NK) cells in addition to B cells. As shown in Table 3, a marked induction of NK activity among spleen cells cultured with CpG ODN 1 and 3Dd was observed. In contrast, there was relatively no induction in effectors that had been treated with non-CpG control ODN.
  • NK natural killer
  • ODN containing CpG dinucleotides that are not in the stimulatory motif described above were found to block the stimulatory effect of other mitogenic CpG ODN.
  • an atypical CpG motif consisting of a GCG near or at the 5′ and/or 3′ end of CpG ODN actually inhibited stimulation of proliferation by other CpG motifs.
  • Methylation or substitution of the cytosine in a GCG motif reverses this effect.
  • a GCG motif in an ODN has a modest mitogenic effect, though far lower than that seen with the preferred CpG motif.
  • CpG-ODN did not induce any detectable Ca 2+ flux, changes in protein tyrosine phosphorylation, or IP 3 generation.
  • Flow cytometry with FITC-conjugated ODN with or without a CpG motif was performed as described in Zhao, Q et al.,( Antisense Research and Development 3:53-66 (1993)), and showed equivalent membrane binding, cellular uptake, efflux, and intracellular localization. This suggests that there may not be cell membrane proteins specific for CpG ODN.
  • the optimal CpG motif TGACGTT/C is identical to the CRE (cyclic ANT response element). Like the mitogenic effects of CpG ODN, binding of CREB to the CRE is abolished if the central CpG is methylated. Electrophoretic mobility shift assays were used to determine whether CpG ODN, which are single stranded, could compete with the binding of B cell CREB/ATF proteins to their normal binding site, the doublestranded CRE. Competition assays demonstrated that single stranded ODN containing CpG motifs could completely compete the binding of CREB to its binding site, while ODN without CpG motifs could not.
  • the stimulatory CpG motif is common in microbial genomic DNA, but quite rare in vertebrate DNA.
  • bacterial DNA has been reported to induce B cell proliferation and immunoglobulin (Ig) production, while mammalian DNA does not (Messina, J. P. et al., J. Immunol. 147:1759 (1991)).
  • Ig immunoglobulin
  • Example 3 in which methylation of bacterial DNA with CpG methylase was found to abolish mitogenicity, demonstrates that the difference in CpG status is the cause of B cell stimulation by bacterial DNA. This data supports the following conclusion: that unmethylated CpG dinucleotides present within bacterial DNA are responsible for the stitulatory effects of bacterial DNA.
  • lymphocyte activation by the CpG motif represents an immune defense mechanism that can thereby distinguish bacterial from host DNA.
  • Host DNA would induce little or no lymphocyte activation due to it CpG suppression and methylation.
  • Bacterial DNA would cause selective lymphocyte activation in infected tissues. Since the CpG pathway synergizes with B cell activation through the antigen receptor, B cells bearing antigen receptor specific for bacterial antigens would receive one activation signal through cell membrane Ig and a second signal from bacterial DNA, and would therefore tend to be preferentially activated. The interrelationship of this pathway with other pathways of B cell activation provide a physiologic mechanism employing a polyclonal antigen to induce antigen-specific responses.
  • oligonucleotides can be synthesized de novo using any of a number of procedures well known in the art.
  • the ⁇ -cyanoethyl phosphoramidite method S. L. Beaucage and M. H. Caruthers, (1981) Tet. Let. 22:1859
  • nucleoside H-phosphonate method Garegg et al., (1986) Tet. Let. 27: 4051-4054
  • Froehler et al. (1986) Nucl. Acid. Res. 14: 5399-5407
  • Garegg et al. (1986) Tet. Let. 27: 4055-4058, Gaffney et al., (1988) Tet.
  • oligonucleotide synthesizers available in the market.
  • oligonucleotides can be prepared from existing nucleic acid sequences (e.g. genomic or cDNA) using known techniques, such as those employing restriction enzymes, exonucleases or endonucleases.
  • oligonucleotides are preferably relatively resistant to degradation (e.g. via endo- and exo-nucleases). Oligonucleotide stabilization can be accomplished via phosphate backbone modifications. A preferred stabilized oligonucleotide has a phosphorothioate modified backbone. The pharmacokinetics of phosphorothioate ODN show that they have a systemic half-life of forty-eight hours in rodents and suggest that they may be useful for in vivo applications (Agrawal, S. et al. (1991) Proc. Natl. Acad. Sci. USA 88:7595).
  • Phosphorothioates may be synthesized using automated techniques employing either phosphoramidate or H phosphonate chemistries.
  • Aryl- and alky-phosphonates can be made e.g. (as described in U.S. Pat. No. 4,469,863); and alkylphosphotriesters (in which the charged oxygen moiety is alkylated as described in U.S. Pat. No. 5,023,243 and European Patent No. 092,574) can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described (Uhlmann, E. and Peyman, A. (1990) Chem. Rev. 90:544; Goodchild, J. (1990) Bioconjugate Chem. 1:165).
  • oligonucleotides may be associated with a molecule that results in higher affinity binding to target cell (e.g. B-cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells to form an “oligonucleotide delivery complex”.
  • Oligonucleotides can be ionically, or covalently associated with appropriate molecules using techniques which are well known in the art.
  • a variety of coupling or crosslinking agents can be used e.g. protein A, carbodiimide, and N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP).
  • Oligonucleotides can alternatively be encapsulated in liposomes or virosomes using well-known techniques.
  • oligonucleotides containing at least one unmethylated CpG dinucleotide can be administered to a subject in vivo to treat an “immune system deficiency”.
  • oligonucleotides containing at least one. unmethylated CpG dinucleotide can be contacted with lymphocytes (e.g. B cells or NK cells) obtained from a subject having an immune system deficiency ex vivo and activated lymphocytes can then be reimplanted in the subject.
  • lymphocytes e.g. B cells or NK cells
  • Immunostimulatory oligonucleotides can also be administered to a subject in conjunction with a vaccine, as an adjuvant, to boost a subject's immune system to effect better response from the vaccine.
  • a vaccine as an adjuvant
  • the unmethylated CpG dinucleotide is administered slightly before or at the same time as the vaccine.
  • an immunostimulatory oligonucleotide should prove useful for increasing the responsiveness of the malignant cells to subsequent chemotherapy.
  • CpG ODN also increased natural killer cell activity in both human and murine cells. Induction of NK activity may likewise be beneficial in cancer immunotherapy.
  • Oligonucleotides that are complementary to certain target sequences can be sythesized and administered to a subject in vivo.
  • antisense oligonucleotides hybridize to complementary mRNA, thereby preventing expression of a specific target gene.
  • sequence-specific effects of antisense oligonucleotides have made them useful research tools for the investigation of protein function.
  • Phase I/II human trials of systemic antisense therapy are now underway for acute myelogenous leukemia and HIV.
  • oligonucleotide probes i.e. oligonucleotides with a detectable label
  • In vivo administration and detection of oligonucleotide probes may be useful for diagnosing certain diseases that are caused or exacerbated by certain DNA sequences (e.g. systemic lupus erythematosus, sepsis and autoimmune diseases).
  • Antisense oligonucleotides or oligonucleotide probes in which any or all CpG dinucleotide is methylated would not produce an immune reaction when administered to a subject in vivo and therefore would be safer than the corresponding non-methylated CpG containing oligonucleotide.
  • an effective amount of an appropriate oligonucleotide alone or formulated as an oligonucleotide delivery complex can be administered to a subject by any mode allowing the oligonucleotide to be taken up by the appropriate target cells (e.g. B-cells and NK cells).
  • Preferred routes of administration include oral and transdermal (e.g. via a patch).
  • Other routes of administration include injection (subcutaneous, intravenous, parenteral, intraperitoneal, intrathecal, etc.). The injection can be in a bolus or a continuous infusion.
  • an oligonucleotide alone or as an oligonucleotide delivery complex can be administered in conjunction with a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier is intended to include substances that can be coadministered with an oligonucleotide or an oligonucleotide delivery complex and allows the oligonucleotide to perform its intended function.
  • examples of such carriers include solutions, solvents, dispersion media, delay agents, emulsions and the like. The use of such media for pharmaceutically active substances are well known in the art. Any other conventional carrier suitable for use with the oligonucleotides falls within the scope of the instant invention.
  • an effective amount of an oligonucleotide refers to that amount necessary or sufficient to realize a desired biologic effect.
  • an effective amount of an oligonucleotide containing at least one methylated CpG for treating an immune system deficiency could be that amount necessary to eliminate a tumor, cancer, or bacterial, viral or fungal infection.
  • An effective amount for use as a vaccine adjuvant could be that amount useful for boosting a subject's immune response to a vaccine.
  • An “effective amount” of an oligonucleotide lacking a non-methylated CpG for use in treating a disease associated with immune system activation could be that amount necessary to outcompete non-methylated CpG containing nucleotide sequences.
  • the effective amount for any particular application can vary depending on such factors as the disease or condition being treated, the particular oligonucleotide being administered, the size of the subject, or the severity of the disease or condition.
  • One of ordinary skill in the art can empirically determine the effective amount of a particular oligonucleotide without necessitating undue experimentation.
  • lymphocytes e.g. B cells and NK cells.
  • lymphocytes e.g. B cells and NK cells.
  • lymphocytes e.g. B cells and NK cells.
  • these results suggest that the underrepresentation of CpG dinucleotides in animal genomes, and the extensive methylation of cytosines present in such dinucleotides, may be explained by the existence of an immune defense mechanism that can distinguish bacterial from host DNA.
  • Host DNA would commonly be present in many anatomic regions and areas of inflammation due to apoptosis (cell death), but generally induces little or no lymphocyte activation.
  • autoimmune responses to self antigens would also tend to be preferentially triggered by bacterial infections, since autoantigens could also provide a second activation signal to autoreactive B cells triggered by bacterial DNA.
  • autoantigens could also provide a second activation signal to autoreactive B cells triggered by bacterial DNA.
  • the induction of autoimmunity by bacterial infections is a common clinical observance.
  • the autoimmune disease systemic lupus erythematosus which is: i) characterized by the production of anti-DNA antibodies; ii) induced by drugs which inhibit DNA methyltransferase (Cornacchia, E. J. et al., J. Clin. Invest.
  • sepsis which is characterized by high morbidity and mortality due to massive and nonspecific activation of the immune system may be initiated by bacterial DNA and other products released from dying bacteria that reach concentrations sufficient to directly activate many lymphocytes.
  • Lupus, sepsis and other “diseases associated with immune system activation” may be treated, prevented or ameliorated by administering to a subject oligonucleotides lacking an unmethylated CpG dinucleotide (e.g. oligonucleotides that do not include a CpG motif or oligonucleotides in which the CpG motif is methylated) to block the binding of unmethylated CpG containing nucleic acid sequences.
  • Oligonucleotides lacking an unmethylated CpG motif can be administered alone or in conjunction with compositions that block an immune cell's reponse to other mitogenic bacterial products (e.g. LPS).
  • oligonucleotides containing an unmethylated CpG dinucleotide can treat, prevent or ameliorate the disease lupus.
  • Lupus is commonly thought to be triggered by bacterial or viral infections. Such infections have been reported to stimulate the production of nonpathogenic antibodies to single stranded DNA. These antibodies likely recognize primarily bacterial sequences including unmethylated CpGs. As disease develops in lupus, the anti-DNA antibodies shift to pathogenic antibodies that are specific for double-stranded DNA. These antibodies would have increased binding for methylated CpG-sequences and their production would result from a breakdown of tolerance in lupus.
  • lupus may result when a patient's DNA becomes hypomethylated, thus allowing anti-DNA antibodies specific for unmethylated CpGs to bind to self DNA and trigger more widespread autoimmunity through the process referred to as “epitope spreading”.
  • oligonucleotides containing GCG trinucleotide sequences at or near both termini have antiviral activity, independent of any antisense effect due to complementary between the oligonucleotide and the viral sequence being targeted. Based on this activity, an effective amount of inhibitory oligonucleotides can be administered to a subject to treat or prevent a viral infection.
  • B cells were purified from spleens obtained from 6-12 wk old specific pathogen free DBA/2 or BXSB mice (bred in the University of Iowa animal care facility; no substantial strain differences were noted) that were depleted of T cells with anti-Thy-1.2 and complement and centrifigation over lympholyte M (Cedarlane Laboratories, Hornby, Ontario, Canada) (“B cells”). B cells contained fewer than 1% CD4 + or CD8 + cells. 8 ⁇ 10 4 B cells were dispensed in triplicate into 96 well microtiter plates in 100 ⁇ l RPMI containing 10% FBS heat inactivated to 65° C.
  • PBMCs perpheral blood monocyte cells
  • CLL chronic lymphocytic leukemia
  • DBA/2 B cells were cultured with no DNA or 50 ⁇ g/ml of a) Micrococcus lysodeikticus; b) NZB/N mouse spleen; and c) NFS/N mouse spleen genomic DNAs for 48 hours, then pulsed with 3 H thymidine for 4 hours prior to cell harvest.
  • Duplicate DNA samples were digested with DNAse I for 30 minutes at 37 C prior to addition to cell cultures.
  • E coli DNA also induced an 8.8 fold increase in the number of IgM secreting B cells by 48 hours using the. ELISA-spot assay.
  • DBA/2 B cells were cultured with either no additive, 50 ⁇ g/ml LPS or the ODN 1; 1a; 4; or 4a at 20 uM. Cells were cultured and harvested at 4, 8, 24 and 48 hours. BXSB cells were cultured as in Example 1 with 5, 10, 20, 40 or 80 ⁇ M of ODN 1; 1a; 4; or 4a or LPS. In this experiment, wells with no ODN had 3833 cpm. Each experiment was performed at least three times with similar results. Standard deviations of the triplicate wells were ⁇ 5%.
  • 10 ⁇ 10 6 C57BL/6 spleen cells were cultured in two ml RPMI (supplemented as described for Example 1) with or without 40 ⁇ M CpG or non CpG ODN for forty-eight hours. Cells were washed, and then used as effector cells in a short term 51 Cr release assay with YAC-1 and 2C11, two NK sensitive target cell lines (Ballas, Z. K. et al. (1993) J. Immunol. 150:17). Effector cells were added at various concentrations to 10 4 51 Cr-labeled target cells in V-bottom microtiter plates in 0.2 ml, and incubated in 5% CO 2 for 4 hr. at 37° C.
  • Percent specific lysis was determined by calculating the ratio of the 51 Cr released in the presence of effector cells minus the 51 Cr released when the target cells are cultured alone, over the total counts released after cell lysis in 2% acetic acid minus the 51 Cr cpm released when the cells are cultured alone.
  • mice were weighed and injected IP with 0.25 ml of sterile PBS or the indicated phophorothioate ODN dissolved in PBS. Twenty four hours later, spleen cells were harvested, washed, and stained for flow cytometry using phycoerythrin conjugated 6B2 to gate on B cells in conjunction with biotin conjugated anti Ly-6A/E or anti-Ia d (Pharmingen, San Diego, Calif.) or anti-Bla-1 (Hardy, R. R. et al., J. Exp. Med. 159:1169 (1984). Two mice were studied for each condition and analyzed individually.
  • B cells were cultured with phosphorothioate ODN with the sequence of control ODN 1a or the CpG ODN 1d and 3Db and then either pulsed after 20 hr with 3 H uridine or after 44 hr with 3 H thymidine before harvesting and determining.
  • WEHI-231 cells (5 ⁇ 10 4 /well) were cultured for 1 hr. at 37 C. in the presence or absence of LPS or the control ODN 1a or the CpG ODN 1d and 3Db before addition of anti-IgM (1 ⁇ /ml). Cells. were cultured for a further 20 hr. before a 4 hr. pulse with 2 ⁇ Ci/well. 3 H thymidine. In this experiment, cells with no ODN or anti-IgM gave 90.4 ⁇ 10 3 by addition, of anti-IgM.
  • the phosphodiester ODN shown in Table 1 gave similar protection, though with some nonspecific suppression due to ODN degradation. Each experiment was repeated at least 3 times with similar results.
  • DBA1 female mice (2 mos. old) were injected IP with 500 ⁇ g CpG or control phosphorothioate ODN. At various time points after injection, the mice were bled. Two mice were studied for each time point. IL-6 was measured by Elisa, and IL-6 concentration was calculated by comparison to a standard curve generated using recombinant IL-6. The sensitivity of the assay was 10 pg/ml. Levels were undetectable after 8 hr.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Oligonucleotides containing unthylated CpG dinucleotides and therapeutic utilities based on their ability to stimulate an immune response in a subject are disclosed. Also disclosed are therapies for treating diseases associated with immune system activation that are initiated by unthylated CpG dinucleotides in a subject comprising administering to the subject oligonucleotides that do not contain unmethylated CpG sequences (i.e. methylated CpG sequences or no CpG sequence) to outcompete unmethylated CpG nucleic acids for binding. Further disclosed are methylated CpG containing dinucleotides for use antisense therapies or as in vivo hybridization probes, and immunoinhibitory oligonucleotides for use as antiviral therapeutics.

Description

    GOVERNMENT SUPPORT
  • The work resulting in this invention was supported in part by National Institute of Health Grant No. R29-AR42556-01. The U.S. Government may therefore be entitled to certain rights in the invention.
  • BACKGROUND OF THE INVENTION
  • DNA Binds to Cell Membrane and is Internalized
  • In the 1970's, several investigators reported the binding of high molecular weight DNA to cell membranes (Leruer, R. A., W. Meinke, and D. A. Goldstein. 1971. “Membrane-associated DNA in the cytoplasm of diploid human lymphocytes”. Proc. Natl. Acad. Sci. USA 68:1212; Agrawal, S. K, R. W. Wagner, P. K. McAllister, and B. Rosenberg. 1975. “Cell-surface-associated nucleic acid in tumorigenic cells made visible with platinum-pyrimidine complexes by electron microscopy”. Poc. Natl. Acad. Sci. USA 72:928). In 1985 Bennett et al. presented the first evidence that DNA binding to lymphocytes is similar to a ligand receptor interaction: binding is saturable, competitive, and leads to DNA endocytosis and degradation (Bennett, R. M., G. T. Gabor, and M. M. Merritt, 1985. “DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA”. J. Clin. Invest. 76:2182). Like DNA, oligodeoxyribonucleotides (ODNs) are able to enter cells in a saturable, sequence independent, and temperature and energy dependent fashion (reviewed in laroszewski, J. W., and J. S. Cohen. 1991. “Cellular uptake of artisense oligodeoxynucleotides”. Advanced Drug Delivery Reviews 6:235; Akhtar, S., Y. Shoji; and R. L. Juliano. 1992. “Pharmaceutical aspects of the biological stability and membrane transport characteristics of antisense oligonucleotides”. In: Gene Regulation: Biology of Antisese RNA and DNA. R. P. Erickson, and J. G. Izant, eds. Raven Press, Ltd. New York, pp. 133; and Zhao, Q., T. Waldschmidt, E. Fisher, C. J. Herrera, and A. M. Krieg., 1994. “Stage specific oligonucleotide uptake in murine bone marrow B cell precursors”. Blood, 84:3660). No receptor for DNA or ODN uptake has yet been cloned, and it is not yet clear whether ODN binding and cell uptake occurs through same or a different mechanism from that of high molecular weight DNA.
  • Lymphocyte ODN uptake has been shown to be regulated by cell activation. Spleen cells stimulated with the B cell mitogen LPS had dramatically enhanced ODN uptake in the B cell population, while spleen cells treated with the T cell mitogen Con A showed enhanced ODN uptake by T but not B cells (Krieg, A. M., F. Gmelig-Meyling, M. F. Gourley, W. J. Kisch, L. A. Chrisey, and A. D. Steinberg. 1991. “Uptake of oligodeoxybonucleotides by lymphoid cells is heterogeneous and inducible”. Antisense Research and Development 1:161).
  • Immune Effects of Nucleic Acids
  • Several polynucleotides have been extensively evaluated as biological response modifiers. Perhaps the best example is poly (I,C) which is a potent inducer of IFN production as well as a macrophage activator and inducer of NK activity (Talmadge, J. E., J. Adams, H. Phillips, M. Collins, B. Lenz, M. Schneider, E. Schlick, R Ruffmann, R. H. Wiltrout, and M. A. Chirigos. 1985. “Immunomodulatory effects in mice of polyinosinic-polycytidylic acid complexed with poly-L:-lysine and carboxymethylcellulose”. Cancer Res. 45:1058; Wiltrout, R. H., R. R. Salup, T. A. Twilley, and J. E. Talmadge. 1985. “Immunomodulation of natural killer activity by polyribonucleotides”. J Biol. Resp. Mod. 4:512; Known, S. E. 1986. “Interferons and interferon inducers in cancer treatment”. Sem. Oncol. 13:207; and Ewel, C. H., S. J. Urba, W. C. Kopp, J. W. Smith II, R. G. Steis J. L. Rossio, D. L. Longo, M. J. Jones, W. G. Alvord, C. M. Pinsky, J. M. Beveridge, K. L. McNitt, and S. P. Creekmore. 1992. “Polyinosinic-polycytidylic acid complexed with poly-L-lysine and carboxymethylcellulose in combination with interleukin 2 in patients with cancer: clinical and immunological effects”. Canc. Res. 52:3005). It appears that this murine NK activation may be due solely to induction of IFN β secretion (Ishikawa, R., and C. A. Biron. 1993. “IFN induction and associated changes in splenic leukocyte distribution”. J. Immunol. 150:3713). This activation was specific for the ribose sugar since deoxyribose was ineffective. Its potent in vitro antitumor activity led to several clinical trials using poly (I,C) complexed with poly-L-lysine and carboxymethylcellulose (to reduce degradation by RNAse) (Talmadge, J. E., et al., 1985. cited supra; Wiltrout, R. H., et al., 1985. cited sura); Krown, S. E., 1986. cited supra); and Ewel, C. H., et al., 1992. cited supra). Unfortunately, toxic side effects have thus far prevented poly (I,C) from becoming a useful therapeutic agent.
  • Guanine ribonucleotides substituted at the C8 position with either a bromine or a thiol group are B cell mitogens and may replace “B cell differentiation factors” (Feldbush, T. L., and Z. K. Ballas. 1985. “Lymphokine-like activity of 8-mercaptoguanosine: induction of T and B cell differentiation”. J. Immunol. 134:3204; and Goodman, M. G. 1986. “Mechanism of synergy between T cell signals and C8-substituted guanine nucleosides in humoral immunity: B lymphotropic cytokines induce responsiveness to 8-mercaptoguanosine”. J. Immunol. 136:3335). 8-mercaptoguanosine and 8-bromoguanosine also can substitute for the cytokine requirement for the generation of MHC restricted CTL. (Feldbush, T. L., 1985. cited supra), augment murine NK activity (Koo, G. C., M. E. Jewell, C. L. Manyak, N. H. Sigal, and L. S. Wicker. 1988. “Activation of murine natural killer cells and macrophages by 8-bromoguanosine”. J. Immunol. 140:3249), and synergize with IL-2 in inducing murine LAK generation (Thompson, R. A., and Z. K. Ballas. 1990. “Lymphokine-activated killer (LAK) cells. V. 8-Mercaptoguanosine as an IL-2-sparing agent in LAK generation”. J. Immunol. 145:3524). The NK and LAK augmenting activities of these C8-substituted guanosines appear to be due to their induction of IFN (Thompson, R. A., et al. 1990. cited supra). Recently, a 5′ triphosphorylated thymidine produced by a mycobacterium was found to be initogenic for a subset of human γβ T cells (Constant, P., F. Davodeau, M.-A. Peyrat, Y. Poquet, G. Puzo, M. Bonneville, and J.-J. Fournie. 1994. “Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands” Science 264:267). This report indicated the possibility that the immune system may have evolved ways to preferentially respond to microbial nucleic acids.
  • Several observations suggest that certain DNA structures may also have the potential to activate lymphocytes. For example, Bell et al. reported that nucleosomal protein-DNA complexes(but not-naked DNA) in spleen cell supernatants caused B cell-proliferation and immunoglobulin secretion Bell, D. A., B. Morrison, and P. VandenBygaar 1990. “Immunogenic DNA-related factors”. J. Clin. Invest. 85:1487). In other cases, naked DNA has been reported to have immune effects. For example, Messina et al. have recently reported that 260 to 800 bp fragments of poly (dG)•(dC) and poly (dG•dC) were mitogenic for B cells (Messina, J. P., G. S. Gilkeson, and D. S. Pisetsky. 1993. “The influence of DNA structure on the in vitro stimulation of murine lymphocytes by natural and synthetic polynucleotide antigens”. Cell. Immunol. 147:148 ). Tokunaga, et al. have reported that dG•dC induces γ-IFN and NK activity (Tokunaga, S. Yamamoto, and K. Namba. 1988. “A synthetic single-stranded DNA, poly(dG,dC), induces interferon-α/β and -γ, augments natural killer activity, and suppresses tumor growth” Jpn. J. Cancer Res. 79:682). Aside from such artificial homopolymer sequences, Pisetsky et al. reported that pure mammalian DNA has no detectable immune effects, but that DNA from certain bacteria induces B cell activation and immunoglobidin secretion (Messina, J. P., G. S. Gilkeson, and D. S. Pisetsky. 1991. “Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA”. J Immunol. 147:1759). Assuming that these data did not result from some unusual contaminant, these studies suggested that a particular structure or other characteristic of bacterial DNA renders it capable; of triggering B cell activation. Investigations of mycobacterial DNA sequences have demonstrated that ODN which contain certain palindrome sequences can activate NK cells (Yamamoto, S., T. Yamamoto, T. Kataoka, E. Kuramoto, O. Yano, and T. Tokunaga. 1992. “Unique palindromic sequences in synthetic oligonucleotides are required to induce INF and augment INF-mediated natural killer activity”. J. Immunol. 148:4072; Kuramoto, E., O. Yano, Y. Kimura, M. Baba, T. Makino, S. Yamamoto, T. Yamamoto, T. Kataoka, and T. Tokunaga 1992. “Oligonucleotide sequences required for natural killer cell activation”. Jpn. J. Cancer Res. 83:1128).
  • Several phosphorothioate modified ODN have been reported to induce in vitro or in vivo B cell stimulation (Tanaka, T., C. C. Chu, and W. E. Paul. 1992. “An antisense oligonucleotide complementary to a sequence in Iγ2b increases γ2b germline transcripts, stimulates B cell DNA synthesis, and inhibits immunoglobulin secretion”. J Exp. Med. 175:597;Branda, R. F., A. L. Moore, L. Mathews, J. J. McCormack, and G. Zon. 1993. “Immune stimulation by an antisense oligomer complementary to the rev gene of HIV-1”. Biochem. Pharmacol. 45:2037; McIntyre, K. W., K. Lombard-Gillooly, J. R. Perez, C. Kunsch, U. M. Sarmiento, J. D. Larigan, K. T. Landreth, and R. Narayangn 1993. “A sense phosphorothioate oligonucleotide directed to the initiation codon of ttcription factor NF-κ βT65 causes sequence-specific immune stimulation”. Antisense Res. Develop. 3:309; and Pisetsky, D. S., and C. F. Reich 1993. “Stimulation of murine lymphocyte proliferation by a phosphorothioate oligonucleotide with antisense activity for herpes -simplex virus”. Life Sciences 54:1601). These reports do not suggest a common structural motif or sequencer element in these ODN that might explain their effects.
  • The CREB/ATF Family of Transcription Factors and Their Role in Replication
  • The cAMP response element binding protein (CREB) and activating transcription factor (ATF) or CREB/ATF family of transcription factors is a ubiquitously. expressed class of transcription factors of which 11 members have so far been cloned (reviewed in de Groot, R. P., and P. Sassone-Corsi: “Hormonal control of gene expression: Multiplicity and versatility of cyclic adenosine 3′,5′-monophosphate-responsive nuclear regulators”. Mol. Endocrin. 7:145, 1993; Lee, K. A. W., and N. Masson: “Transcriptional regulation by CREB and its relatives”. Biochim. Biophys. Acta 1174:221, 1993.). They all belong to the basic region/leucine zipper (Zip) class of proteins. All cells appear to express one or more CREB/ATF proteins, but the members expressed and the regulation of mRNA splicing appear to be tissue-specific. Differential splicing of activation domams can determine whether a particular CREB/ATF protein will be a transcriptional inhibitor or activator. Many CREB/ATF proteins activate viral transcription, but some splicing variants which lack the activation domain are inhibitory. CREB/ATF proteins can bind DNA as homo- or hetero-dimers through the cAMP response element, the CRE, the consensus form of which is the unmethylated sequence TGACGTC (binding is abolished if the CpG is methylated) (Iguchi-Ariga, S. M. M., and W. Schaffner: “CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation”. Genes & Develop. 3:612, 1989.).
  • The transcriptional activity of the CRE is increased during B cell activation (Xie, H. T. C. Chiles, and T. L. Rothstein:. “Induction of CREB activity via the surface Ig receptor of B cells”. J. Immunol. 151:880, 1993.). CREB/ATF proteins appear to regulate the expression of multiple genes through the CRE including immunologically important genes such as fos, jun B, Rb-1, IL-6, IL-1(Tsukada, J., K Saito, W. R. Waterman, A. C. Webb, and P. E. Auron: “Transcription factors NF-IL6 and CREB recognze a common essential site in the human prointerleukin 1β gene”. Mol. Cell. Biol. 14:7285, 1994; Gray, G. D., O. M. Hernandez, D. Hebel, M. Root, J. M. Pow-Sang, and E. Wickstrom: “Antisense DNA inhibition of tumor growth induced by c-Ha-ras oncogene in nude mice”. Cancer Res. 53:577, 1993), IFN-β (Du, W., and T. Maniatis: “An ATF/CREB binding site protein is required for virus induction of the human interferon B gene”. “Proc. Natl. Acad. Sci. USA 89:2150, 1992), TGF-β1 (Asiedu, C. K., L. Scott, R. K. Assoian, M. Ehrlich: “Binding of AP-1/CREB proteins and of MDBP to contiguous sites downstream of the human TGF-B1 gene”. Biochim. Biophys. Acta 1219:55, 1994.), TGF-β2, class II MHC (Cox, P. M., and C. R. Goding: “An ATF/CREB binding motif is required for aberrant constitutive expression of the MHC class II DRa promoter and activation by SV40 T-antigen”. Nucl. Acic Res. 20:4881, 1992.), E-selectin, GM-CSF, CD-8α, the germline Igα constant region gene, the TCR Vβ gene, and the proliferating cell nuclear antigen (Ruang, D., P. M. Shipman-Appasamy, D. J. Orten, S. H. Hinrichs, and M. B. Prystowsky: “Promoter activity of the proliferating-cell nuclear antigen gene is associated with inducible CRE-binding proteins in interleulin 2-stimulated T lymphocytes”. Mol. Cell. Biol. 14:4233, 1994.). In addition to activation through the cAMP pathway, CREB can also mediate transcriptional responses to changes in intracellular Ca++ concentration (Sheng, M., G. McFadden, and M. E. Greenberg: “Membrane depolarization and calcium induce c-fos transciption via phosphorylation of transcription factor CREB”. Neuron 4:571, 1990).
  • The role of protein-protein interactions in transcriptional activation by CREB/ATF proteins appears to be extremely important. Activation of CREB through the cyclic AMP pathway requires protein kinase A (PKA), which phosphorylates CREB341 on ser133 and allows it to bind to a recently cloned protein, CBP (Kwok, R. P. S., J. R. Lundblad, J. C. Chrivia, J. P. Richards,. H. P. Bachinger, R. G. Brennan, S. G. E. Roberts, M. R. Green, and R. H. Goodman: “Nuclear protein CBP is a coactivator for the transcription factor CREB”. Nature 370:223, 1994; Arias, J., A. S. Alberts, P. Brindle, F. X Claret, T. Smea, M. Karin, J. Feramisco, and M. Montminy: “Activation of cAMP and mitogen responsive genes relies on a common nuclear factor”. Nature 370:226, 1994.). CBP in turn interacts with the basal transcription factor TFIIB causing increased transcription. CREB also has been reported to interact with dTAFII 110, a TATA binding protein-associated factor whose binding may regulate transcription (Ferreri, K., G. Gill, and M. Montminy: “The cAMP-regulated transciption factor CREB interacts with a component of the TFIID complex”. Proc. Acad. Sci. USA 91:1210, 1994.). In addition to these interactions, CREB/ATF proteins can specifically bind multiple other nuclear factors (Hoeffler, J. P., J. W. Lustbader, and C.-Y. Chen: “Identification of multiple nuclear factors that interact with cyclic adenosine 3′,5′-monophosphate response element-binding protein and activating transcription factor-2 by protein-protein interactions”. Mol. Endocrinol. 5:256, 1991) but the biologic significance of most of these interactions is unknown. CREB is normally thought to bind DNA either as a homodimer or as a heterodimer with several other proteins. Surprisingly, CREB monomers constitutively activate transcription (Krajewski, W., and K. A. W. Lee: “A monomeric derivative of the cellular transcription factor CREB functions as a constitutive activator”. Mol. Cell. Biol. 14:7204,1994.).
  • Aside from their critical role in regulating cellular transcription, it has recently been shown that CREB/ATF proteins are subverted by some infectious viruses and retroviruses, which require them for viral replication. For example, the cytomegalovirus immediate early promoter, one of the strongest known mammalian promoters, contains eleven copies of the CRE which are essential for promoter function (Chang, Y.-N., S. Crawford, J. Stall, D. R. Rawlins, K.-T. Jeang, and G.S. Hayward: “The palindromic series I repeats in the simian cytomegalovirus major immediate-early promoter behave as both strong basal enhancers and cyclic AMP response elements”. J. Virol. 64:264, 1990). At least some of the transcriptional activating effects of the adenovirus E1A protein, which induces many promoters, are due to its binding to the DNA binding domain of the CREB/ATF protein, ATF-2, which mediates E1A inducible transcription activation (Liu, F., and M. R Green: “Promoter targeting by adenovirus E1a through interaction with different cellular DNA-binding domains”. Nature 368:520, 1994). It has also been suggested that E1A binds to the CREB-binding protein, CBP (Arany, Z., W. R. Sellers, D. M. Livingston, and R. Eckner: “E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators”. Cell 77:799, 1994). Human T lymphotropic virus-I (HTLV-1), the retrovirus which causes human T cell leukemia and tropical spastic paresis, also requires CREB/ATF proteins for replication. In this cases the retrovirus produces a protein, Tax, which binds to CREB/ATF proteins and redirects them from their normal cellular binding sites to different DNA sequences (flanked by G- and C-rich sequences) present within the HTLV transcriptional enhancer (Paca-Uccaralertkun, S., L.-J. Zhao, N. Adya, J. V. Cross, B. R. Cullen, I. M. Boros, and C.-Z. Giam: “In vitro selection of DNA elements highly responsive to the human T-cell lymphotropic virus type I transcriptional activator, Tax”. Mol. Cell. Biol. 14:456, 1994; Adya, N., L.-J. Zhao, W. Huang, I. Boros, and C.-Z. Giam: “Expansion of CREB's DNA recognition specificity by Tax results from interaction with Ala-Ala-Arg at positions 282-284 near the conserved DNA-binding domain of CREB”. Proc. Natl. Acad. Sci. USA 91:5642, 1994).
  • SUMMARY OF THE INVENTION
  • The instant invention is based on the finding that certain oligonucleotides containing unmethylated cytosine-guanine (CpG) dinucleotides activate lymphocytes as evidenced by in vitro and in vivo data Based on this finding, the invention features, in one aspect, novel immunostimulatory oligonucleotide compositions.
  • In a preferred embodiment, an immunostimulatory oligonucleotide is synthetic, between 2 to 100 base pairs in size and contains a consensus mitogenic CpG motif represented by the formula:
    5′ X1X2CGX3X4 3′
      • wherein C and G are unmethylated, X1, X2, X3 and X4 are nucleotides and a GCG trinucleotide sequence is not present at or near the 5′ and 3′ termini.
  • For facilitating uptake into cells, CpG containing immunostimulatory oligonucleotides are preferably in the range of 8 to 40 base pairs in size. Prolonged immunostimulation can be obtained using stabilized oligonucleotides, particularly phosphorothioate stabilzed oligonucleotides. Enhanced immunostimulatory activity has been observed where X1X2 is the dinucleotide GpA and/or X3X4 is the dinucleotide is most preferably TpC or also TpT. Further enhanced immunostimulatory activity has been observed where the consensus motif X1X2CGX3X4 is preceded on the 5′ end by a T.
  • In a second aspect, the invention features useful methods, which are based on the immunostimulatory activity of the oligonucleotides. For example, lymphocytes can either be obtained from a subject and stimulated ex vivo upon contact with an appropriate oligonucleotide; or a non-methylated CpG containing oligonucleotide can be administered to a subject to facilitate in vivo activation of a subject's lymphocytes. Activated lymphocytes, stimulated by the methods described herein (e.g. either ex vivo or in vivo), can boost a subject's immune response. The immunostimulatory oligonucleotides can therefore be used to treat, prevent or ameliorate an immune system deficiency (e.g., a tumor or cancer or a viral, fungal, bacterial or parasitic infection in a subject. In addition, immunostimulatory oligonucleotides can also be administered as a vaccine adjuvant, to stimulate a subjects response to a vaccine. Further, the ability of immunostimulatory cells to induce leukemic cells to enter the cell cycle, suggests a utility for treating leukemia by increasing the sensitivity of chronic leukemia cells and then administering conventional ablative chemotherapy.
  • In a third aspect, the invention features neutral oligonucleotides (i.e. oligonucleotide that do not contain an unmethlylated CpG or which contain a methylated CpG dinucleotide). In a preferred embodiment, a neutralizing oligonucleotide is complementary to an immunostimulatory sequence, but contains a methylated instead of an unmethylated CpG dinucleotide sequence and therefore can compete for binding with unmethylated CpG containing oligonucleotides. In a preferred embodiment, the methylation occurs at one or more of the four carbons and two nitrogens comprising the cytosine six member ring or at one or more of the five carbons and four nitrogens comprising the guanine nine member double ring. 5′ methyl cytosine is a preferred methylated CpG.
  • In a fourth aspect, the invention features useful methods using the neutral oligonucleotides. For example, in vivo administration of neutral oligonucleotides should prove useful for treating diseases such as systemic lupus erythematosus, sepsis and autoimmune diseases, which are caused or exacerbated by the presence of unmethylated CpG dimers in a subject In addition, methylation CpG containing antisense oligonucleotides or oligonucleotide probes would not initiate an immune reaction when administered to a subject in vivo and therefore would be safer than corresponding unmethylated oligonucleotides.
  • In a fifth aspect, the invention features immunoinhibitory oligonucleotides, which are capable of interfering with the activity of viral or cellular transcription factors. In a preferred embodiment, immunoinhibitory oligonucleotides are between 2 to 100 base pairs in size and contain a consensus immunoinhibitory CpG motif represented by the formula:
    5′ GCGXnGCG3
  • wherein X=a nucleotide and n=in the range of 0-50. In a preferred embodiment, X is a pyrimidine.
  • For facilitating uptake into cells, immunoinhibitory oligonucleotides are preferably in the range of 8 to 40 base pairs in size. Prolonged immunostimulation can be obtained using stabilized oligonucleotides, particularly phosphorothioate stabilized oligonucleotides.
  • In a sixth and final aspect, the invention features various uses for immunoinhibitory oligonucleotides. Immunoinhibitory oligonucleotides have antiviral activity, independent of any antisense effect due to complementarity between the oligonucleotide and the viral sequence being targeted.
  • Other features and advantages of the invention Will become more apparent from the following detailed description and claims.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Definitions
  • As used herein, the following terms and phrases shall have the meanings set forth below:
  • An “oligonucleotide” or “oligo” shall mean multiple nucleotides (i.e. molecules comprising a sugar (e.g. ribose or deoxyribose) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g. cytosine (C), thymine (T) or uracil (U)) or a substituted purine (erg. adenine (A) or guanine (G)). The term “oligonucleotide” as used herein refers to both oligoribonucleotides (ORNs) and oligodeoxyribonucleotides (ODNs). The term “oligonucleotide” shall also include oligonucleosides (i.e. an oligonucleotide minus the phosphate) and any other organic base containing polymer Oligonucleotides can be obtained from existing nucleic acid sources (e.g. genomic or cDNA), but are preferably synthetic (e.g. produced by oligonucleotide synthesis).
  • A“stabilized oligonucleotide” shall mean an oligonucleotide that is relatively resistant to in vivo degradation (e.g. via an exo- or endo-nuclease). Preferred stabilized oligonucleotides of the instant invention have a modified phosphate backbone. Especially preferred oligonucleotides have a phosphorothioate modified phosphate backbone (i.e. at least one of the phosphate oxygens is replaced by sulfur). Other stabilized oligonucleotides include: nonionic DNA analogs, such as alkyl- and aryl-phosphonates (in which the charged phosphonate oxygen is replaced by an alkyl or aryl group), phosphodiester and alkylphosphotriesters, in which the charged oxygen moiety is alkylated. Oligonucleotides which contain a diol, such as tetraethyleneglycol or hexaethyleneglycol, at either or both termini have also been shown to be substantially resistant to nuclease degradation.
  • An “immunostimulatory oligonucleotide”, “immunostimulatory CpG containing oligonucleotide”, or “CpG ODN” refer to an oligonucleotide, which contains a cytosine, guanine dinucleotide sequence and stimulates (e.g. has a mitogenic effect) on vertebrate lymphocyte. Preferred immunostimulatory oligonucleotides are between 2 to 100 base pairs in size and contain a consensus mitogenic CpG motif represented by the formula:
    5′ X1X2CGX3X3 3′
    wherein C and G are unmethylated, X1, X2, X3 and X4 are nucleotides and a GCG trinucleotide sequence is not present at or near the 5′ and 3′ termini.
  • Preferably the immunostimulatory oligonucleotides range between 8 to 40 base pairs in size. In addition, the immunostimulatory oligonucleotides are preferably stabilized oligonucleotides, particularly preferred are phosphorothioate stabilized oligonucleotides. In one preferred embodiment, X1X2 is the dinucleotide GpA. In another preferred embodiment, X3X4 is preferably the dinucleotide TpC or also TpT. In a particularly preferred embodiment, the consensus motif X1X2CGX3X4 is preceded on the 5′ end by a T. Particularly preferred consensus sequences are TGACGTT or TGACGTC.
  • A “neutral oligonucleotide” refers to an oligonucleotide that does not contain an unmethylated CpG or an oligonucleotide which contains a methylated CpG dinucleotide. In a preferred embodiment, a neutralizing oligonucleotide is complementary to an immunostimulatory sequence, but contains a methylated instead of an unmethylated CpG dinucleotide sequence and therefore can compete for binding with unmethylated CpG containing oligonucleotides. In a preferred embodiment, the methylation occurs at one or more of the four carbons and two nitrogens comprising the cytosine six member ring or at one or more of the five carbons and four nitrogens comprising the guanine nine member double ring. 5′ methyl cytosine is a preferred methylated CpG.
  • An “immunoinhibitory oligonucleotide” or “immunoinhibitory CpG containing oligonucleotide” is an oligonucleotide that. Preferable immunoinhibitory oligonucleotides are between 2 to 100 base pairs in size and can be represented by the formula:
    5′GCGXnGCG3
  • wherein X=a nucleotide and n=in the range of 0-50. In a preferred embodiment, X is a pyrimidine.
  • For facilitating uptake into cells, immunoinhibitory oligonucleotides are preferably in the range of 8 to 40 base pairs in size. Prolonged immunostimulation can be obtained using stabilized oligonucleotides, particularly phosphorothioate stabilized
  • “Palindromic sequence” shall mean an inverted repeat (i.e. a sequence such as ABCDEED′C′B′A′ in which A and A′ are bases capable of forming the usual Watson-Crick base pairs. In vivo, such sequences may form double stranded structures.
  • An “oligonucleotide delivery complex” shall mean an oligonucleotide associated with (e.g. ionically or covalently bound to; or encapsulated within) a targeting means (e.g. a molecule that results in higher affinity binding to target cell (e.g. B-cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells). Examples of oligonucleotide delivery complexes include oligonucleotides associated with: a sterol (e.g. cholesterol), a lipid (e.g. a cationic lipid, virosome or liposome), or a target cell specific binding agent (e.g. a ligand recognized by target cell specific receptor). Preferred complexes must be sufficiently stable in vivo to prevent significant uncoupling prior to internalization by the target cell. However, the complex should be cleavable under appropriate conditions within the cell so that the oligonucleotide is released in a functional form.
  • An “immune system deficiency” shall mean a disease or disorder in which the subject's immune system is not functioning in normal capacity or in which it would be useful to boost a subject's immune response for example to eliminate a tumor or cancer (e.g. tumors of the brain, lung (e.g. small cell and non-small cell), ovary, breast, prostate, colon, as well as other carcinomas and sarcomas) or a viral (e.g. HIV, herpes), fungal (e.g. Candida sp.), bacterial or parasitic (e.g. Leishmania, Toxoplasma) infection in a subject.
  • A “disease associated with immune system activation” shall mean a disease or condition caused or exacerbated by activation of the subject's immune system. Examples include systemic lupus erythematosus, sepsis and autoimmune diseases such as rheumatoid arthritis and multiple sclerosis.
  • A “subject” shall mean a human or vertebrate animal including a dog, cat, horse, cow, pig, sheep, goat, chicken, monkey, rat, mouse, etc.
  • Certain Unmethylated CpG Containing Oligos have B Cell Stimulatory Activity as Shown In Vitro and In Vivo
  • In the course of investigating the lymphocyte stimulatory effects of two antisense oligonucleotides specific for endogenous retroviral sequences, using protocols described in the attached Examples 1 and 2, it was surprisingly found that two out of twenty-four “controls” (including various scrambled, sense, and mismatch controls for a panel of “antisense” ODN) also mediated B cell activation and IgM secretion, while the other “controls” had no effect
  • Two observations suggested that the mechanism of this B cell activation by the “control” ODN may not involve antisense effects 1) comparison of vertebrate DNA sequences listed in GenBank showed no greater homology than that seen with non-stimulatory ODN and 2) the two controls showed no hybridization to Northern blots with 10 μg of spleen poly A+ RNA. Resynthesis of these ODN on a different synthesizer or extensive purification by polyacrylamide gel electrophoresis or high pressure liquid chromatography gave identical stimulation, eliminating the possibility of an impurity. Similar stimulation was seen using B cells from C3H/HeJ mice, eliminating the possibility that lipopolysaccharide (LPS) contamination could account for the results.
  • The fact that two “control” ODN caused B cell activation similar to that of the two “antisense” ODN raised the possibility that all four ODN were stimulating B cells through some non-antisense mechanism involving a sequence motif that was absent in all of the other nonstimulatory control ODN. In comparing these sequences, it was discovered that all of the four stimulatory ODN contained ODN dinucleotides that were in a different sequence context from the nonstimulatory control.
  • To determine whether the CpG motif present in the stimulatory ODN was responsible for the observed stimulation, over 300 ODN ranging in length from 5 to 42 bases that contained methylated, unmethylated, or no CpG dinucleotides in various sequence contexts were synthesized. These ODNs, including the two original “controls” (ODN 1 and 2) and two originally synthesized as “antisense” (ODN 3D and 3M; Krieg, A. M. J. Immunol. 143:2448 (1989)), were then examined for in vitro effects on spleen cells (representative sequences are listed in Table 1). Several ODN that contained CpG dinucleotides induced B cell activation and IgM secretion; the magnitude of this stimulation typically could be increased by adding more CpG dinucleotides Table 1; compare ODN 2 to 2a or 3D to 3Da and 3Db). Stimulation did not appear to result from an antisense mechanism or impurity. ODN caused no detectable activation of γδ or other T cell populations.
  • Mitogenic ODN sequences uniformly became nonstimulatory if the CpG dinucleotide was mutated (Table 1; compare ODN 1 to 1a; 3D to 3Dc; 3M to 3 Ma; and 4 to 4a) or if the cytosine of the CpG dinucleotide was replaced by 5-methylcytdsine (Table 1; ODN 1b,2b,2c,3Dd, and 3Mb). In contrast, methylation of other cytosines did not reduce ODN activity (ODN 1c, 2d, 3De and 3Mc). These data confirmed that a CpG motif is the essential element present in ODN that activate B cells.
  • In the course of these studies, it became clear that the bases flanking the CpG dinucleotide played an important role in determining the B cell activation induced by an ODN. The optimal stimulatory motif was determined to consist of a CpG flanked by two 5′ purines (preferably a GpA dinucleotide) and two 3′ pyrimidines (preferably a TpT or TpC dinucleotide). Mutations of ODN to bring the CpG motif closer to this ideal-proved stimulation (e.g. compare ODN 2 to 2e; 3M to 3Md) while mutations that disturbed the motif reduced stimulations (e.g compare ODN 3D to 3Df; 4 to 4b, 4c and 4d). On the other hand, mutations outside the CpG motif did not reduce stimulation (e.g. compare ODN 1 to 1d, 3D to, 3Dg; 3M to 3Me).
  • Of those tested, ODNs shorter than 8 bases were non-stimulatory (e.g. ODN 4e). Among the forty-eight 8 base ODN tested, the most stimulatory sequence identified was TCAACGTT (ODN 4) which contains the self complementary “palindrome” AACGTT. In further optimizing this motif, it was found that ODN containing Gs at both ends showed increased stimulation, particularly if the the ODN were rendered nuclease resistant by phosphorothioate modification of the terminal internucleotide linkages. ODN 1585 (5′ GGGGTCAACGTTCAGGGGGG 3′ (SEQ ID NO:1)), in which the first two and last five internucleotide linkages are phosphorothioate modified caused an average 25.4 fold increase in mouse spleen cell proliferation compared to an average 3.2 fold increase in proliferation induced by ODN 1638, which has the same sequence as ODN 1585 except that the 10 Gs at the two ends are replaced by 10 As. The effect of the G-rich ends is cis; addition of an ODN with poly G ends but no CpG motif to cells along with 1638 gave no increased proliferation.
  • Other octamer ODN containing a 6 base palindrome with a TpC dinucleotide at the 5′ end were also active if they were close to the optimal motif (e.g. ODN 4b,4c). Other dinucleotides at the 5′ end gave reduced stimulation (eg ODN 4f, all sixteen possible dinucleotides were tested). The presence of a 3′ dinucleotide was insufficient to compensate for the lack of a 5′ dinucleotide (eg. ODN 4g). Disruption of the palindrome eliminated stimulation in octamer ODN (eg., ODN 4h), but palindromes were not required in longer ODN.
    TABLE 1
    Oligonucleotide Stimulation of B Cells
    Stimulation Index′
    ODN Sequence (5′ to 3′)† 3H Uridine IgM Production
    1  (SEQ ID NO:2) GCTAGACGTTAGCGT 6.1 ± 0.8 17.9 ± 3.6 
    1a (SEQ ID NO:3) ......T........ 1.2 ± 0.2 1.7 ± 0.5
    1b (SEQ ID NO:4) ......Z........ 1.2 ± 0.1 1.8 ± 0.0
    1c (SEQ ID NO:5) ............Z.. 10.3 ± 4.4  9.5 ± 1.8
    1d (SEQ ID NO:6) ..AT......GAGC. 13.0 ± 2.3  18.3 ± 7.5 
    2  (SEQ ID NO:7) ATGGAAGGTCCAGCGTTCTC 2.9 ± 0.2 13.6 ± 2.0 
    2a (SEQ ID NO:8) ..C..CTC..G......... 7.7 ± 0.8 24.2 ± 3.2 
    2b (SEQ ID NO:9) ..Z..CTC.ZG..Z...... 1.6 ± 0.5 2.8 ± 2.2
    2c (SEQ ID NO:10) ..Z..CTC..G......... 3.1 ± 0.6 7.3 ± 1.4
    2d (SEQ ID NO:11) ..C..CTC..G......Z.. 7.4 ± 1.4 27.7 ± 5.4 
    2e (SEQ ID NO:12) ............A....... 5.6 ± 2.0 ND
    3D (SEQ ID NO:13) GAGAACGCTGGACCTTCCAT 4.9 ± 0.5 19.9 ± 3.6 
    3Da(SEQ ID NO:14) .........C.......... 6.6 ± 1.5 33.9 ± 6.8 
    3Db(SEQ ID NO:15) .........C.......G.. 10.1 ± 2.8  25.4 ± 0.8 
    3Dc(SEQ ID NO:16) ...C.A.............. 1.0 ± 0.1 1.2 ± 0.5
    3Dd(SEQ ID NO:17) .....Z.............. 1.2 ± 0.2 1.0 ± 0.4
    3De(SEQ ID NO:18) ............Z....... 4.4 ± 1.2 18.8 ± 4.4 
    3Df(SEQ ID NO:19) .......A............ 1.6 ± 0.1 7.7 ± 0.4
    3Dg(SEQ ID NO:20) .........CC.G.ACTG.. 6.1 ± 1.5 18.6 ± 1.5 
    3M (SEQ ID NO:21) TCCATGTCGGTCCTGATGCT 4.1 ± 0.2 23.2 ± 4.9 
    3Ma(SEQ ID NO:22) ......CT............ 0.9 ± 0.1 1.8 ± 0.5
    3Mb(SEQ ID NO:23) .......Z............ 1.3 ± 0.3 1.5 ± 0.6
    3Mc(SEQ ID NO:24) ...........Z........ 5.4 ± 1.5 8.5 ± 2.6
    3Md(SEQ ID NO:25) ......A..T.......... 17.2 ± 9.4  ND
    3Me(SEQ ID NO:26) ...............C..A. 3.6 ± 0.2 14.2 ± 5.2 
    4 TCAACGTT 6.1 ± 1.4 19.2 ± 5.2 
    4a ....GC.. 1.1 ± 0.2 1.5 ± 1.1
    4b ...GCGC. 4.5. ± 0.2  9.6 ± 3.4
    4c ...TCGA. 2.7. ± 1.0  ND
    4d ..TT..AA 1.3 ± 0.2 ND
    4e -....... 1.3 ± 0.2 1.1 ± 0.5
    4f C....... 3.9 ± 1.4 ND
    4g --......CT 1.4 ± 0.3 ND
    4h .......C 1.2 ± 0.2 ND
    LPS 7.8 ± 2.5 4.8 ± 1.0

    ′Stimulation indexes axe the means and std. dcv. derived from at least 3 separate experiments, and are compared to wells cultured with no added ODN.

    ND= not done.

    CpG dinucteotides are underlined.

    Dots indicate identity; dashes indicate deletions.

    Z indicates S methyl cytosine.)
  • The kinetics of lymphocyte activation were investigated using mouse spleen cells. When the cells were pulsed at the same time as ODN addition and harvested just four hours later, there was already a two-fold increase in 3H uridine incorporation. Stimulation peaked at 12-48 hours and then decreased. After 24 hours, no intact ODN were detected, perhaps accounting for the subsequent fall in stimulation when purified B cells with or without anti-IgM (at a submitogenic dose) were cultured with CpG ODN, proliferation was found to synergistically increase about 10-fold by the two mitogens in combination after 48 hours. The magnitude of stimulation was concentration dependent and consistently exceeded that of LPS under optimal conditions for both Oligonucleotides containing a nuclease resistant phosphorothioate backbone were approximately two hundred times more potent than unmodified oligonucleotides.
  • Cell cycle analysis was used to determine the proportion of B cells activated by CpG-ODN. CpG-ODN-induced cycling in more than 95% of B cells (Table 2). Splenic B lymphocytes sorted by flow cytometry into CD23− (marginal zone) and CD23+ (follicular) subpopulations were equally responsive to ODN-induced stimulation, as were both resting and activated populations of B cells isolated by fractionation over Percoll gradients. These studies demonstrated that CpG-ODN induce essentially all B cells to enter the cell cycle.
    TABLE 2
    Cell Cycle Analysis with CpG ODN
    Percent of cells in
    Treatment G0 G1 SA + G2 + M
    Media 97.6 2.4 0.02
    ODN 1a 95.2 4.8 0.04
    ODN 1d 2.7 74.4 22.9
    ODN 3Db 3.5 76.4 20.1
    LPS (30 μg/ml) 17.3 70.5 12.2
  • The mitogenic effects of CpG ODN on human cells, were tested on peripheral blood mononuclear cells (PBMCs) obtained from two patients with chronic lymphocytic leukemia (CLL), as described in Example 1. Control ODN containing no CpG-dinucleotide sequence showed no effect on the basal proliferation of 442 cpm and 874 cpm (proliferation measured by 3H thymidine incorporation) of the human cells. However, a phosphorothioate modified CpG ODN 3Md (SEQ ID NO: 25) induced increased proliferation of 7210 and 86795 cpm respectively in the two patients at a concentration of just 1 μM. Since these cells had been frozen, they may have been less responsive to the oligos than fresh cells in vivo. In addition, cells from CLL patients typically are non-proliferating, which is why traditional chemotherapy is not effective.
  • Certain B cell lines such as WEHI-231 are induced to undergo growth arrest and/or apoptbsis in response to crosslinking of their antigen receptor by anti-IgM (Jakway, J. P. et al., “Growth regulation of the B lymphoma. cell line WEHI-231 by anti-immunoglobulin, lipopolysaccharide and other bacterial products” J. Immunol 137: 2225 25 (1986); Tsubata, T., J. Wu and T. Honjo: B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40.” Nature 364:645 (1993)). WEHI-231 cells are rescued from this growth arrest by certain stimuli such as LPS and by the CD40 ligand. ODN containing the CpG motif were also found to protect WEHI-231 from anti-IgM induced growth arrest, indicating that accessory cell populations are not required for the effect.
  • To better understand the immune effects of unmethylated CpG ODN, the levels of cytokines and prostaglandins in vitro and in vivo were measured. Unlike LPS, CpG ODN were not found to induce purified macrophages to produce prostaglandin PGE2. In fact, no apparent direct effect of CpG ODN was detected on either macrophages or T cells. In vivo or in whole spleen cells, no significant increase in the following interleukins: IL-2, IL-3, L-4, or IL-10 was detected within the first six hours. However, the level of IL-6 increased strikingly within 2 hours in the serum of mice injected with CpG ODN. Increased expression of IL-12 and interferon gamma (IFN-γ) by spleen cells was also detected within the first two hours.
  • To determine whether CpG ODN can cause in vivo immune stimulation, DBA/2 mice were injected once intraperitoneally with PBS or phosphorothioate CpG or non-CpG ODN at a dose of 33 mg/kg (approximately 500 μg/mouse). Pharmacokinetic studies in mice indicate that this dose of phosphorothioate gives levels of approximately 10 μg/g in spleen tissue (within the effective concentration range determined from the in vitro studies described herein) for longer than twenty-four-hours (Agrawal, S. et al. (1991) Proc. Natl. Acad. Sci. USA 91:7595). Spleen cells from mice were examined twenty-four hours after ODN injection for expression of B cells surface activation markers Ly-6A/E, Bla-1, and class II MHC using three color flow cytometry and for their spontaneous proliferation using 3H. thymidine. Expression of all three activation markers was significantly increased in B cells from mice injected with CpG ODN, but not from mice injected with PBS or non-CpG ODN. Spontaneous 3H thymidine incorporation was increased by 2-6 fold in spleen cells from mice injected with the stimulatory ODN compared to PBS or non-CpG ODN-injected mice. After. 4 days, serum IgM levels in mice injected with CpG ODN in vivo were increased by approximately-3-fold compared to controls. Consistent with the inability of these agents to activate T cells, there was minimal change in T cell expression of the IL-2R or CD-44.
  • Degradation of phophodiester ODN in serum is predominantly mediated by 3′ exonucleases, while intracellular ODN degradation is more complex, involving 5′ and 3′ exonucleases and endonucleases. Using a panel of ODN bearing the 3D sequence with varying numbers of phosphorothioate modified linkages at the 5′ and 3′ ends, it was empirically determined that two 5′ and five 3′ modified linkages are required to provide optimal stimulation with this CpG ODN.
  • Unmethylated CpG Containing Oligos have NK Cell Stimulatory Activity
  • As described in further detail in Example 4, experiments were conducted to determine whether CpG containing oligonucleotides stimulated the activity of natural killer (NK) cells in addition to B cells. As shown in Table 3, a marked induction of NK activity among spleen cells cultured with CpG ODN 1 and 3Dd was observed. In contrast, there was relatively no induction in effectors that had been treated with non-CpG control ODN.
    TABLE 3
    Induction Of NK Activity By CpG Oligodeoxynucleotides (ODN)
    % YAC-1 Specific Lysis* % 2C11 Specific Lysis
    Effector: Target Effector: Target
    ODN 50:1 100:1 50:1 100:1
    None −1.1 −1.4 15.3 16.6
    1 16.1 24.5 38.7 47.2
    3Dd 17.1 27.0 37.0 40.0
    non-CpG ODN −1.6 −1.7 14.8 15.4
  • Neutralizing Activity of Methylated CpG Containing Oligos
  • B cell mitogenicity of ODN in which cytosines in CpG motifs or elsewhere were replaced by 5-methylcytosine were tested as described in Example 1. As shown in Table 1 above, ODN containing methylated CpG motifs were non-mitogenic (Table 1; ODN 1c, 2f, 3De, and 3MNc). However, methylation of cytosines other than in a CpG dinucleotide retained their stimulatory properties (Table 1, ODN 1 d, 2d, 3Df, and 3Md).
  • Immunoinhibitory Activity of Oligos Containing a GCG Trinucleotide Sequence at or Near Both Termini
  • In some cases, ODN containing CpG dinucleotides that are not in the stimulatory motif described above were found to block the stimulatory effect of other mitogenic CpG ODN. Specifically the addition of an atypical CpG motif consisting of a GCG near or at the 5′ and/or 3′ end of CpG ODN actually inhibited stimulation of proliferation by other CpG motifs. Methylation or substitution of the cytosine in a GCG motif reverses this effect. By itself, a GCG motif in an ODN has a modest mitogenic effect, though far lower than that seen with the preferred CpG motif.
  • Proposed Mechanisms of Action of Immunostimulatory Neutralizing and Immunoinhibitory Oligonucleotides
  • Unlike antigens that trigger B cells through their surface Ig receptor, CpG-ODN did not induce any detectable Ca2+ flux, changes in protein tyrosine phosphorylation, or IP 3 generation. Flow cytometry with FITC-conjugated ODN with or without a CpG motif was performed as described in Zhao, Q et al.,(Antisense Research and Development 3:53-66 (1993)), and showed equivalent membrane binding, cellular uptake, efflux, and intracellular localization. This suggests that there may not be cell membrane proteins specific for CpG ODN. Rather than acting through the cell membrane, that data suggests that unmethylated CpG containing oligonucleotides require cell uptake for activity: ODN covalently linked to a solid Teflon support were nonstimulatory, as were biotinylated ODN immobilized on either avidin beads or avidin coated petri dishes. CpG ODN conjugated to either FITC or biotin retained full mitogenic properties, indicating no steric hindrance.
  • The optimal CpG motif TGACGTT/C is identical to the CRE (cyclic ANT response element). Like the mitogenic effects of CpG ODN, binding of CREB to the CRE is abolished if the central CpG is methylated. Electrophoretic mobility shift assays were used to determine whether CpG ODN, which are single stranded, could compete with the binding of B cell CREB/ATF proteins to their normal binding site, the doublestranded CRE. Competition assays demonstrated that single stranded ODN containing CpG motifs could completely compete the binding of CREB to its binding site, while ODN without CpG motifs could not. These data support the conclusion that CpGODN exert their mitogenic effects through interacting with one or more B cell CREB/ATF proteins in some way. Conversely, the presence of GCG sequences or other atypical CPG motifs near the 5′ and/or 3′ ends of ODN likely interact with CREB/ATF proteins in a way that does not cause activation, and may even prevent it.
  • The stimulatory CpG motif is common in microbial genomic DNA, but quite rare in vertebrate DNA. In addition, bacterial DNA has been reported to induce B cell proliferation and immunoglobulin (Ig) production, while mammalian DNA does not (Messina, J. P. et al., J. Immunol. 147:1759 (1991)). Experiments further described in Example 3, in which methylation of bacterial DNA with CpG methylase was found to abolish mitogenicity, demonstrates that the difference in CpG status is the cause of B cell stimulation by bacterial DNA. This data supports the following conclusion: that unmethylated CpG dinucleotides present within bacterial DNA are responsible for the stitulatory effects of bacterial DNA.
  • Teleologically, it appears likely that lymphocyte activation by the CpG motif represents an immune defense mechanism that can thereby distinguish bacterial from host DNA. Host DNA would induce little or no lymphocyte activation due to it CpG suppression and methylation. Bacterial DNA would cause selective lymphocyte activation in infected tissues. Since the CpG pathway synergizes with B cell activation through the antigen receptor, B cells bearing antigen receptor specific for bacterial antigens would receive one activation signal through cell membrane Ig and a second signal from bacterial DNA, and would therefore tend to be preferentially activated. The interrelationship of this pathway with other pathways of B cell activation provide a physiologic mechanism employing a polyclonal antigen to induce antigen-specific responses.
  • Method for Making Immunostimulatory Olizas
  • For use in the instant invention, oligonucleotides can be synthesized de novo using any of a number of procedures well known in the art. For example, the β-cyanoethyl phosphoramidite method (S. L. Beaucage and M. H. Caruthers, (1981) Tet. Let. 22:1859); nucleoside H-phosphonate method (Garegg et al., (1986) Tet. Let. 27: 4051-4054; Froehler et al., (1986) Nucl. Acid. Res. 14: 5399-5407; Garegg et al., (1986) Tet. Let. 27: 4055-4058, Gaffney et al., (1988) Tet. Let. 29:2619-2622). These chemistries can be performed by a variety of automated oligonucleotide synthesizers available in the market. Alternatively, oligonucleotides can be prepared from existing nucleic acid sequences (e.g. genomic or cDNA) using known techniques, such as those employing restriction enzymes, exonucleases or endonucleases.
  • For use in vivo, oligonucleotides are preferably relatively resistant to degradation (e.g. via endo- and exo-nucleases). Oligonucleotide stabilization can be accomplished via phosphate backbone modifications. A preferred stabilized oligonucleotide has a phosphorothioate modified backbone. The pharmacokinetics of phosphorothioate ODN show that they have a systemic half-life of forty-eight hours in rodents and suggest that they may be useful for in vivo applications (Agrawal, S. et al. (1991) Proc. Natl. Acad. Sci. USA 88:7595). Phosphorothioates may be synthesized using automated techniques employing either phosphoramidate or H phosphonate chemistries. Aryl- and alky-phosphonates can be made e.g. (as described in U.S. Pat. No. 4,469,863); and alkylphosphotriesters (in which the charged oxygen moiety is alkylated as described in U.S. Pat. No. 5,023,243 and European Patent No. 092,574) can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described (Uhlmann, E. and Peyman, A. (1990) Chem. Rev. 90:544; Goodchild, J. (1990) Bioconjugate Chem. 1:165).
  • For administration in vivo, oligonucleotides may be associated with a molecule that results in higher affinity binding to target cell (e.g. B-cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells to form an “oligonucleotide delivery complex”. Oligonucleotides can be ionically, or covalently associated with appropriate molecules using techniques which are well known in the art. A variety of coupling or crosslinking agents can be used e.g. protein A, carbodiimide, and N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP). Oligonucleotides can alternatively be encapsulated in liposomes or virosomes using well-known techniques.
  • The present invention is further illustrated by the following Examples which in no way should be construed as further limiting. The entire contents of all of the references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this: application are hereby expressly incorporated by reference.
  • Therapeutic Uses of Immunostimulatory Oligas
  • Based on their immunostimulatory properties oligonucleotides containing at least one unmethylated CpG dinucleotide can be administered to a subject in vivo to treat an “immune system deficiency”. Alternatively, oligonucleotides containing at least one. unmethylated CpG dinucleotide can be contacted with lymphocytes (e.g. B cells or NK cells) obtained from a subject having an immune system deficiency ex vivo and activated lymphocytes can then be reimplanted in the subject.
  • Immunostimulatory oligonucleotides can also be administered to a subject in conjunction with a vaccine, as an adjuvant, to boost a subject's immune system to effect better response from the vaccine. Preferably the unmethylated CpG dinucleotide is administered slightly before or at the same time as the vaccine.
  • Preceding chemotherapy with, an immunostimulatory oligonucleotide should prove useful for increasing the responsiveness of the malignant cells to subsequent chemotherapy. CpG ODN also increased natural killer cell activity in both human and murine cells. Induction of NK activity may likewise be beneficial in cancer immunotherapy.
  • Therapeutic Uses for Neutral Oligonucleotides
  • Oligonucleotides that are complementary to certain target sequences can be sythesized and administered to a subject in vivo. For example, antisense oligonucleotides hybridize to complementary mRNA, thereby preventing expression of a specific target gene. The sequence-specific effects of antisense oligonucleotides have made them useful research tools for the investigation of protein function. Phase I/II human trials of systemic antisense therapy are now underway for acute myelogenous leukemia and HIV.
  • In addition, oligonucleotide probes (i.e. oligonucleotides with a detectable label) can be administered to a subject to detect the presence of a complementary sequence based on detection of bound label. In vivo administration and detection of oligonucleotide probes may be useful for diagnosing certain diseases that are caused or exacerbated by certain DNA sequences (e.g. systemic lupus erythematosus, sepsis and autoimmune diseases).
  • Antisense oligonucleotides or oligonucleotide probes in which any or all CpG dinucleotide is methylated, would not produce an immune reaction when administered to a subject in vivo and therefore would be safer than the corresponding non-methylated CpG containing oligonucleotide.
  • For use in therapy, an effective amount of an appropriate oligonucleotide alone or formulated as an oligonucleotide delivery complex can be administered to a subject by any mode allowing the oligonucleotide to be taken up by the appropriate target cells (e.g. B-cells and NK cells). Preferred routes of administration include oral and transdermal (e.g. via a patch). Examples of other routes of administration include injection (subcutaneous, intravenous, parenteral, intraperitoneal, intrathecal, etc.). The injection can be in a bolus or a continuous infusion.
  • An oligonucleotide alone or as an oligonucleotide delivery complex can be administered in conjunction with a pharmaceutically acceptable carrier. As used herein, the phrase “pharmaceutically acceptable carrier” is intended to include substances that can be coadministered with an oligonucleotide or an oligonucleotide delivery complex and allows the oligonucleotide to perform its intended function. Examples of such carriers include solutions, solvents, dispersion media, delay agents, emulsions and the like. The use of such media for pharmaceutically active substances are well known in the art. Any other conventional carrier suitable for use with the oligonucleotides falls within the scope of the instant invention.
  • The language “effective amount” of an oligonucleotide refers to that amount necessary or sufficient to realize a desired biologic effect. For example, an effective amount of an oligonucleotide containing at least one methylated CpG for treating an immune system deficiency could be that amount necessary to eliminate a tumor, cancer, or bacterial, viral or fungal infection. An effective amount for use as a vaccine adjuvant could be that amount useful for boosting a subject's immune response to a vaccine. An “effective amount” of an oligonucleotide lacking a non-methylated CpG for use in treating a disease associated with immune system activation, could be that amount necessary to outcompete non-methylated CpG containing nucleotide sequences. The effective amount for any particular application can vary depending on such factors as the disease or condition being treated, the particular oligonucleotide being administered, the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art can empirically determine the effective amount of a particular oligonucleotide without necessitating undue experimentation.
  • The studies reported above indicate that unmethylated CpG containing oligonucleotides are directly mitogenic for lymphocytes (e.g. B cells and NK cells). Together with the presence of these sequences in bacterial DNA, these results suggest that the underrepresentation of CpG dinucleotides in animal genomes, and the extensive methylation of cytosines present in such dinucleotides, may be explained by the existence of an immune defense mechanism that can distinguish bacterial from host DNA. Host DNA would commonly be present in many anatomic regions and areas of inflammation due to apoptosis (cell death), but generally induces little or no lymphocyte activation. However, the presence of bacterial DNA containing unmethylated CpG motifs can cause lymphocyte activation precisely in infected anatomic regions, where it is beneficial. This novel activation pathway provides a rapid alternative to T cell dependent antigen specific B cell activation. However, it is likely that B cell activation would not be totally nonspecific. B cells bearing antigen receptors specific for bacterial products could receive one activation. signal through cell membrane Ig, and a second from bacterial DNA, thereby more vigorously triggering antigen specific immune responses.
  • As with other immune defense mechanisms, the response to bacterial DNA could have undesirable consequences in some settings. For example, autoimmune responses to self antigens would also tend to be preferentially triggered by bacterial infections, since autoantigens could also provide a second activation signal to autoreactive B cells triggered by bacterial DNA. Indeed the induction of autoimmunity by bacterial infections is a common clinical observance. For example, the autoimmune disease systemic lupus erythematosus, which is: i) characterized by the production of anti-DNA antibodies; ii) induced by drugs which inhibit DNA methyltransferase (Cornacchia, E. J. et al., J. Clin. Invest. 92:38 (1993)); and iii) associated with reduced DNA methylation (Richardson, B., L. et al., Arth. Rheum 35:647 (1992)), is likely triggered at least in part by activation of DNA-specific B cells through stimulatory signals provided by CpG motifs, as well as by binding of bacterial DNA to antigen receptors.
  • Further, sepsis, which is characterized by high morbidity and mortality due to massive and nonspecific activation of the immune system may be initiated by bacterial DNA and other products released from dying bacteria that reach concentrations sufficient to directly activate many lymphocytes.
  • Lupus, sepsis and other “diseases associated with immune system activation” may be treated, prevented or ameliorated by administering to a subject oligonucleotides lacking an unmethylated CpG dinucleotide (e.g. oligonucleotides that do not include a CpG motif or oligonucleotides in which the CpG motif is methylated) to block the binding of unmethylated CpG containing nucleic acid sequences. Oligonucleotides lacking an unmethylated CpG motif can be administered alone or in conjunction with compositions that block an immune cell's reponse to other mitogenic bacterial products (e.g. LPS).
  • The following serves to illustrate mechanistically how oligonucleotides containing an unmethylated CpG dinucleotide can treat, prevent or ameliorate the disease lupus. Lupus is commonly thought to be triggered by bacterial or viral infections. Such infections have been reported to stimulate the production of nonpathogenic antibodies to single stranded DNA. These antibodies likely recognize primarily bacterial sequences including unmethylated CpGs. As disease develops in lupus, the anti-DNA antibodies shift to pathogenic antibodies that are specific for double-stranded DNA. These antibodies would have increased binding for methylated CpG-sequences and their production would result from a breakdown of tolerance in lupus. Alternatively, lupus may result when a patient's DNA becomes hypomethylated, thus allowing anti-DNA antibodies specific for unmethylated CpGs to bind to self DNA and trigger more widespread autoimmunity through the process referred to as “epitope spreading”.
  • In either case, it may be possible to restore tolerance in lupus patients by coupling antigenic oligonucleotides to a protein carrier such as gamma globulin (IgG)). Calf-thymus DNA complexed to gamma globulin has been reported to reduce anti-DNA antibody formation.
  • Therapeutic Uses of Oligos Containing GCG Trinucleotide Sequences at or Near Both Termini
  • Based on their interaction with CREB/ATF, oligonucleotides containing GCG trinucleotide sequences at or near both termini have antiviral activity, independent of any antisense effect due to complementary between the oligonucleotide and the viral sequence being targeted. Based on this activity, an effective amount of inhibitory oligonucleotides can be administered to a subject to treat or prevent a viral infection.
  • EXAMPLES Example 1 Effects of ODNs on B Cell Total RNA Synthesis and Cell Cycle
  • B cells were purified from spleens obtained from 6-12 wk old specific pathogen free DBA/2 or BXSB mice (bred in the University of Iowa animal care facility; no substantial strain differences were noted) that were depleted of T cells with anti-Thy-1.2 and complement and centrifigation over lympholyte M (Cedarlane Laboratories, Hornby, Ontario, Canada) (“B cells”). B cells contained fewer than 1% CD4+ or CD8+ cells. 8×104 B cells were dispensed in triplicate into 96 well microtiter plates in 100 μl RPMI containing 10% FBS heat inactivated to 65° C. for 30 min.), 50 μM 2-mercaptoethanol, 100 U/ml penicillin, 100 ug/ml streptomycin, and 2-mM L-glutamate. 20 μM ODN were added at the start of culture for 20 h at 37° C., cells pulsed with 1 μCi of 3H uridine, and harvested and counted 4 hr later. Ig secreting B cells were enumerated using the ELISA spot assay after culture of whole spleen cells with ODN at 20 μM for 48 hr. Data, reported in Table 1, represent the stimulation index compared to cells cultured without ODN. Cells cultured without ODN gave 687 cpm, while cells cultured with 20 μg/ml LPS (determined by titration to be the optimal concentration) gave 99,699 cpm in this experiment. 3H thymidine incorporation assays showed similar results, but with some nonspecific inhibition by thymidine released from degraded ODN (Matson. S and A. M. Krieg (1992) Nonspecific suppression of 3H-thymidine incorporation by control oligonucleotides. Antisense Research and Development 2:325).
  • For cell cycle analysis, 2×106 B cells were cultured for 48 hr. in 2 ml tissue culture medium alone, or with 30 μg/ml LPS or with the indicated phosphorothioate modified ODN at 1 μM. Cell cycle analysis was performed as described in (Darzynkiewicz, Z. et al., Proc. Natl. Acad. Sci. USA 78:2881(1981)).
  • To test the mitogenic effects of CpG ODN on human cells, perpheral blood monocyte cells (PBMCs) were obtained from two patients with chronic lymphocytic leukemia (CLL), a disease in which the circulating cells are malignant B cells. Cells were cultured for 48 hrs and pulsed for 4 hours with tritiated thymidine as described above.
  • Example 2 Effects of ODN on Production of IgM from B cells
  • Single cell suspensions from the spleens of freshly killed mice were treated with anti-Thyl, anti-CD4, and anti-CD8 and complement by the method of Leibson et al., J Exp. Med. 154:1681 (1981)). Resting B cells (<0.02% T cell contamination) were isolated from the 63-70% band of a discontinuous Percoll gradient by the procedure of DeFranco et al, J. Exp. Med. 155:1523 (1982). These were cultured as described above in 30 μM ODN or 20 μg/ml LPS for 48 hr. The number of B cells actively secreting IgM was maximal at this time point, as determined by ELIspot assay (Klinman, D. M. et al. J. Immunol. 144:506 (1990)). In that assay, B cells were incubated for 6 hrs on anti-Ig coated microtiter plates. The Ig they produced (>99% IgM) was detected using phosphatase-labelled anti-Ig (Southern Biotechnology Associated, Birmingham, Ala.). The antibodies produced by individual B cells were visualized by addition of BCIP (Sigma Chemical Co., St. Louis Mo.) which forms an insoluble blue precipitate in the presence of phosphatase. The dilution of cells producing 20-40 spots/well was used to determine the total number of antibody-secreting B cells/sample. All assays were performed in triplicate. In some experiments, culture supernatants were assayed for IgM by ELISA, and showed similar increases in response to CpG-ODN.
  • table 1
  • Example 3 B Cell Stimulation by Bacterial DNA
  • DBA/2 B cells were cultured with no DNA or 50 μg/ml of a) Micrococcus lysodeikticus; b) NZB/N mouse spleen; and c) NFS/N mouse spleen genomic DNAs for 48 hours, then pulsed with 3H thymidine for 4 hours prior to cell harvest. Duplicate DNA samples were digested with DNAse I for 30 minutes at 37 C prior to addition to cell cultures. E coli DNA also induced an 8.8 fold increase in the number of IgM secreting B cells by 48 hours using the. ELISA-spot assay.
  • DBA/2 B cells were cultured with either no additive, 50 μg/ml LPS or the ODN 1; 1a; 4; or 4a at 20 uM. Cells were cultured and harvested at 4, 8, 24 and 48 hours. BXSB cells were cultured as in Example 1 with 5, 10, 20, 40 or 80 μM of ODN 1; 1a; 4; or 4a or LPS. In this experiment, wells with no ODN had 3833 cpm. Each experiment was performed at least three times with similar results. Standard deviations of the triplicate wells were <5%.
  • Example 4 Effects of ODN on Natural Killer (KK) Activity
  • 10×106 C57BL/6 spleen cells were cultured in two ml RPMI (supplemented as described for Example 1) with or without 40 μM CpG or non CpG ODN for forty-eight hours. Cells were washed, and then used as effector cells in a short term 51 Cr release assay with YAC-1 and 2C11, two NK sensitive target cell lines (Ballas, Z. K. et al. (1993) J. Immunol. 150:17). Effector cells were added at various concentrations to 104 51Cr-labeled target cells in V-bottom microtiter plates in 0.2 ml, and incubated in 5% CO2 for 4 hr. at 37° C. Plates were then centrifuged, and an aliquot of the supernatant counted for radioactivity. Percent specific lysis was determined by calculating the ratio of the 51Cr released in the presence of effector cells minus the 51Cr released when the target cells are cultured alone, over the total counts released after cell lysis in 2% acetic acid minus the 51Cr cpm released when the cells are cultured alone.
  • Example 5 In Vivo Studies with CpG Phosphorothioate ODN
  • Mice were weighed and injected IP with 0.25 ml of sterile PBS or the indicated phophorothioate ODN dissolved in PBS. Twenty four hours later, spleen cells were harvested, washed, and stained for flow cytometry using phycoerythrin conjugated 6B2 to gate on B cells in conjunction with biotin conjugated anti Ly-6A/E or anti-Iad (Pharmingen, San Diego, Calif.) or anti-Bla-1 (Hardy, R. R. et al., J. Exp. Med. 159:1169 (1984). Two mice were studied for each condition and analyzed individually.
  • Example 6 Titration of Phosphorothioate ODN for B Cell Stimulation
  • B cells were cultured with phosphorothioate ODN with the sequence of control ODN 1a or the CpG ODN 1d and 3Db and then either pulsed after 20 hr with 3H uridine or after 44 hr with 3H thymidine before harvesting and determining.
  • Example 7 Rescue of B Cells from Apoptosis
  • WEHI-231 cells (5×104/well) were cultured for 1 hr. at 37 C. in the presence or absence of LPS or the control ODN 1a or the CpG ODN 1d and 3Db before addition of anti-IgM (1 μ/ml). Cells. were cultured for a further 20 hr. before a 4 hr. pulse with 2 μCi/well. 3H thymidine. In this experiment, cells with no ODN or anti-IgM gave 90.4×103 by addition, of anti-IgM. The phosphodiester ODN shown in Table 1 gave similar protection, though with some nonspecific suppression due to ODN degradation. Each experiment was repeated at least 3 times with similar results.
  • Example 8 In Vivo Induction of IL-6
  • DBA1 female mice (2 mos. old) were injected IP with 500 μg CpG or control phosphorothioate ODN. At various time points after injection, the mice were bled. Two mice were studied for each time point. IL-6 was measured by Elisa, and IL-6 concentration was calculated by comparison to a standard curve generated using recombinant IL-6. The sensitivity of the assay was 10 pg/ml. Levels were undetectable after 8 hr.
  • Example 9 Binding of B cell CREB/ATF to a Radiolabelled Doublestranded CRE Probe (CREB)
  • Whole cell extracts from CH12.LX B cells showed 2 retarded bands when analyzed by EMSA with the CRE probe (free probe is off the bottom of the figure). In CREB/ATF protein(s) binding to the CRE were competed by the indicated amount of cold CRE, and by single-stranded CpG ODN, but not by non-CpG ODN.
  • Equivalents
  • Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims (17)

1-36. (canceled)
37. A composition comprising:
an immunostimulatory oligonucleotide of 8 to 40 nucleotides in length, comprising:
5′X1X2CGX3X43′, wherein C and G are unmethylated and X1, X2, X3, and X4 are nucleotides, and
an antigen in a pharmaceutically acceptable carrier, wherein the composition is a vaccine.
38. The composition of claim 37, wherein the immunostimulatory oligonucleotide does not include a GCG trinucleotide at a 5′ and/or 3′ terminal.
39. The composition of claim 37, wherein the immunostimulatory oligonucleotide does not contain a 5′X1X2CGX3X43′ palindrome.
40. The composition of claim 38, wherein the immunostimulatory oligonucleotide does not contain a 5′X1X2CGX3X43′ palindrome.
41. The composition of claim 37, wherein the immunostimulatory oligonucleotide includes a phosphorothioate backbone modification.
42. The composition of claim 38, wherein the immunostimulatory oligonucleotide includes a phosphorothioate backbone modification.
43. The composition of claim 39, wherein the immunostimulatory oligonucleotide includes a phosphorothioate backbone modification.
44. The composition of claim 40, wherein the immunostimulatory oligonucleotide includes a phosphorothioate backbone modification.
45. A method of inducing an antigen-specific immune response in a subject comprising: administering the vaccine of claim 37 to a subject, in an amount effective to induce the antigen-specific immune response.
46. A method of inducing an antigen-specific immune response in a subject comprising: administering the vaccine of claim 38 to a subject, in an amount effective to induce the antigen-specific immune response.
47. A method of inducing an antigen-specific immune response in a subject comprising: administering the vaccine of claim 39 to a subject, in an amount effective to induce the antigen-specific immune response.
48. A method of inducing an antigen-specific immune response in a subject comprising: administering the vaccine of claim 40 to a subject, in an amount effective to induce the antigen-specific immune response.
49. A method of inducing an antigen-specific immune response in a subject comprising: administering the vaccine of claim 41 to a subject, in an amount effective to induce the antigen-specific immune response.
50. A method of inducing an antigen-specific immune response in a subject comprising: administering the vaccine of claim 42 to a subject, in an amount effective to induce the antigen-specific immune response.
51. A method of inducing an antigen-specific immune response in a subject comprising: administering the vaccine of claim 43 to a subject, in an amount effective to induce the antigen-specific immune response.
52. A method of inducing an antigen-specific immune response in a subject comprising: administering the vaccine of claim 44 to a subject, in an amount effective to induce the antigen-specific immune response.
US11/127,803 1994-07-15 2005-05-11 Immunomodulatory oligonucleotides Abandoned US20050244379A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/127,803 US20050244379A1 (en) 1994-07-15 2005-05-11 Immunomodulatory oligonucleotides

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US27635894A 1994-07-15 1994-07-15
US08/386,063 US6194388B1 (en) 1994-07-15 1995-02-07 Immunomodulatory oligonucleotides
US09/415,142 US20030026782A1 (en) 1995-02-07 1999-10-08 Immunomodulatory oligonucleotides
US10/690,495 US20040143112A1 (en) 1994-07-15 2003-10-21 Immunomodulatory oligonucleotides
US11/127,803 US20050244379A1 (en) 1994-07-15 2005-05-11 Immunomodulatory oligonucleotides

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/690,495 Continuation US20040143112A1 (en) 1994-07-15 2003-10-21 Immunomodulatory oligonucleotides

Publications (1)

Publication Number Publication Date
US20050244379A1 true US20050244379A1 (en) 2005-11-03

Family

ID=23524008

Family Applications (19)

Application Number Title Priority Date Filing Date
US09/415,142 Abandoned US20030026782A1 (en) 1994-07-15 1999-10-08 Immunomodulatory oligonucleotides
US10/631,676 Abandoned US20040087534A1 (en) 1994-07-15 2003-07-30 Immunomodulatory oligonucleotides
US10/690,495 Abandoned US20040143112A1 (en) 1994-07-15 2003-10-21 Immunomodulatory oligonucleotides
US10/769,626 Abandoned US20040162258A1 (en) 1994-07-15 2004-01-30 Immunomodulatory oligonucleotides
US10/789,051 Abandoned US20040142469A1 (en) 1994-07-15 2004-02-26 Immunomodulatory oligonucleotides
US10/788,199 Abandoned US20040181045A1 (en) 1994-07-15 2004-02-26 Immunomodulatory oligonucleotides
US10/789,353 Abandoned US20040162262A1 (en) 1994-07-15 2004-02-26 Immunomodulatory oligonucleotides
US10/787,737 Abandoned US20040171150A1 (en) 1994-07-15 2004-02-26 Immunomodulatory oligonucleotides
US10/788,191 Abandoned US20040152656A1 (en) 1994-07-15 2004-02-26 Immunomodulatory oligonucleotides
US10/789,536 Expired - Fee Related US8309527B2 (en) 1994-07-15 2004-02-26 Immunomodulatory oligonucleotides
US10/847,650 Abandoned US20050004062A1 (en) 1994-07-15 2004-05-17 Immunomodulatory oligonucleotides
US10/888,885 Abandoned US20050009774A1 (en) 1994-07-15 2004-07-09 Immunomodulatory oligonucleotides
US10/888,089 Expired - Fee Related US8148340B2 (en) 1994-07-15 2004-07-09 Immunomodulatory oligonucleotides
US11/067,516 Abandoned US20050239736A1 (en) 1994-07-15 2005-02-25 Immunomodulatory oligonucleotides
US11/128,127 Abandoned US20070009482A9 (en) 1994-07-15 2005-05-11 Immunomodulatory oligonucleotides
US11/127,803 Abandoned US20050244379A1 (en) 1994-07-15 2005-05-11 Immunomodulatory oligonucleotides
US11/127,797 Expired - Fee Related US8114848B2 (en) 1994-07-15 2005-05-11 Immunomodulatory oligonucleotides
US11/296,644 Abandoned US20060094683A1 (en) 1994-07-15 2005-12-07 Immunomodulatory oligonucleotides
US11/645,106 Abandoned US20070202128A1 (en) 1994-07-15 2006-12-22 Immunomodulatory oligonucleotides

Family Applications Before (15)

Application Number Title Priority Date Filing Date
US09/415,142 Abandoned US20030026782A1 (en) 1994-07-15 1999-10-08 Immunomodulatory oligonucleotides
US10/631,676 Abandoned US20040087534A1 (en) 1994-07-15 2003-07-30 Immunomodulatory oligonucleotides
US10/690,495 Abandoned US20040143112A1 (en) 1994-07-15 2003-10-21 Immunomodulatory oligonucleotides
US10/769,626 Abandoned US20040162258A1 (en) 1994-07-15 2004-01-30 Immunomodulatory oligonucleotides
US10/789,051 Abandoned US20040142469A1 (en) 1994-07-15 2004-02-26 Immunomodulatory oligonucleotides
US10/788,199 Abandoned US20040181045A1 (en) 1994-07-15 2004-02-26 Immunomodulatory oligonucleotides
US10/789,353 Abandoned US20040162262A1 (en) 1994-07-15 2004-02-26 Immunomodulatory oligonucleotides
US10/787,737 Abandoned US20040171150A1 (en) 1994-07-15 2004-02-26 Immunomodulatory oligonucleotides
US10/788,191 Abandoned US20040152656A1 (en) 1994-07-15 2004-02-26 Immunomodulatory oligonucleotides
US10/789,536 Expired - Fee Related US8309527B2 (en) 1994-07-15 2004-02-26 Immunomodulatory oligonucleotides
US10/847,650 Abandoned US20050004062A1 (en) 1994-07-15 2004-05-17 Immunomodulatory oligonucleotides
US10/888,885 Abandoned US20050009774A1 (en) 1994-07-15 2004-07-09 Immunomodulatory oligonucleotides
US10/888,089 Expired - Fee Related US8148340B2 (en) 1994-07-15 2004-07-09 Immunomodulatory oligonucleotides
US11/067,516 Abandoned US20050239736A1 (en) 1994-07-15 2005-02-25 Immunomodulatory oligonucleotides
US11/128,127 Abandoned US20070009482A9 (en) 1994-07-15 2005-05-11 Immunomodulatory oligonucleotides

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11/127,797 Expired - Fee Related US8114848B2 (en) 1994-07-15 2005-05-11 Immunomodulatory oligonucleotides
US11/296,644 Abandoned US20060094683A1 (en) 1994-07-15 2005-12-07 Immunomodulatory oligonucleotides
US11/645,106 Abandoned US20070202128A1 (en) 1994-07-15 2006-12-22 Immunomodulatory oligonucleotides

Country Status (1)

Country Link
US (19) US20030026782A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040087534A1 (en) * 1994-07-15 2004-05-06 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US7662949B2 (en) 2005-11-25 2010-02-16 Coley Pharmaceutical Gmbh Immunostimulatory oligoribonucleotides
US7674777B2 (en) 1994-07-15 2010-03-09 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7713529B2 (en) 1994-07-15 2010-05-11 University Of Iowa Research Foundation Methods for treating and preventing infectious disease
US7741300B2 (en) 1998-06-25 2010-06-22 National Jewish Medical And Research Center Methods of using nucleic acid vector-lipid complexes
US7776344B2 (en) 1999-09-27 2010-08-17 University Of Iowa Research Foundation Methods related to immunostimulatory nucleic acid-induced interferon
US7776343B1 (en) 1999-02-17 2010-08-17 Csl Limited Immunogenic complexes and methods relating thereto
US7795235B2 (en) 2004-10-20 2010-09-14 Coley Pharmaceutical Gmbh Semi-soft c-class immunostimulatory oligonucleotides
US7807803B2 (en) 2002-07-03 2010-10-05 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US7820379B2 (en) 2000-09-15 2010-10-26 Coley Pharmaceutical Gmbh Process for high throughput screening of CpG-based immuno-agonist/antagonist
US7935675B1 (en) 1994-07-15 2011-05-03 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7956043B2 (en) 2002-12-11 2011-06-07 Coley Pharmaceutical Group, Inc. 5′ CpG nucleic acids and methods of use
US7998492B2 (en) 2002-10-29 2011-08-16 Coley Pharmaceutical Group, Inc. Methods and products related to treatment and prevention of hepatitis C virus infection
US8114419B2 (en) 2002-07-03 2012-02-14 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US8153141B2 (en) 2002-04-04 2012-04-10 Coley Pharmaceutical Gmbh Immunostimulatory G, U-containing oligoribonucleotides
US8188254B2 (en) 2003-10-30 2012-05-29 Coley Pharmaceutical Gmbh C-class oligonucleotide analogs with enhanced immunostimulatory potency
US8202688B2 (en) 1997-03-10 2012-06-19 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US8283328B2 (en) 2002-08-19 2012-10-09 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
US8574599B1 (en) 1998-05-22 2013-11-05 Ottawa Hospital Research Institute Methods and products for inducing mucosal immunity
US8580268B2 (en) 2006-09-27 2013-11-12 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
US8834900B2 (en) 2001-08-17 2014-09-16 University Of Iowa Research Foundation Combination motif immune stimulatory oligonucleotides with improved activity
US8883174B2 (en) 2009-03-25 2014-11-11 The Board Of Regents, The University Of Texas System Compositions for stimulation of mammalian innate immune resistance to pathogens
US10286065B2 (en) 2014-09-19 2019-05-14 Board Of Regents, The University Of Texas System Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849719A (en) * 1993-08-26 1998-12-15 The Regents Of The University Of California Method for treating allergic lung disease
US6727230B1 (en) * 1994-03-25 2004-04-27 Coley Pharmaceutical Group, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US6429199B1 (en) * 1994-07-15 2002-08-06 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
US20030050263A1 (en) * 1994-07-15 2003-03-13 The University Of Iowa Research Foundation Methods and products for treating HIV infection
US20030078223A1 (en) * 1996-01-30 2003-04-24 Eyal Raz Compositions and methods for modulating an immune response
EP0855184A1 (en) * 1997-01-23 1998-07-29 Grayson B. Dr. Lipford Pharmaceutical composition comprising a polynucleotide and an antigen especially for vaccination
CA2323929C (en) * 1998-04-03 2004-03-09 University Of Iowa Research Foundation Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines
WO1999058118A2 (en) * 1998-05-14 1999-11-18 Cpg Immunopharmaceuticals Gmbh METHODS FOR REGULATING HEMATOPOIESIS USING CpG-OLIGONUCLEOTIDES
US6693086B1 (en) * 1998-06-25 2004-02-17 National Jewish Medical And Research Center Systemic immune activation method using nucleic acid-lipid complexes
EP1176966B1 (en) * 1999-04-12 2013-04-03 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES Oligodeoxynucleotide and its use to induce an immune response
US6977245B2 (en) 1999-04-12 2005-12-20 The United States Of America As Represented By The Department Of Health And Human Services Oligodeoxynucleotide and its use to induce an immune response
US20050002958A1 (en) * 1999-06-29 2005-01-06 Smithkline Beecham Biologicals Sa Vaccines
AP1775A (en) * 1999-09-25 2007-08-28 Univ Iowa Res Found Immunostimulatory nucleic acids.
ATE378348T1 (en) * 2000-01-14 2007-11-15 Us Health OLIGODEOXYNUCLEOTIDES AND THEIR USE FOR INDUCING AN IMMUNE RESPONSE
CA2396871A1 (en) * 2000-01-20 2001-12-20 Ottawa Health Research Institute Immunostimulatory nucleic acids for inducing a th2 immune response
US7585847B2 (en) * 2000-02-03 2009-09-08 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids for the treatment of asthma and allergy
US20040131628A1 (en) * 2000-03-08 2004-07-08 Bratzler Robert L. Nucleic acids for the treatment of disorders associated with microorganisms
US7129222B2 (en) * 2000-03-10 2006-10-31 Dynavax Technologies Corporation Immunomodulatory formulations and methods for use thereof
US20030129251A1 (en) 2000-03-10 2003-07-10 Gary Van Nest Biodegradable immunomodulatory formulations and methods for use thereof
WO2001097843A2 (en) * 2000-06-22 2001-12-27 University Of Iowa Research Foundation Methods for enhancing antibody-induced cell lysis and treating cancer
KR100917101B1 (en) * 2000-08-04 2009-09-15 도요 보세키 가부시키가이샤 Flexible metal laminate and production method thereof
DE60134421D1 (en) * 2000-12-08 2008-07-24 Coley Pharmaceuticals Gmbh CPG-ART NUCLEIC ACIDS AND METHOD FOR THEIR USE
CN100334228C (en) * 2001-06-21 2007-08-29 戴纳瓦克斯技术公司 Cimeric immunomodulatory compounds and methods of using the same
US7666674B2 (en) 2001-07-27 2010-02-23 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Use of sterically stabilized cationic liposomes to efficiently deliver CPG oligonucleotides in vivo
US7354909B2 (en) * 2001-08-14 2008-04-08 The United States Of America As Represented By Secretary Of The Department Of Health And Human Services Method for rapid generation of mature dendritic cells
DE60234375D1 (en) 2001-09-14 2009-12-24 Cytos Biotechnology Ag PACKAGING IMMUNSTIMULATING CpG IN VIRUS LIKE PARTICLES: PREPARATION METHOD AND USE
IL160837A0 (en) * 2001-10-05 2004-08-31 Coley Pharm Gmbh Toll-like receptor 3 signaling agonists and antagonists
WO2003094836A2 (en) * 2001-10-12 2003-11-20 University Of Iowa Research Foundation Methods and products for enhancing immune responses using imidazoquinoline compounds
WO2003054161A2 (en) 2001-12-20 2003-07-03 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services USE OF CpG OLIGODEOXYNUCLEOTIDES TO INDUCE ANGIOGENESIS
US8466116B2 (en) 2001-12-20 2013-06-18 The Unites States Of America As Represented By The Secretary Of The Department Of Health And Human Services Use of CpG oligodeoxynucleotides to induce epithelial cell growth
KR100456681B1 (en) 2002-05-22 2004-11-10 주식회사 대웅 Immnune-stimulating and controlling Composition comprising bacterial chromosomal DNA fragments and detoxified lipopolysaccharides
US20040009949A1 (en) * 2002-06-05 2004-01-15 Coley Pharmaceutical Group, Inc. Method for treating autoimmune or inflammatory diseases with combinations of inhibitory oligonucleotides and small molecule antagonists of immunostimulatory CpG nucleic acids
US7569553B2 (en) 2002-07-03 2009-08-04 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US7605138B2 (en) * 2002-07-03 2009-10-20 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US7576066B2 (en) 2002-07-03 2009-08-18 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US8263091B2 (en) * 2002-09-18 2012-09-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Method of treating and preventing infections in immunocompromised subjects with immunostimulatory CpG oligonucleotides
GB2398783A (en) 2003-02-26 2004-09-01 Antonio Lanzavecchia A method for producing immortalised human B memory lymphocytes
US7537767B2 (en) * 2003-03-26 2009-05-26 Cytis Biotechnology Ag Melan-A- carrier conjugates
CA2528774A1 (en) * 2003-06-20 2005-01-27 Coley Pharmaceutical Gmbh Small molecule toll-like receptor (tlr) antagonists
US20050013812A1 (en) * 2003-07-14 2005-01-20 Dow Steven W. Vaccines using pattern recognition receptor-ligand:lipid complexes
JP4989225B2 (en) * 2003-09-25 2012-08-01 コーリー ファーマシューティカル グループ,インコーポレイテッド Nucleic acid lipophilic conjugate
US20050239733A1 (en) * 2003-10-31 2005-10-27 Coley Pharmaceutical Gmbh Sequence requirements for inhibitory oligonucleotides
CA2544349C (en) * 2003-11-04 2020-02-18 Geron Corporation Rna amidates and thioamidates for rnai
US20050100983A1 (en) * 2003-11-06 2005-05-12 Coley Pharmaceutical Gmbh Cell-free methods for identifying compounds that affect toll-like receptor 9 (TLR9) signaling
WO2005097993A2 (en) * 2004-02-19 2005-10-20 Coley Pharmaceutical Group, Inc. Immunostimulatory viral rna oligonucleotides
TWI235440B (en) * 2004-03-31 2005-07-01 Advanced Semiconductor Eng Method for making leadless semiconductor package
EP1753453A2 (en) * 2004-06-08 2007-02-21 Coley Pharmaceutical GmbH Abasic oligonucleotide as carrier platform for antigen and immunostimulatory agonist and antagonist
NZ553244A (en) * 2004-07-18 2009-10-30 Csl Ltd Immuno stimulating complex and oligonucleotide formulations for inducing enhanced interferon-gamma responses
WO2006091915A2 (en) * 2005-02-24 2006-08-31 Coley Pharmaceutical Group, Inc. Immunostimulatory oligonucleotides
KR20080008350A (en) * 2005-04-08 2008-01-23 콜레이 파마시티컬 그룹, 인코포레이티드 Methods for treating infectious disease exacerbated asthma
AU2006241149A1 (en) * 2005-04-26 2006-11-02 Coley Pharmaceutical Gmbh Modified oligoribonucleotide analogs with enhanced immunostimulatory activity
AU2006269555A1 (en) * 2005-07-07 2007-01-18 Coley Pharmaceutical Group, Inc. Anti-CTLA-4 antibody and CpG-motif-containing synthetic oligodeoxynucleotide combination therapy for cancer treatment
KR20080047463A (en) * 2005-09-16 2008-05-28 콜리 파마슈티칼 게엠베하 Modulation of immunostimulatory properties of short interfering ribonucleic acid (sirna) by nucleotide modification
KR20080048067A (en) * 2005-09-16 2008-05-30 콜리 파마슈티칼 게엠베하 Immunostimulatory single-stranded ribonucleic acid with phosphodiester backbone
WO2007092315A2 (en) * 2006-02-03 2007-08-16 The Regents Of The University Of California Immunostimulation by cpg oligonucleotide-virus complexes
ES2553284T5 (en) * 2006-02-15 2021-08-31 Rechtsanwalt Thomas Beck Compositions and Procedures for Oligonucleotide Formulations
US20080026986A1 (en) * 2006-06-05 2008-01-31 Rong-Fu Wang Reversal of the suppressive function of specific t cells via toll-like receptor 8 signaling
US8173219B2 (en) * 2006-06-09 2012-05-08 Georgia-Pacific Chemicals Llc Porous fiberglass materials having reduced formaldehyde emissions
US20090142362A1 (en) * 2006-11-06 2009-06-04 Avant Immunotherapeutics, Inc. Peptide-based vaccine compositions to endogenous cholesteryl ester transfer protein (CETP)
BRPI0813981A2 (en) * 2007-08-01 2017-05-09 Idera Pharmaceuticals Inc synthetic agonists of tlr9.
EP2123758A1 (en) * 2008-05-20 2009-11-25 Wageningen Universiteit Influenza cap-leader sequence
TWI351288B (en) * 2008-07-04 2011-11-01 Univ Nat Pingtung Sci & Tech Cpg dna adjuvant in avian vaccines
GB0815675D0 (en) * 2008-08-28 2008-10-08 Mabtech Ab Antibody secreting cell elispot
PE20110998A1 (en) 2008-12-09 2012-02-10 Coley Pharm Group Inc IMMUNOSTIMULATORY OLIGONUCLEOTIDES
US8552165B2 (en) * 2008-12-09 2013-10-08 Heather Davis Immunostimulatory oligonucleotides
EP2382474B1 (en) 2009-01-20 2015-03-04 Transgene SA Soluble icam-1 as biomarker for prediction of therapeutic response
WO2010108908A1 (en) 2009-03-24 2010-09-30 Transgene Sa Biomarker for monitoring patients
NZ594896A (en) 2009-04-17 2013-07-26 Transgene Sa Biomarker for monitoring patients
WO2011005942A2 (en) 2009-07-08 2011-01-13 Idera Pharmaceuticals, Inc. Oligonucleotide-based compounds as inhibitors of toll-like receptors
RU2552292C2 (en) 2009-07-10 2015-06-10 Трансжене Са Biomarker for patient selection and related methods
WO2013007703A1 (en) * 2011-07-08 2013-01-17 Universität Zürich CLASS A CpG OLIGONUCLEOTIDES FOR PREVENTION OF VIRAL INFECTION IN CATS
ES2657744T3 (en) * 2011-07-22 2018-03-06 Abbott Laboratories Galactoligosaccharides to prevent injuries and / or promote healing of the gastrointestinal tract
ES2750608T3 (en) 2013-07-25 2020-03-26 Exicure Inc Nucleic acid-based spherical constructs as immunostimulatory agents for prophylactic and therapeutic use
SG11201601885WA (en) * 2013-09-20 2016-04-28 Nat Inst Of Biomedical Innovation Health And Nutrition Complex containing oligonucleotide having immunopotentiating activity and use thereof
CA2932122C (en) 2013-12-03 2022-04-19 Northwestern University Liposomal particles, methods of making same and uses thereof
EP3508198A1 (en) 2014-06-04 2019-07-10 Exicure, Inc. Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications
AU2015349680A1 (en) 2014-11-21 2017-06-08 Northwestern University The sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates
US11364304B2 (en) 2016-08-25 2022-06-21 Northwestern University Crosslinked micellar spherical nucleic acids
US11696954B2 (en) 2017-04-28 2023-07-11 Exicure Operating Company Synthesis of spherical nucleic acids using lipophilic moieties
MX2020000387A (en) 2017-07-13 2020-08-17 Univ Northwestern General and direct method for preparing oligonucleotide-functiona lized metal-organic framework nanoparticles.
KR102578060B1 (en) * 2018-03-23 2023-09-13 한림대학교 산학협력단 An anti-bacterial antibody and a use of the same
CN111378622B (en) * 2018-12-29 2022-12-02 华东师范大学 Nucleic acid-encoded CAR-T cells and preparation method and application thereof
EP4104830A1 (en) 2021-06-16 2022-12-21 Burghardt Wittig Sequential innate and adaptive immune modulation for cancer treatment

Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188375A (en) * 1976-09-25 1980-02-12 Bayer Aktiengesellschaft Process for the preparation of vaccines
US5723335A (en) * 1994-03-25 1998-03-03 Isis Pharmaceuticals, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US6174872B1 (en) * 1996-10-04 2001-01-16 The Regents Of The University Of California Method for treating allergic lung disease
US6194388B1 (en) * 1994-07-15 2001-02-27 The University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US6207646B1 (en) * 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6214806B1 (en) * 1997-02-28 2001-04-10 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CPC dinucleotide in the treatment of LPS-associated disorders
US6218371B1 (en) * 1998-04-03 2001-04-17 University Of Iowa Research Foundation Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines
US6221882B1 (en) * 1997-07-03 2001-04-24 University Of Iowa Research Foundation Methods for inhibiting immunostimulatory DNA associated responses
US6239116B1 (en) * 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6248329B1 (en) * 1998-06-01 2001-06-19 Ramaswamy Chandrashekar Parasitic helminth cuticlin nucleic acid molecules and uses thereof
US6339068B1 (en) * 1997-05-20 2002-01-15 University Of Iowa Research Foundation Vectors and methods for immunization or therapeutic protocols
US6339630B1 (en) * 2000-05-18 2002-01-15 The United States Of America As Represented By The United States Department Of Energy Sealed drive screw operator
US6514948B1 (en) * 1999-07-02 2003-02-04 The Regents Of The University Of California Method for enhancing an immune response
US20030026801A1 (en) * 2000-06-22 2003-02-06 George Weiner Methods for enhancing antibody-induced cell lysis and treating cancer
US20030026782A1 (en) * 1995-02-07 2003-02-06 Arthur M. Krieg Immunomodulatory oligonucleotides
US20030050268A1 (en) * 2001-03-29 2003-03-13 Krieg Arthur M. Immunostimulatory nucleic acid for treatment of non-allergic inflammatory diseases
US20030049266A1 (en) * 2000-12-27 2003-03-13 Fearon Karen L. Immunomodulatory polynucleotides and methods of using the same
US20030050263A1 (en) * 1994-07-15 2003-03-13 The University Of Iowa Research Foundation Methods and products for treating HIV infection
US6534062B2 (en) * 2000-03-28 2003-03-18 The Regents Of The University Of California Methods for increasing a cytotoxic T lymphocyte response in vivo
US20030055014A1 (en) * 2000-12-14 2003-03-20 Bratzler Robert L. Inhibition of angiogenesis by nucleic acids
US20030064064A1 (en) * 1998-09-18 2003-04-03 Dino Dina Methods of treating IgE-associated disorders and compositions for use therein
US6544518B1 (en) * 1999-04-19 2003-04-08 Smithkline Beecham Biologicals S.A. Vaccines
US6552006B2 (en) * 2000-01-31 2003-04-22 The Regents Of The University Of California Immunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen
US20030078223A1 (en) * 1996-01-30 2003-04-24 Eyal Raz Compositions and methods for modulating an immune response
US6558670B1 (en) * 1999-04-19 2003-05-06 Smithkline Beechman Biologicals S.A. Vaccine adjuvants
US6562798B1 (en) * 1998-06-05 2003-05-13 Dynavax Technologies Corp. Immunostimulatory oligonucleotides with modified bases and methods of use thereof
US20030091599A1 (en) * 1997-03-10 2003-05-15 Coley Pharmaceutical Gmbh Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US20030092663A1 (en) * 1997-09-05 2003-05-15 Eyal Raz Immunization-free methods for treating antigen-stimulated inflammation in a mammalian host and shifting the host's antigen immune responsiveness to a Th1 phenotype
US20030100527A1 (en) * 1994-07-15 2003-05-29 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
US20040006034A1 (en) * 1998-06-05 2004-01-08 Eyal Raz Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
US20040006010A1 (en) * 1996-10-11 2004-01-08 Carson Dennis A. Immunostimulatory polynucleotide/immunomodulatory molecule conjugates
US20040009949A1 (en) * 2002-06-05 2004-01-15 Coley Pharmaceutical Group, Inc. Method for treating autoimmune or inflammatory diseases with combinations of inhibitory oligonucleotides and small molecule antagonists of immunostimulatory CpG nucleic acids
US20040030118A1 (en) * 1998-05-14 2004-02-12 Hermann Wagner Methods for regulating hematopoiesis using CpG-oligonucleotides
US20040053880A1 (en) * 2002-07-03 2004-03-18 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20040067902A9 (en) * 2000-02-03 2004-04-08 Bratzler Robert L. Immunostimulatory nucleic acids for the treatment of asthma and allergy
US20040067905A1 (en) * 2002-07-03 2004-04-08 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US6727230B1 (en) * 1994-03-25 2004-04-27 Coley Pharmaceutical Group, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US20040092472A1 (en) * 2002-07-03 2004-05-13 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20050013812A1 (en) * 2003-07-14 2005-01-20 Dow Steven W. Vaccines using pattern recognition receptor-ligand:lipid complexes
US20050054601A1 (en) * 1997-01-23 2005-03-10 Coley Pharmaceutical Gmbh Pharmaceutical composition comprising a polynucleotide and optionally an antigen especially for vaccination
US20050059619A1 (en) * 2002-08-19 2005-03-17 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
US20050101557A1 (en) * 1994-07-15 2005-05-12 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050100983A1 (en) * 2003-11-06 2005-05-12 Coley Pharmaceutical Gmbh Cell-free methods for identifying compounds that affect toll-like receptor 9 (TLR9) signaling
US20060003962A1 (en) * 2002-10-29 2006-01-05 Coley Pharmaceutical Group, Ltd. Methods and products related to treatment and prevention of hepatitis C virus infection
US20060019916A1 (en) * 2004-04-02 2006-01-26 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids for inducing IL-10 responses
US20060019923A1 (en) * 2004-07-18 2006-01-26 Coley Pharmaceutical Group, Ltd. Methods and compositions for inducing innate immune responses
US20070066554A1 (en) * 1999-09-25 2007-03-22 Coley Pharmaceutical Gmbh Immunostimulatory nucleic acids
US20080009455A9 (en) * 2005-02-24 2008-01-10 Coley Pharmaceutical Group, Inc. Immunostimulatory oligonucleotides
US20080045473A1 (en) * 2006-02-15 2008-02-21 Coley Pharmaceutical Gmbh Compositions and methods for oligonucleotide formulations
US20080113929A1 (en) * 2004-06-08 2008-05-15 Coley Pharmaceutical Gmbh Abasic Oligonucleotide as Carrier Platform for Antigen and Immunostimulatory Agonist and Antagonist
US20090117132A1 (en) * 2005-07-07 2009-05-07 Pfizer, Inc. Anti-Ctla-4 Antibody and Cpg-Motif-Containing Synthetic Oligodeoxynucleotide Combination Therapy for Cancer Treatment
US20090137519A1 (en) * 2004-10-20 2009-05-28 Coley Pharmaceutical Group, Inc. Semi-soft c-class immunostimulatory oligonucleotides
US20110033421A1 (en) * 1999-09-27 2011-02-10 Coley Pharmaceutical Gmbh Methods related to immunostimulatory nucleic acid-induced interferon
US7897810B2 (en) * 2004-09-02 2011-03-01 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids

Family Cites Families (273)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2005A (en) * 1841-03-16 Improvement in the manner of constructing molds for casting butt-hinges
US2004A (en) * 1841-03-12 Improvement in the manner of constructing and propelling steam-vessels
US2002A (en) * 1841-03-12 Tor and planter for plowing
US2007A (en) * 1841-03-16 Improvement in the mode of harvesting grain
US2003A (en) * 1841-03-12 Improvement in horizontal windivhlls
US2204A (en) * 1841-07-30 Improvement in the mode of propelling ships, boats, and other vessels
US2006A (en) * 1841-03-16 Clamp for crimping leather
US2215233A (en) * 1937-11-13 1940-09-17 Simon L Ruskin Iron compound of nucleotides and their organic hydrolytic decomposition products and method of making same
US3627874A (en) 1969-07-16 1971-12-14 Merck & Co Inc Vaccine preparation
US3906092A (en) 1971-11-26 1975-09-16 Merck & Co Inc Stimulation of antibody response
US3911117A (en) 1971-12-20 1975-10-07 Fredrik Ender Raw fish and iron chelated with glutamic or ribonucleic acid in a mink diet
US3914450A (en) 1973-04-09 1975-10-21 Anheuser Busch Concentrated extract of yeast and processes of making same
US5023243A (en) * 1981-10-23 1991-06-11 Molecular Biosystems, Inc. Oligonucleotide therapeutic agent and method of making same
ES507187A0 (en) 1981-11-16 1983-01-01 Union Ind Y Agro Ganader S A U PROCEDURE FOR OBTAINING AN ADDITIONAL HUMANIZED MILK OF NUCLEOTIDES FOR CHILD FEEDING.
US5766920A (en) * 1982-08-11 1998-06-16 Cellcor, Inc. Ex vivo activation of immune cells
US4452775A (en) * 1982-12-03 1984-06-05 Syntex (U.S.A.) Inc. Cholesterol matrix delivery system for sustained release of macromolecules
JPS60126220A (en) * 1983-12-09 1985-07-05 Otsuka Pharmaceut Factory Inc Nucleic acid component composition
IT1178044B (en) 1984-10-09 1987-09-03 Polifarma Spa PHARMACEUTICAL ACTIVE AGENT FOR THE TREATMENT OF CEREBRAL DISEASES BASED ON URIDINE
US4741914A (en) * 1984-11-13 1988-05-03 Ajinomoto Co., Inc. Flavor enhancing seasoning containing deodorized garlic extract and process
US5308626A (en) * 1985-06-28 1994-05-03 Toni N. Mariani Lymphokine activated effector cells for antibody-dependent cellular cytotoxicity (ADCC) treatment of cancer and other diseases
JPH0669953B2 (en) 1985-08-16 1994-09-07 日産化学工業株式会社 Cerebrospinal system neurotrophic agent
US4956296A (en) 1987-06-19 1990-09-11 Genex Corporation Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G
JPS62275667A (en) * 1986-05-22 1987-11-30 Ajinomoto Co Inc Production of seasoning with good body or food with enhanced good body
US4806463A (en) * 1986-05-23 1989-02-21 Worcester Foundation For Experimental Biology Inhibition of HTLV-III by exogenous oligonucleotides
US5194428A (en) * 1986-05-23 1993-03-16 Worcester Foundation For Experimental Biology Inhibition of influenza virus replication by oligonucleotide phosphorothioates
US5075109A (en) * 1986-10-24 1991-12-24 Southern Research Institute Method of potentiating an immune response
US5276019A (en) * 1987-03-25 1994-01-04 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US6338853B1 (en) 1987-04-23 2002-01-15 Jean-Claude Bystryn Anti-cancer vaccine
EP0291980B1 (en) 1987-05-20 1992-01-02 Chugai Seiyaku Kabushiki Kaisha Salt substitute and foodstuffs containing same
ES2007350A6 (en) * 1987-05-29 1989-06-16 Ganadera Union Ind Agro Food products enriched with nucleosides and/or nucleotides and preparation thereof.
CA1339596C (en) 1987-08-07 1997-12-23 New England Medical Center Hospitals, Inc. Viral expression inhibitors
US5268365A (en) 1988-03-11 1993-12-07 Rudolph Frederick B Nucleotides, nucleosides, and nucleobases in immune function restoration enhancement or maintenance
GB2216416B (en) 1988-03-11 1992-06-24 Sandoz Ltd Nucleobase source for the stimulation of the immune system
CA1336174C (en) * 1988-07-22 1995-07-04 Ronald Peter Potman Method for the preparation of a yeast extract said yeast extract, its use as a food flavour and a food composition comprising the yeast extract
US5004810A (en) * 1988-09-30 1991-04-02 Schering Corporation Antiviral oligomers
NZ230747A (en) * 1988-09-30 1992-05-26 Bror Morein Immunomodulating matrix comprising a complex of at least one lipid and at least one saponin; certain glycosylated triterpenoid saponins derived from quillaja saponaria molina
US5231085A (en) * 1988-10-31 1993-07-27 Sandoz Ltd. Compositions and methods for the enhancement of host defense mechanisms
US5087617A (en) * 1989-02-15 1992-02-11 Board Of Regents, The University Of Texas System Methods and compositions for treatment of cancer using oligonucleotides
US6214804B1 (en) * 1989-03-21 2001-04-10 Vical Incorporated Induction of a protective immune response in a mammal by injecting a DNA sequence
US4958013A (en) 1989-06-06 1990-09-18 Northwestern University Cholesteryl modified oligonucleotides
US5399346A (en) * 1989-06-14 1995-03-21 The United States Of America As Represented By The Department Of Health And Human Services Gene therapy
US5178860A (en) * 1989-09-01 1993-01-12 Coopers Animal Health Limited Adjuvant complexes and vaccine made therefrom
US4981684A (en) * 1989-10-24 1991-01-01 Coopers Animal Health Limited Formation of adjuvant complexes
US5232829A (en) * 1989-09-29 1993-08-03 Hoffmann-La Roche Inc. Detection of chlamydia trachomatis by polymerase chain reaction using biotin labelled lina primers and capture probes
US5786189A (en) * 1989-11-29 1998-07-28 Smithkline Beecham Biologicals (S.A.) Vaccine
US5457189A (en) * 1989-12-04 1995-10-10 Isis Pharmaceuticals Antisense oligonucleotide inhibition of papillomavirus
US5212295A (en) * 1990-01-11 1993-05-18 Isis Pharmaceuticals Monomers for preparation of oligonucleotides having chiral phosphorus linkages
US5506212A (en) * 1990-01-11 1996-04-09 Isis Pharmaceuticals, Inc. Oligonucleotides with substantially chirally pure phosphorothioate linkages
US5248670A (en) * 1990-02-26 1993-09-28 Isis Pharmaceuticals, Inc. Antisense oligonucleotides for inhibiting herpesviruses
US5514577A (en) * 1990-02-26 1996-05-07 Isis Pharmaceuticals, Inc. Oligonucleotide therapies for modulating the effects of herpes viruses
EP0468520A3 (en) 1990-07-27 1992-07-01 Mitsui Toatsu Chemicals, Inc. Immunostimulatory remedies containing palindromic dna sequences
US5234811A (en) 1991-09-27 1993-08-10 The Scripps Research Institute Assay for a new gaucher disease mutation
US6042838A (en) * 1991-02-15 2000-03-28 Uab Research Foundation immunogenic compositions for mucosal administration of pneumococcal surface protein A (PspA)
US6022853A (en) * 1991-08-30 2000-02-08 Creative Biomolecules, Inc. Morphogen-enriched dietary composition
US6030954A (en) * 1991-09-05 2000-02-29 University Of Connecticut Targeted delivery of poly- or oligonucleotides to cells
US5858784A (en) * 1991-12-17 1999-01-12 The Regents Of The University Of California Expression of cloned genes in the lung by aerosol- and liposome-based delivery
US5756353A (en) * 1991-12-17 1998-05-26 The Regents Of The University Of California Expression of cloned genes in the lung by aerosol-and liposome-based delivery
JPH07503615A (en) 1992-02-04 1995-04-20 カイロン コーポレイション hepatitis drug
US5643578A (en) * 1992-03-23 1997-07-01 University Of Massachusetts Medical Center Immunization by inoculation of DNA transcription unit
US6498147B2 (en) 1992-05-22 2002-12-24 The Scripps Research Institute Suppression of nuclear factor-κb dependent processes using oligonucleotides
JPH067114A (en) 1992-06-24 1994-01-18 Kuroda Munetada Production of aqueous of nucleic acid
AU4769893A (en) * 1992-07-17 1994-02-14 Ribozyme Pharmaceuticals, Inc. Method and reagent for treatment of animal diseases
US5585479A (en) 1992-07-24 1996-12-17 The United States Of America As Represented By The Secretary Of The Navy Antisense oligonucleotides directed against human ELAM-I RNA
ATE162198T1 (en) * 1992-07-27 1998-01-15 Hybridon Inc OLIGONUCLEOTIDE ALKYLPHOSPHONOTHIATE
US6107062A (en) * 1992-07-30 2000-08-22 Inpax, Inc. Antisense viruses and antisense-ribozyme viruses
ATE146819T1 (en) 1992-10-05 1997-01-15 Hybridon Inc THERAPEUTIC ANTI-HIV OLIGONUCLEOTIDE AND MEDICINAL PRODUCT
US5575613A (en) * 1992-11-16 1996-11-19 Mcneall Engineering Pty. Ltd. Pallet dispenser
US5593972A (en) * 1993-01-26 1997-01-14 The Wistar Institute Genetic immunization
US5650156A (en) * 1993-02-22 1997-07-22 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of nutriceuticals and compositions useful therefor
JP2950520B2 (en) * 1993-04-02 1999-09-20 アンティキャンサー インコーポレーテド Methods for delivering beneficial formulations to hair follicles
US5567604A (en) * 1993-04-23 1996-10-22 Aronex Pharmaceuticals, Inc. Anti-viral guanosine-rich oligonucleotides
SG54115A1 (en) * 1993-04-27 1998-11-16 Gerber Scient Products Inc Thermal printing apparatus with improved power supply
WO1995000638A2 (en) * 1993-06-23 1995-01-05 Genesys Pharma Inc. Antisense oligonucleotides and therapeutic use thereof in human immunodeficiency virus infection
AU7319994A (en) * 1993-06-30 1995-01-24 Board Of Regents, The University Of Texas System Nucleotide preparation and uses thereof in wound healing
CA2166889C (en) * 1993-07-19 2001-09-11 Todd C. Peterson Oligonucleotides with activity against human immunodeficiency virus
US6004534A (en) 1993-07-23 1999-12-21 Massachusetts Institute Of Technology Targeted polymerized liposomes for improved drug delivery
US6605708B1 (en) * 1993-07-28 2003-08-12 Hybridon, Inc. Building blocks with carbamate internucleoside linkages and oligonucleotides derived therefrom
US5830877A (en) 1993-08-26 1998-11-03 The Regents Of The University Of California Method, compositions and devices for administration of naked polynucleotides which encode antigens and immunostimulatory
US5985847A (en) 1993-08-26 1999-11-16 The Regents Of The University Of California Devices for administration of naked polynucleotides which encode biologically active peptides
US5804566A (en) 1993-08-26 1998-09-08 The Regents Of The University Of California Methods and devices for immunizing a host through administration of naked polynucleotides with encode allergenic peptides
US5679647A (en) * 1993-08-26 1997-10-21 The Regents Of The University Of California Methods and devices for immunizing a host against tumor-associated antigens through administration of naked polynucleotides which encode tumor-associated antigenic peptides
US20030109469A1 (en) 1993-08-26 2003-06-12 Carson Dennis A. Recombinant gene expression vectors and methods for use of same to enhance the immune response of a host to an antigen
FR2711670B1 (en) * 1993-10-22 1996-01-12 Pasteur Institut Nucleotide vector, composition containing it and vaccine for immunization against hepatitis.
JP2906949B2 (en) * 1993-10-27 1999-06-21 富士ゼロックス株式会社 Hypertext device
DE4338704A1 (en) * 1993-11-12 1995-05-18 Hoechst Ag Stabilized oligonucleotides and their use
US5595756A (en) * 1993-12-22 1997-01-21 Inex Pharmaceuticals Corporation Liposomal compositions for enhanced retention of bioactive agents
US5712384A (en) * 1994-01-05 1998-01-27 Gene Shears Pty Ltd. Ribozymes targeting retroviral packaging sequence expression constructs and recombinant retroviruses containing such constructs
US5492899A (en) * 1994-01-10 1996-02-20 Abbott Laboratories Infant nutritional formula with ribo-nucleotides
US5700590A (en) 1994-01-10 1997-12-23 Abbott Laboratories Nutritional formula with ribo-nucleotides
US5488039A (en) * 1994-01-10 1996-01-30 Abbott Laboratories Method for the production of an enteral formula containing ribo-nucleotides
US5602109A (en) * 1994-01-10 1997-02-11 Abbott Laboratories Method to enhance the immune system of a human
US5728518A (en) * 1994-01-12 1998-03-17 The Immune Response Corporation Antiviral poly-and oligonucleotides
US5646126A (en) * 1994-02-28 1997-07-08 Epoch Pharmaceuticals Sterol modified oligonucleotide duplexes having anticancer activity
EP0804249A2 (en) 1994-03-15 1997-11-05 Brown University Research Foundation Polymeric gene delivery system
US5596091A (en) * 1994-03-18 1997-01-21 The Regents Of The University Of California Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides
US5741516A (en) * 1994-06-20 1998-04-21 Inex Pharmaceuticals Corporation Sphingosomes for enhanced drug delivery
US5543152A (en) * 1994-06-20 1996-08-06 Inex Pharmaceuticals Corporation Sphingosomes for enhanced drug delivery
US5646262A (en) * 1994-07-28 1997-07-08 Georgetown University Antisense oligonucleotides against hepatitis B viral replication
US5753613A (en) * 1994-09-30 1998-05-19 Inex Pharmaceuticals Corporation Compositions for the introduction of polyanionic materials into cells
WO1996010585A1 (en) * 1994-09-30 1996-04-11 Inex Pharmaceuticals Corp. Glycosylated protein-liposome conjugates and methods for their preparation
EP1179340A3 (en) * 1994-09-30 2003-05-07 INEX Pharmaceutical Corp. Compositions for the introduction of polyanionic materials into cells
US5591721A (en) * 1994-10-25 1997-01-07 Hybridon, Inc. Method of down-regulating gene expression
US6630455B1 (en) * 1995-01-13 2003-10-07 Vanderbilt University Methods for inducing mucosal immune responses
DE19502912A1 (en) * 1995-01-31 1996-08-01 Hoechst Ag G-Cap Stabilized Oligonucleotides
JP3580900B2 (en) 1995-04-20 2004-10-27 ホクレン農業協同組合連合会 Food and feed containing, as an active ingredient, a composition mainly comprising a sugar containing an α-glucosidase inhibitor
US5858987A (en) * 1995-05-05 1999-01-12 Mitotix, Inc. E6AP antisense constructs and methods of use
US5612060A (en) * 1995-05-25 1997-03-18 Alexander; J. Wesley Enhancement of transplant graft survival through nutritional immunomodulation and immunosuppressive therapy
US5955059A (en) * 1995-06-06 1999-09-21 Trustees Of Boston University Use of locally applied DNA fragments
US5994315A (en) 1995-06-07 1999-11-30 East Carolina University Low adenosine agent, composition, kit and method for treatment of airway disease
EP0832271B8 (en) * 1995-06-07 2005-03-02 INEX Pharmaceuticals Corp. Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
US5976580A (en) 1995-06-07 1999-11-02 Novus International, Inc. Nutrient formulation and process for enhancing the health, livability, cumulative weight gain or feed efficiency in poultry and other animals
US5705385A (en) * 1995-06-07 1998-01-06 Inex Pharmaceuticals Corporation Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
US5981501A (en) * 1995-06-07 1999-11-09 Inex Pharmaceuticals Corp. Methods for encapsulating plasmids in lipid bilayers
US6248720B1 (en) * 1996-07-03 2001-06-19 Brown University Research Foundation Method for gene therapy using nucleic acid loaded polymeric microparticles
AU714584B2 (en) 1995-07-21 2000-01-06 Brown University Research Foundation A method for gene therapy using nucleic acid loaded polymeric microparticles
CN1141740A (en) 1995-07-28 1997-02-05 伍梅四 Roe powder serial health-care food
US5968909A (en) * 1995-08-04 1999-10-19 Hybridon, Inc. Method of modulating gene expression with reduced immunostimulatory response
NZ321039A (en) 1995-10-04 2001-03-30 Immunex Corp Use of flt3-ligand to augment immunizing effects of known cytokines by stimulating myeloid precursor cells, monocytic cells, macrophages, B-cells and dendritic cells from CD34+ bone marrow progenitors
US5736152A (en) * 1995-10-27 1998-04-07 Atrix Laboratories, Inc. Non-polymeric sustained release delivery system
US5780448A (en) * 1995-11-07 1998-07-14 Ottawa Civic Hospital Loeb Research DNA-based vaccination of fish
GB9525902D0 (en) 1995-12-16 1996-02-21 Zeneca Ltd Fungus
DE69739515D1 (en) 1996-01-30 2009-09-10 Univ California EXPRESSION VECTORS INDUCING AN ANTIGEN-SPECIFIC IMMUNE RESPONSE AND METHODS FOR THEIR USE.
US5994316A (en) 1996-02-21 1999-11-30 The Immune Response Corporation Method of preparing polynucleotide-carrier complexes for delivery to cells
SE9600648D0 (en) * 1996-02-21 1996-02-21 Bror Morein Receptor binding unit
US6620805B1 (en) * 1996-03-14 2003-09-16 Yale University Delivery of nucleic acids by porphyrins
US6030955A (en) * 1996-03-21 2000-02-29 The Trustees Of Columbia University In The City Of New York And Imclone Systems, Inc. Methods of affecting intracellular phosphorylation of tyrosine using phosphorothioate oligonucleotides, and antiangiogenic and antiproliferative uses thereof
CN1151840C (en) * 1996-05-09 2004-06-02 太平洋制药控股公司 Stimulation of host defence mechanisms against tumors
US6184037B1 (en) 1996-05-17 2001-02-06 Genemedicine, Inc. Chitosan related compositions and methods for delivery of nucleic acids and oligonucleotides into a cell
US5705109A (en) * 1996-06-20 1998-01-06 Westvaco Corporation Ozone treatment for composite paperboard/polymer package
US5895652A (en) * 1996-07-29 1999-04-20 Longevity Institute International Method of metabolic adjuvanation and cellular repair
US5965542A (en) * 1997-03-18 1999-10-12 Inex Pharmaceuticals Corp. Use of temperature to control the size of cationic liposome/plasmid DNA complexes
US6426334B1 (en) * 1997-04-30 2002-07-30 Hybridon, Inc. Oligonucleotide mediated specific cytokine induction and reduction of tumor growth in a mammal
US6835395B1 (en) * 1997-05-14 2004-12-28 The University Of British Columbia Composition containing small multilamellar oligodeoxynucleotide-containing lipid vesicles
US20030104044A1 (en) * 1997-05-14 2003-06-05 Semple Sean C. Compositions for stimulating cytokine secretion and inducing an immune response
PT1003850E (en) * 1997-06-06 2009-08-13 Dynavax Tech Corp Inhibitors of dna immunostimulatory sequence activity
US6589940B1 (en) * 1997-06-06 2003-07-08 Dynavax Technologies Corporation Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
US5922766A (en) * 1997-07-02 1999-07-13 Acosta; Phyllis J. B. Palatable elemental medical food
US6110745A (en) * 1997-07-24 2000-08-29 Inex Pharmaceuticals Corp. Preparation of lipid-nucleic acid particles using a solvent extraction and direct hydration method
US5877309A (en) * 1997-08-13 1999-03-02 Isis Pharmaceuticals, Inc. Antisense oligonucleotides against JNK
US7393630B2 (en) * 1997-12-16 2008-07-01 Novartis Vaccines And Diagnostics, Inc. Use of microparticles combined with submicron oil-in-water emulsions
US20050031638A1 (en) * 1997-12-24 2005-02-10 Smithkline Beecham Biologicals S.A. Vaccine
JPH11209289A (en) * 1998-01-22 1999-08-03 Taisho Pharmaceut Co Ltd Mucosal immunity inducer
EP0933368A1 (en) * 1998-02-02 1999-08-04 SSP Co., Ltd. Triazole derivative or salt thereof, preparation process thereof and pharmaceutical containing said compound as an effective ingredient (antimycotic)
JP2002513763A (en) 1998-05-06 2002-05-14 ユニバーシティ オブ アイオワ リサーチ ファウンデーション Methods for preventing and treating parasitic infections and related diseases using CPG oligonucleotides
IL139813A0 (en) 1998-05-22 2002-02-10 Loeb Health Res Inst At The Ot Methods and products for inducing mucosal immunity
CA2333750A1 (en) 1998-06-23 1999-12-29 Dale T. Umetsu Adjuvant therapy
US20030022854A1 (en) * 1998-06-25 2003-01-30 Dow Steven W. Vaccines using nucleic acid-lipid complexes
US20040247662A1 (en) 1998-06-25 2004-12-09 Dow Steven W. Systemic immune activation method using nucleic acid-lipid complexes
US6693086B1 (en) * 1998-06-25 2004-02-17 National Jewish Medical And Research Center Systemic immune activation method using nucleic acid-lipid complexes
US6241086B1 (en) * 1998-07-07 2001-06-05 Case Logic, Inc. Sleeve for holding digital video discs and graphics
JP2002521489A (en) 1998-07-27 2002-07-16 ユニバーシティ オブ アイオワ リサーチ ファウンデーション Stereoisomers of CpG oligonucleotides and related methods
WO2000009159A1 (en) 1998-08-10 2000-02-24 Aquila Biopharmaceuticals, Inc. Compositions of cpg and saponin adjuvants and methods thereof
EP1108017A2 (en) 1998-09-03 2001-06-20 Coley Pharmaceutical GmbH G-motif oligonucleotides and uses thereof
US20020065236A1 (en) * 1998-09-09 2002-05-30 Yew Nelson S. CpG reduced plasmids and viral vectors
FR2783170B1 (en) * 1998-09-11 2004-07-16 Pasteur Merieux Serums Vacc IMMUNOSTIMULATING EMULSION
CA2346452A1 (en) 1998-10-05 2000-04-13 The Regents Of The University Of California Methods and adjuvants for stimulating mucosal immunity
EP1117433A1 (en) 1998-10-09 2001-07-25 Dynavax Technologies Corporation Anti hiv compositions comprising immunostimulatory polynucleotides and hiv antigens
AU2870300A (en) 1999-02-05 2000-08-25 Genzyme Corporation Use of cationic lipids to generate anti-tumor immunity
US6207819B1 (en) * 1999-02-12 2001-03-27 Isis Pharmaceuticals, Inc. Compounds, processes and intermediates for synthesis of mixed backbone oligomeric compounds
EP1176966B1 (en) * 1999-04-12 2013-04-03 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES Oligodeoxynucleotide and its use to induce an immune response
US6977245B2 (en) * 1999-04-12 2005-12-20 The United States Of America As Represented By The Department Of Health And Human Services Oligodeoxynucleotide and its use to induce an immune response
AU4642600A (en) 1999-04-15 2000-11-02 Regents Of The University Of California, The Methods and compositions for use in potentiating antigen presentation by antigenpresenting cells
AU4978100A (en) 1999-04-29 2000-11-17 Coley Pharmaceutical Gmbh Screening for immunostimulatory dna functional modifyers
US6737066B1 (en) * 1999-05-06 2004-05-18 The Immune Response Corporation HIV immunogenic compositions and methods
WO2000076982A1 (en) * 1999-06-16 2000-12-21 University Of Iowa Research Foundation Antagonism of immunostimulatory cpg-oligonucleotides by 4-aminoquinolines and other weak bases
DE19935756A1 (en) * 1999-07-27 2001-02-08 Mologen Forschungs Entwicklung Covalently closed nucleic acid molecule for immune stimulation
AU783745B2 (en) 1999-08-13 2005-12-01 Hybridon, Inc. Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides
CA2380947C (en) 1999-08-19 2011-11-01 Dynavax Technologies Corporation Methods of modulating an immune response using immunostimulatory sequences and compositions for use therein
US20050249794A1 (en) 1999-08-27 2005-11-10 Semple Sean C Compositions for stimulating cytokine secretion and inducing an immune response
WO2001039800A2 (en) * 1999-12-06 2001-06-07 The Board Of Trustees Of The University Of Arkansas Controlled delivery of antigens
ATE378348T1 (en) * 2000-01-14 2007-11-15 Us Health OLIGODEOXYNUCLEOTIDES AND THEIR USE FOR INDUCING AN IMMUNE RESPONSE
CA2396871A1 (en) 2000-01-20 2001-12-20 Ottawa Health Research Institute Immunostimulatory nucleic acids for inducing a th2 immune response
US6613751B2 (en) * 2000-02-23 2003-09-02 The Regents Of The University Of California Method for treating inflammatory bowel disease and other forms of gastrointestinal inflammation
US20030130217A1 (en) * 2000-02-23 2003-07-10 Eyal Raz Method for treating inflammatory bowel disease and other forms of gastrointestinal inflammation
US20020156033A1 (en) * 2000-03-03 2002-10-24 Bratzler Robert L. Immunostimulatory nucleic acids and cancer medicament combination therapy for the treatment of cancer
US20040131628A1 (en) * 2000-03-08 2004-07-08 Bratzler Robert L. Nucleic acids for the treatment of disorders associated with microorganisms
US20020028784A1 (en) * 2000-03-10 2002-03-07 Nest Gary Van Methods of preventing and treating viral infections using immunomodulatory polynucleotide sequences
US20030129251A1 (en) * 2000-03-10 2003-07-10 Gary Van Nest Biodegradable immunomodulatory formulations and methods for use thereof
US20020098199A1 (en) 2000-03-10 2002-07-25 Gary Van Nest Methods of suppressing hepatitis virus infection using immunomodulatory polynucleotide sequences
US20010046967A1 (en) * 2000-03-10 2001-11-29 Gary Van Nest Methods of preventing and treating respiratory viral infection using immunomodulatory polynucleotide
US20020107212A1 (en) 2000-03-10 2002-08-08 Nest Gary Van Methods of reducing papillomavirus infection using immunomodulatory polynucleotide sequences
US7157437B2 (en) 2000-03-10 2007-01-02 Dynavax Technologies Corporation Methods of ameliorating symptoms of herpes infection using immunomodulatory polynucleotide sequences
US7129222B2 (en) * 2000-03-10 2006-10-31 Dynavax Technologies Corporation Immunomodulatory formulations and methods for use thereof
WO2001071885A1 (en) * 2000-03-20 2001-09-27 Alpha Technologies, Inc. Uninterruptible power supplies employing fuel cells
EP1278550A4 (en) 2000-04-07 2004-05-12 Univ California Synergistic improvements to polynucleotide vaccines
DK1280521T3 (en) * 2000-05-12 2005-08-08 Pharmacia & Upjohn Co Llc Vaccine composition, method of preparation thereof and method of vaccination of vertebrates
US20020165178A1 (en) 2000-06-28 2002-11-07 Christian Schetter Immunostimulatory nucleic acids for the treatment of anemia, thrombocytopenia, and neutropenia
US20020198165A1 (en) 2000-08-01 2002-12-26 Bratzler Robert L. Nucleic acids for the prevention and treatment of gastric ulcers
WO2002018631A2 (en) * 2000-09-01 2002-03-07 Epigenomics Ag Diagnosis of illnesses or predisposition to certain illnesses
US20020091097A1 (en) * 2000-09-07 2002-07-11 Bratzler Robert L. Nucleic acids for the prevention and treatment of sexually transmitted diseases
EP1366077B1 (en) * 2000-09-15 2011-05-25 Coley Pharmaceutical GmbH PROCESS FOR HIGH THROUGHPUT SCREENING OF CpG-BASED IMMUNO-AGONIST/ANTAGONIST
FR2814958B1 (en) * 2000-10-06 2003-03-07 Aventis Pasteur VACCINE COMPOSITION
GB0025577D0 (en) * 2000-10-18 2000-12-06 Smithkline Beecham Biolog Vaccine
DE60134421D1 (en) 2000-12-08 2008-07-24 Coley Pharmaceuticals Gmbh CPG-ART NUCLEIC ACIDS AND METHOD FOR THEIR USE
US20020193332A1 (en) * 2001-02-12 2002-12-19 Hedley Mary Lynne Methods of treating bladder disorders
US6969484B2 (en) * 2001-06-18 2005-11-29 Toray Industries, Inc. Manufacturing method and device for electret processed product
US7785610B2 (en) * 2001-06-21 2010-08-31 Dynavax Technologies Corporation Chimeric immunomodulatory compounds and methods of using the same—III
CN100334228C (en) * 2001-06-21 2007-08-29 戴纳瓦克斯技术公司 Cimeric immunomodulatory compounds and methods of using the same
WO2003000232A2 (en) 2001-06-25 2003-01-03 Yissum Research Development Company Of The Hebrew University Of Jerusalem Method for preparation of vesicles loaded with immunostimulator y oligodeoxynucleotides
US7666674B2 (en) * 2001-07-27 2010-02-23 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Use of sterically stabilized cationic liposomes to efficiently deliver CPG oligonucleotides in vivo
WO2003012061A2 (en) * 2001-08-01 2003-02-13 Coley Pharmaceutical Gmbh Methods and compositions relating to plasmacytoid dendritic cells
US20030133988A1 (en) * 2001-08-07 2003-07-17 Fearon Karen L. Immunomodulatory compositions, formulations, and methods for use thereof
US7354909B2 (en) * 2001-08-14 2008-04-08 The United States Of America As Represented By Secretary Of The Department Of Health And Human Services Method for rapid generation of mature dendritic cells
DE10138833A1 (en) * 2001-08-14 2003-02-27 Daimler Chrysler Ag Device and method for remote diagnostics of vehicles
IL160157A0 (en) * 2001-08-17 2004-07-25 Coley Pharm Group Inc Combination motif immune stimulation oligonucleotides with improved activity
WO2003027313A2 (en) * 2001-09-24 2003-04-03 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services SUPPRESSORS OF CpG OLIGONUCLEOTIDES AND METHODS OF USE
US20030119774A1 (en) * 2001-09-25 2003-06-26 Marianna Foldvari Compositions and methods for stimulating an immune response
JP2005523878A (en) * 2001-09-28 2005-08-11 パーデュー・リサーチ・ファウンデーション Treatment method using ligand / immunogen complex
IL160837A0 (en) 2001-10-05 2004-08-31 Coley Pharm Gmbh Toll-like receptor 3 signaling agonists and antagonists
WO2003094836A2 (en) * 2001-10-12 2003-11-20 University Of Iowa Research Foundation Methods and products for enhancing immune responses using imidazoquinoline compounds
US7276489B2 (en) * 2002-10-24 2007-10-02 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
EP1441763A2 (en) 2001-11-07 2004-08-04 Inex Pharmaceuticals Corp. Mucosal adjuvants comprising an oligonucleotide and a cationic lipid
CN1169434C (en) 2001-11-20 2004-10-06 成都天友生物科技股份有限公司 Temp-sensitive lethality male silkworm breeding method
WO2003054161A2 (en) * 2001-12-20 2003-07-03 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services USE OF CpG OLIGODEOXYNUCLEOTIDES TO INDUCE ANGIOGENESIS
JP2005526497A (en) * 2002-02-04 2005-09-08 ビオミラ,インコーポレーテッド Immunostimulatory, covalently lipidated oligonucleotide
US8088388B2 (en) * 2002-02-14 2012-01-03 United Biomedical, Inc. Stabilized synthetic immunogen delivery system
ES2734652T3 (en) 2002-04-04 2019-12-11 Zoetis Belgium S A Immunostimulatory oligonucleotides containing G and U
AU2003219383B2 (en) * 2002-04-22 2010-08-26 Bioniche Life Sciences Inc. Oligonucleotide compositions and their use for the modulation of immune responses
US7807803B2 (en) * 2002-07-03 2010-10-05 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US7605138B2 (en) 2002-07-03 2009-10-20 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
AU2003267986A1 (en) * 2002-07-03 2004-01-23 Depuy Mitek, Inc. Vaccines to induce mucosal immunity
WO2004007743A2 (en) 2002-07-17 2004-01-22 Coley Pharmaceutical Gmbh Use of cpg nucleic acids in prion-disease
EP1575504A4 (en) * 2002-08-01 2009-11-04 Us Gov Health & Human Serv Method of treating inflammatory arthropathies with suppressors of cpg oligonucleotides
CN100471486C (en) * 2002-08-12 2009-03-25 戴纳伐克斯技术股份有限公司 Immunomodulatory compositions, methods of making, and methods of use thereof
DE10239495A1 (en) * 2002-08-28 2004-03-11 BSH Bosch und Siemens Hausgeräte GmbH Sieve for dishwashing machine may be cleared by periodic reversals of current and side of sieve facing material to be filtered is faced with non-stick material
US8263091B2 (en) * 2002-09-18 2012-09-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Method of treating and preventing infections in immunocompromised subjects with immunostimulatory CpG oligonucleotides
AU2003278845A1 (en) 2002-09-19 2004-04-08 Coley Pharmaceutical Gmbh Toll-like receptor 9 (tlr9) from various mammalian species
US8043622B2 (en) * 2002-10-08 2011-10-25 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Method of treating inflammatory lung disease with suppressors of CpG oligonucleotides
WO2004098491A2 (en) * 2002-11-01 2004-11-18 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services METHOD OF PREVENTING INFECTIONS FROM BIOTERRORISM AGENTS WITH IMMUNOSTIMULATORY CpG OLIGONUCLEOTIDES
WO2004053104A2 (en) * 2002-12-11 2004-06-24 Coley Pharmaceutical Group, Inc. 5’ cpg nucleic acids and methods of use
KR100525321B1 (en) * 2002-12-13 2005-11-02 안웅식 Pharmaceutical composition for prophylaxis and treatment of papillomavirus-derived diseases comprising papillomavirus antigen protein and CpG-oligodeoxynucleotide
EP1605972A2 (en) * 2003-03-26 2005-12-21 Cytos Biotechnology AG Hiv-peptide-carrier-conjugates
WO2004087203A2 (en) 2003-04-02 2004-10-14 Coley Pharmaceutical Group, Ltd. Immunostimulatory nucleic acid oil-in-water formulations for topical application
WO2005016235A2 (en) * 2003-04-14 2005-02-24 The Regents Of The University Of California Combined use of impdh inhibitors with toll-like receptor agonists
WO2004094671A2 (en) 2003-04-22 2004-11-04 Coley Pharmaceutical Gmbh Methods and products for identification and assessment of tlr ligands
PL1635863T3 (en) * 2003-06-17 2011-01-31 Mannkind Corp Compositions to elicit, enhance and sustain immune responses against mhc class i-restricted epitopes, for prophylactic or therapeutic purposes
CA2528774A1 (en) * 2003-06-20 2005-01-27 Coley Pharmaceutical Gmbh Small molecule toll-like receptor (tlr) antagonists
KR20060031607A (en) * 2003-07-10 2006-04-12 사이토스 바이오테크놀로지 아게 Packaged virus-like particles
WO2005009355A2 (en) * 2003-07-15 2005-02-03 Hybridon, Inc. Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy
CA2535527A1 (en) 2003-08-28 2005-03-10 The Immune Response Corporation Immunogenic hiv compositions and related methods
OA13310A (en) * 2003-09-05 2007-04-13 Anadys Pharmaceuticals Inc TLR7 ligands for the treatment of hepatitis C.
CN1211443C (en) 2003-09-10 2005-07-20 江苏鸿业涂料科技产业有限公司 Resin emulsion for high penetrating powder cathod electrophoresis paint
JP4989225B2 (en) 2003-09-25 2012-08-01 コーリー ファーマシューティカル グループ,インコーポレイテッド Nucleic acid lipophilic conjugate
US20050215501A1 (en) * 2003-10-24 2005-09-29 Coley Pharmaceutical Group, Inc. Methods and products for enhancing epitope spreading
KR101107818B1 (en) * 2003-10-30 2012-01-31 콜레이 파마시티컬 그룹, 인코포레이티드 C-class oligonucleotide analogs with enhanced immunostimulatory potency
US20050239733A1 (en) * 2003-10-31 2005-10-27 Coley Pharmaceutical Gmbh Sequence requirements for inhibitory oligonucleotides
CA2549173A1 (en) * 2003-12-08 2005-07-07 Hybridon, Inc. Modulation of immunostimulatory properties by small oligonucleotide-based compounds
US9090673B2 (en) 2003-12-12 2015-07-28 City Of Hope Synthetic conjugate of CpG DNA and T-help/CTL peptide
US20050181035A1 (en) 2004-02-17 2005-08-18 Dow Steven W. Systemic immune activation method using non CpG nucleic acids
WO2005097993A2 (en) * 2004-02-19 2005-10-20 Coley Pharmaceutical Group, Inc. Immunostimulatory viral rna oligonucleotides
ES2320565T3 (en) * 2004-05-03 2009-05-25 Astellas Pharma Inc. NEW MONOSACARIDO MARKED WITH 150 AND METHOD FOR PRODUCTION.
HUE036894T2 (en) * 2004-06-15 2018-08-28 Idera Pharmaceuticals Inc Immunostimulatory oligonucleotide multimers
NZ553244A (en) * 2004-07-18 2009-10-30 Csl Ltd Immuno stimulating complex and oligonucleotide formulations for inducing enhanced interferon-gamma responses
KR20080008350A (en) * 2005-04-08 2008-01-23 콜레이 파마시티컬 그룹, 인코포레이티드 Methods for treating infectious disease exacerbated asthma
AU2006241149A1 (en) * 2005-04-26 2006-11-02 Coley Pharmaceutical Gmbh Modified oligoribonucleotide analogs with enhanced immunostimulatory activity
CA2620582C (en) * 2005-08-31 2015-11-10 Dennis M. Klinman Methods of altering an immune response induced by cpg oligodeoxynucleotides
KR20080047463A (en) 2005-09-16 2008-05-28 콜리 파마슈티칼 게엠베하 Modulation of immunostimulatory properties of short interfering ribonucleic acid (sirna) by nucleotide modification
KR20080048067A (en) 2005-09-16 2008-05-30 콜리 파마슈티칼 게엠베하 Immunostimulatory single-stranded ribonucleic acid with phosphodiester backbone
PT1957647E (en) * 2005-11-25 2015-06-01 Zoetis Belgium S A Immunostimulatory oligoribonucleotides
KR20080110809A (en) * 2006-04-14 2008-12-19 머크 앤드 캄파니 인코포레이티드 Substituted imidazole 4-carboxamides as cholecystokinin-1 receptor modulators
US8027888B2 (en) 2006-08-31 2011-09-27 Experian Interactive Innovation Center, Llc Online credit card prescreen systems and methods
WO2008033432A2 (en) 2006-09-12 2008-03-20 Coley Pharmaceutical Group, Inc. Immune modulation by chemically modified ribonucleosides and oligoribonucleotides
NZ575437A (en) * 2006-09-27 2012-02-24 Coley Pharm Gmbh Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity
AU2007300378A1 (en) 2006-09-27 2008-04-03 Coley Pharmaceutical Gmbh Compositions of TLR ligands and antivirals
CN101558157A (en) 2006-10-26 2009-10-14 科勒制药有限责任公司 Oligoribonucleotides and uses thereof
US20090142362A1 (en) 2006-11-06 2009-06-04 Avant Immunotherapeutics, Inc. Peptide-based vaccine compositions to endogenous cholesteryl ester transfer protein (CETP)
RU2009125599A (en) * 2006-12-04 2011-01-20 Дзе Борд Оф Трастиз Оф Дзе Юниверсити Оф Иллинойс (Us) COMPOSITIONS AND METHODS FOR TREATING CANCER WITH CPG-RICH DNA AND CUPREDOXINS
KR20100010509A (en) 2007-05-17 2010-02-01 콜레이 파마시티컬 그룹, 인코포레이티드 Class a oligonucleotides with immunostimulatory potency
KR20100068422A (en) * 2007-10-09 2010-06-23 콜리 파마슈티칼 게엠베하 Immune stimulatory oligonucleotide analogs containing modified sugar moieties
US8268492B2 (en) * 2007-11-30 2012-09-18 GM Global Technology Operations LLC Fuel cell stack features for improved water management
EP2278979A4 (en) * 2008-05-21 2012-09-26 Us Gov Health & Human Serv Method of treating pneumoconiosis with oligodeoxynucleotides
TWI351288B (en) * 2008-07-04 2011-11-01 Univ Nat Pingtung Sci & Tech Cpg dna adjuvant in avian vaccines
US8053422B2 (en) * 2008-12-04 2011-11-08 The United States Of America As Represented By The Department Of Health And Human Services Anti-cancer oligodeoxynucleotides

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188375A (en) * 1976-09-25 1980-02-12 Bayer Aktiengesellschaft Process for the preparation of vaccines
US20030027782A1 (en) * 1993-08-26 2003-02-06 Carson Dennis A. Method for treating allergic lung disease
US5723335A (en) * 1994-03-25 1998-03-03 Isis Pharmaceuticals, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US6727230B1 (en) * 1994-03-25 2004-04-27 Coley Pharmaceutical Group, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US20050075302A1 (en) * 1994-03-25 2005-04-07 Coley Pharmaceutical Group, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US20050070491A1 (en) * 1994-07-15 2005-03-31 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7517861B2 (en) * 1994-07-15 2009-04-14 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20100125101A1 (en) * 1994-07-15 2010-05-20 Krieg Arthur M Immunostimulatory nucleic acid molecules
US6239116B1 (en) * 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7674777B2 (en) * 1994-07-15 2010-03-09 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7524828B2 (en) * 1994-07-15 2009-04-28 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20060058251A1 (en) * 1994-07-15 2006-03-16 University Of Iowa Research Foundation Methods for treating and preventing infectious disease
US20050049216A1 (en) * 1994-07-15 2005-03-03 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050037985A1 (en) * 1994-07-15 2005-02-17 Krieg Arthur M. Methods and products for treating HIV infection
US20050037403A1 (en) * 1994-07-15 2005-02-17 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20050032736A1 (en) * 1994-07-15 2005-02-10 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20030100527A1 (en) * 1994-07-15 2003-05-29 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
US20080026011A1 (en) * 1994-07-15 2008-01-31 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7223741B2 (en) * 1994-07-15 2007-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20030050263A1 (en) * 1994-07-15 2003-03-13 The University Of Iowa Research Foundation Methods and products for treating HIV infection
US20030050261A1 (en) * 1994-07-15 2003-03-13 Krieg Arthur M. Immunostimulatory nucleic acid molecules
US20070078104A1 (en) * 1994-07-15 2007-04-05 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20070066553A1 (en) * 1994-07-15 2007-03-22 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20070065467A1 (en) * 1994-07-15 2007-03-22 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
US20070010470A9 (en) * 1994-07-15 2007-01-11 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20050009774A1 (en) * 1994-07-15 2005-01-13 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20050004061A1 (en) * 1994-07-15 2005-01-06 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20060094683A1 (en) * 1994-07-15 2006-05-04 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20060089326A1 (en) * 1994-07-15 2006-04-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20070009482A9 (en) * 1994-07-15 2007-01-11 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US7888327B2 (en) * 1994-07-15 2011-02-15 University Of Iowa Research Foundation Methods of using immunostimulatory nucleic acid molecules to treat allergic conditions
US20080031936A1 (en) * 1994-07-15 2008-02-07 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050004062A1 (en) * 1994-07-15 2005-01-06 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20050054602A1 (en) * 1994-07-15 2005-03-10 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20060003955A1 (en) * 1994-07-15 2006-01-05 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050101554A1 (en) * 1994-07-15 2005-05-12 University Of Iowa Research Foundation Methods for treating and preventing infectious disease
US20050101557A1 (en) * 1994-07-15 2005-05-12 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6207646B1 (en) * 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050049215A1 (en) * 1994-07-15 2005-03-03 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6194388B1 (en) * 1994-07-15 2001-02-27 The University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20040087534A1 (en) * 1994-07-15 2004-05-06 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20040087538A1 (en) * 1994-07-15 2004-05-06 University Of Iowa Research Foundation Methods of treating cancer using immunostimulatory oligonucleotides
US20050059625A1 (en) * 1994-07-15 2005-03-17 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20030026782A1 (en) * 1995-02-07 2003-02-06 Arthur M. Krieg Immunomodulatory oligonucleotides
US20030078223A1 (en) * 1996-01-30 2003-04-24 Eyal Raz Compositions and methods for modulating an immune response
US6174872B1 (en) * 1996-10-04 2001-01-16 The Regents Of The University Of California Method for treating allergic lung disease
US20040006010A1 (en) * 1996-10-11 2004-01-08 Carson Dennis A. Immunostimulatory polynucleotide/immunomodulatory molecule conjugates
US7001890B1 (en) * 1997-01-23 2006-02-21 Coley Pharmaceutical Gmbh Pharmaceutical compositions comprising a polynucleotide and optionally an antigen especially for vaccination
US20050054601A1 (en) * 1997-01-23 2005-03-10 Coley Pharmaceutical Gmbh Pharmaceutical composition comprising a polynucleotide and optionally an antigen especially for vaccination
US20090060927A1 (en) * 1997-01-23 2009-03-05 Coley Pharmaceutical Gmbh Pharmaceutical compositions comprising a polynucleotide and optionally an antigen especially for vaccination
US6214806B1 (en) * 1997-02-28 2001-04-10 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CPC dinucleotide in the treatment of LPS-associated disorders
US20030091599A1 (en) * 1997-03-10 2003-05-15 Coley Pharmaceutical Gmbh Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US7488490B2 (en) * 1997-03-10 2009-02-10 University Of Iowa Research Foundation Method of inducing an antigen-specific immune response by administering a synergistic combination of adjuvants comprising unmethylated CpG-containing nucleic acids and a non-nucleic acid adjuvant
US20050043529A1 (en) * 1997-03-10 2005-02-24 Coley Pharmaceutical Gmbh Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US20050032734A1 (en) * 1997-05-20 2005-02-10 Krieg Arthur M. Vectors and methods for immunization or therapeutic protocols
US6339068B1 (en) * 1997-05-20 2002-01-15 University Of Iowa Research Foundation Vectors and methods for immunization or therapeutic protocols
US7354711B2 (en) * 1997-07-03 2008-04-08 University Of Iowa Research Foundation Methods for inhibiting immunostimulatory DNA associated responses
US6221882B1 (en) * 1997-07-03 2001-04-24 University Of Iowa Research Foundation Methods for inhibiting immunostimulatory DNA associated responses
US6521637B2 (en) * 1997-07-03 2003-02-18 University Of Iowa Research Foundation Methods for inhibiting immunostimulatory DNA associated responses
US20030092663A1 (en) * 1997-09-05 2003-05-15 Eyal Raz Immunization-free methods for treating antigen-stimulated inflammation in a mammalian host and shifting the host's antigen immune responsiveness to a Th1 phenotype
US6218371B1 (en) * 1998-04-03 2001-04-17 University Of Iowa Research Foundation Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines
US20040030118A1 (en) * 1998-05-14 2004-02-12 Hermann Wagner Methods for regulating hematopoiesis using CpG-oligonucleotides
US6248329B1 (en) * 1998-06-01 2001-06-19 Ramaswamy Chandrashekar Parasitic helminth cuticlin nucleic acid molecules and uses thereof
US20040006034A1 (en) * 1998-06-05 2004-01-08 Eyal Raz Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
US20040092468A1 (en) * 1998-06-05 2004-05-13 David Schwartz Immunostimulatory oligonucleotides with modified bases and methods of use thereof
US6562798B1 (en) * 1998-06-05 2003-05-13 Dynavax Technologies Corp. Immunostimulatory oligonucleotides with modified bases and methods of use thereof
US20030064064A1 (en) * 1998-09-18 2003-04-03 Dino Dina Methods of treating IgE-associated disorders and compositions for use therein
US6544518B1 (en) * 1999-04-19 2003-04-08 Smithkline Beecham Biologicals S.A. Vaccines
US6558670B1 (en) * 1999-04-19 2003-05-06 Smithkline Beechman Biologicals S.A. Vaccine adjuvants
US6514948B1 (en) * 1999-07-02 2003-02-04 The Regents Of The University Of California Method for enhancing an immune response
US20070066554A1 (en) * 1999-09-25 2007-03-22 Coley Pharmaceutical Gmbh Immunostimulatory nucleic acids
US20110033421A1 (en) * 1999-09-27 2011-02-10 Coley Pharmaceutical Gmbh Methods related to immunostimulatory nucleic acid-induced interferon
US6552006B2 (en) * 2000-01-31 2003-04-22 The Regents Of The University Of California Immunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen
US20070037767A1 (en) * 2000-02-03 2007-02-15 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids for the treatment of asthma and allergy
US20040067902A9 (en) * 2000-02-03 2004-04-08 Bratzler Robert L. Immunostimulatory nucleic acids for the treatment of asthma and allergy
US6534062B2 (en) * 2000-03-28 2003-03-18 The Regents Of The University Of California Methods for increasing a cytotoxic T lymphocyte response in vivo
US6339630B1 (en) * 2000-05-18 2002-01-15 The United States Of America As Represented By The United States Department Of Energy Sealed drive screw operator
US20030026801A1 (en) * 2000-06-22 2003-02-06 George Weiner Methods for enhancing antibody-induced cell lysis and treating cancer
US7534772B2 (en) * 2000-06-22 2009-05-19 University Of Iowa Research Foundation Methods for enhancing antibody-induced cell lysis and treating cancer
US20030055014A1 (en) * 2000-12-14 2003-03-20 Bratzler Robert L. Inhibition of angiogenesis by nucleic acids
US20030049266A1 (en) * 2000-12-27 2003-03-13 Fearon Karen L. Immunomodulatory polynucleotides and methods of using the same
US20030050268A1 (en) * 2001-03-29 2003-03-13 Krieg Arthur M. Immunostimulatory nucleic acid for treatment of non-allergic inflammatory diseases
US20040009949A1 (en) * 2002-06-05 2004-01-15 Coley Pharmaceutical Group, Inc. Method for treating autoimmune or inflammatory diseases with combinations of inhibitory oligonucleotides and small molecule antagonists of immunostimulatory CpG nucleic acids
US20040092472A1 (en) * 2002-07-03 2004-05-13 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20040067905A1 (en) * 2002-07-03 2004-04-08 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20040053880A1 (en) * 2002-07-03 2004-03-18 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20050059619A1 (en) * 2002-08-19 2005-03-17 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
US20060003962A1 (en) * 2002-10-29 2006-01-05 Coley Pharmaceutical Group, Ltd. Methods and products related to treatment and prevention of hepatitis C virus infection
US20050013812A1 (en) * 2003-07-14 2005-01-20 Dow Steven W. Vaccines using pattern recognition receptor-ligand:lipid complexes
US20050100983A1 (en) * 2003-11-06 2005-05-12 Coley Pharmaceutical Gmbh Cell-free methods for identifying compounds that affect toll-like receptor 9 (TLR9) signaling
US20060019916A1 (en) * 2004-04-02 2006-01-26 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids for inducing IL-10 responses
US20080113929A1 (en) * 2004-06-08 2008-05-15 Coley Pharmaceutical Gmbh Abasic Oligonucleotide as Carrier Platform for Antigen and Immunostimulatory Agonist and Antagonist
US20060019923A1 (en) * 2004-07-18 2006-01-26 Coley Pharmaceutical Group, Ltd. Methods and compositions for inducing innate immune responses
US20090017021A1 (en) * 2004-07-18 2009-01-15 Coley Pharmaceutical Group, Ltd. Methods and compositions for inducing innate immune responses
US7897810B2 (en) * 2004-09-02 2011-03-01 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US20090137519A1 (en) * 2004-10-20 2009-05-28 Coley Pharmaceutical Group, Inc. Semi-soft c-class immunostimulatory oligonucleotides
US20080009455A9 (en) * 2005-02-24 2008-01-10 Coley Pharmaceutical Group, Inc. Immunostimulatory oligonucleotides
US20090117132A1 (en) * 2005-07-07 2009-05-07 Pfizer, Inc. Anti-Ctla-4 Antibody and Cpg-Motif-Containing Synthetic Oligodeoxynucleotide Combination Therapy for Cancer Treatment
US20080045473A1 (en) * 2006-02-15 2008-02-21 Coley Pharmaceutical Gmbh Compositions and methods for oligonucleotide formulations

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879810B2 (en) 1994-07-15 2011-02-01 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7723500B2 (en) 1994-07-15 2010-05-25 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US8058249B2 (en) 1994-07-15 2011-11-15 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7713529B2 (en) 1994-07-15 2010-05-11 University Of Iowa Research Foundation Methods for treating and preventing infectious disease
US8158592B2 (en) 1994-07-15 2012-04-17 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acid molecules
US7723022B2 (en) 1994-07-15 2010-05-25 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US8309527B2 (en) 1994-07-15 2012-11-13 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US8148340B2 (en) 1994-07-15 2012-04-03 The United States Of America As Represented By The Department Of Health And Human Services Immunomodulatory oligonucleotides
US7674777B2 (en) 1994-07-15 2010-03-09 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20040087534A1 (en) * 1994-07-15 2004-05-06 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US8258106B2 (en) 1994-07-15 2012-09-04 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US8129351B2 (en) 1994-07-15 2012-03-06 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US8008266B2 (en) 1994-07-15 2011-08-30 University Of Iowa Foundation Methods of treating cancer using immunostimulatory oligonucleotides
US7888327B2 (en) 1994-07-15 2011-02-15 University Of Iowa Research Foundation Methods of using immunostimulatory nucleic acid molecules to treat allergic conditions
US7935675B1 (en) 1994-07-15 2011-05-03 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US8114848B2 (en) 1994-07-15 2012-02-14 The United States Of America As Represented By The Department Of Health And Human Services Immunomodulatory oligonucleotides
US8202688B2 (en) 1997-03-10 2012-06-19 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US8574599B1 (en) 1998-05-22 2013-11-05 Ottawa Hospital Research Institute Methods and products for inducing mucosal immunity
US7741300B2 (en) 1998-06-25 2010-06-22 National Jewish Medical And Research Center Methods of using nucleic acid vector-lipid complexes
US8173141B2 (en) 1999-02-17 2012-05-08 Csl Limited Immunogenic complexes and methods relating thereto
US7776343B1 (en) 1999-02-17 2010-08-17 Csl Limited Immunogenic complexes and methods relating thereto
US7776344B2 (en) 1999-09-27 2010-08-17 University Of Iowa Research Foundation Methods related to immunostimulatory nucleic acid-induced interferon
US7820379B2 (en) 2000-09-15 2010-10-26 Coley Pharmaceutical Gmbh Process for high throughput screening of CpG-based immuno-agonist/antagonist
US8834900B2 (en) 2001-08-17 2014-09-16 University Of Iowa Research Foundation Combination motif immune stimulatory oligonucleotides with improved activity
US9428536B2 (en) 2002-04-04 2016-08-30 Zoetis Belgium Sa Immunostimulatory G, U-containing oligoribonucleotides
US8153141B2 (en) 2002-04-04 2012-04-10 Coley Pharmaceutical Gmbh Immunostimulatory G, U-containing oligoribonucleotides
US8658607B2 (en) 2002-04-04 2014-02-25 Zoetis Belgium Immunostimulatory G, U-containing oligoribonucleotides
US8114419B2 (en) 2002-07-03 2012-02-14 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US7807803B2 (en) 2002-07-03 2010-10-05 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US8304396B2 (en) 2002-08-19 2012-11-06 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
US8283328B2 (en) 2002-08-19 2012-10-09 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
US7998492B2 (en) 2002-10-29 2011-08-16 Coley Pharmaceutical Group, Inc. Methods and products related to treatment and prevention of hepatitis C virus infection
US7956043B2 (en) 2002-12-11 2011-06-07 Coley Pharmaceutical Group, Inc. 5′ CpG nucleic acids and methods of use
US8188254B2 (en) 2003-10-30 2012-05-29 Coley Pharmaceutical Gmbh C-class oligonucleotide analogs with enhanced immunostimulatory potency
US7795235B2 (en) 2004-10-20 2010-09-14 Coley Pharmaceutical Gmbh Semi-soft c-class immunostimulatory oligonucleotides
US7662949B2 (en) 2005-11-25 2010-02-16 Coley Pharmaceutical Gmbh Immunostimulatory oligoribonucleotides
US8354522B2 (en) 2005-11-25 2013-01-15 Coley Pharmaceutical Gmbh Immunostimulatory oligoribonucleotides
US8580268B2 (en) 2006-09-27 2013-11-12 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
US9382545B2 (en) 2006-09-27 2016-07-05 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
US10260071B2 (en) 2006-09-27 2019-04-16 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
US8883174B2 (en) 2009-03-25 2014-11-11 The Board Of Regents, The University Of Texas System Compositions for stimulation of mammalian innate immune resistance to pathogens
US9186400B2 (en) 2009-03-25 2015-11-17 The Board Of Regents, The University Of Texas System Compositions for stimulation of mammalian innate immune resistance to pathogens
US9504742B2 (en) 2009-03-25 2016-11-29 The Board Of Regents, The University Of Texas System Compositions for stimulation of mammalian innate immune resistance to pathogens
US10722573B2 (en) 2009-03-25 2020-07-28 The Board Of Regents, The University Of Texas System Compositions for stimulation of mammalian innate immune resistance to pathogens
US10286065B2 (en) 2014-09-19 2019-05-14 Board Of Regents, The University Of Texas System Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds

Also Published As

Publication number Publication date
US20040152656A1 (en) 2004-08-05
US20040087534A1 (en) 2004-05-06
US20070010470A9 (en) 2007-01-11
US8114848B2 (en) 2012-02-14
US20040162258A1 (en) 2004-08-19
US20060094683A1 (en) 2006-05-04
US20050009774A1 (en) 2005-01-13
US20040181045A1 (en) 2004-09-16
US20050004062A1 (en) 2005-01-06
US20050245477A1 (en) 2005-11-03
US8148340B2 (en) 2012-04-03
US20040162262A1 (en) 2004-08-19
US20050239736A1 (en) 2005-10-27
US20070202128A1 (en) 2007-08-30
US20030026782A1 (en) 2003-02-06
US20040171150A1 (en) 2004-09-02
US20040142469A1 (en) 2004-07-22
US20050037403A1 (en) 2005-02-17
US8309527B2 (en) 2012-11-13
US20070009482A9 (en) 2007-01-11
US20040152657A1 (en) 2004-08-05
US20050244380A1 (en) 2005-11-03
US20040143112A1 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
US8148340B2 (en) Immunomodulatory oligonucleotides
US6194388B1 (en) Immunomodulatory oligonucleotides
AU754463B2 (en) Immunomodulatory oligonucleotides

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSITY OF IOWA RESEARCH FOUNDATION, IOWA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KRIEG, ARTHUR M.;REEL/FRAME:016302/0358

Effective date: 20031212

Owner name: THE UNITED STATES OF AMERICA, AS REPRESENTED BY TH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KLINMAN, DENNIS;REEL/FRAME:016302/0373

Effective date: 20040406

Owner name: COLEY PHARMACEUTICAL GROUP, INC., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:CPG IMMUNOPHARMACEUTICALS, INC.;REEL/FRAME:016302/0366

Effective date: 20000114

Owner name: CPG IMMUNOPHARMACEUTICALS, INC., MASSACHUSETTS

Free format text: LETTER OF AGREEEMENT;ASSIGNOR:STEINBERG, ALFRED D.;REEL/FRAME:016302/0351

Effective date: 19981030

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF IOWA;REEL/FRAME:021668/0416

Effective date: 20050615

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION