US20050242423A1 - Stacked module systems and methods - Google Patents
Stacked module systems and methods Download PDFInfo
- Publication number
- US20050242423A1 US20050242423A1 US11/175,562 US17556205A US2005242423A1 US 20050242423 A1 US20050242423 A1 US 20050242423A1 US 17556205 A US17556205 A US 17556205A US 2005242423 A1 US2005242423 A1 US 2005242423A1
- Authority
- US
- United States
- Prior art keywords
- csp
- flex
- form standard
- module
- flex circuitry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3114—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/13—Mountings, e.g. non-detachable insulating substrates characterised by the shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
- H01L23/49816—Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/4985—Flexible insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5387—Flexible insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/10—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L25/105—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/141—One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/147—Structural association of two or more printed circuits at least one of the printed circuits being bent or folded, e.g. by using a flexible printed circuit
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16237—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area disposed in a recess of the surface of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1047—Details of electrical connections between containers
- H01L2225/107—Indirect electrical connections, e.g. via an interposer, a flexible substrate, using TAB
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1094—Thermal management, e.g. cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01327—Intermediate phases, i.e. intermetallics compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/189—Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/05—Flexible printed circuits [FPCs]
- H05K2201/056—Folded around rigid support or component
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10689—Leaded Integrated Circuit [IC] package, e.g. dual-in-line [DIL]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10734—Ball grid array [BGA]; Bump grid array
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/36—Assembling printed circuits with other printed circuits
- H05K3/361—Assembling flexible printed circuits with other printed circuits
- H05K3/363—Assembling flexible printed circuits with other printed circuits by soldering
Definitions
- the present invention relates to aggregating integrated circuits and, in particular, to stacking integrated circuits in chip-scale packages.
- the predominant package configuration employed during the past decade has encapsulated an integrated circuit (IC) in a plastic surround typically having a rectangular configuration.
- IC integrated circuit
- the enveloped integrated circuit is connected to the application environment through leads emergent from the edge periphery of the plastic encapsulation.
- Such “leaded packages” have been the constituent elements most commonly employed by techniques for stacking packaged integrated circuits.
- Leaded packages play an important role in electronics, but efforts to miniaturize electronic components and assemblies have driven development of technologies that preserve circuit board surface area. Because leaded packages have leads emergent from peripheral sides of the package, leaded packages occupy more than a minimal amount of circuit board surface area. Consequently, alternatives to leaded packages known as chip scale packaging or “CSP” have recently gained market share.
- CSP chip scale packaging
- CSP refers generally to packages that provide connection to an integrated circuit through a set of contacts (often embodied as “bumps” or “balls”) arrayed across a major surface of the package. Instead of leads emergent from a peripheral side of the package, contacts are placed on a major surface and typically emerge from the planar bottom surface of the package.
- contacts are placed on a major surface and typically emerge from the planar bottom surface of the package.
- thermal performance is a characteristic of importance in CSP stacks.
- the present invention stacks chip scale-packaged integrated circuits (CSPs) into modules that conserve PWB or other board surface area. Although the present invention is applied most frequently to chip scale packages that contain one die, it may be employed with chip scale packages that include more than one integrated circuit die. Multiple numbers of CSPs may be stacked in accordance with the present invention.
- the CSPs employed in stacked modules devised in accordance with the present invention are connected with flex circuitry. That flex circuitry may exhibit one or two or more conductive layers.
- At least one form standard is employed to provide a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design.
- the form standard will be devised of heat transference material, a metal, for example, such as copper would be preferred, to improve thermal performance.
- CSP contacts are reduced in height to create lower profile modules.
- the compressed contacts mix with solder paste and set beneficially as lower diameter contacts. This creates low profile embodiments of the modules of the present invention.
- FIG. 1 is an elevation view of a high-density circuit module devised in accordance with a preferred two-high embodiment of the present invention.
- FIG. 2 depicts, in enlarged view, the area marked “A” in FIG. 1 .
- FIG. 3A depicts a part of an exemplar CSP before its incorporation into a module or unit of the present invention.
- FIG. 3B depicts a part of an exemplar CSP after one of its contacts has been reduced in height according to a preferred mode of the present invention.
- FIG. 4 depicts a preferred construction method that may be employed in making a high-density module devised in accordance with a preferred embodiment of the present invention.
- FIG. 5 depicts a preferred construction method that may be employed in making a high-density module devised in accordance with a preferred embodiment of the present invention.
- FIG. 6 depicts a unit that may be employed in a module devised in accordance with a preferred embodiment of the present invention.
- FIG. 1 shows a two-high module 10 devised in accordance with a preferred embodiment of the invention.
- FIG. 1 has an area marked “A” that is subsequently shown in enlarged depiction in FIG. 2 .
- Module 10 is comprised of two CSPs: CSP 16 and CSP 18 .
- Each of the CSPs has an upper surface 20 and a lower surface 22 and opposite lateral edges 24 and 26 and typically include at least one integrated circuit surrounded by a plastic body 27 .
- the body need not be plastic, but a large majority of packages in CSP technologies are plastic.
- the present invention may be devised to create modules with different size CSPs and that the constituent CSPs may be of different types within the same module 10 .
- one of the constituent CSPs may be a typical CSP having lateral edges 24 and 26 that have an appreciable height to present a “side” while other constituent CSPs of the same module 10 may be devised in packages that have lateral edges 24 and 26 that are more in the character of an edge rather than a side having appreciable height.
- CSP chip scale packaged integrated circuits
- Typical CSPs such as, for example, ball-grid-array (“BGA”), micro-ball-grid array, and fine-pitch ball grid array (“FBGA”) packages have an array of connective contacts embodied, for example, as leads, bumps, solder balls, or balls that extend from lower surface 22 of a plastic casing in any of several patterns and pitches. An external portion of the connective contacts is often finished with a ball of solder. Shown in FIG. 1 are contacts 28 along lower surfaces 22 of the illustrated constituent CSPs 16 and 18 . Contacts 28 provide connection to the integrated circuit or circuits within the respective packages.
- BGA ball-grid-array
- FBGA fine-pitch ball grid array
- flex circuitry (“flex”, “flex circuits” or “flexible circuit structures”) is shown connecting constituent CSPs 16 and 18 .
- a single flex circuit may be employed in place of the two depicted flex circuits 30 and 32 .
- the entirety of the flex circuitry may be flexible or, as those of skill in the art will recognize, a PCB structure made flexible in certain areas to allow conformability around CSPs and rigid in other areas for planarity along CSP surfaces may be employed as an alternative flex circuit in the present invention.
- structures known as rigid-flex may be employed.
- a first form standard 34 is shown disposed adjacent to upper surface 20 of CSP 18 .
- a second form standard is also shown associated with CSP 16 .
- Form standard 34 may be fixed to upper surface 20 of the respective CSP with an adhesive 36 which preferably is thermally conductive.
- Form standard 34 may also, in alternative embodiments, merely lay on upper surface 20 or be separated from upper surface 20 by an air gap or medium such as a thermal slug or non-thermal layer.
- a form standard may be employed on each CSP in module 10 for heat extraction enhancement as shown in the depiction of FIG. 1 which is a preferred mode for the present invention where heat extraction is a high priority.
- form standard 34 may be inverted relative to the corresponding CSP so that, for example, it would be opened over the upper surface 20 of CSP 18 .
- Form standard 34 is, in a preferred embodiment, devised from copper to create, as shown in the depicted preferred embodiment of FIG. 1 , a mandrel that mitigates thermal accumulation while providing a standard sized form about which flex circuitry is disposed.
- Form standard 34 may also be devised from nickel plated copper in preferred embodiments.
- Form standard 34 may take other shapes and forms such as, for example, an angular “cap” that rests upon the respective CSP body. It also need not be thermally enhancing although such attributes are preferable.
- the form standard 34 allows the invention to be employed with CSPs of varying sizes, while articulating a single set of connective structures useable with the varying sizes of CSPs.
- a single set of connective structures such as flex circuits 30 and 32 (or a single flexible circuit in the mode where a single flex is used in place of the flex circuit pair 30 and 32 as shown in FIG. 5 ) may be devised and used with the form standard 34 method and/or systems disclosed herein to create stacked modules with CSPs having different sized packages.
- This will allow the same flex circuitry set design to be employed to create iterations of a stacked module 10 from constituent CSPs having a first arbitrary dimension X across attribute Y (where Y may be, for example, package width), as well as modules 10 from constituent CSPs having a second arbitrary dimension X prime across that same attribute Y.
- CSPs of different sizes may be stacked into modules 10 with the same set of connective structures (i.e., flex circuitry). Further, as those of skill will recognize, mixed sizes of CSPs may be implemented into the same module 10 , such as would be useful to implement embodiments of a system-on-a-stack such as those disclosed in co-pending application PCT/US03/29000, filed Sep. 15, 2003, which is incorporated by reference and commonly owned by the assignee of the present application.
- portions of flex circuits 30 and 32 are fixed to form standard 34 by bonds 35 which are, in some preferred modes, metallurgical bonds created by placing on form standard 34 , a first metal layer such as tin, for example, which, when melted, combines with a second metal that was placed on the flex circuitry or is part of the flex circuitry (such as the gold plating on a conductive layer of the flex) to form a higher melting point intermetallic bond that will not remelt during subsequent reflow operations as will be described further.
- bonds 35 are, in some preferred modes, metallurgical bonds created by placing on form standard 34 , a first metal layer such as tin, for example, which, when melted, combines with a second metal that was placed on the flex circuitry or is part of the flex circuitry (such as the gold plating on a conductive layer of the flex) to form a higher melting point intermetallic bond that will not remelt during subsequent reflow operations as will be described further.
- FIG. 2 depicts in enlarged view, the area marked “A” in FIG. 1 .
- FIG. 2 illustrates in a preferred embodiment, an arrangement of a form standard 34 and its relation to flex circuitry 32 in a two-high module 10 that employs a form standard 34 with each of CSPs 16 and 18 .
- the internal layer constructions of flex circuitry 32 are not shown in this figure. Shown in greater detail than in FIG. 1 , are bonds 35 that will be described with reference to later Figs.
- Also shown in FIG. 2 is an application of adhesive 36 between form standards 34 and CSPs 18 and 16 .
- an adhesive 33 may also be employed between form standard 34 associated with CSP 16 and the flex circuitry 32 .
- Adhesive 33 will preferably be thermally conductive.
- FIG. 3A depicts a contact 28 of CSP 18 before that contact 28 has undergone the step of height reduction described further subsequently. As shown, contact 28 rises a height Dx above surface 22 of CSP 18 .
- FIG. 3B depicts contact 28 after the step of height reduction described further subsequently. In FIG. 3B , the height reduction was conducted before attachment of a form standard 34 to CSP 18 . As is later explained, height reduction of contacts 28 may occur either before or after attachment of a form standard 34 to CSP 18 .
- contact 28 rises a height Dc above surface 22 of CSP 18 .
- contacts 28 may rise a height D 1 above said surface 22 after incorporation of CSP 18 into module 10 or later shown unit 39 ( FIG. 6 .). Height D 1 is greater than the height Dc such contacts exhibit after the step of contact height reduction, but before attachment of flex circuitry as shown in FIGS. 3B, 4 , and 5 . Even so, in preferred embodiments, height D 1 of contacts 28 after CSP 18 is incorporated in a module 10 (such as shown in FIG. 2 ) or unit 39 (such as shown in FIG.
- module contacts 38 rise a height of Dm from flex circuit 32 and, in preferred embodiments of module 10 , D 1 is less than Dm.
- combination 37 is depicted as consisting of form standard 34 attached to CSP 18 which, when attached to flex circuitry, is adapted to be employed in module 10 .
- the attachment of form standard 34 to CSP 18 may be realized with adhesive depicted by reference 36 which is preferably a film adhesive that is applied by heat tacking either to form standard 34 or CSP 18 .
- adhesive depicted by reference 36 which is preferably a film adhesive that is applied by heat tacking either to form standard 34 or CSP 18 .
- a variety of other methods may be used to adhere form standard 34 to CSP 18 and in some embodiments, no adhesion may be used
- flex circuits 30 and 32 are prepared for attachment to combination 37 by the application of solder paste 41 at sites that correspond to contacts 28 of CSP 18 to be connected to the flex circuitry. Also shown are glue applications indicated by references 43 which are, when glue is employed to attach form standard 34 to the flex circuitry, preferably liquid glue.
- contacts 28 of CSP 18 have height Dc which is less than height D 1 shown in earlier FIG. 2 .
- the depicted contacts 28 of CSP 18 are reduced in height by compression or other means of height reduction before attachment of combination 37 to the flex circuitry. This compression may be done before or after attachment of form standard 34 and CSP 18 with after-attachment compression being preferred. Contacts 28 may be reduced in height while in a solid or semi-solid state. Unless reduced in height, contacts 28 on CSP 18 tend to “sit-up” on solder paste sites 41 during creation of module 10 . This causes the glue line between the flex circuitry and form standard 34 to be thicker than may be desired. The glue reaches to fill the gap between the flex and form standard 34 that results from the distancing of the attached form standard 34 from the flex by the contacts 28 “sitting” upon the solder paste sites 41 .
- FIG. 5 depicts a preferred alternative and additional method to reduce module 10 height while providing a stable bond 35 between form standard 34 and the flex circuitry.
- the preferable bonds 35 that were earlier shown in FIG. 1 may be created by the following technique.
- a first metallic material indicated by reference 47 has been layered on, or appended or plated to form standard 34 .
- a second metallic material represented by reference 49 on flex circuit 30 is provided by, for example, applying a thin layer of metal to flex circuit 30 or, by exposing part of a conductive layer of the flex circuit.
- form standard 34 is brought into proximity with the flex circuitry, and localized heating is applied to the area where the first and second metals 47 and 49 are adjacent, an intermetallic bond 35 is created.
- a preferred metallic material 47 would be a thin layer of tin applied to create a layer about 0.0005′′. When melted to combine with the gold of a conductive layer of flex circuitry exposed at that, for example, site, the resulting intermetallic bond 35 will have a higher melting point resulting in the additional advantage of not re-melting during subsequent re-flow operations at particular temperatures.
- a variety of methods may be used to provide the localized heating appropriate to implement the metallic bonding described here including localized heat application with which many in the art are familiar as well as ultrasonic bonding methods where the patterns in the flex circuitry are not exposed to the vibration inherent in such methods and the metals chosen to implement the bonds have melting points within the range achieved by the ultrasonic method.
- FIG. 6 depicts unit 39 comprised from flex circuitry 31 which, in this depicted embodiment, is a single flex circuit, and form standard 34 and CSP 18 . Heat is shown as being applied to area 50 where the first metallic material 47 and second metallic material 49 were made adjacent by bringing combination 37 and flex circuitry 31 together.
- intermetallic bonds may also be employed to bond combination 37 to flex circuitry along other sites where form standard 34 and flex circuitry are adjacent such as, for example, on sites or continuously along the top side of form standard where typically glue is otherwise applied to further fasten flex circuitry to form standard 34 .
- the intermetallic bonding described here may be employed alone or with other methods such as the contact compression techniques described herein to create instances of module 10 that present a low profile.
- flex circuits 30 and 32 are multi-layer flexible circuit structures that have at least two conductive layers. Other embodiments may, however, employ flex circuitry, either as one circuit or two flex circuits to connect a pair of CSPs, that have only a single conductive layer and may exhibit the variety of simple construction parameters that are known to those of skill in the art with such features as covercoats on one, both or neither side.
- the conductive layers are metal such as alloy 110 and as those of skill will know, often have conductive areas plated with gold.
- the use of plural conductive layers provides advantages and the creation of a distributed capacitance across module 10 intended to reduce noise or bounce effects that can, particularly at higher frequencies, degrade signal integrity, as those of skill in the art will recognize.
- Module 10 of FIG. 1 has plural module contacts 38 .
- there may be found connections between flex circuits which are typically balls but may be low profile contacts constructed with pads and/or rings that are connected with solder paste applications to appropriate connections. Appropriate fills can provide added structural stability and coplanarity where desired and, depending upon the fill, can improve thermal performance.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Semiconductor Memories (AREA)
- Wire Bonding (AREA)
Abstract
The present invention stacks chip scale-packaged integrated circuits (CSPs) into modules that conserve PWB or other board surface area. In a preferred embodiment in accordance with the invention, a form standard associated with one or more CSPs provides a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design. In a preferred embodiment, the contacts of the lower CSP will be compressed before flex circuitry is attached to a combination of the CSP and a form standard to create lower profile contacts between CSP and the flex circuitry.
Description
- This application is a continuation-in-part of U.S. patent application Ser. No. 10/453,398, filed Jun. 3, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 10/005,581, filed Oct. 26, 2001, now U.S. Pat. No. 6,576,992 and a continuation-in-part of PCT App. No. PCT/US03/29000, filed Sep. 15, 2003.
- U.S. patent application Ser. No. 10/453,398, filed Jun. 3, 2003, is hereby incorporated by reference.
- PCT Pat. App. No. PCT/US03/29000, filed Sep. 15, 2003, is hereby incorporated by reference.
- The present invention relates to aggregating integrated circuits and, in particular, to stacking integrated circuits in chip-scale packages.
- A variety of techniques are used to stack packaged integrated circuits. Some methods require special packages, while other techniques stack conventional packages.
- The predominant package configuration employed during the past decade has encapsulated an integrated circuit (IC) in a plastic surround typically having a rectangular configuration. The enveloped integrated circuit is connected to the application environment through leads emergent from the edge periphery of the plastic encapsulation. Such “leaded packages” have been the constituent elements most commonly employed by techniques for stacking packaged integrated circuits.
- Leaded packages play an important role in electronics, but efforts to miniaturize electronic components and assemblies have driven development of technologies that preserve circuit board surface area. Because leaded packages have leads emergent from peripheral sides of the package, leaded packages occupy more than a minimal amount of circuit board surface area. Consequently, alternatives to leaded packages known as chip scale packaging or “CSP” have recently gained market share.
- CSP refers generally to packages that provide connection to an integrated circuit through a set of contacts (often embodied as “bumps” or “balls”) arrayed across a major surface of the package. Instead of leads emergent from a peripheral side of the package, contacts are placed on a major surface and typically emerge from the planar bottom surface of the package. The absence of “leads” on package sides renders most stacking techniques devised for leaded packages inapplicable for CSP stacking.
- A variety of previous techniques for stacking CSPs typically present complex structural arrangements and thermal or high frequency performance issues. For example, thermal performance is a characteristic of importance in CSP stacks.
- What is needed, therefore, is a technique and system for stacking CSPs that provides a thermally efficient, reliable structure that performs well at higher frequencies but does not add excessive height to the stack yet allows production at reasonable cost with readily understood and managed materials and methods.
- The present invention stacks chip scale-packaged integrated circuits (CSPs) into modules that conserve PWB or other board surface area. Although the present invention is applied most frequently to chip scale packages that contain one die, it may be employed with chip scale packages that include more than one integrated circuit die. Multiple numbers of CSPs may be stacked in accordance with the present invention. The CSPs employed in stacked modules devised in accordance with the present invention are connected with flex circuitry. That flex circuitry may exhibit one or two or more conductive layers.
- In the present invention, at least one form standard is employed to provide a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design. In a preferred embodiment, the form standard will be devised of heat transference material, a metal, for example, such as copper would be preferred, to improve thermal performance.
- In constructing modules in accordance with some preferred modes of the invention, CSP contacts are reduced in height to create lower profile modules. With some of the preferred methods of the present invention, the compressed contacts mix with solder paste and set beneficially as lower diameter contacts. This creates low profile embodiments of the modules of the present invention.
-
FIG. 1 is an elevation view of a high-density circuit module devised in accordance with a preferred two-high embodiment of the present invention. -
FIG. 2 depicts, in enlarged view, the area marked “A” inFIG. 1 . -
FIG. 3A depicts a part of an exemplar CSP before its incorporation into a module or unit of the present invention. -
FIG. 3B depicts a part of an exemplar CSP after one of its contacts has been reduced in height according to a preferred mode of the present invention. -
FIG. 4 depicts a preferred construction method that may be employed in making a high-density module devised in accordance with a preferred embodiment of the present invention. -
FIG. 5 depicts a preferred construction method that may be employed in making a high-density module devised in accordance with a preferred embodiment of the present invention. -
FIG. 6 depicts a unit that may be employed in a module devised in accordance with a preferred embodiment of the present invention. -
FIG. 1 shows a two-high module 10 devised in accordance with a preferred embodiment of the invention.FIG. 1 has an area marked “A” that is subsequently shown in enlarged depiction inFIG. 2 .Module 10 is comprised of two CSPs: CSP 16 and CSP 18. Each of the CSPs has an upper surface 20 and alower surface 22 and oppositelateral edges same module 10. For example, one of the constituent CSPs may be a typical CSP havinglateral edges same module 10 may be devised in packages that havelateral edges - The term CSP should be broadly considered in the context of this application. Collectively, these will be known herein as chip scale packaged integrated circuits (CSPs) and preferred embodiments will be described in terms of CSPs, but the particular configurations used in the explanatory figures are not, however, to be construed as limiting. For example, the elevation views are depicted with CSPs of a particular profile known to those in the art, but it should be understood that the figures are exemplary only. The invention may be employed to advantage in the wide range of CSP configurations available in the art where an array of connective elements is available from at least one major surface. The invention is advantageously employed with CSPs that contain memory circuits, but may be employed to advantage with logic and computing circuits where added capacity without commensurate PWB or other board surface area consumption is desired.
- Typical CSPs, such as, for example, ball-grid-array (“BGA”), micro-ball-grid array, and fine-pitch ball grid array (“FBGA”) packages have an array of connective contacts embodied, for example, as leads, bumps, solder balls, or balls that extend from
lower surface 22 of a plastic casing in any of several patterns and pitches. An external portion of the connective contacts is often finished with a ball of solder. Shown inFIG. 1 arecontacts 28 alonglower surfaces 22 of the illustratedconstituent CSPs Contacts 28 provide connection to the integrated circuit or circuits within the respective packages. - In
FIG. 1 , flex circuitry (“flex”, “flex circuits” or “flexible circuit structures”) is shown connectingconstituent CSPs flex circuits - A
first form standard 34 is shown disposed adjacent to upper surface 20 ofCSP 18. A second form standard is also shown associated withCSP 16. Form standard 34 may be fixed to upper surface 20 of the respective CSP with an adhesive 36 which preferably is thermally conductive. Form standard 34 may also, in alternative embodiments, merely lay on upper surface 20 or be separated from upper surface 20 by an air gap or medium such as a thermal slug or non-thermal layer. A form standard may be employed on each CSP inmodule 10 for heat extraction enhancement as shown in the depiction ofFIG. 1 which is a preferred mode for the present invention where heat extraction is a high priority. In other embodiments, form standard 34 may be inverted relative to the corresponding CSP so that, for example, it would be opened over the upper surface 20 ofCSP 18. - Form standard 34 is, in a preferred embodiment, devised from copper to create, as shown in the depicted preferred embodiment of
FIG. 1 , a mandrel that mitigates thermal accumulation while providing a standard sized form about which flex circuitry is disposed. Form standard 34 may also be devised from nickel plated copper in preferred embodiments. Form standard 34 may take other shapes and forms such as, for example, an angular “cap” that rests upon the respective CSP body. It also need not be thermally enhancing although such attributes are preferable. Theform standard 34 allows the invention to be employed with CSPs of varying sizes, while articulating a single set of connective structures useable with the varying sizes of CSPs. Thus, a single set of connective structures such asflex circuits 30 and 32 (or a single flexible circuit in the mode where a single flex is used in place of theflex circuit pair FIG. 5 ) may be devised and used with the form standard 34 method and/or systems disclosed herein to create stacked modules with CSPs having different sized packages. This will allow the same flex circuitry set design to be employed to create iterations of a stackedmodule 10 from constituent CSPs having a first arbitrary dimension X across attribute Y (where Y may be, for example, package width), as well asmodules 10 from constituent CSPs having a second arbitrary dimension X prime across that same attribute Y. Thus, CSPs of different sizes may be stacked intomodules 10 with the same set of connective structures (i.e., flex circuitry). Further, as those of skill will recognize, mixed sizes of CSPs may be implemented into thesame module 10, such as would be useful to implement embodiments of a system-on-a-stack such as those disclosed in co-pending application PCT/US03/29000, filed Sep. 15, 2003, which is incorporated by reference and commonly owned by the assignee of the present application. - In one preferred embodiment, portions of
flex circuits bonds 35 which are, in some preferred modes, metallurgical bonds created by placing on form standard 34, a first metal layer such as tin, for example, which, when melted, combines with a second metal that was placed on the flex circuitry or is part of the flex circuitry (such as the gold plating on a conductive layer of the flex) to form a higher melting point intermetallic bond that will not remelt during subsequent reflow operations as will be described further. -
FIG. 2 depicts in enlarged view, the area marked “A” inFIG. 1 .FIG. 2 illustrates in a preferred embodiment, an arrangement of aform standard 34 and its relation to flexcircuitry 32 in a two-high module 10 that employs a form standard 34 with each ofCSPs flex circuitry 32 are not shown in this figure. Shown in greater detail than inFIG. 1 , arebonds 35 that will be described with reference to later Figs. Also shown inFIG. 2 is an application of adhesive 36 betweenform standards 34 andCSPs CSP 16 and theflex circuitry 32.Adhesive 33 will preferably be thermally conductive. - Although those of skill will recognize that the Figs. are not drawn to scale, the
contacts 28 ofCSPs lower surface 22 of the corresponding CSP.FIG. 3A depicts acontact 28 ofCSP 18 before thatcontact 28 has undergone the step of height reduction described further subsequently. As shown, contact 28 rises a height Dx abovesurface 22 ofCSP 18.FIG. 3B depictscontact 28 after the step of height reduction described further subsequently. InFIG. 3B , the height reduction was conducted before attachment of a form standard 34 toCSP 18. As is later explained, height reduction ofcontacts 28 may occur either before or after attachment of a form standard 34 toCSP 18. As shown, contact 28 rises a height Dc abovesurface 22 ofCSP 18. With reference toFIG. 2 , in some embodiments,contacts 28 may rise a height D1 above saidsurface 22 after incorporation ofCSP 18 intomodule 10 or later shown unit 39 (FIG. 6 .). Height D1 is greater than the height Dc such contacts exhibit after the step of contact height reduction, but before attachment of flex circuitry as shown inFIGS. 3B, 4 , and 5. Even so, in preferred embodiments, height D1 ofcontacts 28 afterCSP 18 is incorporated in a module 10 (such as shown inFIG. 2 ) or unit 39 (such as shown inFIG. 6 ) is less than height Dx which is the height abovesurface 22 exhibit by aCSP contact 28 before incorporation ofCSP 18 into either a unit 39 (shown inFIG. 6 ) ormodule 10 and before contact height reduction according to preferred modes of the present invention. As shown inFIG. 2 ,module contacts 38 rise a height of Dm fromflex circuit 32 and, in preferred embodiments ofmodule 10, D1 is less than Dm. - With reference to
FIG. 4 ,combination 37 is depicted as consisting of form standard 34 attached toCSP 18 which, when attached to flex circuitry, is adapted to be employed inmodule 10. The attachment of form standard 34 toCSP 18 may be realized with adhesive depicted byreference 36 which is preferably a film adhesive that is applied by heat tacking either to form standard 34 orCSP 18. A variety of other methods may be used to adhere form standard 34 toCSP 18 and in some embodiments, no adhesion may be used - As further depicted in
FIG. 4 ,flex circuits combination 37 by the application ofsolder paste 41 at sites that correspond tocontacts 28 ofCSP 18 to be connected to the flex circuitry. Also shown are glue applications indicated by references 43 which are, when glue is employed to attach form standard 34 to the flex circuitry, preferably liquid glue. - As shown in this embodiment,
contacts 28 ofCSP 18 have height Dc which is less than height D1 shown in earlierFIG. 2 . The depictedcontacts 28 ofCSP 18 are reduced in height by compression or other means of height reduction before attachment ofcombination 37 to the flex circuitry. This compression may be done before or after attachment of form standard 34 andCSP 18 with after-attachment compression being preferred.Contacts 28 may be reduced in height while in a solid or semi-solid state. Unless reduced in height,contacts 28 onCSP 18 tend to “sit-up” onsolder paste sites 41 during creation ofmodule 10. This causes the glue line between the flex circuitry and form standard 34 to be thicker than may be desired. The glue reaches to fill the gap between the flex and form standard 34 that results from the distancing of the attached form standard 34 from the flex by thecontacts 28 “sitting” upon thesolder paste sites 41. - With a thicker glue line between flex and form standard 34, upon reflowing, the solder in
contacts 28 mixes withsolder paste 41 and reaches to span the space betweenCSP 18 and the flex circuitry which is now a fixed distance away fromCSP 18. This results in a larger vertical dimension forcontact 28 than is necessary due to the higher glue line and, consequently, amodule 10 with a taller profile. The higher glue line was created by not reducing the contact diameters before attachment of the flex circuitry to the form standard 34 (or the form standard part of combination 37). With the preferred methods of the present invention, however, upon reflow, thecompressed contacts 28 mix withsolder paste 41 and set beneficially aslower diameter contacts 28. The resultingunit combining combination 37 with flex circuitry may then be employed to create low profile embodiment ofmodule 10. -
FIG. 5 depicts a preferred alternative and additional method to reducemodule 10 height while providing astable bond 35 between form standard 34 and the flex circuitry. Thepreferable bonds 35 that were earlier shown inFIG. 1 may be created by the following technique. As shown inFIG. 5 , a first metallic material indicated byreference 47 has been layered on, or appended or plated to form standard 34. A second metallic material represented byreference 49 onflex circuit 30 is provided by, for example, applying a thin layer of metal to flexcircuit 30 or, by exposing part of a conductive layer of the flex circuit. When form standard 34 is brought into proximity with the flex circuitry, and localized heating is applied to the area where the first andsecond metals intermetallic bond 35 is created. A preferredmetallic material 47 would be a thin layer of tin applied to create a layer about 0.0005″. When melted to combine with the gold of a conductive layer of flex circuitry exposed at that, for example, site, the resultingintermetallic bond 35 will have a higher melting point resulting in the additional advantage of not re-melting during subsequent re-flow operations at particular temperatures. - A variety of methods may be used to provide the localized heating appropriate to implement the metallic bonding described here including localized heat application with which many in the art are familiar as well as ultrasonic bonding methods where the patterns in the flex circuitry are not exposed to the vibration inherent in such methods and the metals chosen to implement the bonds have melting points within the range achieved by the ultrasonic method.
-
FIG. 6 depictsunit 39 comprised fromflex circuitry 31 which, in this depicted embodiment, is a single flex circuit, and form standard 34 andCSP 18. Heat is shown as being applied to area 50 where the firstmetallic material 47 and secondmetallic material 49 were made adjacent by bringingcombination 37 andflex circuitry 31 together. - The creation of intermetallic bonds may also be employed to
bond combination 37 to flex circuitry along other sites where form standard 34 and flex circuitry are adjacent such as, for example, on sites or continuously along the top side of form standard where typically glue is otherwise applied to further fasten flex circuitry to form standard 34. The intermetallic bonding described here may be employed alone or with other methods such as the contact compression techniques described herein to create instances ofmodule 10 that present a low profile. - In a preferred embodiment,
flex circuits - Preferably, the conductive layers are metal such as alloy 110 and as those of skill will know, often have conductive areas plated with gold. The use of plural conductive layers provides advantages and the creation of a distributed capacitance across
module 10 intended to reduce noise or bounce effects that can, particularly at higher frequencies, degrade signal integrity, as those of skill in the art will recognize.Module 10 ofFIG. 1 hasplural module contacts 38. In embodiments wheremodule 10 includes more than two IC's, there may be found connections between flex circuits which are typically balls but may be low profile contacts constructed with pads and/or rings that are connected with solder paste applications to appropriate connections. Appropriate fills can provide added structural stability and coplanarity where desired and, depending upon the fill, can improve thermal performance. - Although the present invention has been described in detail, it will be apparent to those skilled in the art that the invention may be embodied in a variety of specific forms and that various changes, substitutions and alterations can be made without departing from the spirit and scope of the invention. The described embodiments are only illustrative and not restrictive and the scope of the invention is, therefore, indicated by the following claims.
Claims (12)
1-20. (canceled)
21. A high-density circuit module comprising:
a first CSP having a planar surface rising from which are contacts, the contacts rising from the planar surface by a height D1;
a second CSP disposed above the first CSP in stacked disposition;
a first form standard disposed, in substantial part, above the first CSP;
flex circuitry connecting the first and second CSPs;
at least one metallic bond attaching the flex circuitry and the first form standard; and
module contacts, the module contacts extending from the flex circuit by a height Dm, where Dm is greater than D1.
22. The high-density circuit module of claim 21 further comprising a second form standard.
23. The high-density circuit module of claim 22 in which the flex circuitry is comprised of a first flex circuit and a second flex circuit which are each attached to the first form standard with at least one metallic bond.
24. The high-density circuit module of claim 21 in which the metallic bond comprises tin and gold.
25. The high-density circuit module of claim 21 in which the metallic bond is created by combining a first metallic material applied to the first form standard and a second metallic material from which the flex circuitry is comprised.
26. A high-density circuit module comprising:
a first CSP;
a second CSP stacked above the first CSP;
a first form standard associated with the first CSP;
a second form standard associated with the second CSP; and
flex circuitry connecting the first and second CSPs, the flex circuitry being attached to the first form standard and comprising at least two conductive layers.
27. The high-density circuit module of claim 26 in which the attachment of the flex circuitry to the first form standard is with at least one metallic bond.
28. The high-density module of claim 27 in which the at least one metallic bond is comprised of a first metallic material and a second metallic material wherein the first metallic material is comprised of tin.
29. The high-density module of claim 27 in which the flex circuitry is comprised of a first flex circuit and a second flex circuit and each of the first and second flex circuits is attached to the first form standard with at least one metallic bond.
30. The high-density module of claim 26 in which the flex circuitry is attached to the first form standard with adhesive.
31. (canceled)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/175,562 US20050242423A1 (en) | 2001-10-26 | 2005-07-05 | Stacked module systems and methods |
US11/867,534 US7572671B2 (en) | 2001-10-26 | 2007-10-04 | Stacked module systems and methods |
US12/538,720 US20090298230A1 (en) | 2001-10-26 | 2009-08-10 | Stacked Module Systems and Methods |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/005,581 US6576992B1 (en) | 2001-10-26 | 2001-10-26 | Chip scale stacking system and method |
US10/453,398 US6914324B2 (en) | 2001-10-26 | 2003-06-03 | Memory expansion and chip scale stacking system and method |
US10/836,855 US7371609B2 (en) | 2001-10-26 | 2004-04-30 | Stacked module systems and methods |
US11/175,562 US20050242423A1 (en) | 2001-10-26 | 2005-07-05 | Stacked module systems and methods |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/836,855 Division US7371609B2 (en) | 2001-10-26 | 2004-04-30 | Stacked module systems and methods |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/867,534 Continuation US7572671B2 (en) | 2001-10-26 | 2007-10-04 | Stacked module systems and methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050242423A1 true US20050242423A1 (en) | 2005-11-03 |
Family
ID=35394816
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/836,855 Expired - Lifetime US7371609B2 (en) | 2001-10-26 | 2004-04-30 | Stacked module systems and methods |
US11/175,562 Abandoned US20050242423A1 (en) | 2001-10-26 | 2005-07-05 | Stacked module systems and methods |
US11/867,534 Expired - Lifetime US7572671B2 (en) | 2001-10-26 | 2007-10-04 | Stacked module systems and methods |
US12/538,720 Abandoned US20090298230A1 (en) | 2001-10-26 | 2009-08-10 | Stacked Module Systems and Methods |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/836,855 Expired - Lifetime US7371609B2 (en) | 2001-10-26 | 2004-04-30 | Stacked module systems and methods |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/867,534 Expired - Lifetime US7572671B2 (en) | 2001-10-26 | 2007-10-04 | Stacked module systems and methods |
US12/538,720 Abandoned US20090298230A1 (en) | 2001-10-26 | 2009-08-10 | Stacked Module Systems and Methods |
Country Status (6)
Country | Link |
---|---|
US (4) | US7371609B2 (en) |
EP (1) | EP1741134A4 (en) |
JP (1) | JP2007535818A (en) |
KR (1) | KR20070013310A (en) |
CN (1) | CN1977375A (en) |
WO (1) | WO2005112100A2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060049512A1 (en) * | 2004-09-03 | 2006-03-09 | Staktek Group L.P. | Thin module system and method with skew reduction |
US20060090102A1 (en) * | 2004-09-03 | 2006-04-27 | Wehrly James D Jr | Circuit module with thermal casing systems and methods |
US20060091529A1 (en) * | 2004-09-03 | 2006-05-04 | Staktek Group L.P. | High capacity thin module system and method |
US20060129888A1 (en) * | 2004-09-03 | 2006-06-15 | Staktek Group L.P. | Circuit module turbulence enhacement systems and methods |
US7442050B1 (en) | 2005-08-29 | 2008-10-28 | Netlist, Inc. | Circuit card with flexible connection for memory module with heat spreader |
US20080316728A1 (en) * | 2006-08-28 | 2008-12-25 | Micron Technology, Inc. | Metal core foldover package structures |
US7619893B1 (en) | 2006-02-17 | 2009-11-17 | Netlist, Inc. | Heat spreader for electronic modules |
US7630202B2 (en) | 2004-04-09 | 2009-12-08 | Netlist, Inc. | High density module having at least two substrates and at least one thermally conductive layer therebetween |
US7760513B2 (en) | 2004-09-03 | 2010-07-20 | Entorian Technologies Lp | Modified core for circuit module system and method |
US7768796B2 (en) | 2004-09-03 | 2010-08-03 | Entorian Technologies L.P. | Die module system |
US8018723B1 (en) | 2008-04-30 | 2011-09-13 | Netlist, Inc. | Heat dissipation for electronic modules |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7656678B2 (en) | 2001-10-26 | 2010-02-02 | Entorian Technologies, Lp | Stacked module systems |
US7371609B2 (en) * | 2001-10-26 | 2008-05-13 | Staktek Group L.P. | Stacked module systems and methods |
WO2006088270A1 (en) * | 2005-02-15 | 2006-08-24 | Unisemicon Co., Ltd. | Stacked package and method of fabricating the same |
JP2007194436A (en) * | 2006-01-19 | 2007-08-02 | Elpida Memory Inc | Semiconductor package and manufacturing method thereof, substrate with conductive post, and laminated semiconductor device and manufacturing method thereof |
US20090194856A1 (en) * | 2008-02-06 | 2009-08-06 | Gomez Jocel P | Molded package assembly |
US8697457B1 (en) | 2011-06-22 | 2014-04-15 | Bae Systems Information And Electronic Systems Integration Inc. | Devices and methods for stacking individually tested devices to form multi-chip electronic modules |
DE102014107729B4 (en) * | 2014-06-02 | 2022-05-12 | Infineon Technologies Ag | Three-dimensional stack of a leaded package and an electronic element and method of making such a stack |
Citations (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3372310A (en) * | 1965-04-30 | 1968-03-05 | Radiation Inc | Universal modular packages for integrated circuits |
US3718842A (en) * | 1972-04-21 | 1973-02-27 | Texas Instruments Inc | Liquid crystal display mounting structure |
US4079511A (en) * | 1976-07-30 | 1978-03-21 | Amp Incorporated | Method for packaging hermetically sealed integrated circuit chips on lead frames |
US4244841A (en) * | 1980-03-24 | 1981-01-13 | Frankland Enterprises, Inc. | Method for recycling rubber and recycled rubber product |
US4429349A (en) * | 1980-09-30 | 1984-01-31 | Burroughs Corporation | Coil connector |
US4437235A (en) * | 1980-12-29 | 1984-03-20 | Honeywell Information Systems Inc. | Integrated circuit package |
US4567543A (en) * | 1983-02-15 | 1986-01-28 | Motorola, Inc. | Double-sided flexible electronic circuit module |
US4645944A (en) * | 1983-09-05 | 1987-02-24 | Matsushita Electric Industrial Co., Ltd. | MOS register for selecting among various data inputs |
US4722691A (en) * | 1986-02-03 | 1988-02-02 | General Motors Corporation | Header assembly for a printed circuit board |
US4724611A (en) * | 1985-08-23 | 1988-02-16 | Nec Corporation | Method for producing semiconductor module |
US4727513A (en) * | 1983-09-02 | 1988-02-23 | Wang Laboratories, Inc. | Signal in-line memory module |
US4733461A (en) * | 1984-12-28 | 1988-03-29 | Micro Co., Ltd. | Method of stacking printed circuit boards |
US4891789A (en) * | 1988-03-03 | 1990-01-02 | Bull Hn Information Systems, Inc. | Surface mounted multilayer memory printed circuit board |
US4911643A (en) * | 1988-10-11 | 1990-03-27 | Beta Phase, Inc. | High density and high signal integrity connector |
US4982265A (en) * | 1987-06-24 | 1991-01-01 | Hitachi, Ltd. | Semiconductor integrated circuit device and method of manufacturing the same |
US4983533A (en) * | 1987-10-28 | 1991-01-08 | Irvine Sensors Corporation | High-density electronic modules - process and product |
US4985703A (en) * | 1988-02-03 | 1991-01-15 | Nec Corporation | Analog multiplexer |
US4992849A (en) * | 1989-02-15 | 1991-02-12 | Micron Technology, Inc. | Directly bonded board multiple integrated circuit module |
US4992850A (en) * | 1989-02-15 | 1991-02-12 | Micron Technology, Inc. | Directly bonded simm module |
US5081067A (en) * | 1989-02-10 | 1992-01-14 | Fujitsu Limited | Ceramic package type semiconductor device and method of assembling the same |
US5099393A (en) * | 1991-03-25 | 1992-03-24 | International Business Machines Corporation | Electronic package for high density applications |
US5191404A (en) * | 1989-12-20 | 1993-03-02 | Digital Equipment Corporation | High density memory array packaging |
US5198888A (en) * | 1987-12-28 | 1993-03-30 | Hitachi, Ltd. | Semiconductor stacked device |
US5198965A (en) * | 1991-12-18 | 1993-03-30 | International Business Machines Corporation | Free form packaging of specific functions within a computer system |
US5276418A (en) * | 1988-11-16 | 1994-01-04 | Motorola, Inc. | Flexible substrate electronic assembly |
US5279029A (en) * | 1990-08-01 | 1994-01-18 | Staktek Corporation | Ultra high density integrated circuit packages method |
US5281852A (en) * | 1991-12-10 | 1994-01-25 | Normington Peter J C | Semiconductor device including stacked die |
US5289062A (en) * | 1991-03-18 | 1994-02-22 | Quality Semiconductor, Inc. | Fast transmission gate switch |
US5386341A (en) * | 1993-11-01 | 1995-01-31 | Motorola, Inc. | Flexible substrate folded in a U-shape with a rigidizer plate located in the notch of the U-shape |
US5394010A (en) * | 1991-03-13 | 1995-02-28 | Kabushiki Kaisha Toshiba | Semiconductor assembly having laminated semiconductor devices |
US5394303A (en) * | 1992-09-11 | 1995-02-28 | Kabushiki Kaisha Toshiba | Semiconductor device |
US5394300A (en) * | 1992-09-04 | 1995-02-28 | Mitsubishi Denki Kabushiki Kaisha | Thin multilayered IC memory card |
US5397916A (en) * | 1991-12-10 | 1995-03-14 | Normington; Peter J. C. | Semiconductor device including stacked die |
US5400003A (en) * | 1992-08-19 | 1995-03-21 | Micron Technology, Inc. | Inherently impedance matched integrated circuit module |
US5402006A (en) * | 1992-11-10 | 1995-03-28 | Texas Instruments Incorporated | Semiconductor device with enhanced adhesion between heat spreader and leads and plastic mold compound |
US5484959A (en) * | 1992-12-11 | 1996-01-16 | Staktek Corporation | High density lead-on-package fabrication method and apparatus |
US5491612A (en) * | 1995-02-21 | 1996-02-13 | Fairchild Space And Defense Corporation | Three-dimensional modular assembly of integrated circuits |
US5493476A (en) * | 1994-03-07 | 1996-02-20 | Staktek Corporation | Bus communication system for stacked high density integrated circuit packages with bifurcated distal lead ends |
US5499160A (en) * | 1990-08-01 | 1996-03-12 | Staktek Corporation | High density integrated circuit module with snap-on rail assemblies |
US5502333A (en) * | 1994-03-30 | 1996-03-26 | International Business Machines Corporation | Semiconductor stack structures and fabrication/sparing methods utilizing programmable spare circuit |
US5592364A (en) * | 1995-01-24 | 1997-01-07 | Staktek Corporation | High density integrated circuit module with complex electrical interconnect rails |
US5594275A (en) * | 1993-11-18 | 1997-01-14 | Samsung Electronics Co., Ltd. | J-leaded semiconductor package having a plurality of stacked ball grid array packages |
US5600178A (en) * | 1993-10-08 | 1997-02-04 | Texas Instruments Incorporated | Semiconductor package having interdigitated leads |
US5612570A (en) * | 1995-04-13 | 1997-03-18 | Dense-Pac Microsystems, Inc. | Chip stack and method of making same |
US5708297A (en) * | 1992-09-16 | 1998-01-13 | Clayton; James E. | Thin multichip module |
US5714802A (en) * | 1991-06-18 | 1998-02-03 | Micron Technology, Inc. | High-density electronic module |
US5729894A (en) * | 1992-07-21 | 1998-03-24 | Lsi Logic Corporation | Method of assembling ball bump grid array semiconductor packages |
US5869353A (en) * | 1997-11-17 | 1999-02-09 | Dense-Pac Microsystems, Inc. | Modular panel stacking process |
US6014316A (en) * | 1997-06-13 | 2000-01-11 | Irvine Sensors Corporation | IC stack utilizing BGA contacts |
US6021048A (en) * | 1998-02-17 | 2000-02-01 | Smith; Gary W. | High speed memory module |
US6025642A (en) * | 1995-08-17 | 2000-02-15 | Staktek Corporation | Ultra high density integrated circuit packages |
US6028365A (en) * | 1998-03-30 | 2000-02-22 | Micron Technology, Inc. | Integrated circuit package and method of fabrication |
US6028352A (en) * | 1997-06-13 | 2000-02-22 | Irvine Sensors Corporation | IC stack utilizing secondary leadframes |
US6034878A (en) * | 1996-12-16 | 2000-03-07 | Hitachi, Ltd. | Source-clock-synchronized memory system and memory unit |
US6038132A (en) * | 1996-12-06 | 2000-03-14 | Mitsubishi Denki Kabushiki Kaisha | Memory module |
US6040624A (en) * | 1997-10-02 | 2000-03-21 | Motorola, Inc. | Semiconductor device package and method |
US6172874B1 (en) * | 1998-04-06 | 2001-01-09 | Silicon Graphics, Inc. | System for stacking of integrated circuit packages |
US6178093B1 (en) * | 1996-06-28 | 2001-01-23 | International Business Machines Corporation | Information handling system with circuit assembly having holes filled with filler material |
US6180881B1 (en) * | 1998-05-05 | 2001-01-30 | Harlan Ruben Isaak | Chip stack and method of making same |
US6187652B1 (en) * | 1998-09-14 | 2001-02-13 | Fujitsu Limited | Method of fabrication of multiple-layer high density substrate |
US6208546B1 (en) * | 1996-11-12 | 2001-03-27 | Niigata Seimitsu Co., Ltd. | Memory module |
US6208521B1 (en) * | 1997-05-19 | 2001-03-27 | Nitto Denko Corporation | Film carrier and laminate type mounting structure using same |
US6205654B1 (en) * | 1992-12-11 | 2001-03-27 | Staktek Group L.P. | Method of manufacturing a surface mount package |
US20020001216A1 (en) * | 1996-02-26 | 2002-01-03 | Toshio Sugano | Semiconductor device and process for manufacturing the same |
US6336262B1 (en) * | 1996-10-31 | 2002-01-08 | International Business Machines Corporation | Process of forming a capacitor with multi-level interconnection technology |
US20020006032A1 (en) * | 2000-05-23 | 2002-01-17 | Chris Karabatsos | Low-profile registered DIMM |
US6343020B1 (en) * | 1998-12-28 | 2002-01-29 | Foxconn Precision Components Co., Ltd. | Memory module |
US6347394B1 (en) * | 1998-11-04 | 2002-02-12 | Micron Technology, Inc. | Buffering circuit embedded in an integrated circuit device module used for buffering clocks and other input signals |
US6349050B1 (en) * | 2000-10-10 | 2002-02-19 | Rambus, Inc. | Methods and systems for reducing heat flux in memory systems |
US6351029B1 (en) * | 1999-05-05 | 2002-02-26 | Harlan R. Isaak | Stackable flex circuit chip package and method of making same |
US20020030995A1 (en) * | 2000-08-07 | 2002-03-14 | Masao Shoji | Headlight |
US6360433B1 (en) * | 1999-04-23 | 2002-03-26 | Andrew C. Ross | Universal package and method of forming the same |
US20030002262A1 (en) * | 2001-07-02 | 2003-01-02 | Martin Benisek | Electronic printed circuit board having a plurality of identically designed, housing-encapsulated semiconductor memories |
US6509639B1 (en) * | 2001-07-27 | 2003-01-21 | Charles W. C. Lin | Three-dimensional stacked semiconductor package |
US20030016710A1 (en) * | 2001-07-19 | 2003-01-23 | Satoshi Komoto | Semiconductor laser device including light receiving element for receiving monitoring laser beam |
US6514793B2 (en) * | 1999-05-05 | 2003-02-04 | Dpac Technologies Corp. | Stackable flex circuit IC package and method of making same |
US20030026155A1 (en) * | 2001-08-01 | 2003-02-06 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory module and register buffer device for use in the same |
US20030035328A1 (en) * | 2001-08-08 | 2003-02-20 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device shiftable to test mode in module as well as semiconductor memory module using the same |
US6528870B2 (en) * | 2000-01-28 | 2003-03-04 | Kabushiki Kaisha Toshiba | Semiconductor device having a plurality of stacked wiring boards |
US20030045025A1 (en) * | 2000-01-26 | 2003-03-06 | Coyle Anthony L. | Method of fabricating a molded package for micromechanical devices |
US6531772B2 (en) * | 1996-10-08 | 2003-03-11 | Micron Technology, Inc. | Electronic system including memory module with redundant memory capability |
US20030049886A1 (en) * | 2001-09-07 | 2003-03-13 | Salmon Peter C. | Electronic system modules and method of fabrication |
US20040000708A1 (en) * | 2001-10-26 | 2004-01-01 | Staktek Group, L.P. | Memory expansion and chip scale stacking system and method |
US6677670B2 (en) * | 2000-04-25 | 2004-01-13 | Seiko Epson Corporation | Semiconductor device |
US20040012991A1 (en) * | 2002-07-18 | 2004-01-22 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory module |
US20040015945A1 (en) * | 2001-05-08 | 2004-01-22 | Pioneer Corporation | Upgrade method for navigation data and apparatus for saving user data |
US6683377B1 (en) * | 2000-05-30 | 2004-01-27 | Amkor Technology, Inc. | Multi-stacked memory package |
US20040021211A1 (en) * | 2002-08-05 | 2004-02-05 | Tessera, Inc. | Microelectronic adaptors, assemblies and methods |
US6690584B2 (en) * | 2000-08-14 | 2004-02-10 | Fujitsu Limited | Information-processing device having a crossbar-board connected to back panels on different sides |
US20040031972A1 (en) * | 2001-10-09 | 2004-02-19 | Tessera, Inc. | Stacked packages |
US6699730B2 (en) * | 1996-12-13 | 2004-03-02 | Tessers, Inc. | Stacked microelectronic assembly and method therefor |
US6839266B1 (en) * | 1999-09-14 | 2005-01-04 | Rambus Inc. | Memory module with offset data lines and bit line swizzle configuration |
US20050018495A1 (en) * | 2004-01-29 | 2005-01-27 | Netlist, Inc. | Arrangement of integrated circuits in a memory module |
US6849949B1 (en) * | 1999-09-27 | 2005-02-01 | Samsung Electronics Co., Ltd. | Thin stacked package |
US20050035440A1 (en) * | 2001-08-22 | 2005-02-17 | Tessera, Inc. | Stacked chip assembly with stiffening layer |
US20050040508A1 (en) * | 2003-08-22 | 2005-02-24 | Jong-Joo Lee | Area array type package stack and manufacturing method thereof |
Family Cites Families (152)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3411122A (en) | 1966-01-13 | 1968-11-12 | Ibm | Electrical resistance element and method of fabricating |
US3436604A (en) * | 1966-04-25 | 1969-04-01 | Texas Instruments Inc | Complex integrated circuit array and method for fabricating same |
US3654394A (en) * | 1969-07-08 | 1972-04-04 | Gordon Eng Co | Field effect transistor switch, particularly for multiplexing |
US3772776A (en) | 1969-12-03 | 1973-11-20 | Thomas & Betts Corp | Method of interconnecting memory plane boards |
US3727064A (en) * | 1971-03-17 | 1973-04-10 | Monsanto Co | Opto-isolator devices and method for the fabrication thereof |
US3746934A (en) | 1971-05-06 | 1973-07-17 | Siemens Ag | Stack arrangement of semiconductor chips |
US3766439A (en) | 1972-01-12 | 1973-10-16 | Gen Electric | Electronic module using flexible printed circuit board with heat sink means |
US3806767A (en) * | 1973-03-15 | 1974-04-23 | Tek Wave Inc | Interboard connector |
US3983547A (en) | 1974-06-27 | 1976-09-28 | International Business Machines - Ibm | Three-dimensional bubble device |
US4103318A (en) | 1977-05-06 | 1978-07-25 | Ford Motor Company | Electronic multichip module |
US4288841A (en) | 1979-09-20 | 1981-09-08 | Bell Telephone Laboratories, Incorporated | Double cavity semiconductor chip carrier |
US4381421A (en) * | 1980-07-01 | 1983-04-26 | Tektronix, Inc. | Electromagnetic shield for electronic equipment |
US4398235A (en) | 1980-09-11 | 1983-08-09 | General Motors Corporation | Vertical integrated circuit package integration |
JPS57181146A (en) | 1981-04-30 | 1982-11-08 | Hitachi Ltd | Resin-sealed semiconductor device |
US4513368A (en) * | 1981-05-22 | 1985-04-23 | Data General Corporation | Digital data processing system having object-based logical memory addressing and self-structuring modular memory |
US4406508A (en) | 1981-07-02 | 1983-09-27 | Thomas & Betts Corporation | Dual-in-line package assembly |
US4420794A (en) | 1981-09-10 | 1983-12-13 | Research, Incorporated | Integrated circuit switch |
US4712129A (en) | 1983-12-12 | 1987-12-08 | Texas Instruments Incorporated | Integrated circuit device with textured bar cover |
KR890004820B1 (en) | 1984-03-28 | 1989-11-27 | 인터내셔널 비지네스 머신즈 코포레이션 | Stacked double density memory module using industry standard memory chips |
US4587596A (en) | 1984-04-09 | 1986-05-06 | Amp Incorporated | High density mother/daughter circuit board connector |
EP0218796B1 (en) * | 1985-08-16 | 1990-10-31 | Dai-Ichi Seiko Co. Ltd. | Semiconductor device comprising a plug-in-type package |
US4696525A (en) | 1985-12-13 | 1987-09-29 | Amp Incorporated | Socket for stacking integrated circuit packages |
JPS62162891U (en) * | 1986-04-03 | 1987-10-16 | ||
US4763188A (en) | 1986-08-08 | 1988-08-09 | Thomas Johnson | Packaging system for multiple semiconductor devices |
US4839717A (en) | 1986-12-19 | 1989-06-13 | Fairchild Semiconductor Corporation | Ceramic package for high frequency semiconductor devices |
US4821007A (en) * | 1987-02-06 | 1989-04-11 | Tektronix, Inc. | Strip line circuit component and method of manufacture |
US5159535A (en) | 1987-03-11 | 1992-10-27 | International Business Machines Corporation | Method and apparatus for mounting a flexible film semiconductor chip carrier on a circuitized substrate |
US4862249A (en) | 1987-04-17 | 1989-08-29 | Xoc Devices, Inc. | Packaging system for stacking integrated circuits |
JPS6436215A (en) * | 1987-07-31 | 1989-02-07 | Toshiba Corp | Clamp circuit |
IT1214254B (en) | 1987-09-23 | 1990-01-10 | Sgs Microelettonica S P A | SEMICONDUCTOR DEVICE IN PLASTIC OR CERAMIC CONTAINER WITH "CHIPS" FIXED ON BOTH SIDES OF THE CENTRAL ISLAND OF THE "FRAME". |
US5016138A (en) | 1987-10-27 | 1991-05-14 | Woodman John K | Three dimensional integrated circuit package |
US4833568A (en) | 1988-01-29 | 1989-05-23 | Berhold G Mark | Three-dimensional circuit component assembly and method corresponding thereto |
US5138434A (en) | 1991-01-22 | 1992-08-11 | Micron Technology, Inc. | Packaging for semiconductor logic devices |
US4956694A (en) | 1988-11-04 | 1990-09-11 | Dense-Pac Microsystems, Inc. | Integrated circuit chip stacking |
DE69006609T2 (en) | 1989-03-15 | 1994-06-30 | Ngk Insulators Ltd | Ceramic lid for closing a semiconductor element and method for closing a semiconductor element in a ceramic package. |
JP2647194B2 (en) | 1989-04-17 | 1997-08-27 | 住友電気工業株式会社 | Semiconductor package sealing method |
US4953060A (en) | 1989-05-05 | 1990-08-28 | Ncr Corporation | Stackable integrated circuit chip package with improved heat removal |
US5104820A (en) * | 1989-07-07 | 1992-04-14 | Irvine Sensors Corporation | Method of fabricating electronic circuitry unit containing stacked IC layers having lead rerouting |
US5057903A (en) | 1989-07-17 | 1991-10-15 | Microelectronics And Computer Technology Corporation | Thermal heat sink encapsulated integrated circuit |
US5200362A (en) | 1989-09-06 | 1993-04-06 | Motorola, Inc. | Method of attaching conductive traces to an encapsulated semiconductor die using a removable transfer film |
US5068708A (en) | 1989-10-02 | 1991-11-26 | Advanced Micro Devices, Inc. | Ground plane for plastic encapsulated integrated circuit die packages |
US5012323A (en) * | 1989-11-20 | 1991-04-30 | Micron Technology, Inc. | Double-die semiconductor package having a back-bonded die and a face-bonded die interconnected on a single leadframe |
US5229641A (en) | 1989-11-25 | 1993-07-20 | Hitachi Maxell, Ltd. | Semiconductor card and manufacturing method therefor |
US5041902A (en) | 1989-12-14 | 1991-08-20 | Motorola, Inc. | Molded electronic package with compression structures |
JPH03227541A (en) | 1990-02-01 | 1991-10-08 | Hitachi Ltd | Semiconductor device |
US5083697A (en) * | 1990-02-14 | 1992-01-28 | Difrancesco Louis | Particle-enhanced joining of metal surfaces |
US5041015A (en) | 1990-03-30 | 1991-08-20 | Cal Flex, Inc. | Electrical jumper assembly |
US5345205A (en) | 1990-04-05 | 1994-09-06 | General Electric Company | Compact high density interconnected microwave system |
US5261068A (en) | 1990-05-25 | 1993-11-09 | Dell Usa L.P. | Dual path memory retrieval system for an interleaved dynamic RAM memory unit |
US5050039A (en) | 1990-06-26 | 1991-09-17 | Digital Equipment Corporation | Multiple circuit chip mounting and cooling arrangement |
US5377077A (en) | 1990-08-01 | 1994-12-27 | Staktek Corporation | Ultra high density integrated circuit packages method and apparatus |
US5148265A (en) | 1990-09-24 | 1992-09-15 | Ist Associates, Inc. | Semiconductor chip assemblies with fan-in leads |
JP3242101B2 (en) | 1990-10-05 | 2001-12-25 | 三菱電機株式会社 | Semiconductor integrated circuit |
JPH04162556A (en) | 1990-10-25 | 1992-06-08 | Mitsubishi Electric Corp | Lead frame and its manufacturing |
US5117282A (en) | 1990-10-29 | 1992-05-26 | Harris Corporation | Stacked configuration for integrated circuit devices |
US5289346A (en) * | 1991-02-26 | 1994-02-22 | Microelectronics And Computer Technology Corporation | Peripheral to area adapter with protective bumper for an integrated circuit chip |
US5219794A (en) | 1991-03-14 | 1993-06-15 | Hitachi, Ltd. | Semiconductor integrated circuit device and method of fabricating same |
US5158912A (en) | 1991-04-09 | 1992-10-27 | Digital Equipment Corporation | Integral heatsink semiconductor package |
US5138430A (en) | 1991-06-06 | 1992-08-11 | International Business Machines Corporation | High performance versatile thermally enhanced IC chip mounting |
JPH0513666A (en) | 1991-06-29 | 1993-01-22 | Sony Corp | Complex semiconductor device |
US5214307A (en) | 1991-07-08 | 1993-05-25 | Micron Technology, Inc. | Lead frame for semiconductor devices having improved adhesive bond line control |
US5311401A (en) | 1991-07-09 | 1994-05-10 | Hughes Aircraft Company | Stacked chip assembly and manufacturing method therefor |
US5252857A (en) | 1991-08-05 | 1993-10-12 | International Business Machines Corporation | Stacked DCA memory chips |
JP2967621B2 (en) | 1991-08-27 | 1999-10-25 | 日本電気株式会社 | Method of manufacturing package for semiconductor device |
US5168926A (en) | 1991-09-25 | 1992-12-08 | Intel Corporation | Heat sink design integrating interface material |
IT1252136B (en) * | 1991-11-29 | 1995-06-05 | St Microelectronics Srl | SEMICONDUCTOR DEVICE STRUCTURE WITH METALLIC DISSIPATOR AND PLASTIC BODY, WITH MEANS FOR AN ELECTRICAL CONNECTION TO THE HIGH RELIABILITY DISSIPATOR |
US5241454A (en) | 1992-01-22 | 1993-08-31 | International Business Machines Corporation | Mutlilayered flexible circuit package |
US5262927A (en) | 1992-02-07 | 1993-11-16 | Lsi Logic Corporation | Partially-molded, PCB chip carrier package |
US5224023A (en) | 1992-02-10 | 1993-06-29 | Smith Gary W | Foldable electronic assembly module |
US5243133A (en) | 1992-02-18 | 1993-09-07 | International Business Machines, Inc. | Ceramic chip carrier with lead frame or edge clip |
US5222014A (en) | 1992-03-02 | 1993-06-22 | Motorola, Inc. | Three-dimensional multi-chip pad array carrier |
US5229916A (en) | 1992-03-04 | 1993-07-20 | International Business Machines Corporation | Chip edge interconnect overlay element |
US5259770A (en) | 1992-03-19 | 1993-11-09 | Amp Incorporated | Impedance controlled elastomeric connector |
US5438224A (en) | 1992-04-23 | 1995-08-01 | Motorola, Inc. | Integrated circuit package having a face-to-face IC chip arrangement |
US5361228A (en) | 1992-04-30 | 1994-11-01 | Fuji Photo Film Co., Ltd. | IC memory card system having a common data and address bus |
US5247423A (en) | 1992-05-26 | 1993-09-21 | Motorola, Inc. | Stacking three dimensional leadless multi-chip module and method for making the same |
EP0597087B1 (en) * | 1992-06-02 | 1999-07-28 | Hewlett-Packard Company | Computer-aided design method for multilevel interconnect technologies |
US5343366A (en) | 1992-06-24 | 1994-08-30 | International Business Machines Corporation | Packages for stacked integrated circuit chip cubes |
US5804870A (en) * | 1992-06-26 | 1998-09-08 | Staktek Corporation | Hermetically sealed integrated circuit lead-on package configuration |
US5432630A (en) * | 1992-09-11 | 1995-07-11 | Motorola, Inc. | Optical bus with optical transceiver modules and method of manufacture |
US5313097A (en) | 1992-11-16 | 1994-05-17 | International Business Machines, Corp. | High density memory module |
US5375041A (en) | 1992-12-02 | 1994-12-20 | Intel Corporation | Ra-tab array bump tab tape based I.C. package |
US5347428A (en) | 1992-12-03 | 1994-09-13 | Irvine Sensors Corporation | Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip |
US5428190A (en) * | 1993-07-02 | 1995-06-27 | Sheldahl, Inc. | Rigid-flex board with anisotropic interconnect and method of manufacture |
US5384690A (en) * | 1993-07-27 | 1995-01-24 | International Business Machines Corporation | Flex laminate package for a parallel processor |
US5337388A (en) | 1993-08-03 | 1994-08-09 | International Business Machines Corporation | Matrix of pluggable connectors for connecting large numbers of clustered electrical and/or opticcal cables to a module |
US5396573A (en) * | 1993-08-03 | 1995-03-07 | International Business Machines Corporation | Pluggable connectors for connecting large numbers of electrical and/or optical cables to a module through a seal |
US5477082A (en) | 1994-01-11 | 1995-12-19 | Exponential Technology, Inc. | Bi-planar multi-chip module |
JPH07312469A (en) * | 1994-05-16 | 1995-11-28 | Nippon Mektron Ltd | Structure of bent part of multilayer flexible circuit board |
US5448511A (en) | 1994-06-01 | 1995-09-05 | Storage Technology Corporation | Memory stack with an integrated interconnect and mounting structure |
US5509197A (en) * | 1994-06-10 | 1996-04-23 | Xetel Corporation | Method of making substrate edge connector |
US5644839A (en) * | 1994-06-10 | 1997-07-08 | Xetel Corporation | Surface mountable substrate edge terminal |
US5523695A (en) * | 1994-08-26 | 1996-06-04 | Vlsi Technology, Inc. | Universal test socket for exposing the active surface of an integrated circuit in a die-down package |
JP2606177B2 (en) * | 1995-04-26 | 1997-04-30 | 日本電気株式会社 | Printed wiring board |
DE19516272A1 (en) * | 1995-05-08 | 1996-11-14 | Hermann Leguin | Primary element scanner for determining deflection of scanning pin or similar |
US5872051A (en) * | 1995-08-02 | 1999-02-16 | International Business Machines Corporation | Process for transferring material to semiconductor chip conductive pads using a transfer substrate |
JPH09139559A (en) * | 1995-11-13 | 1997-05-27 | Minolta Co Ltd | Connection structure of circuit board |
US6013948A (en) * | 1995-11-27 | 2000-01-11 | Micron Technology, Inc. | Stackable chip scale semiconductor package with mating contacts on opposed surfaces |
KR0184076B1 (en) * | 1995-11-28 | 1999-03-20 | 김광호 | Three-dimensional stacked package |
US5719440A (en) * | 1995-12-19 | 1998-02-17 | Micron Technology, Inc. | Flip chip adaptor package for bare die |
US5646446A (en) * | 1995-12-22 | 1997-07-08 | Fairchild Space And Defense Corporation | Three-dimensional flexible assembly of integrated circuits |
US5778522A (en) * | 1996-05-20 | 1998-07-14 | Staktek Corporation | Method of manufacturing a high density integrated circuit module with complex electrical interconnect rails having electrical interconnect strain relief |
US6247228B1 (en) * | 1996-08-12 | 2001-06-19 | Tessera, Inc. | Electrical connection with inwardly deformable contacts |
US6234820B1 (en) * | 1997-07-21 | 2001-05-22 | Rambus Inc. | Method and apparatus for joining printed circuit boards |
US6266252B1 (en) * | 1997-12-01 | 2001-07-24 | Chris Karabatsos | Apparatus and method for terminating a computer memory bus |
DE19754874A1 (en) * | 1997-12-10 | 1999-06-24 | Siemens Ag | Converting substrate with edge contacts into ball grid array |
US6186106B1 (en) * | 1997-12-29 | 2001-02-13 | Visteon Global Technologies, Inc. | Apparatus for routing electrical signals in an engine |
JP3097644B2 (en) * | 1998-01-06 | 2000-10-10 | 日本電気株式会社 | Semiconductor device connection structure and connection method |
US6233650B1 (en) * | 1998-04-01 | 2001-05-15 | Intel Corporation | Using FET switches for large memory arrays |
US6329709B1 (en) * | 1998-05-11 | 2001-12-11 | Micron Technology, Inc. | Interconnections for a semiconductor device |
US6300679B1 (en) * | 1998-06-01 | 2001-10-09 | Semiconductor Components Industries, Llc | Flexible substrate for packaging a semiconductor component |
US6239485B1 (en) * | 1998-11-13 | 2001-05-29 | Fujitsu Limited | Reduced cross-talk noise high density signal interposer with power and ground wrap |
US6360935B1 (en) * | 1999-01-26 | 2002-03-26 | Board Of Regents Of The University Of Texas System | Apparatus and method for assessing solderability |
US6965166B2 (en) * | 1999-02-24 | 2005-11-15 | Rohm Co., Ltd. | Semiconductor device of chip-on-chip structure |
JP3602000B2 (en) * | 1999-04-26 | 2004-12-15 | 沖電気工業株式会社 | Semiconductor device and semiconductor module |
JP2000353767A (en) * | 1999-05-14 | 2000-12-19 | Universal Instr Corp | Board for mounting electronic component, package, mounting method, and method for housing integrated circuit chip in package |
TW409377B (en) * | 1999-05-21 | 2000-10-21 | Siliconware Precision Industries Co Ltd | Small scale ball grid array package |
JP3526788B2 (en) * | 1999-07-01 | 2004-05-17 | 沖電気工業株式会社 | Method for manufacturing semiconductor device |
DE19933265A1 (en) * | 1999-07-15 | 2001-02-01 | Siemens Ag | TSOP memory chip package assembly |
US6267650B1 (en) * | 1999-08-09 | 2001-07-31 | Micron Technology, Inc. | Apparatus and methods for substantial planarization of solder bumps |
US6675469B1 (en) * | 1999-08-11 | 2004-01-13 | Tessera, Inc. | Vapor phase connection techniques |
US6689634B1 (en) * | 1999-09-22 | 2004-02-10 | Texas Instruments Incorporated | Modeling technique for selectively depopulating electrical contacts from a foot print of a grid array (BGA or LGA) package to increase device reliability |
US6867496B1 (en) * | 1999-10-01 | 2005-03-15 | Seiko Epson Corporation | Interconnect substrate, semiconductor device, methods of fabricating, inspecting, and mounting the semiconductor device, circuit board, and electronic instrument |
JP2001223323A (en) * | 2000-02-10 | 2001-08-17 | Mitsubishi Electric Corp | Semiconductor device |
JP2001250902A (en) * | 2000-03-08 | 2001-09-14 | Toshiba Corp | Semiconductor package and method of manufacturing the same |
US6522018B1 (en) * | 2000-05-16 | 2003-02-18 | Micron Technology, Inc. | Ball grid array chip packages having improved testing and stacking characteristics |
US6884653B2 (en) * | 2001-03-21 | 2005-04-26 | Micron Technology, Inc. | Folded interposer |
US6910268B2 (en) * | 2001-03-27 | 2005-06-28 | Formfactor, Inc. | Method for fabricating an IC interconnect system including an in-street integrated circuit wafer via |
US6707684B1 (en) * | 2001-04-02 | 2004-03-16 | Advanced Micro Devices, Inc. | Method and apparatus for direct connection between two integrated circuits via a connector |
US6588095B2 (en) * | 2001-04-27 | 2003-07-08 | Hewlett-Packard Development Company, Lp. | Method of processing a device by electrophoresis coating |
US6532162B2 (en) * | 2001-05-26 | 2003-03-11 | Intel Corporation | Reference plane of integrated circuit packages |
US6627984B2 (en) * | 2001-07-24 | 2003-09-30 | Dense-Pac Microsystems, Inc. | Chip stack with differing chip package types |
KR100429878B1 (en) * | 2001-09-10 | 2004-05-03 | 삼성전자주식회사 | Memory module and printed circuit board for the same |
JP2005506690A (en) * | 2001-10-09 | 2005-03-03 | テッセラ,インコーポレイテッド | Stacked package |
US20030234443A1 (en) * | 2001-10-26 | 2003-12-25 | Staktek Group, L.P. | Low profile stacking system and method |
US6576992B1 (en) * | 2001-10-26 | 2003-06-10 | Staktek Group L.P. | Chip scale stacking system and method |
US7371609B2 (en) * | 2001-10-26 | 2008-05-13 | Staktek Group L.P. | Stacked module systems and methods |
US7081373B2 (en) * | 2001-12-14 | 2006-07-25 | Staktek Group, L.P. | CSP chip stack with flex circuit |
US20030113998A1 (en) * | 2001-12-17 | 2003-06-19 | Ross Andrew C. | Flex tab for use in stacking packaged integrated circuit chips |
US6707148B1 (en) * | 2002-05-21 | 2004-03-16 | National Semiconductor Corporation | Bumped integrated circuits for optical applications |
TW565918B (en) * | 2002-07-03 | 2003-12-11 | United Test Ct Inc | Semiconductor package with heat sink |
JP3885711B2 (en) * | 2002-08-09 | 2007-02-28 | 株式会社デンソー | Air conditioning system |
AU2003265417A1 (en) * | 2002-08-16 | 2004-03-03 | Tessera, Inc. | Microelectronic packages with self-aligning features |
JP4085788B2 (en) * | 2002-08-30 | 2008-05-14 | 日本電気株式会社 | SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD, CIRCUIT BOARD, ELECTRONIC DEVICE |
US6737742B2 (en) * | 2002-09-11 | 2004-05-18 | International Business Machines Corporation | Stacked package for integrated circuits |
US7071547B2 (en) * | 2002-09-11 | 2006-07-04 | Tessera, Inc. | Assemblies having stacked semiconductor chips and methods of making same |
US6838761B2 (en) * | 2002-09-17 | 2005-01-04 | Chippac, Inc. | Semiconductor multi-package module having wire bond interconnect between stacked packages and having electrical shield |
US6869825B2 (en) * | 2002-12-31 | 2005-03-22 | Intel Corporation | Folded BGA package design with shortened communication paths and more electrical routing flexibility |
US6841855B2 (en) * | 2003-04-28 | 2005-01-11 | Intel Corporation | Electronic package having a flexible substrate with ends connected to one another |
DE10319984B4 (en) * | 2003-05-05 | 2009-09-03 | Qimonda Ag | Device for cooling memory modules |
US7078793B2 (en) * | 2003-08-29 | 2006-07-18 | Infineon Technologies Ag | Semiconductor memory module |
KR100575590B1 (en) * | 2003-12-17 | 2006-05-03 | 삼성전자주식회사 | Thermal emission type stack package and modules mounting the same |
-
2004
- 2004-04-30 US US10/836,855 patent/US7371609B2/en not_active Expired - Lifetime
-
2005
- 2005-04-19 EP EP05737564A patent/EP1741134A4/en not_active Withdrawn
- 2005-04-19 CN CNA200580021591XA patent/CN1977375A/en active Pending
- 2005-04-19 WO PCT/US2005/013336 patent/WO2005112100A2/en active Application Filing
- 2005-04-19 JP JP2007510797A patent/JP2007535818A/en active Pending
- 2005-04-19 KR KR1020067024339A patent/KR20070013310A/en not_active Application Discontinuation
- 2005-07-05 US US11/175,562 patent/US20050242423A1/en not_active Abandoned
-
2007
- 2007-10-04 US US11/867,534 patent/US7572671B2/en not_active Expired - Lifetime
-
2009
- 2009-08-10 US US12/538,720 patent/US20090298230A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3372310A (en) * | 1965-04-30 | 1968-03-05 | Radiation Inc | Universal modular packages for integrated circuits |
US3718842A (en) * | 1972-04-21 | 1973-02-27 | Texas Instruments Inc | Liquid crystal display mounting structure |
US4079511A (en) * | 1976-07-30 | 1978-03-21 | Amp Incorporated | Method for packaging hermetically sealed integrated circuit chips on lead frames |
US4244841A (en) * | 1980-03-24 | 1981-01-13 | Frankland Enterprises, Inc. | Method for recycling rubber and recycled rubber product |
US4429349A (en) * | 1980-09-30 | 1984-01-31 | Burroughs Corporation | Coil connector |
US4437235A (en) * | 1980-12-29 | 1984-03-20 | Honeywell Information Systems Inc. | Integrated circuit package |
US4567543A (en) * | 1983-02-15 | 1986-01-28 | Motorola, Inc. | Double-sided flexible electronic circuit module |
US4727513A (en) * | 1983-09-02 | 1988-02-23 | Wang Laboratories, Inc. | Signal in-line memory module |
US4645944A (en) * | 1983-09-05 | 1987-02-24 | Matsushita Electric Industrial Co., Ltd. | MOS register for selecting among various data inputs |
US4733461A (en) * | 1984-12-28 | 1988-03-29 | Micro Co., Ltd. | Method of stacking printed circuit boards |
US4724611A (en) * | 1985-08-23 | 1988-02-16 | Nec Corporation | Method for producing semiconductor module |
US4722691A (en) * | 1986-02-03 | 1988-02-02 | General Motors Corporation | Header assembly for a printed circuit board |
US4982265A (en) * | 1987-06-24 | 1991-01-01 | Hitachi, Ltd. | Semiconductor integrated circuit device and method of manufacturing the same |
US4983533A (en) * | 1987-10-28 | 1991-01-08 | Irvine Sensors Corporation | High-density electronic modules - process and product |
US5198888A (en) * | 1987-12-28 | 1993-03-30 | Hitachi, Ltd. | Semiconductor stacked device |
US4985703A (en) * | 1988-02-03 | 1991-01-15 | Nec Corporation | Analog multiplexer |
US4891789A (en) * | 1988-03-03 | 1990-01-02 | Bull Hn Information Systems, Inc. | Surface mounted multilayer memory printed circuit board |
US4911643A (en) * | 1988-10-11 | 1990-03-27 | Beta Phase, Inc. | High density and high signal integrity connector |
US5276418A (en) * | 1988-11-16 | 1994-01-04 | Motorola, Inc. | Flexible substrate electronic assembly |
US5081067A (en) * | 1989-02-10 | 1992-01-14 | Fujitsu Limited | Ceramic package type semiconductor device and method of assembling the same |
US4992849A (en) * | 1989-02-15 | 1991-02-12 | Micron Technology, Inc. | Directly bonded board multiple integrated circuit module |
US4992850A (en) * | 1989-02-15 | 1991-02-12 | Micron Technology, Inc. | Directly bonded simm module |
US5191404A (en) * | 1989-12-20 | 1993-03-02 | Digital Equipment Corporation | High density memory array packaging |
US5279029A (en) * | 1990-08-01 | 1994-01-18 | Staktek Corporation | Ultra high density integrated circuit packages method |
US5499160A (en) * | 1990-08-01 | 1996-03-12 | Staktek Corporation | High density integrated circuit module with snap-on rail assemblies |
US5394010A (en) * | 1991-03-13 | 1995-02-28 | Kabushiki Kaisha Toshiba | Semiconductor assembly having laminated semiconductor devices |
US5289062A (en) * | 1991-03-18 | 1994-02-22 | Quality Semiconductor, Inc. | Fast transmission gate switch |
US5099393A (en) * | 1991-03-25 | 1992-03-24 | International Business Machines Corporation | Electronic package for high density applications |
US5714802A (en) * | 1991-06-18 | 1998-02-03 | Micron Technology, Inc. | High-density electronic module |
US5397916A (en) * | 1991-12-10 | 1995-03-14 | Normington; Peter J. C. | Semiconductor device including stacked die |
US5281852A (en) * | 1991-12-10 | 1994-01-25 | Normington Peter J C | Semiconductor device including stacked die |
US5198965A (en) * | 1991-12-18 | 1993-03-30 | International Business Machines Corporation | Free form packaging of specific functions within a computer system |
US5729894A (en) * | 1992-07-21 | 1998-03-24 | Lsi Logic Corporation | Method of assembling ball bump grid array semiconductor packages |
US5400003A (en) * | 1992-08-19 | 1995-03-21 | Micron Technology, Inc. | Inherently impedance matched integrated circuit module |
US5394300A (en) * | 1992-09-04 | 1995-02-28 | Mitsubishi Denki Kabushiki Kaisha | Thin multilayered IC memory card |
US5394303A (en) * | 1992-09-11 | 1995-02-28 | Kabushiki Kaisha Toshiba | Semiconductor device |
US5731633A (en) * | 1992-09-16 | 1998-03-24 | Gary W. Hamilton | Thin multichip module |
US5708297A (en) * | 1992-09-16 | 1998-01-13 | Clayton; James E. | Thin multichip module |
US5402006A (en) * | 1992-11-10 | 1995-03-28 | Texas Instruments Incorporated | Semiconductor device with enhanced adhesion between heat spreader and leads and plastic mold compound |
US5484959A (en) * | 1992-12-11 | 1996-01-16 | Staktek Corporation | High density lead-on-package fabrication method and apparatus |
US6205654B1 (en) * | 1992-12-11 | 2001-03-27 | Staktek Group L.P. | Method of manufacturing a surface mount package |
US5600178A (en) * | 1993-10-08 | 1997-02-04 | Texas Instruments Incorporated | Semiconductor package having interdigitated leads |
US5386341A (en) * | 1993-11-01 | 1995-01-31 | Motorola, Inc. | Flexible substrate folded in a U-shape with a rigidizer plate located in the notch of the U-shape |
US5594275A (en) * | 1993-11-18 | 1997-01-14 | Samsung Electronics Co., Ltd. | J-leaded semiconductor package having a plurality of stacked ball grid array packages |
US5493476A (en) * | 1994-03-07 | 1996-02-20 | Staktek Corporation | Bus communication system for stacked high density integrated circuit packages with bifurcated distal lead ends |
US5502333A (en) * | 1994-03-30 | 1996-03-26 | International Business Machines Corporation | Semiconductor stack structures and fabrication/sparing methods utilizing programmable spare circuit |
US5592364A (en) * | 1995-01-24 | 1997-01-07 | Staktek Corporation | High density integrated circuit module with complex electrical interconnect rails |
US5491612A (en) * | 1995-02-21 | 1996-02-13 | Fairchild Space And Defense Corporation | Three-dimensional modular assembly of integrated circuits |
US5612570A (en) * | 1995-04-13 | 1997-03-18 | Dense-Pac Microsystems, Inc. | Chip stack and method of making same |
US6025642A (en) * | 1995-08-17 | 2000-02-15 | Staktek Corporation | Ultra high density integrated circuit packages |
US20020001216A1 (en) * | 1996-02-26 | 2002-01-03 | Toshio Sugano | Semiconductor device and process for manufacturing the same |
US6178093B1 (en) * | 1996-06-28 | 2001-01-23 | International Business Machines Corporation | Information handling system with circuit assembly having holes filled with filler material |
US6531772B2 (en) * | 1996-10-08 | 2003-03-11 | Micron Technology, Inc. | Electronic system including memory module with redundant memory capability |
US6841868B2 (en) * | 1996-10-08 | 2005-01-11 | Micron Technology, Inc. | Memory modules including capacity for additional memory |
US6336262B1 (en) * | 1996-10-31 | 2002-01-08 | International Business Machines Corporation | Process of forming a capacitor with multi-level interconnection technology |
US6208546B1 (en) * | 1996-11-12 | 2001-03-27 | Niigata Seimitsu Co., Ltd. | Memory module |
US6038132A (en) * | 1996-12-06 | 2000-03-14 | Mitsubishi Denki Kabushiki Kaisha | Memory module |
US6699730B2 (en) * | 1996-12-13 | 2004-03-02 | Tessers, Inc. | Stacked microelectronic assembly and method therefor |
US6034878A (en) * | 1996-12-16 | 2000-03-07 | Hitachi, Ltd. | Source-clock-synchronized memory system and memory unit |
US6208521B1 (en) * | 1997-05-19 | 2001-03-27 | Nitto Denko Corporation | Film carrier and laminate type mounting structure using same |
US6014316A (en) * | 1997-06-13 | 2000-01-11 | Irvine Sensors Corporation | IC stack utilizing BGA contacts |
US6028352A (en) * | 1997-06-13 | 2000-02-22 | Irvine Sensors Corporation | IC stack utilizing secondary leadframes |
US6040624A (en) * | 1997-10-02 | 2000-03-21 | Motorola, Inc. | Semiconductor device package and method |
US5869353A (en) * | 1997-11-17 | 1999-02-09 | Dense-Pac Microsystems, Inc. | Modular panel stacking process |
US6021048A (en) * | 1998-02-17 | 2000-02-01 | Smith; Gary W. | High speed memory module |
US6028365A (en) * | 1998-03-30 | 2000-02-22 | Micron Technology, Inc. | Integrated circuit package and method of fabrication |
US6172874B1 (en) * | 1998-04-06 | 2001-01-09 | Silicon Graphics, Inc. | System for stacking of integrated circuit packages |
US6180881B1 (en) * | 1998-05-05 | 2001-01-30 | Harlan Ruben Isaak | Chip stack and method of making same |
US6187652B1 (en) * | 1998-09-14 | 2001-02-13 | Fujitsu Limited | Method of fabrication of multiple-layer high density substrate |
US6347394B1 (en) * | 1998-11-04 | 2002-02-12 | Micron Technology, Inc. | Buffering circuit embedded in an integrated circuit device module used for buffering clocks and other input signals |
US6343020B1 (en) * | 1998-12-28 | 2002-01-29 | Foxconn Precision Components Co., Ltd. | Memory module |
US6360433B1 (en) * | 1999-04-23 | 2002-03-26 | Andrew C. Ross | Universal package and method of forming the same |
US6351029B1 (en) * | 1999-05-05 | 2002-02-26 | Harlan R. Isaak | Stackable flex circuit chip package and method of making same |
US6514793B2 (en) * | 1999-05-05 | 2003-02-04 | Dpac Technologies Corp. | Stackable flex circuit IC package and method of making same |
US6839266B1 (en) * | 1999-09-14 | 2005-01-04 | Rambus Inc. | Memory module with offset data lines and bit line swizzle configuration |
US6849949B1 (en) * | 1999-09-27 | 2005-02-01 | Samsung Electronics Co., Ltd. | Thin stacked package |
US20030045025A1 (en) * | 2000-01-26 | 2003-03-06 | Coyle Anthony L. | Method of fabricating a molded package for micromechanical devices |
US6528870B2 (en) * | 2000-01-28 | 2003-03-04 | Kabushiki Kaisha Toshiba | Semiconductor device having a plurality of stacked wiring boards |
US6677670B2 (en) * | 2000-04-25 | 2004-01-13 | Seiko Epson Corporation | Semiconductor device |
US20020006032A1 (en) * | 2000-05-23 | 2002-01-17 | Chris Karabatsos | Low-profile registered DIMM |
US6683377B1 (en) * | 2000-05-30 | 2004-01-27 | Amkor Technology, Inc. | Multi-stacked memory package |
US20020030995A1 (en) * | 2000-08-07 | 2002-03-14 | Masao Shoji | Headlight |
US6690584B2 (en) * | 2000-08-14 | 2004-02-10 | Fujitsu Limited | Information-processing device having a crossbar-board connected to back panels on different sides |
US6349050B1 (en) * | 2000-10-10 | 2002-02-19 | Rambus, Inc. | Methods and systems for reducing heat flux in memory systems |
US20040015945A1 (en) * | 2001-05-08 | 2004-01-22 | Pioneer Corporation | Upgrade method for navigation data and apparatus for saving user data |
US6850414B2 (en) * | 2001-07-02 | 2005-02-01 | Infineon Technologies Ag | Electronic printed circuit board having a plurality of identically designed, housing-encapsulated semiconductor memories |
US20030002262A1 (en) * | 2001-07-02 | 2003-01-02 | Martin Benisek | Electronic printed circuit board having a plurality of identically designed, housing-encapsulated semiconductor memories |
US20030016710A1 (en) * | 2001-07-19 | 2003-01-23 | Satoshi Komoto | Semiconductor laser device including light receiving element for receiving monitoring laser beam |
US6509639B1 (en) * | 2001-07-27 | 2003-01-21 | Charles W. C. Lin | Three-dimensional stacked semiconductor package |
US20030026155A1 (en) * | 2001-08-01 | 2003-02-06 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory module and register buffer device for use in the same |
US20030035328A1 (en) * | 2001-08-08 | 2003-02-20 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device shiftable to test mode in module as well as semiconductor memory module using the same |
US20050035440A1 (en) * | 2001-08-22 | 2005-02-17 | Tessera, Inc. | Stacked chip assembly with stiffening layer |
US20030049886A1 (en) * | 2001-09-07 | 2003-03-13 | Salmon Peter C. | Electronic system modules and method of fabrication |
US20040031972A1 (en) * | 2001-10-09 | 2004-02-19 | Tessera, Inc. | Stacked packages |
US20040000708A1 (en) * | 2001-10-26 | 2004-01-01 | Staktek Group, L.P. | Memory expansion and chip scale stacking system and method |
US20040012991A1 (en) * | 2002-07-18 | 2004-01-22 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory module |
US20040021211A1 (en) * | 2002-08-05 | 2004-02-05 | Tessera, Inc. | Microelectronic adaptors, assemblies and methods |
US20050040508A1 (en) * | 2003-08-22 | 2005-02-24 | Jong-Joo Lee | Area array type package stack and manufacturing method thereof |
US20050018495A1 (en) * | 2004-01-29 | 2005-01-27 | Netlist, Inc. | Arrangement of integrated circuits in a memory module |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8345427B2 (en) | 2004-04-09 | 2013-01-01 | Netlist, Inc. | Module having at least two surfaces and at least one thermally conductive layer therebetween |
US7839645B2 (en) | 2004-04-09 | 2010-11-23 | Netlist, Inc. | Module having at least two surfaces and at least one thermally conductive layer therebetween |
US7630202B2 (en) | 2004-04-09 | 2009-12-08 | Netlist, Inc. | High density module having at least two substrates and at least one thermally conductive layer therebetween |
US7768796B2 (en) | 2004-09-03 | 2010-08-03 | Entorian Technologies L.P. | Die module system |
US20060090102A1 (en) * | 2004-09-03 | 2006-04-27 | Wehrly James D Jr | Circuit module with thermal casing systems and methods |
US20060091529A1 (en) * | 2004-09-03 | 2006-05-04 | Staktek Group L.P. | High capacity thin module system and method |
US20060129888A1 (en) * | 2004-09-03 | 2006-06-15 | Staktek Group L.P. | Circuit module turbulence enhacement systems and methods |
US20060049512A1 (en) * | 2004-09-03 | 2006-03-09 | Staktek Group L.P. | Thin module system and method with skew reduction |
US7737549B2 (en) | 2004-09-03 | 2010-06-15 | Entorian Technologies Lp | Circuit module with thermal casing systems |
US7760513B2 (en) | 2004-09-03 | 2010-07-20 | Entorian Technologies Lp | Modified core for circuit module system and method |
US8033836B1 (en) | 2005-08-29 | 2011-10-11 | Netlist, Inc. | Circuit with flexible portion |
US7811097B1 (en) | 2005-08-29 | 2010-10-12 | Netlist, Inc. | Circuit with flexible portion |
US7442050B1 (en) | 2005-08-29 | 2008-10-28 | Netlist, Inc. | Circuit card with flexible connection for memory module with heat spreader |
US8864500B1 (en) | 2005-08-29 | 2014-10-21 | Netlist, Inc. | Electronic module with flexible portion |
US7619893B1 (en) | 2006-02-17 | 2009-11-17 | Netlist, Inc. | Heat spreader for electronic modules |
US7839643B1 (en) | 2006-02-17 | 2010-11-23 | Netlist, Inc. | Heat spreader for memory modules |
US8488325B1 (en) | 2006-02-17 | 2013-07-16 | Netlist, Inc. | Memory module having thermal conduits |
US20080316728A1 (en) * | 2006-08-28 | 2008-12-25 | Micron Technology, Inc. | Metal core foldover package structures |
US8115112B2 (en) * | 2006-08-28 | 2012-02-14 | Micron Technology, Inc. | Interposer substrates and semiconductor device assemblies and electronic systems including such interposer substrates |
US8018723B1 (en) | 2008-04-30 | 2011-09-13 | Netlist, Inc. | Heat dissipation for electronic modules |
US8705239B1 (en) | 2008-04-30 | 2014-04-22 | Netlist, Inc. | Heat dissipation for electronic modules |
Also Published As
Publication number | Publication date |
---|---|
US20040201091A1 (en) | 2004-10-14 |
US20080036068A1 (en) | 2008-02-14 |
KR20070013310A (en) | 2007-01-30 |
EP1741134A2 (en) | 2007-01-10 |
WO2005112100A3 (en) | 2006-08-24 |
US7371609B2 (en) | 2008-05-13 |
US7572671B2 (en) | 2009-08-11 |
CN1977375A (en) | 2007-06-06 |
EP1741134A4 (en) | 2009-12-02 |
WO2005112100A2 (en) | 2005-11-24 |
JP2007535818A (en) | 2007-12-06 |
US20090298230A1 (en) | 2009-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7572671B2 (en) | Stacked module systems and methods | |
US7026708B2 (en) | Low profile chip scale stacking system and method | |
US7323364B2 (en) | Stacked module systems and method | |
JP2541487B2 (en) | Semiconductor device package | |
US7002254B2 (en) | Integrated circuit package employing flip-chip technology and method of assembly | |
US7719098B2 (en) | Stacked modules and method | |
US20040235222A1 (en) | Integrated circuit stacking system and method | |
US20040022038A1 (en) | Electronic package with back side, cavity mounted capacitors and method of fabrication therefor | |
US20030006496A1 (en) | Semiconductor/printed circuit board assembly, and computer system | |
US20140313676A1 (en) | Electronic component package | |
US20020152610A1 (en) | Electronic circuit device and method of production of the same | |
US7310458B2 (en) | Stacked module systems and methods | |
JPH0579995U (en) | Multilayer wiring board with high-frequency shield structure | |
WO2005114726A2 (en) | Stacked module systems and methods | |
US20040195666A1 (en) | Stacked module systems and methods | |
US20050009234A1 (en) | Stacked module systems and methods for CSP packages | |
TW417265B (en) | Low-cost surface-mount compatible land-grid array (lga) chips cale package (csp) for packaging solder-bumped flip chips | |
JP2003037244A (en) | Tape carrier for semiconductor device and semiconductor device using the same | |
JPH11214449A (en) | Electronic circuit device | |
TWI313924B (en) | High frequency ic package for uniforming bump-bonding height and method for fabricating the same | |
JP2003297999A (en) | Semiconductor device | |
JP2004063841A (en) | Semiconductor device | |
JP2006295012A (en) | Manufacturing method and mounting method for electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |