US20050211551A1 - Apparatus and methods for electrochemical processing of microelectronic workpieces - Google Patents
Apparatus and methods for electrochemical processing of microelectronic workpieces Download PDFInfo
- Publication number
- US20050211551A1 US20050211551A1 US11/096,493 US9649305A US2005211551A1 US 20050211551 A1 US20050211551 A1 US 20050211551A1 US 9649305 A US9649305 A US 9649305A US 2005211551 A1 US2005211551 A1 US 2005211551A1
- Authority
- US
- United States
- Prior art keywords
- electrode
- reaction vessel
- processing
- fluid flow
- workpiece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/6719—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/001—Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/12—Semiconductors
- C25D7/123—Semiconductors first coated with a seed layer or a conductive layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67103—Apparatus for thermal treatment mainly by conduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67207—Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
- H01L21/6723—Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one plating chamber
Definitions
- This application relates to reaction vessels and methods of making and using such vessels in electrochemical processing of microelectronic workpieces.
- Microelectronic devices such as semiconductor devices and field emission displays, are generally fabricated on and/or in microelectronic workpieces using several different types of machines (“tools”). Many such processing machines have a single processing station that performs one or more procedures on the workpieces. Other processing machines have a plurality of processing stations that perform a series of different procedures on individual workpieces or batches of workpieces. In a typical fabrication process, one or more layers of conductive materials are formed on the workpieces during deposition stages. The workpieces are then typically subject to etching and/or polishing procedures (i.e., planarization) to remove a portion of the deposited conductive layers for forming electrically isolated contacts and/or conductive lines.
- tools such processing machines have a single processing station that performs one or more procedures on the workpieces. Other processing machines have a plurality of processing stations that perform a series of different procedures on individual workpieces or batches of workpieces.
- etching and/or polishing procedures i.e., planarization
- Electroplating and electroless plating techniques can be used to deposit copper, solder, permalloy, gold, silver, platinum and other metals onto workpieces for forming blanket layers or patterned layers.
- a typical copper plating process involves depositing a copper seed layer onto the surface of the workpiece using chemical vapor deposition (CVD), physical vapor deposition (PVD), electroless plating processes, or other suitable methods. After forming the seed layer, a blanket layer or patterned layer of copper is plated onto the workpiece by applying an appropriate electrical potential between the seed layer and an anode in the presence of an electroprocessing solution. The workpiece is then cleaned, etched and/or annealed in subsequent procedures before transferring the workpiece to another processing machine.
- FIG. 1 illustrates an embodiment of a single-wafer processing station 1 that includes a container 2 for receiving a flow of electroplating solution from a fluid inlet 3 at a lower portion of the container 2 .
- the processing station 1 can include an anode 4 , a plate-type diffuser 6 having a plurality of apertures 7 , and a workpiece holder 9 for carrying a workpiece 5 .
- the workpiece holder 9 can include a plurality of electrical contacts for providing electrical current to a seed layer on the surface of the workpiece 5 . When the seed layer is biased with a negative potential relative to the anode 4 , it acts as a cathode.
- the electroplating fluid flows around the anode 4 , through the apertures 7 in the diffuser 6 and against the plating surface of the workpiece 5 .
- the electroplating solution is an electrolyte that conducts electrical current between the anode 4 and the cathodic seed layer on the surface of the workpiece 5 . Therefore, ions in the electroplating solution plate the surface of the workpiece 5 .
- the plating machines used in fabricating microelectronic devices must eet many specific performance criteria. For example, many processes must be able to form small contacts in vias that are less than 0.5 ⁇ m wide, and are desirably less than 0.1 ⁇ m wide.
- the plated metal layers accordingly often need to fill vias or trenches that are on the order of 0.1 ⁇ m wide, and the layer of plated material should also be deposited to a desired, uniform thickness across the surface of the workpiece 5 .
- One factor that influences the uniformity of the plated layer is the mass transfer of electroplating solution at the surface of the workpiece. This parameter is generally influenced by the velocity of the flow of the electroplating solution perpendicular to the surface of the workpiece.
- Another factor that influences the uniformity of the plated layer is the current density of the electrical field across the surface of the wafer.
- existing plating tools generally use the diffuser 6 to enhance the uniformity of the fluid flow perpendicular to the face of the workpiece.
- the diffuser 6 improves the uniformity of the fluid flow, it produces a plurality of localized areas of increased flow velocity perpendicular to the surface of the workpiece 5 (indicated by arrows 8 ).
- the localized areas generally correspond to the position of the apertures 7 in the diffuser 6 .
- the increased velocity of the fluid flow normal to the substrate in the localized areas increases the mass transfer of the electroplating solution in these areas. This typically results in faster plating rates in the localized areas over the apertures 7 .
- many different configurations of apertures have been used in plate-type diffusers, these diffusers may not provide adequate uniformity for the precision required in many current applications.
- the diffusion layer in the electroplating solution adjacent to the surface of the workpiece 5 can be disrupted by gas bubbles or particles.
- bubbles can be introduced to the plating solution by the plumbing and pumping system of the processing equipment, or they can evolve from inert anodes.
- Consumable anodes are often used to prevent or reduce the evolvement of gas bubbles in the electroplating solution, but these anodes erode and they can form a passivated film surface that must be maintained.
- Consumable anodes moreover, often generate particles that can be carried in the plating solution.
- gas bubbles and/or particles can flow to the surface of the workpiece 5 , which disrupts the uniformity and affects the quality of the plated layer.
- Still another challenge of plating uniform layers is providing a desired electrical field at the surface of the workpiece 5 .
- the distribution of electrical current in the plating solution is a function of the uniformity of the seed layer across the contact surface, the configuration/condition of the anode, and the configuration of the chamber.
- the current density profile on the plating surface can change.
- the current density profile typically changes during a plating cycle because plating material covers the seed layer, or it can change over a longer period of time because the shape of consumable anodes changes as they erode and the concentration of constituents in the plating solution can change. Therefore, it can be difficult to maintain a desired current density at the surface of the workpiece 5 .
- the present invention is directed toward reaction vessels for electrochemical processing of microelectronic workpieces, processing stations including such reaction vessels, and methods for using these devices.
- reaction vessels in accordance with the invention solve the problem of providing a desired mass transfer at the workpiece by configuring the electrodes so that a primary flow guide and/or a field shaping unit in the reaction vessel direct a substantially uniform primary fluid flow toward the workpiece.
- field shaping units in accordance with several embodiments of the invention create virtual electrodes such that the workpiece is shielded from the electrodes.
- additional embodiments of the invention include interface members in the reaction vessel that inhibit particulates, bubbles and other undesirable matter in the reaction vessel from contacting the workpiece to enhance the uniformity and the quality of the finished surface on the workpieces.
- the interface members can also allow two different types of fluids to be used in the reaction vessel, such as a catholyte and an anolyte, to reduce the need to replenish additives as often and to add more flexibility to designing electrodes and other components in the reaction vessel.
- a reaction vessel in one embodiment, includes an outer container having an outer wall, a first outlet configured to introduce a primary fluid flow into the outer container, and at least one second outlet configured to introduce a secondary fluid flow into the outer container separate from the primary fluid flow.
- the reaction vessel can also include a field shaping unit in the outer container and at least one electrode.
- the field shaping unit can be a dielectric assembly coupled to the second outlet to receive the secondary flow and configured to contain the secondary flow separate from the primary flow through at least a portion of the outer container.
- the field shaping unit also has at least one electrode compartment through which the secondary flow can pass separately from the primary flow. The electrode is positioned in the electrode compartment.
- the field shaping unit has a compartment assembly having a plurality of electrode compartments and a virtual electrode unit.
- the compartment assembly can include a plurality of annular walls including an inner or first annular wall centered on a common axis and an outer or second annular wall concentric with the first annular wall and spaced radially outward.
- the annular walls of the field shaping unit can be positioned inside of outer wall of the outer container so that an annular space between the first and second walls defines a first electrode compartment and an annular space between the second wall and the outer wall defines a second electrode compartment.
- the reaction vessel of this particular embodiment can have a first annular electrode in the first electrode compartment and/or a second annular electrode in the second electrode compartment.
- the virtual electrode unit can include a plurality of partitions that have lateral sections attached to corresponding annular walls of the electrode compartment and lips that project from the lateral sections.
- the first partition has an annular first lip that defines a central opening
- the second partition has an annular second lip surrounding the first lip that defines an annular opening.
- the reaction vessel can further include a distributor coupled to the outer container and a primary flow guide in the outer container.
- the distributor can include the first outlet and the second outlet such that the first outlet introduces the primary fluid flow into the primary flow guide and the second outlet introduces the secondary fluid flow into the field shaping unit separately from the primary flow.
- the primary flow guide can condition the primary flow for providing a desired fluid flow to a workpiece processing site. In one particular embodiment, the primary flow guide directs the primary flow through the central opening of the first annular lip of the first partition. The secondary flow is distributed to the electrode compartments of the field shaping unit to establish an electrical field in the reaction vessel.
- the primary flow can pass through a first flow channel defined, at least in part, by the primary flow guide and the lip of the first partition.
- the primary flow can be the dominant flow through the reaction vessel so that it controls the mass transfer at the workpiece.
- the secondary flow can generally be contained within the field shaping unit so that the electrical field(s) of the electrode(s) are shaped by the virtual electrode unit and the electrode compartments.
- the electrical effect of the first electrode can act as if it is placed in the central opening defined by the lip of the first partition
- the electrical effect of the second electrode can act as if it is placed in the annular opening between the first and second lips.
- the actual electrodes can be shielded from the workpiece by the field shaping unit such that the size and shape of the actual electrodes does not affect the electrical field perceived by the workpiece.
- the field shaping unit shields the workpiece from the electrodes.
- the electrodes can be much larger than they could without the field shaping unit because the size and configuration of the actual electrodes does not appreciably affect the electrical field perceived by the workpiece.
- This is particularly useful when the electrodes are consumable anodes because the increased size of the anodes prolongs their life, which reduces downtime for servicing a tool. Additionally, this reduces the need to “burn-in” anodes because the field shaping element reduces the impact that films on the anodes have on the shape of the electrical field perceived by the workpiece. Both of these benefits significantly improve the operating efficiency of the reaction vessel.
- Another feature of several embodiments of the invention is that they provide a uniform mass transfer at the surface of the workpiece.
- the field shaping unit separates the actual electrodes from the effective area where they are perceived by the workpiece, the actual electrodes can be configured to accommodate internal structure that guides the flow along a more desirable flow path. For example, this allows the primary flow to flow along a central path.
- a particular embodiment includes a central primary flow guide that projects the primary flow radially inward along diametrically opposed vectors that create a highly uniform primary flow velocity in a direction perpendicular to the surface of the workpiece.
- the reaction vessel can also include an interface member carried by the field shaping unit downstream from the electrode.
- the interface member can be in fluid communication with the secondary flow in the electrode compartment.
- the interface member for example, can be a filter and/or an ion-membrane.
- the interface member can inhibit particulates (e.g., particles from an anode) and bubbles in the secondary flow from reaching the surface of the workpiece to reduce non-uniformities on the processed surface. This accordingly increases the quality of the surface of the workpiece.
- the interface member can be configured to prevent fluids from passing between the secondary flow and the primary flow while allowing preferred ions to pass between the flows. This allows the primary flow and the secondary flow to be different types of fluids, such as a catholyte and an anolyte, which reduces the need to replenish additives as often and adds more flexibility to designing electrodes and other features of the reaction vessel.
- FIG. 1 is a schematic diagram of an electroplating chamber in accordance with the prior art.
- FIG. 2 is an isometric view of an electroprocessing machine having electroprocessing stations for processing microelectronic workpieces in accordance with an embodiment of the invention.
- FIG. 3 is a cross-sectional view of an electroprocessing station having a processing chamber for use in an electroprocessing machine in accordance with an embodiment of the invention. Selected components in FIG. 3 are shown schematically.
- FIG. 4 is an isometric view showing a cross-sectional portion of a processing chamber taken along line 4 - 4 of FIG. 8A .
- FIGS. 5A-5D are cross-sectional views of a distributor for a processing chamber in accordance with an embodiment of the invention.
- FIG. 6 is an isometric view showing a different cross-sectional portion of the processing chamber of FIG. 4 taken along line 6 - 6 of FIG. 8B .
- FIG. 7A is an isometric view of an interface assembly for use in a processing chamber in accordance with an embodiment of the invention.
- FIG. 7B is a cross-sectional view of the interface assembly of FIG. 7A .
- FIGS. 8A and 8B are top plan views of a processing chamber that provide a reference for the isometric, cross-sectional views of FIGS. 4 and 6 , respectively.
- microelectronic workpiece is used throughout to include a workpiece formed from a substrate upon which and/or in which microelectronic circuits or components, data storage elements or layers, and/or micro-mechanical elements are fabricated. It will be appreciated that several of the details set forth below are provided to describe the following embodiments in a manner sufficient to enable a person skilled in the art to make and use the disclosed embodiments. Several of the details and advantages described below, however, may not be necessary to practice certain embodiments of the invention. Additionally, the invention can also include additional embodiments that are within the scope of the claims, but are not described in detail with respect to FIGS. 2-8B .
- electrochemical reaction vessels are best understood in light of the environment and equipment in which they can be used to electrochemically process workpieces (e.g., electroplate and/or electropolish). As such, embodiments of integrated tools with processing stations having the electrochemical reaction vessels are initially described with reference to FIGS. 2 and 3 . The details and features of several embodiments of electrochemical reaction vessels are then described with reference to FIGS. 4-8B .
- FIG. 2 is an isometric view of a processing machine 100 having an electrochemical processing station 120 in accordance with an embodiment of the invention. A portion of the processing machine 100 is shown in a cut-away view to illustrate selected internal components.
- the processing machine 100 can include a cabinet 102 having an interior region 104 defining an interior enclosure that is at least partially isolated from an exterior region 105 .
- the cabinet 102 can also include a plurality of apertures 106 (only one shown in FIG. 1 ) through which microelectronic workpieces 101 can ingress and egress between the interior region 104 and a load/unload station 110 .
- the load/unload station 110 can have two container supports 112 that are each housed in a protective shroud 113 .
- the container supports 112 are configured to position workpiece containers 114 relative to the apertures 106 in the cabinet 102 .
- the workpiece containers 114 can each house a plurality of microelectronic workpieces 101 in a “mini” clean environment for carrying a plurality of workpieces through other environments that are not at clean room standards.
- Each of the workpiece containers 114 is accessible from the interior region 104 of the cabinet 102 through the apertures 106 .
- the processing machine 100 can also include a plurality of electrochemical processing stations 120 and a transfer device 130 in the interior region 104 of the cabinet 102 .
- the processing machine 100 can be a plating tool that also includes clean/etch capsules 122 , electroless plating stations, annealing stations, and/or metrology stations.
- the transfer device 130 includes a linear track 132 extending in a lengthwise direction of the interior region 104 between the processing stations.
- the transfer device 130 can further include a robot unit 134 carried by the track 132 .
- a first set of processing stations is arranged along a first row R 1 -R 1 and a second set of processing stations is arranged long a second row R 2 -R 2 .
- the linear track 132 extends between the first and second rows of processing stations, and the robot unit 134 can access any of the processing stations along the track 132 .
- FIG. 3 illustrates an embodiment of an electrochemical-processing chamber 120 having a head assembly 150 and a processing chamber 200 .
- the head assembly 150 includes a spin motor 152 , a rotor 154 coupled to the spin motor 152 , and a contact assembly 160 carried by the rotor 154 .
- the rotor 154 can have a backing plate 155 and a seal 156 .
- the backing plate 155 can move transverse to a workpiece 101 (arrow T) between a first position in which the backing plate 155 contacts a backside of the workpiece 101 (shown in solid lines in FIG. 3 ) and a second position in which it is spaced apart from the backside of the workpiece 101 (shown in broken lines in FIG. 3 ).
- the contact assembly 160 can have a support member 162 , a plurality of contacts 164 carried by the support member 162 , and a plurality of shafts 166 extending between the support member 162 and the rotor 154 .
- the contacts 164 can be ring-type spring contacts or other types of contacts that are configured to engage a portion of the seed-layer on the workpiece 101 .
- Commercially available head assemblies 150 and contact assemblies 160 can be used in the electroprocessing chamber 120 . Particular suitable head assemblies 150 and contact assemblies 160 are disclosed in U.S. Pat. Nos. 6,228,232 and 6,080,691; and U.S. application Ser. Nos. 09/385,784; 09/386,803; 09/386,610; 09/386,197; 09/501,002; 09/733,608; and 09/804,696, all of which are herein incorporated by reference.
- the processing chamber 200 includes an outer housing 202 (shown schematically in FIG. 3 ) and a reaction vessel 204 (also shown schematically in FIG. 3 ) in the housing 202 .
- the reaction vessel 204 carries at least one electrode (not shown in FIG. 3 ) and directs a flow of electroprocessing solution to the workpiece 101 .
- the electroprocessing solution for example, can flow over a weir (arrow F) and into the external housing 202 , which captures the electroprocessing solution and sends it back to a tank.
- Several embodiments of reaction vessels 204 are shown and described in detail with reference to FIGS. 4-8B .
- the head assembly 150 holds the workpiece at a workpiece-processing site of the reaction vessel 204 so that at least a plating surface of the workpiece engages the electroprocessing solution.
- An electrical field is established in the solution by applying an electrical potential between the plating surface of the workpiece via the contact assembly 160 and one or more electrodes in the reaction vessel 204 .
- the contact assembly 160 can be biased with a negative potential with respect to the electrode(s) in the reaction vessel 204 to plate materials onto the workpiece.
- the contact assembly 160 can be biased with a positive potential with respect to the electrode(s) in the reaction vessel 204 to (a) de-plate or electropolish plated material from the workpiece or (b) deposit other materials (e.g., electrophoric resist).
- materials can be deposited on or removed from the workpiece with the workpiece acting as a cathode or an anode depending upon the particular type of material used in the electrochemical process.
- FIGS. 4-8B illustrate several embodiments of reaction vessels 204 for use in the processing chamber 200 .
- the housing 202 carries the reaction vessel 204 .
- the housing 202 can have a drain 210 for returning the processing fluid that flows out of the reaction vessel 204 to a storage tank, and a plurality of openings for receiving inlets and electrical fittings.
- the reaction vessel 204 can include an outer container 220 having an outer wall 222 spaced radially inwardly of the housing 202 .
- the outer container 220 can also have a spiral spacer 224 between the outer wall 222 and the housing 202 to provide a spiral ramp (i.e., a helix) on which the processing fluid can flow downward to the bottom of the housing 202 .
- the spiral ramp reduces the turbulence of the return fluid to inhibit entrainment of gasses in the return fluid.
- the particular embodiment of the reaction vessel 204 shown in FIG. 4 can include a distributor 300 for receiving a primary fluid flow F p and a secondary fluid flow F 2 , a primary flow guide 400 coupled to the distributor 300 to condition the primary fluid flow F p , and a field shaping unit 500 coupled to the distributor 300 to contain the secondary flow F 2 in a manner that shapes the electrical field in the reaction vessel 204 .
- the reaction vessel 204 can also include at least one electrode 600 in a compartment of the field shaping unit 500 and at least one filter or other type of interface member 700 carried by the field shaping unit 500 downstream from the electrode.
- the primary flow guide 400 can condition the primary flow F p by projecting this flow radially inwardly relative to a common axis A-A, and a portion of the field shaping unit 500 directs the conditioned primary flow F p toward the workpiece.
- the primary flow passing through the primary flow guide 400 and the center of the field shaping unit 500 controls the mass transfer of processing solution at the surface of the workpiece.
- the field shaping unit 500 also defines the shape the electric field, and it can influence the mass transfer at the surface of the workpiece if the secondary flow passes through the field shaping unit.
- the reaction vessel 204 can also have other configurations of components to guide the primary flow F p and the secondary flow F 2 through the processing chamber 200 .
- the reaction vessel 204 may not have a distributor in the processing chamber, but rather separate fluid lines with individual flows can be coupled to the vessel 204 to provide a desired distribution of fluid through the primary flow guide 400 and the field shaping unit.
- the reaction vessel 204 can have a first outlet in the outer container 220 for introducing the primary flow into the reaction vessel and a second outlet in the outer container for introducing the secondary flow into the reaction vessel 204 .
- FIGS. 5A-5D illustrate an embodiment of the distributor 300 for directing the primary fluid flow to the primary flow guide 400 and the secondary fluid flow to the field shaping unit 500 .
- the distributor 300 can include a body 310 having a plurality of annular steps 312 (identified individually by reference numbers 312 a - d ) and annular grooves 314 in the steps 312 .
- the outermost step 312 d is radially inward of the outer wall 222 (shown in broken lines) of the outer container 220 ( FIG. 4 ), and each of the interior steps 312 a - c can carry an annular wall (shown in broken lines) of the field shaping unit 500 in a corresponding groove 314 .
- the distributor 300 can also include a first inlet 320 for receiving the primary flow F p and a plenum 330 for receiving the secondary flow F 2 .
- the first inlet 320 can have an inclined, annular cavity 322 to form a passageway 324 (best shown in FIG. 4 ) for directing the primary fluid flow F p under the primary flow guide 400 .
- the distributor 300 can also have a plurality of upper orifices 332 along an upper part of the plenum 330 and a plurality of lower orifices 334 along a lower part of the plenum 330 .
- the upper and lower orifices are open to channels through the body 310 to distribute the secondary flow F 2 to the risers of the steps 312 .
- the distributor 300 can also have other configurations, such as a “step-less” disk or non-circular shapes.
- FIGS. 5A-5D further illustrate one configuration of channels through the body 310 of the distributor 300 .
- a number of first channels 340 extend from some of the lower orifices 334 to openings at the riser of the first step 312 a .
- FIG. 5B shows a number of second channels 342 extending from the upper orifices 332 to openings at the riser of the second step 312 b
- FIG. 5C shows a number of third channels 344 extending from the upper orifices 332 to openings at the riser of the third step 312 c
- FIG. 5D illustrates a number of fourth channels 346 extending from the lower orifices 334 to the riser of the fourth step 312 d.
- the particular embodiment of the channels 340 - 346 in FIGS. 5A-5D are configured to transport bubbles that collect in the plenum 330 radially outward as far as practical so that these bubbles can be captured and removed from the secondary flow F 2 .
- a bubble B in the compartment above the first step 312 a can sequentially cascade through the compartments over the second and third steps 312 b - c , and then be removed from the compartment above the fourth step 312 d .
- the first channel 340 ( FIG.
- the 5A accordingly carries fluid from the lower orifices 334 where bubbles are less likely to collect to reduce the amount of gas that needs to cascade from the inner compartment above the first step 312 a all the way out to the outer compartment.
- the bubbles in the secondary flow F 2 are more likely to collect at the top of the plenum 330 before passing through the channels 340 - 346 .
- the upper orifices 332 are accordingly coupled to the second channel 342 and the third channel 344 to deliver these bubbles outward beyond the first step 312 a so that they do not need to cascade through so many compartments.
- the upper orifices 332 are not connected to the fourth channels 346 because this would create a channel that inclines downwardly from the common axis such that it may conflict with the groove 314 in the third step 312 c .
- the fourth channel 346 extends from the lower orifices 334 to the fourth step 312 d.
- the primary flow guide 400 receives the primary fluid flow F p via the first inlet 320 of the distributor 300 .
- the primary flow guide 400 includes an inner baffle 410 and an outer baffle 420 .
- the inner baffle can have a base 412 and a wall 414 projecting upward and radially outward from the base 412 .
- the wall 414 for example, can have an inverted frusto-conical shape and a plurality of apertures 416 .
- the apertures 416 can be holes, elongated slots or other types of openings.
- the apertures 416 are annularly extending radial slots that slant upward relative to the common axis to project the primary flow radially inward and upward relative to the common axis along a plurality of diametrically opposed vectors.
- the inner baffle 410 can also includes a locking member 418 that couples the inner baffle 410 to the distributor 300 .
- the outer baffle 420 can include an outer wall 422 with a plurality of apertures 424 .
- the apertures 424 are elongated slots extending in a direction transverse to the apertures 416 of the inner baffle 410 .
- the primary flow F p flows through (a) the first inlet 320 , (b) the passageway 324 under the base 412 of the inner baffle 410 , (c) the apertures 424 of the outer baffle 420 , and then (d) the apertures 416 of the inner baffle 410 .
- the combination of the outer baffle 420 and the inner baffle 410 conditions the direction of the flow at the exit of the apertures 416 in the inner baffle 410 .
- the primary flow guide 400 can thus project the primary flow along diametrically opposed vectors that are inclined upward relative to the common axis to create a fluid flow that has a highly uniform velocity.
- the apertures 416 do not slant upward relative to the common axis such that they can project the primary flow normal, or even downward, relative to the common axis.
- FIG. 4 also illustrates an embodiment of the field shaping unit 500 that receives the primary fluid flow F p downstream from the primary flow guide 400 .
- the field shaping unit 500 also contains the second fluid flow F 2 and shapes the electrical field within the reaction vessel 204 .
- the field shaping unit 500 has a compartment structure with a plurality of walls 510 (identified individually by reference numbers 510 a - d ) that define electrode compartments 520 (identified individually by reference numbers 520 a - d ).
- the walls 510 can be annular skirts or dividers, and they can be received in one of the annular grooves 314 in the distributor 300 .
- the walls 510 are not fixed to the distributor 300 so that the field shaping unit 500 can be quickly removed from the distributor 300 . This allows easy access to the electrode compartments 520 and/or quick removal of the field shaping unit 500 to change the shape of the electric field.
- the field shaping unit 500 can have at least one wall 510 outward from the primary flow guide 400 to prevent the primary flow F p from contacting an electrode.
- the field shaping unit 500 has a first electrode compartment 520 a defined by a first wall 510 a and a second wall 510 b , a second electrode compartment 520 b defined by the second wall 510 b and a third wall 510 c , a third electrode compartment 520 c defined by the third wall ⁇ 10 c and a fourth wall 510 d , and a fourth electrode compartment 520 d defined by the fourth wall 510 d and the outer wall 222 of the container 220 .
- the walls 510 a - d of this embodiment are concentric annular dividers that define annular electrode compartments 520 a - d .
- Alternate embodiments of the field shaping unit can have walls with different configurations to create non-annular electrode compartments and/or each electrode compartment can be further divided into cells.
- the second-fourth walls 510 b - d can also include holes 522 for allowing bubbles in the first-third electrode compartments 520 a - c to “cascade” radially outward to the next outward electrode compartment 520 as explained above with respect to FIGS. 5A-5D .
- the bubbles can then exit the fourth electrode compartment 520 d through an exit hole 525 through the outer wall 222 .
- the bubbles can exit through an exit hole 524 .
- the electrode compartments 520 provide electrically discrete compartments to house an electrode assembly having at least one electrode and generally two or more electrodes 600 (identified individually by reference numbers 600 a - d ).
- the electrodes 600 can be annular members (e.g., annular rings or arcuate sections) that are configured to fit within annular electrode compartments, or they can have other shapes appropriate for the particular workpiece (e.g., rectilinear).
- the electrode assembly includes a first annular electrode 600 a in the first electrode compartment 520 a , a second annular electrode 600 b in the second electrode compartment 520 b , a third annular electrode 600 c in the third electrode compartment 520 c , and a fourth annular electrode 600 d in the fourth electrode compartment 520 d .
- each of the electrodes 600 a - d can be biased with the same or different potentials with respect to the workpiece to control the current density across the surface of the workpiece.
- the electrodes 600 can be non-circular shapes or sections of other shapes.
- Embodiments of the reaction vessel 204 that include a plurality of electrodes provide several benefits for plating or electropolishing.
- the electrodes 600 can be biased with respect to the workpiece at different potentials to provide uniform plating on different workpieces even though the seed layers vary from one another or the bath(s) of electroprocessing solution have different conductivities and/or concentrations of constituents.
- another the benefit of having a multiple electrode design is that plating can be controlled to achieve different final fill thicknesses of plated layers or different plating rates during a plating cycle or in different plating cycles.
- the current density can be controlled to (a) provide a uniform current density during feature filling and/or (b) achieve plating to specific film profiles across a workpiece (e.g., concave, convex, flat).
- the multiple electrode configurations in which the electrodes are separate from one another provide several benefits for controlling the electrochemical process to (a) compensate for deficiencies or differences in seed layers between workpieces, (b) adjust for variances in baths of electroprocessing solutions, and/or (c) achieve predetermined feature filling or film profiles.
- the field shaping unit 500 can also include a virtual electrode unit coupled to the walls 510 of the compartment assembly for individually shaping the electrical fields produced by the electrodes 600 .
- the virtual electrode unit includes first-fourth partitions 530 a - 530 d , respectively.
- the first partition 530 a can have a first section 532 a coupled to the second wall 510 b , a skirt 534 depending downward above the first wall 510 a , and a lip 536 a projecting upwardly.
- the lip 536 a has an interior surface 537 that directs the primary flow F p exiting from the primary flow guide 400 .
- the second partition 530 b can have a first section 532 b coupled to the third wall 510 c and a lip 536 b projecting upward from the first section 532 b
- the third partition 530 c can have a first section 532 c coupled to the fourth wall 510 d and a lip 536 c projecting upward from the first section 532 c
- the fourth partition 530 d can have a first section 532 d carried by the outer wall 222 of the container 220 and a lip 536 d projecting upward from the first section 532 d .
- the fourth partition 530 d may not be connected to the outer wall 222 so that the field shaping unit 500 can be quickly removed from the vessel 204 by simply lifting the virtual electrode unit.
- the interface between the fourth partition 530 d and the outer wall 222 is sealed by a seal 527 to inhibit both the fluid and the electrical current from leaking out of the fourth electrode compartment 520 d .
- the seal 527 can be a lip seal.
- each of the sections 532 a - d can be lateral sections extending transverse to the common axis.
- the individual partitions 530 a - d can be machined from or molded into a single piece of dielectric material, or they can be individual dielectric members that are welded together. In alternate embodiments, the individual partitions 530 a - d are not attached to each other and/or they can have different configurations. In the particular embodiment shown in FIG. 4 , the partitions 530 a - d are annular horizontal members, and each of the lips 536 a - d are annular vertical members arranged concentrically about the common axis.
- the walls 510 and the partitions 530 a - d are generally dielectric materials that contain the second flow F 2 of the processing solution for shaping the electric fields generated by the electrodes 600 a - d .
- the second flow F 2 can pass (a) through each of the electrode compartments 520 a - d , (b) between the individual partitions 530 a - d , and then (c) upward through the annular openings between the lips 536 a - d .
- the secondary flow F 2 through the first electrode compartment 520 a can join the primary flow F p in an antechamber just before the primary flow guide 400
- the secondary flow through the second-fourth electrode compartments 520 b - d can join the primary flow F p beyond the top edges of the lips 536 a - d .
- the flow of electroprocessing solution then flows over a shield weir attached at rim 538 and into the gap between the housing 202 and the outer wall 222 of the container 220 as disclosed in International Application No. PCT/US00/10120.
- the fluid in the secondary flow F 2 can be prevented from flowing out of the electrode compartments 520 a - d to join the primary flow F p while still allowing electrical current to pass from the electrodes 600 to the primary flow.
- the secondary flow F 2 can exit the reaction vessel 204 through the holes 522 in the walls 510 and the hole 525 in the outer wall 222 .
- a duct can be coupled to the exit hole 525 in the outer wall 222 so that a return flow of the secondary flow passing out of the field shaping unit 500 does not mix with the return flow of the primary flow passing down the spiral ramp outside of the outer wall 222 .
- the field shaping unit 500 can have other configurations that are different than the embodiment shown in FIG. 4 .
- the electrode compartment assembly can have only a single wall 510 defining a single electrode compartment 520
- the reaction vessel 204 can include only a single electrode 600 .
- the field shaping unit of either embodiment still separates the primary and secondary flows so that the primary flow does not engage the electrode, and thus it shields the workpiece from the single electrode.
- One advantage of shielding the workpiece from the electrodes 600 a - d is that the electrodes can accordingly be much larger than they could be without the field shaping unit because the size of the electrodes does not have an effect on the electrical field presented to the workpiece. This is particularly useful in situations that use consumable electrodes because increasing the size of the electrodes prolongs the life of each electrode, which reduces downtime for servicing and replacing electrodes.
- reaction vessel 204 shown in FIG. 4 can accordingly have a first conduit system for conditioning and directing the primary fluid flow F p to the workpiece, and a second conduit system for conditioning and directing the secondary fluid flow F 2 .
- the first conduit system can include the inlet 320 of the distributor 300 ; the channel 324 between the base 412 of the primary flow guide 400 and the inclined cavity 322 of the distributor 300 ; a plenum between the wall 422 of the outer baffle 420 and the first wall 510 a of the field shaping unit 500 ; the primary flow guide 400 ; and the interior surface 537 of the first lip 536 a .
- the first conduit system conditions the direction of the primary fluid flow F p by passing it through the primary flow guide 400 and along the interior surface 537 so that the velocity of the primary flow F p normal to the workpiece is at least substantially uniform across the surface of the workpiece.
- the primary flow Fp and the rotation of the workpiece can accordingly be controlled to dominate the mass transfer of electroprocessing medium at the workpiece.
- the second conduit system can include the plenum 330 and the channels 340 - 346 of the distributor 300 , the walls 510 of the field shaping unit 500 , and the partitions 530 of the field shaping unit 500 .
- the secondary flow F 2 contacts the electrodes 600 to establish individual electrical fields in the field shaping unit 500 that are electrically coupled to the primary flow F p .
- the field shaping unit 500 separates the individual electrical fields created by the electrodes 600 a - d to create “virtual electrodes” at the top of the openings defined by the lips 536 a - d of the partitions.
- the central opening inside the first lip 536 a defines a first virtual electrode
- the annular opening between the first and second lips 536 a - b defines a second virtual electrode
- the annular opening between the second and third lips 536 b - c defines a third virtual electrode
- the annular opening between the third and fourth lips 536 c - d defines a fourth virtual electrode.
- These are “virtual electrodes” because the field shaping unit 500 shapes the individual electrical fields of the actual electrodes 600 a - d so that the effect of the electrodes 600 a - d acts as if they are placed between the top edges of the lips 536 a - d . This allows the actual electrodes 600 a - d to be isolated from the primary fluid flow, which can provide several benefits as explained in more detail below.
- An additional embodiment of the processing chamber 200 includes at least one interface member 700 (identified individually by reference numbers 700 a - d ) for further conditioning the secondary flow F 2 of electroprocessing solution.
- the interface members 700 can be filters that capture particles in the secondary flow that were generated by the electrodes (i.e., anodes) or other sources of particles.
- the filter-type interface members 700 can also inhibit bubbles in the secondary flow F 2 from passing into the primary flow F p of electroprocessing solution. This effectively forces the bubbles to pass radially outwardly through the holes 522 in the walls 510 of the field shaping unit 500 .
- the interface members 700 can be ion-membranes that allow ions in the secondary flow F 2 to pass through the interface members 700 .
- the ion-membrane interface members 700 can be selected to (a) allow the fluid of the electroprocessing solution and ions to pass through the interface member 700 , or (b) allow only the desired ions to pass through the interface member such that the fluid itself is prevented from passing beyond the ion-membrane.
- FIG. 6 is another isometric view of the reaction vessel 204 of FIG. 4 showing a cross-sectional portion taken along a different cross-section. More specifically, the cross-section of FIG. 4 is shown in FIG. 8A and the cross-section of FIG. 6 is shown in FIG. 8B .
- this illustration further shows one embodiment for configuring a plurality of interface members 700 a - d relative to the partitions 530 a - d of the field shaping unit 500 .
- a first interface member 700 a can be attached to the skirt 534 of the first partition 530 a so that a first portion of the secondary flow F 2 flows past the first electrode 600 a , through an opening 535 in the skirt 534 , and then to the first interface member 700 a . Another portion of the secondary flow F 2 can flow past the second electrode 600 b to the second interface member 700 b . Similarly, portions of the secondary flow F 2 can flow past the third and fourth electrodes 600 c - d to the third and fourth interface members 700 c - d.
- the secondary flow F 2 joins the primary fluid flow F p .
- the portion of the secondary flow F 2 in the first electrode compartment 520 a can pass through the opening 535 in the skirt 534 and the first interface member 700 a , and then into a plenum between the first wall 510 a and the outer wall 422 of the baffle 420 .
- This portion of the secondary flow F 2 accordingly joins the primary flow F p and passes through the primary flow guide 400 .
- the other portions of the secondary flow F 2 in this particular embodiment pass through the second-fourth electrode compartments 520 b - d and then through the annular openings between the lips 536 a - d .
- the second-fourth interface members 700 b - d can accordingly be attached to the field shaping unit 500 downstream from the second-fourth electrodes 600 b - d.
- the second interface member 700 b is positioned vertically between the first and second partitions 530 a - b
- the third interface member 700 c is positioned vertically between the second and third partitions 530 b - c
- the fourth interface member 700 d is positioned vertically between the third and fourth partitions 530 c - d .
- the interface assemblies 710 a - d are generally installed vertically, or at least at an upwardly inclined angle relative to horizontal, to force the bubbles to rise so that they can escape through the holes 522 in the walls 510 a - d ( FIG. 4 ). This prevents aggregations of bubbles that could potentially disrupt the electrical field from an individual electrode.
- FIGS. 7A and 7B illustrate an interface assembly 710 for mounting the interface members 700 to the field shaping unit 500 in accordance with an embodiment of the invention.
- the interface assembly 710 can include an annular interface member 700 and a fixture 720 for holding the interface member 700 .
- the fixture 720 can include a first frame 730 having a plurality of openings 732 and a second frame 740 having a plurality of openings 742 (best shown in FIG. 7A ).
- the holes 732 in the first frame can be aligned with the holes 742 in the second frame 740 .
- the second frame can further include a plurality of annular teeth 744 extending around the perimeter of the second frame.
- the teeth 744 can alternatively extend in a different direction on the exterior surface of the second frame 740 in other embodiments, but the teeth 744 generally extend around the perimeter of the second frame 740 in a top annular band and a lower annular band to provide annular seals with the partitions 536 a - d ( FIG. 6 ).
- the interface member 700 can be pressed between the first frame 730 and the second frame 740 to securely hold the interface member 700 in place.
- the interface assembly 710 can also include a top band 750 a extending around the top of the frames 730 and 740 and a bottom band 750 b extending around the bottom of the frames 730 and 740 .
- the top and bottom bands 750 a - b can be welded to the frames 730 and 740 by annular welds 752 . Additionally, the first and second frames 730 and 740 can be welded to each other by welds 754 . It will be appreciated that the interface assembly 710 can have several different embodiments that are defined by the configuration of the field shaping unit 500 ( FIG. 6 ) and the particular configuration of the electrode compartments 520 a - d ( FIG. 6 ).
- the interface member 700 is a filter material that allows the secondary flow F 2 of electroprocessing solution to pass through the holes 732 in the first frame 730 , the post-filtered portion of the solution continues along a path (arrow Q) to join the primary fluid flow F p as described above.
- a filter-type interface member 700 is POREX®, which is a porous plastic that filters particles to prevent them from passing through the interface member.
- the interface member 700 can prevent the particles generated by the anodes from reaching the plating surface of the workpiece.
- the interface member 700 can be permeable to preferred ions to allow these ions to pass through the interface member 700 and into the primary fluid flow F p .
- One suitable ion-membrane is NAFION® perfluorinated membranes manufactured by DuPont®. In one application for copper plating, a NAFION 450 on-selective membrane is used.
- Other suitable types of ion-membranes for plating can be polymers that are permeable to many cations, but reject anions and non-polar species. It will be appreciated that in electropolishing applications, the interface member 700 may be selected to be permeable to anions, but reject cations and non-polar species.
- the preferred ions can be transferred through the ion-membrane interface member 700 by a driving force, such as a difference in concentration of ions on either side of the membrane, a difference in electrical potential, or hydrostatic pressure.
- the primary fluid flow F p that contacts the workpiece can be a catholyte and the secondary fluid flow F 2 that does not contact the workpiece can be a separate anolyte because these fluids do not mix in this embodiment.
- a benefit of having separate anolyte and catholyte fluid flows is that it eliminates the consumption of additives at the anodes and thus the need to replenish the additives as often.
- this feature combined with the “virtual electrode” aspect of the reaction vessel 204 reduces the need to “burn-in” anodes for insuring a consistent black film over the anodes for predictable current distribution because the current distribution is controlled by the configuration of the field shaping unit 500 .
- Another advantage is that it also eliminates the need to have a predictable consumption of additives in the secondary flow F 2 because the additives to the secondary flow F 2 do not effect the primary fluid flow F p when the two fluids are separated from each other.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Electroplating Methods And Accessories (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Weting (AREA)
Abstract
An apparatus and method for electrochemical processing of microelectronic workpieces in a reaction vessel. In one embodiment, the reaction vessel includes: an outer container having an outer wall; a distributor coupled to the outer container, the distributor having a first outlet configured to introduce a primary flow into the outer container and at least one second outlet configured to introduce a secondary flow into the outer container separate from the primary flow; a primary flow guide in the outer container coupled to the distributor to receive the primary flow from the first outlet and direct it to a workpiece processing site; a dielectric field shaping unit in the outer container coupled to the distributor to receive the secondary flow from the second outlet, the field shaping unit being configured to contain the secondary flow separate from the primary flow through at least a portion of the outer container, and the field shaping unit having at least one electrode compartment through which the secondary flow can pass while the secondary flow is separate from the primary flow; an electrode in the electrode compartment; and an interface member carried by the field shaping unit downstream from the electrode, the interface member being in fluid communication with the secondary flow in the electrode compartment, and the interface member being configured to prevent selected matter of the secondary flow from passing to the primary flow.
Description
- This application is a continuation-in-part of U.S. application Ser. No. 09/804,697, entitled “SYSTEM FOR ELECTROCHEMICALLY PROCESSING A WORKPIECE,” filed on Mar. 12, 2001; which is a continuation of International Application No. PCT/US00/10120, filed on Apr. 13, 2000, in the English language and published in the English language as International Publication No. WO00/61498, which claims the benefit of Provisional Application No. 60/129,055, filed on Apr. 13, 1999, all of which are herein incorporated by reference. Additionally, this application is related to the following:
-
- (a) U.S. patent application entitled “TRANSFER DEVICES FOR HANDLING MICROELECTRONIC WORKPIECES WITHIN AN ENVIRONMENT OF A PROCESSING MACHINE AND METHODS OF MANUFACTURING AND USING SUCH DEVICES IN THE PROCESSING OF MICROELECTRONIC WORKPIECES,” filed on Jun. 1, 2001, and identified by Perkins Coie LLP Docket No. 29195.8153US00;
- (b) U.S. patent application entitled “INTEGRATED TOOLS WITH TRANSFER DEVICES FOR HANDLING MICROELECTRONIC WORKPIECES,” filed on Jun. 1, 2001, and identified by Perkins Coie Docket No. 29195.8153US01;
- (c) U.S. patent application entitled “DISTRIBUTED POWER SUPPLIES FOR MICROELECTRONIC WORKPIECE PROCESSING TOOLS,” filed on Jun. 1, 2001, and identified by Perkins Coie Docket No. 29195.8155US00;
- (d) U.S. patent application entitled “ADAPTABLE ELECTROCHEMICAL PROCESSING CHAMBER,” filed on Jun. 1, 2001, and identified by Perkins Coie LLP Docket No. 29195.8156US00;
- (e) U.S. patent application entitled “LIFT AND ROTATE ASSEMBLY FOR USE IN A WORKPIECE PROCESSING STATION AND A METHOD OF ATTACHING THE SAME,” filed on Jun. 1, 2001, and identified by Perkins Coie Docket No. 29195.8154US00;
- (f) U.S. patent applications entitled “TUNING ELECTRODES USED IN A REACTOR FOR ELECTROCHEMICALLY PROCESSING A MICROELECTRONIC WORKPIECE,” one filed on May 4, 2001, and identified by U.S. application Ser. No. 09/849,505, and two additional applications filed on May 24, 2001, and identified separately by Perkins Coie Docket Nos. 29195.8157US02 and 29195.8157US03.
- All of the foregoing U.S. patent applications in paragraphs (a)-(f) above are herein incorporated by reference.
- This application relates to reaction vessels and methods of making and using such vessels in electrochemical processing of microelectronic workpieces.
- Microelectronic devices, such as semiconductor devices and field emission displays, are generally fabricated on and/or in microelectronic workpieces using several different types of machines (“tools”). Many such processing machines have a single processing station that performs one or more procedures on the workpieces. Other processing machines have a plurality of processing stations that perform a series of different procedures on individual workpieces or batches of workpieces. In a typical fabrication process, one or more layers of conductive materials are formed on the workpieces during deposition stages. The workpieces are then typically subject to etching and/or polishing procedures (i.e., planarization) to remove a portion of the deposited conductive layers for forming electrically isolated contacts and/or conductive lines.
- Plating tools that plate metals or other materials on the workpieces are becoming an increasingly useful type of processing machine. Electroplating and electroless plating techniques can be used to deposit copper, solder, permalloy, gold, silver, platinum and other metals onto workpieces for forming blanket layers or patterned layers. A typical copper plating process involves depositing a copper seed layer onto the surface of the workpiece using chemical vapor deposition (CVD), physical vapor deposition (PVD), electroless plating processes, or other suitable methods. After forming the seed layer, a blanket layer or patterned layer of copper is plated onto the workpiece by applying an appropriate electrical potential between the seed layer and an anode in the presence of an electroprocessing solution. The workpiece is then cleaned, etched and/or annealed in subsequent procedures before transferring the workpiece to another processing machine.
-
FIG. 1 illustrates an embodiment of a single-wafer processing station 1 that includes acontainer 2 for receiving a flow of electroplating solution from afluid inlet 3 at a lower portion of thecontainer 2. Theprocessing station 1 can include ananode 4, a plate-type diffuser 6 having a plurality of apertures 7, and aworkpiece holder 9 for carrying a workpiece 5. Theworkpiece holder 9 can include a plurality of electrical contacts for providing electrical current to a seed layer on the surface of the workpiece 5. When the seed layer is biased with a negative potential relative to theanode 4, it acts as a cathode. In operation the electroplating fluid flows around theanode 4, through the apertures 7 in thediffuser 6 and against the plating surface of the workpiece 5. The electroplating solution is an electrolyte that conducts electrical current between theanode 4 and the cathodic seed layer on the surface of the workpiece 5. Therefore, ions in the electroplating solution plate the surface of the workpiece 5. - The plating machines used in fabricating microelectronic devices must eet many specific performance criteria. For example, many processes must be able to form small contacts in vias that are less than 0.5 μm wide, and are desirably less than 0.1 μm wide. The plated metal layers accordingly often need to fill vias or trenches that are on the order of 0.1 μm wide, and the layer of plated material should also be deposited to a desired, uniform thickness across the surface of the workpiece 5. One factor that influences the uniformity of the plated layer is the mass transfer of electroplating solution at the surface of the workpiece. This parameter is generally influenced by the velocity of the flow of the electroplating solution perpendicular to the surface of the workpiece. Another factor that influences the uniformity of the plated layer is the current density of the electrical field across the surface of the wafer.
- One concern of existing electroplating equipment is providing a uniform mass transfer at the surface of the workpiece. Referring to
FIG. 1 , existing plating tools generally use thediffuser 6 to enhance the uniformity of the fluid flow perpendicular to the face of the workpiece. Although thediffuser 6 improves the uniformity of the fluid flow, it produces a plurality of localized areas of increased flow velocity perpendicular to the surface of the workpiece 5 (indicated by arrows 8). The localized areas generally correspond to the position of the apertures 7 in thediffuser 6. The increased velocity of the fluid flow normal to the substrate in the localized areas increases the mass transfer of the electroplating solution in these areas. This typically results in faster plating rates in the localized areas over the apertures 7. Although many different configurations of apertures have been used in plate-type diffusers, these diffusers may not provide adequate uniformity for the precision required in many current applications. - Another concern of existing plating tools is that the diffusion layer in the electroplating solution adjacent to the surface of the workpiece 5 can be disrupted by gas bubbles or particles. For example, bubbles can be introduced to the plating solution by the plumbing and pumping system of the processing equipment, or they can evolve from inert anodes. Consumable anodes are often used to prevent or reduce the evolvement of gas bubbles in the electroplating solution, but these anodes erode and they can form a passivated film surface that must be maintained. Consumable anodes, moreover, often generate particles that can be carried in the plating solution. As a result, gas bubbles and/or particles can flow to the surface of the workpiece 5, which disrupts the uniformity and affects the quality of the plated layer.
- Still another challenge of plating uniform layers is providing a desired electrical field at the surface of the workpiece 5. The distribution of electrical current in the plating solution is a function of the uniformity of the seed layer across the contact surface, the configuration/condition of the anode, and the configuration of the chamber. However, the current density profile on the plating surface can change. For example, the current density profile typically changes during a plating cycle because plating material covers the seed layer, or it can change over a longer period of time because the shape of consumable anodes changes as they erode and the concentration of constituents in the plating solution can change. Therefore, it can be difficult to maintain a desired current density at the surface of the workpiece 5.
- The present invention is directed toward reaction vessels for electrochemical processing of microelectronic workpieces, processing stations including such reaction vessels, and methods for using these devices. Several embodiments of reaction vessels in accordance with the invention solve the problem of providing a desired mass transfer at the workpiece by configuring the electrodes so that a primary flow guide and/or a field shaping unit in the reaction vessel direct a substantially uniform primary fluid flow toward the workpiece. Additionally, field shaping units in accordance with several embodiments of the invention create virtual electrodes such that the workpiece is shielded from the electrodes. This allows for the use of larger electrodes to increase electrode life, eliminates the need to “burn-in” electrodes to decrease downtime, and/or provides the capability of manipulating the electrical field by merely controlling the electrical current to one or more of the electrodes in the vessel. Furthermore, additional embodiments of the invention include interface members in the reaction vessel that inhibit particulates, bubbles and other undesirable matter in the reaction vessel from contacting the workpiece to enhance the uniformity and the quality of the finished surface on the workpieces. The interface members can also allow two different types of fluids to be used in the reaction vessel, such as a catholyte and an anolyte, to reduce the need to replenish additives as often and to add more flexibility to designing electrodes and other components in the reaction vessel.
- In one embodiment of the invention, a reaction vessel includes an outer container having an outer wall, a first outlet configured to introduce a primary fluid flow into the outer container, and at least one second outlet configured to introduce a secondary fluid flow into the outer container separate from the primary fluid flow. The reaction vessel can also include a field shaping unit in the outer container and at least one electrode. The field shaping unit can be a dielectric assembly coupled to the second outlet to receive the secondary flow and configured to contain the secondary flow separate from the primary flow through at least a portion of the outer container. The field shaping unit also has at least one electrode compartment through which the secondary flow can pass separately from the primary flow. The electrode is positioned in the electrode compartment.
- In a particular embodiment, the field shaping unit has a compartment assembly having a plurality of electrode compartments and a virtual electrode unit. The compartment assembly can include a plurality of annular walls including an inner or first annular wall centered on a common axis and an outer or second annular wall concentric with the first annular wall and spaced radially outward. The annular walls of the field shaping unit can be positioned inside of outer wall of the outer container so that an annular space between the first and second walls defines a first electrode compartment and an annular space between the second wall and the outer wall defines a second electrode compartment. The reaction vessel of this particular embodiment can have a first annular electrode in the first electrode compartment and/or a second annular electrode in the second electrode compartment.
- The virtual electrode unit can include a plurality of partitions that have lateral sections attached to corresponding annular walls of the electrode compartment and lips that project from the lateral sections. In one embodiment, the first partition has an annular first lip that defines a central opening, and the second partition has an annular second lip surrounding the first lip that defines an annular opening.
- In additional embodiments, the reaction vessel can further include a distributor coupled to the outer container and a primary flow guide in the outer container. The distributor can include the first outlet and the second outlet such that the first outlet introduces the primary fluid flow into the primary flow guide and the second outlet introduces the secondary fluid flow into the field shaping unit separately from the primary flow. The primary flow guide can condition the primary flow for providing a desired fluid flow to a workpiece processing site. In one particular embodiment, the primary flow guide directs the primary flow through the central opening of the first annular lip of the first partition. The secondary flow is distributed to the electrode compartments of the field shaping unit to establish an electrical field in the reaction vessel.
- In the operation of one embodiment, the primary flow can pass through a first flow channel defined, at least in part, by the primary flow guide and the lip of the first partition. The primary flow can be the dominant flow through the reaction vessel so that it controls the mass transfer at the workpiece. The secondary flow can generally be contained within the field shaping unit so that the electrical field(s) of the electrode(s) are shaped by the virtual electrode unit and the electrode compartments. For example, in the embodiment having first and second annular electrodes, the electrical effect of the first electrode can act as if it is placed in the central opening defined by the lip of the first partition, and the electrical effect of the second electrode can act as if it is placed in the annular opening between the first and second lips. The actual electrodes, however, can be shielded from the workpiece by the field shaping unit such that the size and shape of the actual electrodes does not affect the electrical field perceived by the workpiece.
- One feature of several embodiments is that the field shaping unit shields the workpiece from the electrodes. As a result, the electrodes can be much larger than they could without the field shaping unit because the size and configuration of the actual electrodes does not appreciably affect the electrical field perceived by the workpiece. This is particularly useful when the electrodes are consumable anodes because the increased size of the anodes prolongs their life, which reduces downtime for servicing a tool. Additionally, this reduces the need to “burn-in” anodes because the field shaping element reduces the impact that films on the anodes have on the shape of the electrical field perceived by the workpiece. Both of these benefits significantly improve the operating efficiency of the reaction vessel.
- Another feature of several embodiments of the invention is that they provide a uniform mass transfer at the surface of the workpiece. Because the field shaping unit separates the actual electrodes from the effective area where they are perceived by the workpiece, the actual electrodes can be configured to accommodate internal structure that guides the flow along a more desirable flow path. For example, this allows the primary flow to flow along a central path. Moreover, a particular embodiment includes a central primary flow guide that projects the primary flow radially inward along diametrically opposed vectors that create a highly uniform primary flow velocity in a direction perpendicular to the surface of the workpiece.
- The reaction vessel can also include an interface member carried by the field shaping unit downstream from the electrode. The interface member can be in fluid communication with the secondary flow in the electrode compartment. The interface member, for example, can be a filter and/or an ion-membrane. In either case, the interface member can inhibit particulates (e.g., particles from an anode) and bubbles in the secondary flow from reaching the surface of the workpiece to reduce non-uniformities on the processed surface. This accordingly increases the quality of the surface of the workpiece. Additionally, in the case of an ion-membrane, the interface member can be configured to prevent fluids from passing between the secondary flow and the primary flow while allowing preferred ions to pass between the flows. This allows the primary flow and the secondary flow to be different types of fluids, such as a catholyte and an anolyte, which reduces the need to replenish additives as often and adds more flexibility to designing electrodes and other features of the reaction vessel.
-
FIG. 1 is a schematic diagram of an electroplating chamber in accordance with the prior art. -
FIG. 2 is an isometric view of an electroprocessing machine having electroprocessing stations for processing microelectronic workpieces in accordance with an embodiment of the invention. -
FIG. 3 is a cross-sectional view of an electroprocessing station having a processing chamber for use in an electroprocessing machine in accordance with an embodiment of the invention. Selected components inFIG. 3 are shown schematically. -
FIG. 4 is an isometric view showing a cross-sectional portion of a processing chamber taken along line 4-4 ofFIG. 8A . -
FIGS. 5A-5D are cross-sectional views of a distributor for a processing chamber in accordance with an embodiment of the invention. -
FIG. 6 is an isometric view showing a different cross-sectional portion of the processing chamber ofFIG. 4 taken along line 6-6 ofFIG. 8B . -
FIG. 7A is an isometric view of an interface assembly for use in a processing chamber in accordance with an embodiment of the invention. -
FIG. 7B is a cross-sectional view of the interface assembly ofFIG. 7A . -
FIGS. 8A and 8B are top plan views of a processing chamber that provide a reference for the isometric, cross-sectional views ofFIGS. 4 and 6 , respectively. - The following description discloses the details and features of several embodiments of electrochemical reaction vessels for use in electrochemical processing stations and integrated tools to process microelectronic workpieces. The term “microelectronic workpiece” is used throughout to include a workpiece formed from a substrate upon which and/or in which microelectronic circuits or components, data storage elements or layers, and/or micro-mechanical elements are fabricated. It will be appreciated that several of the details set forth below are provided to describe the following embodiments in a manner sufficient to enable a person skilled in the art to make and use the disclosed embodiments. Several of the details and advantages described below, however, may not be necessary to practice certain embodiments of the invention. Additionally, the invention can also include additional embodiments that are within the scope of the claims, but are not described in detail with respect to
FIGS. 2-8B . - The operation and features of electrochemical reaction vessels are best understood in light of the environment and equipment in which they can be used to electrochemically process workpieces (e.g., electroplate and/or electropolish). As such, embodiments of integrated tools with processing stations having the electrochemical reaction vessels are initially described with reference to
FIGS. 2 and 3 . The details and features of several embodiments of electrochemical reaction vessels are then described with reference toFIGS. 4-8B . -
FIG. 2 is an isometric view of aprocessing machine 100 having anelectrochemical processing station 120 in accordance with an embodiment of the invention. A portion of theprocessing machine 100 is shown in a cut-away view to illustrate selected internal components. In one aspect of this embodiment, theprocessing machine 100 can include acabinet 102 having aninterior region 104 defining an interior enclosure that is at least partially isolated from anexterior region 105. Thecabinet 102 can also include a plurality of apertures 106 (only one shown inFIG. 1 ) through whichmicroelectronic workpieces 101 can ingress and egress between theinterior region 104 and a load/unloadstation 110. - The load/unload
station 110 can have two container supports 112 that are each housed in aprotective shroud 113. The container supports 112 are configured to positionworkpiece containers 114 relative to theapertures 106 in thecabinet 102. Theworkpiece containers 114 can each house a plurality ofmicroelectronic workpieces 101 in a “mini” clean environment for carrying a plurality of workpieces through other environments that are not at clean room standards. Each of theworkpiece containers 114 is accessible from theinterior region 104 of thecabinet 102 through theapertures 106. - The
processing machine 100 can also include a plurality ofelectrochemical processing stations 120 and atransfer device 130 in theinterior region 104 of thecabinet 102. Theprocessing machine 100, for example, can be a plating tool that also includes clean/etch capsules 122, electroless plating stations, annealing stations, and/or metrology stations. - The
transfer device 130 includes a linear track 132 extending in a lengthwise direction of theinterior region 104 between the processing stations. Thetransfer device 130 can further include arobot unit 134 carried by the track 132. In the particular embodiment shown inFIG. 2 , a first set of processing stations is arranged along a first row R1-R1 and a second set of processing stations is arranged long a second row R2-R2. The linear track 132 extends between the first and second rows of processing stations, and therobot unit 134 can access any of the processing stations along the track 132. -
FIG. 3 illustrates an embodiment of an electrochemical-processing chamber 120 having ahead assembly 150 and aprocessing chamber 200. Thehead assembly 150 includes aspin motor 152, arotor 154 coupled to thespin motor 152, and acontact assembly 160 carried by therotor 154. Therotor 154 can have abacking plate 155 and aseal 156. Thebacking plate 155 can move transverse to a workpiece 101 (arrow T) between a first position in which thebacking plate 155 contacts a backside of the workpiece 101 (shown in solid lines inFIG. 3 ) and a second position in which it is spaced apart from the backside of the workpiece 101 (shown in broken lines inFIG. 3 ). Thecontact assembly 160 can have asupport member 162, a plurality ofcontacts 164 carried by thesupport member 162, and a plurality ofshafts 166 extending between thesupport member 162 and therotor 154. Thecontacts 164 can be ring-type spring contacts or other types of contacts that are configured to engage a portion of the seed-layer on theworkpiece 101. Commerciallyavailable head assemblies 150 andcontact assemblies 160 can be used in theelectroprocessing chamber 120. Particularsuitable head assemblies 150 andcontact assemblies 160 are disclosed in U.S. Pat. Nos. 6,228,232 and 6,080,691; and U.S. application Ser. Nos. 09/385,784; 09/386,803; 09/386,610; 09/386,197; 09/501,002; 09/733,608; and 09/804,696, all of which are herein incorporated by reference. - The
processing chamber 200 includes an outer housing 202 (shown schematically inFIG. 3 ) and a reaction vessel 204 (also shown schematically inFIG. 3 ) in thehousing 202. Thereaction vessel 204 carries at least one electrode (not shown inFIG. 3 ) and directs a flow of electroprocessing solution to theworkpiece 101. The electroprocessing solution, for example, can flow over a weir (arrow F) and into theexternal housing 202, which captures the electroprocessing solution and sends it back to a tank. Several embodiments ofreaction vessels 204 are shown and described in detail with reference toFIGS. 4-8B . - In operation the
head assembly 150 holds the workpiece at a workpiece-processing site of thereaction vessel 204 so that at least a plating surface of the workpiece engages the electroprocessing solution. An electrical field is established in the solution by applying an electrical potential between the plating surface of the workpiece via thecontact assembly 160 and one or more electrodes in thereaction vessel 204. For example, thecontact assembly 160 can be biased with a negative potential with respect to the electrode(s) in thereaction vessel 204 to plate materials onto the workpiece. On the other hand thecontact assembly 160 can be biased with a positive potential with respect to the electrode(s) in thereaction vessel 204 to (a) de-plate or electropolish plated material from the workpiece or (b) deposit other materials (e.g., electrophoric resist). In general, therefore, materials can be deposited on or removed from the workpiece with the workpiece acting as a cathode or an anode depending upon the particular type of material used in the electrochemical process. -
FIGS. 4-8B illustrate several embodiments ofreaction vessels 204 for use in theprocessing chamber 200. As explained above, thehousing 202 carries thereaction vessel 204. Thehousing 202 can have adrain 210 for returning the processing fluid that flows out of thereaction vessel 204 to a storage tank, and a plurality of openings for receiving inlets and electrical fittings. Thereaction vessel 204 can include anouter container 220 having anouter wall 222 spaced radially inwardly of thehousing 202. Theouter container 220 can also have aspiral spacer 224 between theouter wall 222 and thehousing 202 to provide a spiral ramp (i.e., a helix) on which the processing fluid can flow downward to the bottom of thehousing 202. The spiral ramp reduces the turbulence of the return fluid to inhibit entrainment of gasses in the return fluid. - The particular embodiment of the
reaction vessel 204 shown inFIG. 4 can include adistributor 300 for receiving a primary fluid flow Fp and a secondary fluid flow F2, aprimary flow guide 400 coupled to thedistributor 300 to condition the primary fluid flow Fp, and afield shaping unit 500 coupled to thedistributor 300 to contain the secondary flow F2 in a manner that shapes the electrical field in thereaction vessel 204. Thereaction vessel 204 can also include at least one electrode 600 in a compartment of thefield shaping unit 500 and at least one filter or other type ofinterface member 700 carried by thefield shaping unit 500 downstream from the electrode. Theprimary flow guide 400 can condition the primary flow Fp by projecting this flow radially inwardly relative to a common axis A-A, and a portion of thefield shaping unit 500 directs the conditioned primary flow Fp toward the workpiece. In several embodiments, the primary flow passing through theprimary flow guide 400 and the center of thefield shaping unit 500 controls the mass transfer of processing solution at the surface of the workpiece. Thefield shaping unit 500 also defines the shape the electric field, and it can influence the mass transfer at the surface of the workpiece if the secondary flow passes through the field shaping unit. Thereaction vessel 204 can also have other configurations of components to guide the primary flow Fp and the secondary flow F2 through theprocessing chamber 200. Thereaction vessel 204, for example, may not have a distributor in the processing chamber, but rather separate fluid lines with individual flows can be coupled to thevessel 204 to provide a desired distribution of fluid through theprimary flow guide 400 and the field shaping unit. For example, thereaction vessel 204 can have a first outlet in theouter container 220 for introducing the primary flow into the reaction vessel and a second outlet in the outer container for introducing the secondary flow into thereaction vessel 204. Each of these components is explained in more detail below. -
FIGS. 5A-5D illustrate an embodiment of thedistributor 300 for directing the primary fluid flow to theprimary flow guide 400 and the secondary fluid flow to thefield shaping unit 500. Referring toFIG. 5A , thedistributor 300 can include abody 310 having a plurality of annular steps 312 (identified individually by reference numbers 312 a-d) andannular grooves 314 in the steps 312. Theoutermost step 312 d is radially inward of the outer wall 222 (shown in broken lines) of the outer container 220 (FIG. 4 ), and each of the interior steps 312 a-c can carry an annular wall (shown in broken lines) of thefield shaping unit 500 in acorresponding groove 314. Thedistributor 300 can also include afirst inlet 320 for receiving the primary flow Fp and aplenum 330 for receiving the secondary flow F2. Thefirst inlet 320 can have an inclined,annular cavity 322 to form a passageway 324 (best shown inFIG. 4 ) for directing the primary fluid flow Fp under theprimary flow guide 400. Thedistributor 300 can also have a plurality ofupper orifices 332 along an upper part of theplenum 330 and a plurality oflower orifices 334 along a lower part of theplenum 330. As explained in more detail below, the upper and lower orifices are open to channels through thebody 310 to distribute the secondary flow F2 to the risers of the steps 312. Thedistributor 300 can also have other configurations, such as a “step-less” disk or non-circular shapes. -
FIGS. 5A-5D further illustrate one configuration of channels through thebody 310 of thedistributor 300. Referring toFIG. 5A , a number offirst channels 340 extend from some of thelower orifices 334 to openings at the riser of thefirst step 312 a.FIG. 5B shows a number ofsecond channels 342 extending from theupper orifices 332 to openings at the riser of thesecond step 312 b, andFIG. 5C shows a number ofthird channels 344 extending from theupper orifices 332 to openings at the riser of thethird step 312 c. Similarly,FIG. 5D illustrates a number offourth channels 346 extending from thelower orifices 334 to the riser of thefourth step 312 d. - The particular embodiment of the channels 340-346 in
FIGS. 5A-5D are configured to transport bubbles that collect in theplenum 330 radially outward as far as practical so that these bubbles can be captured and removed from the secondary flow F2. This is beneficial because thefield shaping unit 500 removes bubbles from the secondary flow F2 by sequentially transporting the bubbles radially outwardly through electrode compartments. For example, a bubble B in the compartment above thefirst step 312 a can sequentially cascade through the compartments over the second andthird steps 312 b-c, and then be removed from the compartment above thefourth step 312 d. The first channel 340 (FIG. 5A ) accordingly carries fluid from thelower orifices 334 where bubbles are less likely to collect to reduce the amount of gas that needs to cascade from the inner compartment above thefirst step 312 a all the way out to the outer compartment. The bubbles in the secondary flow F2 are more likely to collect at the top of theplenum 330 before passing through the channels 340-346. Theupper orifices 332 are accordingly coupled to thesecond channel 342 and thethird channel 344 to deliver these bubbles outward beyond thefirst step 312 a so that they do not need to cascade through so many compartments. In this embodiment, theupper orifices 332 are not connected to thefourth channels 346 because this would create a channel that inclines downwardly from the common axis such that it may conflict with thegroove 314 in thethird step 312 c. Thus, thefourth channel 346 extends from thelower orifices 334 to thefourth step 312 d. - Referring again to
FIG. 4 , theprimary flow guide 400 receives the primary fluid flow Fp via thefirst inlet 320 of thedistributor 300. In one embodiment, theprimary flow guide 400 includes aninner baffle 410 and anouter baffle 420. The inner baffle can have a base 412 and awall 414 projecting upward and radially outward from thebase 412. Thewall 414, for example, can have an inverted frusto-conical shape and a plurality ofapertures 416. Theapertures 416 can be holes, elongated slots or other types of openings. In the illustrated embodiment, theapertures 416 are annularly extending radial slots that slant upward relative to the common axis to project the primary flow radially inward and upward relative to the common axis along a plurality of diametrically opposed vectors. Theinner baffle 410 can also includes a lockingmember 418 that couples theinner baffle 410 to thedistributor 300. - The
outer baffle 420 can include anouter wall 422 with a plurality ofapertures 424. In this embodiment, theapertures 424 are elongated slots extending in a direction transverse to theapertures 416 of theinner baffle 410. The primary flow Fp flows through (a) thefirst inlet 320, (b) thepassageway 324 under thebase 412 of theinner baffle 410, (c) theapertures 424 of theouter baffle 420, and then (d) theapertures 416 of theinner baffle 410. The combination of theouter baffle 420 and theinner baffle 410 conditions the direction of the flow at the exit of theapertures 416 in theinner baffle 410. Theprimary flow guide 400 can thus project the primary flow along diametrically opposed vectors that are inclined upward relative to the common axis to create a fluid flow that has a highly uniform velocity. In alternate embodiments, theapertures 416 do not slant upward relative to the common axis such that they can project the primary flow normal, or even downward, relative to the common axis. -
FIG. 4 also illustrates an embodiment of thefield shaping unit 500 that receives the primary fluid flow Fp downstream from theprimary flow guide 400. Thefield shaping unit 500 also contains the second fluid flow F2 and shapes the electrical field within thereaction vessel 204. In this embodiment, thefield shaping unit 500 has a compartment structure with a plurality of walls 510 (identified individually by reference numbers 510 a-d) that define electrode compartments 520 (identified individually by reference numbers 520 a-d). The walls 510 can be annular skirts or dividers, and they can be received in one of theannular grooves 314 in thedistributor 300. In one embodiment, the walls 510 are not fixed to thedistributor 300 so that thefield shaping unit 500 can be quickly removed from thedistributor 300. This allows easy access to the electrode compartments 520 and/or quick removal of thefield shaping unit 500 to change the shape of the electric field. - The
field shaping unit 500 can have at least one wall 510 outward from theprimary flow guide 400 to prevent the primary flow Fp from contacting an electrode. In the particular embodiment shown inFIG. 4 , thefield shaping unit 500 has afirst electrode compartment 520 a defined by afirst wall 510 a and asecond wall 510 b, asecond electrode compartment 520 b defined by thesecond wall 510 b and athird wall 510 c, athird electrode compartment 520 c defined by the third wall δ 10 c and afourth wall 510 d, and afourth electrode compartment 520 d defined by thefourth wall 510 d and theouter wall 222 of thecontainer 220. The walls 510 a-d of this embodiment are concentric annular dividers that define annular electrode compartments 520 a-d. Alternate embodiments of the field shaping unit can have walls with different configurations to create non-annular electrode compartments and/or each electrode compartment can be further divided into cells. The second-fourth walls 510 b-d can also includeholes 522 for allowing bubbles in the first-third electrode compartments 520 a-c to “cascade” radially outward to the next outward electrode compartment 520 as explained above with respect toFIGS. 5A-5D . The bubbles can then exit thefourth electrode compartment 520 d through anexit hole 525 through theouter wall 222. In an alternate embodiment, the bubbles can exit through anexit hole 524. - The electrode compartments 520 provide electrically discrete compartments to house an electrode assembly having at least one electrode and generally two or more electrodes 600 (identified individually by reference numbers 600 a-d). The electrodes 600 can be annular members (e.g., annular rings or arcuate sections) that are configured to fit within annular electrode compartments, or they can have other shapes appropriate for the particular workpiece (e.g., rectilinear). In the illustrated embodiment, for example, the electrode assembly includes a first
annular electrode 600 a in thefirst electrode compartment 520 a, a secondannular electrode 600 b in thesecond electrode compartment 520 b, a thirdannular electrode 600 c in thethird electrode compartment 520 c, and a fourthannular electrode 600 d in thefourth electrode compartment 520 d. As explained in U.S. Application Nos. 60/206,661, 09/845,505, and 09/804,697, all of which are incorporated herein by reference, each of the electrodes 600 a-d can be biased with the same or different potentials with respect to the workpiece to control the current density across the surface of the workpiece. In alternate embodiments, the electrodes 600 can be non-circular shapes or sections of other shapes. - Embodiments of the
reaction vessel 204 that include a plurality of electrodes provide several benefits for plating or electropolishing. In plating applications, for example, the electrodes 600 can be biased with respect to the workpiece at different potentials to provide uniform plating on different workpieces even though the seed layers vary from one another or the bath(s) of electroprocessing solution have different conductivities and/or concentrations of constituents. Additionally, another the benefit of having a multiple electrode design is that plating can be controlled to achieve different final fill thicknesses of plated layers or different plating rates during a plating cycle or in different plating cycles. Other benefits of particular embodiments are that the current density can be controlled to (a) provide a uniform current density during feature filling and/or (b) achieve plating to specific film profiles across a workpiece (e.g., concave, convex, flat). Accordingly, the multiple electrode configurations in which the electrodes are separate from one another provide several benefits for controlling the electrochemical process to (a) compensate for deficiencies or differences in seed layers between workpieces, (b) adjust for variances in baths of electroprocessing solutions, and/or (c) achieve predetermined feature filling or film profiles. - The
field shaping unit 500 can also include a virtual electrode unit coupled to the walls 510 of the compartment assembly for individually shaping the electrical fields produced by the electrodes 600. In the particular embodiment illustrated inFIG. 4 , the virtual electrode unit includes first-fourth partitions 530 a-530 d, respectively. Thefirst partition 530 a can have afirst section 532 a coupled to thesecond wall 510 b, askirt 534 depending downward above thefirst wall 510 a, and alip 536 a projecting upwardly. Thelip 536 a has aninterior surface 537 that directs the primary flow Fp exiting from theprimary flow guide 400. Thesecond partition 530 b can have afirst section 532 b coupled to thethird wall 510 c and alip 536 b projecting upward from thefirst section 532 b, thethird partition 530 c can have afirst section 532 c coupled to thefourth wall 510 d and alip 536 c projecting upward from thefirst section 532 c, and thefourth partition 530 d can have afirst section 532 d carried by theouter wall 222 of thecontainer 220 and alip 536 d projecting upward from thefirst section 532 d. Thefourth partition 530 d may not be connected to theouter wall 222 so that thefield shaping unit 500 can be quickly removed from thevessel 204 by simply lifting the virtual electrode unit. The interface between thefourth partition 530 d and theouter wall 222 is sealed by aseal 527 to inhibit both the fluid and the electrical current from leaking out of thefourth electrode compartment 520 d. Theseal 527 can be a lip seal. Additionally, each of the sections 532 a-d can be lateral sections extending transverse to the common axis. - The individual partitions 530 a-d can be machined from or molded into a single piece of dielectric material, or they can be individual dielectric members that are welded together. In alternate embodiments, the individual partitions 530 a-d are not attached to each other and/or they can have different configurations. In the particular embodiment shown in
FIG. 4 , the partitions 530 a-d are annular horizontal members, and each of the lips 536 a-d are annular vertical members arranged concentrically about the common axis. - The walls 510 and the partitions 530 a-d are generally dielectric materials that contain the second flow F2 of the processing solution for shaping the electric fields generated by the electrodes 600 a-d. The second flow F2, for example, can pass (a) through each of the electrode compartments 520 a-d, (b) between the individual partitions 530 a-d, and then (c) upward through the annular openings between the lips 536 a-d. In this embodiment, the secondary flow F2 through the
first electrode compartment 520 a can join the primary flow Fp in an antechamber just before theprimary flow guide 400, and the secondary flow through the second-fourth electrode compartments 520 b-d can join the primary flow Fp beyond the top edges of the lips 536 a-d. The flow of electroprocessing solution then flows over a shield weir attached atrim 538 and into the gap between thehousing 202 and theouter wall 222 of thecontainer 220 as disclosed in International Application No. PCT/US00/10120. The fluid in the secondary flow F2 can be prevented from flowing out of the electrode compartments 520 a-d to join the primary flow Fp while still allowing electrical current to pass from the electrodes 600 to the primary flow. In this alternate embodiment, the secondary flow F2 can exit thereaction vessel 204 through theholes 522 in the walls 510 and thehole 525 in theouter wall 222. In still additional embodiments in which the fluid of the secondary flow does not join the primary flow, a duct can be coupled to theexit hole 525 in theouter wall 222 so that a return flow of the secondary flow passing out of thefield shaping unit 500 does not mix with the return flow of the primary flow passing down the spiral ramp outside of theouter wall 222. Thefield shaping unit 500 can have other configurations that are different than the embodiment shown inFIG. 4 . For example, the electrode compartment assembly can have only a single wall 510 defining a single electrode compartment 520, and thereaction vessel 204 can include only a single electrode 600. The field shaping unit of either embodiment still separates the primary and secondary flows so that the primary flow does not engage the electrode, and thus it shields the workpiece from the single electrode. One advantage of shielding the workpiece from the electrodes 600 a-d is that the electrodes can accordingly be much larger than they could be without the field shaping unit because the size of the electrodes does not have an effect on the electrical field presented to the workpiece. This is particularly useful in situations that use consumable electrodes because increasing the size of the electrodes prolongs the life of each electrode, which reduces downtime for servicing and replacing electrodes. - An embodiment of
reaction vessel 204 shown inFIG. 4 can accordingly have a first conduit system for conditioning and directing the primary fluid flow Fp to the workpiece, and a second conduit system for conditioning and directing the secondary fluid flow F2. The first conduit system, for example, can include theinlet 320 of thedistributor 300; thechannel 324 between the base 412 of theprimary flow guide 400 and theinclined cavity 322 of thedistributor 300; a plenum between thewall 422 of theouter baffle 420 and thefirst wall 510 a of thefield shaping unit 500; theprimary flow guide 400; and theinterior surface 537 of thefirst lip 536 a. The first conduit system conditions the direction of the primary fluid flow Fp by passing it through theprimary flow guide 400 and along theinterior surface 537 so that the velocity of the primary flow Fp normal to the workpiece is at least substantially uniform across the surface of the workpiece. The primary flow Fp and the rotation of the workpiece can accordingly be controlled to dominate the mass transfer of electroprocessing medium at the workpiece. - The second conduit system, for example, can include the
plenum 330 and the channels 340-346 of thedistributor 300, the walls 510 of thefield shaping unit 500, and the partitions 530 of thefield shaping unit 500. The secondary flow F2 contacts the electrodes 600 to establish individual electrical fields in thefield shaping unit 500 that are electrically coupled to the primary flow Fp. Thefield shaping unit 500, for example, separates the individual electrical fields created by the electrodes 600 a-d to create “virtual electrodes” at the top of the openings defined by the lips 536 a-d of the partitions. In this particular embodiment, the central opening inside thefirst lip 536 a defines a first virtual electrode, the annular opening between the first and second lips 536 a-b defines a second virtual electrode, the annular opening between the second andthird lips 536 b-c defines a third virtual electrode, and the annular opening between the third andfourth lips 536 c-d defines a fourth virtual electrode. These are “virtual electrodes” because thefield shaping unit 500 shapes the individual electrical fields of the actual electrodes 600 a-d so that the effect of the electrodes 600 a-d acts as if they are placed between the top edges of the lips 536 a-d. This allows the actual electrodes 600 a-d to be isolated from the primary fluid flow, which can provide several benefits as explained in more detail below. - An additional embodiment of the
processing chamber 200 includes at least one interface member 700 (identified individually byreference numbers 700 a-d) for further conditioning the secondary flow F2 of electroprocessing solution. Theinterface members 700, for example, can be filters that capture particles in the secondary flow that were generated by the electrodes (i.e., anodes) or other sources of particles. The filter-type interface members 700 can also inhibit bubbles in the secondary flow F2 from passing into the primary flow Fp of electroprocessing solution. This effectively forces the bubbles to pass radially outwardly through theholes 522 in the walls 510 of thefield shaping unit 500. In alternate embodiments, theinterface members 700 can be ion-membranes that allow ions in the secondary flow F2 to pass through theinterface members 700. The ion-membrane interface members 700 can be selected to (a) allow the fluid of the electroprocessing solution and ions to pass through theinterface member 700, or (b) allow only the desired ions to pass through the interface member such that the fluid itself is prevented from passing beyond the ion-membrane. -
FIG. 6 is another isometric view of thereaction vessel 204 ofFIG. 4 showing a cross-sectional portion taken along a different cross-section. More specifically, the cross-section ofFIG. 4 is shown inFIG. 8A and the cross-section ofFIG. 6 is shown inFIG. 8B . Returning now toFIG. 6 , this illustration further shows one embodiment for configuring a plurality ofinterface members 700 a-d relative to the partitions 530 a-d of thefield shaping unit 500. Afirst interface member 700 a can be attached to theskirt 534 of thefirst partition 530 a so that a first portion of the secondary flow F2 flows past thefirst electrode 600 a, through anopening 535 in theskirt 534, and then to thefirst interface member 700 a. Another portion of the secondary flow F2 can flow past thesecond electrode 600 b to thesecond interface member 700 b. Similarly, portions of the secondary flow F2 can flow past the third andfourth electrodes 600 c-d to the third andfourth interface members 700 c-d. - When the
interface members 700 a-d are filters or ion-membranes that allow the fluid in the secondary flow F2 to pass through theinterface members 700 a-d, the secondary flow F2 joins the primary fluid flow Fp. The portion of the secondary flow F2 in thefirst electrode compartment 520 a can pass through theopening 535 in theskirt 534 and thefirst interface member 700 a, and then into a plenum between thefirst wall 510 a and theouter wall 422 of thebaffle 420. This portion of the secondary flow F2 accordingly joins the primary flow Fp and passes through theprimary flow guide 400. The other portions of the secondary flow F2 in this particular embodiment pass through the second-fourth electrode compartments 520 b-d and then through the annular openings between the lips 536 a-d. The second-fourth interface members 700 b-d can accordingly be attached to thefield shaping unit 500 downstream from the second-fourth electrodes 600 b-d. - In the particular embodiment shown in
FIG. 6 , thesecond interface member 700 b is positioned vertically between the first and second partitions 530 a-b, thethird interface member 700 c is positioned vertically between the second andthird partitions 530 b-c, and thefourth interface member 700 d is positioned vertically between the third andfourth partitions 530 c-d. Theinterface assemblies 710 a-d are generally installed vertically, or at least at an upwardly inclined angle relative to horizontal, to force the bubbles to rise so that they can escape through theholes 522 in the walls 510 a-d (FIG. 4 ). This prevents aggregations of bubbles that could potentially disrupt the electrical field from an individual electrode. -
FIGS. 7A and 7B illustrate aninterface assembly 710 for mounting theinterface members 700 to thefield shaping unit 500 in accordance with an embodiment of the invention. Theinterface assembly 710 can include anannular interface member 700 and afixture 720 for holding theinterface member 700. Thefixture 720 can include afirst frame 730 having a plurality ofopenings 732 and asecond frame 740 having a plurality of openings 742 (best shown inFIG. 7A ). Theholes 732 in the first frame can be aligned with theholes 742 in thesecond frame 740. The second frame can further include a plurality ofannular teeth 744 extending around the perimeter of the second frame. It will be appreciated that theteeth 744 can alternatively extend in a different direction on the exterior surface of thesecond frame 740 in other embodiments, but theteeth 744 generally extend around the perimeter of thesecond frame 740 in a top annular band and a lower annular band to provide annular seals with the partitions 536 a-d (FIG. 6 ). Theinterface member 700 can be pressed between thefirst frame 730 and thesecond frame 740 to securely hold theinterface member 700 in place. Theinterface assembly 710 can also include atop band 750 a extending around the top of theframes bottom band 750 b extending around the bottom of theframes frames annular welds 752. Additionally, the first andsecond frames welds 754. It will be appreciated that theinterface assembly 710 can have several different embodiments that are defined by the configuration of the field shaping unit 500 (FIG. 6 ) and the particular configuration of the electrode compartments 520 a-d (FIG. 6 ). - When the
interface member 700 is a filter material that allows the secondary flow F2 of electroprocessing solution to pass through theholes 732 in thefirst frame 730, the post-filtered portion of the solution continues along a path (arrow Q) to join the primary fluid flow Fp as described above. One suitable material for a filter-type interface member 700 is POREX®, which is a porous plastic that filters particles to prevent them from passing through the interface member. In plating systems that use consumable anodes (e.g., phosphorized copper or nickel sulfamate), theinterface member 700 can prevent the particles generated by the anodes from reaching the plating surface of the workpiece. - In alternate embodiments in which the
interface member 700 is an ion-membrane, theinterface member 700 can be permeable to preferred ions to allow these ions to pass through theinterface member 700 and into the primary fluid flow Fp. One suitable ion-membrane is NAFION® perfluorinated membranes manufactured by DuPont®. In one application for copper plating, a NAFION 450 on-selective membrane is used. Other suitable types of ion-membranes for plating can be polymers that are permeable to many cations, but reject anions and non-polar species. It will be appreciated that in electropolishing applications, theinterface member 700 may be selected to be permeable to anions, but reject cations and non-polar species. The preferred ions can be transferred through the ion-membrane interface member 700 by a driving force, such as a difference in concentration of ions on either side of the membrane, a difference in electrical potential, or hydrostatic pressure. - Using an ion-membrane that prevents the fluid of the electroprocessing solution from passing through the
interface member 700 allows the electrical current to pass through the interface member while filtering out particles, organic additives and bubbles in the fluid. For example, in plating applications in which theinterface member 700 is permeable to cations, the primary fluid flow Fp that contacts the workpiece can be a catholyte and the secondary fluid flow F2 that does not contact the workpiece can be a separate anolyte because these fluids do not mix in this embodiment. A benefit of having separate anolyte and catholyte fluid flows is that it eliminates the consumption of additives at the anodes and thus the need to replenish the additives as often. Additionally, this feature combined with the “virtual electrode” aspect of thereaction vessel 204 reduces the need to “burn-in” anodes for insuring a consistent black film over the anodes for predictable current distribution because the current distribution is controlled by the configuration of thefield shaping unit 500. Another advantage is that it also eliminates the need to have a predictable consumption of additives in the secondary flow F2 because the additives to the secondary flow F2 do not effect the primary fluid flow Fp when the two fluids are separated from each other. - From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Claims (22)
1-90. (canceled)
91. A method of electrochemically processing microelectronic workpieces in a reaction vessel having a workpiece processing zone, the method comprising:
passing a processing fluid through a distributor in the reaction vessel by flowing the processing fluid through a first channel of the distributor and a second channel of the distributor;
receiving the processing fluid from the first channel in a first electrode compartment in the reaction vessel in which a first electrode is positioned and flowing the processing fluid through the first electrode compartment;
receiving the processing fluid from the second channel in a second electrode compartment in the reaction vessel in which a second electrode is positioned and flowing the processing fluid through the second electrode compartment;
applying a first electrical potential to the first electrode and applying a second electrical potential to the second electrode that is different than the first electrical potential; and
inhibiting matter in the processing fluid from passing out of the first and second electrode compartments and to the processing zone.
92. The method of claim 91 , further comprising changing at least one of the first electrical potential and/or the second electrical potential while processing a workpiece.
93. The method of claim 91 , further comprising directing a primary fluid flow through the reaction vessel toward the processing zone, and wherein the processing fluid flowing through the first and second channels of the distributor comprises a secondary flow of processing fluid that is separated from the primary fluid flow through at least a portion of the reaction vessel.
94. The method of claim 93 wherein the primary fluid flow comprises a catholyte and the secondary fluid flow comprises an anolyte.
95. The method of claim 94 , further comprising contacting a surface of a microelectronic workpiece with the catholyte.
96. The method of claim 95 , further comprising changing at least one of the first electrical potential and/or the second electrical potential while contacting the surface of the microelectronic workpiece with the catholyte.
97. The method of claim 91 , further comprising:
directing a primary fluid flow of a catholyte through the reaction vessel toward the processing zone;
contacting a surface of a microelectronic workpiece with the catholyte; and
separating the primary fluid flow of the catholyte from the processing fluid flowing through the first and second electrode compartments, wherein the processing fluid flowing through the first and second electrode compartment comprises an anolyte and defines a secondary fluid flow.
98. The method of claim 97 wherein separating the primary fluid flow from the secondary fluid flow comprises providing an ion-membrane in the reaction vessel located between the processing zone and at least one of the first and second electrode compartments.
99. A method of electrochemically processing a microelectronic workpiece in a reaction vessel having a workpiece processing zone, the method comprising:
directing an electrolytic processing fluid through a portion of the reaction vessel by passing the processing fluid through an inlet in the reaction vessel, flowing a first portion of the processing fluid from the inlet and through a first channel in the reaction vessel to a first electrode compartment in the reaction vessel, and flowing a second portion of the processing fluid from the inlet and through a second channel in the reaction vessel to a second electrode compartment in the reaction vessel;
inhibiting matter in the processing fluid from passing out of the electrode compartments and flowing to the processing zone;
applying a first electrical potential to a first electrode in the first electrode compartment and applying a second electrical potential to a second electrode in the second electrode compartment, wherein the first electrical potential is different than the second electrical potential; and
subjecting a surface of a microelectronic workpiece to an electrical field established by the first and second electrodes.
100. The method of claim 99 , further comprising changing at least one of the first electrical potential and/or the second electrical potential while subjecting the workpiece to the electrical field.
101. The method of claim 99 , further comprising directing a primary fluid flow through the reaction vessel toward the processing zone, and wherein the processing fluid flowing through the first and second channels of the distributor comprises a secondary flow of processing fluid that is separated from the primary fluid flow through at least a portion of the reaction vessel.
102. The method of claim 101 wherein the primary fluid flow comprises a catholyte and the secondary fluid flow comprises an anolyte.
103. The method of claim 102 wherein subjecting the surface of the microelectronic workpiece to the electrical field established by the first and second electrodes comprises contacting the surface of a microelectronic workpiece with the catholyte.
104. The method of claim 103 , further comprising changing at least one of the first electrical potential and/or the second electrical potential while contacting the surface of the microelectronic workpiece with the catholyte.
105. The method of claim 99 , further comprising:
directing a primary fluid flow of a catholyte through the reaction vessel toward the processing zone; and
separating the primary fluid flow of the catholyte from the processing fluid flowing through the first and second electrode compartments, wherein the processing fluid flowing through the first and second electrode compartment comprises an anolyte and defines a secondary fluid flow.
106. The method of claim 105 wherein separating the primary fluid flow from the secondary fluid flow comprises providing an ion-membrane in the reaction vessel located between the processing zone and at least one of the first and second electrode compartments.
107. A method of electrochemically processing a microelectronic workpiece in a reaction vessel having a workpiece processing zone, the method comprising:
directing a primary fluid flow through the reaction vessel and to the processing zone;
contacting a surface of a microelectronic workpiece with the primary fluid flow;
directing a secondary fluid flow through at least a portion of the reaction vessel such that a first portion of the secondary fluid flow passes through a first electrode compartment in the reaction vessel in which a first electrode is positioned and a second portion of the secondary fluid flow passes through a second electrode compartment in the reaction vessel in which a second electrode is positioned; and
inhibiting matter in the secondary fluid flow from passing into the primary fluid flow.
108. The method of claim 107 , further comprising:
applying a first electrical potential to the first electrode and applying a second electrical potential to the second electrode; and
changing at least one of the first electrical potential and/or the second electrical potential while processing a workpiece.
109. The method of claim 107 wherein the secondary fluid flow is separated from the primary fluid flow through at least a portion of the reaction vessel.
110. The method of claim 109 wherein the primary fluid flow comprises a catholyte and the secondary fluid flow comprises an anolyte.
111. The method of claim 107 , further comprising separating the primary fluid flow from the secondary fluid flow by providing an ion-membrane in the reaction vessel located between the processing zone and at least one of the first and second electrode compartments.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/096,493 US20050211551A1 (en) | 1999-04-13 | 2005-03-29 | Apparatus and methods for electrochemical processing of microelectronic workpieces |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12905599P | 1999-04-13 | 1999-04-13 | |
PCT/US2000/010120 WO2000061498A2 (en) | 1999-04-13 | 2000-04-13 | System for electrochemically processing a workpiece |
US09/804,697 US6660137B2 (en) | 1999-04-13 | 2001-03-12 | System for electrochemically processing a workpiece |
US09/872,151 US7264698B2 (en) | 1999-04-13 | 2001-05-31 | Apparatus and methods for electrochemical processing of microelectronic workpieces |
US11/096,493 US20050211551A1 (en) | 1999-04-13 | 2005-03-29 | Apparatus and methods for electrochemical processing of microelectronic workpieces |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/872,151 Continuation US7264698B2 (en) | 1999-04-13 | 2001-05-31 | Apparatus and methods for electrochemical processing of microelectronic workpieces |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050211551A1 true US20050211551A1 (en) | 2005-09-29 |
Family
ID=25358949
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/872,151 Expired - Lifetime US7264698B2 (en) | 1999-04-13 | 2001-05-31 | Apparatus and methods for electrochemical processing of microelectronic workpieces |
US11/096,428 Abandoned US20080217165A9 (en) | 1999-04-13 | 2005-03-29 | Apparatus and methods for electrochemical processing of microelectronic workpieces |
US11/096,495 Abandoned US20080217166A9 (en) | 1999-04-13 | 2005-03-29 | Apparatus and methods for electrochemical processsing of microelectronic workpieces |
US11/096,630 Abandoned US20080217167A9 (en) | 1999-04-13 | 2005-03-29 | Apparatus and methods for electrochemical processing of microelectronic workpieces |
US11/096,493 Abandoned US20050211551A1 (en) | 1999-04-13 | 2005-03-29 | Apparatus and methods for electrochemical processing of microelectronic workpieces |
US11/096,965 Abandoned US20050205409A1 (en) | 1999-04-13 | 2005-03-29 | Apparatus and methods for electrochemical processing of microelectronic workpieces |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/872,151 Expired - Lifetime US7264698B2 (en) | 1999-04-13 | 2001-05-31 | Apparatus and methods for electrochemical processing of microelectronic workpieces |
US11/096,428 Abandoned US20080217165A9 (en) | 1999-04-13 | 2005-03-29 | Apparatus and methods for electrochemical processing of microelectronic workpieces |
US11/096,495 Abandoned US20080217166A9 (en) | 1999-04-13 | 2005-03-29 | Apparatus and methods for electrochemical processsing of microelectronic workpieces |
US11/096,630 Abandoned US20080217167A9 (en) | 1999-04-13 | 2005-03-29 | Apparatus and methods for electrochemical processing of microelectronic workpieces |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/096,965 Abandoned US20050205409A1 (en) | 1999-04-13 | 2005-03-29 | Apparatus and methods for electrochemical processing of microelectronic workpieces |
Country Status (7)
Country | Link |
---|---|
US (6) | US7264698B2 (en) |
EP (1) | EP1397530A4 (en) |
JP (1) | JP2004527660A (en) |
CN (1) | CN1659315A (en) |
AU (1) | AU2002257352A1 (en) |
TW (1) | TW581854B (en) |
WO (1) | WO2002097165A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050194248A1 (en) * | 1999-04-13 | 2005-09-08 | Hanson Kyle M. | Apparatus and methods for electrochemical processing of microelectronic workpieces |
US20060226600A1 (en) * | 2005-04-06 | 2006-10-12 | Chih-Chung Fang | Variable three-dimensional labyrinth |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6749391B2 (en) | 1996-07-15 | 2004-06-15 | Semitool, Inc. | Microelectronic workpiece transfer devices and methods of using such devices in the processing of microelectronic workpieces |
US6752584B2 (en) | 1996-07-15 | 2004-06-22 | Semitool, Inc. | Transfer devices for handling microelectronic workpieces within an environment of a processing machine and methods of manufacturing and using such devices in the processing of microelectronic workpieces |
US6749390B2 (en) | 1997-12-15 | 2004-06-15 | Semitool, Inc. | Integrated tools with transfer devices for handling microelectronic workpieces |
US7438788B2 (en) * | 1999-04-13 | 2008-10-21 | Semitool, Inc. | Apparatus and methods for electrochemical processing of microelectronic workpieces |
US20060157355A1 (en) * | 2000-03-21 | 2006-07-20 | Semitool, Inc. | Electrolytic process using anion permeable barrier |
JP4288010B2 (en) * | 1999-04-13 | 2009-07-01 | セミトゥール・インコーポレイテッド | Workpiece processing apparatus having a processing chamber for improving the flow of processing fluid |
US6916412B2 (en) * | 1999-04-13 | 2005-07-12 | Semitool, Inc. | Adaptable electrochemical processing chamber |
US8236159B2 (en) * | 1999-04-13 | 2012-08-07 | Applied Materials Inc. | Electrolytic process using cation permeable barrier |
US8852417B2 (en) | 1999-04-13 | 2014-10-07 | Applied Materials, Inc. | Electrolytic process using anion permeable barrier |
US6623609B2 (en) | 1999-07-12 | 2003-09-23 | Semitool, Inc. | Lift and rotate assembly for use in a workpiece processing station and a method of attaching the same |
US20060189129A1 (en) * | 2000-03-21 | 2006-08-24 | Semitool, Inc. | Method for applying metal features onto barrier layers using ion permeable barriers |
AU2002343330A1 (en) * | 2001-08-31 | 2003-03-10 | Semitool, Inc. | Apparatus and methods for electrochemical processing of microelectronic workpieces |
US7125453B2 (en) * | 2002-01-31 | 2006-10-24 | General Electric Company | High temperature high pressure capsule for processing materials in supercritical fluids |
US6991710B2 (en) * | 2002-02-22 | 2006-01-31 | Semitool, Inc. | Apparatus for manually and automatically processing microelectronic workpieces |
US20030159921A1 (en) * | 2002-02-22 | 2003-08-28 | Randy Harris | Apparatus with processing stations for manually and automatically processing microelectronic workpieces |
US7063741B2 (en) * | 2002-03-27 | 2006-06-20 | General Electric Company | High pressure high temperature growth of crystalline group III metal nitrides |
US6893505B2 (en) | 2002-05-08 | 2005-05-17 | Semitool, Inc. | Apparatus and method for regulating fluid flows, such as flows of electrochemical processing fluids |
US20060043750A1 (en) * | 2004-07-09 | 2006-03-02 | Paul Wirth | End-effectors for handling microfeature workpieces |
US20040026255A1 (en) * | 2002-08-06 | 2004-02-12 | Applied Materials, Inc | Insoluble anode loop in copper electrodeposition cell for interconnect formation |
US7563348B2 (en) * | 2004-06-28 | 2009-07-21 | Lam Research Corporation | Electroplating head and method for operating the same |
US20060045666A1 (en) * | 2004-07-09 | 2006-03-02 | Harris Randy A | Modular tool unit for processing of microfeature workpieces |
US7531060B2 (en) * | 2004-07-09 | 2009-05-12 | Semitool, Inc. | Integrated tool assemblies with intermediate processing modules for processing of microfeature workpieces |
US20070020080A1 (en) * | 2004-07-09 | 2007-01-25 | Paul Wirth | Transfer devices and methods for handling microfeature workpieces within an environment of a processing machine |
JP4276627B2 (en) * | 2005-01-12 | 2009-06-10 | ソルボサーマル結晶成長技術研究組合 | Pressure vessel for single crystal growth and method for producing the same |
US7704324B2 (en) * | 2005-01-25 | 2010-04-27 | General Electric Company | Apparatus for processing materials in supercritical fluids and methods thereof |
US20080029400A1 (en) * | 2005-05-13 | 2008-02-07 | Stephen Mazur | Selective electroplating onto recessed surfaces |
US7942970B2 (en) | 2005-12-20 | 2011-05-17 | Momentive Performance Materials Inc. | Apparatus for making crystalline composition |
US7842173B2 (en) * | 2007-01-29 | 2010-11-30 | Semitool, Inc. | Apparatus and methods for electrochemical processing of microfeature wafers |
US8829663B2 (en) * | 2007-07-02 | 2014-09-09 | Infineon Technologies Ag | Stackable semiconductor package with encapsulant and electrically conductive feed-through |
CN102147391A (en) * | 2011-01-11 | 2011-08-10 | 哈尔滨工业大学 | Electrochemical testing device provided with array electrodes, reference electrode and circulation system |
US9017528B2 (en) | 2011-04-14 | 2015-04-28 | Tel Nexx, Inc. | Electro chemical deposition and replenishment apparatus |
US9005409B2 (en) | 2011-04-14 | 2015-04-14 | Tel Nexx, Inc. | Electro chemical deposition and replenishment apparatus |
US8496790B2 (en) * | 2011-05-18 | 2013-07-30 | Applied Materials, Inc. | Electrochemical processor |
US8496789B2 (en) | 2011-05-18 | 2013-07-30 | Applied Materials, Inc. | Electrochemical processor |
US8968532B2 (en) * | 2011-10-06 | 2015-03-03 | Applied Materials, Inc. | Electrochemical processor alignment system |
US10138564B2 (en) | 2012-08-31 | 2018-11-27 | Shin-Etsu Chemical Co., Ltd. | Production method for rare earth permanent magnet |
US10179955B2 (en) | 2012-08-31 | 2019-01-15 | Shin-Etsu Chemical Co., Ltd. | Production method for rare earth permanent magnet |
US10181377B2 (en) | 2012-08-31 | 2019-01-15 | Shin-Etsu Chemical Co., Ltd. | Production method for rare earth permanent magnet |
US9303329B2 (en) | 2013-11-11 | 2016-04-05 | Tel Nexx, Inc. | Electrochemical deposition apparatus with remote catholyte fluid management |
JP6090589B2 (en) | 2014-02-19 | 2017-03-08 | 信越化学工業株式会社 | Rare earth permanent magnet manufacturing method |
JP6191497B2 (en) * | 2014-02-19 | 2017-09-06 | 信越化学工業株式会社 | Electrodeposition apparatus and method for producing rare earth permanent magnet |
CN104947172B (en) * | 2014-03-28 | 2018-05-29 | 通用电气公司 | Plating tool and the method using the plating tool |
CN104313668B (en) * | 2014-09-30 | 2017-03-15 | 苏州芯航元电子科技有限公司 | Electronics producing line electrochemical processing cell |
Citations (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1526644A (en) * | 1922-10-25 | 1925-02-17 | Williams Brothers Mfg Company | Process of electroplating and apparatus therefor |
US3124520A (en) * | 1959-09-28 | 1964-03-10 | Electrode | |
US3309263A (en) * | 1964-12-03 | 1967-03-14 | Kimberly Clark Co | Web pickup and transfer for a papermaking machine |
US3716462A (en) * | 1970-10-05 | 1973-02-13 | D Jensen | Copper plating on zinc and its alloys |
US3798003A (en) * | 1972-02-14 | 1974-03-19 | E Ensley | Differential microcalorimeter |
US3798033A (en) * | 1971-05-11 | 1974-03-19 | Spectral Data Corp | Isoluminous additive color multispectral display |
US3930963A (en) * | 1971-07-29 | 1976-01-06 | Photocircuits Division Of Kollmorgen Corporation | Method for the production of radiant energy imaged printed circuit boards |
US4072557A (en) * | 1974-12-23 | 1978-02-07 | J. M. Voith Gmbh | Method and apparatus for shrinking a travelling web of fibrous material |
US4073708A (en) * | 1976-06-18 | 1978-02-14 | The Boeing Company | Apparatus and method for regeneration of chromosulfuric acid etchants |
US4132567A (en) * | 1977-10-13 | 1979-01-02 | Fsi Corporation | Apparatus for and method of cleaning and removing static charges from substrates |
US4134802A (en) * | 1977-10-03 | 1979-01-16 | Oxy Metal Industries Corporation | Electrolyte and method for electrodepositing bright metal deposits |
US4137867A (en) * | 1977-09-12 | 1979-02-06 | Seiichiro Aigo | Apparatus for bump-plating semiconductor wafers |
US4246088A (en) * | 1979-01-24 | 1981-01-20 | Metal Box Limited | Method and apparatus for electrolytic treatment of containers |
US4259166A (en) * | 1980-03-31 | 1981-03-31 | Rca Corporation | Shield for plating substrate |
US4310391A (en) * | 1979-12-21 | 1982-01-12 | Bell Telephone Laboratories, Incorporated | Electrolytic gold plating |
US4378283A (en) * | 1981-07-30 | 1983-03-29 | National Semiconductor Corporation | Consumable-anode selective plating apparatus |
US4431361A (en) * | 1980-09-02 | 1984-02-14 | Heraeus Quarzschmelze Gmbh | Methods of and apparatus for transferring articles between carrier members |
US4437943A (en) * | 1980-07-09 | 1984-03-20 | Olin Corporation | Method and apparatus for bonding metal wire to a base metal substrate |
US4439243A (en) * | 1982-08-03 | 1984-03-27 | Texas Instruments Incorporated | Apparatus and method of material removal with fluid flow within a slot |
US4439244A (en) * | 1982-08-03 | 1984-03-27 | Texas Instruments Incorporated | Apparatus and method of material removal having a fluid filled slot |
US4495453A (en) * | 1981-06-26 | 1985-01-22 | Fujitsu Fanuc Limited | System for controlling an industrial robot |
US4495153A (en) * | 1981-06-12 | 1985-01-22 | Nissan Motor Company, Limited | Catalytic converter for treating engine exhaust gases |
US4500394A (en) * | 1984-05-16 | 1985-02-19 | At&T Technologies, Inc. | Contacting a surface for plating thereon |
US4566847A (en) * | 1982-03-01 | 1986-01-28 | Kabushiki Kaisha Daini Seikosha | Industrial robot |
US4576685A (en) * | 1985-04-23 | 1986-03-18 | Schering Ag | Process and apparatus for plating onto articles |
US4576689A (en) * | 1979-06-19 | 1986-03-18 | Makkaev Almaxud M | Process for electrochemical metallization of dielectrics |
US4634503A (en) * | 1984-06-27 | 1987-01-06 | Daniel Nogavich | Immersion electroplating system |
US4639028A (en) * | 1984-11-13 | 1987-01-27 | Economic Development Corporation | High temperature and acid resistant wafer pick up device |
US4648944A (en) * | 1985-07-18 | 1987-03-10 | Martin Marietta Corporation | Apparatus and method for controlling plating induced stress in electroforming and electroplating processes |
US4652345A (en) * | 1983-12-19 | 1987-03-24 | International Business Machines Corporation | Method of depositing a metal from an electroless plating solution |
US4732785A (en) * | 1986-09-26 | 1988-03-22 | Motorola, Inc. | Edge bead removal process for spin on films |
US4800818A (en) * | 1985-11-02 | 1989-01-31 | Hitachi Kiden Kogyo Kabushiki Kaisha | Linear motor-driven conveyor means |
US4898647A (en) * | 1985-12-24 | 1990-02-06 | Gould, Inc. | Process and apparatus for electroplating copper foil |
US4902398A (en) * | 1988-04-27 | 1990-02-20 | American Thim Film Laboratories, Inc. | Computer program for vacuum coating systems |
US4903717A (en) * | 1987-11-09 | 1990-02-27 | Sez Semiconductor-Equipment Zubehoer Fuer die Halbleiterfertigung Gesellschaft m.b.H | Support for slice-shaped articles and device for etching silicon wafers with such a support |
US4906341A (en) * | 1987-09-24 | 1990-03-06 | Kabushiki Kaisha Toshiba | Method of manufacturing semiconductor device and apparatus therefor |
US4906340A (en) * | 1989-05-31 | 1990-03-06 | Eco-Tec Limited | Process for electroplating metals |
US4982215A (en) * | 1988-08-31 | 1991-01-01 | Kabushiki Kaisha Toshiba | Method and apparatus for creation of resist patterns by chemical development |
US4982752A (en) * | 1989-08-02 | 1991-01-08 | Nicolas Rodriguez | Dental floss device |
US4988533A (en) * | 1988-05-27 | 1991-01-29 | Texas Instruments Incorporated | Method for deposition of silicon oxide on a wafer |
US5000827A (en) * | 1990-01-02 | 1991-03-19 | Motorola, Inc. | Method and apparatus for adjusting plating solution flow characteristics at substrate cathode periphery to minimize edge effect |
US5078852A (en) * | 1990-10-12 | 1992-01-07 | Microelectronics And Computer Technology Corporation | Plating rack |
US5083364A (en) * | 1987-10-20 | 1992-01-28 | Convac Gmbh | System for manufacturing semiconductor substrates |
US5096550A (en) * | 1990-10-15 | 1992-03-17 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for spatially uniform electropolishing and electrolytic etching |
US5178639A (en) * | 1990-06-28 | 1993-01-12 | Tokyo Electron Sagami Limited | Vertical heat-treating apparatus |
US5178512A (en) * | 1991-04-01 | 1993-01-12 | Equipe Technologies | Precision robot apparatus |
US5180273A (en) * | 1989-10-09 | 1993-01-19 | Kabushiki Kaisha Toshiba | Apparatus for transferring semiconductor wafers |
US5183377A (en) * | 1988-05-31 | 1993-02-02 | Mannesmann Ag | Guiding a robot in an array |
US5186594A (en) * | 1990-04-19 | 1993-02-16 | Applied Materials, Inc. | Dual cassette load lock |
US5377708A (en) * | 1989-03-27 | 1995-01-03 | Semitool, Inc. | Multi-station semiconductor processor with volatilization |
US5388945A (en) * | 1992-08-04 | 1995-02-14 | International Business Machines Corporation | Fully automated and computerized conveyor based manufacturing line architectures adapted to pressurized sealable transportable containers |
US5391517A (en) * | 1993-09-13 | 1995-02-21 | Motorola Inc. | Process for forming copper interconnect structure |
US5391285A (en) * | 1994-02-25 | 1995-02-21 | Motorola, Inc. | Adjustable plating cell for uniform bump plating of semiconductor wafers |
US5393624A (en) * | 1988-07-29 | 1995-02-28 | Tokyo Electron Limited | Method and apparatus for manufacturing a semiconductor device |
US5489341A (en) * | 1993-08-23 | 1996-02-06 | Semitool, Inc. | Semiconductor processing with non-jetting fluid stream discharge array |
US5500081A (en) * | 1990-05-15 | 1996-03-19 | Bergman; Eric J. | Dynamic semiconductor wafer processing using homogeneous chemical vapors |
US5501768A (en) * | 1992-04-17 | 1996-03-26 | Kimberly-Clark Corporation | Method of treating papermaking fibers for making tissue |
US5591262A (en) * | 1994-03-24 | 1997-01-07 | Tazmo Co., Ltd. | Rotary chemical treater having stationary cleaning fluid nozzle |
US5593545A (en) * | 1995-02-06 | 1997-01-14 | Kimberly-Clark Corporation | Method for making uncreped throughdried tissue products without an open draw |
US5597460A (en) * | 1995-11-13 | 1997-01-28 | Reynolds Tech Fabricators, Inc. | Plating cell having laminar flow sparger |
US5597836A (en) * | 1991-09-03 | 1997-01-28 | Dowelanco | N-(4-pyridyl) (substituted phenyl) acetamide pesticides |
US5600532A (en) * | 1994-04-11 | 1997-02-04 | Ngk Spark Plug Co., Ltd. | Thin-film condenser |
US5609239A (en) * | 1994-03-21 | 1997-03-11 | Thyssen Aufzuege Gmbh | Locking system |
US5711646A (en) * | 1994-10-07 | 1998-01-27 | Tokyo Electron Limited | Substrate transfer apparatus |
US5718763A (en) * | 1994-04-04 | 1998-02-17 | Tokyo Electron Limited | Resist processing apparatus for a rectangular substrate |
US5719495A (en) * | 1990-12-31 | 1998-02-17 | Texas Instruments Incorporated | Apparatus for semiconductor device fabrication diagnosis and prognosis |
US5723028A (en) * | 1990-08-01 | 1998-03-03 | Poris; Jaime | Electrodeposition apparatus with virtual anode |
US5731678A (en) * | 1996-07-15 | 1998-03-24 | Semitool, Inc. | Processing head for semiconductor processing machines |
US5860640A (en) * | 1995-11-29 | 1999-01-19 | Applied Materials, Inc. | Semiconductor wafer alignment member and clamp ring |
US5868866A (en) * | 1995-03-03 | 1999-02-09 | Ebara Corporation | Method of and apparatus for cleaning workpiece |
US5871805A (en) * | 1996-04-08 | 1999-02-16 | Lemelson; Jerome | Computer controlled vapor deposition processes |
US5872633A (en) * | 1996-07-26 | 1999-02-16 | Speedfam Corporation | Methods and apparatus for detecting removal of thin film layers during planarization |
US5871626A (en) * | 1995-09-27 | 1999-02-16 | Intel Corporation | Flexible continuous cathode contact circuit for electrolytic plating of C4, TAB microbumps, and ultra large scale interconnects |
US5882433A (en) * | 1995-05-23 | 1999-03-16 | Tokyo Electron Limited | Spin cleaning method |
US6017820A (en) * | 1998-07-17 | 2000-01-25 | Cutek Research, Inc. | Integrated vacuum and plating cluster system |
US6017437A (en) * | 1997-08-22 | 2000-01-25 | Cutek Research, Inc. | Process chamber and method for depositing and/or removing material on a substrate |
US6025600A (en) * | 1998-05-29 | 2000-02-15 | International Business Machines Corporation | Method for astigmatism correction in charged particle beam systems |
US6027631A (en) * | 1997-11-13 | 2000-02-22 | Novellus Systems, Inc. | Electroplating system with shields for varying thickness profile of deposited layer |
US6028986A (en) * | 1995-11-10 | 2000-02-22 | Samsung Electronics Co., Ltd. | Methods of designing and fabricating intergrated circuits which take into account capacitive loading by the intergrated circuit potting material |
US6168693B1 (en) * | 1998-01-22 | 2001-01-02 | International Business Machines Corporation | Apparatus for controlling the uniformity of an electroplated workpiece |
US6168695B1 (en) * | 1999-07-12 | 2001-01-02 | Daniel J. Woodruff | Lift and rotate assembly for use in a workpiece processing station and a method of attaching the same |
US6174796B1 (en) * | 1998-01-30 | 2001-01-16 | Fujitsu Limited | Semiconductor device manufacturing method |
US6174425B1 (en) * | 1997-05-14 | 2001-01-16 | Motorola, Inc. | Process for depositing a layer of material over a substrate |
US6179983B1 (en) * | 1997-11-13 | 2001-01-30 | Novellus Systems, Inc. | Method and apparatus for treating surface including virtual anode |
US6184068B1 (en) * | 1994-06-02 | 2001-02-06 | Semiconductor Energy Laboratory Co., Ltd. | Process for fabricating semiconductor device |
US6187072B1 (en) * | 1995-09-25 | 2001-02-13 | Applied Materials, Inc. | Method and apparatus for reducing perfluorocompound gases from substrate processing equipment emissions |
US6190234B1 (en) * | 1999-01-25 | 2001-02-20 | Applied Materials, Inc. | Endpoint detection with light beams of different wavelengths |
US6193859B1 (en) * | 1997-11-13 | 2001-02-27 | Novellus Systems, Inc. | Electric potential shaping apparatus for holding a semiconductor wafer during electroplating |
US6194628B1 (en) * | 1995-09-25 | 2001-02-27 | Applied Materials, Inc. | Method and apparatus for cleaning a vacuum line in a CVD system |
US6193802B1 (en) * | 1995-09-25 | 2001-02-27 | Applied Materials, Inc. | Parallel plate apparatus for in-situ vacuum line cleaning for substrate processing equipment |
US6350319B1 (en) * | 1998-03-13 | 2002-02-26 | Semitool, Inc. | Micro-environment reactor for processing a workpiece |
US6672820B1 (en) * | 1996-07-15 | 2004-01-06 | Semitool, Inc. | Semiconductor processing apparatus having linear conveyer system |
US6678055B2 (en) * | 2001-11-26 | 2004-01-13 | Tevet Process Control Technologies Ltd. | Method and apparatus for measuring stress in semiconductor wafers |
Family Cites Families (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1881713A (en) | 1928-12-03 | 1932-10-11 | Arthur K Laukel | Flexible and adjustable anode |
US2256274A (en) | 1938-06-30 | 1941-09-16 | Firm J D Riedel E De Haen A G | Salicylic acid sulphonyl sulphanilamides |
NL83873C (en) | 1952-05-26 | |||
US3308152A (en) * | 1963-08-28 | 1967-03-07 | Dow Corning | 1, 1, 1, 3, 3, 5, 5, 5-octa-(trimethylsiloxy)-2, 2, 4, 4-tetramethylpentasiloxane |
US3328273A (en) | 1966-08-15 | 1967-06-27 | Udylite Corp | Electro-deposition of copper from acidic baths |
US3537961A (en) | 1967-12-18 | 1970-11-03 | Mutual Mining & Refining Ltd | Process of treating copper ores |
US3616284A (en) | 1968-08-21 | 1971-10-26 | Bell Telephone Labor Inc | Processing arrays of junction devices |
US3664933A (en) | 1969-06-19 | 1972-05-23 | Udylite Corp | Process for acid copper plating of zinc |
US3727620A (en) | 1970-03-18 | 1973-04-17 | Fluoroware Of California Inc | Rinsing and drying device |
US3706651A (en) | 1970-12-30 | 1972-12-19 | Us Navy | Apparatus for electroplating a curved surface |
BE791401A (en) | 1971-11-15 | 1973-05-14 | Monsanto Co | ELECTROCHEMICAL COMPOSITIONS AND PROCESSES |
DE2244434C3 (en) | 1972-09-06 | 1982-02-25 | Schering Ag, 1000 Berlin Und 4619 Bergkamen | Aqueous bath for the galvanic deposition of gold and gold alloys |
US4022679A (en) | 1973-05-10 | 1977-05-10 | C. Conradty | Coated titanium anode for amalgam heavy duty cells |
US3968885A (en) | 1973-06-29 | 1976-07-13 | International Business Machines Corporation | Method and apparatus for handling workpieces |
US4001094A (en) | 1974-09-19 | 1977-01-04 | Jumer John F | Method for incremental electro-processing of large areas |
US4000046A (en) | 1974-12-23 | 1976-12-28 | P. R. Mallory & Co., Inc. | Method of electroplating a conductive layer over an electrolytic capacitor |
GB1481663A (en) | 1975-01-09 | 1977-08-03 | Parel S | Electrowinning of metals |
US3953265A (en) | 1975-04-28 | 1976-04-27 | International Business Machines Corporation | Meniscus-contained method of handling fluids in the manufacture of semiconductor wafers |
US4046105A (en) | 1975-06-16 | 1977-09-06 | Xerox Corporation | Laminar deep wave generator |
US4032422A (en) | 1975-10-03 | 1977-06-28 | National Semiconductor Corporation | Apparatus for plating semiconductor chip headers |
US4030015A (en) | 1975-10-20 | 1977-06-14 | International Business Machines Corporation | Pulse width modulated voltage regulator-converter/power converter having push-push regulator-converter means |
US4165252A (en) | 1976-08-30 | 1979-08-21 | Burroughs Corporation | Method for chemically treating a single side of a workpiece |
US4170959A (en) | 1978-04-04 | 1979-10-16 | Seiichiro Aigo | Apparatus for bump-plating semiconductor wafers |
US4341629A (en) | 1978-08-28 | 1982-07-27 | Sand And Sea Industries, Inc. | Means for desalination of water through reverse osmosis |
US4276855A (en) | 1979-05-02 | 1981-07-07 | Optical Coating Laboratory, Inc. | Coating apparatus |
US4222834A (en) | 1979-06-06 | 1980-09-16 | Western Electric Company, Inc. | Selectively treating an article |
US4286541A (en) | 1979-07-26 | 1981-09-01 | Fsi Corporation | Applying photoresist onto silicon wafers |
JPS56102590A (en) | 1979-08-09 | 1981-08-17 | Koichi Shimamura | Method and device for plating of microarea |
US4422915A (en) | 1979-09-04 | 1983-12-27 | Battelle Memorial Institute | Preparation of colored polymeric film-like coating |
US4238310A (en) | 1979-10-03 | 1980-12-09 | United Technologies Corporation | Apparatus for electrolytic etching |
US4269670A (en) | 1980-03-03 | 1981-05-26 | Bell Telephone Laboratories, Incorporated | Electrode for electrochemical processes |
US4323433A (en) | 1980-09-22 | 1982-04-06 | The Boeing Company | Anodizing process employing adjustable shield for suspended cathode |
US4443117A (en) | 1980-09-26 | 1984-04-17 | Terumo Corporation | Measuring apparatus, method of manufacture thereof, and method of writing data into same |
US4304641A (en) | 1980-11-24 | 1981-12-08 | International Business Machines Corporation | Rotary electroplating cell with controlled current distribution |
SE8101046L (en) | 1981-02-16 | 1982-08-17 | Europafilm | DEVICE FOR PLANTS, Separate for the matrices of gramophone discs and the like |
US4360410A (en) | 1981-03-06 | 1982-11-23 | Western Electric Company, Inc. | Electroplating processes and equipment utilizing a foam electrolyte |
US4384930A (en) | 1981-08-21 | 1983-05-24 | Mcgean-Rohco, Inc. | Electroplating baths, additives therefor and methods for the electrodeposition of metals |
US4463503A (en) | 1981-09-29 | 1984-08-07 | Driall, Inc. | Grain drier and method of drying grain |
JPS58154842A (en) | 1982-02-03 | 1983-09-14 | Konishiroku Photo Ind Co Ltd | Silver halide color photographic sensitive material |
US4440597A (en) | 1982-03-15 | 1984-04-03 | The Procter & Gamble Company | Wet-microcontracted paper and concomitant process |
US4475823A (en) | 1982-04-09 | 1984-10-09 | Piezo Electric Products, Inc. | Self-calibrating thermometer |
US4449885A (en) | 1982-05-24 | 1984-05-22 | Varian Associates, Inc. | Wafer transfer system |
US4451197A (en) | 1982-07-26 | 1984-05-29 | Advanced Semiconductor Materials Die Bonding, Inc. | Object detection apparatus and method |
US4838289A (en) | 1982-08-03 | 1989-06-13 | Texas Instruments Incorporated | Apparatus and method for edge cleaning |
US4514269A (en) | 1982-08-06 | 1985-04-30 | Alcan International Limited | Metal production by electrolysis of a molten electrolyte |
US4469564A (en) | 1982-08-11 | 1984-09-04 | At&T Bell Laboratories | Copper electroplating process |
US4585539A (en) | 1982-08-17 | 1986-04-29 | Technic, Inc. | Electrolytic reactor |
US4436243A (en) * | 1982-09-27 | 1984-03-13 | Medical Packaging Corporation | Storage file for slides and tissue blocks |
US4541895A (en) | 1982-10-29 | 1985-09-17 | Scapa Inc. | Papermakers fabric of nonwoven layers in a laminated construction |
JPS59150094A (en) * | 1983-02-14 | 1984-08-28 | Teichiku Kk | Disc type rotary plating device |
US4982753A (en) * | 1983-07-26 | 1991-01-08 | National Semiconductor Corporation | Wafer etching, cleaning and stripping apparatus |
US4529480A (en) | 1983-08-23 | 1985-07-16 | The Procter & Gamble Company | Tissue paper |
US4469566A (en) | 1983-08-29 | 1984-09-04 | Dynamic Disk, Inc. | Method and apparatus for producing electroplated magnetic memory disk, and the like |
US4466864A (en) | 1983-12-16 | 1984-08-21 | At&T Technologies, Inc. | Methods of and apparatus for electroplating preselected surface regions of electrical articles |
US4544446A (en) | 1984-07-24 | 1985-10-01 | J. T. Baker Chemical Co. | VLSI chemical reactor |
DE8430403U1 (en) | 1984-10-16 | 1985-04-25 | Gebr. Steimel, 5202 Hennef | CENTERING DEVICE |
US4604178A (en) | 1985-03-01 | 1986-08-05 | The Dow Chemical Company | Anode |
US4685414A (en) | 1985-04-03 | 1987-08-11 | Dirico Mark A | Coating printed sheets |
JPS61178187U (en) | 1985-04-26 | 1986-11-06 | ||
US4664133A (en) | 1985-07-26 | 1987-05-12 | Fsi Corporation | Wafer processing machine |
US4760671A (en) | 1985-08-19 | 1988-08-02 | Owens-Illinois Television Products Inc. | Method of and apparatus for automatically grinding cathode ray tube faceplates |
FR2587915B1 (en) | 1985-09-27 | 1987-11-27 | Omya Sa | DEVICE FOR CONTACTING FLUIDS IN THE FORM OF DIFFERENT PHASES |
JPH0444216Y2 (en) | 1985-10-07 | 1992-10-19 | ||
US4715934A (en) | 1985-11-18 | 1987-12-29 | Lth Associates | Process and apparatus for separating metals from solutions |
US4761214A (en) | 1985-11-27 | 1988-08-02 | Airfoil Textron Inc. | ECM machine with mechanisms for venting and clamping a workpart shroud |
US4687552A (en) | 1985-12-02 | 1987-08-18 | Tektronix, Inc. | Rhodium capped gold IC metallization |
US4696729A (en) | 1986-02-28 | 1987-09-29 | International Business Machines | Electroplating cell |
US4670126A (en) | 1986-04-28 | 1987-06-02 | Varian Associates, Inc. | Sputter module for modular wafer processing system |
US4770590A (en) | 1986-05-16 | 1988-09-13 | Silicon Valley Group, Inc. | Method and apparatus for transferring wafers between cassettes and a boat |
US4778572A (en) | 1987-09-08 | 1988-10-18 | Eco-Tec Limited | Process for electroplating metals |
US4781800A (en) | 1987-09-29 | 1988-11-01 | President And Fellows Of Harvard College | Deposition of metal or alloy film |
US4828654A (en) | 1988-03-23 | 1989-05-09 | Protocad, Inc. | Variable size segmented anode array for electroplating |
US5256274A (en) * | 1990-08-01 | 1993-10-26 | Jaime Poris | Selective metal electrodeposition process |
US5595460A (en) * | 1994-06-06 | 1997-01-21 | The Tensar Corporation | Modular block retaining wall system and method of constructing same |
US6752584B2 (en) * | 1996-07-15 | 2004-06-22 | Semitool, Inc. | Transfer devices for handling microelectronic workpieces within an environment of a processing machine and methods of manufacturing and using such devices in the processing of microelectronic workpieces |
US6921467B2 (en) * | 1996-07-15 | 2005-07-26 | Semitool, Inc. | Processing tools, components of processing tools, and method of making and using same for electrochemical processing of microelectronic workpieces |
US6749390B2 (en) * | 1997-12-15 | 2004-06-15 | Semitool, Inc. | Integrated tools with transfer devices for handling microelectronic workpieces |
US5883762A (en) * | 1997-03-13 | 1999-03-16 | Calhoun; Robert B. | Electroplating apparatus and process for reducing oxidation of oxidizable plating anions and cations |
US6921468B2 (en) * | 1997-09-30 | 2005-07-26 | Semitool, Inc. | Electroplating system having auxiliary electrode exterior to main reactor chamber for contact cleaning operations |
US5882498A (en) * | 1997-10-16 | 1999-03-16 | Advanced Micro Devices, Inc. | Method for reducing oxidation of electroplating chamber contacts and improving uniform electroplating of a substrate |
US6126798A (en) * | 1997-11-13 | 2000-10-03 | Novellus Systems, Inc. | Electroplating anode including membrane partition system and method of preventing passivation of same |
US7244677B2 (en) * | 1998-02-04 | 2007-07-17 | Semitool. Inc. | Method for filling recessed micro-structures with metallization in the production of a microelectronic device |
US6391166B1 (en) * | 1998-02-12 | 2002-05-21 | Acm Research, Inc. | Plating apparatus and method |
US6565729B2 (en) * | 1998-03-20 | 2003-05-20 | Semitool, Inc. | Method for electrochemically depositing metal on a semiconductor workpiece |
US6497801B1 (en) * | 1998-07-10 | 2002-12-24 | Semitool Inc | Electroplating apparatus with segmented anode array |
JP4766579B2 (en) * | 1998-11-30 | 2011-09-07 | アプライド マテリアルズ インコーポレイテッド | Electrochemical deposition equipment |
KR100660485B1 (en) * | 1998-11-30 | 2006-12-22 | 가부시키가이샤 에바라 세이사꾸쇼 | Plating machine |
US7189318B2 (en) * | 1999-04-13 | 2007-03-13 | Semitool, Inc. | Tuning electrodes used in a reactor for electrochemically processing a microelectronic workpiece |
US7020537B2 (en) * | 1999-04-13 | 2006-03-28 | Semitool, Inc. | Tuning electrodes used in a reactor for electrochemically processing a microelectronic workpiece |
US7264698B2 (en) * | 1999-04-13 | 2007-09-04 | Semitool, Inc. | Apparatus and methods for electrochemical processing of microelectronic workpieces |
US7160421B2 (en) * | 1999-04-13 | 2007-01-09 | Semitool, Inc. | Turning electrodes used in a reactor for electrochemically processing a microelectronic workpiece |
US20030038035A1 (en) * | 2001-05-30 | 2003-02-27 | Wilson Gregory J. | Methods and systems for controlling current in electrochemical processing of microelectronic workpieces |
US6916412B2 (en) * | 1999-04-13 | 2005-07-12 | Semitool, Inc. | Adaptable electrochemical processing chamber |
JP4288010B2 (en) * | 1999-04-13 | 2009-07-01 | セミトゥール・インコーポレイテッド | Workpiece processing apparatus having a processing chamber for improving the flow of processing fluid |
US6780374B2 (en) * | 2000-12-08 | 2004-08-24 | Semitool, Inc. | Method and apparatus for processing a microelectronic workpiece at an elevated temperature |
US7102763B2 (en) * | 2000-07-08 | 2006-09-05 | Semitool, Inc. | Methods and apparatus for processing microelectronic workpieces using metrology |
US6428673B1 (en) * | 2000-07-08 | 2002-08-06 | Semitool, Inc. | Apparatus and method for electrochemical processing of a microelectronic workpiece, capable of modifying processing based on metrology |
US20050061676A1 (en) * | 2001-03-12 | 2005-03-24 | Wilson Gregory J. | System for electrochemically processing a workpiece |
US20060144712A1 (en) * | 2003-12-05 | 2006-07-06 | Klocke John L | Systems and methods for electrochemically processing microfeature workpieces |
US7794573B2 (en) * | 2003-12-05 | 2010-09-14 | Semitool, Inc. | Systems and methods for electrochemically processing microfeature workpieces |
-
2001
- 2001-05-31 US US09/872,151 patent/US7264698B2/en not_active Expired - Lifetime
-
2002
- 2002-05-22 TW TW091110773A patent/TW581854B/en not_active IP Right Cessation
- 2002-05-30 AU AU2002257352A patent/AU2002257352A1/en not_active Abandoned
- 2002-05-30 EP EP02726956A patent/EP1397530A4/en not_active Withdrawn
- 2002-05-30 CN CN028138406A patent/CN1659315A/en active Pending
- 2002-05-30 JP JP2003500322A patent/JP2004527660A/en active Pending
- 2002-05-30 WO PCT/US2002/017203 patent/WO2002097165A2/en active Application Filing
-
2005
- 2005-03-29 US US11/096,428 patent/US20080217165A9/en not_active Abandoned
- 2005-03-29 US US11/096,495 patent/US20080217166A9/en not_active Abandoned
- 2005-03-29 US US11/096,630 patent/US20080217167A9/en not_active Abandoned
- 2005-03-29 US US11/096,493 patent/US20050211551A1/en not_active Abandoned
- 2005-03-29 US US11/096,965 patent/US20050205409A1/en not_active Abandoned
Patent Citations (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1526644A (en) * | 1922-10-25 | 1925-02-17 | Williams Brothers Mfg Company | Process of electroplating and apparatus therefor |
US3124520A (en) * | 1959-09-28 | 1964-03-10 | Electrode | |
US3309263A (en) * | 1964-12-03 | 1967-03-14 | Kimberly Clark Co | Web pickup and transfer for a papermaking machine |
US3716462A (en) * | 1970-10-05 | 1973-02-13 | D Jensen | Copper plating on zinc and its alloys |
US3798033A (en) * | 1971-05-11 | 1974-03-19 | Spectral Data Corp | Isoluminous additive color multispectral display |
US3930963A (en) * | 1971-07-29 | 1976-01-06 | Photocircuits Division Of Kollmorgen Corporation | Method for the production of radiant energy imaged printed circuit boards |
US3798003A (en) * | 1972-02-14 | 1974-03-19 | E Ensley | Differential microcalorimeter |
US4072557A (en) * | 1974-12-23 | 1978-02-07 | J. M. Voith Gmbh | Method and apparatus for shrinking a travelling web of fibrous material |
US4073708A (en) * | 1976-06-18 | 1978-02-14 | The Boeing Company | Apparatus and method for regeneration of chromosulfuric acid etchants |
US4137867A (en) * | 1977-09-12 | 1979-02-06 | Seiichiro Aigo | Apparatus for bump-plating semiconductor wafers |
US4134802A (en) * | 1977-10-03 | 1979-01-16 | Oxy Metal Industries Corporation | Electrolyte and method for electrodepositing bright metal deposits |
US4132567A (en) * | 1977-10-13 | 1979-01-02 | Fsi Corporation | Apparatus for and method of cleaning and removing static charges from substrates |
US4246088A (en) * | 1979-01-24 | 1981-01-20 | Metal Box Limited | Method and apparatus for electrolytic treatment of containers |
US4576689A (en) * | 1979-06-19 | 1986-03-18 | Makkaev Almaxud M | Process for electrochemical metallization of dielectrics |
US4310391A (en) * | 1979-12-21 | 1982-01-12 | Bell Telephone Laboratories, Incorporated | Electrolytic gold plating |
US4259166A (en) * | 1980-03-31 | 1981-03-31 | Rca Corporation | Shield for plating substrate |
US4437943A (en) * | 1980-07-09 | 1984-03-20 | Olin Corporation | Method and apparatus for bonding metal wire to a base metal substrate |
US4431361A (en) * | 1980-09-02 | 1984-02-14 | Heraeus Quarzschmelze Gmbh | Methods of and apparatus for transferring articles between carrier members |
US4495153A (en) * | 1981-06-12 | 1985-01-22 | Nissan Motor Company, Limited | Catalytic converter for treating engine exhaust gases |
US4495453A (en) * | 1981-06-26 | 1985-01-22 | Fujitsu Fanuc Limited | System for controlling an industrial robot |
US4378283A (en) * | 1981-07-30 | 1983-03-29 | National Semiconductor Corporation | Consumable-anode selective plating apparatus |
US4566847A (en) * | 1982-03-01 | 1986-01-28 | Kabushiki Kaisha Daini Seikosha | Industrial robot |
US4439243A (en) * | 1982-08-03 | 1984-03-27 | Texas Instruments Incorporated | Apparatus and method of material removal with fluid flow within a slot |
US4439244A (en) * | 1982-08-03 | 1984-03-27 | Texas Instruments Incorporated | Apparatus and method of material removal having a fluid filled slot |
US4652345A (en) * | 1983-12-19 | 1987-03-24 | International Business Machines Corporation | Method of depositing a metal from an electroless plating solution |
US4500394A (en) * | 1984-05-16 | 1985-02-19 | At&T Technologies, Inc. | Contacting a surface for plating thereon |
US4634503A (en) * | 1984-06-27 | 1987-01-06 | Daniel Nogavich | Immersion electroplating system |
US4639028A (en) * | 1984-11-13 | 1987-01-27 | Economic Development Corporation | High temperature and acid resistant wafer pick up device |
US4576685A (en) * | 1985-04-23 | 1986-03-18 | Schering Ag | Process and apparatus for plating onto articles |
US4648944A (en) * | 1985-07-18 | 1987-03-10 | Martin Marietta Corporation | Apparatus and method for controlling plating induced stress in electroforming and electroplating processes |
US4800818A (en) * | 1985-11-02 | 1989-01-31 | Hitachi Kiden Kogyo Kabushiki Kaisha | Linear motor-driven conveyor means |
US4898647A (en) * | 1985-12-24 | 1990-02-06 | Gould, Inc. | Process and apparatus for electroplating copper foil |
US4732785A (en) * | 1986-09-26 | 1988-03-22 | Motorola, Inc. | Edge bead removal process for spin on films |
US4906341A (en) * | 1987-09-24 | 1990-03-06 | Kabushiki Kaisha Toshiba | Method of manufacturing semiconductor device and apparatus therefor |
US5083364A (en) * | 1987-10-20 | 1992-01-28 | Convac Gmbh | System for manufacturing semiconductor substrates |
US4903717A (en) * | 1987-11-09 | 1990-02-27 | Sez Semiconductor-Equipment Zubehoer Fuer die Halbleiterfertigung Gesellschaft m.b.H | Support for slice-shaped articles and device for etching silicon wafers with such a support |
US4902398A (en) * | 1988-04-27 | 1990-02-20 | American Thim Film Laboratories, Inc. | Computer program for vacuum coating systems |
US4988533A (en) * | 1988-05-27 | 1991-01-29 | Texas Instruments Incorporated | Method for deposition of silicon oxide on a wafer |
US5183377A (en) * | 1988-05-31 | 1993-02-02 | Mannesmann Ag | Guiding a robot in an array |
US5393624A (en) * | 1988-07-29 | 1995-02-28 | Tokyo Electron Limited | Method and apparatus for manufacturing a semiconductor device |
US4982215A (en) * | 1988-08-31 | 1991-01-01 | Kabushiki Kaisha Toshiba | Method and apparatus for creation of resist patterns by chemical development |
US5377708A (en) * | 1989-03-27 | 1995-01-03 | Semitool, Inc. | Multi-station semiconductor processor with volatilization |
US4906340A (en) * | 1989-05-31 | 1990-03-06 | Eco-Tec Limited | Process for electroplating metals |
US4982752A (en) * | 1989-08-02 | 1991-01-08 | Nicolas Rodriguez | Dental floss device |
US5180273A (en) * | 1989-10-09 | 1993-01-19 | Kabushiki Kaisha Toshiba | Apparatus for transferring semiconductor wafers |
US5000827A (en) * | 1990-01-02 | 1991-03-19 | Motorola, Inc. | Method and apparatus for adjusting plating solution flow characteristics at substrate cathode periphery to minimize edge effect |
US5186594A (en) * | 1990-04-19 | 1993-02-16 | Applied Materials, Inc. | Dual cassette load lock |
US5500081A (en) * | 1990-05-15 | 1996-03-19 | Bergman; Eric J. | Dynamic semiconductor wafer processing using homogeneous chemical vapors |
US5178639A (en) * | 1990-06-28 | 1993-01-12 | Tokyo Electron Sagami Limited | Vertical heat-treating apparatus |
US5723028A (en) * | 1990-08-01 | 1998-03-03 | Poris; Jaime | Electrodeposition apparatus with virtual anode |
US5078852A (en) * | 1990-10-12 | 1992-01-07 | Microelectronics And Computer Technology Corporation | Plating rack |
US5096550A (en) * | 1990-10-15 | 1992-03-17 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for spatially uniform electropolishing and electrolytic etching |
US5719495A (en) * | 1990-12-31 | 1998-02-17 | Texas Instruments Incorporated | Apparatus for semiconductor device fabrication diagnosis and prognosis |
US5178512A (en) * | 1991-04-01 | 1993-01-12 | Equipe Technologies | Precision robot apparatus |
US5597836A (en) * | 1991-09-03 | 1997-01-28 | Dowelanco | N-(4-pyridyl) (substituted phenyl) acetamide pesticides |
US5501768A (en) * | 1992-04-17 | 1996-03-26 | Kimberly-Clark Corporation | Method of treating papermaking fibers for making tissue |
US5388945A (en) * | 1992-08-04 | 1995-02-14 | International Business Machines Corporation | Fully automated and computerized conveyor based manufacturing line architectures adapted to pressurized sealable transportable containers |
US5489341A (en) * | 1993-08-23 | 1996-02-06 | Semitool, Inc. | Semiconductor processing with non-jetting fluid stream discharge array |
US5391517A (en) * | 1993-09-13 | 1995-02-21 | Motorola Inc. | Process for forming copper interconnect structure |
US5391285A (en) * | 1994-02-25 | 1995-02-21 | Motorola, Inc. | Adjustable plating cell for uniform bump plating of semiconductor wafers |
US5609239A (en) * | 1994-03-21 | 1997-03-11 | Thyssen Aufzuege Gmbh | Locking system |
US5591262A (en) * | 1994-03-24 | 1997-01-07 | Tazmo Co., Ltd. | Rotary chemical treater having stationary cleaning fluid nozzle |
US5718763A (en) * | 1994-04-04 | 1998-02-17 | Tokyo Electron Limited | Resist processing apparatus for a rectangular substrate |
US5600532A (en) * | 1994-04-11 | 1997-02-04 | Ngk Spark Plug Co., Ltd. | Thin-film condenser |
US6184068B1 (en) * | 1994-06-02 | 2001-02-06 | Semiconductor Energy Laboratory Co., Ltd. | Process for fabricating semiconductor device |
US5711646A (en) * | 1994-10-07 | 1998-01-27 | Tokyo Electron Limited | Substrate transfer apparatus |
US5593545A (en) * | 1995-02-06 | 1997-01-14 | Kimberly-Clark Corporation | Method for making uncreped throughdried tissue products without an open draw |
US5868866A (en) * | 1995-03-03 | 1999-02-09 | Ebara Corporation | Method of and apparatus for cleaning workpiece |
US5882433A (en) * | 1995-05-23 | 1999-03-16 | Tokyo Electron Limited | Spin cleaning method |
US6193802B1 (en) * | 1995-09-25 | 2001-02-27 | Applied Materials, Inc. | Parallel plate apparatus for in-situ vacuum line cleaning for substrate processing equipment |
US6194628B1 (en) * | 1995-09-25 | 2001-02-27 | Applied Materials, Inc. | Method and apparatus for cleaning a vacuum line in a CVD system |
US6187072B1 (en) * | 1995-09-25 | 2001-02-13 | Applied Materials, Inc. | Method and apparatus for reducing perfluorocompound gases from substrate processing equipment emissions |
US5871626A (en) * | 1995-09-27 | 1999-02-16 | Intel Corporation | Flexible continuous cathode contact circuit for electrolytic plating of C4, TAB microbumps, and ultra large scale interconnects |
US6028986A (en) * | 1995-11-10 | 2000-02-22 | Samsung Electronics Co., Ltd. | Methods of designing and fabricating intergrated circuits which take into account capacitive loading by the intergrated circuit potting material |
US5597460A (en) * | 1995-11-13 | 1997-01-28 | Reynolds Tech Fabricators, Inc. | Plating cell having laminar flow sparger |
US5860640A (en) * | 1995-11-29 | 1999-01-19 | Applied Materials, Inc. | Semiconductor wafer alignment member and clamp ring |
US5871805A (en) * | 1996-04-08 | 1999-02-16 | Lemelson; Jerome | Computer controlled vapor deposition processes |
US6672820B1 (en) * | 1996-07-15 | 2004-01-06 | Semitool, Inc. | Semiconductor processing apparatus having linear conveyer system |
US5731678A (en) * | 1996-07-15 | 1998-03-24 | Semitool, Inc. | Processing head for semiconductor processing machines |
US5872633A (en) * | 1996-07-26 | 1999-02-16 | Speedfam Corporation | Methods and apparatus for detecting removal of thin film layers during planarization |
US6174425B1 (en) * | 1997-05-14 | 2001-01-16 | Motorola, Inc. | Process for depositing a layer of material over a substrate |
US6017437A (en) * | 1997-08-22 | 2000-01-25 | Cutek Research, Inc. | Process chamber and method for depositing and/or removing material on a substrate |
US6179983B1 (en) * | 1997-11-13 | 2001-01-30 | Novellus Systems, Inc. | Method and apparatus for treating surface including virtual anode |
US6027631A (en) * | 1997-11-13 | 2000-02-22 | Novellus Systems, Inc. | Electroplating system with shields for varying thickness profile of deposited layer |
US6193859B1 (en) * | 1997-11-13 | 2001-02-27 | Novellus Systems, Inc. | Electric potential shaping apparatus for holding a semiconductor wafer during electroplating |
US6168693B1 (en) * | 1998-01-22 | 2001-01-02 | International Business Machines Corporation | Apparatus for controlling the uniformity of an electroplated workpiece |
US6174796B1 (en) * | 1998-01-30 | 2001-01-16 | Fujitsu Limited | Semiconductor device manufacturing method |
US6350319B1 (en) * | 1998-03-13 | 2002-02-26 | Semitool, Inc. | Micro-environment reactor for processing a workpiece |
US6025600A (en) * | 1998-05-29 | 2000-02-15 | International Business Machines Corporation | Method for astigmatism correction in charged particle beam systems |
US6017820A (en) * | 1998-07-17 | 2000-01-25 | Cutek Research, Inc. | Integrated vacuum and plating cluster system |
US6190234B1 (en) * | 1999-01-25 | 2001-02-20 | Applied Materials, Inc. | Endpoint detection with light beams of different wavelengths |
US6342137B1 (en) * | 1999-07-12 | 2002-01-29 | Semitool, Inc. | Lift and rotate assembly for use in a workpiece processing station and a method of attaching the same |
US6168695B1 (en) * | 1999-07-12 | 2001-01-02 | Daniel J. Woodruff | Lift and rotate assembly for use in a workpiece processing station and a method of attaching the same |
US6678055B2 (en) * | 2001-11-26 | 2004-01-13 | Tevet Process Control Technologies Ltd. | Method and apparatus for measuring stress in semiconductor wafers |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050194248A1 (en) * | 1999-04-13 | 2005-09-08 | Hanson Kyle M. | Apparatus and methods for electrochemical processing of microelectronic workpieces |
US20080217167A9 (en) * | 1999-04-13 | 2008-09-11 | Hanson Kyle M | Apparatus and methods for electrochemical processing of microelectronic workpieces |
US20060226600A1 (en) * | 2005-04-06 | 2006-10-12 | Chih-Chung Fang | Variable three-dimensional labyrinth |
Also Published As
Publication number | Publication date |
---|---|
WO2002097165A2 (en) | 2002-12-05 |
EP1397530A4 (en) | 2007-10-03 |
TW581854B (en) | 2004-04-01 |
AU2002257352A1 (en) | 2002-12-09 |
US20080217167A9 (en) | 2008-09-11 |
JP2004527660A (en) | 2004-09-09 |
US20050205419A1 (en) | 2005-09-22 |
US20030127337A1 (en) | 2003-07-10 |
US20050205409A1 (en) | 2005-09-22 |
US20050189214A1 (en) | 2005-09-01 |
US20080217165A9 (en) | 2008-09-11 |
EP1397530A2 (en) | 2004-03-17 |
WO2002097165A3 (en) | 2003-03-06 |
US7264698B2 (en) | 2007-09-04 |
US20080217166A9 (en) | 2008-09-11 |
US20050194248A1 (en) | 2005-09-08 |
CN1659315A (en) | 2005-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7264698B2 (en) | Apparatus and methods for electrochemical processing of microelectronic workpieces | |
US6916412B2 (en) | Adaptable electrochemical processing chamber | |
US20030038035A1 (en) | Methods and systems for controlling current in electrochemical processing of microelectronic workpieces | |
US6660137B2 (en) | System for electrochemically processing a workpiece | |
US7842173B2 (en) | Apparatus and methods for electrochemical processing of microfeature wafers | |
US20070131542A1 (en) | Apparatus and methods for electrochemical processing of microelectronic workpieces | |
US7585398B2 (en) | Chambers, systems, and methods for electrochemically processing microfeature workpieces | |
US7438788B2 (en) | Apparatus and methods for electrochemical processing of microelectronic workpieces | |
US20050061676A1 (en) | System for electrochemically processing a workpiece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |