US20050183348A1 - Double barbed plate with fastener - Google Patents

Double barbed plate with fastener Download PDF

Info

Publication number
US20050183348A1
US20050183348A1 US11/083,799 US8379905A US2005183348A1 US 20050183348 A1 US20050183348 A1 US 20050183348A1 US 8379905 A US8379905 A US 8379905A US 2005183348 A1 US2005183348 A1 US 2005183348A1
Authority
US
United States
Prior art keywords
dome
fastener
concentric
barbs
fastener plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/083,799
Inventor
William Kuhn
Richard Devine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Building Materials Investment Corp
Original Assignee
Building Materials Investment Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Building Materials Investment Corp filed Critical Building Materials Investment Corp
Priority to US11/083,799 priority Critical patent/US20050183348A1/en
Assigned to BUILDING MATERIALS INVESTMENT CORPORATION reassignment BUILDING MATERIALS INVESTMENT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUHN, WILLIAM P.
Publication of US20050183348A1 publication Critical patent/US20050183348A1/en
Assigned to DEUTSCHE BANK TRUST COMPANY AMERICAS reassignment DEUTSCHE BANK TRUST COMPANY AMERICAS SECURITY AGREEMENT Assignors: BMCA ACQUISITION INC., BMCA ACQUISITION SUB INC., BMCA FRESNO II LLC, BMCA FRESNO LLC, BMCA GAINESVILLE LLC, BMCA INSULATION PRODUCTS INC., BMCA QUAKERTOWN INC., BUILDING MATERIALS CORPORATION OF AMERICA, BUILDING MATERIALS INVESTMENT CORPORATION, BUILDING MATERIALS MANUFACTURING CORPORATION, DUCTWORK MANUFACTURING CORPORATION, GAF LEATHERBACK CORP., GAF MATERIALS CORPORATION (CANADA), GAF PREMIUM PRODUCTS INC., GAF REAL PROPERTIES, INC., GAFTECH CORPORATION, HBP ACQUISITION LLC, LL BUILDING PRODUCTS INC., PEQUANNOCK VALLEY CLAIM SERVICE COMPANY, INC., SOUTH PONCA REALTY CORP., WIND GAP REAL PROPERTY ACQUISITION CORP.
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH reassignment DEUTSCHE BANK AG NEW YORK BRANCH SECURITY AGREEMENT Assignors: BMCA ACQUISITION INC., BMCA ACQUISITION SUB INC., BMCA FRESNO II LLC, BMCA FRESNO LLC, BMCA GAINESVILLE LLC, BMCA INSULATION PRODUCTS INC., BMCA QUAKERTOWN INC., BUILDING MATERIALS CORPORATION OF AMERICA, BUILDING MATERIALS INVESTMENT CORPORATION, BUILDING MATERIALS MANUFACTURING CORPORATION, DUCTWORK MANUFACTURING CORPORATION, GAF LEATHERBACK CORP., GAF MATERIALS CORPORATION (CANADA), GAF PREMIUM PRODUCTS INC., GAF REAL PROPERTIES, INC., GAFTECH CORPORATION, HBP ACQUISITION LLC, LL BUILDING PRODUCTS INC., PEQUANNOCK VALLEY CLAIM SERVICE COMPANY, INC., SOUTH PONCA REALTY CORP., WIND GAP REAL PROPERTY ACQUISITION CORP.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D5/00Roof covering by making use of flexible material, e.g. supplied in roll form
    • E04D5/14Fastening means therefor
    • E04D5/144Mechanical fastening means
    • E04D5/145Discrete fastening means, e.g. discs or clips
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/36Connecting; Fastening
    • E04D3/3601Connecting; Fastening of roof covering supported by the roof structure with interposition of a insulating layer

Definitions

  • the present invention relates to fasteners employed to fasten a covering material to an underlying substrate. More particularly, the invention relates to a stress plate with a fastener for fastening a membrane, such as a roof membrane or roofing insulation, to a roof deck, a wall, concrete, stone, plaster, or wood.
  • a membrane such as a roof membrane or roofing insulation
  • Fasteners are conventionally employed in the building industry for fastening or clamping a flexible membrane, such as an insulation membrane to a substrate, such as a roof deck.
  • the fasteners typically comprise a large head portion and a shank portion.
  • the shank portion is driven through the membrane into the underlying substrate to anchor the fastener thereinto, while the head portion holds the membrane against the substrate and prevent removal thereof by wind lift.
  • the undersurface of the head portion is typically provided with gripping means so that the membrane is prevented from moving or sliding under the fastener.
  • the gripping means are designed not to penetrate the membrane in order to prevent atmospheric moisture from entering into the substrate through the holes which tend to be made by the gripping means. It is also important that the gripping means are spread/distributed in the undersurface of the head portion of the stress plate in order prevent tearing of the membrane.
  • Conventional fasteners are illustrated by the following references.
  • U.S. Pat. No. 4,787,188 discloses a stress plate for securing a roof membrane to a roof deck.
  • the stress plate is circular having a top surface and a bottom surface with a central circular opening for receiving a screw for fastening the stress plate over a roof membrane and to the roof deck.
  • the stress plate is equipped with four gripping prongs of triangular shape which are circumferentially spaced from each other by 90°.
  • a first membrane is applied to a roof deck surface, then the membrane is secured to the roof deck surface with the stress plate and the screw.
  • a top sheet or membrane is lapped over the first membrane to cover the stress plate and welded to the first membrane.
  • the four gripping prongs in the stress plate grip the first sheet and hold the same on top of the roof deck without tearing.
  • U.S. Pat. No. 5,049,018 discloses a fastener for gripping a substrate material.
  • the fastener is of a unitary piece comprising a head portion, a shaft portion, and a hook portion at the end of the shaft portion, wherein the hook portion has an outwardly and upwardly extending resilient end portion.
  • the end portion has an end surface which provides gripping contact with a wall of a hole in a substrate into which the fastener is inserted.
  • the reference invention is directed to a fastener the construction of which insures that the fastener will not be dislodged by wind uplift from the hole of the substrate.
  • U.S. Pat. No. 5,163,798 relates to a fastener assembly which is employed to secure plies or membranes of roofing, felt and paper to prevent the materials from being blown off the base roofing material before the base material is sufficiently hardened.
  • the assembly comprises a fastener and a retainer plate.
  • the assembly includes a fastener plate which defines a substantially rectangular opening.
  • the fastener includes a head and a pair of legs which are integrally hingably connected to the head.
  • the legs have a contoured distal portion and an angular side configuration so that at least one of the legs is forced apart as the fastener is driven into the base material.
  • a circular disc having a central aperture for receiving a screw fastener
  • the stress plate has two concentrically disposed annular rib members: a first radially inner, upwardly extending rib member; and a second, radially outer upwardly extending rib member.
  • the first rib member is larger in both radial extent and elevational height than the second rib member. The first member provides rigidity while the second member provides flexibility to the stress plate.
  • U.S. Pat. No. 6,250,034 discloses a membrane plate for attaching a membrane to a roof comprising:
  • U.S. Pat. No. 5,951,225 discloses a large area washer of square, rectangular and elliptical shape comprising:
  • stiffeners in the form of beads or indentations in the plate
  • an object of the present invention is to provide a new and improved stress plate with a fastener to allow attachment of one or more flexible membranes to an underlying substrate without tearing the flexible membrane or allowing it to slip out from under the stress plate.
  • the present invention comprises two non-integral components: a stress plate, and a fastener.
  • a stress plate In use the stress plate and the associated fastener attach and firmly hold a flexible membrane to an underlying substrate, such as a roof deck.
  • the stress plate has a top surface and a bottom surface and is provided with multiple pairs of barbs extending vertically outwardly from the bottom surface and having sufficient length to grip the flexible membrane without puncturing therethrough.
  • the stress plate further includes an opening in its central portion to allow a fastener, such as a screw, therethrough for attachment of the stress plate to the underlying substrate.
  • the opening may be circular or rectangular.
  • the rib members are of the same elevational height and along with the stress plate, are completely rigid, stiff and inflexible.
  • Other descriptors that define the stress plate include unresilient, unyielding and unbending. These descriptors are relevant to the stress plate per se, and also when the stress plate is installed to secure a roof membrane to an underlying roof surface.
  • the present invention comprises eight embodiments.
  • the stress plate is circular having an opening in its center portion and three dome-shaped concentric ribs or protuberances rising above the top surface of the stress plate for providing sufficient strength thereto.
  • the radius of the concentric ribs increases from the center opening to the circumference of the stress plate. Separating the first and second concentric ribs there is a first concentric depression or dimple, and separating the second and third concentric ribs there is a second concentric depression or dimple.
  • a flat surface extends between the third rib and the edge or circumference of the stress plate.
  • the first dimple is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to eight pairs of triangular, rectangular, or semi-circular barbs approximately evenly space from each other.
  • the flat surface of the stress plate adjacent to the edge is provided with a multiplicity of pairs of barbs extending downward from the bottom surface of the stress plate, and preferably, four to ten pairs of triangular, rectangular, or semi-circular pairs of barbs approximately evenly spaced from each other.
  • the stress plate is elliptical having an opening in its center portion and three dome-shaped concentric ribs or protuberances rising above the top surface of the stress plate for providing sufficient strength thereto. Separating the first and second concentric ribs there is a first concentric depression or dimple, and separating the second and third concentric ribs there is a second concentric depression or dimple. A flat surface extends between the third rib and the edge or circumference of the stress plate.
  • the first dimple is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to eight pairs of triangular, rectangular, or semi-circular barbs approximately evenly spaced from each other.
  • the flat surface of the stress plate adjacent to the edge is provided with a multiplicity of pairs of barbs extending downward from the bottom surface of the stress plate, and preferably, four to ten pairs of triangular, rectangular, or semi-circular pairs of barbs approximately evenly spaced from each other.
  • the stress plate is of square configuration having an opening in its center portion and three dome-shaped concentric ribs or protuberances running parallel to each other and to the edge of the stress plate rising above the top surface of the stress plate for providing sufficient strength thereto. Separating the first and second ribs there is a first depression or dimple, and separating the second and third ribs there is a second depression or dimple. A flat surface extends between the third rib and the edge or circumference of the stress plate.
  • the first dimple is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to eight pairs of triangular, rectangular, or semi-circular barbs approximately evenly spaced from each other.
  • the flat surface of the stress plate adjacent to the edge is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to ten pairs of triangular, rectangular, or semi-circular pairs of barbs approximately evenly spaced from each other.
  • the stress plate is circular having an opening in its center portion and two dome-shaped concentric ribs or protuberances rising above the top surface of the stress plate for providing sufficient strength thereto.
  • the radius of the first concentric rib close to the opening is smaller than the radius of the second concentric rib close to the circumference of the stress plate. Separating the first and second concentric ribs there is a concentric depression or dimple.
  • a flat surface extends between the second rib and the edge or circumference of the stress plate.
  • the first dimple is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to eight pairs of triangular, rectangular, or semi-circular pair of barbs approximately evenly space from each other.
  • the flat surface of the stress plate adjacent to the edge is provided with a multiplicity of pairs of barbs extending downward from the bottom surface of the stress plate, and preferably, four to ten pairs of triangular, rectangular, or semi-circular pairs of barbs approximately evenly spaced from each other.
  • the stress plate is elliptical having an opening in its center portion and two dome-shaped concentric ribs or protuberances rising above the top surface of the stress plate for providing sufficient strength thereto. Separating the first and second concentric ribs there is a first concentric depression or dimple. The edge or circumference of the stress plate terminates in a substantially flat surface.
  • the dimple is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to eight pairs of triangular, rectangular, or semi-circular barbs approximately evenly space from each other.
  • the flat surface of the stress plate adjacent to the edge is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to ten pairs of triangular, rectangular, or semi-circular pairs of barbs approximately evenly spaced from each other.
  • the stress plate is of square configuration having an opening in its center portion and two dome-shaped ribs or protuberances running parallel to each other and to the edge of the stress plate rising above the top surface of the stress plate for providing sufficient strength thereto. Separating the first and second ribs there is a depression or dimple. A flat surface extends between the second rib and the edge or circumference of the stress plate.
  • the stress plate is of rectangular configuration having an opening in its center portion and two dome-shaped ribs or protuberances running parallel to each other and to the edge of the stress plate rising above the top surface of the stress plate for providing sufficient strength thereto. Separating the first and second ribs there is a depression or dimple. A flat surface extends between the second rib and the edge or circumference of the stress plate.
  • the dimple is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to eight pairs of triangular, rectangular, or semi-circular barbs approximately evenly spaced from each other.
  • the flat surface of the stress plate adjacent to the edge is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to ten pairs of triangular, rectangular, or semi-circular pairs of barbs approximately evenly spaced from each other.
  • FIG. 1 is a top, perspective view of the circular stress plate having three ribs thereon and fastener;
  • FIG. 2 is a side elevational view thereof
  • FIG. 4 is a bottom perspective view thereof
  • FIG. 5 is a top perspective view of the elliptical stress plate having three ribs thereon and fastener
  • FIG. 7 is another side elevational view thereof.
  • FIG. 8 is a top plan view thereof
  • FIG. 9 is a bottom perspective view thereof.
  • FIG. 10 is a is a top perspective view of the square stress plate having three ribs thereon and fastener;
  • FIG. 11 is a side elevational view thereof
  • FIG. 12 is a top plan view thereof
  • FIG. 14 is a top perspective view of the rectangular stress plate having three ribs thereon and fastener
  • FIG. 16 is another side elevational view thereof.
  • FIG. 17 is a top plan view thereof
  • FIG. 18 is a bottom perspective view thereof
  • FIG. 19 is a is a top perspective view of the circular stress plate having two ribs thereon and fastener
  • FIG. 20 is a side elevational view thereof
  • FIG. 21 is a top plan view thereof
  • FIG. 22 is a bottom perspective view thereof
  • FIG. 23 is a top perspective view of the elliptical stress plate having two ribs thereon and fastener
  • FIG. 24 is a side elevational view thereof
  • FIG. 25 is another side elevational view thereof.
  • FIG. 26 is a top plan view thereof
  • FIG. 27 is a bottom perspective view thereof
  • FIG. 28 is a is a top perspective view of the square stress plate having two ribs thereon and fastener
  • FIG. 29 is a side elevational view thereof.
  • FIG. 30 is a top plan view thereof
  • FIG. 31 is a bottom perspective view thereof
  • FIG. 32 is a top perspective view of the rectangular stress plate having two ribs thereon and fastener
  • FIG. 33 is a side elevational view thereof
  • FIG. 34 is another side elevational view thereof.
  • FIG. 35 is a top plan view thereof
  • FIG. 36 is a bottom perspective view thereof
  • FIG. 37 is an enlarged top plan view of the pair of triangular barbs
  • FIG. 38 is an enlarged top plan view of the pair of rectangular barbs
  • FIG. 39 is an enlarged top plan view of the pair of semi-circular barbs.
  • FIG. 40 is a cross-sectional view illustrating the use of the stress plate and the fastener for attaching a roof membrane to a roof deck.
  • FIGS. 1-4 relate to the first embodiment of the present invention in which the circular stress plate is generally designated at 10 and the fastener is generally designated at 12 .
  • the two components are non-integral and when put together, constitute the invention.
  • the circular stress plate 10 has a round or rectangular opening 14 in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck.
  • the stress plate is provided with three concentric dome-shaped ribs: rib 16 is the closest to the opening; rib 20 is farthest from the opening; and rib 18 is between ribs 16 and 20 .
  • the ribs serve as reinforcements to the stress plate.
  • separating rib 18 from rib 20 there is another concentric depression or dimple 24 Separating rib 16 from rib 18 there is a concentric depression or dimple 22
  • An essentially flat surface 26 extends between rib 20 and the circumferential edge 28 of the stress plate.
  • Dimple 22 is provided with multiple pairs of barbs 30 (six pairs are shown), and flat surface 26 is also provided with multiple pairs of barbs (eight pairs are shown).
  • the pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • FIGS. 5-9 relate to the second embodiment of the present invention in which the elliptical stress plate is generally designated at 10 ′ and the fastener is generally designated at 12 ′
  • the two components are non-integral and when put together, constitute the invention.
  • the elliptical stress plate 10 ′ has a round or rectangular opening 14 ′ in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck.
  • the stress plate is provided with three concentric dome-shaped ribs: rib 16 ′ is the closest to the opening, rib 20 ′ is farthest from the opening; and rib 18 ′ is between ribs 16 ′ and 20 ′.
  • the ribs serve as reinforcements to the stress plate.
  • An essentially flat surface 26 ′ extends between rib 20 ′ and the circumferential edge 28 ′ of the stress plate.
  • Dimple 22 ′ is provided with multiple pairs of barbs 30 ′ (six pairs are shown), and flat surface 26 ′ is also provided with multiple pairs of barbs (eight pairs are shown).
  • the pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • FIGS. 10-13 relate to the third embodiment of the present invention in which the square stress plate is generally designated at 40 and the fastener is generally designated at 42 .
  • the two components are non-integral and when put together, constitute the invention.
  • the square stress plate 40 has a round or rectangular opening 44 in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck.
  • the stress plate is provided with three concentric dome-shaped ribs: rib 46 is the closest to the opening; rib 50 is farthest from the opening; and rib 48 is between ribs 46 and 50 .
  • the ribs serve as reinforcements to the stress plate.
  • separating rib 48 from rib 50 there is another concentric depression or dimple 54 Separating rib 46 from rib 48 there is a concentric depression or dimple 52
  • An essentially flat surface 56 extends between rib 50 and the circumferential edge 58 of the stress plate.
  • Dimple 52 is provided with multiple pairs of barbs 60 (eight pairs are shown), and flat surface 56 is also provided with multiple pairs of barbs (eight pairs are shown).
  • the pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • FIGS. 14-18 relate to the fourth embodiment of the present invention in which the rectangular stress plate is generally designated at 40 ′ and the fastener is generally designated at 42 ′.
  • the two components are non-integral and when put together, constitute the invention.
  • the rectangular stress plate 40 ′ has a round or rectangular opening 44 ′ in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck.
  • the stress plate is provided with three concentric dome-shaped ribs: rib 46 ′ is the closest to the opening; rib 50 ′ is farthest from the opening; and rib 48 ′ is between ribs 46 ′ and 50 ′.
  • the ribs serve as reinforcements to the stress plate.
  • An essentially flat surface 56 ′ extends between rib 50 ′ and the circumferential edge 58 ′ of the stress plate.
  • Dimple 52 ′ is provided with multiple pairs of barbs 60 ′ (ten pairs are shown), and flat surface 56 ′ is also provided with multiple pairs of barbs (eight pairs are shown).
  • the pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • FIGS. 19-22 relate to the fifth embodiment of the present invention in which the circular stress plate is generally designated at 70 and the fastener is generally designated at 72 .
  • the two components are non-integral and when put together, constitute the invention.
  • the circular stress plate 70 has a round or rectangular opening 74 in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck.
  • the stress plate is provided with two concentric dome-shaped ribs: rib 76 is an inner rib close to the opening, and rib 78 is an outer rib spaced from the inner rib toward the circumferential edge 88 of the stress plate.
  • the ribs serve as reinforcements to the stress plate.
  • rib 76 Separating rib 76 from rib 78 there is a concentric depression or dimple 82 .
  • An essentially flat surface 86 extends between rib 78 and the circumferential edge 88 of the stress plate.
  • Dimple 82 is provided with multiple pairs of barbs 90 (eight pairs are shown), and flat surface 86 is also provided with multiple pairs of barbs (eight pairs are shown).
  • the pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • FIGS. 23-27 relate to the sixth embodiment of the present invention in which the elliptical stress plate is generally designated at 70 ′ and the fastener is generally designated at 72 ′.
  • the two components are non-integral and, when put together, constitute the invention.
  • the elliptical stress plate 70 ′ has a round or rectangular opening 74 ′ in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck.
  • the stress plate is provided with two concentric dome-shaped ribs: rib 76 ′ is an inner rib close to the opening, and rib 78 ′ is an outer rib spaced from the inner rib toward the circumferential edge 88 ′ of the stress plate.
  • the ribs serve as reinforcements to the stress plate. Separating rib 76 ′ from rib 78 ′ there is a concentric depression or dimple 82 ′. An essentially flat surface 86 ′ extends between rib 78 ′ and the circumferential edge 88 ′ of the stress plate. Dimple 82 ′ is provided with multiple pairs of barbs 90 ′ (six pairs are shown), and flat surface 86 ′ is also provided with multiple pairs of barbs (eight pairs are shown). The pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • FIGS. 28-31 relate to the seventh embodiment of the present invention in which the square stress plate is generally designated at 100 and the fastener is generally designated at 102 .
  • the two components are non-integral and, when put together, constitute the invention.
  • the square stress plate 100 has a round or rectangular opening 104 in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck.
  • the stress plate is provided with two concentric dome-shaped ribs: rib 106 is an inner rib close to the opening, and rib 108 is an outer rib spaced from the inner rib toward the circumferential edge 118 of the stress plate.
  • the ribs serve as reinforcements to the stress plate.
  • rib 106 Separating rib 106 from rib 108 there is a concentric depression or dimple 112 .
  • An essentially flat surface 106 extends between rib 108 and the circumferential edge 118 of the stress plate.
  • Dimple 112 is provided with multiple pairs of barbs 120 (eight pairs are shown), and flat surface 116 is also provided with multiple pairs of barbs (eight pairs are shown).
  • the pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • FIGS. 32-36 relate to the eighth embodiment of the present invention in which the rectangular stress plate is generally designated at 100 ′ and the fastener is generally designated at 102 ′.
  • the two components are non-integral and, when put together, constitute the invention.
  • the rectangular stress plate 100 ′ has a round or rectangular opening 104 ′ in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck.
  • the stress plate is provided with two concentric dome-shaped ribs: rib 106 ′ is an inner rib close to the opening, and rib 108 ′ is an outer rib spaced from the inner rib toward the circumferential edge 118 ′ of the stress plate.
  • the ribs serve as reinforcements to the stress plate. Separating rib 106 ′ from rib 108 ′ there is a concentric depression or dimple 112 ′. An essentially flat surface 106 ′ extends between rib 108 ′ and the circumferential edge 118 ′ of the stress plate. Dimple 112 ′ is provided with multiple pairs of barbs 120 ′(eight pairs are shown), and flat surface 116 ′ is also provided with multiple pairs of barbs (eight pairs are shown). The pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • FIGS. 37, 38 and 39 shows the pairs of barbs in top plan view used in the stress plate and are integral therewith.
  • FIG. 37 shows a pair of equilateral triangles in the stress plate the sharp points of the triangles extend outwardly from the bottom surface of the stress plate.
  • FIG. 38 shows a pair of rectangular barbs.
  • the rectangular barbs extend outwardly from the bottom surface of the stress plate.
  • FIG. 39 shows a pair of semi-circular barbs.
  • the semi-circular barbs extend outwardly from the bottom surface of the stress plate.
  • the length of the barbs may vary depending on the thickness of the roof membrane which is to be attached to the underlying roof deck. Typically, the length of the barbs would be in the range of 0.1-1.0 centimeter or more, and preferably in the range of 0.2-0.5 centimeter.
  • the barbs are formed by cutting the same from the surface of the stress plate and bending them 90° from the surface of the stress plate.
  • the stress plates are made of materials including galvanized carbon steel and stainless steel. Softer metals such as copper or aluminum may also be used, however, the thickness of the stress plate should be larger to provide sufficient integrity to the stress plate.
  • the thickness of the stress plate typically is about 0.05-0.1 cm.
  • the fastener is typically a screw of 4 to 10 cm long having thread thereon.
  • FIG. 40 is a cross-sectional view illustrating the use of the stress plate and the fastener for attaching a roof membrane to a roof deck.
  • Lower membrane 130 is positioned over insulation 132 which is over the roof deck surface 134 . Inserting fastener 138 through stress plate 136 , insulation 132 and into roof deck 134 .
  • Upper membrane 140 is then lapped-over portions of the lower membrane covering the stress plate 136 .
  • the upper membrane is secured to the lower membrane by the welded seam 142 .
  • Comparative wind uplift tests were conducted on the double barb stress plates of the present invention, and the single barb stress plate.
  • the wind uplift test measures the resistance of the roofing system to high wind currents. For example, a three second burst of wind at 175 miles per hour can exert a negative pressure of 90 pounds per square foot on the roof system.
  • the roofing system consists of: a roof deck, an insulating layer placed on the roof deck, and a roof membrane placed on the top of the insulating layer.
  • the respective plates were then attached to the roofing system by inserting the respective fasteners through the stress plates, the roof membranes, and the insulating layer and into the roof deck and holding the roofing system at 15 pounds per square feet intervals starting at 30 pounds per square feet from sixty seconds until failure. Failure of the roofing system was measured by the membrane tearing around the stress plates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Tents Or Canopies (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

A two-piece fastener plate and fastener assembly and method of securing a roof membrane to a roof deck wherein the fastener is reinforced with rigid, inflexible concentric dome-shaped ribs separated by concentric depressions or dimples. The concentric depressions or dimples are provided with pairs of barbs for gripping the roof membrane when the fastener secures the roof membrane to the roof deck.

Description

    CROSS REFERENCE TO PRIOR APPLICATION DATA
  • This application is a continuation-in-part of copending application Ser. No. 10/357,113 filed on Feb. 3, 2003.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to fasteners employed to fasten a covering material to an underlying substrate. More particularly, the invention relates to a stress plate with a fastener for fastening a membrane, such as a roof membrane or roofing insulation, to a roof deck, a wall, concrete, stone, plaster, or wood.
  • 2. Reported Development
  • Fasteners are conventionally employed in the building industry for fastening or clamping a flexible membrane, such as an insulation membrane to a substrate, such as a roof deck. The fasteners typically comprise a large head portion and a shank portion. In use, the shank portion is driven through the membrane into the underlying substrate to anchor the fastener thereinto, while the head portion holds the membrane against the substrate and prevent removal thereof by wind lift. The undersurface of the head portion is typically provided with gripping means so that the membrane is prevented from moving or sliding under the fastener. The gripping means are designed not to penetrate the membrane in order to prevent atmospheric moisture from entering into the substrate through the holes which tend to be made by the gripping means. It is also important that the gripping means are spread/distributed in the undersurface of the head portion of the stress plate in order prevent tearing of the membrane. Conventional fasteners are illustrated by the following references.
  • U.S. Pat. No. 4,787,188 discloses a stress plate for securing a roof membrane to a roof deck. The stress plate is circular having a top surface and a bottom surface with a central circular opening for receiving a screw for fastening the stress plate over a roof membrane and to the roof deck. The stress plate is equipped with four gripping prongs of triangular shape which are circumferentially spaced from each other by 90°.
  • In use a first membrane is applied to a roof deck surface, then the membrane is secured to the roof deck surface with the stress plate and the screw. A top sheet or membrane is lapped over the first membrane to cover the stress plate and welded to the first membrane. The four gripping prongs in the stress plate grip the first sheet and hold the same on top of the roof deck without tearing.
  • U.S. Pat. No. 5,049,018 discloses a fastener for gripping a substrate material. The fastener is of a unitary piece comprising a head portion, a shaft portion, and a hook portion at the end of the shaft portion, wherein the hook portion has an outwardly and upwardly extending resilient end portion. The end portion has an end surface which provides gripping contact with a wall of a hole in a substrate into which the fastener is inserted.
  • It is apparent that the reference invention is directed to a fastener the construction of which insures that the fastener will not be dislodged by wind uplift from the hole of the substrate.
  • U.S. Pat. No. 5,163,798 relates to a fastener assembly which is employed to secure plies or membranes of roofing, felt and paper to prevent the materials from being blown off the base roofing material before the base material is sufficiently hardened.
  • The assembly comprises a fastener and a retainer plate. The assembly includes a fastener plate which defines a substantially rectangular opening. The fastener includes a head and a pair of legs which are integrally hingably connected to the head. The legs have a contoured distal portion and an angular side configuration so that at least one of the legs is forced apart as the fastener is driven into the base material.
  • U.S. Patent Application Publication No. 2003/0196398 disclose a stress plate comprising:
  • a circular disc having a central aperture for receiving a screw fastener;
  • concentric ribs between the central aperture and the peripheral edge of the plate for providing reinforcing and bending or flexibility characteristics; and
  • a plurality of singly spaced downwardly extending projections to engage and hold an underlying roof membrane on the roof of a building.
  • The stress plate has two concentrically disposed annular rib members: a first radially inner, upwardly extending rib member; and a second, radially outer upwardly extending rib member. The first rib member is larger in both radial extent and elevational height than the second rib member. The first member provides rigidity while the second member provides flexibility to the stress plate.
  • U.S. Pat. No. 6,250,034 discloses a membrane plate for attaching a membrane to a roof comprising:
  • an oval shaped body;
  • an opening in the center of the oval shaped body to receive a screw member therethrough; and
  • a plurality of spaced apart lenses joined to the oval shaped body with hinges extending downwardly from the oval shaped body.
  • U.S. Pat. No. 5,951,225 discloses a large area washer of square, rectangular and elliptical shape comprising:
  • a large area plate;
  • an aperture in the center portion of the plate to receive a fastener therethrough;
  • stiffeners in the form of beads or indentations in the plate;
  • unreinforced corner regions outside the stiffeners which can be resiliently bent; and
  • engaging components formed in the comer regions.
  • We have observed that under windy conditions the prior art fasteners need improvement in securely holding a flexible membrane on a substrate without the gripping means penetrating the flexible membrane, and without tearing the flexible membrane.
  • Accordingly, an object of the present invention is to provide a new and improved stress plate with a fastener to allow attachment of one or more flexible membranes to an underlying substrate without tearing the flexible membrane or allowing it to slip out from under the stress plate.
  • SUMMARY OF THE INVENTION
  • The present invention comprises two non-integral components: a stress plate, and a fastener. In use the stress plate and the associated fastener attach and firmly hold a flexible membrane to an underlying substrate, such as a roof deck. The stress plate has a top surface and a bottom surface and is provided with multiple pairs of barbs extending vertically outwardly from the bottom surface and having sufficient length to grip the flexible membrane without puncturing therethrough. The stress plate further includes an opening in its central portion to allow a fastener, such as a screw, therethrough for attachment of the stress plate to the underlying substrate. The opening may be circular or rectangular.
  • The rib members are of the same elevational height and along with the stress plate, are completely rigid, stiff and inflexible. Other descriptors that define the stress plate include unresilient, unyielding and unbending. These descriptors are relevant to the stress plate per se, and also when the stress plate is installed to secure a roof membrane to an underlying roof surface.
  • The present invention comprises eight embodiments.
  • In the first embodiment of the invention the stress plate is circular having an opening in its center portion and three dome-shaped concentric ribs or protuberances rising above the top surface of the stress plate for providing sufficient strength thereto. The radius of the concentric ribs increases from the center opening to the circumference of the stress plate. Separating the first and second concentric ribs there is a first concentric depression or dimple, and separating the second and third concentric ribs there is a second concentric depression or dimple. A flat surface extends between the third rib and the edge or circumference of the stress plate.
  • The first dimple is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to eight pairs of triangular, rectangular, or semi-circular barbs approximately evenly space from each other. The flat surface of the stress plate adjacent to the edge is provided with a multiplicity of pairs of barbs extending downward from the bottom surface of the stress plate, and preferably, four to ten pairs of triangular, rectangular, or semi-circular pairs of barbs approximately evenly spaced from each other.
  • In the second embodiment of the invention the stress plate is elliptical having an opening in its center portion and three dome-shaped concentric ribs or protuberances rising above the top surface of the stress plate for providing sufficient strength thereto. Separating the first and second concentric ribs there is a first concentric depression or dimple, and separating the second and third concentric ribs there is a second concentric depression or dimple. A flat surface extends between the third rib and the edge or circumference of the stress plate.
  • The first dimple is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to eight pairs of triangular, rectangular, or semi-circular barbs approximately evenly spaced from each other. The flat surface of the stress plate adjacent to the edge is provided with a multiplicity of pairs of barbs extending downward from the bottom surface of the stress plate, and preferably, four to ten pairs of triangular, rectangular, or semi-circular pairs of barbs approximately evenly spaced from each other.
  • In the third embodiment of the invention the stress plate is of square configuration having an opening in its center portion and three dome-shaped concentric ribs or protuberances running parallel to each other and to the edge of the stress plate rising above the top surface of the stress plate for providing sufficient strength thereto. Separating the first and second ribs there is a first depression or dimple, and separating the second and third ribs there is a second depression or dimple. A flat surface extends between the third rib and the edge or circumference of the stress plate.
  • The first dimple is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to eight pairs of triangular, rectangular, or semi-circular barbs approximately evenly spaced from each other. The flat surface of the stress plate adjacent to the edge is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to ten pairs of triangular, rectangular, or semi-circular pairs of barbs approximately evenly spaced from each other.
  • In the fourth embodiment of the invention the stress plate is of rectangular configuration having an opening in its center portion and three dome-shaped ribs or protuberances running parallel to each other and to the edge of the stress plate rising above the top surface of the stress plate for providing sufficient strength thereto. Separating the first and second ribs there is a first depression or dimple, and separating the second and third ribs there is a second depression or dimple. A flat surface extends between the third rib and the edge or circumference of the stress plate.
  • The first dimple is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to eight pairs of triangular, rectangular, or semi-circular barbs approximately evenly spaced from each other. The flat surface of the stress plate adjacent to the edge is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to ten pairs of triangular, rectangular, or semi-circular pairs of barbs approximately evenly spaced from each other.
  • In the fifth embodiment of the invention the stress plate is circular having an opening in its center portion and two dome-shaped concentric ribs or protuberances rising above the top surface of the stress plate for providing sufficient strength thereto. The radius of the first concentric rib close to the opening is smaller than the radius of the second concentric rib close to the circumference of the stress plate. Separating the first and second concentric ribs there is a concentric depression or dimple. A flat surface extends between the second rib and the edge or circumference of the stress plate.
  • The first dimple is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to eight pairs of triangular, rectangular, or semi-circular pair of barbs approximately evenly space from each other. The flat surface of the stress plate adjacent to the edge is provided with a multiplicity of pairs of barbs extending downward from the bottom surface of the stress plate, and preferably, four to ten pairs of triangular, rectangular, or semi-circular pairs of barbs approximately evenly spaced from each other.
  • In the sixth embodiment of the invention the stress plate is elliptical having an opening in its center portion and two dome-shaped concentric ribs or protuberances rising above the top surface of the stress plate for providing sufficient strength thereto. Separating the first and second concentric ribs there is a first concentric depression or dimple. The edge or circumference of the stress plate terminates in a substantially flat surface.
  • The dimple is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to eight pairs of triangular, rectangular, or semi-circular barbs approximately evenly space from each other. The flat surface of the stress plate adjacent to the edge is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to ten pairs of triangular, rectangular, or semi-circular pairs of barbs approximately evenly spaced from each other.
  • In the seventh embodiment of the invention the stress plate is of square configuration having an opening in its center portion and two dome-shaped ribs or protuberances running parallel to each other and to the edge of the stress plate rising above the top surface of the stress plate for providing sufficient strength thereto. Separating the first and second ribs there is a depression or dimple. A flat surface extends between the second rib and the edge or circumference of the stress plate.
  • The dimple is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to eight pairs of triangular, rectangular, or semi-circular barbs approximately evenly space from each other. The flat surface of the stress plate adjacent to the edge is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to ten pairs of triangular, rectangular, or semi-circular pairs of barbs approximately evenly spaced from each other.
  • In the eighth embodiment of the invention the stress plate is of rectangular configuration having an opening in its center portion and two dome-shaped ribs or protuberances running parallel to each other and to the edge of the stress plate rising above the top surface of the stress plate for providing sufficient strength thereto. Separating the first and second ribs there is a depression or dimple. A flat surface extends between the second rib and the edge or circumference of the stress plate.
  • The dimple is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to eight pairs of triangular, rectangular, or semi-circular barbs approximately evenly spaced from each other. The flat surface of the stress plate adjacent to the edge is provided with a multiplicity of pairs of barbs extending 90° downward from the bottom surface of the stress plate, and preferably, four to ten pairs of triangular, rectangular, or semi-circular pairs of barbs approximately evenly spaced from each other.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be further described with respect to the accompanying drawings wherein:
  • FIG. 1 is a top, perspective view of the circular stress plate having three ribs thereon and fastener;
  • FIG. 2 is a side elevational view thereof;
  • FIG. 3 is a top plan view thereof;
  • FIG. 4 is a bottom perspective view thereof;
  • FIG. 5 is a top perspective view of the elliptical stress plate having three ribs thereon and fastener;
  • FIG. 6 is a side elevational view thereof;
  • FIG. 7 is another side elevational view thereof;
  • FIG. 8 is a top plan view thereof;
  • FIG. 9 is a bottom perspective view thereof;
  • FIG. 10 is a is a top perspective view of the square stress plate having three ribs thereon and fastener;
  • FIG. 11 is a side elevational view thereof;
  • FIG. 12 is a top plan view thereof;
  • FIG. 13 is a bottom perspective view thereof;
  • FIG. 14 is a top perspective view of the rectangular stress plate having three ribs thereon and fastener;
  • FIG. 15 is a side elevational view thereof;
  • FIG. 16 is another side elevational view thereof;
  • FIG. 17 is a top plan view thereof;
  • FIG. 18 is a bottom perspective view thereof;
  • FIG. 19 is a is a top perspective view of the circular stress plate having two ribs thereon and fastener;
  • FIG. 20 is a side elevational view thereof;
  • FIG. 21 is a top plan view thereof;
  • FIG. 22 is a bottom perspective view thereof;
  • FIG. 23 is a top perspective view of the elliptical stress plate having two ribs thereon and fastener;
  • FIG. 24 is a side elevational view thereof;
  • FIG. 25 is another side elevational view thereof;
  • FIG. 26 is a top plan view thereof;
  • FIG. 27 is a bottom perspective view thereof;
  • FIG. 28 is a is a top perspective view of the square stress plate having two ribs thereon and fastener;
  • FIG. 29 is a side elevational view thereof;
  • FIG. 30 is a top plan view thereof;
  • FIG. 31 is a bottom perspective view thereof;
  • FIG. 32 is a top perspective view of the rectangular stress plate having two ribs thereon and fastener;
  • FIG. 33 is a side elevational view thereof;
  • FIG. 34 is another side elevational view thereof;
  • FIG. 35 is a top plan view thereof;
  • FIG. 36 is a bottom perspective view thereof;
  • FIG. 37 is an enlarged top plan view of the pair of triangular barbs;
  • FIG. 38 is an enlarged top plan view of the pair of rectangular barbs;
  • FIG. 39 is an enlarged top plan view of the pair of semi-circular barbs; and
  • FIG. 40 is a cross-sectional view illustrating the use of the stress plate and the fastener for attaching a roof membrane to a roof deck.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Reference is now being made to the drawings wherein like numerals represent like parts throughout the figures showing the various embodiments of the present invention.
  • First Embodiment—Circular with Three Ribs
  • FIGS. 1-4 relate to the first embodiment of the present invention in which the circular stress plate is generally designated at 10 and the fastener is generally designated at 12. The two components are non-integral and when put together, constitute the invention. The circular stress plate 10 has a round or rectangular opening 14 in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck. The stress plate is provided with three concentric dome-shaped ribs: rib 16 is the closest to the opening; rib 20 is farthest from the opening; and rib 18 is between ribs 16 and 20. The ribs serve as reinforcements to the stress plate. Separating rib 16 from rib 18 there is a concentric depression or dimple 22, and separating rib 18 from rib 20 there is another concentric depression or dimple 24. An essentially flat surface 26 extends between rib 20 and the circumferential edge 28 of the stress plate. Dimple 22 is provided with multiple pairs of barbs 30 (six pairs are shown), and flat surface 26 is also provided with multiple pairs of barbs (eight pairs are shown). The pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • Second Embodiment—Elliptical with Three Ribs
  • FIGS. 5-9 relate to the second embodiment of the present invention in which the elliptical stress plate is generally designated at 10′ and the fastener is generally designated at 12′ The two components are non-integral and when put together, constitute the invention. The elliptical stress plate 10′ has a round or rectangular opening 14′ in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck. The stress plate is provided with three concentric dome-shaped ribs: rib 16′ is the closest to the opening, rib 20′ is farthest from the opening; and rib 18′ is between ribs 16′ and 20′. The ribs serve as reinforcements to the stress plate. Separating rib 16′ from rib 18′ there is a concentric depression or dimple 22′, and separating rib 18′ from rib 20′ there is another concentric depression or dimple 24′. An essentially flat surface 26′ extends between rib 20′ and the circumferential edge 28′ of the stress plate. Dimple 22′ is provided with multiple pairs of barbs 30′ (six pairs are shown), and flat surface 26′ is also provided with multiple pairs of barbs (eight pairs are shown). The pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • Third Embodiment—Square with Three Ribs
  • FIGS. 10-13 relate to the third embodiment of the present invention in which the square stress plate is generally designated at 40 and the fastener is generally designated at 42. The two components are non-integral and when put together, constitute the invention. The square stress plate 40 has a round or rectangular opening 44 in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck. The stress plate is provided with three concentric dome-shaped ribs: rib 46 is the closest to the opening; rib 50 is farthest from the opening; and rib 48 is between ribs 46 and 50. The ribs serve as reinforcements to the stress plate. Separating rib 46 from rib 48 there is a concentric depression or dimple 52, and separating rib 48 from rib 50 there is another concentric depression or dimple 54. An essentially flat surface 56 extends between rib 50 and the circumferential edge 58 of the stress plate. Dimple 52 is provided with multiple pairs of barbs 60 (eight pairs are shown), and flat surface 56 is also provided with multiple pairs of barbs (eight pairs are shown). The pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • Frourth Embodiment—Rectangular with Three Ribs
  • FIGS. 14-18 relate to the fourth embodiment of the present invention in which the rectangular stress plate is generally designated at 40′ and the fastener is generally designated at 42′. The two components are non-integral and when put together, constitute the invention. The rectangular stress plate 40′ has a round or rectangular opening 44′ in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck. The stress plate is provided with three concentric dome-shaped ribs: rib 46′ is the closest to the opening; rib 50′ is farthest from the opening; and rib 48′ is between ribs 46′ and 50′. The ribs serve as reinforcements to the stress plate. Separating rib 46′ from rib 48′ there is a concentric depression or dimple 52′, and separating rib 48′ from rib 50′ there is another concentric depression or dimple 54′. An essentially flat surface 56′ extends between rib 50′ and the circumferential edge 58′ of the stress plate. Dimple 52′ is provided with multiple pairs of barbs 60′ (ten pairs are shown), and flat surface 56′ is also provided with multiple pairs of barbs (eight pairs are shown). The pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • Fifth Embodiment—Circular with Two Ribs
  • FIGS. 19-22 relate to the fifth embodiment of the present invention in which the circular stress plate is generally designated at 70 and the fastener is generally designated at 72. The two components are non-integral and when put together, constitute the invention. The circular stress plate 70 has a round or rectangular opening 74 in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck. The stress plate is provided with two concentric dome-shaped ribs: rib 76 is an inner rib close to the opening, and rib 78 is an outer rib spaced from the inner rib toward the circumferential edge 88 of the stress plate. The ribs serve as reinforcements to the stress plate. Separating rib 76 from rib 78 there is a concentric depression or dimple 82. An essentially flat surface 86 extends between rib 78 and the circumferential edge 88 of the stress plate. Dimple 82 is provided with multiple pairs of barbs 90 (eight pairs are shown), and flat surface 86 is also provided with multiple pairs of barbs (eight pairs are shown). The pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • Sixth Embodiment—Elliptical with Two Ribs
  • FIGS. 23-27 relate to the sixth embodiment of the present invention in which the elliptical stress plate is generally designated at 70′ and the fastener is generally designated at 72′. The two components are non-integral and, when put together, constitute the invention. The elliptical stress plate 70′ has a round or rectangular opening 74′ in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck. The stress plate is provided with two concentric dome-shaped ribs: rib 76′ is an inner rib close to the opening, and rib 78′ is an outer rib spaced from the inner rib toward the circumferential edge 88′ of the stress plate. The ribs serve as reinforcements to the stress plate. Separating rib 76′ from rib 78′ there is a concentric depression or dimple 82′. An essentially flat surface 86′ extends between rib 78′ and the circumferential edge 88′ of the stress plate. Dimple 82′ is provided with multiple pairs of barbs 90′ (six pairs are shown), and flat surface 86′ is also provided with multiple pairs of barbs (eight pairs are shown). The pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • Seventh Embodiment—Square with Two Ribs
  • FIGS. 28-31 relate to the seventh embodiment of the present invention in which the square stress plate is generally designated at 100 and the fastener is generally designated at 102. The two components are non-integral and, when put together, constitute the invention. The square stress plate 100 has a round or rectangular opening 104 in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck. The stress plate is provided with two concentric dome-shaped ribs: rib 106 is an inner rib close to the opening, and rib 108 is an outer rib spaced from the inner rib toward the circumferential edge 118 of the stress plate. The ribs serve as reinforcements to the stress plate. Separating rib 106 from rib 108 there is a concentric depression or dimple 112. An essentially flat surface 106 extends between rib 108 and the circumferential edge 118 of the stress plate. Dimple 112 is provided with multiple pairs of barbs 120 (eight pairs are shown), and flat surface 116 is also provided with multiple pairs of barbs (eight pairs are shown). The pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • Eighth Embodiment—Rectangular with Two Ribs
  • FIGS. 32-36 relate to the eighth embodiment of the present invention in which the rectangular stress plate is generally designated at 100′ and the fastener is generally designated at 102′. The two components are non-integral and, when put together, constitute the invention. The rectangular stress plate 100′ has a round or rectangular opening 104′ in its center portion through which the fastener is inserted when the stress plate is employed for attaching and firmly holding a roof membrane to an underlying roof deck. The stress plate is provided with two concentric dome-shaped ribs: rib 106′ is an inner rib close to the opening, and rib 108′ is an outer rib spaced from the inner rib toward the circumferential edge 118′ of the stress plate. The ribs serve as reinforcements to the stress plate. Separating rib 106′ from rib 108′ there is a concentric depression or dimple 112′. An essentially flat surface 106′ extends between rib 108′ and the circumferential edge 118′ of the stress plate. Dimple 112′ is provided with multiple pairs of barbs 120′(eight pairs are shown), and flat surface 116′ is also provided with multiple pairs of barbs (eight pairs are shown). The pairs of barbs are either triangular (as shown), or rectangular (not shown), or semi-circular (not shown). The pairs of barbs are approximately evenly spaced from each other.
  • FIGS. 37, 38 and 39 shows the pairs of barbs in top plan view used in the stress plate and are integral therewith.
  • FIG. 37 shows a pair of equilateral triangles in the stress plate the sharp points of the triangles extend outwardly from the bottom surface of the stress plate.
  • FIG. 38 shows a pair of rectangular barbs. In the stress plate the rectangular barbs extend outwardly from the bottom surface of the stress plate.
  • FIG. 39 shows a pair of semi-circular barbs. In the stress plate the semi-circular barbs extend outwardly from the bottom surface of the stress plate.
  • The length of the barbs may vary depending on the thickness of the roof membrane which is to be attached to the underlying roof deck. Typically, the length of the barbs would be in the range of 0.1-1.0 centimeter or more, and preferably in the range of 0.2-0.5 centimeter.
  • The barbs are formed by cutting the same from the surface of the stress plate and bending them 90° from the surface of the stress plate.
  • The stress plates are made of materials including galvanized carbon steel and stainless steel. Softer metals such as copper or aluminum may also be used, however, the thickness of the stress plate should be larger to provide sufficient integrity to the stress plate. The thickness of the stress plate typically is about 0.05-0.1 cm. The fastener is typically a screw of 4 to 10 cm long having thread thereon.
  • FIG. 40 is a cross-sectional view illustrating the use of the stress plate and the fastener for attaching a roof membrane to a roof deck. Lower membrane 130 is positioned over insulation 132 which is over the roof deck surface 134. Inserting fastener 138 through stress plate 136, insulation 132 and into roof deck 134. Upper membrane 140 is then lapped-over portions of the lower membrane covering the stress plate 136. The upper membrane is secured to the lower membrane by the welded seam 142.
  • Wind Uplift Test
  • Comparative wind uplift tests were conducted on the double barb stress plates of the present invention, and the single barb stress plate. The wind uplift test measures the resistance of the roofing system to high wind currents. For example, a three second burst of wind at 175 miles per hour can exert a negative pressure of 90 pounds per square foot on the roof system.
  • The roofing system consists of: a roof deck, an insulating layer placed on the roof deck, and a roof membrane placed on the top of the insulating layer. The respective plates were then attached to the roofing system by inserting the respective fasteners through the stress plates, the roof membranes, and the insulating layer and into the roof deck and holding the roofing system at 15 pounds per square feet intervals starting at 30 pounds per square feet from sixty seconds until failure. Failure of the roofing system was measured by the membrane tearing around the stress plates.
  • The roofing system having the double barb stress plate passed the wind uplift test at 60 seconds at 90 pounds of pressure per square feet, while the roofing system having the single barb stress plate failed at 47 seconds at 75 pounds of pressure per square feet.
    First and Second Embodiments - Circular and Elliptical with Three Ribs
    Stress plate, generally designated 10, 10′
    Fastener, generally designated 12, 12′
    Opening in center portion 14, 14′
    Ribs 16, 16′, 18, 18′,
    20, 20′
    Depressions or dimples 22, 22′, 24, 24′
    Flat surface of stress plate 26, 26′
    Circumferential edge of stress plate 28, 28′
    Pairs of barbs 30, 30′
  • Third and Fourth Embodiments - Square and Rectangular with Three Ribs
    Stress plate, generally designated 40, 40′
    Fastener, generally designated 42, 42′
    Opening in center portion of stress plate 44, 44′
    Ribs 46, 46′, 48, 48′,
    50, 50′
    Depressions or dimples 52, 52′, 54, 54′
    Flat surface of stress plate 56, 56′
    Circumferential edge of stress plate 58, 58′
    Pairs of barbs 60, 60′
  • Fifth and Sixth Embodiments - Circular and Elliptical with Two Ribs
    Stress plate, generally designated 70, 70′
    Fastener, generally designated 72, 72′
    Opening in center portion of stress plate 74, 74′
    Ribs 76, 76′, 78, 78′
    Depressions or dimples 82, 82′
    Flat surface of stress plate 86, 86′
    Circumferential edge of stress plate 88, 88′
    Pairs of barbs 90, 90′
  • Seventh and Eighth Embodiments - Square and Rectangular with Two
    Ribs
    Stress plate, generally designated 100, 100′
    Fastener, generally designated 102, 102′
    Opening in center portion of stress plate 104, 104′
    Ribs 106, 106′, 108,
    108′
    Depressions or dimples 112, 112′
    Flat surface of stress plate 116, 116′
    Circumferential edge of stress plate 118, 118′
    Pairs of barbs 120, 120′
  • Using the Stress Plate
    Lower membrane
    130
    Insulation 132
    Roof deck 134
    Stress plate 136
    Fastener (screw) 138
    Upper membrane 140
    Welded seam 142
  • Having described the invention with reference to its preferred embodiments, it is to be understood that modifications within the scope of the invention will be apparent to those skilled in the art.

Claims (64)

1. A two-piece fastener assembly for securing a roof membrane to an underlying roof deck comprising:
a rigid, inflexible fastener plate of circular configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate; and
d) a third dome-shaped concentric rib spaced from said second dome-shaped concentric rib rising above the top surface of said fastener plate, said first, second and third dome-shaped concentric ribs having the same elevational heights;
e) a first concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib;
f) a second concentric dimple between said second dome-shaped concentric rib and said third dome-shaped concentric rib;
g) a flat concentric surface extending between said third dome-shaped concentric rib and said circumferential edge; wherein
said first concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
and wherein said fastener is a screw member having threads thereon.
2. The two-piece fastener assembly of claim 1 wherein said multiple pairs of barbs are extending 90° downward from the bottom surface of said fastener plate.
3. The two-piece fastener assembly of claim 1 wherein said multiple pairs of barbs are of triangular configuration.
4. The two-piece fastener assembly of claim 1 wherein said multiple pairs of barbs are of rectangular configuration.
5. The two-piece fastener assembly of claim 1 wherein said multiple pairs of barbs are of semi-circular configuration.
6. The two-piece fastener assembly of claim 1 wherein said fastener plate is formed of stainless steel or galvanized steel, having a thickness of about 0.05 to 0.1 cm.
7. The two-piece fastener assembly of claim 1 wherein said pairs of barbs are substantially evenly spaced from each other.
8. A two-piece fastener assembly for securing a roof membrane to an underlying roof deck comprising:
a rigid, inflexible fastener plate of elliptical configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate; and
d) a third dome-shaped concentric rib spaced from said second dome-shaped concentric rib rising above said fastener plate, said first, second and third dome-shaped concentric ribs having the same elevational heights;
e) a first concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib;
f) a second concentric dimple between said second dome-shaped concentric rib and said third dome-shaped concentric rib;
g) a flat concentric surface extending between said third dome-shaped concentric rib and said circumferential edge; wherein
said first concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
and wherein said fastener is a screw member having threads thereon.
9. The two-piece fastener assembly of claim 8 wherein said multiple pairs of barbs are extending 90° downward from the bottom surface of said fastener plate.
10. The two-piece fastener assembly of claim 8 wherein said multiple pairs of barbs are of triangular configuration.
11. The two-piece fastener assembly of claim 8 wherein said multiple pairs of barbs are of rectangular configuration.
12. The two-piece fastener assembly of claim 8 wherein said multiple pairs of barbs are of semi-circular configuration.
13. The two-piece fastener assembly of claim 8 wherein said fastener plate is formed of stainless steel or galvanized steel, having a thickness of about 0.05 to 0.1 cm.
14. The two-piece fastener assembly of claim 8 wherein said pairs of barbs are substantially evenly spaced from each other.
15. A two-piece fastener assembly for securing a roof membrane to an underlying roof deck comprising:
a rigid, inflexible fastener plate of square configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate; and
d) a third dome-shaped concentric rib spaced from said second dome-shaped concentric rib rising above the top surface of said fastener plate, said first, second and third dome-shaped concentric ribs having the same elevational heights;
e) a first concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib;
f) a second concentric dimple between said second dome-shaped concentric rib and said third dome-shaped concentric rib;
g) a flat concentric surface extending between said third dome-shaped concentric rib and said circumferential edge; wherein
said first concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
and wherein said fastener is a screw member having threads thereon.
16. The two-piece fastener assembly of claim 15 wherein said multiple pairs of barbs are extending 90° downward from the bottom surface of said fastener plate.
17. The two-piece fastener assembly of claim 15 wherein said multiple pairs of barbs are of triangular configuration.
18. The two-piece fastener assembly of claim 15 wherein said multiple pairs of barbs are of rectangular configuration.
19. The two-piece fastener assembly of claim 15 wherein said multiple pairs of barbs are of semi-circular configuration.
20. The two-piece fastener assembly of claim 15 wherein said fastener plate is formed of stainless steel or galvanized steel, having a thickness of about 0.05 to 0.1 cm.
21. The two-piece fastener assembly of claim 15 wherein said pairs of barbs are substantially evenly spaced from each other.
22. A two-piece fastener assembly for securing a roof membrane to an underlying roof deck comprising:
a rigid, inflexible fastener plate of rectangular configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate; and
d) a third dome-shaped concentric rib spaced from said second dome-shaped concentric rib rising above the top surface of said fastener plate, said first, second and third dome-shaped concentric ribs having the same elevational heights;
e) a first concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib;
f) a second concentric dimple between said second dome-shaped concentric rib and said third dome-shaped concentric rib;
g) a flat concentric surface extending between said third dome-shaped concentric rib and said circumferential edge; wherein
said first concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
and wherein said fastener is a screw member having threads thereon.
23. The two-piece fastener assembly of claim 22 wherein said multiple pairs of barbs are extending 90° downward from the bottom surface of said fastener plate.
24. The two-piece fastener assembly of claim 22 wherein said multiple pairs of barbs are of triangular configuration.
25. The two-piece fastener assembly of claim 22 wherein said multiple pairs of barbs are of rectangular configuration.
26. The two-piece fastener assembly of claim 22 wherein said multiple pairs of barbs are of semi-circular configuration.
27. The two-piece fastener assembly of claim 22 wherein said fastener plate is formed of stainless steel or galvanized steel, having a thickness of about 0.05 to 0.1 cm.
28. The two-piece fastener assembly of claim 22 wherein said pairs of barbs are substantially evenly spaced from each other.
29. A two-piece fastener assembly for securing a roof membrane to an underlying roof deck comprising:
a rigid, inflexible fastener plate of circular configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate;
d) a concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib, said first and second dome-shaped concentric ribs having the same elevational heights;
e) a flat concentric surface extending between said second dome-shaped concentric rib and said circumferential edge;
wherein
said concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
and wherein said fastener is a screw member having threads thereon.
30. The two-piece fastener assembly of claim 29 wherein said multiple pairs of barbs are extending 90° downward from the bottom surface of said fastener plate.
31. The two-piece fastener assembly of claim 29 wherein said multiple pairs of barbs are of triangular configuration.
32. The two-piece fastener assembly of claim 29 wherein said multiple pairs of barbs are of rectangular configuration.
33. The two-piece fastener assembly of claim 29 wherein said multiple pairs of barbs are of semi-circular configuration.
34. The two-piece fastener assembly of claim 29 wherein said fastener plate is formed of stainless steel or galvanized steel, having a thickness of about 0.05 to 0.1 cm.
35. The two-piece fastener assembly of claim 29 wherein said pair of barbs are substantially evenly spaced from each other.
36. A two-piece fastener assembly for securing a roof membrane to an underlying roof deck comprising:
a rigid, inflexible fastener plate of elliptical configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate;
d) a concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib, said first and second dome-shaped concentric ribs having the same elevational heights;
e) a flat concentric surface extending between said second dome-shaped concentric rib and said circumferential edge;
wherein
said concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
and wherein said fastener is a screw member having threads thereon.
37. The two-piece fastener assembly of claim 36 wherein said multiple pairs of barbs are extending 90° downward from the bottom surface of said fastener plate.
38. The two-piece fastener assembly of claim 36 wherein said multiple pairs of barbs are of triangular configuration.
39. The two-piece fastener assembly of claim 36 wherein said multiple pairs of barbs are of rectangular configuration.
40. The two-piece fastener assembly of claim 36 wherein said multiple pairs of barbs are of semi-circular configuration.
41. The two-piece fastener assembly of claim 36 wherein said fastener plate is formed of stainless steel or galvanized steel having a thickness of about 0.05 to 0.1 cm.
42. The two-piece fastener assembly of claim 36 wherein said pairs of barbs are substantially evenly spaced from each other.
43. A two-piece fastener assembly for securing a roof membrane to an underlying roof deck comprising:
a rigid, inflexible fastener plate of square configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate;
d) a concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib, said first and second dome-shaped concentric ribs having the same elevational heights;
e) a flat concentric surface extending between said second dome-shaped concentric rib and said circumferential edge;
wherein
said concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
and wherein said fastener is a screw member having threads thereon.
44. The two-piece fastener assembly of claim 43 wherein said multiple pairs of barbs are extending 90° downward from the bottom surface of said fastener plate.
45. The two-piece fastener assembly of claim 43 wherein said multiple pairs of barbs are of triangular configuration.
46. The two-piece fastener assembly of claim 43 wherein said multiple pairs of barbs are of rectangular configuration.
47. The two-piece fastener assembly of claim 43 wherein said multiple pairs of barbs are of semi-circular configuration.
48. The two-piece fastener assembly of claim 43 wherein said fastener plate is formed of stainless steel or galvanized steel, having a thickness of about 0.05 to 0.1 cm.
49. The two-piece fastener assembly of claim 43 wherein said pairs of barbs are substantially evenly spaced from each other.
50. A two-piece fastener assembly for securing a roof membrane to an underlying roof deck comprising:
a rigid, inflexible fastener plate of rectangular configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate, said first and second dome-shaped concentric ribs having the same elevational heights;
d) a concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib;
e) a flat concentric surface extending between said second dome-shaped concentric rib and said circumferential edge;
wherein
said concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
and wherein said fastener is a screw member having threads thereon.
51. The two-piece fastener assembly of claim 50 wherein said multiple pairs of barbs are extending 90° downward from the bottom surface of said fastener plate.
52. The two-piece fastener assembly of claim 50 wherein said multiple pairs of barbs are of triangular configuration.
53. The two-piece fastener assembly of claim 50 wherein said multiple pairs of barbs are of rectangular configuration.
54. The two-piece fastener assembly of claim 50 wherein said multiple pairs of barbs are of semi-circular configuration.
55. The two-piece fastener assembly of claim 50 wherein said fastener plate is formed of stainless steel or galvanized steel, having a thickness of about 0.05 to 0.1 cm.
56. The two-piece fastener assembly of claim 50 wherein said pairs of barbs are substantially evenly spaced from each other.
57. A method of securing a roof membrane to a roof deck comprising the steps of:
1) providing a two-piece fastener assembly comprising:
a rigid, inflexible fastener plate of circular configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate; and
d) a third dome-shaped concentric rib spaced from said second dome-shaped concentric rib rising above the top surface of said fastener plate, said first, second and third dome-shaped concentric ribs having the same elevational heights;
e) a first concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib;
f) a second concentric dimple between said second dome-shaped concentric rib and said third dome-shaped concentric rib;
g) a flat concentric surface extending between said third dome-shaped concentric rib and said circumferential edge; wherein
said first concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
2) placing a roof membrane having a top surface on a roof deck;
3) placing said fastener plate on said roof membrane with its bottom surface projecting toward the top surface of said roof membrane;
4) inserting said fastener through said opening in said fastener plate; and
5) threading said fastener through the roof membrane into said roof deck to fasten the roof membrane to the roof deck without said pairs of barbs piercing said roof membrane.
58. A method of securing a roof membrane to a roof deck comprising the steps of:
1) providing a two-piece fastener assembly comprising:
a rigid, inflexible fastener plate of ellipsoidal configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate; and
d) a third dome-shaped concentric rib spaced from said second dome-shaped concentric rib rising above the top surface of said fastener plate, said first, second and third dome-shaped concentric ribs having the same elevational heights;
e) a first concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib;
f) a second concentric dimple between said second dome-shaped concentric rib and said third dome-shaped concentric rib;
g) a flat concentric surface extending between said third dome-shaped concentric rib and said circumferential edge; wherein
said first concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
2) placing a roof membrane having a top surface on a roof deck;
3) placing said fastener plate on said roof membrane with its bottom surface projecting toward the top surface of said roof membrane;
4) inserting said fastener through said opening in said fastener plate; and
5) threading said fastener through the roof membrane into said roof deck to fasten the roof membrane to the roof deck without said pairs of barbs piercing said roof membrane.
59. A method of securing a roof membrane to a roof deck comprising the steps of:
1) providing a two-piece fastener assembly comprising:
a rigid, inflexible fastener plate of square configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate; and
d) a third dome-shaped concentric rib spaced from said second dome-shaped concentric rib rising above the top surface of said fastener plate, said first, second and third dome-shaped concentric ribs having the same elevational heights;
e) a first concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib;
f) a second concentric dimple between said second dome-shaped concentric rib and said third dome-shaped concentric rib;
g) a flat concentric surface extending between said third dome-shaped concentric rib and said circumferential edge; wherein
said first concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
2) placing a roof membrane having a top surface on a roof deck;
3) placing said fastener plate on said roof membrane with its bottom surface projecting toward the top surface of said roof membrane;
4) inserting said fastener through said opening in said fastener plate; and
5) threading said fastener through the roof membrane into said roof deck to fasten the roof membrane to the roof deck without said pairs of barbs piercing said roof membrane.
60. A method of securing a roof membrane to a roof deck comprising the steps of:
1) providing a two-piece fastener assembly comprising:
a rigid, inflexible fastener plate of rectangular configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate; and
d) a third dome-shaped concentric rib spaced from said second dome-shaped concentric rib rising above the top surface of said fastener plate, said first, second and third dome-shaped concentric ribs having the same elevational heights;
e) a first concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib;
f) a second concentric dimple between said second dome-shaped concentric rib and said third dome-shaped concentric rib;
g) a flat concentric surface extending between said third dome-shaped concentric rib and said circumferential edge; wherein
said first concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
2) placing a roof membrane having a top surface on a roof deck;
3) placing said fastener plate on said roof membrane with its bottom surface projecting toward the top surface of said roof membrane;
4) inserting said fastener through said opening in said fastener plate; and
5) threading said fastener through the roof membrane into said roof deck to fasten the roof membrane to the roof deck without said pairs of barbs piercing said roof membrane.
61. A method of securing a roof membrane to a roof deck comprising the steps of:
1) providing a two-piece fastener assembly comprising:
a rigid, inflexible fastener plate of circular configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate, said first, second and third dome-shaped concentric ribs having the same elevational heights; and
d) a concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib;
e) a flat concentric surface extending between said second dome-shaped concentric rib and said circumferential edge; wherein
said concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
2) placing a roof membrane having a top surface on a roof deck;
3) placing said fastener plate on said roof membrane with its bottom surface projecting toward the top surface of said roof membrane;
4) inserting said fastener through said opening in said fastener plate; and
5) threading said fastener through the roof membrane into said roof deck to fasten the roof membrane to the roof deck without said pairs of barbs piercing said roof membrane.
62. A method of securing a roof membrane to a roof deck comprising the steps of:
1) providing a two-piece fastener assembly comprising:
a rigid, inflexible fastener plate of elliptical configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate, said first and second dome-shaped concentric ribs having the same elevational heights; and
d) a concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib;
e) a flat concentric surface extending between said second dome-shaped concentric rib and said circumferential edge; wherein
said concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
2) placing a roof membrane having a top surface on a roof deck;
3) placing said fastener plate on said roof membrane with its bottom surface projecting toward the top surface of said roof membrane;
4) inserting said fastener through said opening in said fastener plate; and
5) threading said fastener through the roof membrane into said roof deck to fasten the roof membrane to the roof deck without said pairs of barbs piercing said roof membrane.
63. A method of securing a roof membrane to a roof deck comprising the steps of:
1) providing a two-piece fastener assembly comprising:
a rigid, inflexible fastener plate of square configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate, said first and second dome-shaped concentric ribs having the same elevational heights; and
d) a concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib;
e) a flat concentric surface extending between said second dome-shaped concentric rib and said circumferential edge; wherein
said concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
2) placing a roof membrane having a top surface on a roof deck;
3) placing said fastener plate on said roof membrane with its bottom surface projecting toward the top surface of said roof membrane;
4) inserting said fastener through said opening in said fastener plate; and
5) threading said fastener through the roof membrane into said roof deck to fasten the roof membrane to the roof deck without said pairs of barbs piercing said roof membrane.
64. A method of securing a roof membrane to a roof deck comprising the steps of:
1) providing a two-piece fastener assembly comprising:
a rigid, inflexible fastener plate of rectangular configuration defined by a top surface, a bottom surface, and a circumferential edge, said fastener plate comprising:
a) an opening in its center portion for receiving a fastener therethrough for securing the fastener plate to a roof deck;
b) a first dome-shaped concentric rib rising above the top surface of said fastener plate;
c) a second dome-shaped concentric rib spaced from said first dome-shaped concentric rib rising above the top surface of said fastener plate, said first and second dome-shaped concentric ribs having the same elevational heights; and
d) a concentric dimple between said first dome-shaped concentric rib and said second dome-shaped concentric rib;
e) a flat concentric surface extending between said second dome-shaped concentric rib and said circumferential edge; wherein
said concentric dimple is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
said flat concentric surface is provided with multiple pairs of barbs extending downward from the bottom surface of said fastener plate;
2) placing a roof membrane having a top surface on a roof deck;
3) placing said fastener plate on said roof membrane with its bottom surface projecting toward the top surface of said roof membrane;
4) inserting said fastener through said opening in said fastener plate; and
5) threading said fastener through the roof membrane into said roof deck to fasten the roof membrane to the roof deck without said pairs of barbs piercing said roof membrane.
US11/083,799 2003-02-03 2005-03-18 Double barbed plate with fastener Abandoned US20050183348A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/083,799 US20050183348A1 (en) 2003-02-03 2005-03-18 Double barbed plate with fastener

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/357,113 US20040148888A1 (en) 2003-02-03 2003-02-03 Double barbed plate with fastener
US11/083,799 US20050183348A1 (en) 2003-02-03 2005-03-18 Double barbed plate with fastener

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/357,113 Continuation-In-Part US20040148888A1 (en) 2003-02-03 2003-02-03 Double barbed plate with fastener

Publications (1)

Publication Number Publication Date
US20050183348A1 true US20050183348A1 (en) 2005-08-25

Family

ID=32770955

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/357,113 Abandoned US20040148888A1 (en) 2003-02-03 2003-02-03 Double barbed plate with fastener
US10/794,839 Abandoned US20040168396A1 (en) 2003-02-03 2004-03-05 Multiple barbed plate with fastener
US11/083,799 Abandoned US20050183348A1 (en) 2003-02-03 2005-03-18 Double barbed plate with fastener

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/357,113 Abandoned US20040148888A1 (en) 2003-02-03 2003-02-03 Double barbed plate with fastener
US10/794,839 Abandoned US20040168396A1 (en) 2003-02-03 2004-03-05 Multiple barbed plate with fastener

Country Status (5)

Country Link
US (3) US20040148888A1 (en)
EP (1) EP1595040A4 (en)
CA (1) CA2514418A1 (en)
MX (1) MXPA05008167A (en)
WO (1) WO2004070129A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9309911B1 (en) 2012-01-23 2016-04-12 K & R Industries Inc. Cap nail
US10190616B2 (en) 2016-01-04 2019-01-29 Celcore Incorporated Roof cover fastener
USD844424S1 (en) 2017-06-23 2019-04-02 Celcore Incorporated Roof cover fastener
US11037786B2 (en) 2017-12-19 2021-06-15 International Business Machines Corporation Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (EUV) lithography

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070224389A1 (en) * 2006-03-23 2007-09-27 Panasik Cheryl L Universal insulation plate for use with different insulation substrates and different fasteners
DE102007055878A1 (en) * 2007-12-19 2009-06-25 Hilti Aktiengesellschaft sealing
US8166720B2 (en) * 2008-01-09 2012-05-01 Talan Products Roofing membrane retainer
WO2009137809A1 (en) * 2008-05-08 2009-11-12 Solar Power, Inc. Flat roof mounted solar panel support system
US20100031595A1 (en) * 2008-08-08 2010-02-11 Kelly Joshua S Roofing plate, installation and method therefor
US20100233416A1 (en) * 2009-03-13 2010-09-16 Parziale Patrick J Multiple cascading ribbed insulation plate
EP2596185B1 (en) * 2010-07-20 2017-06-28 Handy & Harman Roof insulation fastening system
US9856651B2 (en) * 2011-05-27 2018-01-02 Firestone Building Products Co., LLC Fastening plate assembly
WO2015066583A2 (en) * 2013-11-01 2015-05-07 Handy & Harman Roof attachment system
USD857035S1 (en) 2014-04-11 2019-08-20 Johnson Controls Technology Company Display screen or portion thereof with graphical user interface
US10781587B2 (en) 2016-12-14 2020-09-22 Solsera, Inc. Structural attachment sealing system
US11746821B2 (en) 2019-04-26 2023-09-05 Solsera, Inc. Flat roof mounting device
US10767684B1 (en) * 2019-04-26 2020-09-08 Solsera, Inc. Flat roof mounting device
EP3981071A4 (en) 2019-06-10 2023-06-07 Origami Solar, Inc. Methods and systems for folded frame solar panels
USD943405S1 (en) 2020-02-10 2022-02-15 Talan Products, Inc. Roofing membrane seam plate
US11962137B2 (en) 2020-04-21 2024-04-16 Unirac Inc. Electric junction box mount apparatus

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4520606A (en) * 1983-01-27 1985-06-04 Francovitch Thomas F Roof membrane anchoring systems using dual anchor plates
US4606168A (en) * 1984-11-29 1986-08-19 Fuhrer John P R Suspended insulated building exterior cladding
US4751802A (en) * 1985-08-09 1988-06-21 Whitman Robert E Device for facilitating installation of rubber roof sheets
US4787188A (en) * 1986-01-02 1988-11-29 Engineered Construction Components Stress plate and method of using same for securing a roof membrane to a roof deck
USD310324S (en) * 1987-03-02 1990-09-04 Insul-Mark, Midwest, Inc. Roof fastening plate
US5049018A (en) * 1989-08-21 1991-09-17 Engineered Construction Components Fastener for gripping a substrate material
US5163798A (en) * 1992-02-11 1992-11-17 Olympic Manufacturing Group, Inc. Base sheet fastener-plate assembly
US5803693A (en) * 1997-04-17 1998-09-08 Olympic Manufacturing Group, Inc. Swiveling roofing washer
US5951225A (en) * 1993-12-10 1999-09-14 Sfs Industrie Holding Ag Large-area washer
US6250034B1 (en) * 1999-11-09 2001-06-26 Construction Fasteners, Inc. Membrane plate
US20030196398A1 (en) * 2001-08-20 2003-10-23 Illinois Tool Works Inc. Seam plate for retaining roof decking membrane
US6640511B1 (en) * 1999-08-17 2003-11-04 Valro Manufacturing Limited Anchor plates
US6689449B2 (en) * 2002-01-04 2004-02-10 Illinois Tool Works Inc. Roof decking membrane welding system and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7415863A (en) * 1974-12-05 1976-06-09 Wilhelmus Everardus Korte Washer for screw fixing of fibrous material - has annular depressions concentric with bore and annular upward bulge around bore
AU3804395A (en) * 1994-10-07 1996-05-02 Sfs Industrie Holding Ag Preassembled fastening element
US5930969A (en) * 1996-08-27 1999-08-03 Mayle; Robert L. Roof membrane attachment system
US5908278A (en) * 1997-08-07 1999-06-01 Illinois Tool Works Inc. Stress plate with depending sleeve
US6282857B1 (en) * 2000-03-09 2001-09-04 Sarnafil, Inc. Articulating plate assembly for retaining sheets of roofing material on a roof surface
US6722095B2 (en) * 2001-08-20 2004-04-20 Illinois Tool Works Inc. Seam plate for retaining roof decking membrane

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4520606A (en) * 1983-01-27 1985-06-04 Francovitch Thomas F Roof membrane anchoring systems using dual anchor plates
US4606168A (en) * 1984-11-29 1986-08-19 Fuhrer John P R Suspended insulated building exterior cladding
US4751802A (en) * 1985-08-09 1988-06-21 Whitman Robert E Device for facilitating installation of rubber roof sheets
US4787188A (en) * 1986-01-02 1988-11-29 Engineered Construction Components Stress plate and method of using same for securing a roof membrane to a roof deck
USD310324S (en) * 1987-03-02 1990-09-04 Insul-Mark, Midwest, Inc. Roof fastening plate
US5049018A (en) * 1989-08-21 1991-09-17 Engineered Construction Components Fastener for gripping a substrate material
US5163798A (en) * 1992-02-11 1992-11-17 Olympic Manufacturing Group, Inc. Base sheet fastener-plate assembly
US5951225A (en) * 1993-12-10 1999-09-14 Sfs Industrie Holding Ag Large-area washer
US5803693A (en) * 1997-04-17 1998-09-08 Olympic Manufacturing Group, Inc. Swiveling roofing washer
US6640511B1 (en) * 1999-08-17 2003-11-04 Valro Manufacturing Limited Anchor plates
US6250034B1 (en) * 1999-11-09 2001-06-26 Construction Fasteners, Inc. Membrane plate
US20030196398A1 (en) * 2001-08-20 2003-10-23 Illinois Tool Works Inc. Seam plate for retaining roof decking membrane
US6665991B2 (en) * 2001-08-20 2003-12-23 Illinois Tool Works Inc. Seam plate for retaining roof decking membrane
US6689449B2 (en) * 2002-01-04 2004-02-10 Illinois Tool Works Inc. Roof decking membrane welding system and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9309911B1 (en) 2012-01-23 2016-04-12 K & R Industries Inc. Cap nail
US10190616B2 (en) 2016-01-04 2019-01-29 Celcore Incorporated Roof cover fastener
USD844424S1 (en) 2017-06-23 2019-04-02 Celcore Incorporated Roof cover fastener
US11037786B2 (en) 2017-12-19 2021-06-15 International Business Machines Corporation Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (EUV) lithography
US11177130B2 (en) 2017-12-19 2021-11-16 International Business Machines Corporation Patterning material film stack with metal-containing top coat for enhanced sensitivity in extreme ultraviolet (EUV) lithography

Also Published As

Publication number Publication date
CA2514418A1 (en) 2004-08-19
MXPA05008167A (en) 2005-10-06
WO2004070129A3 (en) 2004-12-02
EP1595040A4 (en) 2009-11-04
EP1595040A2 (en) 2005-11-16
US20040168396A1 (en) 2004-09-02
WO2004070129A2 (en) 2004-08-19
US20040148888A1 (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US20050183348A1 (en) Double barbed plate with fastener
US6665991B2 (en) Seam plate for retaining roof decking membrane
US6250034B1 (en) Membrane plate
US5069589A (en) Stress plate for roof membrane fastener assembly
US5407313A (en) Roofing nail pressure plate
US4726164A (en) Fastener assembly for a roof membrane
US4860513A (en) Roofing fastener
US5797232A (en) Gripping plate for attaching roofing membrane
US4631887A (en) Non-penetrating roof membrane anchoring system
JPH11108036A (en) Stress plate
EP0891460B1 (en) Fastener for cementitious substrate
US4617771A (en) Mechanical fastener for roofing membrane and method of applying same
US20170204895A1 (en) Washer and combination washer and fastener system for building construction
US5094056A (en) Roofing attachment plate
CA2805585A1 (en) Roof insulation fastening system
US4788807A (en) Fastening plate for facilitating installation of rubber roof covering
JPS62137349A (en) Non-piercing mechanical clamp for applying film to roof and its adaptation
US4624092A (en) Roofing membrane fastener
US5415511A (en) Multipurpose roofing and siding fastener
CA1250165A (en) Retainer for a fastener
US4660347A (en) Non-penetrating roofing membrane fastener
US2570626A (en) Roofing fastener
US5182890A (en) Attachment plate for roofing sheets
US20020108315A1 (en) Vented roofing anchor plate
WO2018149905A1 (en) End clip for batten

Legal Events

Date Code Title Description
AS Assignment

Owner name: BUILDING MATERIALS INVESTMENT CORPORATION, DELAWAR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUHN, WILLIAM P.;REEL/FRAME:016399/0026

Effective date: 20050310

AS Assignment

Owner name: DEUTSCHE BANK TRUST COMPANY AMERICAS,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:BUILDING MATERIALS CORPORATION OF AMERICA;BMCA ACQUISITION INC.;BMCA ACQUISITION SUB INC.;AND OTHERS;REEL/FRAME:019028/0534

Effective date: 20070222

Owner name: DEUTSCHE BANK TRUST COMPANY AMERICAS, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:BUILDING MATERIALS CORPORATION OF AMERICA;BMCA ACQUISITION INC.;BMCA ACQUISITION SUB INC.;AND OTHERS;REEL/FRAME:019028/0534

Effective date: 20070222

AS Assignment

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:BUILDING MATERIALS CORPORATION OF AMERICA;BMCA ACQUISITION INC.;BMCA ACQUISITION SUB INC.;AND OTHERS;REEL/FRAME:019122/0197

Effective date: 20070315

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:BUILDING MATERIALS CORPORATION OF AMERICA;BMCA ACQUISITION INC.;BMCA ACQUISITION SUB INC.;AND OTHERS;REEL/FRAME:019122/0197

Effective date: 20070315

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION