US20050153030A1 - Stable acidic milk based beverage - Google Patents

Stable acidic milk based beverage Download PDF

Info

Publication number
US20050153030A1
US20050153030A1 US10/663,154 US66315404A US2005153030A1 US 20050153030 A1 US20050153030 A1 US 20050153030A1 US 66315404 A US66315404 A US 66315404A US 2005153030 A1 US2005153030 A1 US 2005153030A1
Authority
US
United States
Prior art keywords
milk
based beverage
acid
mixture
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/663,154
Inventor
Paul Young
Peter Bluestein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/663,154 priority Critical patent/US20050153030A1/en
Publication of US20050153030A1 publication Critical patent/US20050153030A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/152Milk preparations; Milk powder or milk powder preparations containing additives
    • A23C9/154Milk preparations; Milk powder or milk powder preparations containing additives containing thickening substances, eggs or cereal preparations; Milk gels
    • A23C9/1542Acidified milk products containing thickening agents or acidified milk gels, e.g. acidified by fruit juices
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/38Other non-alcoholic beverages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a process for preparing a chilled beverage product, which contains milk and a food acid.
  • the process of the present invention provides a means for making smooth-textured, low viscosity beverage products which contain milk proteins and a food acid, but which exhibit little or no sedimentation.
  • whey proteins are generally favored because they are soluble under acidic conditions. Acidic, flavored drinks with casein proteins are known to be unstable and produce large amounts of casein precipitate.
  • a process and formulation for flavored low pH milk protein-containing beverages, which provides for significantly improved stability of the casein proteins with 97 to 99% stability is herein disclosed. The explanation of the chemistry is below.
  • Milk proteins are generally divided into two classes: casein and whey. Casein is generally recognized as being insoluble under acidic conditions around its isoelectric point of about 4.6.
  • Whey protein is more stable in acid solution and tends to offer less of a precipitation problem.
  • a pH of 4.0 or less is desired for the milk beverage, however, to prevent microbial activity and thus allow for a longer shelf life and to provide a basis for fruit flavor.
  • Food grade stabilizers such as pectin, propylene glycol alginate, carboxymethylcellulose, xanthan gum, locust bean and combinations thereof have been used to prevent the sedimentation and coagulation of the milk proteins and to improve stability of the beverages. It is reported that even when these food stabilizers are employed, beverage products containing milk proteins and acid or acidic juice at a pH below 4.5 tend to exhibit undesirable sedimentation/ precipitation over time.
  • the present invention discloses a composition and processing technique for an acidic, milk based beverage with enhanced stability.
  • U.S. Pat. No. 2,859,115 to Rivoche describes how mixing fruit juice with milk can cause milk proteins to precipitate, because the fruit juice lowers the pH of the beverage.
  • the reference describes overcoming this problem through he use of stabilizers such as pectin.
  • a food powder is mixed with a colloidal stabilizer such as pectin or algin in water, followed by the addition of an alkaline earth salt such as calcium carbonate.
  • a dry acid powder, such as tartaric acid is then added to initiates gel formation.
  • the stabilized mixture is then mixed with milk and stirred at a controlled shear so that the gel is broken up, and a desired viscosity is reached.
  • U.S. Pat. No. 5,648,112 to Yang, et al. describes mixing milk with a food stabilizer under high shear mixing conditions and maintaining a median particle size of less than 0.8 microns to prevent precipitation of milk proteins. Afterward, the pH is reduced to between 3.2 and 4.5 by the addition of food grade acid.
  • U.S. Pat. No. 3,692,532 to Shenkenburg, et al. describes a process whereby a stabilizer having carboxyl groups is added to milk, followed by the addition of fruit juice.
  • sugar and carboxymethyl cellulose are mixed with milk, and sufficient time allowed for the carboxyl groups of the stabilizer to react with the casein.
  • the described reaction is said to occur at temperatures below 90° F., and the resulting mixture is aged, pasteruized and homogenized.
  • the resulting product is stated to be stable at a pH below 5.0.
  • the present invention relates to a composition and a process for preparing an acidic milk protein based beverage product.
  • the products prepared according to the process of the present invention are stable and do not show sediment or precipitate over time. These products contain from about 0.5% to 5.0% milk proteins and 0.5 to 2.0% of a food stabilizer mixture and a food acid sufficient to lower the pH below 4.5.
  • the present invention comprises concentrated milk protein which is a dry powder which is reconstituted with water to form a solution of milk proteins, specifically casein and whey.
  • the milk protein may be substituted with other milk products, such as whole milk, skim milk, dehydrated milk powder, etc.
  • the process of the present invention comprises, as a first step, mixing the milk proteins with a weak base to elevate the pH.
  • the weak base can be a salt of a weak organic acid, such as sodium citrate, sodium malate, sodium lactate or sodium fumerate.
  • Sodium citrate is the preferred weak base additive.
  • the sodium citrate is added to the concentrated milk protein in sufficient amounts to raise the pH to a range of 7.0 to 8.0.
  • weak base creates an environment wherein the casein molecules are enhanced in a manner which promotes the association of stabilizer molecules to the surface of the protein.
  • the basic environment also reduces the role of calcium by inhibiting the bridging of calcium with the protein, thus limiting coalescence and sedimentation of the proteins.
  • Stabilizers are then added to the mixture.
  • Stabilizers employed in the invention include pectin, propylene glycol alginate and others, which consist of acidic hydrocolloids. These acidic hydrocolloids are negative charged bodies when present in the basic environment. The negatively charged hydrocolloids adhere to the surface of casein molecules, forming colloidal complexes which are themselves negatively charged. These colloidal complexes resist agglomeration, and thus remain in stable suspension in the mixture, even at low pH and low viscosity.
  • the food stabilizer is added under low shear conditions sufficient to form an intimate mixture. These conditions avoid excessive shear for extended periods of time, which can act to break up the negatively charged colloidal complexes, denature the milk proteins and cause foam.
  • ingredients such as flavors, colors, sweeteners, vitamin and mineral supplements, microbiological stabilizers, etc. may then be added.
  • the mixture is then homogenized and cooled below 30° C., preferably below 10° C.
  • Acid is then added under low shear conditions to the cooled mixture.
  • a food grade acid such as citric acid is added to bring the pH down to between 3.2 and 4.5.
  • the acid is added in a chilled state, generally below 10° C. Mixing remains under low-shear conditions, so as not to break up the stable colloidal complexes.
  • the final product is then packaged and may stored at room temperature or refrigerated.
  • the present invention relates to a formulation and process for preparing acidic milk based beverage products which develop little of no sediment or precipitation over time.
  • the beverages provide the milk appearance and the flavor of a fruit flavored milk drink at a low viscosity, thus providing a refreshing and rich beverage which is unique.
  • milk products are formulated at a high pH to avoid sedimentation and precipitation.
  • Milk proteins are known to be unstable at low pH.
  • the stability of the protein must be enhanced with food grade stabilizers or gums, which coat the surface of the protein and inhibit the sedimentation.
  • Mixing of the milk protein with a weak base enhances the structure of the casein proteins and improves the coating of the casein particle with the stabilizing gums.
  • the weak base also can reduce the role of calcium in promoting the coalescence and sedimentation of milk proteins.
  • the stabilizers can be predissolved in water or added directly to the alkaline milk protein base under low shear conditions, to produce the intimate mixture of milk proteins and stabilizers.
  • Optional ingredients are added and the mixture is homogenized to ensure a uniform mix and dispersion. Acid is added under cooled conditions to a pH below 4.5.
  • the materials employed in the process of the present invention include milk or concentrated milk protein, a weak base, a food acid and food stabilizer, as well as other optional ingredients. These are described more particularly as follows:
  • the milk proteins used in the process of the present invention may be derived from all forms of milk including, but not limited to, whole milk, skim milk, milk powder, concentrated milk proteins and whey.
  • the milk proteins can be from a dairy ingredient of any form: native, homogenized, concentrated or powder.
  • the amount of milk protein employed in the formulation of the present invention and present in the final beverage products will typically range from about 0.5% to about 5.0% preferably from about 1.0% to about 4.0% which is equivalent to the protein content of native milk.
  • the formulation and process employ a weak base to condition the structure of the milk proteins for coating with food stabilizers.
  • the weak base can be salts of weak organic acids like sodium citrate, sodium malate, sodium lactate, or sodium fumarate. Sodium citrate is preferred.
  • the resulting pH is within a range of 7.0 to 8.0, preferably 7.3-7.7.
  • the process of the present invention also employs a food acid.
  • the food acid can include any food grade organic or inorganic acid, for example, citric acid, malic acid, lactic acid, gluconic acid, succinic acid, tartaric acid, phosphoric acid, fumaric acid, and ascorbic acid.
  • Aliphatic hydroxycarboxylic acids e.g., malic acid, lactic acid, and citric acid
  • Citric acid is most preferred for use herein.
  • the amount of acid employed is an amount sufficient to adjust the pH of the milk/stabilizer mixture to from about 3.2 to about 4.5, preferably from about 3.5 to about 4.5, most preferably from about 3.8 to about 4.2.
  • the acid used is citric acid
  • typically the citric acid is added in an amount ranging from about 0.3% to about 1.0% by weight of the beverage, preferably between 0.5 to 0.8%.
  • the various food stabilizers which can be employed in the present invention include hydrophilic colloidal stabilizers commonly known in the art such as gum arabic, gelatin, xanthan, locust bean, propylene glycol alginate, and pectin, as well as anionic polymers derived from cellulose (e.g., carboxymethylcellulose), which are water soluble and tolerant of low pH's.
  • hydrophilic colloidal stabilizers commonly known in the art such as gum arabic, gelatin, xanthan, locust bean, propylene glycol alginate, and pectin
  • anionic polymers derived from cellulose e.g., carboxymethylcellulose
  • a blend of pectin and propylene glycol alginate is typically preferred for use herein.
  • the stabilizer is typically used in an amount ranging from about 0.1% to about 2.0% by weight of the beverage, preferably from about 0.3% to about 1.0%.
  • the amount of stabilizer used is dependent in part on the level of milk solids present in the beverage product. In general, the greater the level of milk solids present in the beverage, the more stabilizer that will be required to stabilize the beverage.
  • the mixture of stabilizers can be adjusted to provide low beverage viscosity and stability of the milk proteins.
  • Acid dairy beverages usually are formulated to provide a base for fruit flavored products.
  • the fruit flavor can be supplied from fruit juice, fruit concentrates, or flavors, as desired.
  • the formulation of the present invention can also employ a sweetener.
  • the sweetener can include, for example, maltose, sucrose, glucose, fructose, invert sugars and mixtures thereof. These sugars can be incorporated into the beverage products in solid or liquid form, but are typically incorporated as a syrup, more preferably as concentrated syrup such as high fructose corn syrup.
  • these optional sweeteners can be provided to some extent by other components of the beverage products, such as by the fruit juice component.
  • Sweeteners are typically employed in the process of the present invention in amounts ranging from about 0.0% to about 15%.
  • Preferred carbohydrate sweeteners for use in the process of the present invention are sucrose, fructose and mixtures thereof.
  • Fructose can be obtained or provided as liquid fructose, high fructose corn syrup, dry fructose or fructose syrup, but is preferably provided as high fructose corn syrup.
  • High fructose corn syrup (HFCS) is commercially available as HFCS-42, HFCS-55 and HFCS-90, which comprise 42%, 55% and 90%, respectively, by weight of the sugar solids therein as fructose.
  • Artificial or noncaloric sweeteners for use in the formulation of the present invention include, for example, saccharin, cyclamates, acetosulfam, L-aspartyl-L- phenyalanine lower alkyl ester sweeteners (e.g., aspartame).
  • a particularly preferred sweetener is aspartame. They may be used as the sole source of sweetness or in combination with caloric sweeteners discussed above.
  • Artificial or noncaloric sweeteners, if used, are typically employed in an amount ranging from about 0.02% to about 1%, preferably from about 0.02% to about 0.10% by weight of the beverage products.
  • the process of the present invention can also optionally employ a preservative.
  • a preservative Any food grade preservative can suitably be used in the process of the present invention.
  • Suitable preservatives include sorbic acid, benzoic acid, alkali metal salts thereof, and mixtures thereof.
  • Preferred preservatives include sodium benzoate and potassium sorbate.
  • the preservative is typically present in an amount ranging from about 0.01% to about 0.10% by weight of the beverage product, depending on the method and temperatures of commercial distribution.
  • the formulation of the present invention can also be fortified with various vitamins and minerals.
  • Milk proteins are added to a solution of a weak base. If the milk protein are in the dry form sufficient time is provided for a uniform dispersion and hydration. This time is highly dependent on the temperature of the solution. At 35° C., two minutes at high shear and 10 minutes at low shear are sufficient to provide a uniform dispersion.
  • the resulting mixture has an elevated pH, which is within a range of 7.0 to 8.0, preferably 7.3 to 7.7.
  • Stabilizers perform best when they are prepared by dispersion and hydration in heated water before the addition to milk proteins. This can be accomplished by many combinations of time, temperature, and shear and depends on the stabilizers employed. For the preferred pectin and propylene glycol alginate mixture, it is desirable to use heated water at a temperature between 55° C. and 75° C. Under high shear conditions, 5 minutes is sufficient to disperse and hydrate the stabilizers. Under low shear conditions, 20 minutes is sufficient to disperse and hydrate the stabilizers. The fully hydrated stabilizers are added to the alkaline milk proteins employing low shear and sufficient time to ensure a complete mixture.
  • Optional ingredients can then be added to the weak base/milk protein/stabilizer mix. If these ingredients are in dry form like sodium benzoate, etc., care should be taken to ensure a complete solution is achieved.
  • the unacidified mix is homogenized under conventional conditions.
  • a two-stage piston homogenizer can be employed at 500/2000 homogenization pressures.
  • the homogenization pressures are not critical to the process and should be sufficient to provide a smooth homogenous mix.
  • Acid can then be added to the homogenized mixture with low shear. It is beneficial to dissolve powdered acids before there addition to the protein mixture. This provides a better mixing of the acid with the protein under low shear conditions.
  • the mix should be cooled before the addition of acid to below 30° C., preferably below 10° C.
  • the acid is similarly cooled to between 1° C. and 30° C. Acid addition rate is not critical to the stability of the mix.
  • Ingredients are used in the following proportions. Ingredients Weight % Ingredients Weight % Water 90.56 Aspartame 0.04 Milk protein 2.35 Sodium citrate 0.34 Vitamin premix 0.15 Sodium benzoate 0.01 Potassium sorbate 0.01 High fructose corm syrup 4.89 Propylene glycol alginate 0.46 Pectin 0.21 Citric acid 0.68 Flavor 0.19 Color 0.12
  • a tank with high shear is beneficial for completely dispersing and dissolving dry ingredients. Initially, 30 pounds of sodium citrate is dissolved in 3500 pounds of water at 35° C. this is followed by the addition of 208 pounds of dried milk protein concentrate to the sodium citrate solution. The solution is mixed for 2 minutes under high shear, and then is transferred to a larger tank with a low shear mixer for the addition of other ingredients. In a separate vessel, 41 pounds of propylene glycol alginate and 19 pounds of pectin are dissolved in 2000 pounds of water at 65° C. and mixed for 5 minutes. The stabilizers are added to the alkaline milk protein.
  • the remainder of all the other ingredients except the acid are pre-dissolved in 1500 pounds of water and mixed for 2 minutes.
  • the mix is then homogenized in a two-stage piston homogenizer with back pressures of 500/2000 psi.
  • the mix is cooled to less than 5° C. and the chilled acid (below 5° C.) is added to the homogenized mix with a low shear mixer.
  • the resulting product exhibits little or no sediment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Dispersion Chemistry (AREA)
  • Dairy Products (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

Acidic milk based beverage products which do not precipitate over time and are physically stable, and a process for preparing these products, are disclosed. These products contain from about 0.5% to 5.0% milk proteins and 0.1 to 2.0% of a food stabilizer and a food acid sufficient to lower the pH below 4.5. The first step of the process involves mixing milk proteins with a food grade weak base to raise the pH above 7.0. Food grade stabilizers are added to the elevated pH mixture of milk proteins and base under low shear conditions. Other ingredients are then added to provide the desired sweetness, flavor, color and microbiological stability. This mixture is homogenized before acidification. A chilled food grade acid is then added at a temperature below 30° C. under low to moderate shear conditions.

Description

  • This application is a division of Ser. No.: 09/808,769, filed Mar. 15, 2001, now U.S. Pat. No.: 6,652,986, which is herein incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a process for preparing a chilled beverage product, which contains milk and a food acid. The process of the present invention provides a means for making smooth-textured, low viscosity beverage products which contain milk proteins and a food acid, but which exhibit little or no sedimentation.
  • 2. Description of the Prior Art
  • When formulating a flavored drink containing milk proteins at a low pH of between pH 3.5 and 4.5, which contains milk solids, whey proteins are generally favored because they are soluble under acidic conditions. Acidic, flavored drinks with casein proteins are known to be unstable and produce large amounts of casein precipitate. A process and formulation for flavored low pH milk protein-containing beverages, which provides for significantly improved stability of the casein proteins with 97 to 99% stability is herein disclosed. The explanation of the chemistry is below.
  • Milk proteins are generally divided into two classes: casein and whey. Casein is generally recognized as being insoluble under acidic conditions around its isoelectric point of about 4.6.
  • This property of milk proteins is well known and is generally exploited in the manufacturing of cheese. Whey protein is more stable in acid solution and tends to offer less of a precipitation problem. A pH of 4.0 or less is desired for the milk beverage, however, to prevent microbial activity and thus allow for a longer shelf life and to provide a basis for fruit flavor.
  • Where a milk product which contains casein at a pH below 4.6 is desired, additional treatment is required such as the addition of stabilizers or other processes known in the art. Even these known processes have problems of precipitation over time, and require that the product be shaken prior to drinking.
  • Food grade stabilizers such as pectin, propylene glycol alginate, carboxymethylcellulose, xanthan gum, locust bean and combinations thereof have been used to prevent the sedimentation and coagulation of the milk proteins and to improve stability of the beverages. It is reported that even when these food stabilizers are employed, beverage products containing milk proteins and acid or acidic juice at a pH below 4.5 tend to exhibit undesirable sedimentation/ precipitation over time.
  • It would be desirable to provide a stable acidic, milk based beverage product which shows enhanced stability with little or no sediment or precipitation. This product should be prepared with conventional processing techniques. The present invention discloses a composition and processing technique for an acidic, milk based beverage with enhanced stability.
  • Known methods for combining acidic fruit juices with milk products have taken several general approaches. Most common is the addition of a stabilizer to the mixture to control precipitation of milk proteins at a lowered pH.
  • U.S. Pat. No. 2,859,115 to Rivoche describes how mixing fruit juice with milk can cause milk proteins to precipitate, because the fruit juice lowers the pH of the beverage. The reference describes overcoming this problem through he use of stabilizers such as pectin. A food powder is mixed with a colloidal stabilizer such as pectin or algin in water, followed by the addition of an alkaline earth salt such as calcium carbonate. A dry acid powder, such as tartaric acid is then added to initiates gel formation. The stabilized mixture is then mixed with milk and stirred at a controlled shear so that the gel is broken up, and a desired viscosity is reached.
  • Similar approaches are employed in U.S. Pat. No. 4,031,264 to Arolski, et al., U.S. Pat. No. 4,046,925 to Igoe, and U.S. Pat. No. 4,078,092 to Nishiyama, all employ similar methods of creating a gel-stabilized mixture, which viscosity is then adjusted by the controlled application of mechanical shear. In Arolski, et al., a fruit mash is mixed with milk and the ensuing coagulation is then controlled by the addition of pectin as a stabilizer. The mixture is stirred and sterilized prior to storage. Igoe involves the formulation of a thickening agent from carboxymethyl cellulose, locust bean gum and xanthan gum in admixture. This stabilizer, with sugar, is added to milk, followed by the addition of fruit juice. In Nishiyama sodium carboxymethyl cellulose is added to the fruit juice first to form a juice composition which can then be added to milk to produce a stable milk product.
  • U.S. Pat. No. 5,648,112 to Yang, et al. describes mixing milk with a food stabilizer under high shear mixing conditions and maintaining a median particle size of less than 0.8 microns to prevent precipitation of milk proteins. Afterward, the pH is reduced to between 3.2 and 4.5 by the addition of food grade acid.
  • U.S. Pat. No. 3,692,532 to Shenkenburg, et al. describes a process whereby a stabilizer having carboxyl groups is added to milk, followed by the addition of fruit juice. According to the process disclosed, sugar and carboxymethyl cellulose are mixed with milk, and sufficient time allowed for the carboxyl groups of the stabilizer to react with the casein. The described reaction is said to occur at temperatures below 90° F., and the resulting mixture is aged, pasteruized and homogenized. The resulting product is stated to be stable at a pH below 5.0.
  • Another approach to creating a stable milk and fruit juice beverage is employed in U.S. Pat. No. 4,520,036 to Rialland, et al., and U.S. Pat. No. 4,676,988 to Efstathiou, et al. These two refernces describe a process whereby milk is passed through a cation exchange resin. The pH of the milk is thus lowered to a value 3.8 (Rialland, et al.) and to between 3.2 and 1.5 (Efstathiou, et al.).
  • Lastly, U.S. Pat. No. 4,416,905 to Lundstedt, et al. describes permitting milk to ferment and achieve a pH in the range between 6.2 to 4.9 and then acidifying the beverage to a pH below 4.7, to produce a better tasting butter milk product
  • SUMMARY OF THE INVENTION
  • It is therefore the object of the present invention to provide a milk protein beverage which contains milk proteins and a food acid, said beverage having a long shelf life and exhibiting little or no sedimentation over time.
  • It is a further object of the present invention to provide a means for making a milk protein beverage which contains milk proteins and a food acid, said beverage having a long shelf life and exhibiting little or no sedimentation over time.
  • It is a further object of the present invention to provide a nutritious and flavorful milk protein beverage which exhibits a smooth texture and a low viscosity, and a means for making same.
  • The present invention relates to a composition and a process for preparing an acidic milk protein based beverage product. The products prepared according to the process of the present invention are stable and do not show sediment or precipitate over time. These products contain from about 0.5% to 5.0% milk proteins and 0.5 to 2.0% of a food stabilizer mixture and a food acid sufficient to lower the pH below 4.5.
  • The present invention comprises concentrated milk protein which is a dry powder which is reconstituted with water to form a solution of milk proteins, specifically casein and whey. The milk protein may be substituted with other milk products, such as whole milk, skim milk, dehydrated milk powder, etc.
  • The process of the present invention comprises, as a first step, mixing the milk proteins with a weak base to elevate the pH. The weak base can be a salt of a weak organic acid, such as sodium citrate, sodium malate, sodium lactate or sodium fumerate. Sodium citrate is the preferred weak base additive. The sodium citrate is added to the concentrated milk protein in sufficient amounts to raise the pH to a range of 7.0 to 8.0.
  • The addition of weak base creates an environment wherein the casein molecules are enhanced in a manner which promotes the association of stabilizer molecules to the surface of the protein. The basic environment also reduces the role of calcium by inhibiting the bridging of calcium with the protein, thus limiting coalescence and sedimentation of the proteins.
  • Stabilizers are then added to the mixture. Stabilizers employed in the invention include pectin, propylene glycol alginate and others, which consist of acidic hydrocolloids. These acidic hydrocolloids are negative charged bodies when present in the basic environment. The negatively charged hydrocolloids adhere to the surface of casein molecules, forming colloidal complexes which are themselves negatively charged. These colloidal complexes resist agglomeration, and thus remain in stable suspension in the mixture, even at low pH and low viscosity.
  • The food stabilizer is added under low shear conditions sufficient to form an intimate mixture. These conditions avoid excessive shear for extended periods of time, which can act to break up the negatively charged colloidal complexes, denature the milk proteins and cause foam.
  • Upon formation of the negatively charged colloidal complexes which effectively stabilize the milk proteins, optional ingredients, such as flavors, colors, sweeteners, vitamin and mineral supplements, microbiological stabilizers, etc. may then be added. The mixture is then homogenized and cooled below 30° C., preferably below 10° C.
  • Acid is then added under low shear conditions to the cooled mixture. A food grade acid such as citric acid is added to bring the pH down to between 3.2 and 4.5. The acid is added in a chilled state, generally below 10° C. Mixing remains under low-shear conditions, so as not to break up the stable colloidal complexes.
  • The final product is then packaged and may stored at room temperature or refrigerated.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention relates to a formulation and process for preparing acidic milk based beverage products which develop little of no sediment or precipitation over time. The beverages provide the milk appearance and the flavor of a fruit flavored milk drink at a low viscosity, thus providing a refreshing and rich beverage which is unique.
  • Generally, milk products are formulated at a high pH to avoid sedimentation and precipitation. Milk proteins are known to be unstable at low pH. The stability of the protein must be enhanced with food grade stabilizers or gums, which coat the surface of the protein and inhibit the sedimentation. Mixing of the milk protein with a weak base enhances the structure of the casein proteins and improves the coating of the casein particle with the stabilizing gums. The weak base also can reduce the role of calcium in promoting the coalescence and sedimentation of milk proteins. The stabilizers can be predissolved in water or added directly to the alkaline milk protein base under low shear conditions, to produce the intimate mixture of milk proteins and stabilizers. Optional ingredients are added and the mixture is homogenized to ensure a uniform mix and dispersion. Acid is added under cooled conditions to a pH below 4.5.
  • Particular ingredients and processing steps are described below.
  • A. Process Materials
  • The materials employed in the process of the present invention include milk or concentrated milk protein, a weak base, a food acid and food stabilizer, as well as other optional ingredients. These are described more particularly as follows:
  • 1. Milk
  • The milk proteins used in the process of the present invention may be derived from all forms of milk including, but not limited to, whole milk, skim milk, milk powder, concentrated milk proteins and whey. The milk proteins can be from a dairy ingredient of any form: native, homogenized, concentrated or powder. The amount of milk protein employed in the formulation of the present invention and present in the final beverage products will typically range from about 0.5% to about 5.0% preferably from about 1.0% to about 4.0% which is equivalent to the protein content of native milk.
  • 2. Weak Base
  • The formulation and process employ a weak base to condition the structure of the milk proteins for coating with food stabilizers. The weak base can be salts of weak organic acids like sodium citrate, sodium malate, sodium lactate, or sodium fumarate. Sodium citrate is preferred. Typically, when this is added to the milk proteins, the resulting pH is within a range of 7.0 to 8.0, preferably 7.3-7.7.
  • 3. Food Acid
  • The process of the present invention also employs a food acid. The food acid can include any food grade organic or inorganic acid, for example, citric acid, malic acid, lactic acid, gluconic acid, succinic acid, tartaric acid, phosphoric acid, fumaric acid, and ascorbic acid. Aliphatic hydroxycarboxylic acids (e.g., malic acid, lactic acid, and citric acid) are typicially preferred for use herein. Citric acid is most preferred for use herein.
  • The amount of acid employed is an amount sufficient to adjust the pH of the milk/stabilizer mixture to from about 3.2 to about 4.5, preferably from about 3.5 to about 4.5, most preferably from about 3.8 to about 4.2. Where the acid used is citric acid, typically the citric acid is added in an amount ranging from about 0.3% to about 1.0% by weight of the beverage, preferably between 0.5 to 0.8%.
  • 4. Stabilizer
  • The various food stabilizers which can be employed in the present invention include hydrophilic colloidal stabilizers commonly known in the art such as gum arabic, gelatin, xanthan, locust bean, propylene glycol alginate, and pectin, as well as anionic polymers derived from cellulose (e.g., carboxymethylcellulose), which are water soluble and tolerant of low pH's. A blend of pectin and propylene glycol alginate is typically preferred for use herein.
  • The stabilizer is typically used in an amount ranging from about 0.1% to about 2.0% by weight of the beverage, preferably from about 0.3% to about 1.0%. The amount of stabilizer used is dependent in part on the level of milk solids present in the beverage product. In general, the greater the level of milk solids present in the beverage, the more stabilizer that will be required to stabilize the beverage. The mixture of stabilizers can be adjusted to provide low beverage viscosity and stability of the milk proteins.
  • 5. Other Ingredients
  • Acid dairy beverages usually are formulated to provide a base for fruit flavored products. The fruit flavor can be supplied from fruit juice, fruit concentrates, or flavors, as desired.
  • The formulation of the present invention can also employ a sweetener. The sweetener can include, for example, maltose, sucrose, glucose, fructose, invert sugars and mixtures thereof. These sugars can be incorporated into the beverage products in solid or liquid form, but are typically incorporated as a syrup, more preferably as concentrated syrup such as high fructose corn syrup. For purposes of preparing the beverage products described herein, these optional sweeteners can be provided to some extent by other components of the beverage products, such as by the fruit juice component. Sweeteners are typically employed in the process of the present invention in amounts ranging from about 0.0% to about 15%.
  • Preferred carbohydrate sweeteners for use in the process of the present invention are sucrose, fructose and mixtures thereof. Fructose can be obtained or provided as liquid fructose, high fructose corn syrup, dry fructose or fructose syrup, but is preferably provided as high fructose corn syrup. High fructose corn syrup (HFCS) is commercially available as HFCS-42, HFCS-55 and HFCS-90, which comprise 42%, 55% and 90%, respectively, by weight of the sugar solids therein as fructose.
  • Artificial or noncaloric sweeteners for use in the formulation of the present invention include, for example, saccharin, cyclamates, acetosulfam, L-aspartyl-L- phenyalanine lower alkyl ester sweeteners (e.g., aspartame). A particularly preferred sweetener is aspartame. They may be used as the sole source of sweetness or in combination with caloric sweeteners discussed above. Artificial or noncaloric sweeteners, if used, are typically employed in an amount ranging from about 0.02% to about 1%, preferably from about 0.02% to about 0.10% by weight of the beverage products.
  • The process of the present invention can also optionally employ a preservative. Any food grade preservative can suitably be used in the process of the present invention. Suitable preservatives include sorbic acid, benzoic acid, alkali metal salts thereof, and mixtures thereof. Preferred preservatives include sodium benzoate and potassium sorbate. The preservative is typically present in an amount ranging from about 0.01% to about 0.10% by weight of the beverage product, depending on the method and temperatures of commercial distribution.
  • The formulation of the present invention can also be fortified with various vitamins and minerals.
  • B. Process Steps
  • Milk proteins are added to a solution of a weak base. If the milk protein are in the dry form sufficient time is provided for a uniform dispersion and hydration. This time is highly dependent on the temperature of the solution. At 35° C., two minutes at high shear and 10 minutes at low shear are sufficient to provide a uniform dispersion. The resulting mixture has an elevated pH, which is within a range of 7.0 to 8.0, preferably 7.3 to 7.7.
  • Stabilizers perform best when they are prepared by dispersion and hydration in heated water before the addition to milk proteins. This can be accomplished by many combinations of time, temperature, and shear and depends on the stabilizers employed. For the preferred pectin and propylene glycol alginate mixture, it is desirable to use heated water at a temperature between 55° C. and 75° C. Under high shear conditions, 5 minutes is sufficient to disperse and hydrate the stabilizers. Under low shear conditions, 20 minutes is sufficient to disperse and hydrate the stabilizers. The fully hydrated stabilizers are added to the alkaline milk proteins employing low shear and sufficient time to ensure a complete mixture.
  • Optional ingredients can then be added to the weak base/milk protein/stabilizer mix. If these ingredients are in dry form like sodium benzoate, etc., care should be taken to ensure a complete solution is achieved.
  • The unacidified mix is homogenized under conventional conditions. A two-stage piston homogenizer can be employed at 500/2000 homogenization pressures. The homogenization pressures are not critical to the process and should be sufficient to provide a smooth homogenous mix.
  • Acid can then be added to the homogenized mixture with low shear. It is beneficial to dissolve powdered acids before there addition to the protein mixture. This provides a better mixing of the acid with the protein under low shear conditions. The mix should be cooled before the addition of acid to below 30° C., preferably below 10° C. The acid is similarly cooled to between 1° C. and 30° C. Acid addition rate is not critical to the stability of the mix.
  • EXAMPLES Example 1
  • Ingredients are used in the following proportions. Ingredients Weight %
    Ingredients Weight %
    Water 90.56
    Aspartame 0.04
    Milk protein 2.35
    Sodium citrate 0.34
    Vitamin premix 0.15
    Sodium benzoate 0.01
    Potassium sorbate 0.01
    High fructose corm syrup 4.89
    Propylene glycol alginate 0.46
    Pectin 0.21
    Citric acid 0.68
    Flavor 0.19
    Color 0.12
  • A tank with high shear is beneficial for completely dispersing and dissolving dry ingredients. Initially, 30 pounds of sodium citrate is dissolved in 3500 pounds of water at 35° C. this is followed by the addition of 208 pounds of dried milk protein concentrate to the sodium citrate solution. The solution is mixed for 2 minutes under high shear, and then is transferred to a larger tank with a low shear mixer for the addition of other ingredients. In a separate vessel, 41 pounds of propylene glycol alginate and 19 pounds of pectin are dissolved in 2000 pounds of water at 65° C. and mixed for 5 minutes. The stabilizers are added to the alkaline milk protein.
  • The remainder of all the other ingredients except the acid are pre-dissolved in 1500 pounds of water and mixed for 2 minutes. The mix is then homogenized in a two-stage piston homogenizer with back pressures of 500/2000 psi. The mix is cooled to less than 5° C. and the chilled acid (below 5° C.) is added to the homogenized mix with a low shear mixer. The resulting product exhibits little or no sediment.
  • Thus, the several aforementioned objects and advantages are most effectively attained. Although a single preferred embodiment of the invention has been disclosed and described in detail herein, it should be understood that this invention is in no sense limited thereby and its scope is to be determined by that of the appended claims.

Claims (25)

1-24. (canceled)
25. An acidified stable milk-based beverage containing milk protein in which said milk proteins are in a stable suspension, wherein said milk protein is added to a solution of a weak base, thereby resulting in a mixture, wherein said mixture is agitated under low to medium shear conditions, wherein said mixture has a pH above 7.0 prior to the addition of a stabilizer, wherein said stabilizer is added to said mixture, wherein said mixture is homogenized and cooled, wherein a food grade acid is added to said mixture under low shear conditions following homogenization and cooling, wherein said acid is added in an amount sufficient to result in a pH below 4.5, thereby resulting in a final product, said final product being said acidified stable milk-based beverage.
26. The milk-based beverage of claim 25 wherein said milk protein is selected from the group consisting of concentrated milk protein, whole milk, skim milk, condensed milk, dehydrated milk and nonfat dry milk.
27. The milk-based beverage of claim 25 wherein said milk protein is concentrated milk protein, either in liquid or powder form.
28. The milk-based beverage of claim 25 wherein said final product contains milk protein in an amount of 0.5% to 5.0% by weight.
29. The milk-based beverage of claim 25 wherein said final product contains milk protein in an amount of 1.0% to 4.0% by weight.
30. The milk-based beverage of claim 25 wherein said weak base is present in an amount sufficient so that said mixture has a pH between 7.0 to 8.0.
31. The milk-based beverage of claim 25 wherein said weak base is present in an amount sufficient so that said mixture has a pH between 7.3 to 7.7.
32. The milk-based beverage of claim 25 wherein said weak base is selected from the group consisting of sodium citrate, sodium malate, sodium lactate and sodium fumarate.
33. The milk-based beverage of claim 25 wherein said weak base is sodium citrate.
34. The milk-based beverage of claim 25 wherein said stabilizer is selected from the group consisting of carboxymethylcellulose, gum arabic, gelatin, xanthan, locust bean, propylene glycol alginate and pectin.
35. The milk-based beverage of claim 25 wherein said stabilizer is a blend of propylene glycol alginate and pectin.
36. The milk-based beverage of claim 25 wherein said stabilizer is added in an amount ranging from 0.1% to 2.0% by weight.
37. The milk-based beverage of claim 25 wherein said stabilizer is added in an amount ranging from 0.3% to 1.0% by weight.
38. The milk-based beverage of claim 25 wherein said stabilizer is fully hydrated, resulting in a fully hydrated stabilizer, wherein said fully hydrated stabilizer is added to said mixture.
39. The milk-based beverage of claim 25 wherein said mixture is homogenized at a homogenizer pressure of 500/2000 psi.
40. The milk-based beverage of claim 25 wherein said mixture is homogenized and cooled to below 30° C.
41. The milk-based beverage of claim 25 wherein said mixture is homogenized and cooled to below 10° C.
42. The milk-based beverage of claim 25 wherein said acid is selected from the group consisting of malic acid, lactic acid, citric acid, gluconic acid, succinic acid, tartaric acid, phosphoric acid, fumaric acid, and ascorbic acid.
43. The milk-based beverage of claim 25 wherein said acid is citric acid.
44. The milk-based beverage of claim 25 wherein said acid is cooled to below 10° C. prior to addition to said mixture which has been homogenized.
45. The milk-based beverage of claim 25 wherein said acid is cooled to below 10° C. prior to addition to said mixture which has been homogenized.
46. The milk-based beverage of claim 25 wherein said acid is added in an amount sufficient so that said final product has a pH between 3.2 and 4.5.
47. The milk-based beverage of claim 25 wherein said acid is added in an amount sufficient so that said final product has a pH between 3.8 and 4.2.
48. The milk-based beverage of claim 25 wherein at least one of a caloric sweetener, an artificial sweetener, a preservative and a vitamin, is added to said mixture, prior to homogenization, in a range of 0.0% to 15% by weight.
US10/663,154 2001-03-15 2004-08-19 Stable acidic milk based beverage Abandoned US20050153030A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/663,154 US20050153030A1 (en) 2001-03-15 2004-08-19 Stable acidic milk based beverage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/808,769 US6652896B2 (en) 2001-03-15 2001-03-15 Process for preparing a stable acidic milk based beverage
US10/663,154 US20050153030A1 (en) 2001-03-15 2004-08-19 Stable acidic milk based beverage

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/808,769 Division US6652896B2 (en) 2001-03-15 2001-03-15 Process for preparing a stable acidic milk based beverage

Publications (1)

Publication Number Publication Date
US20050153030A1 true US20050153030A1 (en) 2005-07-14

Family

ID=25199680

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/808,769 Expired - Fee Related US6652896B2 (en) 2001-03-15 2001-03-15 Process for preparing a stable acidic milk based beverage
US10/663,154 Abandoned US20050153030A1 (en) 2001-03-15 2004-08-19 Stable acidic milk based beverage

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/808,769 Expired - Fee Related US6652896B2 (en) 2001-03-15 2001-03-15 Process for preparing a stable acidic milk based beverage

Country Status (1)

Country Link
US (2) US6652896B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090041914A1 (en) * 2007-08-07 2009-02-12 Katherine Rosevear Buffered tea-milk compositions and associated beverages and methods
US20100310727A1 (en) * 2007-09-20 2010-12-09 Ayse Tulay Massey Coffee Composition
US20110135791A1 (en) * 2009-12-07 2011-06-09 The Coca-Cola Company Concentrate composition for providing edible calcium-fortified products using stabilized buffering protein component
CN110507596A (en) * 2019-09-29 2019-11-29 华南理工大学 Using milk as the oil-in-water type gel emulsion and its fast preparation method of matrix
CN111257176A (en) * 2019-11-15 2020-06-09 杭州娃哈哈科技有限公司 Method for rapidly evaluating protein stabilizing capability of sodium carboxymethylcellulose in acidic milk beverage
US11572295B1 (en) * 2019-06-11 2023-02-07 Swamp Fox Innovations, LLC Compositions and methods for reduction of free chlorine and related odor

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030021874A1 (en) * 2001-07-02 2003-01-30 The Procter & Gamble Co. Stabilized compositions and processes of their preparation
US20030099753A1 (en) * 2001-11-20 2003-05-29 Yang Baokang Juice based beverage compositions
CN100475058C (en) * 2003-09-10 2009-04-08 荷兰联合利华有限公司 Food composition
WO2006076051A1 (en) * 2004-09-03 2006-07-20 Cp Kelco U.S., Inc. Stable aqueous suspension of insoluble protein
US20070082107A1 (en) * 2005-10-07 2007-04-12 Aimutis William R Jr Compositions and methods for reducing food intake and controlling weight
US20070082029A1 (en) * 2005-10-07 2007-04-12 Aimutis William R Fiber satiety compositions
US20070087103A1 (en) * 2005-10-14 2007-04-19 Riis Soeren B Acidified milk products containing pectin
US8501258B1 (en) 2006-10-13 2013-08-06 Jose Antonio Feregrino-Quezada Method for preparing milk-based beverages
US11154080B2 (en) * 2007-06-27 2021-10-26 Jcr Technologies Llc High pressure frozen sterilization process
JP5276930B2 (en) * 2007-10-22 2013-08-28 花王株式会社 Container-packed beverage
US20090280229A1 (en) * 2008-05-07 2009-11-12 Constantine Wendy L Method and apparatus for manufacturing protein beverages
US20100189855A1 (en) * 2009-01-27 2010-07-29 Whitewave Services, Inc. Method of Making a Beverage Comprising Fruit and Milk
CN102018048B (en) 2009-09-22 2014-04-16 雀巢公司 Acidified milk drink powder and preparation method thereof
CN102984953A (en) 2010-03-05 2013-03-20 马斯公司 Palatable beverages and compositions with cocoa extract
JP2013521009A (en) * 2010-03-05 2013-06-10 マース インコーポレーテッド Acidified protein beverages and compositions
US10834935B2 (en) 2012-02-01 2020-11-17 Koninklijke Douwe Egberts B.V. Dairy mineral-fortified liquid dairy products and methods of making
US10849334B2 (en) 2012-02-01 2020-12-01 Koninklijke Douwe Egberts B.V. Dairy mineral-fortified liquid dairy products and methods for making the dairy mineral-fortified liquid dairy products
JP6400940B2 (en) * 2014-05-09 2018-10-03 アサヒ飲料株式会社 Dairy beverage
FI127843B (en) 2014-08-28 2019-04-15 Valio Oy Drinkable acidified milk protein products and method for producing them
US20160227828A1 (en) * 2015-02-05 2016-08-11 Abbott Laboratories Substantially clear nutritional liquids having improved sensory characteristics
JP6574511B1 (en) * 2018-09-28 2019-09-11 森永乳業株式会社 Acidic beverage with milk
CN110150380A (en) * 2019-05-31 2019-08-23 徐州工程学院 A kind of viable bacteria lactic acid bacteria beverage and preparation method thereof
CN111357812A (en) * 2020-04-08 2020-07-03 广州浩恩奉仕食品有限公司 Fermented milk-containing beverage and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US441695A (en) * 1890-12-02 Brush-holder for electric motors or dynamos
US2859115A (en) * 1953-07-07 1958-11-04 Rivoche Eugene Joel Nutrient food products and process of producing same
US3692532A (en) * 1970-10-27 1972-09-19 David R Shenkenberg Milk-fruit juice beverage and process for preparing same
US3800052A (en) * 1970-11-26 1974-03-26 Calpis Food Ind Co Ltd Preparation of an acidified milk beverage
US4031264A (en) * 1975-05-15 1977-06-21 Dso "Bulgarplod" Method for producing durable fruit-dairy and vegetable-dairy drinks
US4046925A (en) * 1975-05-13 1977-09-06 Merck & Co., Inc. Acidified milk product and method of producing the same
US4078092A (en) * 1975-12-30 1978-03-07 Kazuhiro Nishiyama Apple juice compositions and milk-apple juice drink containing such compositions
US4460616A (en) * 1980-04-17 1984-07-17 Laiteries E. Bridel Acidulated decationized milk
US4520036A (en) * 1982-07-09 1985-05-28 Laiteries E. Bridel Process for treating milk with a cation-exchange resin for the preparation of decationized, acidified milk
US4676988A (en) * 1984-03-19 1987-06-30 General Mills, Inc. Low-acid juice-milk beverages, juice and milk components therefor and methods of preparation
US5153019A (en) * 1991-05-30 1992-10-06 University Research & Marketing, Inc. Rice bran-honey based beverage product and process for making same
US5648112A (en) * 1995-03-28 1997-07-15 The Procter & Gamble Company Process for preparing chilled beverage products containing milk and a food acid

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1792084C3 (en) 1968-07-20 1980-01-17 Escora Finanz Anstalt, Vaduz Process for the production of a sour milk beverage
JPS509857B1 (en) 1970-09-10 1975-04-16
US3953610A (en) 1975-01-31 1976-04-27 Battelle Development Corporation High temperature direct acidification of milk
JPS52122663A (en) * 1976-04-08 1977-10-15 Karupisu Shiyokuhin Kougiyou K Method of producing strainght sour mild drink
US4192901A (en) * 1977-12-27 1980-03-11 Calpis Shokuhin Kogyo Kabushiki Kaisha Milk-containing acid syrup
GB1587697A (en) * 1978-02-10 1981-04-08 Honey Bee Corp Acidified beverage of whole milk
US4416905A (en) 1981-08-24 1983-11-22 Mallinckrodt, Inc. Method of preparing cultured dairy products
DE3137440A1 (en) 1981-09-21 1983-03-31 Eckes, Peter, 6501 Nieder-Olm PROTECTIVE CONDITION DRINK
US4478855A (en) 1981-12-28 1984-10-23 Arla, Ekonomisk Forening Protein containing fruit drink and process for the manufacture thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US441695A (en) * 1890-12-02 Brush-holder for electric motors or dynamos
US2859115A (en) * 1953-07-07 1958-11-04 Rivoche Eugene Joel Nutrient food products and process of producing same
US3692532A (en) * 1970-10-27 1972-09-19 David R Shenkenberg Milk-fruit juice beverage and process for preparing same
US3800052A (en) * 1970-11-26 1974-03-26 Calpis Food Ind Co Ltd Preparation of an acidified milk beverage
US4046925A (en) * 1975-05-13 1977-09-06 Merck & Co., Inc. Acidified milk product and method of producing the same
US4031264A (en) * 1975-05-15 1977-06-21 Dso "Bulgarplod" Method for producing durable fruit-dairy and vegetable-dairy drinks
US4078092A (en) * 1975-12-30 1978-03-07 Kazuhiro Nishiyama Apple juice compositions and milk-apple juice drink containing such compositions
US4460616A (en) * 1980-04-17 1984-07-17 Laiteries E. Bridel Acidulated decationized milk
US4520036A (en) * 1982-07-09 1985-05-28 Laiteries E. Bridel Process for treating milk with a cation-exchange resin for the preparation of decationized, acidified milk
US4676988A (en) * 1984-03-19 1987-06-30 General Mills, Inc. Low-acid juice-milk beverages, juice and milk components therefor and methods of preparation
US5153019A (en) * 1991-05-30 1992-10-06 University Research & Marketing, Inc. Rice bran-honey based beverage product and process for making same
US5648112A (en) * 1995-03-28 1997-07-15 The Procter & Gamble Company Process for preparing chilled beverage products containing milk and a food acid

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090041914A1 (en) * 2007-08-07 2009-02-12 Katherine Rosevear Buffered tea-milk compositions and associated beverages and methods
US8007851B2 (en) * 2007-08-07 2011-08-30 Snapple Beverage Corporation Buffered tea-milk compositions and associated beverages and methods for preparing same
US20100310727A1 (en) * 2007-09-20 2010-12-09 Ayse Tulay Massey Coffee Composition
US8529973B2 (en) 2007-09-20 2013-09-10 Kraft Foods R&D, Inc. Coffee composition and method of making a three-layered coffee drink
US20110135791A1 (en) * 2009-12-07 2011-06-09 The Coca-Cola Company Concentrate composition for providing edible calcium-fortified products using stabilized buffering protein component
US11572295B1 (en) * 2019-06-11 2023-02-07 Swamp Fox Innovations, LLC Compositions and methods for reduction of free chlorine and related odor
CN110507596A (en) * 2019-09-29 2019-11-29 华南理工大学 Using milk as the oil-in-water type gel emulsion and its fast preparation method of matrix
CN111257176A (en) * 2019-11-15 2020-06-09 杭州娃哈哈科技有限公司 Method for rapidly evaluating protein stabilizing capability of sodium carboxymethylcellulose in acidic milk beverage

Also Published As

Publication number Publication date
US6652896B2 (en) 2003-11-25
US20020160086A1 (en) 2002-10-31

Similar Documents

Publication Publication Date Title
US6652896B2 (en) Process for preparing a stable acidic milk based beverage
US3949098A (en) Nutritious orange drink concentrate, process and drink resultant therefrom
US4740380A (en) Calcium fortified acid beverages
US4289788A (en) Instant yogurt composition
US5834045A (en) Calcium fortified beverages
US9781942B2 (en) Shelf-stable milk concentrates for preparing acidified milk based beverages
US20070148321A1 (en) Mineral-containing acidic protein drink
EP0715812B1 (en) Calcium-enriched drink and method for producing the same
US20180249753A1 (en) High-Protein Beverages Comprising Whey Protein
US5145697A (en) Instant yogurt composition and process
EP1224868B1 (en) Low-calorie milk-containing acidic beverage
JPH11123069A (en) Low calorie acidic protein drink and its production
JPH11502711A (en) Method for preparing refrigerated beverage products containing milk and food acidic substances
JPH10262611A (en) Enriched food
US3737326A (en) Beverage containing egg albumen and whey
US20030099761A1 (en) Shelf stable nutritional composition containing intact whey protein, process of manufacture and use
US4289789A (en) Instant yogurt drink composition
CN107467203A (en) A kind of clear transparent beverage of albumin milk and preparation method thereof
CA1201321A (en) Protein-fruit drink
EP0019415A1 (en) Method for the preparation of whey protein fortified acidic liquid beverages
JP2004261139A (en) Acidic soya milk drink and method for producing the same
WO2017208955A1 (en) Acidic milk-containing beverage with high clarity, packed beverage and method for increasing clarity of acidic milk-containing beverage
JPH0716084A (en) Production of protein-containing acidic drink composition
JP4187945B2 (en) Acidic milk beverage and method for producing the same
JPH0856567A (en) Calcium-reinforced milky acidic condensed drink and its manufacturing

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION