US20050137757A1 - Motor vehicle operating data collection and analysis - Google Patents

Motor vehicle operating data collection and analysis Download PDF

Info

Publication number
US20050137757A1
US20050137757A1 US11060462 US6046205A US2005137757A1 US 20050137757 A1 US20050137757 A1 US 20050137757A1 US 11060462 US11060462 US 11060462 US 6046205 A US6046205 A US 6046205A US 2005137757 A1 US2005137757 A1 US 2005137757A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
data
vehicle
speed
invention
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11060462
Inventor
Joseph Phelan
Johannes Perquin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allstate Insurance Co
Original Assignee
Innosurance Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/02Registering or indicating driving, working, idle, or waiting time only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • G07C5/085Registering performance data using electronic data carriers
    • G07C5/0858Registering performance data using electronic data carriers wherein the data carrier is removable

Abstract

A method and apparatus for collecting and evaluating powered vehicle operation utilizing on-board diagnostic components and location determining components or systems. The invention creates one or more databases whereby identifiable behavior or evaluative characteristics can be analyzed or categorized. The evaluation can include predicting likely future events. The database can be correlated or evaluated with other databases for a wide variety of uses.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of and priority to U.S. Provisional Application No. 60/467,845 entitled “Motor Vehicle Operating Data Gathering Methodology and Analysis for Eventual Use with Underwriter Statistic Metrics” and filed May 6, 2003. This application is a continuation in part application of application Ser. No. 10/832,521 filed Apr. 27, 2004.
  • BACKGROUND OF INVENTION
  • 1. Field of Use
  • The invention pertains to a method and apparatus for evaluating recorded data of a driver's operation of a motor vehicle. The invention is not limited to trucks and automobiles but includes all powered equipment such as boats, airplanes and railroads. The invention utilizes time marked data that can be correlated with information from separate databases, particularly data that is also time marked. The recorded data may facilitate the vehicle owner monitoring the use of the vehicle by others, e.g., employees, automobile renters or family members, e.g., teenage drivers. The recorded data may also provide an objective behavioral data collection system for third parties, e.g., life and health insurance companies, lending institutions, credit rating companies, product and service marketing companies, potential employers, to evaluate an individual's behavioral characteristics in a real life and commonly experienced situation, i.e., driving a motor vehicle.
  • 2. Prior Art
  • Several commercial mechanisms are available on the market that provide means to monitor vehicle use. One example is the Alltrackusa product that relies on a global positioning satellite (GPS) system to track vehicle operation. Such systems employ a calculating methodology to determine speed and acceleration by using the position differential implied by the GPS. Conversely, Davis Technologies markets the CarChip product which is a passive OBD data recorder for hobbyists and car enthusiasts who want to record their engine performance. The shortcomings of the Alltrackusa “GPS only” application is that actual speed information is not available during intermittent losses of the GPS signal, which are frequent. This limits the product's usefulness for creating a complete dataset suitable for developing a useful and objective driver safety ratings. The shortcoming of the CarChip product is that the unit does not provide GPS capability and the target market is for car enthusiasts who want to monitor engine diagnostics. Both existing technology developments have the inherent shortcoming of local data storage and reporting. This feature limits the usefulness of the data and does not allow for the development of an independent rating system.
  • U.S. Pat. No. 6,064,970, assigned to Progressive Casualty Insurance Company, discloses a method and system for determining the cost of automobile insurance based upon monitoring, recording and communicating data representative of operator and vehicle driving characteristics. The system includes use of a wireless up-link to a central control station to communicate “triggering events”.
  • U.S. Pat. No. 6,064,970 defines a methodology for private insurance quotes based on endogenous driver variables that are acquired from the customer or collected by the insurance company. U.S. Pat. No. 6,064,970 does not teach an apparatus and business process that allows customers to voluntarily create datasets that are then objectively interpreted by a third party and converted to objective safety ratings, much as credit payments or delinquencies are converted to an objective credit rating, or company debt histories converted to a bond rating. This distinction is vital in order to promote the adoption of driver monitoring technology and guarantee that it is utilized in a manner that promotes the most societal good, rather than simply being the exclusive purview of one company's insurance premium pricing structure.
  • Other devices and methods are disclosed in published patent applications. Included is the application Ser. No. 10/764,076 assigned to Progressive Casualty Insurance Company filed Jan. 23, 2004. Another device is disclosed in a published application Ser. No. 10/281,330 assigned to Davis Instruments, and filed Oct. 25, 2003.
  • The existing systems and devices also ignore the profound behavioral characteristics exhibited by drivers in operating motor vehicles, e.g., aggressiveness or patience, caution or recklessness, compliance with laws, etc. These characteristics are relevant to each individual's behavior in other situations including performance of job duties, behavior in stress, and meeting obligations owed to others. These behaviors cannot be ascertained unless the information is uploaded to a central server to create a comprehensive database for comparison and development of useful profiles. Existing technology applications do not centrally store the data and interpret it in context to provide a useful service to society.
  • SUMMARY OF INVENTION
  • The present invention teaches the evaluation and storing of recorded date and time stamped operating data (“time marked data”) from a motor vehicle component. It also teaches the subsequent upload to a microprocessor, CPU or central web-server for objective analysis. It may also include real time input to the driver or vehicle owner. The data may also be location marked and the vehicle data may be correlated with separate time or location specific data points or databases. The recording of the data to a separate device can be used in such a manner as to insure a complete data set, minimize fraudulent use, and thus insure the accuracy and usefulness of said data to third parties. Utilization of the data may be subject to terms of agreements among the vehicle operator, the vehicle owner, insurance companies and underwriters (health, life or auto, etc.), research professionals, credit reporting agencies, marketing and advertising firms, legal representatives, governmental authorities or other institutions.
  • Since the data may be time marked with an accurate atomic clock signal, the data can be cross-correlated to another information database that is also time or location specific. This data could include weather events, construction schedules, sporting events, traffic databases, and other time or location dependent information that puts the driver operating data in context and makes it objectively useful. The data manipulation—analysis includes assessing the driver's driving behavior by putting the data in context with the applicable local speed laws, signage, traffic signals, weather, and other geographic dependencies (“GIS” data).
  • The invention can utilize a variety of currently monitored and publicly accessible vehicle information from vehicle systems such as an OBD (on-board diagnostic) or CAN (car area network) data-port. This time marked data may include vehicle speed, throttle position, oxygen sensor data, etc. This information is sequentially recorded at regular intervals from vehicle onboard diagnostic systems, thereby creating a time marked data set of individual data points. The data set of time marked sequential data points may include the vehicle's location, for example as determined by a global positioning system (GPS).
  • Having multiple sources of vehicle data will insure data accuracy. For example, speed can either be inferred from the GPS position and time stamped data by calculating the distance between recorded locations and dividing by the time increment, or by accessing speed values directly from the OBD or similar port. Similarly, the vehicle's odometer reading can be gathered three different ways: first, it can be accessed through the OBD extended dataset if the car manufacturer grants permission, secondly, it can be calculated from the GPS location and time stamped data, third it can be calculated from the speed data logged directly from the OBD port, then multiplied by the time increment to get distance. Having multiple sources of data insures data integrity by crosschecking. Time and location stamping the data allows for crosschecking against other information databases such as weather, traffic, etc.
  • This collected data may be transferred to a processor (CPU or microprocessor) and may be uploaded to a central web-server for evaluation and storage. The invention utilizes data obtained from individual vehicle monitoring and instrumentation devices already built into motor vehicles since 1996. The invention can also utilize information from supplemental instrumentation such as GPS devices installed on motor vehicles.
  • The invention teaches transfer of the time marked information from the collection system within the vehicle to a CPU or similar processor. This component may be within the vehicle or separately located. The invention teaches flexible, multi stage evaluation of the collected data for variable factors or criteria. The invention permits a weighted profile to be created that can be correlated to both frequency and severity or significance of behavior. This weighted profile is useful because the data integrity has been insured by multiple sources.
  • The invention also teaches a business subscription service that can be used in conjunction with the recording/analysis apparatus. The method allows analytic comparison within groups using collected data from separate units. This analysis can allow assessment and comparison of a variety of life style/health factors. The analysis, based upon historical and accurate data, can be used in conjunction with other demographically relevant information.
  • The invention also teaches wireless or telemetry communication between the in vehicle components, e.g., data storage or processor, and a separate processor or other electronic data receiving device, thereby eliminating the need to remove a memory component from the vehicle to a data recording or transfer component.
  • The invention also teaches the monitoring and recording of data from onboard cameras and proximity sensors, as well as driver physiological monitoring systems. Also included within the invention is predictive modeling of future behavior as a function of recorded data an individual driver compared with other drivers within a database.
  • BRIEF SUMMARY OF DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention. These drawings, together with the general description of the invention given above and the detailed description of the preferred embodiments given below, serve to explain the principles of the invention.
  • FIG. 1 illustrates a matrix of time marked vehicle data that can be evaluated by the invention.
  • FIG. 2 illustrates an overview or summary of logic steps of one embodiment of the invention.
  • FIG. 3 illustrates starting steps of an embodiment of logic flow steps that can be incorporated into the evaluation method of the present invention.
  • FIG. 4 illustrates an embodiment of logic steps that may be taken by the user for properly logging into the system taught by the invention.
  • FIG. 5 illustrates logic steps utilized in one embodiment of the invention that are taken in uploading information.
  • FIG. 6 illustrates the logic steps utilized in one existing embodiment of the invention for reading and commencing revaluation of uploaded files.
  • FIG. 7 illustrates logic steps incorporated into one embodiment of the invention wherein uploaded recorded information may signal the end of one driving event and the start of a separate trip.
  • FIG. 8 illustrates logic steps utilized to achieve continued calculation of vehicle acceleration from time marked speed data for a single trip.
  • FIG. 9 illustrates the logic steps utilized by an embodiment of the invention to continuously evaluate recorded GPS time marked trip data and correlate data to a separate data base containing street and speed limit information.
  • FIG. 10 illustrates the sequential relationship of data evaluation for speed, acceleration, and etc. infractions.
  • FIG. 11 illustrates the detailed logic steps for determining a speed violation from each time marked data point of vehicle speed with the matrix of recorded information and the assessment of penalty points for the Driver Safety Rating.
  • FIG. 12 illustrates the detailed logic steps for continuous evaluation of compute vehicle acceleration and assessment of penalty points for the Driver Safety Rating.
  • FIG. 13 illustrates the detailed logic steps for evaluation of a “time of day violation” in recognition that driving after sunset is inherently less safe than driving in daylight.
  • FIG. 14 illustrates the logic steps for continued evaluation of the time marked GPS and vehicle speed data in correlation with a separate database containing road sign information to verify, for example, that the vehicle has been operated in compliance with a stop sign.
  • FIG. 15 illustrates the logic steps of an embodiment of the invention wherein the Driver Safety Rating (DSR) is calculated.
  • FIG. 16 illustrates the logic steps for deduction of penalty points from the DSR.
  • FIG. 17 illustrates the deduction of past penalty points from a calculated DSR for a separate and later driving event.
  • FIG. 18 illustrates the application of past penalties utilizing a weighting scheme based upon penalty weight inverse to elapsed time.
  • FIGS. 19A through 19D comprise a table of actual recorded time marked speed data and assessed violation/penalty utilizing an embodiment of the invention.
  • FIG. 20 illustrates the home page displayed to a user of an embodiment of the invention that incorporates the logic flow sequences illustrated in FIGS. 2 through 18 herein.
  • FIG. 21 illustrates the log in page displayed to a user of an embodiment of the invention.
  • FIG. 22 illustrates the screen page displayed to the user after logging into the invention and allowing the user to select among multiple drivers having recorded driving data uploaded within the database of the invention.
  • FIG. 23 illustrates the screen display allowing the user to view various driving events of the selected driver that are within the invention database and for which a Driver Safety Rating has been computed.
  • FIG. 24 illustrates the screen display providing the type of violation and computed DSR for each violation types for a selected trip.
  • FIG. 25 illustrates the screen display of evaluated trip data derived from the matrix of time and location marked data.
  • FIG. 26 illustrates a map of the actual travel of the vehicle as recorded and evaluated based upon several databases utilizing the time marked and location marked data.
  • FIG. 27 is a representation of the display screen of the invention showing the streets traveled during a selected driving event (trip) as well as the time and speed limit.
  • It will be appreciated that the foregoing drawings illustrate only one embodiment of the invention and that numerous other variations may be created within the scope of the described invention.
  • DETAILED DESCRIPTION OF INVENTION
  • The above general description and the following detailed description are merely illustrative of the subject invention and additional modes, advantages and particulars of this invention will be readily suggested to those skilled in the art without departing from the spirit and scope of the invention.
  • The invention comprises multiple steps, beginning with the collection of data at regular time intervals, preferably at least as frequently as approximately every two seconds. The data includes the publicly available operational data from an industry standard port such as a SAE-1962 connector, or an on board diagnostic (“OBD”) port or other vehicle data acquiring component. For example, operation data accessible via the OBDII port includes speed and engine throttle position or other variable power controls of the vehicle power source. It may also include so called “extended OBDII” or OBDIII datasets that are specific to each manufacturer and also available with manufacturer permission such as odometer reading, seat belt status, activation of brakes, degree and duration of steering direction, etc., and implementation of accident avoidance devices such as turning signals, headlights, seatbelts, activation of automated braking systems (ABS), etc. Other information regarding the operation of the vehicle can be collected since the extended OBDII set includes a whole host of engine or other power source diagnostic variables.
  • The invention includes the capability to recognize the particular language emitted by the vehicle system and may configure the recording component to receive or convert data in SAE J1850, ISO ISO9141 or KWP 2000 formats. Alternatively, this step may be performed by a processor after the data is recorded.
  • Further the invention applies to other data systems being developed and implemented. An example is the CAN (car area network). Additionally, data from devices or systems that, for example, provide a lane departure warning, may be recorded. Such systems incorporate one or more cameras integrated with other sensors to analyze vehicle speed and other factors to monitor the distance between the vehicle and roadway lane divider lines. Data also can be recorded from systems that combine laser sensors and digital rangefinders to scan the road and detect vehicles or other objects ahead. Such systems (“active cruise control”) can provide warning or directly reduce speed or activate braking systems. Sensors or rangefinders may similarly detect the presence and distance of objects behind the vehicle.
  • The position and movement of the vehicle can also be collected utilizing a global position system or “GPS” system. Other known locating technologies such as radio frequency tags, cellular telephone networks, or differential GPS may be used. Such technologies are hereinafter referred to as “GPS” technology or locators.
  • One embodiment of the invention utilizes data points of various systems and operations collected at substantially simultaneous intervals, thereby creating sequential “data points” containing information from multiple sources pertaining to vehicle operation and movement. The data points are recorded at regular intervals. These intervals can be of varied duration. For purpose of illustration of the invention herein, the intervals are specified to be every two seconds.
  • The data can be recorded or transferred to various removable electronic storage devices, including but not limited to flash memory cards now utilized for digital cameras, etc. Alternatively, recorded data may be transferred remotely via wireless technology currently known as Bluetooth®. (The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc.) Other wireless communication systems such as cellular telephone, radio or satellite may be used. These technologies are hereinafter termed “wireless” transfer or technology.
  • The data can be transferred to another electronic data reading device such as a microprocessor, a CPU or CPU linked to an Internet server. The recorded data may also be evaluated by a CPU within the vehicle. The data can be transferred, stored, manipulated and analyzed (“evaluated”) as desired to provide information concerning not only the location and duration of vehicle operation, but also the manner in which the vehicle was operated. For situations where multiple drivers utilize multiple vehicles, each vehicle can be equipped with a non-removable memory to record all its operation, regardless of which driver utilizes the vehicle. This data can then be reconciled with the data downloaded by the driver through his or her personal flash memory card. Gaps in the data can then be investigated by an employer, parent, owner of a rental vehicle, or otherwise responsible party, i.e., the “user”.
  • The invention also teaches the recording and evaluation of driver physiological data, such as heart rate, electrocardiograph (ECG) signals and blood pressure. For example, ECG signals may be recorded from Polar® sensors located on the steering wheel. (Polar is a registered trademark of Polar Electro Oy Corporation.)
  • As suggested in the foregoing summary of invention, that summary being incorporated by reference within this detailed description of invention, utilization of the data recorded by the invention or the resulting evaluation thereof, may be subject to terms of agreements among the vehicle operator, the vehicle owner, insurance companies and underwriters (health, life or auto, etc.), research professionals, credit reporting agencies, marketing and advertising firms, legal representatives, governmental authorities or other institutions. For example, time and location data may be useful in monitoring the compliance of a probationer with the terms of probation. It may also recorded compliance with a breathalyzer ignition control switch. Equipment rental companies can use the data for ensuring the lessee has complied with the terms of the rental or lease agreement. For example, operators that can provide documented compliance may be charged lower use rates.
  • FIG. 1 illustrates one embodiment of the type and variety of information that may be recorded for evaluation by the invention. The captured information illustrated in FIG. 1 are “Engin on/off” 1, “speed” 2, “throftle” 3, “GPS position” 4, “brake on/off” 5, “headlights” on/off 6, “turn signals” on/off and direction 7, “seatbelt on/off” 8, “c-phone on/off” 9, and “strng positn” (steering wheel position) 10. The invention captures information for each category for each time interval (t1, t2, etc.). The collected data is thereby time marked or time stamped. The data may be evaluated for selected and variable criteria. As illustrated in FIG. 2, time marked data of the variety shown in FIG. 1, can be acquired 20-1 and uploaded 20-2 into the variable evaluative 20-3 algorithm of the invention. The algorithm may be used to objectively rate 20-4 the data for selected factors of driver safety. Note that not all recorded data is required to be evaluated and the stored data 20-5 can be re-evaluated for differing criteria and factors. Therefore, a database may be created for identifiable and separable individuals. The database may track driving and other behavior habits over time.
  • The operational information may be identifiable to specific operator(s) and include time stamped data and geographic location. Operator identity can be one of many additional data inputs for each time interval recording in FIG. 1. Further, comparison of recorded speeds at differing data points can provide information regarding vehicle acceleration or de-acceleration (rate of acceleration). As indicated, these calculations can be inferred from GPS, or measured directly from the OBD port to insure data integrity. Multiple data sources can be used for comparison or validation of individual recorded data. For example, see FIG. 9 discussed infra. Correlation of vehicle speed with vehicle directional information can also be compared to GPS data of the vehicle travel. The ability to analyze and compare various data sources can provide enhanced data accuracy and validity. The multiple data sources also provide continuity of information when individual data sources may be interrupted, such as temporary interruption of a GPS signal. This continuous monitoring is vital to create objective driver safety ratings that include a complete set of the vehicle's operating data. It also provides an enhanced record of driving events. This record, recorded by the invention, may be valuable in recreating the events prior to a vehicle collision or similar event. It may be a useful in the proof or disproof of fault or liability.
  • FIG. 3 illustrates starting steps of an embodiment of logic flow steps that can be incorporated into the evaluation method of the present invention. These steps are implemented after the vehicle operation data has been collected. The system first queries whether the user is logged on or connected to a CPU 31. If not logged on, the user is prompted to log on 32. If logged on, the system uploads files of collected data from the vehicle 33. The system may first process and list the trips recorded in the uploaded collected data 34. The system can display the trip details 30-5, including trip map 36.
  • FIG. 4 illustrates an embodiment of logic steps that may be taken by the user for properly logging into the system taught by the invention. Properly logging into the system begins at the log in page 32-1. An example of a log in page is illustrated in FIG. 21. The user can be prompted to enter the user name and password and then to click on the “Log-in button” 32-2. The system then checks the log in information in the database to validate the user. After being validated, the user can be directed to the “Upload File of Collected Data From Vehicle” 33. (See FIGS. 3, 21 and 22.)
  • FIG. 5 illustrates logic steps utilized in one embodiment of the invention that are taken in uploading information. The user can select the driver of interest from the driver names contained in the database. 33-1. The file page for the selected driver(s) is then displayed 33-2 and the user can be prompted to upload the information pertaining to the selected driver into the system. See for example FIG. 23, illustrating a screen display that allows the user to view various driving events of the selected driver that are within the invention database. The information can then be collected and uploaded 33-4. The system can then save the information about the trips to the database 33-5. The user can then be directed to the list trips screen (See FIG. 3)
  • FIG. 6 illustrates the logic steps utilized in one existing embodiment of the invention for reading and commencing revaluation of uploaded files. The logic may first provide reconciliation between the local time zone and the UTC time 34-1. The logic sequence then can query whether the system has finished reading the uploaded file 34-2. If the user's session is not completed, the reading of a new trip can begin. The reading commences at a new point on the uploaded file 34-4. The logic sequence queries whether the uploaded file indicates that a new trip has begun 34-6. (See FIG. 7.) If a new trip has not begun, the logic sequence continues reading at a new point on the uploaded file and thereby continuing the review of the trip file. If the uploaded data indicates a new trip has commenced, logic sequence then evaluates the trip. Evaluation can include for example, calculating the acceleration for the trip 34-5, obtaining the street names and posted speed limits 34-7, identification of violations (e.g., excess speed and acceleration/deceleration) 34-8 and calculation of a DSR rating 34-9. After completing the trip DSR, the system returns to the uploaded file 34-2. If there are no unread files, the information, including calculations, is stored in the database 33-5.
  • FIG. 7 illustrates logic steps incorporated into one embodiment of the invention wherein uploaded recorded information may signal the end of one driving event and the start of a separate trip. The sequence illustrates one embodiment of the logic steps determining whether a new trip begins. (See FIG. 6, item 34-6.) The system queries 35-1 whether there is more than a minimum time gap in the recorded data. If yes, the logic program classifies the new information to be part of a separate “new trip” 34-3. If there is no gap in recorded data, the system queries whether there has been a change in vehicle location 35-2. If there is no minimum gap of OBDII data but the GPS location data is unchanged for more than the minimum time 35-2, the new GPS data begins a new trip 34-3. (For example, if the car is parked for more than the minimum time, e.g. 15 minutes, with the engine idling, resumed movement of the vehicle after the 16th minute of engine idling, i.e., the vehicle engine continuously operating, would start a new trip.) Until there is more than a minimum time gap in engine (OBD) data or change in vehicle position, a new trip is not deemed to start and the logic continues to read the data as new data of a continuing trip 34-4.
  • FIG. 8 illustrates logic steps utilized to achieve continued calculation of vehicle acceleration from uploaded time marked speed data for a single trip. As the trip continues 35-4, the next speed data point creates a new pair of data points, i.e., the prior data point and the current new speed data point 35-5. The logic program calculates the amount of time 35-6 and the change in speed between the two speed data points 35-7. The change is speed per unit of time is the vehicle acceleration 35-8.
  • FIG. 9 illustrates the logic steps utilized by an embodiment of the invention to continuously evaluate recorded GPS time marked trip data and correlate data to a separate database containing street and speed limit information. The logic program continues from the FIGS. 6 and 7 (see item 34-6 in FIG. 6). If the trip is not finished 35-4, the next data point is evaluated whether it contains valid GPS data 35-11. If yes, the logic system accesses a separate database containing road or street information. After determining the nearer road segment 35-12, the street name and posted speed limit for that identified road segment is obtained from the database 34-6. The logic system again determines whether the trip has been finished 35-4 and if yes, correction is made for crossing street error 35-9. For example if data point t1 is determined to be nearest Jones Street with speed limit 45 mph and data point t2 is determined to be the intersection of Jones and Smith Streets where Smith Street has a speed limit of 35 mph and at data point t3 is determined to be at Jones Street with the continued speed limit of 45 mph, no speed violation will be identified 34-7, assuming, of course, that the driver is operating at 45 mph or below. (Reference is also made to the collection of data points in FIG. 1.)
  • FIG. 10 illustrates the sequential separate relationship of data evaluation for speed, acceleration, etc., infractions. The sequence illustrates the evaluation of uploaded data for speed violations 36-1, acceleration violations 36-2, time of day violations 36-3 (i.e., “deductions” to the DSR for driving at night or high risk weekend time segment), and sign adherence violations 36-4. It will be appreciated that the sequence is illustrative only and may be abridged, supplemented or reordered.
  • FIG. 11 illustrates the detailed logic steps for determining a speed violation from each time marked data point of vehicle speed with the matrix of recorded information and the assessment of penalty points for the Driver Safety Rating. The logic program evaluates the uploaded data to determine whether the trip is finished 35-4. If not, the logic program obtains the next point having a valid GPS and engine data 35-9. (Reference is made to FIG. 9, items 35-4, 35-10, 35-11.) The logic program next queries whether the vehicle speed exceeds the posted limit 36-5. If the posted speed limit is not exceeded, there is no current violation 36-6. If the speed exceeds the posted limit 36-5, the logic program queries 36-8 whether the vehicle is operating at in concurrent violation, e.g., high-risk driving time violation, acceleration violation, etc. If the concurrent violation is of the same type 36-9 i.e., speed violation, the vehicle will be deemed to be operating in a continuing speed violation and DSR point deduction increased 36-10. If not of the same type 36-11, a separate DSR deduction will be calculated. The logic program then again queries whether the trip is finished 35-4. It will be appreciated that this logic sequence may be separate from a determination of whether a selected vehicle operating speed, e.g., 58 mph, is ever exceeded.
  • FIG. 12 illustrates the detailed logic steps for continuous evaluation of vehicle acceleration and assessment of penalty point(s) to the Driver Safety Rating. This logic step, which is separate from the speed violation step (reference to FIGS. 10 and 11) starts at the same point 35-4 and 35-9 (reference again to FIG. 9). The vehicle acceleration is separately calculated as illustrated, for example, in FIG. 8 discussed above. Continuing with FIG. 12, the logic program queries 37-1 whether the acceleration exceeds a specified limit. If no, there is a determination 37-2 of no current excess acceleration violation and the logic program returns to the beginning step 35-4. If the specified “x-limit” rate of acceleration 37-1 is being exceeded, the logic program queries 37-3 whether there is a concurrent violation. If there is a concurrent violation, the logic program 37-4 queries whether the violation is of the same type (e.g., continued acceleration in excess of the specified limit) and if yes, the DSR deduction is increased 37-7. If the is no concurrent violation, the logic program continues 37-5 and queries whether the vehicle speed is in excess of a specified limit. (It will be appreciated that a vehicle has a relatively high rate of acceleration in the first moment of movement from a stopped position, but simultaneously has a relatively slow speed.) If the speed is not in excess of the specific “x” limits, there is no violation (current violation=null) 37-6. If the vehicle speed exceeds the specified limit 37-8 (which may differ from the posted speed limit for the road segment as determined with reference to FIG. 9 and 11), a new concurrent violation is assessed. The new current violation type is then determined 37-9 depending upon the acceleration. The logic program then repeats and returns 35-4 to the query of whether the trip is finished.
  • FIG. 13 illustrates the detailed logic steps for evaluation of a “time of day violation” in recognition that driving after sunset is inherently less safe than driving in daylight. The logic program first ascertains whether the trip is finished 35-4. If not, the, the logic program obtains the next point and engine data 38-1. The logic program next queries if the speed is greater than 0 and local time is greater than “after sunset” 38-2. If no, there is no violation 38-3 and the logic program returns to the beginning 35-4. Alternatively, if the speed is greater than 0 and the local time is after sunset, the logic system next queries if there is a current violation 38-4. If there is a concurrent violation (current violation not equaling null), there is an automatic increase 38-5 to the concurrent violation deduction from the Driver Safety Rating. If there is no concurrent violation 38-4, a new violation is assessed for the time of day violation 38-6 and the type, i.e., severity, of violation is in this example illustrated to be determined by the acceleration 38-7 of the vehicle. As an example, if the vehicle is speeding (current violation not equaling null), there is an automatic surcharge 38-5 to the driver safety rating. If there is no current violation, there is a new violation assessed, but if the vehicle is slowing down or at a constant speed (acceleration equal or less than 0) the driver safety rating penalty may be less than if the vehicle is accelerating.
  • FIG. 14 illustrates the logic steps for continued evaluation of the time marked GPS and vehicle speed data in correlation with a separate database containing road sign information to verify, for example, that the vehicle has been operated in compliance with a stop sign. In this example, the logic system determines the route of the vehicle taken during the trip 39-1 and all stop signs located on a separate database correlated with the GPS information are identified. The operation (OBD) data for the vehicle is then correlated with the stop sign locations 39-2. If there is a stop sign 39-3, the logic program looks at vehicle operation within a specified distance before the stop sign 39-4 and particularly the vehicle speed 39-6. If the lowered speed is 0, the logic program determines the vehicle stopped in compliance to the stop sign and there is no violation. If the vehicle speed does not slow to 0 at any location “nearer than ‘X’ ft from stop sign”, the logic program assesses a violation 39-7 based upon failure to stop in compliance with the sign. The violation type, i.e. severity, is determined depending on the lower speed value 39-8. For example the penalty to the driver safety rating will be less if the logic programs determines a “rolling stop” in contrast to the vehicle never slowing below 30 mph, i.e., “running a stop sign”. The logic program then returns to the point 39-2 for determining if there is another stop sign.
  • FIG. 15 illustrates the logic steps of an embodiment of the invention wherein the Driver Safety Rating (DSR) is calculated for an individual trip. In the illustrated example, the logic program evaluates the violations assessed for the specific trip 10-1 and calculates the DSR deduction 10-2. For example, has the driver previously or frequently violated stop signs and has the driver violated stop signs in the current trip now being evaluated? A deduction, e.g., surcharge 10-3 is applied to the current trip DSR based upon noted persistence in violations. The DSR for the current trip is calculated based upon the specific violations 10-4 assessed during the current trip. A total driver safety rating is calculated 10-5 based upon the relative duration of speed violations in the current trip, the relative duration within the current trip that the vehicle was operated over a selected speed and after sunset and the relative duration of the trip that acceleration was above a specified rate while the vehicle was moving at a specified speed 10-2.
  • FIG. 16 illustrates the logic steps for deduction of penalty points from the DSR. The deduction of penalty points is “for violations on this trip”. The violations are first collected 10-6. The logic program can review the trip information and collect each violation 10-7 & 10-8. A deduction is made for each violation 10-9. The logic program also determines if each violation is the last violation of a series of consecutive violations 10-10. If yes, the time duration of the consecutive violation is calculated 10-11. The persistence for the violation proportional to the duration of the consecutive violation is calculated 10-12.
  • FIG. 17 illustrates the deduction of past penalty points from a calculated DSR for a separate and later driving event. The logic program obtains persistent deductions for the specific driver 10-15. A deduction is applied for each persistent violation 10-16. Past violations are deemed to be “persistent violations” if there is a sufficient (and variable) time correlation between the past violation and the violation of the current trip being evaluated. There must be a time overlap or “intersect”.
  • FIG. 18 illustrates the application of past penalties utilizing weighting scheme based upon penalty weight inverse to elapsed time. Again, however, only violations within or “inside” a specified time zone are deemed to be persistent violations and factored into the DSR for the current trip. The extent of the “look back” for past violations may vary depending upon the severity of the violations.
  • In addition to selection of identifiable vehicle operators, the invention will allow for recording and evaluation of multiple separate trips by a selected driver. The separate trips can be separated by trips of longer than a specified duration, trips in which there are multiple braking events per selected period of time, trips on weekends or at night, in contrast to morning commutes. Also the trips may be separated, evaluated and contrasted over time. Of course, numerous other variations may be implemented and are within the scope of this invention.
  • The driver safety rating (DSR) score of one embodiment of the invention maybe a composite number comprising subscript or superscript notation. For example the subscript may indicate the number of driving events evaluated in creating the rating score. It may alternately provide the percentage that is Interstate, controlled access highway driving. In another embodiment, the score may contain a superscript notation indicating the number of recorded severe driving violations, e.g., operating over 90 mph.
  • It will be readily appreciated that changes in sequentially recorded vehicle speed can be used to calculate the rate of vehicle acceleration. See FIG. 8. Changes of vehicle position between intervals where there is no recorded vehicle speed, particularly in conjunction with immediate prior de-acceleration, may indicate that the vehicle is skidding. Minimal change in vehicle position relative to rapid acceleration may indicate the vehicle is being operated without sufficient traction, i.e., “spinning the wheels” or “pealing rubber”.
  • Operation of the vehicle without headlights, changes in vehicle direction without turn signals, etc. may also be recorded. The frequency and degree of changed vehicle direction per unit of distance traveled can indicate lane weaving or, alternatively, driving on a winding road. The vehicle speed, calculated rate of acceleration/de-acceleration, number and duration of brake activation can all be correlated to assess the operator's performance and driving behavior. Frequent changes in vehicle speed and braking events may be indicative of aggressive driving such as tail gating slower moving traffic and lane weaving. Since the data is collected centrally, comparisons can be made between drivers and driver profile types can thus be created.
  • In one embodiment of the invention, the evaluation of data comprises events of vehicle speed, compliance with traffic signs and signals, vehicle acceleration and time of day. See FIG. 10
  • Current driving behavior may be predictive of future driving behavior. Driving behavior can be assessed from a history of driving infractions, e.g., speeding tickets, and from motor vehicle accident histories. Also included within the invention is predictive modeling of future behavior as a function of recorded data an individual driver compared with other drivers within a database. The predicted likely future behavior may be future driving or, with careful or sophisticated evaluation of data, may be predictive of other behavior.
  • The invention includes creating a database of multiple drivers. The invention also includes categorizing driving conditions of similar nature, thereby allowing performance of multiple drivers at differing times and locations to be grouped and compared. For example, segments of a trips occurring on a multi-lane divided and limited access highways can be grouped and evaluated. The road type may be determined by combining GPS data and separate databases showing the number of traffic lanes, exit and entrance points, etc. Alternatively, road type may be determined solely by accumulated trip recorded time sensitive GPS and operational data, such a vehicle direction, speed, braking, and acceleration. Congested urban traffic conditions can be identified by time and location and categorized. Identification may include consideration of the number of drivers within the database proximate to particular locations at particular times relative to other locations. This may be termed “use” or road use.
  • Typical or average driving patterns can be identified within such categories of road type. Comparison of an individual driver's operational data to the average or typical operation profile can be made and deviations noted. With an adequate database, other types of driving conditions or road types may be identified and categorized. Individual driver operational data can be compared with the typical or average driver profile. Information from such comparisons can be combined and evaluated with demographic variables or other recorded factors and separate database information such as driver age, sex, marital status, purchasing and credit histories, etc. Evaluation can also be made between the driving profile and history of driving infractions or accidents.
  • The combined data and evaluations can be useful in predicting likely future behavior, including differing lifestyle and employment environments. In addition, categories of driver personality type can be created and an individual can be matched with one or more categories. The measurement of relationship strength of an individual to a category may utilize standard deviations of predicted co-occurrence or log-likelihood ratios.
  • Since the invention included creation of a comprehensive database without prior filtering or evaluation, it is possible for example, to revise or adjust one or more algorithms used in an evaluation. It is possible to similarly make changes in the evaluative technique or methodology. This can result, for example, in achieving enhanced predictive analysis. Predictive results can be compared to actual results and the technique refined to achieve greater consistency or accuracy.
  • An individual driver may also be categorized by the absolute amount of time the driver is identified to be operating within a road category or trip segment. Also, an individual driver may be evaluated by the relative portion of each trip that is within a road category. Driving in “off peak” times may differ from “rush hour” vehicle operation. Similarly, predictions of likely future behavior may vary with drivers operating vehicles at differing times or on differing road types.
  • Changes in an individual driver's profile may be noted and may be suggestive of a change in life style or employment. This may be correlated to spending and credit histories. Time sensitivity can enhance the predictive value of a profile.
  • Evaluation of discrete trip segments, in contrast to evaluation of operation for an entire trip can also enhance the predictive value. For example, all trips that include a first GPS determined point A and then point B within a five minute window and occurring between 8:00 AM and 8:30 AM on one or more specified dates may capture all the drivers operating a vehicle in a certain direction of a major arterial roadway on a “rush hour” morning. Operation on other and differing road segments may not be of value. In this limited “like” environment, it will be relatively easy to identify drivers whose speed, braking and acceleration pattern differ from the average. It will also be relatively easy to identify “aggressive” driving. A pattern of aggressive driving may be correlated to “risk taking” in other life or employment environments, including but not limited to spending and debt repayment. The evaluation may be further enhanced by tracking the changes in vehicle direction within the road segment, i.e., the driver's proclivity to change lanes.
  • This level of evaluation of individual driver behavior can also be reflected in the driver's safety rating score. It may be useful to have such information separately recorded as a subset of a composite score. Driver's that have an “aggressive” driving profile or that frequently operate on “high risk” road segments and/or times can be therefore be readily identified and distinguished from otherwise similar drivers. In the preferred embodiment, the aggressive driver score would be separable from the “high risk” road segment driver.
  • It will be readily appreciated that vehicle driving is a common activity of most individuals over the age of 16. Although driving and traffic conditions vary widely, it may be appreciated that common behavior traits may be exhibited through vehicle operation. It will be readily appreciated that an individual that can demonstrate a history of prudent driving in combination with prudent spending and use of credit may be part of an ideal target market of certain goods or services. Other drivers may choose not to provide such vehicle operation data for various reasons. These reasons can include that concern that the information would demonstrate less than ideal behavior, such as perceived high risk driving characteristics. For some purposes, it may be useful to exclude those individuals from the evaluation. Thereby the database is not flawed by their absence. For other purposes, such absent individuals that are otherwise identifiable may constitute the target audience or market. Again, the database is not flawed. For example, a person having a certain high spending and credit profile, but not reporting vehicle operations data may be particularly receptive to an ad campaign for luxury sports cars or certain vacation travel. The ability to identify or merely the enhanced ability to identify members of a target segment will be a valuable tool.
  • Another aspect of the present invention is to identify events or behavior that have a strong co-occurrence index or similar frequency of occurrence. For example rapid acceleration may frequently occur with hard braking. It may also occur with closely following other vehicles. Frequent lane changes without activating turning signals may be correlated with rapid acceleration but lane changes with use of turning signals may not have a similar correlation. However, frequent lane changes without turning signals on congested urban corridors during rush hour may have a different correlation compared to frequent lane changes without turning signal during off peak hours on the same type roadway. The rafter may be correlated to with excessive speed while the former is not.
  • In another example, a driver operating a vehicle primarily on suburban streets during daytime hours may have minimal correlation to excessive speeding. Conversely, such driver may have minimal demographic or economic commonality to drivers that demonstrate excessive speeding. It may be useful to exclude both from an evaluation. Therefore being able to determine where and when the driving occurs may be as important as how it occurs.
  • Further, the invention allows behavior or characteristics of drivers to be compared to other driver, independent of other factors. For example, all vehicles on a congested roadway may be operating below a posted speed limit. However, some drivers may be exhibiting frequent lane changes without turn signals, accompanied by high acceleration, hard braking and tailgating. No driver is operating above the speed limit, but some are exhibiting high-risk behavior.
  • In another example, a comparison of drivers on the same road segment during a recorded rain event can be compared. How a driver is operating in comparison to the other drivers during the rain event may be more predictive of behavior than adherence to posted speed limits.
  • Another aspect of the invention is the enhancing the predictability of likely future events by identifying the most predicative characteristics within the database and match the occurrence of one or more characteristics within the data set of an individual. A scaled score can be developed for the individual based upon the individual's dataset.
  • For example, none of a subset of drivers who are identified as principally driving on suburban streets may have traffic infractions. However, some drivers within the group may have recorded multiple events of “rolling stops” at stop signs. Some drivers may have multiple events of changing direction without using turning signals. Others may frequently drive without seat belts. Over time, one or more of such characteristics may be strongly correlated to other significant behavior or behavior of interest such as high-risk life style behavior, whether driving related or otherwise. Other factors may not show a strong correlation with other behavior of interest and may be discounted. Drivers identified as driving with significant frequency on congested urban arterial roads may be shown to have a correlation with other aspects of behavior. Therefore, over time some behavior may be shown to have a strong correlation with other behavior. The other characteristics (having a low index of frequency of correlation) may be thereafter discounted as predictive of the correlated behavior of interest.
  • As suggested above, another aspect of the invention is to identify and utilize characteristics that can be identified by sophisticated evaluation of the database that focus on prediction of responsiveness to certain input, e.g. an ad campaign or new product, in contrast to the odds of a future traffic accident or infraction. Such evaluation may include correlation of separate databases.
  • It will be further appreciated that evaluation of these additional or alternative variables will require minimal adjustment to the logic flow diagrams (FIGS. 3 through 18). For example, driving after selected times on Friday and Saturday evenings may be rated independent of other variables since these times may be statistically the most dangerous times. Again, the time of vehicle operation, and designation of the driver, will be included in the data set of the preferred embodiment.
  • FIGS. 19A, 19B, 19C and 19D comprise a table of actual recorded time marked speed data and assessed violation/penalty utilizing an embodiment of the invention. FIGS. 19A through 19D comprise a table of data points collected from an actual motor vehicle trip 19-1, utilizing OBD and GPS components, and evaluated 19-2 by the subject invention. The table presents only collected data points in which a speed violation 19-6 was recorded. It will be appreciated that the table could present vehicle speed information for each sequential data point regardless of an excess speed event (or other recorded vehicle operation characteristic). In the event depicted in FIGS. 19A through 19D, the trip started at a time prior to 1:55:29 PM on Dec. 29, 2003. The vehicle speed was collected every 2-seconds and the vehicle position was also recorded at the same 2 second intervals. Both recording devices utilized atomic clocks to regulate time intervals and synchronization. A database containing speed limit information 19-4 applicable to the specific road and location traveled was accessed by the processor evaluating the data. The actual vehicle location was derived by the GPS supplied information.
  • For the driving event (“trip”) subject of FIG. 19, the identity of the driver is disclosed. The actual speed is recorded and compared to the posted speed limit for each time marked interval.
  • A driver safety rating (DSR) 19-8 is established upon the evaluation of the data. In the driving event subject of FIG. 19, only driving speed having been recorded as exceeding the pre-selected criteria, i.e., posted speed limit has been displayed. (See for example 19-3, 19-5 & 19-6.)
  • For example, in the embodiment of the invention illustrated by FIG. 2, a driver safety rating is established by first evaluating the recorded data of FIG. 1 in accordance with a formula and subtracting the resulting numerical value (σ) from 100 where 100 represents optimally safe motor vehicle operation. The formula utilized in this embodiment is:
    σ=(V 2 −L 2)/(L·x) where
  • σ=driver safety rating speed violation deduction
  • V=vehicle speed recorded from OBD
  • L=posted speed limit obtained from a GIS database utilizing the GPS location stamp for the data interval.
  • x=adjustment factor to normalize the deduction to a basis DSR of 100.
  • As stated above, the driver safety rating (DSR)=100−σ.
  • In another embodiment, the product of the calculation can be adjusted by a factor (μ) where μ=an adjustment factor for traffic conditions, weather conditions or time of day. It will be readily appreciated that operation of a vehicle at a speed in excess of the posted limit may be subject to a greater penalty or evaluative numerical significance if occurring in rain, icy conditions, nighttime, etc. Other factors which may justify a further adjustment criteria would include operating a vehicle in excess of the posted speed in a school zone, during rush hour or on roads that have statistically higher accident rates.
  • It will be further appreciated that the information contained in the table comprising FIGS. 19A and 19B illustrates the one data collection sequence that may utilized and recorded on the transferable electronic memory media and downloaded to a separate processor.
  • FIG. 20 illustrates the home page displayed to a user of an embodiment of the invention that incorporates the logic flow sequences illustrated in FIGS. 2 through 18 herein.
  • FIG. 21 illustrates the log in page displayed 21-1 to a user of an embodiment of the invention.
  • FIG. 22 illustrates the screen page displayed to the user 22-1 after logging into the invention allowing the user to select 22-2 among multiple drivers having recorded driving data uploaded within the database of the invention.
  • FIG. 23 illustrates the screen display allowing the user to view various driving events 23-1 of the selected driver 23-2 that are within the invention database and for which a Driver Safety Rating 23-3 has been computed.
  • FIG. 24 illustrates the screen display providing the type of violation 24-1 and computed DSR 24-2 for each violation type for a selected trip 24-3.
  • FIG. 25 illustrates the screen display of evaluated trip data derived from the matrix of time and location marked data. FIG. 25 is a presentation of information of the type of information of FIGS. 19A through 19D as it may appear on a user's computer screen.
  • FIG. 26 illustrates a map of the actual travel of the vehicle as recorded and evaluated based upon several databases utilizing the time marked and location marked data. FIG. 26 is a presentation of the GPS data 26-1A, 26-1B, 26-1C. 26-2 & 26-3, collected as part of the data set forth in FIG. 25, as it may appear on the user's computer screen and illustrating the actual route of vehicle travel. The designated path of travel may be further color coded 26-4 or otherwise marked to show the specific location of the event of excess speed or other characteristic included in the evaluation determining the driver safety rating.
  • FIG. 27 is a representation of the display screen of the invention showing the streets 27-1 traveled during a selected driving event as well as the time 27-2A & 27-2B and speed limit 27-3. The screen can be modified to incorporate other information.
  • Looking at FIGS. 8 and 9, it will of course be appreciated that sequential data of speed can be used to calculate the rate of acceleration. This can be either a positive or negative value with a negative value indicating de-acceleration. For example, in one embodiment of the invention, the evaluation of data may utilize the following formula:
    φ=(A−0.6)/(L·y) and
    A=(V 1−V2)/t
  • where
  • φ=driver safety rating acceleration deduction
  • V1=vehicle velocity from the previous time interval recorded from OBD
  • V2=vehicle velocity from the current time interval recorded from OBD.
  • t=time increment between data points
  • L=speed limit
  • y=adjustment factor to normalize the deduction to a basis driver safety rating of 100.
  • 0.6=threshold G-Force above which violations are recorded.
  • As with speed, the acceleration factor may be subject to a further adjustment (μ) for traffic, road or weather conditions as well as for time of day, etc.
  • In another embodiment, the rating may include the operator's adherence to traffic control signs and traffic signals (∅). This embodiment will require synchronized GPS and OBD data. An example of application of this capability would be failure of the vehicle to stop at a geographic location, as determined by the combined and time synchronized GPS and OBD data, known to be controlled by a stop sign. This can be viewed as an enhancement of the tracking speed with posted speed limits.
  • Yet another embodiment may utilize a separate factor (β) for travel at night or at determined road locations known to have greater accidents. Travel on Interstate highways traversing relatively sparsely populated and un-congested areas may understandably present different operating challenges and demands than equal mileage driven in congested urban streets and expressways with greater traffic density, frequently merging traffic and changing traffic speed. Similarly, the drivers' behavior, as well as driving skill, can be measured by the information metrics of the type depicted in FIG. 1.
  • In yet another embodiment, the driver safety rating will be weighted to reflect the number of separate operating events or the cumulative vehicle operation marked data that is incorporated in the rating. A rating that is a product of the evaluation of numerous events can be expected to have a greater accuracy or greater predictive values for other or future behavior.
  • The driver safety rating comprising an evaluation of multiple factors, e.g., speed, rate of acceleration, sign adherence and time of day/location, will be an integration of the recorded and derived factors. In one embodiment, the DSR will be a deduction of the evaluated numerical value from a beginning 100 score. The numerical value will first require computation of the DSR for each time-marked interval, e.g., each two-second interval for which OBD, GPS, etc., data is collected for evaluation.
  • For example, in a simple calculation involving the four variables listed above, each variable can be given equal weight (with or without incorporating modifying factors such as μ). In that case, the deduction for each time interval (DSRINTERVAL) can simply be expressed as the average of the four values for that interval.
    DSR INTERVAL=(σ+φ+∅+β)/4
  • The DSRTRIP will then be:
    DSR TRIP=100−(Σ DSR INTERVAL)/t
  • The invention includes altering or adding additional variables and varying the evaluation as may be selected, utilizing recorded and uploaded data of vehicle operation as taught by this invention.
  • The evaluation process can also discard old or “stale” information that may be expected to no longer have significant predictive value. The criteria for discarding data may be a time function only, or incorporate the quantity of later data collected. The valuation process can also incorporate a persistence factor for events of selected significance. These may be events of driving at speeds in excess of 20 mph over the posted speed limit. The rating evaluation process may retain the data or numerical values for a longer duration than data or values pertaining to driving less than 10 mph above a posted speed limit. This process can utilize the “severity” value listed in the table of FIGS. 19A through 19D.
  • Additional variable factors that may be subject of analysis include the number of changes in rate of acceleration (including de-acceleration) per linear distance traveled, number of changes in vehicle direction per linear distance traveled, use of seat belts, turning signals, activation of ABS or SRS systems, lane departure warning systems or intelligent cruise control systems, etc. Driver physiological data such as heart rate and blood pressure may be recorded and included in the analysis.
  • The invention also teaches real time feed back to the driver. This can include warnings of driving above a posted speed limit, warning that the vehicle is approaching a stop sign, or the time remaining before a traffic control light is to change from green to yellow or red, etc. It may provide notice of construction or other traffic delays. This embodiment utilizes real time access correlation and evaluation of multiple databases.
  • The evaluation can also include quantitative assessments, such as an evaluation based upon changes in vehicle direction, determined from steering wheel movement, time, and vehicle speed. This can be correlated with GPS data for validation as indicated above. The data can then be further qualitatively assessed for excessive speed during turning events, excessive lane changes, “tail gating”, etc. The qualitative assessment can include assigning numerical values for events. Events can be qualitative distinguished, i.e., an event of excessive driving speed, an event triggering the ABS or SRS system, could have a differing impact than an event of failure to activate turning signals.
  • An additional embodiment could include measurement of driver performance for a driving event or for operation per hour. The measurement can be stored and supplemented by additional driver specific driving events. Therefore changes in driver behavior over time can be evaluated, thereby providing a current, accurate assessment of behavior. With progression of time or collected events, it may be possible or advantageous to delete early events and data.
  • This specification is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the manner of carrying out the invention. It is to be understood that the forms of the invention herein shown and describe are to be taken as the presently preferred embodiments. As already stated, various changes may be made in the shape, size and arrangement of components or adjustments made in the steps of the method without departing from the scope of this invention. For example, equivalent elements may be substituted for those illustrated and described herein and certain features of the invention may be utilized independently of the use of other features, all as would be apparent to one skilled in the art after having the benefit of this description of the invention.
  • Further modifications and alternative embodiments of this invention will be apparent to those skilled in the art in view of this specification.

Claims (20)

  1. 1. A database comprising time marked vehicle operation data recorded at regular intervals that can be correlated to at least one other data point.
  2. 2. The database of claim 1 used for evaluating a road.
  3. 3. The database of claim 1 used for evaluating a vehicle.
  4. 4. A method of evaluating at least one individual comprising evaluating a first database of time marked data recorded at regular intervals of vehicle operation and at least one other data point.
  5. 5. The method of claim 4 wherein the evaluation is for predicting a future event.
  6. 6. The method of claim 4 wherein the future event comprises an insurance risk.
  7. 7. The method of claim 4 wherein the future event comprises a purchase of a good or a service.
  8. 8. The method of claim 4 wherein the future event comprises a payment.
  9. 9. The method of claim 4 wherein the future event is behavior.
  10. 10. An evaluation of the method of claim 4.
  11. 11. A method of evaluating at least one road comprising a first database comprising regularly recorded time marked data of operation of at least one vehicle.
  12. 12. The method of claim 11 further comprising data of at least one driver.
  13. 13. The method of claim 11 further comprising data of at least one trip.
  14. 14. The method of claim 11 wherein the database comprises data of vehicle location.
  15. 15. The method of claim 11 further comprising correlating at least one road to at least one other road.
  16. 16. The method of claim 11 further comprising the evaluating the first database with at least one other data point.
  17. 17. An evaluation of the method of claim 11.
  18. 18. A method of evaluating a vehicle comprising a first database comprising regularly recorded time marked data of operation of at least one vehicle.
  19. 19. The method of claim 18 further comprising correlating the first database to at least one other data point.
  20. 20. An evaluation of the method of claim 18.
US11060462 2003-05-06 2005-02-17 Motor vehicle operating data collection and analysis Abandoned US20050137757A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US46784503 true 2003-05-06 2003-05-06
US10832521 US6931309B2 (en) 2003-05-06 2004-04-27 Motor vehicle operating data collection and analysis
US11060462 US20050137757A1 (en) 2003-05-06 2005-02-17 Motor vehicle operating data collection and analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11060462 US20050137757A1 (en) 2003-05-06 2005-02-17 Motor vehicle operating data collection and analysis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10832521 Continuation-In-Part US6931309B2 (en) 2003-05-06 2004-04-27 Motor vehicle operating data collection and analysis

Publications (1)

Publication Number Publication Date
US20050137757A1 true true US20050137757A1 (en) 2005-06-23

Family

ID=33423664

Family Applications (6)

Application Number Title Priority Date Filing Date
US10832521 Active US6931309B2 (en) 2003-05-06 2004-04-27 Motor vehicle operating data collection and analysis
US11060458 Abandoned US20050182538A1 (en) 2003-05-06 2005-02-17 Motor vehicle operating data collection and analysis
US11060462 Abandoned US20050137757A1 (en) 2003-05-06 2005-02-17 Motor vehicle operating data collection and analysis
US11321990 Abandoned US20060111817A1 (en) 2003-05-06 2005-12-29 Motor vehicle operating data collection and analysis
US11322130 Abandoned US20060106515A1 (en) 2003-05-06 2005-12-29 Motor vehicle operating data collection and analysis
US11322131 Abandoned US20060122749A1 (en) 2003-05-06 2005-12-29 Motor vehicle operating data collection and analysis

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10832521 Active US6931309B2 (en) 2003-05-06 2004-04-27 Motor vehicle operating data collection and analysis
US11060458 Abandoned US20050182538A1 (en) 2003-05-06 2005-02-17 Motor vehicle operating data collection and analysis

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11321990 Abandoned US20060111817A1 (en) 2003-05-06 2005-12-29 Motor vehicle operating data collection and analysis
US11322130 Abandoned US20060106515A1 (en) 2003-05-06 2005-12-29 Motor vehicle operating data collection and analysis
US11322131 Abandoned US20060122749A1 (en) 2003-05-06 2005-12-29 Motor vehicle operating data collection and analysis

Country Status (3)

Country Link
US (6) US6931309B2 (en)
EP (1) EP1627297A4 (en)
WO (1) WO2004102536A3 (en)

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060111817A1 (en) * 2003-05-06 2006-05-25 Joseph Phelan Motor vehicle operating data collection and analysis
US20060142914A1 (en) * 2004-12-27 2006-06-29 Toyota Jidosha Kabushiki Kaisha Vehicle data recording system with detachable recording apparatus
US20060271275A1 (en) * 2005-05-26 2006-11-30 Paridhi Verma System and method for notification and correction of constraint violations in vehicles
US20070001831A1 (en) * 2005-06-09 2007-01-04 Drive Diagnostics Ltd. System and method for displaying a driving profile
US20070027726A1 (en) * 2004-09-08 2007-02-01 Warren Gregory S Calculation of driver score based on vehicle operation for forward looking insurance premiums
US20070050126A1 (en) * 2005-08-23 2007-03-01 Seong Taeg Nou Vehicle management system and method in telematics system
US20070198684A1 (en) * 2006-02-22 2007-08-23 Kazunori Mizushima Method and system for data processing with connection pool for the same
US20070203637A1 (en) * 2006-01-23 2007-08-30 Jon Passman System and method for identifying operational usage of fleet vehicles related to accident prevention
US20070213896A1 (en) * 2006-03-08 2007-09-13 Jonathan Fischer Method and apparatus for determining and storing excessive vehicle speed
US20070276916A1 (en) * 2006-05-25 2007-11-29 Red Hat, Inc. Methods and systems for updating clients from a server
US20080016504A1 (en) * 2006-07-14 2008-01-17 Wesley Homer Cheng Dynamically programmable electronic data collection system combining declarative programming and native coding
US20080015748A1 (en) * 2006-07-14 2008-01-17 David Nagy System for monitoring, controlling, and reporting vehicle operation through onboard diagnostic port
US20080016207A1 (en) * 2006-07-14 2008-01-17 Wesley Homer Cheng Electronic driver log application with bi-directional messaging to multiple backend systems
US20080028044A1 (en) * 2006-07-26 2008-01-31 Intellidyne, L.L.C. System and method for file transfer
US20080082221A1 (en) * 2006-07-14 2008-04-03 David Nagy System for monitoring, controlling, and reporting vehicle operation through onboard diagnostic port
WO2008051730A2 (en) * 2006-10-25 2008-05-02 At & T Mobility Ii Llc Systems and methods for monitoring and/or controlling traffic
US20080221776A1 (en) * 2006-10-02 2008-09-11 Mcclellan Scott System and Method for Reconfiguring an Electronic Control Unit of a Motor Vehicle to Optimize Fuel Economy
US20080234890A1 (en) * 2005-08-05 2008-09-25 Toyota Jidosha Kabushiki Kaisha Vehicular Data Recording Apparatus
US20080252487A1 (en) * 2006-05-22 2008-10-16 Mcclellan Scott System and method for monitoring and updating speed-by-street data
US20080258890A1 (en) * 2006-05-22 2008-10-23 Todd Follmer System and Method for Remotely Deactivating a Vehicle
US20080306996A1 (en) * 2007-06-05 2008-12-11 Mcclellan Scott System and Method for the Collection, Correlation and Use of Vehicle Collision Data
US20090051510A1 (en) * 2007-08-21 2009-02-26 Todd Follmer System and Method for Detecting and Reporting Vehicle Damage
US20090079555A1 (en) * 2007-05-17 2009-03-26 Giadha Aguirre De Carcer Systems and methods for remotely configuring vehicle alerts and/or controls
US20090157294A1 (en) * 2006-07-06 2009-06-18 Pieter Geelen Navigation Device With Adaptive Navigation Instructions
US20090210257A1 (en) * 2008-02-20 2009-08-20 Hartford Fire Insurance Company System and method for providing customized safety feedback
US7596435B1 (en) * 2005-08-03 2009-09-29 Systech International, Llc Vehicle communication system and method with mobile data collection
US20090318169A1 (en) * 2008-06-19 2009-12-24 Rogitz John L Disabling wireless telephone use while in vehicle
US20100004818A1 (en) * 2008-07-02 2010-01-07 Michael Phelan Driver authentication system and method for monitoring and controlling vehicle usage
US20100030586A1 (en) * 2008-07-31 2010-02-04 Choicepoint Services, Inc Systems & methods of calculating and presenting automobile driving risks
US20100045451A1 (en) * 2008-08-25 2010-02-25 Neeraj Periwal Speed reduction, alerting, and logging system
US20100055649A1 (en) * 2008-09-03 2010-03-04 Hitachi, Ltd. Driving Skill Improvement Device and Driving Skill Improvement Method
US20100106417A1 (en) * 2008-10-27 2010-04-29 International Business Machines Corporation System and method for identifying a trajectory for each vehicle involved in an accident
US20100179721A1 (en) * 2007-06-01 2010-07-15 Lysanda Limited Engine monitoring
US20100191411A1 (en) * 2009-01-26 2010-07-29 Bryon Cook Driver Risk Assessment System and Method Employing Selectively Automatic Event Scoring
US20100205012A1 (en) * 2007-07-17 2010-08-12 Mcclellan Scott System and method for providing a user interface for vehicle mentoring system users and insurers
US20100238009A1 (en) * 2009-01-26 2010-09-23 Bryon Cook Driver Risk Assessment System and Method Employing Automated Driver Log
US20100250021A1 (en) * 2009-01-26 2010-09-30 Bryon Cook Driver Risk Assessment System and Method Having Calibrating Automatic Event Scoring
US20100305814A1 (en) * 2009-05-29 2010-12-02 Denso Corporation Driving operation diagnostic apparatus and method for diagnosing driving operation
US20100332266A1 (en) * 2003-07-07 2010-12-30 Sensomatix Ltd. Traffic information system
US7876205B2 (en) 2007-10-02 2011-01-25 Inthinc Technology Solutions, Inc. System and method for detecting use of a wireless device in a moving vehicle
US20110040438A1 (en) * 2009-02-18 2011-02-17 Harman Becker Automotive Systems Gmbh Method of estimating a propulsion-related operating parameter
US20110054792A1 (en) * 2009-08-25 2011-03-03 Inthinc Technology Solutions, Inc. System and method for determining relative positions of moving objects and sequence of such objects
US20110137684A1 (en) * 2009-12-08 2011-06-09 Peak David F System and method for generating telematics-based customer classifications
US7999670B2 (en) 2007-07-02 2011-08-16 Inthinc Technology Solutions, Inc. System and method for defining areas of interest and modifying asset monitoring in relation thereto
US20110238237A1 (en) * 2007-04-30 2011-09-29 Ford Motor Company System and method for updating vehicle computing platform configuration information
US8090598B2 (en) 1996-01-29 2012-01-03 Progressive Casualty Insurance Company Monitoring system for determining and communicating a cost of insurance
US8140358B1 (en) 1996-01-29 2012-03-20 Progressive Casualty Insurance Company Vehicle monitoring system
US20120209453A1 (en) * 2009-10-09 2012-08-16 Toyota Jidosha Kabushiki Kaisha In-vehicle device, information processing center, and driving evaluation system
US20120283893A1 (en) * 2011-05-04 2012-11-08 GM Global Technology Operations LLC System and method for vehicle driving style determination
US20130041521A1 (en) * 2011-08-09 2013-02-14 Otman A. Basir Vehicle monitoring system with automatic driver identification
US8564426B2 (en) 2009-01-26 2013-10-22 Drivecam, Inc. Method and system for tuning the effect of vehicle characteristics on risk prediction
US8577703B2 (en) 2007-07-17 2013-11-05 Inthinc Technology Solutions, Inc. System and method for categorizing driving behavior using driver mentoring and/or monitoring equipment to determine an underwriting risk
US8666590B2 (en) 2007-06-22 2014-03-04 Inthinc Technology Solutions, Inc. System and method for naming, filtering, and recall of remotely monitored event data
US20140067434A1 (en) * 2012-08-30 2014-03-06 Agero, Inc. Methods and Systems for Providing Risk Profile Analytics
US8688180B2 (en) 2008-08-06 2014-04-01 Inthinc Technology Solutions, Inc. System and method for detecting use of a wireless device while driving
US20140222245A1 (en) * 2011-02-22 2014-08-07 Honda Motor Co., Ltd. System and method for reducing driving skill atrophy
US8818618B2 (en) 2007-07-17 2014-08-26 Inthinc Technology Solutions, Inc. System and method for providing a user interface for vehicle monitoring system users and insurers
US20140257592A1 (en) * 2012-05-22 2014-09-11 Hartford Fire Insurance Company System and Method to Provide Event Data on a Map Display
US20140277833A1 (en) * 2013-03-15 2014-09-18 Mighty Carma, Inc. Event triggered trip data recorder
US20140303833A1 (en) * 2005-06-01 2014-10-09 Allstate Insurance Company Motor vehicle operating data collection and analysis
US20140303836A1 (en) * 2008-07-02 2014-10-09 Michael Phelan Driver authentication system and method for monitoring and controlling vehicle usage
US8868288B2 (en) 2006-11-09 2014-10-21 Smartdrive Systems, Inc. Vehicle exception event management systems
US8880279B2 (en) 2005-12-08 2014-11-04 Smartdrive Systems, Inc. Memory management in event recording systems
US8892341B2 (en) 2009-02-13 2014-11-18 Inthinc Technology Solutions, Inc. Driver mentoring to improve vehicle operation
US8892310B1 (en) 2014-02-21 2014-11-18 Smartdrive Systems, Inc. System and method to detect execution of driving maneuvers
US8924240B2 (en) 2011-05-25 2014-12-30 Shailendra Depura System for monitoring vehicle and operator behavior
US8963702B2 (en) 2009-02-13 2015-02-24 Inthinc Technology Solutions, Inc. System and method for viewing and correcting data in a street mapping database
US8989959B2 (en) 2006-11-07 2015-03-24 Smartdrive Systems, Inc. Vehicle operator performance history recording, scoring and reporting systems
US8996240B2 (en) 2006-03-16 2015-03-31 Smartdrive Systems, Inc. Vehicle event recorders with integrated web server
US9067565B2 (en) 2006-05-22 2015-06-30 Inthinc Technology Solutions, Inc. System and method for evaluating driver behavior
US20150228129A1 (en) * 2014-02-10 2015-08-13 Metromile, Inc. System and method for profiling vehicle usage
US9129456B2 (en) 2011-04-06 2015-09-08 Lysanda Limited Method and apparatus for estimating the fuel consumption of a vehicle
US9129460B2 (en) 2007-06-25 2015-09-08 Inthinc Technology Solutions, Inc. System and method for monitoring and improving driver behavior
US9135757B2 (en) * 2007-11-30 2015-09-15 Transport Certification Australia, Ltd. Method for granting permission to access a transport network
US9134780B2 (en) 2013-11-11 2015-09-15 Symbol Technologies, Llc Apparatus and method for providing adaptive power state control based on ignition input
US20150287248A1 (en) * 2013-01-08 2015-10-08 Lytx, Inc. Server determined bandwidth saving in transmission of events
US9172477B2 (en) 2013-10-30 2015-10-27 Inthinc Technology Solutions, Inc. Wireless device detection using multiple antennas separated by an RF shield
US9183679B2 (en) 2007-05-08 2015-11-10 Smartdrive Systems, Inc. Distributed vehicle event recorder systems having a portable memory data transfer system
US9201842B2 (en) 2006-03-16 2015-12-01 Smartdrive Systems, Inc. Vehicle event recorder systems and networks having integrated cellular wireless communications systems
US9342983B1 (en) 2012-10-23 2016-05-17 Greenroad Driving Technologies Ltd. User interface for driver performance application
US20160176412A1 (en) * 2014-12-19 2016-06-23 Toyota Motor Engineering & Manufacturing North America, Inc. Method and apparatus for generating and using driver specific vehicle controls
US9395384B1 (en) * 2015-10-07 2016-07-19 State Farm Mutual Automobile Insurance Company Systems and methods for estimating vehicle speed and hence driving behavior using accelerometer data during periods of intermittent GPS
US20160217506A1 (en) * 2015-01-23 2016-07-28 Halcyon Consulting, LLC Vehicle inventory verification system, apparatus and method
US9418491B2 (en) * 2014-09-22 2016-08-16 Brian K. Phillips Method and system for automatically identifying a driver by creating a unique driver profile for a vehicle from driving habits
US9477639B2 (en) 2006-03-08 2016-10-25 Speed Demon Inc. Safe driving monitoring system
US9493149B2 (en) 2008-07-02 2016-11-15 Michael Phelan Driver authentication system and method for monitoring and controlling vehicle usage
US9501878B2 (en) 2013-10-16 2016-11-22 Smartdrive Systems, Inc. Vehicle event playback apparatus and methods
US9511778B1 (en) * 2014-02-12 2016-12-06 XL Hybrids Controlling transmissions of vehicle operation information
US9554080B2 (en) 2006-11-07 2017-01-24 Smartdrive Systems, Inc. Power management systems for automotive video event recorders
US9610955B2 (en) 2013-11-11 2017-04-04 Smartdrive Systems, Inc. Vehicle fuel consumption monitor and feedback systems
US9633318B2 (en) 2005-12-08 2017-04-25 Smartdrive Systems, Inc. Vehicle event recorder systems
US9663127B2 (en) 2014-10-28 2017-05-30 Smartdrive Systems, Inc. Rail vehicle event detection and recording system
US9664126B2 (en) 2014-06-09 2017-05-30 Ford Global Technologies, Llc System and methods for engine-off natural vacuum tests
WO2017091877A1 (en) * 2015-12-03 2017-06-08 Skydock Participações Ltda. On-board monitoring and safety apparatus and system for vehicles
US20170217428A1 (en) * 2014-04-02 2017-08-03 Magna Electronics Inc. Method for controlling a vehicle in accordance with parameters preferred by an identified driver
US9728228B2 (en) 2012-08-10 2017-08-08 Smartdrive Systems, Inc. Vehicle event playback apparatus and methods
US9812015B1 (en) 2014-09-02 2017-11-07 Metromile, Inc. Systems and methods for determining parking information for a vehicle using vehicle data and external parking data
US9848289B2 (en) 2006-03-08 2017-12-19 Octo Advisory Inc. Safe driving monitoring system
US9846977B1 (en) 2014-09-02 2017-12-19 Metromile, Inc. Systems and methods for determining vehicle trip information
GB2551511A (en) * 2016-06-20 2017-12-27 Trakm8 Ltd Detection of tailgating situations
US10037579B2 (en) 2007-05-10 2018-07-31 Allstate Insurance Company Route risk mitigation
US10036639B1 (en) 2014-09-02 2018-07-31 Metromile, Inc. Systems and methods for determining and displaying a route using information determined from a vehicle, user feedback, and a mobile electronic device
US10096067B1 (en) 2014-01-24 2018-10-09 Allstate Insurance Company Reward system related to a vehicle-to-vehicle communication system
US10096038B2 (en) 2007-05-10 2018-10-09 Allstate Insurance Company Road segment safety rating system
US10115164B1 (en) * 2013-10-04 2018-10-30 State Farm Mutual Automobile Insurance Company Systems and methods to quantify and differentiate individual insurance risk based on actual driving behavior and driving environment
US10140785B1 (en) 2014-09-02 2018-11-27 Metromile, Inc. Systems and methods for determining fuel information of a vehicle

Families Citing this family (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9722766D0 (en) 1997-10-28 1997-12-24 British Telecomm Portable computers
US6587781B2 (en) 2000-08-28 2003-07-01 Estimotion, Inc. Method and system for modeling and processing vehicular traffic data and information and applying thereof
US7221287B2 (en) 2002-03-05 2007-05-22 Triangle Software Llc Three-dimensional traffic report
DE10228703A1 (en) * 2002-06-27 2004-01-15 Robert Bosch Gmbh A method of operating of driver information systems, and apparatus for carrying out the method
DE10314119A1 (en) * 2003-03-28 2004-10-21 Dieter Dr. Bastian A method for determining an integrated risk potential for the road users and means for carrying out the method
US7610145B2 (en) 2003-07-25 2009-10-27 Triangle Software Llc System and method for determining recommended departure time
US7610210B2 (en) * 2003-09-04 2009-10-27 Hartford Fire Insurance Company System for the acquisition of technology risk mitigation information associated with insurance
US7711584B2 (en) 2003-09-04 2010-05-04 Hartford Fire Insurance Company System for reducing the risk associated with an insured building structure through the incorporation of selected technologies
US9311676B2 (en) 2003-09-04 2016-04-12 Hartford Fire Insurance Company Systems and methods for analyzing sensor data
US8090599B2 (en) 2003-12-30 2012-01-03 Hartford Fire Insurance Company Method and system for computerized insurance underwriting
US7783505B2 (en) 2003-12-30 2010-08-24 Hartford Fire Insurance Company System and method for computerized insurance rating
US7012512B2 (en) * 2004-04-14 2006-03-14 St Denis Michael OBDII readiness status notification device
US7620402B2 (en) 2004-07-09 2009-11-17 Itis Uk Limited System and method for geographically locating a mobile device
US7356401B2 (en) * 2004-08-13 2008-04-08 Arvinmeritor Technology, Llc Drivetrain protection and management system
DE102005018138A1 (en) * 2005-04-20 2006-11-02 Klaus Winkler Vehicle device to a computer unit
US8370016B2 (en) * 2005-09-23 2013-02-05 Spx Corporation OBD II readiness monitor tool apparatus and method
US8027763B2 (en) * 2005-09-23 2011-09-27 Spx Corporation OBD II readiness monitor tool apparatus and method
US8972161B1 (en) * 2005-11-17 2015-03-03 Invent.Ly, Llc Power management systems and devices
GB2434240A (en) * 2006-01-11 2007-07-18 Trakm8 Ltd Driver behaviour profiling
US7660652B2 (en) 2006-02-02 2010-02-09 Signature Control Systems, Inc. Method, system and device for monitoring vehicle usage
KR100844012B1 (en) * 2006-08-18 2008-07-07 (주)다산알앤디 Terminal Devices for Processing Information Related OBDOn-Board Diagnostics and Program Recording Medium
US20080077451A1 (en) * 2006-09-22 2008-03-27 Hartford Fire Insurance Company System for synergistic data processing
US20080103657A1 (en) * 2006-10-05 2008-05-01 Merritt Norton System and method for tracking information related to a vehicle
KR100826011B1 (en) * 2006-10-24 2008-04-29 엘지디스플레이 주식회사 Display device
JP4853227B2 (en) * 2006-10-24 2012-01-11 株式会社デンソー Driving operation corresponding apparatus and driving operation corresponding device for the program
US8587420B2 (en) * 2006-10-24 2013-11-19 Webtech Wireless Inc. Unified vehicle parameters
US8139820B2 (en) 2006-12-13 2012-03-20 Smartdrive Systems Inc. Discretization facilities for vehicle event data recorders
US20080147267A1 (en) * 2006-12-13 2008-06-19 Smartdrive Systems Inc. Methods of Discretizing data captured at event data recorders
US20110040579A1 (en) * 2006-12-20 2011-02-17 Safeco Insurance Company Of America Web-based systems and methods for providing services related to automobile safety and an insurance product
US20080243558A1 (en) * 2007-03-27 2008-10-02 Ash Gupte System and method for monitoring driving behavior with feedback
US7853375B2 (en) * 2007-04-10 2010-12-14 Maurice Tuff Vehicle monitor
US9932033B2 (en) * 2007-05-10 2018-04-03 Allstate Insurance Company Route risk mitigation
US20160086285A1 (en) * 2007-05-10 2016-03-24 Allstate Insurance Company Road Segment Safety Rating
US20080281518A1 (en) * 2007-05-10 2008-11-13 Dozier Chad A Vehicular communication and information system and method of using the same
US20080294337A1 (en) * 2007-05-23 2008-11-27 Christopher James Dawson Travel-related information processing system
CA2973085A1 (en) * 2007-05-23 2008-11-27 Intelligent Mechatronic Systems Inc. Recording and reporting of driving characteristics using wireless mobile device
US20090102923A1 (en) * 2007-09-24 2009-04-23 Mason Edward L Truck security system
US20090112394A1 (en) * 2007-10-30 2009-04-30 Sosy Technologies Stu, Inc. Apparatus for collecting, storing and transmitting vehicle information
EP2075776A1 (en) * 2007-12-24 2009-07-01 Proventa AG Method and system for monitoring and reporting recurrent tailgating incidents
US9838877B2 (en) * 2008-04-02 2017-12-05 Yougetitback Limited Systems and methods for dynamically assessing and mitigating risk of an insured entity
US9886599B2 (en) 2008-04-02 2018-02-06 Yougetitback Limited Display of information through auxiliary user interface
US20090251542A1 (en) * 2008-04-07 2009-10-08 Flivie, Inc. Systems and methods for recording and emulating a flight
US8019629B1 (en) 2008-04-07 2011-09-13 United Services Automobile Association (Usaa) Systems and methods for automobile accident claims initiation
US8260515B2 (en) * 2008-07-24 2012-09-04 GM Global Technology Operations LLC Adaptive vehicle control system with driving style recognition
US8170740B2 (en) * 2008-07-24 2012-05-01 GM Global Technology Operations LLC Adaptive vehicle control system with driving style recognition based on vehicle launching
US20100019964A1 (en) * 2008-07-24 2010-01-28 Gm Global Technology Operations, Inc. Adaptive vehicle control system with driving style recognition and road condition recognition
US8195341B2 (en) 2008-07-24 2012-06-05 GM Global Technology Operations LLC Adaptive vehicle control system with driving style recognition based on maneuvers at highway on/off ramps
US8280560B2 (en) * 2008-07-24 2012-10-02 GM Global Technology Operations LLC Adaptive vehicle control system with driving style recognition based on headway distance
US20100023265A1 (en) * 2008-07-24 2010-01-28 Gm Global Technology Operations, Inc. Adaptive vehicle control system with integrated driving style recognition
US8060260B2 (en) * 2008-07-24 2011-11-15 GM Global Technology Operations LLC Adaptive vehicle control system with driving style recognition based on vehicle passing maneuvers
US7831407B2 (en) * 2008-07-24 2010-11-09 Gm Global Technology Operations, Inc. Adaptive vehicle control system with driving style recognition based on vehicle U-turn maneuvers
US20100019880A1 (en) * 2008-07-24 2010-01-28 Gm Global Technology Operations, Inc. Adaptive vehicle control system with driving style recognition based on traffic sensing
US20100023180A1 (en) * 2008-07-24 2010-01-28 Gm Global Technology Operations, Inc. Adaptive vehicle control system with driving style recognition based on lane-change maneuvers
US8280601B2 (en) * 2008-07-24 2012-10-02 GM Global Technology Operations LLC Adaptive vehicle control system with integrated maneuver-based driving style recognition
US20100023197A1 (en) * 2008-07-24 2010-01-28 Gm Global Technology Operations, Inc. Adaptive vehicle control system with driving style recognition based on behavioral diagnosis
JP5013211B2 (en) * 2008-08-21 2012-08-29 アイシン・エィ・ダブリュ株式会社 Driving evaluation system and driving evaluation program
GB2463059A (en) * 2008-09-01 2010-03-03 Simon Victor De Banke Inductively coupled engine speed monitor
US9159238B2 (en) * 2008-10-02 2015-10-13 Microsoft Technology Licensing, LLP Location-aware selection of public transportation
JP5057167B2 (en) * 2008-10-30 2012-10-24 アイシン・エィ・ダブリュ株式会社 Safe driving evaluation system and a safe driving evaluation program
US20100152950A1 (en) * 2008-12-15 2010-06-17 Gm Global Technology Operations, Inc. Adaptive vehicle control system with driving style recognition based on vehicle stopping
US20100152951A1 (en) * 2008-12-15 2010-06-17 Gm Global Technology Operations, Inc. Adaptive vehicle control system with driving style recognition based on vehicle accelerating and decelerating
GB0901588D0 (en) 2009-02-02 2009-03-11 Itis Holdings Plc Apparatus and methods for providing journey information
US20100209892A1 (en) * 2009-02-18 2010-08-19 Gm Global Technology Operations, Inc. Driving skill recognition based on manual transmission shift behavior
US20100209891A1 (en) * 2009-02-18 2010-08-19 Gm Global Technology Operations, Inc. Driving skill recognition based on stop-and-go driving behavior
US20100209889A1 (en) * 2009-02-18 2010-08-19 Gm Global Technology Operations, Inc. Vehicle stability enhancement control adaptation to driving skill based on multiple types of maneuvers
US20100209883A1 (en) * 2009-02-18 2010-08-19 Gm Global Technology Operations, Inc. Vehicle stability enhancement control adaptation to driving skill based on passing maneuver
US20100209890A1 (en) * 2009-02-18 2010-08-19 Gm Global Technology Operations, Inc. Vehicle stability enhancement control adaptation to driving skill with integrated driving skill recognition
US20100209885A1 (en) * 2009-02-18 2010-08-19 Gm Global Technology Operations, Inc. Vehicle stability enhancement control adaptation to driving skill based on lane change maneuver
US8170725B2 (en) * 2009-02-18 2012-05-01 GM Global Technology Operations LLC Vehicle stability enhancement control adaptation to driving skill based on highway on/off ramp maneuver
US20100209884A1 (en) * 2009-02-18 2010-08-19 Gm Global Technology Operations, Inc. Driving skill recognition based on vehicle left and right turns
US20100209881A1 (en) * 2009-02-18 2010-08-19 Gm Global Technology Operations, Inc. Driving skill recognition based on behavioral diagnosis
US20100209886A1 (en) * 2009-02-18 2010-08-19 Gm Global Technology Operations, Inc. Driving skill recognition based on u-turn performance
US20100209888A1 (en) * 2009-02-18 2010-08-19 Gm Global Technology Operations, Inc. Vehicle stability enhancement control adaptation to driving skill based on curve-handling maneuvers
US20100209882A1 (en) * 2009-02-18 2010-08-19 Gm Global Technology Operations, Inc. Driving skill recognition based on straight-line driving behavior
US20100209887A1 (en) * 2009-02-18 2010-08-19 Gm Global Technology Operation, Inc. Vehicle stability enhancement control adaptation to driving skill based on vehicle backup maneuver
US9046924B2 (en) 2009-03-04 2015-06-02 Pelmorex Canada Inc. Gesture based interaction with traffic data
US8619072B2 (en) 2009-03-04 2013-12-31 Triangle Software Llc Controlling a three-dimensional virtual broadcast presentation
US8982116B2 (en) 2009-03-04 2015-03-17 Pelmorex Canada Inc. Touch screen based interaction with traffic data
EP2246686A1 (en) 2009-05-01 2010-11-03 Froude Hofmann Limited Vehicle test apparatus and method
US8297667B2 (en) * 2009-06-08 2012-10-30 Ford Global Technologies, Llc Lockable latch
US20110098880A1 (en) * 2009-10-23 2011-04-28 Basir Otman A Reduced transmission of vehicle operating data
US20110130916A1 (en) * 2009-12-01 2011-06-02 Ise Corporation Location Based Vehicle Data Logging and Diagnostic System and Method
JP5512331B2 (en) * 2010-03-03 2014-06-04 積水化成品工業株式会社 Foamed sheet and the foamed resin container
US20140052672A1 (en) * 2010-04-09 2014-02-20 BAE Systems and Information and Electronic Systems Integration, Inc. Telenostics point of performance driver performance index
WO2011145165A1 (en) * 2010-05-17 2011-11-24 トヨタ自動車株式会社 Driving support apparatus
JP5447662B2 (en) 2010-06-08 2014-03-19 トヨタ自動車株式会社 Traveling model creating apparatus and driving support device
US9311616B2 (en) * 2010-06-14 2016-04-12 On-Board Communications, Inc. System and method for determining equipment utilization changes based on ignition and motion status
US8566010B2 (en) 2010-06-23 2013-10-22 Massachusetts Institute Of Technology System and method for providing road condition and congestion monitoring using smart messages
US9460471B2 (en) 2010-07-16 2016-10-04 Hartford Fire Insurance Company System and method for an automated validation system
US8489433B2 (en) 2010-07-29 2013-07-16 Insurance Services Office, Inc. System and method for estimating loss propensity of an insured vehicle and providing driving information
US8412406B2 (en) * 2010-08-13 2013-04-02 Deere & Company Method and system for performing diagnostics or software maintenance for a vehicle
US9378601B2 (en) 2012-03-14 2016-06-28 Autoconnect Holdings Llc Providing home automation information via communication with a vehicle
US9384609B2 (en) 2012-03-14 2016-07-05 Autoconnect Holdings Llc Vehicle to vehicle safety and traffic communications
US9082239B2 (en) 2012-03-14 2015-07-14 Flextronics Ap, Llc Intelligent vehicle for assisting vehicle occupants
US9412273B2 (en) 2012-03-14 2016-08-09 Autoconnect Holdings Llc Radar sensing and emergency response vehicle detection
US9082238B2 (en) 2012-03-14 2015-07-14 Flextronics Ap, Llc Synchronization between vehicle and user device calendar
WO2012065188A3 (en) 2010-11-14 2012-08-02 Triangle Software Llc Crowd sourced traffic reporting
WO2012103306A3 (en) * 2011-01-27 2012-10-26 Berkeley Telematics Inc. Determining cost for auto insurance
US8880289B2 (en) 2011-03-17 2014-11-04 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle maneuver application interface
EP2514652A1 (en) * 2011-04-14 2012-10-24 Thomas Rastija Method and device for limiting the speed of a motor vehicle
EP2710571A4 (en) 2011-05-18 2015-09-09 Pelmorex Canada Inc System for providing traffic data and driving efficiency data
US8686844B1 (en) * 2011-06-29 2014-04-01 Intellectual Ventures Fund 79 Llc Methods, devices, and mediums associated with risk management of vehicle operation
GB2492369B (en) 2011-06-29 2014-04-02 Itis Holdings Plc Method and system for collecting traffic data
US8783626B2 (en) 2011-08-03 2014-07-22 Stc, Inc. Light rail vehicle monitoring and stop bar overrun system
US8725312B2 (en) * 2011-08-12 2014-05-13 Kawasaki Jukogyo Kabushiki Kaisha System for obtaining information in vehicle
US9037852B2 (en) 2011-09-02 2015-05-19 Ivsc Ip Llc System and method for independent control of for-hire vehicles
US20130066688A1 (en) * 2011-09-08 2013-03-14 Frias Transportation Infrastructure Llc Regulating driver vehicle input choices in for-hire vehicles
US9262873B2 (en) * 2011-09-23 2016-02-16 Omnitracs, Llc Systems and methods for processing vehicle data to report performance data interchangeably
CN103164885B (en) * 2011-12-16 2016-10-12 上海博泰悦臻电子设备制造有限公司 Driving behavior control system
US9024783B1 (en) * 2011-12-21 2015-05-05 Camilo Alfaro Auto ticket systems for alerting law enforcement personnel that a motorist is exceeding the speed limit
WO2013113029A1 (en) 2012-01-27 2013-08-01 Triangle Software, Llc Estimating time travel distributions on signalized arterials
JP5439522B2 (en) * 2012-02-22 2014-03-12 本田技研工業株式会社 Vehicle data collection apparatus and the vehicle data collection method
JP5934549B2 (en) * 2012-03-29 2016-06-15 矢崎エナジーシステム株式会社 Vehicle information recording device
US20130290199A1 (en) * 2012-04-30 2013-10-31 General Motors Llc Monitoring and Aiding User Compliance with Vehicle Use Agreements
JP5350521B1 (en) * 2012-07-12 2013-11-27 ヤマハ発動機株式会社 Vehicle information management systems.
JP5273753B1 (en) * 2012-07-12 2013-08-28 ヤマハ発動機株式会社 Vehicle information management systems.
DE102012214464A1 (en) * 2012-08-14 2014-02-20 Ford Global Technologies, Llc System for monitoring and analyzing the driving behavior of a driver in a motor vehicle
CA2882603A1 (en) * 2012-08-21 2014-02-27 Insurance Services Office, Inc. Apparatus and method for analyzing driving performance data
US20140080098A1 (en) * 2012-09-14 2014-03-20 Hyundai Motor Company System and method of evaluating and reporting the driving acuity and performance of a test subject
US20140095213A1 (en) * 2012-10-03 2014-04-03 Shaun Michael Gwilliam System and method for coordinating transactions
US9779379B2 (en) 2012-11-05 2017-10-03 Spireon, Inc. Container verification through an electrical receptacle and plug associated with a container and a transport vehicle of an intermodal freight transport system
CN103065473A (en) * 2012-11-29 2013-04-24 太原理工大学 Illegal packing vehicle management system and method
US9652562B2 (en) 2013-03-07 2017-05-16 Ricoh Company, Ltd. Proximal equipment data capture
US20140257868A1 (en) * 2013-03-10 2014-09-11 State Farm Mutual Automobile Insurance Company Systems and methods for processing vehicle insurance based on acuity testing performance
US8954340B2 (en) 2013-03-15 2015-02-10 State Farm Mutual Automobile Insurance Company Risk evaluation based on vehicle operator behavior
US20140309849A1 (en) * 2013-04-15 2014-10-16 Flextronics Ap, Llc Driver facts behavior information storage system
US20140309872A1 (en) * 2013-04-15 2014-10-16 Flextronics Ap, Llc Customization of vehicle user interfaces based on user intelligence
CN104321620A (en) * 2013-04-15 2015-01-28 弗莱克斯电子有限责任公司 Altered map routes based on user profile information
WO2014172397A1 (en) 2013-04-15 2014-10-23 Flextronics Ap, Llc Central network for automated control of vehicular traffic
DE202013006466U1 (en) 2013-07-18 2014-10-27 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Computer program product and driver assistance system for a vehicle
US9779449B2 (en) 2013-08-30 2017-10-03 Spireon, Inc. Veracity determination through comparison of a geospatial location of a vehicle with a provided data
WO2015099645A1 (en) * 2013-12-23 2015-07-02 Intel Corporation Vehicle ratings via measured driver behavior
US9940676B1 (en) 2014-02-19 2018-04-10 Allstate Insurance Company Insurance system for analysis of autonomous driving
JP6252344B2 (en) * 2014-05-07 2017-12-27 株式会社デンソー Data recording apparatus and data recording program
JP2016001172A (en) * 2014-05-19 2016-01-07 株式会社堀場製作所 Vehicle test system, test management device, test management program, and vehicle test method
CN103984744B (en) * 2014-05-23 2018-07-06 航天科技控股集团股份有限公司 Vehicle-mounted terminal data storage and retrieval method
US9146116B1 (en) 2014-06-04 2015-09-29 Google Inc. Automatic continued search
US20150363841A1 (en) * 2014-06-11 2015-12-17 Shaleapps, Llc System, Method, and Apparatus for Generating Ratings for Material Transportation
FR3022206B1 (en) * 2014-06-12 2016-07-01 Peugeot Citroen Automobiles Sa Method for aiding driving to sensitize the driver of a vehicle to the fuel consumption and / or other source of Vehicle consumption
JP2016081086A (en) * 2014-10-09 2016-05-16 株式会社日立製作所 Driving characteristics diagnosis device, driving characteristics diagnosis system, driving characteristics diagnosis method, information output device, and information output method
CN104331949A (en) * 2014-10-28 2015-02-04 厦门大学 Automobile data recorder
CN104616366A (en) * 2015-01-05 2015-05-13 深圳市元征软件开发有限公司 Driving data processing method and device
US9551788B2 (en) 2015-03-24 2017-01-24 Jim Epler Fleet pan to provide measurement and location of a stored transport item while maximizing space in an interior cavity of a trailer
CN104866947B (en) * 2015-04-03 2018-08-14 深圳迪恩杰科技有限公司 Telematics Online management system and method for 4s shop owners Service
US9799221B2 (en) 2015-05-06 2017-10-24 Global Traffic Technologies, Llc Trip determination for managing transit vehicle schedules
CA3001657A1 (en) * 2015-10-13 2017-04-20 Flywheel Software, Inc. Accurately determining real time parameters describing vehicle motion based on multiple data sources
US20180012197A1 (en) 2016-07-07 2018-01-11 NextEv USA, Inc. Battery exchange licensing program based on state of charge of battery pack
US9928734B2 (en) 2016-08-02 2018-03-27 Nio Usa, Inc. Vehicle-to-pedestrian communication systems
CN106227122B (en) * 2016-09-26 2018-11-27 江苏天安智联科技股份有限公司 An in-vehicle fault detection and early warning systems
US10140789B2 (en) 2016-10-07 2018-11-27 Trak (Global Solutions) Limited Method and apparatus for monitoring operation of a vehicle
US20180127001A1 (en) 2016-11-07 2018-05-10 NextEv USA, Inc. Feedback Performance Control and Tracking
US10074223B2 (en) 2017-01-13 2018-09-11 Nio Usa, Inc. Secured vehicle for user use only
US10031521B1 (en) 2017-01-16 2018-07-24 Nio Usa, Inc. Method and system for using weather information in operation of autonomous vehicles
US9984572B1 (en) 2017-01-16 2018-05-29 Nio Usa, Inc. Method and system for sharing parking space availability among autonomous vehicles
CN107292993A (en) * 2017-07-07 2017-10-24 芜湖恒天易开软件科技股份有限公司 Method for reading vehicle data on basis of on-board equipment

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007438A (en) * 1975-08-15 1977-02-08 Protonantis Peter N Speed monitoring and ticketing system for a motor vehicle
US5797134A (en) * 1996-01-29 1998-08-18 Progressive Casualty Insurance Company Motor vehicle monitoring system for determining a cost of insurance
US5819198A (en) * 1995-08-18 1998-10-06 Peretz; Gilboa Dynamically programmable automotive-driving monitoring and alarming device and system
US6067489A (en) * 1997-06-04 2000-05-23 Detroit Diesel Corporation Method for engine control
US20010018628A1 (en) * 1997-03-27 2001-08-30 Mentor Heavy Vehicle Systems, Lcc System for monitoring vehicle efficiency and vehicle and driver perfomance
US6292724B1 (en) * 1999-10-12 2001-09-18 Micrologic, Inc. Method of and system and apparatus for remotely monitoring the location, status, utilization and condition of widely geographically dispresed fleets of vehicular construction equipment and the like and providing and displaying such information
US20010033225A1 (en) * 1999-06-14 2001-10-25 Behfar Razavi System and method for collecting vehicle information
US20020022920A1 (en) * 2000-08-17 2002-02-21 Straub Michael P. Method and apparatus for storing, accessing, generating and using information about speed limits and speed traps
US20020049538A1 (en) * 2000-10-23 2002-04-25 Knapton Cary Paul Vehicle tracking systems and methods
US20020111735A1 (en) * 1999-10-29 2002-08-15 Mckenzie Ian D. Vehicle clock tampering detector
US6438472B1 (en) * 1998-09-12 2002-08-20 Data Tec. Co., Ltd. Operation control system capable of analyzing driving tendency and its constituent apparatus
US6445985B1 (en) * 1998-03-20 2002-09-03 Robert Bosch Gmbh Motor vehicle data processing apparatus
US20020123834A1 (en) * 2001-03-05 2002-09-05 Fujitsu Ten Limited Vehicle traveling state recording method and computer for engine control
US6473000B1 (en) * 2001-10-24 2002-10-29 James Secreet Method and apparatus for measuring and recording vehicle speed and for storing related data
US20020178033A1 (en) * 2001-03-27 2002-11-28 Tatsuo Yoshioka Automobile insurance contents setting system, automobile insurance premium setting system, and automobile insurance premium collection system
US20030195694A1 (en) * 2001-06-06 2003-10-16 Frank Kozak Driving profile method and system
US6636790B1 (en) * 2000-07-25 2003-10-21 Reynolds And Reynolds Holdings, Inc. Wireless diagnostic system and method for monitoring vehicles
US20030216857A1 (en) * 2000-08-28 2003-11-20 Estimotion Inc. Method and system for modeling and processing vehicular traffic data and information and applying thereof
US20040083041A1 (en) * 2002-10-25 2004-04-29 Davis Instruments, A California Corporation Module for monitoring vehicle operation through onboard diagnostic port
US20040103051A1 (en) * 2002-11-22 2004-05-27 Accenture Global Services, Gmbh Multi-dimensional segmentation for use in a customer interaction
US6771176B2 (en) * 1998-05-29 2004-08-03 William Jude Wilkerson Acceleration monitoring and safety data accounting system for motor vehicles and other types of equipment
US20040153362A1 (en) * 1996-01-29 2004-08-05 Progressive Casualty Insurance Company Monitoring system for determining and communicating a cost of insurance

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465079A (en) * 1992-08-14 1995-11-07 Vorad Safety Systems, Inc. Method and apparatus for determining driver fitness in real time
US6513018B1 (en) * 1994-05-05 2003-01-28 Fair, Isaac And Company, Inc. Method and apparatus for scoring the likelihood of a desired performance result
US6047489A (en) * 1996-05-17 2000-04-11 Dimplex North America Limited Flame simulating assembly and components therefor
US6513019B2 (en) * 1999-02-16 2003-01-28 Financial Technologies International, Inc. Financial consolidation and communication platform
US6430539B1 (en) * 1999-05-06 2002-08-06 Hnc Software Predictive modeling of consumer financial behavior
US20050091175A9 (en) * 2000-08-11 2005-04-28 Telanon, Inc. Automated consumer to business electronic marketplace system
US6694234B2 (en) * 2000-10-06 2004-02-17 Gmac Insurance Company Customer service automation systems and methods
US6925425B2 (en) * 2000-10-14 2005-08-02 Motorola, Inc. Method and apparatus for vehicle operator performance assessment and improvement
US6909947B2 (en) * 2000-10-14 2005-06-21 Motorola, Inc. System and method for driver performance improvement
US6894606B2 (en) * 2000-11-22 2005-05-17 Fred Forbes Vehicular black box monitoring system
US6413018B1 (en) * 2001-07-06 2002-07-02 Kni Incorporated Method for supporting a pipeline in a trench
US6931309B2 (en) * 2003-05-06 2005-08-16 Innosurance, Inc. Motor vehicle operating data collection and analysis
US20040263357A1 (en) * 2003-05-06 2004-12-30 John Hamilton Vehicular monitoring system
US20050171798A1 (en) * 2004-02-04 2005-08-04 Croft Michael S. Method and system for minimizing the risk of leasing trucks
US20050187881A1 (en) * 2004-02-20 2005-08-25 Mcgiffin Gail E. System and data structure for account management

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007438A (en) * 1975-08-15 1977-02-08 Protonantis Peter N Speed monitoring and ticketing system for a motor vehicle
US5819198A (en) * 1995-08-18 1998-10-06 Peretz; Gilboa Dynamically programmable automotive-driving monitoring and alarming device and system
US5797134A (en) * 1996-01-29 1998-08-18 Progressive Casualty Insurance Company Motor vehicle monitoring system for determining a cost of insurance
US6064970A (en) * 1996-01-29 2000-05-16 Progressive Casualty Insurance Company Motor vehicle monitoring system for determining a cost of insurance
US20040153362A1 (en) * 1996-01-29 2004-08-05 Progressive Casualty Insurance Company Monitoring system for determining and communicating a cost of insurance
US20010018628A1 (en) * 1997-03-27 2001-08-30 Mentor Heavy Vehicle Systems, Lcc System for monitoring vehicle efficiency and vehicle and driver perfomance
US6067489A (en) * 1997-06-04 2000-05-23 Detroit Diesel Corporation Method for engine control
US6445985B1 (en) * 1998-03-20 2002-09-03 Robert Bosch Gmbh Motor vehicle data processing apparatus
US6771176B2 (en) * 1998-05-29 2004-08-03 William Jude Wilkerson Acceleration monitoring and safety data accounting system for motor vehicles and other types of equipment
US6438472B1 (en) * 1998-09-12 2002-08-20 Data Tec. Co., Ltd. Operation control system capable of analyzing driving tendency and its constituent apparatus
US20010033225A1 (en) * 1999-06-14 2001-10-25 Behfar Razavi System and method for collecting vehicle information
US6292724B1 (en) * 1999-10-12 2001-09-18 Micrologic, Inc. Method of and system and apparatus for remotely monitoring the location, status, utilization and condition of widely geographically dispresed fleets of vehicular construction equipment and the like and providing and displaying such information
US20020111735A1 (en) * 1999-10-29 2002-08-15 Mckenzie Ian D. Vehicle clock tampering detector
US6636790B1 (en) * 2000-07-25 2003-10-21 Reynolds And Reynolds Holdings, Inc. Wireless diagnostic system and method for monitoring vehicles
US20020022920A1 (en) * 2000-08-17 2002-02-21 Straub Michael P. Method and apparatus for storing, accessing, generating and using information about speed limits and speed traps
US20030216857A1 (en) * 2000-08-28 2003-11-20 Estimotion Inc. Method and system for modeling and processing vehicular traffic data and information and applying thereof
US20020049538A1 (en) * 2000-10-23 2002-04-25 Knapton Cary Paul Vehicle tracking systems and methods
US20020123834A1 (en) * 2001-03-05 2002-09-05 Fujitsu Ten Limited Vehicle traveling state recording method and computer for engine control
US20020178033A1 (en) * 2001-03-27 2002-11-28 Tatsuo Yoshioka Automobile insurance contents setting system, automobile insurance premium setting system, and automobile insurance premium collection system
US20030195694A1 (en) * 2001-06-06 2003-10-16 Frank Kozak Driving profile method and system
US6473000B1 (en) * 2001-10-24 2002-10-29 James Secreet Method and apparatus for measuring and recording vehicle speed and for storing related data
US20040083041A1 (en) * 2002-10-25 2004-04-29 Davis Instruments, A California Corporation Module for monitoring vehicle operation through onboard diagnostic port
US20040103051A1 (en) * 2002-11-22 2004-05-27 Accenture Global Services, Gmbh Multi-dimensional segmentation for use in a customer interaction

Cited By (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8892451B2 (en) 1996-01-29 2014-11-18 Progressive Casualty Insurance Company Vehicle monitoring system
US8311858B2 (en) 1996-01-29 2012-11-13 Progressive Casualty Insurance Company Vehicle monitoring system
US8595034B2 (en) * 1996-01-29 2013-11-26 Progressive Casualty Insurance Company Monitoring system for determining and communicating a cost of insurance
US8140358B1 (en) 1996-01-29 2012-03-20 Progressive Casualty Insurance Company Vehicle monitoring system
US9754424B2 (en) 1996-01-29 2017-09-05 Progressive Casualty Insurance Company Vehicle monitoring system
US8090598B2 (en) 1996-01-29 2012-01-03 Progressive Casualty Insurance Company Monitoring system for determining and communicating a cost of insurance
US20120158436A1 (en) * 1996-01-29 2012-06-21 Alan Rex Bauer Monitoring system for determining and communicating a cost of insurance
US20060111817A1 (en) * 2003-05-06 2006-05-25 Joseph Phelan Motor vehicle operating data collection and analysis
US20100332266A1 (en) * 2003-07-07 2010-12-30 Sensomatix Ltd. Traffic information system
US8085166B2 (en) * 2003-07-07 2011-12-27 Sensomatix Ltd. Traffic information system
US9619203B2 (en) 2003-07-07 2017-04-11 Insurance Services Office, Inc. Method of analyzing driving behavior and warning the driver
US8653986B2 (en) 2003-07-07 2014-02-18 Insurance Services Office, Inc. Traffic information system
US20070027726A1 (en) * 2004-09-08 2007-02-01 Warren Gregory S Calculation of driver score based on vehicle operation for forward looking insurance premiums
US20060142914A1 (en) * 2004-12-27 2006-06-29 Toyota Jidosha Kabushiki Kaisha Vehicle data recording system with detachable recording apparatus
US20060271275A1 (en) * 2005-05-26 2006-11-30 Paridhi Verma System and method for notification and correction of constraint violations in vehicles
US9269202B2 (en) 2005-06-01 2016-02-23 Allstate Insurance Company Motor vehicle operating data collection and analysis
US20140303833A1 (en) * 2005-06-01 2014-10-09 Allstate Insurance Company Motor vehicle operating data collection and analysis
US9053591B2 (en) 2005-06-01 2015-06-09 Allstate Insurance Company Motor vehicle operating data collection and analysis
US9196098B2 (en) 2005-06-01 2015-11-24 Allstate Insurance Company Motor vehicle operating data collection and analysis
US9189895B2 (en) 2005-06-01 2015-11-17 Allstate Insurance Company Motor vehicle operating data collection and analysis
US9637134B2 (en) * 2005-06-01 2017-05-02 Allstate Insurance Company Motor vehicle operating data collection and analysis
US10124808B2 (en) 2005-06-01 2018-11-13 Allstate Insurance Company Motor vehicle operating data collection and analysis
US7561054B2 (en) * 2005-06-09 2009-07-14 Greenroad Driving Technologies Ltd. System and method for displaying a driving profile
US20070001831A1 (en) * 2005-06-09 2007-01-04 Drive Diagnostics Ltd. System and method for displaying a driving profile
US7596435B1 (en) * 2005-08-03 2009-09-29 Systech International, Llc Vehicle communication system and method with mobile data collection
US20080234890A1 (en) * 2005-08-05 2008-09-25 Toyota Jidosha Kabushiki Kaisha Vehicular Data Recording Apparatus
US8160771B2 (en) * 2005-08-05 2012-04-17 Toyota Jidosha Kabushiki Kaisha Vehicular data recording apparatus
US7542832B2 (en) * 2005-08-23 2009-06-02 Hyundai Autonet Co., Ltd. Vehicle management system and method in telematics system
US20070050126A1 (en) * 2005-08-23 2007-03-01 Seong Taeg Nou Vehicle management system and method in telematics system
KR100764399B1 (en) 2005-08-23 2007-10-05 주식회사 현대오토넷 Vehicle management system in telematics system and method thereof
US9633318B2 (en) 2005-12-08 2017-04-25 Smartdrive Systems, Inc. Vehicle event recorder systems
US9226004B1 (en) 2005-12-08 2015-12-29 Smartdrive Systems, Inc. Memory management in event recording systems
US8880279B2 (en) 2005-12-08 2014-11-04 Smartdrive Systems, Inc. Memory management in event recording systems
US20070203637A1 (en) * 2006-01-23 2007-08-30 Jon Passman System and method for identifying operational usage of fleet vehicles related to accident prevention
US20070198684A1 (en) * 2006-02-22 2007-08-23 Kazunori Mizushima Method and system for data processing with connection pool for the same
US8731770B2 (en) * 2006-03-08 2014-05-20 Speed Demon Inc. Method and apparatus for determining and storing excessive vehicle speed
US20070213896A1 (en) * 2006-03-08 2007-09-13 Jonathan Fischer Method and apparatus for determining and storing excessive vehicle speed
US9848289B2 (en) 2006-03-08 2017-12-19 Octo Advisory Inc. Safe driving monitoring system
US9477639B2 (en) 2006-03-08 2016-10-25 Speed Demon Inc. Safe driving monitoring system
US9545881B2 (en) 2006-03-16 2017-01-17 Smartdrive Systems, Inc. Vehicle event recorder systems and networks having integrated cellular wireless communications systems
US9566910B2 (en) 2006-03-16 2017-02-14 Smartdrive Systems, Inc. Vehicle event recorder systems and networks having integrated cellular wireless communications systems
US8996240B2 (en) 2006-03-16 2015-03-31 Smartdrive Systems, Inc. Vehicle event recorders with integrated web server
US9691195B2 (en) 2006-03-16 2017-06-27 Smartdrive Systems, Inc. Vehicle event recorder systems and networks having integrated cellular wireless communications systems
US9472029B2 (en) 2006-03-16 2016-10-18 Smartdrive Systems, Inc. Vehicle event recorder systems and networks having integrated cellular wireless communications systems
US9208129B2 (en) 2006-03-16 2015-12-08 Smartdrive Systems, Inc. Vehicle event recorder systems and networks having integrated cellular wireless communications systems
US9402060B2 (en) 2006-03-16 2016-07-26 Smartdrive Systems, Inc. Vehicle event recorders with integrated web server
US9201842B2 (en) 2006-03-16 2015-12-01 Smartdrive Systems, Inc. Vehicle event recorder systems and networks having integrated cellular wireless communications systems
US9942526B2 (en) 2006-03-16 2018-04-10 Smartdrive Systems, Inc. Vehicle event recorders with integrated web server
US9317980B2 (en) 2006-05-09 2016-04-19 Lytx, Inc. Driver risk assessment system and method having calibrating automatic event scoring
US8630768B2 (en) 2006-05-22 2014-01-14 Inthinc Technology Solutions, Inc. System and method for monitoring vehicle parameters and driver behavior
US20080252487A1 (en) * 2006-05-22 2008-10-16 Mcclellan Scott System and method for monitoring and updating speed-by-street data
US20080258890A1 (en) * 2006-05-22 2008-10-23 Todd Follmer System and Method for Remotely Deactivating a Vehicle
US8890717B2 (en) 2006-05-22 2014-11-18 Inthinc Technology Solutions, Inc. System and method for monitoring and updating speed-by-street data
US9847021B2 (en) 2006-05-22 2017-12-19 Inthinc LLC System and method for monitoring and updating speed-by-street data
US9067565B2 (en) 2006-05-22 2015-06-30 Inthinc Technology Solutions, Inc. System and method for evaluating driver behavior
US7859392B2 (en) 2006-05-22 2010-12-28 Iwi, Inc. System and method for monitoring and updating speed-by-street data
US20070276916A1 (en) * 2006-05-25 2007-11-29 Red Hat, Inc. Methods and systems for updating clients from a server
US8949312B2 (en) * 2006-05-25 2015-02-03 Red Hat, Inc. Updating clients from a server
US20090157294A1 (en) * 2006-07-06 2009-06-18 Pieter Geelen Navigation Device With Adaptive Navigation Instructions
US9086294B2 (en) * 2006-07-06 2015-07-21 Tomtom International B.V. Navigation device with adaptive navigation instructions
US20080016504A1 (en) * 2006-07-14 2008-01-17 Wesley Homer Cheng Dynamically programmable electronic data collection system combining declarative programming and native coding
US20080015748A1 (en) * 2006-07-14 2008-01-17 David Nagy System for monitoring, controlling, and reporting vehicle operation through onboard diagnostic port
US20080082221A1 (en) * 2006-07-14 2008-04-03 David Nagy System for monitoring, controlling, and reporting vehicle operation through onboard diagnostic port
US20080016207A1 (en) * 2006-07-14 2008-01-17 Wesley Homer Cheng Electronic driver log application with bi-directional messaging to multiple backend systems
US20080028044A1 (en) * 2006-07-26 2008-01-31 Intellidyne, L.L.C. System and method for file transfer
US7899610B2 (en) 2006-10-02 2011-03-01 Inthinc Technology Solutions, Inc. System and method for reconfiguring an electronic control unit of a motor vehicle to optimize fuel economy
US20080221776A1 (en) * 2006-10-02 2008-09-11 Mcclellan Scott System and Method for Reconfiguring an Electronic Control Unit of a Motor Vehicle to Optimize Fuel Economy
WO2008051730A2 (en) * 2006-10-25 2008-05-02 At & T Mobility Ii Llc Systems and methods for monitoring and/or controlling traffic
US20080140304A1 (en) * 2006-10-25 2008-06-12 Cingular Wireless Ii, Llc Systems and methods for monitoring and/or controlling traffic
WO2008051730A3 (en) * 2006-10-25 2008-11-27 At & T Mobility Ii Llc Systems and methods for monitoring and/or controlling traffic
US9554080B2 (en) 2006-11-07 2017-01-24 Smartdrive Systems, Inc. Power management systems for automotive video event recorders
US9761067B2 (en) 2006-11-07 2017-09-12 Smartdrive Systems, Inc. Vehicle operator performance history recording, scoring and reporting systems
US10053032B2 (en) 2006-11-07 2018-08-21 Smartdrive Systems, Inc. Power management systems for automotive video event recorders
US8989959B2 (en) 2006-11-07 2015-03-24 Smartdrive Systems, Inc. Vehicle operator performance history recording, scoring and reporting systems
US20150035665A1 (en) * 2006-11-09 2015-02-05 Smartdrive Systems, Inc. Vehicle Exception Event Management Systems
US8868288B2 (en) 2006-11-09 2014-10-21 Smartdrive Systems, Inc. Vehicle exception event management systems
US9738156B2 (en) * 2006-11-09 2017-08-22 Smartdrive Systems, Inc. Vehicle exception event management systems
US8751104B2 (en) * 2007-04-30 2014-06-10 Ford Motor Company System and method for updating vehicle computing platform configuration information
US20110238237A1 (en) * 2007-04-30 2011-09-29 Ford Motor Company System and method for updating vehicle computing platform configuration information
US9183679B2 (en) 2007-05-08 2015-11-10 Smartdrive Systems, Inc. Distributed vehicle event recorder systems having a portable memory data transfer system
US9679424B2 (en) 2007-05-08 2017-06-13 Smartdrive Systems, Inc. Distributed vehicle event recorder systems having a portable memory data transfer system
US10037580B2 (en) 2007-05-10 2018-07-31 Allstate Insurance Company Route risk mitigation
US10037579B2 (en) 2007-05-10 2018-07-31 Allstate Insurance Company Route risk mitigation
US10074139B2 (en) 2007-05-10 2018-09-11 Allstate Insurance Company Route risk mitigation
US10096038B2 (en) 2007-05-10 2018-10-09 Allstate Insurance Company Road segment safety rating system
US20090079555A1 (en) * 2007-05-17 2009-03-26 Giadha Aguirre De Carcer Systems and methods for remotely configuring vehicle alerts and/or controls
US20100179721A1 (en) * 2007-06-01 2010-07-15 Lysanda Limited Engine monitoring
US8364339B2 (en) * 2007-06-01 2013-01-29 Lysanda Limited Engine monitoring
US8825277B2 (en) 2007-06-05 2014-09-02 Inthinc Technology Solutions, Inc. System and method for the collection, correlation and use of vehicle collision data
US20080306996A1 (en) * 2007-06-05 2008-12-11 Mcclellan Scott System and Method for the Collection, Correlation and Use of Vehicle Collision Data
US8666590B2 (en) 2007-06-22 2014-03-04 Inthinc Technology Solutions, Inc. System and method for naming, filtering, and recall of remotely monitored event data
US9129460B2 (en) 2007-06-25 2015-09-08 Inthinc Technology Solutions, Inc. System and method for monitoring and improving driver behavior
US7999670B2 (en) 2007-07-02 2011-08-16 Inthinc Technology Solutions, Inc. System and method for defining areas of interest and modifying asset monitoring in relation thereto
US8350696B2 (en) 2007-07-02 2013-01-08 Independent Witness, Incorporated System and method for defining areas of interest and modifying asset monitoring in relation thereto
US20100205012A1 (en) * 2007-07-17 2010-08-12 Mcclellan Scott System and method for providing a user interface for vehicle mentoring system users and insurers
US8577703B2 (en) 2007-07-17 2013-11-05 Inthinc Technology Solutions, Inc. System and method for categorizing driving behavior using driver mentoring and/or monitoring equipment to determine an underwriting risk
US9117246B2 (en) 2007-07-17 2015-08-25 Inthinc Technology Solutions, Inc. System and method for providing a user interface for vehicle mentoring system users and insurers
US8818618B2 (en) 2007-07-17 2014-08-26 Inthinc Technology Solutions, Inc. System and method for providing a user interface for vehicle monitoring system users and insurers
US20090051510A1 (en) * 2007-08-21 2009-02-26 Todd Follmer System and Method for Detecting and Reporting Vehicle Damage
US7876205B2 (en) 2007-10-02 2011-01-25 Inthinc Technology Solutions, Inc. System and method for detecting use of a wireless device in a moving vehicle
US8890673B2 (en) 2007-10-02 2014-11-18 Inthinc Technology Solutions, Inc. System and method for detecting use of a wireless device in a moving vehicle
US9135757B2 (en) * 2007-11-30 2015-09-15 Transport Certification Australia, Ltd. Method for granting permission to access a transport network
US20090210257A1 (en) * 2008-02-20 2009-08-20 Hartford Fire Insurance Company System and method for providing customized safety feedback
US9665910B2 (en) 2008-02-20 2017-05-30 Hartford Fire Insurance Company System and method for providing customized safety feedback
US20090318169A1 (en) * 2008-06-19 2009-12-24 Rogitz John L Disabling wireless telephone use while in vehicle
US20140303836A1 (en) * 2008-07-02 2014-10-09 Michael Phelan Driver authentication system and method for monitoring and controlling vehicle usage
US20100004818A1 (en) * 2008-07-02 2010-01-07 Michael Phelan Driver authentication system and method for monitoring and controlling vehicle usage
US9493149B2 (en) 2008-07-02 2016-11-15 Michael Phelan Driver authentication system and method for monitoring and controlling vehicle usage
US8417415B2 (en) * 2008-07-02 2013-04-09 Michael Phelan Driver authentication system and method for monitoring and controlling vehicle usage
US9045101B2 (en) * 2008-07-02 2015-06-02 Michael Phelan Driver authentication system and method for monitoring and controlling vehicle usage
US20100030586A1 (en) * 2008-07-31 2010-02-04 Choicepoint Services, Inc Systems & methods of calculating and presenting automobile driving risks
US8688180B2 (en) 2008-08-06 2014-04-01 Inthinc Technology Solutions, Inc. System and method for detecting use of a wireless device while driving
US20100045451A1 (en) * 2008-08-25 2010-02-25 Neeraj Periwal Speed reduction, alerting, and logging system
US8248223B2 (en) * 2008-08-25 2012-08-21 Neeraj Periwal Speed reporting for providing conditional driver treatment
US20100045452A1 (en) * 2008-08-25 2010-02-25 Neeraj Periwal Speed reporting for providing conditional driver treatment
US20100055649A1 (en) * 2008-09-03 2010-03-04 Hitachi, Ltd. Driving Skill Improvement Device and Driving Skill Improvement Method
US20100106417A1 (en) * 2008-10-27 2010-04-29 International Business Machines Corporation System and method for identifying a trajectory for each vehicle involved in an accident
US9292980B2 (en) 2009-01-26 2016-03-22 Lytx, Inc. Driver risk assessment system and method employing selectively automatic event scoring
US20100250021A1 (en) * 2009-01-26 2010-09-30 Bryon Cook Driver Risk Assessment System and Method Having Calibrating Automatic Event Scoring
US8854199B2 (en) * 2009-01-26 2014-10-07 Lytx, Inc. Driver risk assessment system and method employing automated driver log
US9189899B2 (en) 2009-01-26 2015-11-17 Lytx, Inc. Method and system for tuning the effect of vehicle characteristics on risk prediction
US20140292504A1 (en) * 2009-01-26 2014-10-02 Lytx, Inc. Driver risk assessment system and method employing automated driver log
US8564426B2 (en) 2009-01-26 2013-10-22 Drivecam, Inc. Method and system for tuning the effect of vehicle characteristics on risk prediction
US8508353B2 (en) 2009-01-26 2013-08-13 Drivecam, Inc. Driver risk assessment system and method having calibrating automatic event scoring
US20100191411A1 (en) * 2009-01-26 2010-07-29 Bryon Cook Driver Risk Assessment System and Method Employing Selectively Automatic Event Scoring
US9245391B2 (en) * 2009-01-26 2016-01-26 Lytx, Inc. Driver risk assessment system and method employing automated driver log
US20100238009A1 (en) * 2009-01-26 2010-09-23 Bryon Cook Driver Risk Assessment System and Method Employing Automated Driver Log
US8849501B2 (en) * 2009-01-26 2014-09-30 Lytx, Inc. Driver risk assessment system and method employing selectively automatic event scoring
US8963702B2 (en) 2009-02-13 2015-02-24 Inthinc Technology Solutions, Inc. System and method for viewing and correcting data in a street mapping database
US8892341B2 (en) 2009-02-13 2014-11-18 Inthinc Technology Solutions, Inc. Driver mentoring to improve vehicle operation
US20110040438A1 (en) * 2009-02-18 2011-02-17 Harman Becker Automotive Systems Gmbh Method of estimating a propulsion-related operating parameter
US8571748B2 (en) * 2009-02-18 2013-10-29 Harman Becker Automotive Systems Gmbh Method of estimating a propulsion-related operating parameter
US20100305814A1 (en) * 2009-05-29 2010-12-02 Denso Corporation Driving operation diagnostic apparatus and method for diagnosing driving operation
US8781740B2 (en) * 2009-05-29 2014-07-15 Denso Corporation Driving operation diagnostic apparatus and method for diagnosing driving operation
US20110054792A1 (en) * 2009-08-25 2011-03-03 Inthinc Technology Solutions, Inc. System and method for determining relative positions of moving objects and sequence of such objects
US20120209453A1 (en) * 2009-10-09 2012-08-16 Toyota Jidosha Kabushiki Kaisha In-vehicle device, information processing center, and driving evaluation system
US20110137684A1 (en) * 2009-12-08 2011-06-09 Peak David F System and method for generating telematics-based customer classifications
US9174652B2 (en) * 2011-02-22 2015-11-03 Honda Motor Co., Ltd. System and method for reducing driving skill atrophy
US20140222245A1 (en) * 2011-02-22 2014-08-07 Honda Motor Co., Ltd. System and method for reducing driving skill atrophy
US9129456B2 (en) 2011-04-06 2015-09-08 Lysanda Limited Method and apparatus for estimating the fuel consumption of a vehicle
US9790872B2 (en) 2011-04-06 2017-10-17 Tantalum Innovations Limited Characterizing engine load
US10041422B2 (en) 2011-04-06 2018-08-07 Tantalum Innovations Limited Characterizing engine load
US9945302B2 (en) 2011-04-06 2018-04-17 Tantalum Innovations Limited Characterizing vehicle mass
US9599041B2 (en) 2011-04-06 2017-03-21 Tantalum Innovations Limited Identifying a fuel type
CN102774382A (en) * 2011-05-04 2012-11-14 通用汽车环球科技运作有限责任公司 System and method for vehicle driving style determination
US9171409B2 (en) * 2011-05-04 2015-10-27 GM Global Technology Operations LLC System and method for vehicle driving style determination
US20120283893A1 (en) * 2011-05-04 2012-11-08 GM Global Technology Operations LLC System and method for vehicle driving style determination
US8924240B2 (en) 2011-05-25 2014-12-30 Shailendra Depura System for monitoring vehicle and operator behavior
US20130041521A1 (en) * 2011-08-09 2013-02-14 Otman A. Basir Vehicle monitoring system with automatic driver identification
US9855919B2 (en) * 2011-08-09 2018-01-02 Intelligent Mechatronic Systems Inc. Vehicle monitoring system with automatic driver identification
US20140257592A1 (en) * 2012-05-22 2014-09-11 Hartford Fire Insurance Company System and Method to Provide Event Data on a Map Display
US9111316B2 (en) * 2012-05-22 2015-08-18 Hartford Fire Insurance Company System and method to provide event data on a map display
US9672571B2 (en) 2012-05-22 2017-06-06 Hartford Fire Insurance Company System and method to provide vehicle telematics based data on a map display
US9672569B2 (en) 2012-05-22 2017-06-06 Hartford Fire Insurance Company System and method for actual and smartphone telematics data based processing
US9728228B2 (en) 2012-08-10 2017-08-08 Smartdrive Systems, Inc. Vehicle event playback apparatus and methods
US20140067434A1 (en) * 2012-08-30 2014-03-06 Agero, Inc. Methods and Systems for Providing Risk Profile Analytics
US9342983B1 (en) 2012-10-23 2016-05-17 Greenroad Driving Technologies Ltd. User interface for driver performance application
US9761064B2 (en) * 2013-01-08 2017-09-12 Lytx, Inc. Server determined bandwidth saving in transmission of events
US20150287248A1 (en) * 2013-01-08 2015-10-08 Lytx, Inc. Server determined bandwidth saving in transmission of events
US9761063B2 (en) 2013-01-08 2017-09-12 Lytx, Inc. Server determined bandwidth saving in transmission of events
US20140277833A1 (en) * 2013-03-15 2014-09-18 Mighty Carma, Inc. Event triggered trip data recorder
US10115164B1 (en) * 2013-10-04 2018-10-30 State Farm Mutual Automobile Insurance Company Systems and methods to quantify and differentiate individual insurance risk based on actual driving behavior and driving environment
US10019858B2 (en) 2013-10-16 2018-07-10 Smartdrive Systems, Inc. Vehicle event playback apparatus and methods
US9501878B2 (en) 2013-10-16 2016-11-22 Smartdrive Systems, Inc. Vehicle event playback apparatus and methods
US9172477B2 (en) 2013-10-30 2015-10-27 Inthinc Technology Solutions, Inc. Wireless device detection using multiple antennas separated by an RF shield
US9610955B2 (en) 2013-11-11 2017-04-04 Smartdrive Systems, Inc. Vehicle fuel consumption monitor and feedback systems
US9134780B2 (en) 2013-11-11 2015-09-15 Symbol Technologies, Llc Apparatus and method for providing adaptive power state control based on ignition input
US10096067B1 (en) 2014-01-24 2018-10-09 Allstate Insurance Company Reward system related to a vehicle-to-vehicle communication system
US20150228129A1 (en) * 2014-02-10 2015-08-13 Metromile, Inc. System and method for profiling vehicle usage
US9511778B1 (en) * 2014-02-12 2016-12-06 XL Hybrids Controlling transmissions of vehicle operation information
US10053108B2 (en) * 2014-02-12 2018-08-21 XL Hybrids Controlling transmissions of vehicle operation information
US20170174222A1 (en) * 2014-02-12 2017-06-22 XL Hybrids Controlling Transmissions of Vehicle Operation Information
US8892310B1 (en) 2014-02-21 2014-11-18 Smartdrive Systems, Inc. System and method to detect execution of driving maneuvers
US9594371B1 (en) 2014-02-21 2017-03-14 Smartdrive Systems, Inc. System and method to detect execution of driving maneuvers
US20170217428A1 (en) * 2014-04-02 2017-08-03 Magna Electronics Inc. Method for controlling a vehicle in accordance with parameters preferred by an identified driver
US9950707B2 (en) * 2014-04-02 2018-04-24 Magna Electronics Inc. Method for controlling a vehicle in accordance with parameters preferred by an identified driver
US9664126B2 (en) 2014-06-09 2017-05-30 Ford Global Technologies, Llc System and methods for engine-off natural vacuum tests
US9846977B1 (en) 2014-09-02 2017-12-19 Metromile, Inc. Systems and methods for determining vehicle trip information
US9812015B1 (en) 2014-09-02 2017-11-07 Metromile, Inc. Systems and methods for determining parking information for a vehicle using vehicle data and external parking data
US10036639B1 (en) 2014-09-02 2018-07-31 Metromile, Inc. Systems and methods for determining and displaying a route using information determined from a vehicle, user feedback, and a mobile electronic device
US10140785B1 (en) 2014-09-02 2018-11-27 Metromile, Inc. Systems and methods for determining fuel information of a vehicle
US9418491B2 (en) * 2014-09-22 2016-08-16 Brian K. Phillips Method and system for automatically identifying a driver by creating a unique driver profile for a vehicle from driving habits
US9988058B2 (en) 2014-09-22 2018-06-05 Brian K. Phillips Method and system for automatically identifying a driver by creating a unique driver profile for a vehicle from driving habits
US10065653B1 (en) * 2014-09-22 2018-09-04 Brian K. Phillips Method and system for automatically identifying a driver by creating a unique driver profile for a vehicle from driving habits
US9663127B2 (en) 2014-10-28 2017-05-30 Smartdrive Systems, Inc. Rail vehicle event detection and recording system
US9573600B2 (en) * 2014-12-19 2017-02-21 Toyota Motor Engineering & Manufacturing North America, Inc. Method and apparatus for generating and using driver specific vehicle controls
US20160176412A1 (en) * 2014-12-19 2016-06-23 Toyota Motor Engineering & Manufacturing North America, Inc. Method and apparatus for generating and using driver specific vehicle controls
US20160217506A1 (en) * 2015-01-23 2016-07-28 Halcyon Consulting, LLC Vehicle inventory verification system, apparatus and method
US9395384B1 (en) * 2015-10-07 2016-07-19 State Farm Mutual Automobile Insurance Company Systems and methods for estimating vehicle speed and hence driving behavior using accelerometer data during periods of intermittent GPS
WO2017091877A1 (en) * 2015-12-03 2017-06-08 Skydock Participações Ltda. On-board monitoring and safety apparatus and system for vehicles
GB2551511A (en) * 2016-06-20 2017-12-27 Trakm8 Ltd Detection of tailgating situations

Also Published As

Publication number Publication date Type
US20060106515A1 (en) 2006-05-18 application
EP1627297A4 (en) 2007-06-13 application
WO2004102536A2 (en) 2004-11-25 application
US20060111817A1 (en) 2006-05-25 application
US6931309B2 (en) 2005-08-16 grant
EP1627297A2 (en) 2006-02-22 application
US20060122749A1 (en) 2006-06-08 application
WO2004102536A3 (en) 2005-06-23 application
US20050182538A1 (en) 2005-08-18 application
US20040225557A1 (en) 2004-11-11 application

Similar Documents

Publication Publication Date Title
US20130046510A1 (en) Systems and Methods for Controlling the Collection of Vehicle Use Data Using a Mobile Device
US20100045451A1 (en) Speed reduction, alerting, and logging system
US20080294302A1 (en) Recording and reporting of driving characteristics using wireless mobile device
US20130179198A1 (en) Methods to Determine a Vehicle Insurance Premium Based on Vehicle Operation Data Collected Via a Mobile Device
US7356392B2 (en) System and method for evaluating vehicle and operator performance
Alpert et al. Investigating racial profiling by the Miami‐Dade Police Department: A multimethod approach
Wang et al. Estimating the risk of collisions between bicycles and motor vehicles at signalized intersections
US7821421B2 (en) Traffic information system
Klauer et al. The impact of driver inattention on near-crash/crash risk: An analysis using the 100-car naturalistic driving study data
US20130046562A1 (en) Method for gathering, processing, and analyzing data to determine the risk associated with driving behavior
US8509987B2 (en) Methods and apparatus for automatic internet logging and social comparison of vehicular driving behavior
US6662141B2 (en) Traffic safety prediction model
US20110125363A1 (en) Method and system for adjusting a charge related to use of a vehicle during a period based on operational performance data
US20040139034A1 (en) Automated consumer to business electronic marketplace system
EP1059508A1 (en) Operation control system capable of analyzing driving tendency and its constituent apparatus
US20130164715A1 (en) Using social networking to improve driver performance based on industry sharing of driver performance data
US20100030582A1 (en) Centrally maintained portable driving score
Porter et al. Predicting red-light running behavior: a traffic safety study in three urban settings
US20060212195A1 (en) Vehicle data recorder and telematic device
US20060053038A1 (en) Calculation of driver score based on vehicle operation
US20160086285A1 (en) Road Segment Safety Rating
US20110161116A1 (en) System and method for geocoded insurance processing using mobile devices
US20070282638A1 (en) Route based method for determining cost of automobile insurance
Skabardonis et al. Freeway service patrol evaluation
US8044809B2 (en) Automated consumer to business electronic marketplace system

Legal Events

Date Code Title Description
AS Assignment

Owner name: INNOSURANCE INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PERQUIN, JOHANNES A.;PHELAN, JOSEPH;REEL/FRAME:016068/0868

Effective date: 20050331

AS Assignment

Owner name: INNOSURANCE, INC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIXON, JOHN P.;PLAGER, ADAM;QUICK SOFTWARE SOLUTIONS;REEL/FRAME:021876/0790;SIGNING DATES FROM 20080115 TO 20080404

Owner name: INNOSURANCE, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SASSOWER, MARK;THOMAS, GENE, JR.;PHELAN, JOSEPH P.;AND OTHERS;REEL/FRAME:021876/0798;SIGNING DATES FROM 20081119 TO 20081120

Owner name: INNOSURANCE, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SASSOWER, MARK;THOMAS, GENE, JR.;PHELAN, JOSEPH P.;AND OTHERS;SIGNING DATES FROM 20081119 TO 20081120;REEL/FRAME:021876/0798

Owner name: INNOSURANCE, INC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIXON, JOHN P.;PLAGER, ADAM;QUICK SOFTWARE SOLUTIONS;SIGNING DATES FROM 20080115 TO 20080404;REEL/FRAME:021876/0790

AS Assignment

Owner name: INNOSURANCE, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CURLEY, DARRYL;REEL/FRAME:021924/0416

Effective date: 20081122

Owner name: INNOSURANCE, INC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CUSTOM RESEARCH LTD.;REEL/FRAME:021924/0412

Effective date: 20081126

AS Assignment

Owner name: INNOSURANCE, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CURLEY, DARRYL;REEL/FRAME:021985/0887

Effective date: 20081120

Owner name: INNOSURANCE, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RECTOR, TIMOTHY LEIGH;REEL/FRAME:021985/0937

Effective date: 20081216

Owner name: INNOSURANCE, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CUSTOM RESEARCH LTD.;REEL/FRAME:021985/0883

Effective date: 20081126

AS Assignment

Owner name: ALLSTATE INSURANCE COMPANY, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INNOSURANCE, INCORPORATED;REEL/FRAME:022309/0254

Effective date: 20090223