US20050119556A1 - Catheter navigation within an MR imaging device - Google Patents
Catheter navigation within an MR imaging device Download PDFInfo
- Publication number
- US20050119556A1 US20050119556A1 US10/985,340 US98534004A US2005119556A1 US 20050119556 A1 US20050119556 A1 US 20050119556A1 US 98534004 A US98534004 A US 98534004A US 2005119556 A1 US2005119556 A1 US 2005119556A1
- Authority
- US
- United States
- Prior art keywords
- medical device
- coils
- coil
- magnetic
- catheter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 36
- 230000005291 magnetic effect Effects 0.000 claims abstract description 90
- 238000000034 method Methods 0.000 claims abstract description 86
- 230000003068 static effect Effects 0.000 claims description 13
- 230000033001 locomotion Effects 0.000 claims description 11
- 239000013598 vector Substances 0.000 claims description 4
- 238000011084 recovery Methods 0.000 claims 4
- 238000012800 visualization Methods 0.000 claims 3
- 210000001124 body fluid Anatomy 0.000 claims 1
- 239000010839 body fluid Substances 0.000 claims 1
- 239000002826 coolant Substances 0.000 claims 1
- 230000003287 optical effect Effects 0.000 claims 1
- 230000003534 oscillatory effect Effects 0.000 claims 1
- 230000000737 periodic effect Effects 0.000 claims 1
- 230000033912 thigmotaxis Effects 0.000 description 16
- 210000004556 brain Anatomy 0.000 description 14
- 239000007943 implant Substances 0.000 description 12
- 239000000498 cooling water Substances 0.000 description 11
- 230000008878 coupling Effects 0.000 description 11
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 238000002595 magnetic resonance imaging Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 239000000523 sample Substances 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 238000004422 calculation algorithm Methods 0.000 description 7
- 238000002679 ablation Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 206010044565 Tremor Diseases 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003527 fibrinolytic agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000013310 pig model Methods 0.000 description 1
- 238000007674 radiofrequency ablation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229960000103 thrombolytic agent Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/73—Manipulators for magnetic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/285—Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/73—Manipulators for magnetic surgery
- A61B2034/731—Arrangement of the coils or magnets
- A61B2034/732—Arrangement of the coils or magnets arranged around the patient, e.g. in a gantry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
Definitions
- This invention relates to an apparatus for navigating medical devices within the body to sites of treatment delivery, and methods of using this apparatus to achieve this navigation. More specifically, this invention relates to the use of a magnetic field from an MR imaging device to navigate a magnetic medical device within the body.
- the magnetic component of the implant (typically located at the tip of a catheter) is a passive ferromagnetic or permanent magnetic element of a geometry consistent with that of the catheter's form and function, and within which there either exists or can be made to exist, adequate magnetic moment to create the forces and torques needed to steer and/or guide the implant within the body part into which it has been inserted.
- Magnetic stereotaxis is particularly useful for navigation of medical devices throughout body tissues, cavities, and vessels. Discussion of applications to catheter navigation within the chambers of the heart for electrophysiologic mapping and ablation can be found in Hall et al., U.S. patent application Ser. No. 09/405,314, incorporated herein by reference. Disclosure of navigation of catheters within the myocardial tissue of the heart can be found in Sell et al., U.S. patent application Ser. No. 09/398,686, incorporated herein by reference. Removal of tissues from body lumens and cavities via magnetic navigation of atherectomy tools is disclosed in Hall et al., U.S. patent application Ser. No. 09/352,161, incorporated herein by reference. Catheters for magnetic navigation within the blood vessels of the brain and other body parts are disclosed in Garibaldi, U.S. Patent Application Ser. No. 60/153,307, incorporated herein by reference.
- a second limitation of the existing art is that relatively complex arrangements of magnetic field sources external to the patient must be assembled and controlled in order to carry out magnetic stereotactic movement of the implant.
- a single static background field is virtually always inappropriate for effecting controlled movement of the magnetic element in the implant used in existing magnetic stereotaxis procedures.
- a third limitation, related to the second, is that a magnetic element left in the brain or another body part can create a significant imaging artifact when that body part is imaged by an MR scanner, most typically rendering that imaging data set useless or of greatly reduced diagnostic and therapeutic value to the clinician and patient.
- a fourth limitation is that appreciably and clinically precious time could be lost when carrying out a sequential and reciprocal process of conducting a magnetic stereotaxis procedure that must be interleaved with intra-operative MR imaging studies for diagnostic, therapeutic or navigational purposes.
- These limitations are not traversed by Kucharczyk et al. in their U.S. patent application Ser. No. 09/174,189 and in their International application Ser. No. PCT/US99/24253, (the disclosure of both of which are incorporated herein by reference), which teach means for serial and reciprocal movement of the patient from a magnetic stereotaxis system to an MR scanner for purposes of updating the imaging information used for the reference portion of the magnetic stereotaxis procedure.
- a more nearly ideal situation would arise if it were possible to integrate the form and function of a MR scanner and a magnetic stereotaxis system in such a way that magnetic stereotaxis procedures could be carried out within an MR scanner (or vice versa), and all done in such a way that the form and function of the MR scanning process would not interfere with those of the magnetic stereotaxis process, but that the respective forms and functions would instead complement and/or enhance each other.
- the subject of the present invention is a means and technique that accomplishes this goal and circumvents the existing limitations by incorporating a triaxial arrangement of miniature electromagnets as the magnetic element at the tip of the medical device or catheter.
- the torque and force on the tip of the medical device or catheter can be made to react to a static magnetic field of a MR scanner in such a way that the tip of the medical device or catheter can be guided along a preferred path to reach a target location within a brain or other body part.
- the resulting means and technique will thus exhibit all of the advantages of conventional magnetic stereotaxis (primarily the ability to navigate the medical device or catheter along complex curvilinear paths), while incorporating the further advantages of rapid sequential MR imaging of the patient, without introducing imaging artefacts on the MR images, since imaging is performed during periods when no currents flow through the triaxial coil components.
- the invention relates to the interaction between the static magnetic field of an MR scanner and one or more independent magnetic dipole moments created by a plurality of electromagnetic elements that are located within a medical device or catheter within a patient.
- the concept of utilizing a variable magnetic moment in the tip of a catheter for navigation in a static magnetic field was disclosed by Garibaldi et al., U.S. patent application Ser. No. 09/504,835, which is incorporated herein in its entirety by reference.
- Garibaldi et al. discusses a variety of permanent and electromagnetic means for generating a variable moment at the catheter tip for navigation in a static field, which may be energized for the purpose of navigation.
- the present invention employs the static field of an MRI imager, and the combined sequential processes of navigation and MR imaging.
- Our discussion focuses on the static field of an MR imager which is always on, and for practical purposes cannot be turned off or otherwise changed or interrupted. For this reason, the present invention cannot employ permanent or inducible magnetic materials within the medical device. Consequently, the variable moment must be generated by coils, and preferably air-core coils.
- a static magnetic field H acting along the z direction of the bore of a MR imaging, and a magnetic dipole moment m is present in the magnetic element of an implanted probe or catheter
- the x, y, and z components of the moment m are controlled independently, so that the vector m can point in any arbitrary direction in three dimensional space.
- the first step in the process is to rotate the catheter tip upward out of the x-y plane at an angle which advances the catheter projection on the x-y plane, followed by a second rotation which rotates the catheter back down to the x-y plane, while once again advancing the catheter orientation angle.
- the net rotation of the catheter tip about the z-axis thus follows a sawtooth or triangular trajectory, each step in the advancement being made up of two allowed out-of-plane rotations.
- the coils are wound on a common hollow coil form or mandrel in the shape of a rectangular parallelepiped that is made from non-conducting, non-susceptible materials which are MR compatible.
- the coils are approximately 1 cm in length, have a diameter of 2 mm and a thickness of 0.25 mm.
- transverse coil is wound around a long axis of the parallelepiped mandrel, a second transverse coil is wound along the other long axis perpendicular to the first and the third (axial) coil is wound around the other two.
- the latter coil has a similar cross sectional area times number of turns as the transverse coils, so that all three coils have approximately equal dipole moment magnitude for equal energizing currents.
- This assembly is fixed inside the tip of a supple catheter with the leads from the coils brought down the internal length of the catheter tube to an exit point at which they are connected to three independent power supplies, one for each coil.
- Cooling water or some other heat exchange medium can be made to flow through an internal jacket inside the catheter, thus bathing the triaxial coil assembly and carrying away a substantial amount of the heat generated during operation of the independent coils.
- the amount of cooling power available to the coils limits the level of current flow and ohmic heating that they can sustain; for example 16 W of cooling would establish a limit of 2.3 A maximum per coil assuming that the total resistance of a given coil is approximately 3 ⁇ .
- the pressure driving the flow would ideally be 100 psi or less, with the flow entering the catheter at body temperature and leaving it at some higher temperature governed by considerations of patient safety and comfort.
- the coils being open circuit at the beginning of a procedure, the patient is imaged, and the location of the catheter noted.
- the coils themselves, rather than being passive open circuit coils, could actually serve as pick up coils for the MRI rf signal, providing an enhanced image at the site of the catheter, as discussed in the cited literature.
- the coils are energized, following the predictions of a coil-current vs. torque algorithm that would determine the catheter's directional advancement within the MR scanner's field, thus permitting the tip of the catheter to be steered along a desired direction.
- Subsequent imaging sequences are then carried out to verify the new location of the catheter's tip, and the next movement sequence is then planned and executed.
- the patient can actually be rotated during a procedure relative to a transverse MRI magnetic field residing in a gap between magnets. Such patient rotations may be employed to further enhance navigation.
- the patient may be rotated in these machines to ensure that maximum torque can always be applied about directions that would otherwise be parallel with the MRI field.
- catheters can be manipulated through a body part, for example the brain, and positioned such that the lumen of the catheter is left along a curvilinear path that might be optimized for contoured drug delivery for the treatment of a neurodegenerative disorder intrinsic to the brain.
- Many other possible scenarios can also be achieved in the same way, for instance the nonlinear stereotactic guidance of an electrode for recording of potentials, ablation of a zone of tissue or deep brain stimulation for pain or tremor control.
- electrophysiological mapping and ablation procedures can be carried out within the chambers of the heart.
- the cooling required to adequately energize the coils can also cool the electrode tip of an ablation catheter. Such cooling results in larger ablative lesions, with fewer complications associated with clot formation on the electrode tip.
- Steering of catheters and devices can also be carried out within the endovascular system, for diagnostic and therapeutic purposes.
- a host computer can coordinate and control the power supplies used to drive the individual coils, interpreting instruction from a clinician operating an intuitive interface such as a joy stick.
- the control algorithm requires as input the present orientation of the triaxial coil assembly within the patient, the direction and magnitude of the MR scanner field at the location of the triaxial coil assembly, the desired new angular orientation or curvilinear displacement that is to be taken in the next step in the movement sequence, and any related anatomical or physiological information about the patient as might be required to safely and efficaciously carry out the procedure.
- FIG. 1 is a schematic diagram of a system for implementing the method of this invention
- FIG. 2 a is a schematic diagram of a catheter adapted for use with the method of this invention
- FIG. 2 b is a schematic diagram of a triaxial coil system wound on a rectangular parallelepiped coil form or mandrel;
- FIG. 2 c is a schematic diagram of the structure of a triaxial coil system formed from the nesting together of three orthogonally oriented planar coils each having a circular cross section;
- FIG. 3 a is an enlarged partial longitudinal cross-sectional view of the distal tip of a catheter adapted for use in the method of this invention
- FIG. 3 b is an enlarged transverse cross-sectional view of the distal tip of a catheter, adapted for use in the method of this invention; adapted for fluid cooling;
- FIG. 4 is a schematic diagram of the electrical connections and components for a system for implementing the method of this invention.
- FIG. 5 is a schematic diagram of a cooling system adapted for use in the system for implementing the method of this invention
- FIG. 6 is a schematic diagram showing the navigation of a catheter in the cerebrovasculature of a human patient in accordance with the method of this invention
- FIG. 7 a is a schematic diagram of the head of a human patient, illustrating the navigation of a catheter through the intraparenchymal tissues of the brain of the patient;
- FIG. 7 b is a schematic diagram of the head of a human patient, illustrating the navigation of a catheter through the intraparenchymal tissues of the brain of the patient;
- FIG. 8 is a flow chart of the method of navigating a medical device in accordance with the method of this invention.
- FIG. 9 is a flow chart of the computational algorithm that could be used to execute the method of navigating a medical device in accordance with the method of this invention.
- FIGS. 10 a, 10 b, 10 c and 10 d are schematic view of successive steps in a method for accomplishing rotation about the H field direction using compound rotations in accordance with the principles of this invention
- FIGS. 11 a, 11 b, 11 c and 11 d are schematic views of successive steps in a method for accomplishing rotation about the H field direction using compound rotations in accordance with the principles of this invention.
- FIGS. 12 a and 12 b are schematic diagrams illustrating unidirectional torque applied to a catheter, for example to relieve strain built up in the catheter due to multiple torques applied in one direction.
- FIG. 1 is a schematic of a system for carrying out a stereotactic procedure in accordance with the method of this invention.
- a patient 1 rests on the gurney or transport table 2 of an interventional MR imager 3 , as supplied, for example, by Fonar Corp., Melville, N.Y.
- the procedure might alternatively be carried out inside the bore of a standard high field MR scanner, as supplied, for example, by Philips Medical Systems, Best, The Netherlands.
- a catheter 4 is disposed within the body of the patient 1 . Leads 5 from the catheter 4 are connected to the power supplies or amplifiers 10 , 11 , 12 each of which drives one of three coils located inside the tip of the catheter 4 .
- the power supplies 10 , 11 , 12 are controlled by an algorithm resident in the host computer 9 .
- the physician (not shown) views the location of the catheter tip inside the body and the structure of the body part on the monitors 7 of the MR scanner 3 .
- the monitors 7 show the sagittal, axial and coronal views and a composite three-dimensional view of the body part and the location of the catheter's tip.
- the physician adjusts the controls 6 that determine the parameters operating in the host computer's algorithm, in such a way that the next desired location or orientation of the catheter's tip is projected on the monitors 7 .
- the physician then implements the motion sequence by activating the algorithm, and then observes the new location of the catheter's tip on the monitors 7 .
- surgeon or physician's instructions are conveyed from the control panel 6 to the host computer 9 over the system's control/data bus.
- physician can pre-plan the path of the catheter tip on a suitable interface, and the catheter can then be directed along the desired path entirely under computer control.
- FIG. 2 a is a schematic view of a catheter ( 4 in FIG. 1 ).
- An outer lumen 13 houses an inner lumen 14 .
- a triaxial coil 23 is located inside the tip of the inner lumen 14 near the distal end of the outer lumen 13 .
- the distal end of the outer lumen 13 is coupled to the main body of the outer lumen via a soft and pliable coupling 24 that permits easy and rapid articulation of the distal end.
- the proximal end of the outer lumen 13 connects to cooling water inlet tube 19 which is connected to a source of cooling water 21 .
- the inner lumen 14 of the catheter 4 is connected to the water inlet tube 19 by a tubular means 15 internal to the outer lumen 13 .
- the proximal end of the outer lumen 13 also connects to cooling water outlet tube 20 through which the flux of cooling water 22 flows.
- the leads 5 from the triaxial coil 23 extend from the proximal end of the catheter's outer lumen 13 and are separated into three pairs 16 , 17 , 18 one for each of the microcoils in the triaxial coil.
- FIG. 2 b shows one preferred embodiment of the triaxial coil 23 based on a rectangular parallelepiped coil frame 25 on which are wound orthogonally oriented microcoils 26 , 27 , 28 each of which has one pair of the jumper wires 29 , 30 , 31 that make contact with one of the corresponding pair of the set of lead wires 5 that then run the length of the inner lumen 14 .
- FIG. 2 c shows another preferred embodiment of a triaxial coil 23 in which three sets of windings 32 , 33 , 34 having circular cross sections are nested together with their planes orthogonal to each other, and with the assembly held together by glue means 38 .
- Each of the coil means 32 , 33 , 34 has one pair of jumper wires 35 , 36 , 37 that make contact with one of the corresponding pair of the set of lead wires 5 that then run the length of the inner lumen 14 .
- FIG. 3 a shows one embodiment of the distal tip of the catheter.
- the outer lumen 13 and the soft pliable coupling section 24 of the wall of the outer lumen form the containment for the return flow path of the cooling water that arrives at the distal tip by flowing through the inner lumen 14 .
- the distal end of the inner lumen 14 also has a section of soft pliable coupling material 40 that (like the segment 24 ) facilitates the articulation of the catheter's tip for steering purposes.
- the outlet port 41 for the cooling water at the distal end of the inner lumen 14 is located in close proximity to the inside surface of the distal end of the outer lumen 13 .
- the distal tip of the catheter 39 may be constructed from a radio-opaque material or be coated on its inside surface with a layer of material 39 that is radio-opaque and MR-visible for imaging purposes.
- the tip 39 may also serve as an ablation electrode, which is cooled during ablation by cooling water circulating through lumens 13 and 14 .
- One embodiment of the triaxial coil assembly 23 with its leads 5 is shown in place at the distal end of the inner lumen 14 .
- a mounting mechanism 38 holds the triaxial coil assembly in place within the inner lumen 14 .
- FIG. 4 shows a block diagram of some details of the power handling part of the system.
- the host computer 9 for the system is connected by the usual data bus to the power supplies 10 , 11 , 12 that drive currents through the triaxial coil assembly.
- Each power supply has digital input and analog output hence must have an integral digital to analog converter and a means for monitoring the current as indicated.
- the leads from the power supply might be brought forward in twisted pairs 42 to minimize the effects of magnetic field couplings that might drive extraneous currents through them.
- the twisted pairs connect with the leads 5 of the triaxial coil assembly.
- the host computer 9 may receive and/or transmit rf signals from the coils 23 via leads 42 to enhance the local MRI image and/or to measure the location and orientation of the coils.
- FIG. 5 shows some additional details of the cooling water connections.
- the inner lumen 14 of the catheter 4 conveys the cooling water to the triaxial coil means.
- the inlet connection is made via the coupling tube 20 .
- the input port 44 on the coupling tube is hooked to a source of the cooling water.
- Inside the coupling tube 20 is a temperature sensor 45 the leads of which traverse the wall of the coupling tube and are connected to the temperature monitor 46 to read the inlet water temperature.
- a reciprocal arrangement is placed on the outlet side, where the outlet water temperature is measured at its highest point, at the coil set 23 .
- An outlet coupling tube 21 is connected to the catheter's outer lumen 13 .
- the outlet port 43 of the outlet coupling tube 21 allows the water to exit the coupling tube and flow into a drain, or be continuously recirculated.
- a temperature sensor 47 monitors the outlet water temperature at the coils 23 , and its leads pass through the wall of the tube and are corrected to the temperature monitor 48 that is used to read the outlet water temperature.
- FIG. 6 shows a catheter 4 as it would be navigated inside of a vessel 49 , located within a body part
- the catheter 4 is advanced to a bifircation 50 in the vessel 49 having a lower branch 52 and an upper branch 51 .
- the catheter 4 is guided into the upper branch 51 of the vessel where it is to be used to treat a blockage 53 by infusing a thrombolytic agent 55 through the distal array of port holes 54 on this particular catheter.
- Many variations of this embodiment are possible for treating a variety of diseases, syndromes and conditions using different arrangements of the catheter 13 either inside of body ducts or lumens, or inside of the parenchymal tissues of a body part.
- FIG. 7 a shows a catheter 4 as it would be used inside of a brain 57 of a patient 56 .
- the catheter 13 has been inserted through a surgically placed burr hole 58 and navigated via magnetic stereotactic command of the triaxail coil means to reach a specified point on a lesion 59 within the brain 57 .
- the patient is lying flat on the gurney of a standard high-field MR machine and rests within the axial bore.
- the static magnetic field of the MRI is parallel to the long axis of the patient's body, hence the burr hole 58 is placed on the top of the patient's head in accordance with the access to the head permitted by the construction of the MRI.
- FIG. 1 shows a catheter 4 as it would be used inside of a brain 57 of a patient 56 .
- the catheter 13 has been inserted through a surgically placed burr hole 58 and navigated via magnetic stereotactic command of the triaxail coil means to reach a specified point
- FIG. 7 b contains the same elements as FIG. 7 a. However, in the context of FIG. 7 b the patient is located within the open bore of an interventional MR scanner and may not be lying flat but oriented at some angle with respect to the horizontal, possibly even vertically. This may permit or even require that the burr hole be placed occipitally or elsewhere on the skull.
- FIG. 8 is a flow chart showing several of the steps needed to carry out a magnetic stereotaxis procedure using the triaxial coil means inside of a catheter within a body part of a patient who is located in a MR scanner.
- the MR scanner magnetic field is measured.
- the position of the catheter tip is localized.
- the target location for the next catheter step is identified by the physician. This can be done on a user-friendly computer interface.
- a mathematical algorithm is executed to identify the currents in the triaxial coil currents.
- the new target location is displayed on the interface.
- the physician decides whether to energize the coils. If the physician decides not to energize the coils, the process turns to step 64 where a new set of coil currents are calculated.
- the physician decides to energize the coils, at 67 the coils are energized and at 68 the physician observes the location of the tip following the movement sequence.
- the physician decides whether the catheter is at its desired location, if it is, at 70 the procedure is over, if the catheter is not at its desired position the process resumes at 62 .
- FIG. 9 shows a flow chart 71 that identifies several of the steps needed to regulate the coil currents in the triaxial coil 23 that is being used to steer a catheter in the form of magnetic stereotaxis that is the subject of the present invention.
- the present location of the catheter tip is determined.
- the orientation of the catheter tip with respect to the MR scanner field is determined, and at 73 b the target point for the next movement sequence is established.
- the math model is applied, and at 75 digital values of coil current are computed, and the digital values are converted to analog signal.
- the analog signals are applied to the x-axis, y-axis, and z-axis coils. Also the output signals are fed back to the coil current computation step.
- FIGS. 10 a -10 d illustrate a method for rotation of a catheter 4 about the MR magnetic field axis, employing two successive rotations about the orthogonal x and y axes.
- a magnetic moment is created at the distal end of the catheter so that the catheter bends out of the x-y plane to be parallel with the z-axis (corresponding to the local magnetic field direction), shown in FIG. 10 b.
- a magnetic moment is created at the distal end of the catheter so that the catheter bends out of the x-z plane to be parallel to the y-axis.
- FIGS. 11 a - 11 d show how rotation about the field axis is accomplished by a series of incremental rotations out of the x-y plane.
- a magnet moment is created at the distal end of the catheter so that the catheter bends out of the x-y plane to an angle in the x-z plan (z corresponding to the local magnetic field direction), shown if FIG. 11 b.
- FIG. 11 a a magnet moment is created at the distal end of the catheter so that the catheter bends out of the x-y plane to an angle in the x-z plan (z corresponding to the local magnetic field direction), shown if FIG. 11 b.
- FIGS. 12 a - 12 b show a method to apply torque about the axis of the catheter, which can be used, for example, to relieve strain built up in the multiple rotations used in FIGS. 10 a - d and 11 a - d.
- a magnetic moment is created in the distal tip of the catheter that in the applied magnetic field causes the catheter to rotate about its longitudinal axis to “unwind” from twisting caused by the compound navigations shown and described in conjunction with FIGS. 10 and 11 .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Robotics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
A method of magnetically manipulating a medical device within a body part of a human patient in conjunction with MR imaging includes applying a navigating magnetic field with magnets from the MR imaging device, and changing the magnetic moment of the medical device to change the orientation of the medical device within the body part
Description
- This invention relates to an apparatus for navigating medical devices within the body to sites of treatment delivery, and methods of using this apparatus to achieve this navigation. More specifically, this invention relates to the use of a magnetic field from an MR imaging device to navigate a magnetic medical device within the body.
- The need for improved surgical navigation techniques stimulated the development of magnetic stereotaxis as a novel means for guiding a surgical implant, such as a catheter, along nonlinear paths within a body part. In particular, it is useful in intraparenchymal applications within the brain, where linear stereotactic techniques (either framed or frameless) do not permit the probe to follow single-pass curvilinear paths to a target location deep within the brain, as first taught by Howard et al. in U.S. Pat. No. 4,869,247 incorporated herein by reference. Howard et al. subsequently taught magnetic stereotactic techniques for volume-contoured therapy delivery within the brain and elsewhere in the human body in succeeding U.S. Pat. Nos. 5,125,88, 5,707,334, and 5,779,694 incorporated herein by reference. Advanced versions of magnetically guided surgical systems capable of performing magnetic stereotactic procedures in the brain and in other body parts have been disclosed in U.S. patents by Werp et al., U.S. Pat. No. 5,9331,818; Blume et al., U.S. Pat. No. 6,014,580; Werp et al., U.S. Pat. No. 6,015,414; Ritter et al., U.S. Pat. No. 6,128,174; and Blume et al., U.S. Pat. No. 6,157,853. In all of these approaches, as well as in any of the other known techniques for magnetic manipulation of a probe mass or implant located within the body (see Gillies et al., “Magnetic manipulation instrumentation for medical physics research,” Review of Scientific Instruments, pp. 533-562 (USA 1994)), incorporated herein by reference, the controlled movement of the probe mass or implant is actuated by a magnetic field created external to the body. In all such arrangements the magnetic component of the implant (typically located at the tip of a catheter) is a passive ferromagnetic or permanent magnetic element of a geometry consistent with that of the catheter's form and function, and within which there either exists or can be made to exist, adequate magnetic moment to create the forces and torques needed to steer and/or guide the implant within the body part into which it has been inserted.
- Magnetic stereotaxis is particularly useful for navigation of medical devices throughout body tissues, cavities, and vessels. Discussion of applications to catheter navigation within the chambers of the heart for electrophysiologic mapping and ablation can be found in Hall et al., U.S. patent application Ser. No. 09/405,314, incorporated herein by reference. Disclosure of navigation of catheters within the myocardial tissue of the heart can be found in Sell et al., U.S. patent application Ser. No. 09/398,686, incorporated herein by reference. Removal of tissues from body lumens and cavities via magnetic navigation of atherectomy tools is disclosed in Hall et al., U.S. patent application Ser. No. 09/352,161, incorporated herein by reference. Catheters for magnetic navigation within the blood vessels of the brain and other body parts are disclosed in Garibaldi, U.S. Patent Application Ser. No. 60/153,307, incorporated herein by reference.
- Four inherent limitations to this general design of magnetic stereotaxis system are the following. First, it is generally unsafe to perform magnetic resonance (MR) imaging studies during or after a magnetic stereotaxis procedures in which the magnetic element of the implant is still resident within the patient, as might be contemplated in situations where updated MR data might be needed for ongoing magnetic stereotaxis navigation requirements. This is because the large fields intrinsic to all types of MR scanners (either standard bore-type systems or the lower-field interventional-style systems) are large enough to cause otherwise uncontrolled displacement of the implant within the patient. The nature of this particular problem is discussed in the broader context of MR-driven forces on implants, by Planert et al., “Measurements of magnetism-related forces and torque moments affecting medical instruments, implants, and foreign objects during magnetic resonance imaging at all degrees of freedom,” Medical Physics, pp. 851-856 (USA 1996) and by Manner et al., “MR Imaging in the presence of small circular metallic implants,” Acta Radiological, pp. 551-554 (Denmark 1996), the disclosures of both of which are incorporated herein by reference.
- A second limitation of the existing art is that relatively complex arrangements of magnetic field sources external to the patient must be assembled and controlled in order to carry out magnetic stereotactic movement of the implant. A single static background field is virtually always inappropriate for effecting controlled movement of the magnetic element in the implant used in existing magnetic stereotaxis procedures. A third limitation, related to the second, is that a magnetic element left in the brain or another body part can create a significant imaging artifact when that body part is imaged by an MR scanner, most typically rendering that imaging data set useless or of greatly reduced diagnostic and therapeutic value to the clinician and patient.
- A fourth limitation is that appreciably and clinically precious time could be lost when carrying out a sequential and reciprocal process of conducting a magnetic stereotaxis procedure that must be interleaved with intra-operative MR imaging studies for diagnostic, therapeutic or navigational purposes. These limitations are not traversed by Kucharczyk et al. in their U.S. patent application Ser. No. 09/174,189 and in their International application Ser. No. PCT/US99/24253, (the disclosure of both of which are incorporated herein by reference), which teach means for serial and reciprocal movement of the patient from a magnetic stereotaxis system to an MR scanner for purposes of updating the imaging information used for the reference portion of the magnetic stereotaxis procedure.
- A more nearly ideal situation would arise if it were possible to integrate the form and function of a MR scanner and a magnetic stereotaxis system in such a way that magnetic stereotaxis procedures could be carried out within an MR scanner (or vice versa), and all done in such a way that the form and function of the MR scanning process would not interfere with those of the magnetic stereotaxis process, but that the respective forms and functions would instead complement and/or enhance each other. The subject of the present invention is a means and technique that accomplishes this goal and circumvents the existing limitations by incorporating a triaxial arrangement of miniature electromagnets as the magnetic element at the tip of the medical device or catheter. By externally regulating the electrical currents that pass through each of the independent coils, the torque and force on the tip of the medical device or catheter can be made to react to a static magnetic field of a MR scanner in such a way that the tip of the medical device or catheter can be guided along a preferred path to reach a target location within a brain or other body part. The resulting means and technique will thus exhibit all of the advantages of conventional magnetic stereotaxis (primarily the ability to navigate the medical device or catheter along complex curvilinear paths), while incorporating the further advantages of rapid sequential MR imaging of the patient, without introducing imaging artefacts on the MR images, since imaging is performed during periods when no currents flow through the triaxial coil components.
- Medical devices with one or more miniaturized coils on them have been disclosed for a variety of other purposes, but none have been designed for use as the actuator in a combined magnetic stereotaxis and MR imaging process such as the type that is the subject of the present invention. Instead, such coil systems have been limited in function to identifying the location of the probe (in which they are housed) in relation to the body part into which the probe is inserted. Examples of such disclosures include Grayzel, U.S. Pat. No. 4,809,713; Dunoulin et al., U.S. Pat. No. 5,211,165; Twiss et al., U.S. Pat. No. 5,375,596; Acker et al., U.S. Pat. No. 5,558,091; Martinelli, U.S. Pat. No. 5,592,939; Calhoun et al., U.S. Pat. No. 5,606,980; Golden et al. U.S. Pat. No. 5,622,169; Shapiro et al., U.S. Pat. No. 5,645,065; Heruth et al., U.S. Pat. No. 5,713,858; Watkins et al., U.S. Pat. No. 5,715,822; Saad, U.S. Pat. No. 5,727,553; Weber et al., U.S. Pat. No. 5,728,079; Acker, U.S. Pat. No. 5,729,129; Darrow et al., U.S. Pat. No. 5,730,129; Young et al., U.S. Pat. No. 5,735,795; Glantz, U.S. Pat. No. 5,749,835; Acker et al., U.S. Pat. No. 5,752,513; Slettenmark, U.S. Pat. No. 5,758,6670; Polvani, U.S. Pat. No. 5,762,064; Kelly et al., U.S. Pat. No. 5,787,886; Vesely et al., U.S. Pat. No. 5,797,849; Ferre et al. U.S. Pat. No. 5,800,352; Kuhn, U.S. Pat. No. 5,810,728; Young et al., U.S. Pat. No. 5,817,017; Young et al., U.S. Pat. No. 5,819,737; Kovacs, U.S. Pat. No. 5,833,603; Crowley, U.S. Pat. No. 5,840,031; Webster, Jr. et al., U.S. Pat. No. 5,843,076; Johnston et al., U.S. Pat. No. 5,843,153; Lemelson, U.S. Pat. No. 5,845,646, Lemelson, U.S. Pat. No. 5,865,744, Glowinski et al., U.S. Pat. No. 5,868,674; Horzewski et al., U.S. Pat. No. 5,873,865; Haynor et al., U.S. Pat. No. 5,879,297; Daum et al., U.S. Pat. No. 5,895,401; Ponzi, U.S. Pat. No. 5,897,529; Golden et al., U.S. Pat. No. 5,902,238; Vander Salm et al., U.S. Pat. No. 5,906,579; Weber et al., U.S. Pat. No. 5,908,410; Lee et al., U.S. Pat. No. 5,911,737; Bladen et al., U.S. Pat. No. 5,913,820; Snelten et al., U.S. Pat. No. 5,916,162; Lemelson, U.S. Pat. No. 5,919,135; Chen et al., U.S. Pat. No. 5,921,244; Navab, U.S. Pat. No. 5,930,329; Rasche et al., U.S. Pat. No. 5,938,599; Lloyd, U.S. Pat. No. 5,938,602; Ponzi, U.S. Pat. No. 5,938,603; Johnson, U.S. Pat. No. 5,941,858; Cermak. U.S. Pat. No. 9,941,889; Johnson et al., U.S. Pat. No. 5,944,023; Derbyshire et al., U.S. Pat. No. 5,947,900; Beisel, U.S. Pat. No. 5,947,940; Van Vaals et al., U.S. Pat. No. 5,951,472; Lev, U.S. Pat. No. 5,951,566; Rogers et al., U.S. Pat. No. 5,951,881; Wan, U.S. Pat. No. 5,952,825; Rosenberg et al., U.S. Pat. No. 5,959,613; Ponzi, U.S. Pat. No. 5,964,757; Ferre et al., U.S. Pat. No. 5,967,980; Wittkampf, U.S. Pat. No. 5,983,126; Taniguchi et al., U.S. Pat. No. 5,997,473; Mouchawar et al., U.S. Pat. No. 6,002,963; Van Der Brug et al., U.S. Pat. No. 6,006,127; Pflueger, U.S. Pat. No. 6,013,038; Vesely et al., U.S. Pat. No. 6,019,725; Webb, U.S. Pat. No. 6,019,726; Murata, U.S. Pat. No. 6,019,737; Wendt et al., U.S. Pat. No. 6,023,636; and Holdaway et al., U.S. Pat. No. 6,083,166. The disclosures of all of the foregoing are incorporated herein by reference. Other uses for miniature coils or microcoils on catheters include the controlled introduction of local electromagnetic fields during the MR imaging process for the purpose of improving imaging contrast in the tissues adjacent to the catheter or probe, as taught for instance by Truwit et al., U.S. Pat. No. 5,964,705, incorporated herein by reference. Miniature triaxial arrangements for field sensing in medical probes have been disclosed by Acker, U.S. Pat. No. 5,833,608, incorporating herein by reference. Additional publications that document related uses for microcoils on catheters for either tracking or imaging purposes include the papers of Wildermuth et al., “MR Inaging-guided intravascular procedures: initial demonstration in a pig model,” Radiology, 578-583 (USA 1997), Bakker et al., “MR-guided endovascular interventions: susceptibility-based catheter and near-real-time imaging technique,” Radiology, pp. 273-276 (USA 1997), Rasche et al., “Catheter tracking using continuous radial MRI,” MRM, pp. 963-968 (USA 1997), Worley, “Use of a real-time three-dimensional magnetic navigation system for radiofrequency ablation of accessory pathways,” PACE, pp. 1636-1645 (USA 1998), Burl et al., “Twisted-pair RF coil suitable for locating the track of a catheter,” MRM, pp. 636-638 (USA 1999) and Coutts et al, “Integrated and interactive position tracking and imaging of interventional tools and internal devices using small fiducial receiver coils,” MRM, pp.908-913 (USA 1998). The disclosures of which are incorporated by reference. Coils in the catheter tip can be used to both locate the tip, and to measure the orientation of the tip in three dimensional space, as discussed by Shapiro et al, U.S. Pat. No. 5,645,065, and Haynor et al, U.S. Pat. No. 5,879,297, the disclosures of which are incorporated by reference.
- The invention relates to the interaction between the static magnetic field of an MR scanner and one or more independent magnetic dipole moments created by a plurality of electromagnetic elements that are located within a medical device or catheter within a patient. The concept of utilizing a variable magnetic moment in the tip of a catheter for navigation in a static magnetic field was disclosed by Garibaldi et al., U.S. patent application Ser. No. 09/504,835, which is incorporated herein in its entirety by reference. Garibaldi et al. discusses a variety of permanent and electromagnetic means for generating a variable moment at the catheter tip for navigation in a static field, which may be energized for the purpose of navigation. The present invention employs the static field of an MRI imager, and the combined sequential processes of navigation and MR imaging. Our discussion focuses on the static field of an MR imager which is always on, and for practical purposes cannot be turned off or otherwise changed or interrupted. For this reason, the present invention cannot employ permanent or inducible magnetic materials within the medical device. Consequently, the variable moment must be generated by coils, and preferably air-core coils.
- If a static magnetic field H is acting along the z direction of the bore of a MR imaging, and a magnetic dipole moment m is present in the magnetic element of an implanted probe or catheter, then the vectors representing H and m in a three-dimensional space can be written H=Hk along the z-axis and m=mxi+myj+mzk and the torque experienced by the dipole moment in the field of the MR scanner is τ=m×B. The x, y, and z components of the moment m are controlled independently, so that the vector m can point in any arbitrary direction in three dimensional space.
- Evaluation of the vector cross product produces the components τx=myH, τy=−mxH, and τz=0. The torque acting on the dipole is perpendicular to m and H and in this case has no component about the z-axis along which the magnetic field lies. It is possible, however, to navigate a catheter to points lying in the plane perpendicular to H via successive small displacements of the moment out of this plane. This process can be referred to as compound rotation about the H axis. The first step in the process is to rotate the catheter tip upward out of the x-y plane at an angle which advances the catheter projection on the x-y plane, followed by a second rotation which rotates the catheter back down to the x-y plane, while once again advancing the catheter orientation angle. The net rotation of the catheter tip about the z-axis thus follows a sawtooth or triangular trajectory, each step in the advancement being made up of two allowed out-of-plane rotations.
- One can make numerical estimates of the sizes of the torques that can act on the dipole in the presence of the MR scanner field by noting that the magnitude of the torque is given by expanding the cross product τ=m×H to obtain τ=mH cos θ where θ is the angle between m and H. τ is a maximum when θ=90°. If the dipole moment is produced by a coil that has N turns of wire windings carrying an electrical current I, and has a cross-sectional area A, then the expression for the torque acting on the coil can be written as τ=NIAB where B=μoH defines the relationship between the magnetic induction B and the magnetic field strength H, with μo being the permeability of free space. As a practical example of the application of these principles in a clinically realistic setting, the mechanical torque required to rotate a dipole moment produced by 350 turns of wire carrying 1.4 A of current and having a diameter of 2 mm with associated cross-sectional area of 3.14×10−6 m2 would be 2.3×10−3 N-m or 230 gram-mm in a MR scanner field of 1.5 T. If this coil is 5 mm long, the effective force couple producing the torque is 230/5=46 grams, which is adequately large for catheter navigation.
- In the preferred embodiment of the present invention, three miniaturized coils of appropriate length, radius and current carrying capacity are assembled into a triaxial configuration in which the cross-sectional planes of each are orthogonal to those of the others. There are a number of different ways of doing this. In one preferred embodiment, the coils are wound on a common hollow coil form or mandrel in the shape of a rectangular parallelepiped that is made from non-conducting, non-susceptible materials which are MR compatible. In one embodiment, the coils are approximately 1 cm in length, have a diameter of 2 mm and a thickness of 0.25 mm. One transverse coil is wound around a long axis of the parallelepiped mandrel, a second transverse coil is wound along the other long axis perpendicular to the first and the third (axial) coil is wound around the other two. The latter coil has a similar cross sectional area times number of turns as the transverse coils, so that all three coils have approximately equal dipole moment magnitude for equal energizing currents. This assembly is fixed inside the tip of a supple catheter with the leads from the coils brought down the internal length of the catheter tube to an exit point at which they are connected to three independent power supplies, one for each coil.
- Cooling water or some other heat exchange medium can be made to flow through an internal jacket inside the catheter, thus bathing the triaxial coil assembly and carrying away a substantial amount of the heat generated during operation of the independent coils. The amount of cooling power available to the coils limits the level of current flow and ohmic heating that they can sustain; for example 16 W of cooling would establish a limit of 2.3 A maximum per coil assuming that the total resistance of a given coil is approximately 3 Ω. The pressure driving the flow would ideally be 100 psi or less, with the flow entering the catheter at body temperature and leaving it at some higher temperature governed by considerations of patient safety and comfort.
- With the coils being open circuit at the beginning of a procedure, the patient is imaged, and the location of the catheter noted. The coils themselves, rather than being passive open circuit coils, could actually serve as pick up coils for the MRI rf signal, providing an enhanced image at the site of the catheter, as discussed in the cited literature. Following this essentially real time imaging, the coils are energized, following the predictions of a coil-current vs. torque algorithm that would determine the catheter's directional advancement within the MR scanner's field, thus permitting the tip of the catheter to be steered along a desired direction. Subsequent imaging sequences are then carried out to verify the new location of the catheter's tip, and the next movement sequence is then planned and executed.
- In some modern MRI machines, the patient can actually be rotated during a procedure relative to a transverse MRI magnetic field residing in a gap between magnets. Such patient rotations may be employed to further enhance navigation. In particular, the patient may be rotated in these machines to ensure that maximum torque can always be applied about directions that would otherwise be parallel with the MRI field.
- Using this means and technique, catheters can be manipulated through a body part, for example the brain, and positioned such that the lumen of the catheter is left along a curvilinear path that might be optimized for contoured drug delivery for the treatment of a neurodegenerative disorder intrinsic to the brain. Many other possible scenarios can also be achieved in the same way, for instance the nonlinear stereotactic guidance of an electrode for recording of potentials, ablation of a zone of tissue or deep brain stimulation for pain or tremor control. Likewise, electrophysiological mapping and ablation procedures can be carried out within the chambers of the heart. We note that the cooling required to adequately energize the coils can also cool the electrode tip of an ablation catheter. Such cooling results in larger ablative lesions, with fewer complications associated with clot formation on the electrode tip. Steering of catheters and devices can also be carried out within the endovascular system, for diagnostic and therapeutic purposes.
- A host computer can coordinate and control the power supplies used to drive the individual coils, interpreting instruction from a clinician operating an intuitive interface such as a joy stick. The control algorithm requires as input the present orientation of the triaxial coil assembly within the patient, the direction and magnitude of the MR scanner field at the location of the triaxial coil assembly, the desired new angular orientation or curvilinear displacement that is to be taken in the next step in the movement sequence, and any related anatomical or physiological information about the patient as might be required to safely and efficaciously carry out the procedure.
-
FIG. 1 is a schematic diagram of a system for implementing the method of this invention; -
FIG. 2 a is a schematic diagram of a catheter adapted for use with the method of this invention; -
FIG. 2 b is a schematic diagram of a triaxial coil system wound on a rectangular parallelepiped coil form or mandrel; -
FIG. 2 c is a schematic diagram of the structure of a triaxial coil system formed from the nesting together of three orthogonally oriented planar coils each having a circular cross section; -
FIG. 3 a is an enlarged partial longitudinal cross-sectional view of the distal tip of a catheter adapted for use in the method of this invention; -
FIG. 3 b is an enlarged transverse cross-sectional view of the distal tip of a catheter, adapted for use in the method of this invention; adapted for fluid cooling; -
FIG. 4 is a schematic diagram of the electrical connections and components for a system for implementing the method of this invention; -
FIG. 5 is a schematic diagram of a cooling system adapted for use in the system for implementing the method of this invention; -
FIG. 6 is a schematic diagram showing the navigation of a catheter in the cerebrovasculature of a human patient in accordance with the method of this invention; -
FIG. 7 a is a schematic diagram of the head of a human patient, illustrating the navigation of a catheter through the intraparenchymal tissues of the brain of the patient; -
FIG. 7 b is a schematic diagram of the head of a human patient, illustrating the navigation of a catheter through the intraparenchymal tissues of the brain of the patient; -
FIG. 8 is a flow chart of the method of navigating a medical device in accordance with the method of this invention; -
FIG. 9 is a flow chart of the computational algorithm that could be used to execute the method of navigating a medical device in accordance with the method of this invention; -
FIGS. 10 a, 10 b, 10 c and 10 d are schematic view of successive steps in a method for accomplishing rotation about the H field direction using compound rotations in accordance with the principles of this invention; -
FIGS. 11 a, 11 b, 11 c and 11 d are schematic views of successive steps in a method for accomplishing rotation about the H field direction using compound rotations in accordance with the principles of this invention; and -
FIGS. 12 a and 12 b are schematic diagrams illustrating unidirectional torque applied to a catheter, for example to relieve strain built up in the catheter due to multiple torques applied in one direction. - Referring to the drawings,
FIG. 1 is a schematic of a system for carrying out a stereotactic procedure in accordance with the method of this invention. Apatient 1 rests on the gurney or transport table 2 of aninterventional MR imager 3, as supplied, for example, by Fonar Corp., Melville, N.Y. The procedure might alternatively be carried out inside the bore of a standard high field MR scanner, as supplied, for example, by Philips Medical Systems, Best, The Netherlands. A catheter 4 is disposed within the body of thepatient 1.Leads 5 from the catheter 4 are connected to the power supplies oramplifiers host computer 9. The physician (not shown) views the location of the catheter tip inside the body and the structure of the body part on themonitors 7 of theMR scanner 3. Themonitors 7 show the sagittal, axial and coronal views and a composite three-dimensional view of the body part and the location of the catheter's tip. The physician adjusts thecontrols 6 that determine the parameters operating in the host computer's algorithm, in such a way that the next desired location or orientation of the catheter's tip is projected on themonitors 7. The physician then implements the motion sequence by activating the algorithm, and then observes the new location of the catheter's tip on themonitors 7. The surgeon or physician's instructions are conveyed from thecontrol panel 6 to thehost computer 9 over the system's control/data bus. Alternatively, the physician can pre-plan the path of the catheter tip on a suitable interface, and the catheter can then be directed along the desired path entirely under computer control. -
FIG. 2 a is a schematic view of a catheter (4 inFIG. 1 ). Anouter lumen 13 houses aninner lumen 14. Atriaxial coil 23 is located inside the tip of theinner lumen 14 near the distal end of theouter lumen 13. The distal end of theouter lumen 13 is coupled to the main body of the outer lumen via a soft andpliable coupling 24 that permits easy and rapid articulation of the distal end. The proximal end of theouter lumen 13 connects to coolingwater inlet tube 19 which is connected to a source of coolingwater 21. Theinner lumen 14 of the catheter 4 is connected to thewater inlet tube 19 by a tubular means 15 internal to theouter lumen 13. The proximal end of theouter lumen 13 also connects to coolingwater outlet tube 20 through which the flux of coolingwater 22 flows. The leads 5 from thetriaxial coil 23 extend from the proximal end of the catheter'souter lumen 13 and are separated into three pairs 16, 17, 18 one for each of the microcoils in the triaxial coil.FIG. 2 b shows one preferred embodiment of thetriaxial coil 23 based on a rectangularparallelepiped coil frame 25 on which are wound orthogonally orientedmicrocoils jumper wires lead wires 5 that then run the length of theinner lumen 14. Thelead wires 5 can alternatively pass throughlumen 14, or be embedded in the material making up the various walls of the catheter.FIG. 2 c shows another preferred embodiment of atriaxial coil 23 in which three sets ofwindings jumper wires lead wires 5 that then run the length of theinner lumen 14. -
FIG. 3 a shows one embodiment of the distal tip of the catheter. Theouter lumen 13 and the softpliable coupling section 24 of the wall of the outer lumen form the containment for the return flow path of the cooling water that arrives at the distal tip by flowing through theinner lumen 14. The distal end of theinner lumen 14 also has a section of softpliable coupling material 40 that (like the segment 24) facilitates the articulation of the catheter's tip for steering purposes. Theoutlet port 41 for the cooling water at the distal end of theinner lumen 14 is located in close proximity to the inside surface of the distal end of theouter lumen 13. The distal tip of thecatheter 39 may be constructed from a radio-opaque material or be coated on its inside surface with a layer ofmaterial 39 that is radio-opaque and MR-visible for imaging purposes. Thetip 39 may also serve as an ablation electrode, which is cooled during ablation by cooling water circulating throughlumens triaxial coil assembly 23 with itsleads 5 is shown in place at the distal end of theinner lumen 14. A mountingmechanism 38 holds the triaxial coil assembly in place within theinner lumen 14. -
FIG. 4 shows a block diagram of some details of the power handling part of the system. Thehost computer 9 for the system is connected by the usual data bus to the power supplies 10, 11, 12 that drive currents through the triaxial coil assembly. Each power supply has digital input and analog output hence must have an integral digital to analog converter and a means for monitoring the current as indicated. The leads from the power supply might be brought forward intwisted pairs 42 to minimize the effects of magnetic field couplings that might drive extraneous currents through them. The twisted pairs connect with theleads 5 of the triaxial coil assembly. During the MRI imaging step, thehost computer 9 may receive and/or transmit rf signals from thecoils 23 vialeads 42 to enhance the local MRI image and/or to measure the location and orientation of the coils. -
FIG. 5 shows some additional details of the cooling water connections. Theinner lumen 14 of the catheter 4 conveys the cooling water to the triaxial coil means. The inlet connection is made via thecoupling tube 20. The input port 44 on the coupling tube is hooked to a source of the cooling water. Inside thecoupling tube 20 is atemperature sensor 45 the leads of which traverse the wall of the coupling tube and are connected to the temperature monitor 46 to read the inlet water temperature. A reciprocal arrangement is placed on the outlet side, where the outlet water temperature is measured at its highest point, at the coil set 23. Anoutlet coupling tube 21 is connected to the catheter'souter lumen 13. Theoutlet port 43 of theoutlet coupling tube 21 allows the water to exit the coupling tube and flow into a drain, or be continuously recirculated. A temperature sensor 47 monitors the outlet water temperature at thecoils 23, and its leads pass through the wall of the tube and are corrected to the temperature monitor 48 that is used to read the outlet water temperature. -
FIG. 6 shows a catheter 4 as it would be navigated inside of avessel 49, located within a body part The catheter 4, is advanced to abifircation 50 in thevessel 49 having alower branch 52 and anupper branch 51. The catheter 4 is guided into theupper branch 51 of the vessel where it is to be used to treat ablockage 53 by infusing athrombolytic agent 55 through the distal array of port holes 54 on this particular catheter. Many variations of this embodiment are possible for treating a variety of diseases, syndromes and conditions using different arrangements of thecatheter 13 either inside of body ducts or lumens, or inside of the parenchymal tissues of a body part. -
FIG. 7 a shows a catheter 4 as it would be used inside of abrain 57 of apatient 56. Thecatheter 13 has been inserted through a surgically placedburr hole 58 and navigated via magnetic stereotactic command of the triaxail coil means to reach a specified point on alesion 59 within thebrain 57. In the context of this drawing, the patient is lying flat on the gurney of a standard high-field MR machine and rests within the axial bore. The static magnetic field of the MRI is parallel to the long axis of the patient's body, hence theburr hole 58 is placed on the top of the patient's head in accordance with the access to the head permitted by the construction of the MRI.FIG. 7 b contains the same elements asFIG. 7 a. However, in the context ofFIG. 7 b the patient is located within the open bore of an interventional MR scanner and may not be lying flat but oriented at some angle with respect to the horizontal, possibly even vertically. This may permit or even require that the burr hole be placed occipitally or elsewhere on the skull. -
FIG. 8 is a flow chart showing several of the steps needed to carry out a magnetic stereotaxis procedure using the triaxial coil means inside of a catheter within a body part of a patient who is located in a MR scanner. At 61 the MR scanner magnetic field is measured. At 62 the position of the catheter tip is localized. At 63 the target location for the next catheter step is identified by the physician. This can be done on a user-friendly computer interface. At 64 a mathematical algorithm is executed to identify the currents in the triaxial coil currents. At 65 the new target location is displayed on the interface. At 66 the physician decides whether to energize the coils. If the physician decides not to energize the coils, the process turns to step 64 where a new set of coil currents are calculated. If the physician decides to energize the coils, at 67 the coils are energized and at 68 the physician observes the location of the tip following the movement sequence. At 69, the physician decides whether the catheter is at its desired location, if it is, at 70 the procedure is over, if the catheter is not at its desired position the process resumes at 62. -
FIG. 9 shows a flow chart 71 that identifies several of the steps needed to regulate the coil currents in thetriaxial coil 23 that is being used to steer a catheter in the form of magnetic stereotaxis that is the subject of the present invention. At 72 the present location of the catheter tip is determined. At 73 a the orientation of the catheter tip with respect to the MR scanner field is determined, and at 73 b the target point for the next movement sequence is established. At 74 the math model is applied, and at 75 digital values of coil current are computed, and the digital values are converted to analog signal. At 76 a, 76 b and 76 c the analog signals are applied to the x-axis, y-axis, and z-axis coils. Also the output signals are fed back to the coil current computation step. -
FIGS. 10 a-10d illustrate a method for rotation of a catheter 4 about the MR magnetic field axis, employing two successive rotations about the orthogonal x and y axes. As shown inFIG. 10 a, a magnetic moment is created at the distal end of the catheter so that the catheter bends out of the x-y plane to be parallel with the z-axis (corresponding to the local magnetic field direction), shown inFIG. 10 b. As shown inFIG. 10 c, a magnetic moment is created at the distal end of the catheter so that the catheter bends out of the x-z plane to be parallel to the y-axis. Thus rotation about the magnetic field direction (z direction) is possible by successive rotations about the y-axis and then the x-axis.FIGS. 11 a-11 d show how rotation about the field axis is accomplished by a series of incremental rotations out of the x-y plane. As shown inFIG. 11 a, a magnet moment is created at the distal end of the catheter so that the catheter bends out of the x-y plane to an angle in the x-z plan (z corresponding to the local magnetic field direction), shown ifFIG. 11 b. As shown inFIG. 11 c, a magnetic moment is created at the distal end of the catheter so that the catheter bends out of the x-z plane back into the x-y plane to an angle with respect to the x-axis. Thus, rotation about the magnetic field direction (z direction) is possible by successive rotations about the y-axis and then the x-axis.FIGS. 12 a-12 b show a method to apply torque about the axis of the catheter, which can be used, for example, to relieve strain built up in the multiple rotations used inFIGS. 10 a-d and 11 a-d. As shown inFIG. 12 a a magnetic moment is created in the distal tip of the catheter that in the applied magnetic field causes the catheter to rotate about its longitudinal axis to “unwind” from twisting caused by the compound navigations shown and described in conjunction withFIGS. 10 and 11 .
Claims (37)
1. A method of navigating a medical device having a variable magnetic moment within an operating region within a patient, using an MR imaging device, the method comprising:
applying a static magnetic field to the operating region with an external magnet of an MR imaging device;
creating temporary magnetic moments in the medical device to change the orientation of the medical device with respect to the static magnetic field, and orient the medical device in a selected direction within the operating region.
2. The method according to claim 1 further comprising the step of varying the direction of the static magnetic field applied to the operating region by the external magnet of an MR imaging device to change the orientation of the medical device.
3. The method according to claim 1 wherein the medical device comprises at least one electromagnetic coil, and wherein the step of creating temporary magnetic moments in the medical device comprises energizing the at least one electromagnetic coil.
4. The method according to claim 1 wherein the MR imaging device is used to image the operating region in the patient's body between navigations.
5. The method according to claim 1 in which the medical device comprises at least one set of three current carrying coils, and the step of creating temporary magnetic moments in the medical device comprises apply current to one or more of the current carrying coils
6. The method according to claim 5 wherein there are at least two sets of three current carrying coils.
7. The method according to claim 1 in which the medical device comprises at least one set of three current carrying coils, and wherein the coils are used to receive signals during MR imaging to determine at least one of the location and orientation of the medical device.
8. The method according to claim 1 in which the medical device comprises at least one set of three current carrying coils, and wherein the coils are used to transmit and/or receive signals during MR imaging to enhance imaging adjacent the medical device.
9. The method according to claim 5 wherein the coils are mutually orthogonal.
10. The method according to claim 5 further comprising actively removing heat from the medical device generated by the current carrying coils.
11. The method according to claim 10 wherein heat is removed by circulating a cooling medium with the medical device.
12. The method according claim 10 wherein heat is removed using thermoelectric devices.
13. The method according to claim 10 wherein heat is removed using a heat pipe.
14. A method of navigating a medical device within an operating region in the body of a patient, the medical device having at least one coil therein, the method comprising:
establishing a navigating magnetic field in the operating region with an MR imaging device outside of the patient's body;
selectively energizing the at least one coil in the medical device to create a magnetic moment in the medical device and creating a torque tending to align the magnetic moment of the magnetic medical device with the applied magnetic field.
15. The method according to claim 14 further comprising varying the direction and/or intensity of the applied magnetic field applied by the MR imaging device to orient the medical device
16. The method according to claim 14 wherein the step of selectively energizing the at least one coil comprises applying electrical energy in pulses to the at least one coil in the medical device.
17. The method according to claim 16 wherein the medical device is flexible and has a characteristic recovery time in which the device recovers from being flexed, and wherein the time between pulses in less than the characteristic recovery time of the medical device.
18. In a method of navigating a medical device by applying a static magnetic field and selectively changing the magnetic moment of the medical device to change the orientation of the medical device, a method of turning the medical device on a plane perpendicular to local applied field direction in two steps comprising applying a magnet current to the medical device to bend the medical device out of the plane of the desired turn and subsequently applying a magnet moment to the medical device to cause the medical device to turn back into the plane of the desired turn, in the desired orientation.
19. A system for navigating a medical device within an MRI consisting of a medical device containing at least one set of three orthogonal current carrying coils, power supplies for energizing said coils, a computer for controlling said power supplies, and an MRI images of the local environment of the coils, said images used by an operator to guide the movements of said medical device through a computer interface.
20. The system of claim 19 in which local visualization of tissues is additionally provided to guide navigation.
21. The system of claim 20 in which visualization is optical.
22. The system of claim 20 in which visualization is through an ultrasonic image.
23. The system of claim 19 in which said coils are energized with pulses of currents, the root-mean-square values of which exceed direct current levels that overheat the catheter.
24. The system of claim 19 in which currents are applied to the coils to produce oscillatory or periodic movements of the catheter tip.
25. A method for rotating a catheter tip containing a variable magnetic moment about the direction of an external magnetic field with which the moment interacts, the method consisting of directing the magnetic moment vector in a series of directions which successively rotate the catheter tip out of and into the plane perpendicular to the field direction.
26. A method of navigating an elongate medical device within an operating region in the body of a patient, the medical device having a proximal end, a distal end, and at least one coil adjacent the distal end, the method comprising:
introducing the distal end of the medical device into the operating region in the patient's body;
establishing a navigating magnetic field in the operating region with a magnet of an MR imaging system;
selectively energizing the at least one coil adjacent the distal end of the elongate medical device to create a magnetic moment at the distal end of the elongate medical device to turn the distal end of the elongate medical device in the desired direction.
27. The method according to claim 26 further comprising varying the direction and or intensity of the navigating magnetic field applied by the MR imaging device to orient the elongate medical device.
28. The method according to claim 26 wherein the step of selectively energizing the at least one coil comprises applying electrical energy in pulses to the at least one coil in the medical device.
29. The method according to claim 26 wherein the elongate medical device is flexible, and has a characteristic recovery time in which the device returns to its normal configuration from a deflected configuration, and wherein the at least one coil is energized at a pulse rate faster than the characteristic recovery time of the elongate medical device
30. The method according to claim 29 wherein the coil is pulsed to retain the coils below a temperature that is harmful to tissue.
31. The method according to claim 29 wherein the at least one coil is pulsed to retain a temperature below about 45° C.
32. The method according to claim 29 wherein the at least one coil is pulsed to retain a balance between the heat generated in the coil and the heat conducted from the coil by the flow of body fluids past the coils.
33. The method according to claim 26 wherein there are at least two coils adjacent the distal end of the magnetic medical device.
34. The method according to claim 33 wherein there are at least three coils adjacent the distal end of the magnetic medical device.
35. The method according to claim 26 wherein there are three coils spaced around the circumference of the magnetic medical device.
36. The method according to claim 26 wherein at least one coil extends around the circumference of the magnetic medical device.
37. The method according to claim 26 wherein the coils are used to locate the magnetic medical device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/985,340 US20050119556A1 (en) | 2001-01-29 | 2004-11-10 | Catheter navigation within an MR imaging device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/772,188 US20020103430A1 (en) | 2001-01-29 | 2001-01-29 | Catheter navigation within an MR imaging device |
US10/429,524 US6834201B2 (en) | 2001-01-29 | 2003-05-05 | Catheter navigation within an MR imaging device |
US10/985,340 US20050119556A1 (en) | 2001-01-29 | 2004-11-10 | Catheter navigation within an MR imaging device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/429,524 Continuation US6834201B2 (en) | 2001-01-29 | 2003-05-05 | Catheter navigation within an MR imaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050119556A1 true US20050119556A1 (en) | 2005-06-02 |
Family
ID=25094240
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/772,188 Abandoned US20020103430A1 (en) | 2001-01-29 | 2001-01-29 | Catheter navigation within an MR imaging device |
US10/429,524 Expired - Lifetime US6834201B2 (en) | 2001-01-29 | 2003-05-05 | Catheter navigation within an MR imaging device |
US10/985,340 Abandoned US20050119556A1 (en) | 2001-01-29 | 2004-11-10 | Catheter navigation within an MR imaging device |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/772,188 Abandoned US20020103430A1 (en) | 2001-01-29 | 2001-01-29 | Catheter navigation within an MR imaging device |
US10/429,524 Expired - Lifetime US6834201B2 (en) | 2001-01-29 | 2003-05-05 | Catheter navigation within an MR imaging device |
Country Status (3)
Country | Link |
---|---|
US (3) | US20020103430A1 (en) |
AU (1) | AU2002255489A1 (en) |
WO (1) | WO2002074358A2 (en) |
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050113812A1 (en) * | 2003-09-16 | 2005-05-26 | Viswanathan Raju R. | User interface for remote control of medical devices |
US20060116571A1 (en) * | 2004-12-01 | 2006-06-01 | Siemens Aktiengesellschaft | Guidewire for vascular catheters |
US20060270915A1 (en) * | 2005-01-11 | 2006-11-30 | Ritter Rogers C | Navigation using sensed physiological data as feedback |
US20070016131A1 (en) * | 2005-07-12 | 2007-01-18 | Munger Gareth T | Flexible magnets for navigable medical devices |
US20070060992A1 (en) * | 2005-06-02 | 2007-03-15 | Carlo Pappone | Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery |
US20070060966A1 (en) * | 2005-07-11 | 2007-03-15 | Carlo Pappone | Method of treating cardiac arrhythmias |
US20070060829A1 (en) * | 2005-07-21 | 2007-03-15 | Carlo Pappone | Method of finding the source of and treating cardiac arrhythmias |
US20070060962A1 (en) * | 2005-07-26 | 2007-03-15 | Carlo Pappone | Apparatus and methods for cardiac resynchronization therapy and cardiac contractility modulation |
US20070062547A1 (en) * | 2005-07-21 | 2007-03-22 | Carlo Pappone | Systems for and methods of tissue ablation |
US20070123964A1 (en) * | 2003-01-21 | 2007-05-31 | Baylis Medical Company | Magnetically guidable energy delivery apparatus and method of using same |
US20070149946A1 (en) * | 2005-12-07 | 2007-06-28 | Viswanathan Raju R | Advancer system for coaxial medical devices |
US20070161882A1 (en) * | 2006-01-06 | 2007-07-12 | Carlo Pappone | Electrophysiology catheter and system for gentle and firm wall contact |
US20070167720A1 (en) * | 2005-12-06 | 2007-07-19 | Viswanathan Raju R | Smart card control of medical devices |
US20070197899A1 (en) * | 2006-01-17 | 2007-08-23 | Ritter Rogers C | Apparatus and method for magnetic navigation using boost magnets |
US20070197906A1 (en) * | 2006-01-24 | 2007-08-23 | Ritter Rogers C | Magnetic field shape-adjustable medical device and method of using the same |
US20070250041A1 (en) * | 2006-04-19 | 2007-10-25 | Werp Peter R | Extendable Interventional Medical Devices |
US20070287909A1 (en) * | 1998-08-07 | 2007-12-13 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling catheters in body lumens and cavities |
US20080016677A1 (en) * | 2002-01-23 | 2008-01-24 | Stereotaxis, Inc. | Rotating and pivoting magnet for magnetic navigation |
US20080039830A1 (en) * | 2006-08-14 | 2008-02-14 | Munger Gareth T | Method and Apparatus for Ablative Recanalization of Blocked Vasculature |
US20080047568A1 (en) * | 1999-10-04 | 2008-02-28 | Ritter Rogers C | Method for Safely and Efficiently Navigating Magnetic Devices in the Body |
US20080058609A1 (en) * | 2006-09-06 | 2008-03-06 | Stereotaxis, Inc. | Workflow driven method of performing multi-step medical procedures |
US20080055239A1 (en) * | 2006-09-06 | 2008-03-06 | Garibaldi Jeffrey M | Global Input Device for Multiple Computer-Controlled Medical Systems |
US20080065061A1 (en) * | 2006-09-08 | 2008-03-13 | Viswanathan Raju R | Impedance-Based Cardiac Therapy Planning Method with a Remote Surgical Navigation System |
US20080064969A1 (en) * | 2006-09-11 | 2008-03-13 | Nathan Kastelein | Automated Mapping of Anatomical Features of Heart Chambers |
US20080077007A1 (en) * | 2002-06-28 | 2008-03-27 | Hastings Roger N | Method of Navigating Medical Devices in the Presence of Radiopaque Material |
US20080208912A1 (en) * | 2007-02-26 | 2008-08-28 | Garibaldi Jeffrey M | System and method for providing contextually relevant medical information |
US20080228068A1 (en) * | 2007-03-13 | 2008-09-18 | Viswanathan Raju R | Automated Surgical Navigation with Electro-Anatomical and Pre-Operative Image Data |
US20080228065A1 (en) * | 2007-03-13 | 2008-09-18 | Viswanathan Raju R | System and Method for Registration of Localization and Imaging Systems for Navigational Control of Medical Devices |
DE102007012361A1 (en) * | 2007-03-14 | 2008-09-25 | Siemens Ag | Method for determining the position of a medical instrument |
US20080292901A1 (en) * | 2007-05-24 | 2008-11-27 | Hon Hai Precision Industry Co., Ltd. | Magnesium alloy and thin workpiece made of the same |
US20080312673A1 (en) * | 2007-06-05 | 2008-12-18 | Viswanathan Raju R | Method and apparatus for CTO crossing |
US20090306643A1 (en) * | 2008-02-25 | 2009-12-10 | Carlo Pappone | Method and apparatus for delivery and detection of transmural cardiac ablation lesions |
US7772950B2 (en) | 2005-08-10 | 2010-08-10 | Stereotaxis, Inc. | Method and apparatus for dynamic magnetic field control using multiple magnets |
US7818076B2 (en) | 2005-07-26 | 2010-10-19 | Stereotaxis, Inc. | Method and apparatus for multi-system remote surgical navigation from a single control center |
US7961924B2 (en) | 2006-08-21 | 2011-06-14 | Stereotaxis, Inc. | Method of three-dimensional device localization using single-plane imaging |
US7961926B2 (en) | 2005-02-07 | 2011-06-14 | Stereotaxis, Inc. | Registration of three-dimensional image data to 2D-image-derived data |
US7966059B2 (en) | 1999-10-04 | 2011-06-21 | Stereotaxis, Inc. | Rotating and pivoting magnet for magnetic navigation |
US8024024B2 (en) | 2007-06-27 | 2011-09-20 | Stereotaxis, Inc. | Remote control of medical devices using real time location data |
US8135185B2 (en) | 2006-10-20 | 2012-03-13 | Stereotaxis, Inc. | Location and display of occluded portions of vessels on 3-D angiographic images |
US20120139538A1 (en) * | 2010-06-02 | 2012-06-07 | Sebastian Schmidt | Mrt receiver coil with local data storage |
US8196590B2 (en) | 2003-05-02 | 2012-06-12 | Stereotaxis, Inc. | Variable magnetic moment MR navigation |
US8231618B2 (en) | 2007-11-05 | 2012-07-31 | Stereotaxis, Inc. | Magnetically guided energy delivery apparatus |
US8242972B2 (en) | 2006-09-06 | 2012-08-14 | Stereotaxis, Inc. | System state driven display for medical procedures |
US8244824B2 (en) | 2006-09-06 | 2012-08-14 | Stereotaxis, Inc. | Coordinated control for multiple computer-controlled medical systems |
US8308628B2 (en) | 2009-11-02 | 2012-11-13 | Pulse Therapeutics, Inc. | Magnetic-based systems for treating occluded vessels |
US8369930B2 (en) | 2009-06-16 | 2013-02-05 | MRI Interventions, Inc. | MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
US8369934B2 (en) | 2004-12-20 | 2013-02-05 | Stereotaxis, Inc. | Contact over-torque with three-dimensional anatomical data |
US8906056B2 (en) | 2009-05-01 | 2014-12-09 | University Of Virginia Patent Foundation | Access trocar and related method thereof |
US9111016B2 (en) | 2007-07-06 | 2015-08-18 | Stereotaxis, Inc. | Management of live remote medical display |
US9259290B2 (en) | 2009-06-08 | 2016-02-16 | MRI Interventions, Inc. | MRI-guided surgical systems with proximity alerts |
US9314222B2 (en) | 2005-07-07 | 2016-04-19 | Stereotaxis, Inc. | Operation of a remote medical navigation system using ultrasound image |
EP3093037A1 (en) * | 2015-05-13 | 2016-11-16 | Otto-von-Guericke-Universität Magdeburg | Guidewire |
US9883878B2 (en) | 2012-05-15 | 2018-02-06 | Pulse Therapeutics, Inc. | Magnetic-based systems and methods for manipulation of magnetic particles |
US10028682B2 (en) | 2012-10-12 | 2018-07-24 | University Of Virginia Patent Foundation | Oxidation measurement system and related method thereof |
CN108814599A (en) * | 2017-03-16 | 2018-11-16 | 温伯格医学物理有限公司 | The method and apparatus of rapid evaluation and processing for wound |
US10159782B2 (en) | 2012-09-19 | 2018-12-25 | University Of Virginia Patent Foundation | Method and system for enhanced imaging visualization of deep brain anatomy using infusion |
US10537713B2 (en) | 2009-05-25 | 2020-01-21 | Stereotaxis, Inc. | Remote manipulator device |
US11083381B2 (en) | 2009-09-11 | 2021-08-10 | University Of Virginia Patent Foundation | Systems and methods for determining pressure frequency changes in a subject |
US11660137B2 (en) | 2006-09-29 | 2023-05-30 | Boston Scientific Medical Device Limited | Connector system for electrosurgical device |
US11684447B2 (en) | 2012-05-31 | 2023-06-27 | Boston Scientific Medical Device Limited | Radiofrequency perforation apparatus |
US11724070B2 (en) | 2019-12-19 | 2023-08-15 | Boston Scientific Medical Device Limited | Methods for determining a position of a first medical device with respect to a second medical device, and related systems and medical devices |
US11744638B2 (en) | 2006-09-29 | 2023-09-05 | Boston Scientific Medical Device Limited | Electrosurgical device |
US11759190B2 (en) | 2019-10-18 | 2023-09-19 | Boston Scientific Medical Device Limited | Lock for medical devices, and related systems and methods |
US11766290B2 (en) | 2015-09-09 | 2023-09-26 | Boston Scientific Medical Device Limited | Epicardial access system and methods |
US11793446B2 (en) | 2020-06-17 | 2023-10-24 | Boston Scientific Medical Device Limited | Electroanatomical mapping system with visualization of energy-delivery and elongated needle assemblies |
US11801087B2 (en) | 2019-11-13 | 2023-10-31 | Boston Scientific Medical Device Limited | Apparatus and methods for puncturing tissue |
US11819243B2 (en) | 2020-03-19 | 2023-11-21 | Boston Scientific Medical Device Limited | Medical sheath and related systems and methods |
US11826075B2 (en) | 2020-04-07 | 2023-11-28 | Boston Scientific Medical Device Limited | Elongated medical assembly |
US11878131B2 (en) | 2017-12-05 | 2024-01-23 | Boston Scientific Medical Device Limited | Transseptal guide wire puncture system |
US11918315B2 (en) | 2018-05-03 | 2024-03-05 | Pulse Therapeutics, Inc. | Determination of structure and traversal of occlusions using magnetic particles |
US11931098B2 (en) | 2020-02-19 | 2024-03-19 | Boston Scientific Medical Device Limited | System and method for carrying out a medical procedure |
US11937796B2 (en) | 2020-06-18 | 2024-03-26 | Boston Scientific Medical Device Limited | Tissue-spreader assembly |
US11938285B2 (en) | 2020-06-17 | 2024-03-26 | Boston Scientific Medical Device Limited | Stop-movement device for elongated medical assembly |
US11937873B2 (en) | 2013-03-12 | 2024-03-26 | Boston Scientific Medical Device Limited | Electrosurgical device having a lumen |
US11937872B2 (en) | 2007-03-13 | 2024-03-26 | University Of Virginia Patent Foundation | Epicardial ablation catheter and method of use |
US11951303B2 (en) | 2007-11-09 | 2024-04-09 | University Of Virginia Patent Foundation | Steerable epicardial pacing catheter system placed via the subxiphoid process |
US11980412B2 (en) | 2020-09-15 | 2024-05-14 | Boston Scientific Medical Device Limited | Elongated medical sheath |
US11986209B2 (en) | 2020-02-25 | 2024-05-21 | Boston Scientific Medical Device Limited | Methods and devices for creation of communication between aorta and left atrium |
US11998238B2 (en) | 2013-08-07 | 2024-06-04 | Boston Scientific Medical Device Limited | Methods and devices for puncturing tissue |
US12005202B2 (en) | 2020-08-07 | 2024-06-11 | Boston Scientific Medical Device Limited | Catheter having tissue-engaging device |
US12011279B2 (en) | 2020-04-07 | 2024-06-18 | Boston Scientific Medical Device Limited | Electro-anatomic mapping system |
US12011210B2 (en) | 2013-03-15 | 2024-06-18 | Boston Scientific Medical Device Limited | Electrosurgical device having a distal aperture |
US12042178B2 (en) | 2020-07-21 | 2024-07-23 | Boston Scientific Medical Device Limited | System of medical devices and method for pericardial puncture |
US12082792B2 (en) | 2020-02-25 | 2024-09-10 | Boston Scientific Medical Device Limited | Systems and methods for creating a puncture between aorta and the left atrium |
Families Citing this family (145)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6703418B2 (en) * | 1991-02-26 | 2004-03-09 | Unimed Pharmaceuticals, Inc. | Appetite stimulation and induction of weight gain in patients suffering from symptomatic HIV infection |
US7066924B1 (en) * | 1997-11-12 | 2006-06-27 | Stereotaxis, Inc. | Method of and apparatus for navigating medical devices in body lumens by a guide wire with a magnetic tip |
US7670327B2 (en) * | 2000-01-20 | 2010-03-02 | Regents Of The University Of Minnesota | Catheter systems for delivery of agents and related method thereof |
US6401723B1 (en) * | 2000-02-16 | 2002-06-11 | Stereotaxis, Inc. | Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments |
US6961608B2 (en) * | 2000-06-05 | 2005-11-01 | Kabushiki Kaisha Toshiba | Interventional MR imaging with detection and display of device position |
US7635342B2 (en) * | 2001-05-06 | 2009-12-22 | Stereotaxis, Inc. | System and methods for medical device advancement and rotation |
EP1389958B1 (en) | 2001-05-06 | 2008-10-29 | Stereotaxis, Inc. | System for advancing a catheter |
US7766856B2 (en) | 2001-05-06 | 2010-08-03 | Stereotaxis, Inc. | System and methods for advancing a catheter |
DE10203371A1 (en) * | 2002-01-29 | 2003-08-07 | Siemens Ag | Intravascular catheter with magnetic component in tip, allows magnetic field generated to be varied after introducing catheter into patient |
GB0209892D0 (en) * | 2002-04-30 | 2002-06-05 | Oxford Instr Superconductivity | Imaging assembly |
US7769427B2 (en) * | 2002-07-16 | 2010-08-03 | Magnetics, Inc. | Apparatus and method for catheter guidance control and imaging |
US7338433B2 (en) | 2002-08-13 | 2008-03-04 | Allergan, Inc. | Remotely adjustable gastric banding method |
EP2181655B1 (en) | 2002-08-28 | 2016-12-07 | Apollo Endosurgery, Inc. | Fatigue-restistant gastric banding device |
DE10240960A1 (en) * | 2002-09-05 | 2004-03-18 | Philips Intellectual Property & Standards Gmbh | Catheters, especially for use in MR imaging |
AU2003295741A1 (en) | 2002-11-18 | 2004-06-15 | Stereotaxis, Inc. | Magnetically navigable balloon catheters |
DE10255957B4 (en) * | 2002-11-29 | 2010-09-09 | Siemens Ag | Medical examination and / or treatment system |
JP2006519041A (en) * | 2003-02-28 | 2006-08-24 | シェーラー メイフィールド テクノロジーズ ゲーエムベーハ | Device for tracking object orientation, operation and guidance, and method for operation of marking device |
DE10313868B4 (en) * | 2003-03-21 | 2009-11-19 | Siemens Ag | Catheter for magnetic navigation |
US6980843B2 (en) * | 2003-05-21 | 2005-12-27 | Stereotaxis, Inc. | Electrophysiology catheter |
US7280863B2 (en) * | 2003-10-20 | 2007-10-09 | Magnetecs, Inc. | System and method for radar-assisted catheter guidance and control |
US20050182315A1 (en) * | 2003-11-07 | 2005-08-18 | Ritter Rogers C. | Magnetic resonance imaging and magnetic navigation systems and methods |
DE10354496B4 (en) * | 2003-11-21 | 2011-03-31 | Siemens Ag | Medical examination and / or treatment system |
US7912531B1 (en) * | 2003-12-17 | 2011-03-22 | Advanced Cardiovascular Systems, Inc. | Magnetic resonance imaging coils |
ES2399951T3 (en) | 2004-01-23 | 2013-04-04 | Allergan, Inc. | Adjustable gastric band of a piece that can be fixed releasably |
EP2145610A1 (en) | 2004-03-08 | 2010-01-20 | Allergan Medical S.A. | Closure system for tubular organs |
US7811294B2 (en) * | 2004-03-08 | 2010-10-12 | Mediguide Ltd. | Automatic guidewire maneuvering system and method |
ES2368149T3 (en) | 2004-03-18 | 2011-11-14 | Allergan, Inc. | APPARATUS FOR ADJUSTMENT OF THE VOLUME OF INTRAGASTRIC BALLOONS. |
US20060041181A1 (en) | 2004-06-04 | 2006-02-23 | Viswanathan Raju R | User interface for remote control of medical devices |
US20060036163A1 (en) * | 2004-07-19 | 2006-02-16 | Viswanathan Raju R | Method of, and apparatus for, controlling medical navigation systems |
EP4197447A1 (en) | 2004-08-16 | 2023-06-21 | Corindus, Inc. | Image-guided navigation for catheter-based interventions |
US7831294B2 (en) | 2004-10-07 | 2010-11-09 | Stereotaxis, Inc. | System and method of surgical imagining with anatomical overlay for navigation of surgical devices |
US8251888B2 (en) | 2005-04-13 | 2012-08-28 | Mitchell Steven Roslin | Artificial gastric valve |
US20060247522A1 (en) * | 2005-04-28 | 2006-11-02 | Boston Scientific Scimed, Inc. | Magnetic navigation systems with dynamic mechanically manipulatable catheters |
US7742803B2 (en) * | 2005-05-06 | 2010-06-22 | Stereotaxis, Inc. | Voice controlled user interface for remote navigation systems |
WO2006121974A2 (en) * | 2005-05-06 | 2006-11-16 | Stereotaxis, Inc. | User interfaces and navigation methods for vascular navigation |
US8027714B2 (en) | 2005-05-27 | 2011-09-27 | Magnetecs, Inc. | Apparatus and method for shaped magnetic field control for catheter, guidance, control, and imaging |
US20070038065A1 (en) * | 2005-07-07 | 2007-02-15 | Creighton Francis M Iv | Operation of a remote medical navigation system using ultrasound image |
US20070021744A1 (en) * | 2005-07-07 | 2007-01-25 | Creighton Francis M Iv | Apparatus and method for performing ablation with imaging feedback |
US7603905B2 (en) * | 2005-07-08 | 2009-10-20 | Stereotaxis, Inc. | Magnetic navigation and imaging system |
US7690619B2 (en) * | 2005-07-12 | 2010-04-06 | Stereotaxis, Inc. | Apparatus for pivotally orienting a projection device |
US7416335B2 (en) * | 2005-07-15 | 2008-08-26 | Sterotaxis, Inc. | Magnetically shielded x-ray tube |
US8192374B2 (en) * | 2005-07-18 | 2012-06-05 | Stereotaxis, Inc. | Estimation of contact force by a medical device |
US20070043455A1 (en) * | 2005-07-26 | 2007-02-22 | Viswanathan Raju R | Apparatus and methods for automated sequential movement control for operation of a remote navigation system |
US20070040670A1 (en) * | 2005-07-26 | 2007-02-22 | Viswanathan Raju R | System and network for remote medical procedures |
US8784336B2 (en) | 2005-08-24 | 2014-07-22 | C. R. Bard, Inc. | Stylet apparatuses and methods of manufacture |
US20070055124A1 (en) * | 2005-09-01 | 2007-03-08 | Viswanathan Raju R | Method and system for optimizing left-heart lead placement |
US8862200B2 (en) | 2005-12-30 | 2014-10-14 | DePuy Synthes Products, LLC | Method for determining a position of a magnetic source |
US7525309B2 (en) | 2005-12-30 | 2009-04-28 | Depuy Products, Inc. | Magnetic sensor array |
US8043206B2 (en) | 2006-01-04 | 2011-10-25 | Allergan, Inc. | Self-regulating gastric band with pressure data processing |
US7798954B2 (en) | 2006-01-04 | 2010-09-21 | Allergan, Inc. | Hydraulic gastric band with collapsible reservoir |
US7869854B2 (en) * | 2006-02-23 | 2011-01-11 | Magnetecs, Inc. | Apparatus for magnetically deployable catheter with MOSFET sensor and method for mapping and ablation |
US8526688B2 (en) * | 2006-03-09 | 2013-09-03 | General Electric Company | Methods and systems for registration of surgical navigation data and image data |
US20070255086A1 (en) * | 2006-04-26 | 2007-11-01 | Nehls Robert J | Medical Device Including Magnetic Particles |
DE102006029455B4 (en) * | 2006-06-27 | 2009-06-25 | Erbe Elektromedizin Gmbh | Device for the treatment of human or animal tissue |
WO2008003059A2 (en) | 2006-06-28 | 2008-01-03 | Stereotaxis, Inc. | Electrostriction devices and methods for assisted magnetic navigation |
US8197494B2 (en) * | 2006-09-08 | 2012-06-12 | Corpak Medsystems, Inc. | Medical device position guidance system with wireless connectivity between a noninvasive device and an invasive device |
US7794407B2 (en) | 2006-10-23 | 2010-09-14 | Bard Access Systems, Inc. | Method of locating the tip of a central venous catheter |
US8388546B2 (en) | 2006-10-23 | 2013-03-05 | Bard Access Systems, Inc. | Method of locating the tip of a central venous catheter |
US8068648B2 (en) | 2006-12-21 | 2011-11-29 | Depuy Products, Inc. | Method and system for registering a bone of a patient with a computer assisted orthopaedic surgery system |
US20080249395A1 (en) * | 2007-04-06 | 2008-10-09 | Yehoshua Shachar | Method and apparatus for controlling catheter positioning and orientation |
US8715195B2 (en) * | 2007-04-11 | 2014-05-06 | Elcam Medical Agricultural Cooperative | System and method for accurate placement of a catheter tip in a patient |
US10751509B2 (en) | 2007-11-26 | 2020-08-25 | C. R. Bard, Inc. | Iconic representations for guidance of an indwelling medical device |
US8781555B2 (en) | 2007-11-26 | 2014-07-15 | C. R. Bard, Inc. | System for placement of a catheter including a signal-generating stylet |
US9521961B2 (en) | 2007-11-26 | 2016-12-20 | C. R. Bard, Inc. | Systems and methods for guiding a medical instrument |
US10524691B2 (en) | 2007-11-26 | 2020-01-07 | C. R. Bard, Inc. | Needle assembly including an aligned magnetic element |
US10449330B2 (en) | 2007-11-26 | 2019-10-22 | C. R. Bard, Inc. | Magnetic element-equipped needle assemblies |
US9649048B2 (en) | 2007-11-26 | 2017-05-16 | C. R. Bard, Inc. | Systems and methods for breaching a sterile field for intravascular placement of a catheter |
AU2008329807B2 (en) | 2007-11-26 | 2014-02-27 | C. R. Bard, Inc. | Integrated system for intravascular placement of a catheter |
US9456766B2 (en) | 2007-11-26 | 2016-10-04 | C. R. Bard, Inc. | Apparatus for use with needle insertion guidance system |
US8849382B2 (en) | 2007-11-26 | 2014-09-30 | C. R. Bard, Inc. | Apparatus and display methods relating to intravascular placement of a catheter |
US8478382B2 (en) | 2008-02-11 | 2013-07-02 | C. R. Bard, Inc. | Systems and methods for positioning a catheter |
US20090275828A1 (en) * | 2008-05-01 | 2009-11-05 | Magnetecs, Inc. | Method and apparatus for creating a high resolution map of the electrical and mechanical properties of the heart |
WO2009152122A1 (en) | 2008-06-11 | 2009-12-17 | Allergan, Inc. | Implantable pump system |
EP2392250A3 (en) * | 2008-06-19 | 2012-09-19 | Olympus Medical Systems Corporation | Magnetically guiding system and magnetically guiding method |
EP2313143B1 (en) | 2008-08-22 | 2014-09-24 | C.R. Bard, Inc. | Catheter assembly including ecg sensor and magnetic assemblies |
WO2010042493A1 (en) | 2008-10-06 | 2010-04-15 | Allergan, Inc. | Mechanical gastric band with cushions |
US8437833B2 (en) | 2008-10-07 | 2013-05-07 | Bard Access Systems, Inc. | Percutaneous magnetic gastrostomy |
US20100185049A1 (en) | 2008-10-22 | 2010-07-22 | Allergan, Inc. | Dome and screw valves for remotely adjustable gastric banding systems |
US8457714B2 (en) | 2008-11-25 | 2013-06-04 | Magnetecs, Inc. | System and method for a catheter impedance seeking device |
EP2208505A1 (en) * | 2009-01-15 | 2010-07-21 | Koninklijke Philips Electronics N.V. | Catheter being usable in a magnetic resonance imaging system |
US8611984B2 (en) | 2009-04-08 | 2013-12-17 | Covidien Lp | Locatable catheter |
US9532724B2 (en) | 2009-06-12 | 2017-01-03 | Bard Access Systems, Inc. | Apparatus and method for catheter navigation using endovascular energy mapping |
ES2745861T3 (en) | 2009-06-12 | 2020-03-03 | Bard Access Systems Inc | Apparatus, computer-aided data-processing algorithm, and computer storage medium for positioning an endovascular device in or near the heart |
WO2011019760A2 (en) | 2009-08-10 | 2011-02-17 | Romedex International Srl | Devices and methods for endovascular electrography |
EP2517622A3 (en) | 2009-09-29 | 2013-04-24 | C. R. Bard, Inc. | Stylets for use with apparatus for intravascular placement of a catheter |
US10639008B2 (en) | 2009-10-08 | 2020-05-05 | C. R. Bard, Inc. | Support and cover structures for an ultrasound probe head |
US11103213B2 (en) | 2009-10-08 | 2021-08-31 | C. R. Bard, Inc. | Spacers for use with an ultrasound probe |
US20110092808A1 (en) * | 2009-10-20 | 2011-04-21 | Magnetecs, Inc. | Method for acquiring high density mapping data with a catheter guidance system |
US20110091853A1 (en) * | 2009-10-20 | 2011-04-21 | Magnetecs, Inc. | Method for simulating a catheter guidance system for control, development and training applications |
US20110112396A1 (en) | 2009-11-09 | 2011-05-12 | Magnetecs, Inc. | System and method for targeting catheter electrodes |
ES2811107T3 (en) | 2010-02-02 | 2021-03-10 | Bard Inc C R | Apparatus and method for catheter conduction and tip localization |
US8678993B2 (en) | 2010-02-12 | 2014-03-25 | Apollo Endosurgery, Inc. | Remotely adjustable gastric banding system |
US8758221B2 (en) | 2010-02-24 | 2014-06-24 | Apollo Endosurgery, Inc. | Source reservoir with potential energy for remotely adjustable gastric banding system |
US8764624B2 (en) | 2010-02-25 | 2014-07-01 | Apollo Endosurgery, Inc. | Inductively powered remotely adjustable gastric banding system |
US8840541B2 (en) | 2010-02-25 | 2014-09-23 | Apollo Endosurgery, Inc. | Pressure sensing gastric banding system |
US9265422B2 (en) | 2010-04-27 | 2016-02-23 | Apollo Endosurgery, Inc. | System and method for determining an adjustment to a gastric band based on satiety state data and weight loss data |
US9028394B2 (en) | 2010-04-29 | 2015-05-12 | Apollo Endosurgery, Inc. | Self-adjusting mechanical gastric band |
US20110270024A1 (en) | 2010-04-29 | 2011-11-03 | Allergan, Inc. | Self-adjusting gastric band having various compliant components |
US9044298B2 (en) | 2010-04-29 | 2015-06-02 | Apollo Endosurgery, Inc. | Self-adjusting gastric band |
US20110270025A1 (en) | 2010-04-30 | 2011-11-03 | Allergan, Inc. | Remotely powered remotely adjustable gastric band system |
EP2575610B1 (en) | 2010-05-28 | 2022-10-05 | C. R. Bard, Inc. | Insertion guidance system for needles and medical components |
US9226840B2 (en) | 2010-06-03 | 2016-01-05 | Apollo Endosurgery, Inc. | Magnetically coupled implantable pump system and method |
US8517915B2 (en) | 2010-06-10 | 2013-08-27 | Allergan, Inc. | Remotely adjustable gastric banding system |
CN103025378B (en) | 2010-07-13 | 2015-10-07 | 蓝带技术公司 | With the method and apparatus of Rhizoma Atractylodis Macrocephalae cardiac tissue injection |
US9211207B2 (en) | 2010-08-18 | 2015-12-15 | Apollo Endosurgery, Inc. | Power regulated implant |
US8698373B2 (en) | 2010-08-18 | 2014-04-15 | Apollo Endosurgery, Inc. | Pare piezo power with energy recovery |
MX338127B (en) | 2010-08-20 | 2016-04-04 | Bard Inc C R | Reconfirmation of ecg-assisted catheter tip placement. |
US20120059216A1 (en) | 2010-09-07 | 2012-03-08 | Allergan, Inc. | Remotely adjustable gastric banding system |
CN103189009B (en) | 2010-10-29 | 2016-09-07 | C·R·巴德股份有限公司 | The bio-impedance auxiliary of Medical Devices is placed |
US8961393B2 (en) | 2010-11-15 | 2015-02-24 | Apollo Endosurgery, Inc. | Gastric band devices and drive systems |
DE102010051684B4 (en) | 2010-11-17 | 2022-11-10 | Follak Matthias | Magnet-assisted navigation system for vascular catheterization |
US8792962B2 (en) * | 2010-12-30 | 2014-07-29 | Biosense Webster, Inc. | Catheter with single axial sensors |
KR20140051284A (en) | 2011-07-06 | 2014-04-30 | 씨. 알. 바드, 인크. | Needle length determination and calibration for insertion guidance system |
USD724745S1 (en) | 2011-08-09 | 2015-03-17 | C. R. Bard, Inc. | Cap for an ultrasound probe |
USD699359S1 (en) | 2011-08-09 | 2014-02-11 | C. R. Bard, Inc. | Ultrasound probe head |
PL2939601T3 (en) | 2011-09-06 | 2019-04-30 | Ezono Ag | Magnetic medical device |
US9211107B2 (en) | 2011-11-07 | 2015-12-15 | C. R. Bard, Inc. | Ruggedized ultrasound hydrogel insert |
US8876694B2 (en) | 2011-12-07 | 2014-11-04 | Apollo Endosurgery, Inc. | Tube connector with a guiding tip |
US8961394B2 (en) | 2011-12-20 | 2015-02-24 | Apollo Endosurgery, Inc. | Self-sealing fluid joint for use with a gastric band |
US10744320B2 (en) * | 2012-04-27 | 2020-08-18 | Medtronic, Inc. | Magnetic field detector for implantable medical devices |
US10820885B2 (en) | 2012-06-15 | 2020-11-03 | C. R. Bard, Inc. | Apparatus and methods for detection of a removable cap on an ultrasound probe |
DE102012017871A1 (en) * | 2012-09-06 | 2014-03-06 | Institut Dr. Foerster Gmbh & Co. Kg | Differential sensor and method for detecting anomalies in electrically conductive materials |
US9257220B2 (en) | 2013-03-05 | 2016-02-09 | Ezono Ag | Magnetization device and method |
US9459087B2 (en) | 2013-03-05 | 2016-10-04 | Ezono Ag | Magnetic position detection system |
GB201303917D0 (en) | 2013-03-05 | 2013-04-17 | Ezono Ag | System for image guided procedure |
US10335042B2 (en) * | 2013-06-28 | 2019-07-02 | Cardiovascular Systems, Inc. | Methods, devices and systems for sensing, measuring and/or characterizing vessel and/or lesion compliance and/or elastance changes during vascular procedures |
EP3073910B1 (en) | 2014-02-06 | 2020-07-15 | C.R. Bard, Inc. | Systems for guidance and placement of an intravascular device |
US10091594B2 (en) | 2014-07-29 | 2018-10-02 | Cochlear Limited | Bone conduction magnetic retention system |
US10973584B2 (en) | 2015-01-19 | 2021-04-13 | Bard Access Systems, Inc. | Device and method for vascular access |
US10130807B2 (en) | 2015-06-12 | 2018-11-20 | Cochlear Limited | Magnet management MRI compatibility |
US10349890B2 (en) | 2015-06-26 | 2019-07-16 | C. R. Bard, Inc. | Connector interface for ECG-based catheter positioning system |
US20160381473A1 (en) | 2015-06-26 | 2016-12-29 | Johan Gustafsson | Magnetic retention device |
US10917730B2 (en) * | 2015-09-14 | 2021-02-09 | Cochlear Limited | Retention magnet system for medical device |
US11000207B2 (en) | 2016-01-29 | 2021-05-11 | C. R. Bard, Inc. | Multiple coil system for tracking a medical device |
US10327667B2 (en) * | 2016-05-13 | 2019-06-25 | Becton, Dickinson And Company | Electro-magnetic needle catheter insertion system |
US10478254B2 (en) | 2016-05-16 | 2019-11-19 | Covidien Lp | System and method to access lung tissue |
US10391274B2 (en) | 2016-07-07 | 2019-08-27 | Brian Giles | Medical device with distal torque control |
US9918705B2 (en) | 2016-07-07 | 2018-03-20 | Brian Giles | Medical devices with distal control |
US11595768B2 (en) | 2016-12-02 | 2023-02-28 | Cochlear Limited | Retention force increasing components |
US11219489B2 (en) | 2017-10-31 | 2022-01-11 | Covidien Lp | Devices and systems for providing sensors in parallel with medical tools |
CN108186017B (en) * | 2017-11-30 | 2020-10-02 | 北京理工大学 | Detection system and method for determining in-vivo pose of endoscope capsule |
US11759566B2 (en) | 2018-05-31 | 2023-09-19 | University Of Virginia Patent Foundation | Distribution system for flow control of infusate from branch catheters to selected site |
CN112867443B (en) | 2018-10-16 | 2024-04-26 | 巴德阿克塞斯系统股份有限公司 | Safety equipment connection system for establishing electrical connection and method thereof |
US20220175481A1 (en) * | 2019-03-21 | 2022-06-09 | Arizona Board Of Regents On Behalf Of Arizona State University | Magnetic needle steering systems and methods |
US11975157B2 (en) | 2019-04-12 | 2024-05-07 | Covidien Lp | Method of manufacturing an elongated catheter having multiple sensors for three-dimensional location of the catheter |
Citations (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4674515A (en) * | 1984-10-26 | 1987-06-23 | Olympus Optical Co., Ltd. | Ultrasonic endoscope |
US4809713A (en) * | 1987-10-28 | 1989-03-07 | Joseph Grayzel | Catheter with magnetic fixation |
US4869247A (en) * | 1988-03-11 | 1989-09-26 | The University Of Virginia Alumni Patents Foundation | Video tumor fighting system |
US5211165A (en) * | 1991-09-03 | 1993-05-18 | General Electric Company | Tracking system to follow the position and orientation of a device with radiofrequency field gradients |
US5375596A (en) * | 1992-09-29 | 1994-12-27 | Hdc Corporation | Method and apparatus for determining the position of catheters, tubes, placement guidewires and implantable ports within biological tissue |
US5558091A (en) * | 1993-10-06 | 1996-09-24 | Biosense, Inc. | Magnetic determination of position and orientation |
US5592939A (en) * | 1995-06-14 | 1997-01-14 | Martinelli; Michael A. | Method and system for navigating a catheter probe |
US5606980A (en) * | 1994-01-31 | 1997-03-04 | Cordis Corporation | Magnetic device for use with medical catheters and method |
US5622169A (en) * | 1993-09-14 | 1997-04-22 | University Of Washington | Apparatus and method for locating a medical tube in the body of a patient |
US5645065A (en) * | 1991-09-04 | 1997-07-08 | Navion Biomedical Corporation | Catheter depth, position and orientation location system |
US5707334A (en) * | 1995-08-21 | 1998-01-13 | Young; Robert B. | Method of treating amygdala related transitory disorders |
US5713858A (en) * | 1995-04-28 | 1998-02-03 | Medtronic, Inc. | Permanently implantable guiding catheter |
US5715822A (en) * | 1995-09-28 | 1998-02-10 | General Electric Company | Magnetic resonance devices suitable for both tracking and imaging |
US5729129A (en) * | 1995-06-07 | 1998-03-17 | Biosense, Inc. | Magnetic location system with feedback adjustment of magnetic field generator |
US5727553A (en) * | 1996-03-25 | 1998-03-17 | Saad; Saad A. | Catheter with integral electromagnetic location identification device |
US5728079A (en) * | 1994-09-19 | 1998-03-17 | Cordis Corporation | Catheter which is visible under MRI |
US5730129A (en) * | 1995-04-03 | 1998-03-24 | General Electric Company | Imaging of interventional devices in a non-stationary subject |
US5735795A (en) * | 1995-07-20 | 1998-04-07 | Picker International, Inc. | Marker for magnetic resonance imaging |
US5749835A (en) * | 1994-09-06 | 1998-05-12 | Sims Deltec, Inc. | Method and apparatus for location of a catheter tip |
US5752513A (en) * | 1995-06-07 | 1998-05-19 | Biosense, Inc. | Method and apparatus for determining position of object |
US5762064A (en) * | 1995-01-23 | 1998-06-09 | Northrop Grumman Corporation | Medical magnetic positioning system and method for determining the position of a magnetic probe |
US5779694A (en) * | 1990-01-10 | 1998-07-14 | The University Of Virginia Alumni Patents Foundation | Magnetic stereotactic system for treatment delivery |
US5787866A (en) * | 1996-04-12 | 1998-08-04 | Denso Corporation | Air-fuel ratio sensor |
US5797849A (en) * | 1995-03-28 | 1998-08-25 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
US5800352A (en) * | 1994-09-15 | 1998-09-01 | Visualization Technology, Inc. | Registration system for use with position tracking and imaging system for use in medical applications |
US5810728A (en) * | 1993-04-03 | 1998-09-22 | U.S. Philips Corporation | MR imaging method and apparatus for guiding a catheter |
US5817017A (en) * | 1994-04-12 | 1998-10-06 | Pharmacyclics, Inc. | Medical devices and materials having enhanced magnetic images visibility |
US5819737A (en) * | 1995-10-13 | 1998-10-13 | Picker International, Inc. | Magnetic resonance methods and apparatus |
US5840031A (en) * | 1993-07-01 | 1998-11-24 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials and ablating tissue |
US5843153A (en) * | 1997-07-15 | 1998-12-01 | Sulzer Intermedics Inc. | Steerable endocardial lead using magnetostrictive material and a magnetic field |
US5843076A (en) * | 1995-06-12 | 1998-12-01 | Cordis Webster, Inc. | Catheter with an electromagnetic guidance sensor |
US5845646A (en) * | 1996-11-05 | 1998-12-08 | Lemelson; Jerome | System and method for treating select tissue in a living being |
US5865744A (en) * | 1996-09-16 | 1999-02-02 | Lemelson; Jerome H. | Method and system for delivering therapeutic agents |
US5868674A (en) * | 1995-11-24 | 1999-02-09 | U.S. Philips Corporation | MRI-system and catheter for interventional procedures |
US5873865A (en) * | 1997-02-07 | 1999-02-23 | Eclipse Surgical Technologies, Inc. | Spiral catheter with multiple guide holes |
US5879297A (en) * | 1997-05-08 | 1999-03-09 | Lucent Medical Systems, Inc. | System and method to determine the location and orientation of an indwelling medical device |
US5882304A (en) * | 1997-10-27 | 1999-03-16 | Picker Nordstar Corporation | Method and apparatus for determining probe location |
US5883603A (en) * | 1996-09-09 | 1999-03-16 | Hyundai Electronics Industries Co. Ltd. | Method for adjusting radiation direction of antenna |
US5895401A (en) * | 1995-08-24 | 1999-04-20 | Daum Gmbh | Controlled-artifact magnetic resonance instruments |
US5897529A (en) * | 1997-09-05 | 1999-04-27 | Cordis Webster, Inc. | Steerable deflectable catheter having improved flexibility |
US5902238A (en) * | 1993-09-14 | 1999-05-11 | University Of Washington | Medical tube and apparatus for locating the same in the body of a patient |
US5906579A (en) * | 1996-08-16 | 1999-05-25 | Smith & Nephew Endoscopy, Inc. | Through-wall catheter steering and positioning |
US5908410A (en) * | 1995-11-23 | 1999-06-01 | Cordis Europa, N.V. | Medical device with improved imaging marker for magnetic resonance imaging |
US5913820A (en) * | 1992-08-14 | 1999-06-22 | British Telecommunications Public Limited Company | Position location system |
US5916162A (en) * | 1996-09-02 | 1999-06-29 | U.S. Philips Corporation | Invasive device for use in a magnetic resonance imaging apparatus |
US5919244A (en) * | 1993-07-28 | 1999-07-06 | Zf Friedrichshafen Ag | Desired performance input fuzzy logic control system for automatic transmissions |
US5930329A (en) * | 1997-09-22 | 1999-07-27 | Siemens Corporate Research, Inc. | Apparatus and method for detection and localization of a biopsy needle or similar surgical tool in a radiographic image |
US5938603A (en) * | 1997-12-01 | 1999-08-17 | Cordis Webster, Inc. | Steerable catheter with electromagnetic sensor |
US5938602A (en) * | 1996-06-11 | 1999-08-17 | Roke Manor Research Limited | Catheter tracking system and method |
US5938599A (en) * | 1995-11-24 | 1999-08-17 | U.S. Philips Corporation | MR method and arrangement for carrying out the method |
US5941858A (en) * | 1994-07-28 | 1999-08-24 | Sims Deltec, Inc. | Medical device for insertion into the body |
US5947900A (en) * | 1998-04-13 | 1999-09-07 | General Electric Company | Dynamic scan plane tracking using MR position monitoring |
US5947940A (en) * | 1997-06-23 | 1999-09-07 | Beisel; Robert F. | Catheter reinforced to prevent luminal collapse and tensile failure thereof |
US5951881A (en) * | 1996-07-22 | 1999-09-14 | President And Fellows Of Harvard College | Fabrication of small-scale cylindrical articles |
US5951472A (en) * | 1996-11-04 | 1999-09-14 | U.S. Philips Corporation | MR system and invasive device for interventional procedures |
US5951566A (en) * | 1997-01-02 | 1999-09-14 | Lev; Shlomo | Annular catheter |
US5952825A (en) * | 1997-08-14 | 1999-09-14 | Honeywell Inc. | Magnetic field sensing device having integral coils for producing magnetic fields |
US5959613A (en) * | 1995-12-01 | 1999-09-28 | Immersion Corporation | Method and apparatus for shaping force signals for a force feedback device |
US5964757A (en) * | 1997-09-05 | 1999-10-12 | Cordis Webster, Inc. | Steerable direct myocardial revascularization catheter |
US5964705A (en) * | 1997-08-22 | 1999-10-12 | Image-Guided Drug Delivery System, Inc. | MR-compatible medical devices |
US5967980A (en) * | 1994-09-15 | 1999-10-19 | Visualization Technology, Inc. | Position tracking and imaging system for use in medical applications |
US5983126A (en) * | 1995-11-22 | 1999-11-09 | Medtronic, Inc. | Catheter location system and method |
US5991737A (en) * | 1996-03-11 | 1999-11-23 | Connexus Corporation | Automated consumer response to publicly broadcast information |
US5994023A (en) * | 1996-07-19 | 1999-11-30 | Agfa-Gevaert, N.V. | Acid-sensitive substance and photosensitive compositions therewith |
US5997473A (en) * | 1996-09-06 | 1999-12-07 | Olympus Optical Co., Ltd. | Method of locating a coil which consists of determining the space occupied by a source coil generating a magnetic field |
US6002963A (en) * | 1995-02-17 | 1999-12-14 | Pacesetter, Inc. | Multi-axial accelerometer-based sensor for an implantable medical device and method of measuring motion measurements therefor |
US6006127A (en) * | 1997-02-28 | 1999-12-21 | U.S. Philips Corporation | Image-guided surgery system |
US6013038A (en) * | 1995-01-10 | 2000-01-11 | Advanced Cardiovascular Systems, Inc. | Magnetic guidewire anchoring apparatus and method for facilitating exchange of an over-the-wire catheter |
US6014580A (en) * | 1997-11-12 | 2000-01-11 | Stereotaxis, Inc. | Device and method for specifying magnetic field for surgical applications |
US6015414A (en) * | 1997-08-29 | 2000-01-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter |
US6019725A (en) * | 1997-03-07 | 2000-02-01 | Sonometrics Corporation | Three-dimensional tracking and imaging system |
US6019737A (en) * | 1997-03-31 | 2000-02-01 | Terumo Kabushiki Kaisha | Guide wire |
US6019276A (en) * | 1995-01-10 | 2000-02-01 | Auclair; Jean-Michel | Carton |
US6023636A (en) * | 1997-06-25 | 2000-02-08 | Siemens Aktiengesellschaft | Magnetic resonance apparatus and method for determining the location of a positionable object in a subject |
US6058323A (en) * | 1996-11-05 | 2000-05-02 | Lemelson; Jerome | System and method for treating select tissue in a living being |
US6083166A (en) * | 1997-12-02 | 2000-07-04 | Situs Corporation | Method and apparatus for determining a measure of tissue manipulation |
US6128174A (en) * | 1997-08-29 | 2000-10-03 | Stereotaxis, Inc. | Method and apparatus for rapidly changing a magnetic field produced by electromagnets |
US6157853A (en) * | 1997-11-12 | 2000-12-05 | Stereotaxis, Inc. | Method and apparatus using shaped field of repositionable magnet to guide implant |
US6173199B1 (en) * | 1998-05-05 | 2001-01-09 | Syncro Medical Innovations, Inc. | Method and apparatus for intubation of a patient |
US6216026B1 (en) * | 1997-08-20 | 2001-04-10 | U.S. Philips Corporation | Method of navigating a magnetic object, and MR device |
US6275722B1 (en) * | 1999-07-29 | 2001-08-14 | Philips Electronics North America Corporation | Methods and apparatus for magnetic resonance imaging with RF coil sweeping |
US6292678B1 (en) * | 1999-05-13 | 2001-09-18 | Stereotaxis, Inc. | Method of magnetically navigating medical devices with magnetic fields and gradients, and medical devices adapted therefor |
US6304769B1 (en) * | 1997-10-16 | 2001-10-16 | The Regents Of The University Of California | Magnetically directable remote guidance systems, and methods of use thereof |
US6401723B1 (en) * | 2000-02-16 | 2002-06-11 | Stereotaxis, Inc. | Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments |
US6522909B1 (en) * | 1998-08-07 | 2003-02-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling catheters in body lumens and cavities |
US6594517B1 (en) * | 1998-05-15 | 2003-07-15 | Robin Medical, Inc. | Method and apparatus for generating controlled torques on objects particularly objects inside a living body |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5647361A (en) * | 1992-09-28 | 1997-07-15 | Fonar Corporation | Magnetic resonance imaging method and apparatus for guiding invasive therapy |
US5919135A (en) | 1997-02-28 | 1999-07-06 | Lemelson; Jerome | System and method for treating cellular disorders in a living being |
US5921244A (en) | 1997-06-11 | 1999-07-13 | Light Sciences Limited Partnership | Internal magnetic device to enhance drug therapy |
US6212419B1 (en) * | 1997-11-12 | 2001-04-03 | Walter M. Blume | Method and apparatus using shaped field of repositionable magnet to guide implant |
US6505062B1 (en) * | 1998-02-09 | 2003-01-07 | Stereotaxis, Inc. | Method for locating magnetic implant by source field |
US6298259B1 (en) * | 1998-10-16 | 2001-10-02 | Univ Minnesota | Combined magnetic resonance imaging and magnetic stereotaxis surgical apparatus and processes |
US6241671B1 (en) * | 1998-11-03 | 2001-06-05 | Stereotaxis, Inc. | Open field system for magnetic surgery |
US6296604B1 (en) * | 1999-03-17 | 2001-10-02 | Stereotaxis, Inc. | Methods of and compositions for treating vascular defects |
US6372370B1 (en) * | 2000-01-19 | 2002-04-16 | The Gillette Company | Air recovery battery |
-
2001
- 2001-01-29 US US09/772,188 patent/US20020103430A1/en not_active Abandoned
-
2002
- 2002-01-28 AU AU2002255489A patent/AU2002255489A1/en not_active Abandoned
- 2002-01-28 WO PCT/US2002/002363 patent/WO2002074358A2/en not_active Application Discontinuation
-
2003
- 2003-05-05 US US10/429,524 patent/US6834201B2/en not_active Expired - Lifetime
-
2004
- 2004-11-10 US US10/985,340 patent/US20050119556A1/en not_active Abandoned
Patent Citations (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4674515A (en) * | 1984-10-26 | 1987-06-23 | Olympus Optical Co., Ltd. | Ultrasonic endoscope |
US4809713A (en) * | 1987-10-28 | 1989-03-07 | Joseph Grayzel | Catheter with magnetic fixation |
US4869247A (en) * | 1988-03-11 | 1989-09-26 | The University Of Virginia Alumni Patents Foundation | Video tumor fighting system |
US5779694A (en) * | 1990-01-10 | 1998-07-14 | The University Of Virginia Alumni Patents Foundation | Magnetic stereotactic system for treatment delivery |
US5211165A (en) * | 1991-09-03 | 1993-05-18 | General Electric Company | Tracking system to follow the position and orientation of a device with radiofrequency field gradients |
US5645065A (en) * | 1991-09-04 | 1997-07-08 | Navion Biomedical Corporation | Catheter depth, position and orientation location system |
US5913820A (en) * | 1992-08-14 | 1999-06-22 | British Telecommunications Public Limited Company | Position location system |
US5375596A (en) * | 1992-09-29 | 1994-12-27 | Hdc Corporation | Method and apparatus for determining the position of catheters, tubes, placement guidewires and implantable ports within biological tissue |
US5810728A (en) * | 1993-04-03 | 1998-09-22 | U.S. Philips Corporation | MR imaging method and apparatus for guiding a catheter |
US5840031A (en) * | 1993-07-01 | 1998-11-24 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials and ablating tissue |
US5919244A (en) * | 1993-07-28 | 1999-07-06 | Zf Friedrichshafen Ag | Desired performance input fuzzy logic control system for automatic transmissions |
US5622169A (en) * | 1993-09-14 | 1997-04-22 | University Of Washington | Apparatus and method for locating a medical tube in the body of a patient |
US5902238A (en) * | 1993-09-14 | 1999-05-11 | University Of Washington | Medical tube and apparatus for locating the same in the body of a patient |
US5833608A (en) * | 1993-10-06 | 1998-11-10 | Biosense, Inc. | Magnetic determination of position and orientation |
US5558091A (en) * | 1993-10-06 | 1996-09-24 | Biosense, Inc. | Magnetic determination of position and orientation |
US5606980A (en) * | 1994-01-31 | 1997-03-04 | Cordis Corporation | Magnetic device for use with medical catheters and method |
US5817017A (en) * | 1994-04-12 | 1998-10-06 | Pharmacyclics, Inc. | Medical devices and materials having enhanced magnetic images visibility |
US5941858A (en) * | 1994-07-28 | 1999-08-24 | Sims Deltec, Inc. | Medical device for insertion into the body |
US5749835A (en) * | 1994-09-06 | 1998-05-12 | Sims Deltec, Inc. | Method and apparatus for location of a catheter tip |
US5800352A (en) * | 1994-09-15 | 1998-09-01 | Visualization Technology, Inc. | Registration system for use with position tracking and imaging system for use in medical applications |
US5967980A (en) * | 1994-09-15 | 1999-10-19 | Visualization Technology, Inc. | Position tracking and imaging system for use in medical applications |
US5728079A (en) * | 1994-09-19 | 1998-03-17 | Cordis Corporation | Catheter which is visible under MRI |
US6019276A (en) * | 1995-01-10 | 2000-02-01 | Auclair; Jean-Michel | Carton |
US6013038A (en) * | 1995-01-10 | 2000-01-11 | Advanced Cardiovascular Systems, Inc. | Magnetic guidewire anchoring apparatus and method for facilitating exchange of an over-the-wire catheter |
US5762064A (en) * | 1995-01-23 | 1998-06-09 | Northrop Grumman Corporation | Medical magnetic positioning system and method for determining the position of a magnetic probe |
US6002963A (en) * | 1995-02-17 | 1999-12-14 | Pacesetter, Inc. | Multi-axial accelerometer-based sensor for an implantable medical device and method of measuring motion measurements therefor |
US5797849A (en) * | 1995-03-28 | 1998-08-25 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
US5730129A (en) * | 1995-04-03 | 1998-03-24 | General Electric Company | Imaging of interventional devices in a non-stationary subject |
US5713858A (en) * | 1995-04-28 | 1998-02-03 | Medtronic, Inc. | Permanently implantable guiding catheter |
US5752513A (en) * | 1995-06-07 | 1998-05-19 | Biosense, Inc. | Method and apparatus for determining position of object |
US5729129A (en) * | 1995-06-07 | 1998-03-17 | Biosense, Inc. | Magnetic location system with feedback adjustment of magnetic field generator |
US5843076A (en) * | 1995-06-12 | 1998-12-01 | Cordis Webster, Inc. | Catheter with an electromagnetic guidance sensor |
US5592939A (en) * | 1995-06-14 | 1997-01-14 | Martinelli; Michael A. | Method and system for navigating a catheter probe |
US5735795A (en) * | 1995-07-20 | 1998-04-07 | Picker International, Inc. | Marker for magnetic resonance imaging |
US5707334A (en) * | 1995-08-21 | 1998-01-13 | Young; Robert B. | Method of treating amygdala related transitory disorders |
US5895401A (en) * | 1995-08-24 | 1999-04-20 | Daum Gmbh | Controlled-artifact magnetic resonance instruments |
US5715822A (en) * | 1995-09-28 | 1998-02-10 | General Electric Company | Magnetic resonance devices suitable for both tracking and imaging |
US5819737A (en) * | 1995-10-13 | 1998-10-13 | Picker International, Inc. | Magnetic resonance methods and apparatus |
US5983126A (en) * | 1995-11-22 | 1999-11-09 | Medtronic, Inc. | Catheter location system and method |
US5908410A (en) * | 1995-11-23 | 1999-06-01 | Cordis Europa, N.V. | Medical device with improved imaging marker for magnetic resonance imaging |
US5868674A (en) * | 1995-11-24 | 1999-02-09 | U.S. Philips Corporation | MRI-system and catheter for interventional procedures |
US5938599A (en) * | 1995-11-24 | 1999-08-17 | U.S. Philips Corporation | MR method and arrangement for carrying out the method |
US5959613A (en) * | 1995-12-01 | 1999-09-28 | Immersion Corporation | Method and apparatus for shaping force signals for a force feedback device |
US5991737A (en) * | 1996-03-11 | 1999-11-23 | Connexus Corporation | Automated consumer response to publicly broadcast information |
US5727553A (en) * | 1996-03-25 | 1998-03-17 | Saad; Saad A. | Catheter with integral electromagnetic location identification device |
US5787866A (en) * | 1996-04-12 | 1998-08-04 | Denso Corporation | Air-fuel ratio sensor |
US5938602A (en) * | 1996-06-11 | 1999-08-17 | Roke Manor Research Limited | Catheter tracking system and method |
US5994023A (en) * | 1996-07-19 | 1999-11-30 | Agfa-Gevaert, N.V. | Acid-sensitive substance and photosensitive compositions therewith |
US5951881A (en) * | 1996-07-22 | 1999-09-14 | President And Fellows Of Harvard College | Fabrication of small-scale cylindrical articles |
US5906579A (en) * | 1996-08-16 | 1999-05-25 | Smith & Nephew Endoscopy, Inc. | Through-wall catheter steering and positioning |
US5916162A (en) * | 1996-09-02 | 1999-06-29 | U.S. Philips Corporation | Invasive device for use in a magnetic resonance imaging apparatus |
US5997473A (en) * | 1996-09-06 | 1999-12-07 | Olympus Optical Co., Ltd. | Method of locating a coil which consists of determining the space occupied by a source coil generating a magnetic field |
US5883603A (en) * | 1996-09-09 | 1999-03-16 | Hyundai Electronics Industries Co. Ltd. | Method for adjusting radiation direction of antenna |
US5865744A (en) * | 1996-09-16 | 1999-02-02 | Lemelson; Jerome H. | Method and system for delivering therapeutic agents |
US5951472A (en) * | 1996-11-04 | 1999-09-14 | U.S. Philips Corporation | MR system and invasive device for interventional procedures |
US6058323A (en) * | 1996-11-05 | 2000-05-02 | Lemelson; Jerome | System and method for treating select tissue in a living being |
US6233474B1 (en) * | 1996-11-05 | 2001-05-15 | Jerome Lemelson | System and method for treating select tissue in a living being |
US5845646A (en) * | 1996-11-05 | 1998-12-08 | Lemelson; Jerome | System and method for treating select tissue in a living being |
US5951566A (en) * | 1997-01-02 | 1999-09-14 | Lev; Shlomo | Annular catheter |
US5873865A (en) * | 1997-02-07 | 1999-02-23 | Eclipse Surgical Technologies, Inc. | Spiral catheter with multiple guide holes |
US6006127A (en) * | 1997-02-28 | 1999-12-21 | U.S. Philips Corporation | Image-guided surgery system |
US6019725A (en) * | 1997-03-07 | 2000-02-01 | Sonometrics Corporation | Three-dimensional tracking and imaging system |
US6019737A (en) * | 1997-03-31 | 2000-02-01 | Terumo Kabushiki Kaisha | Guide wire |
US5879297A (en) * | 1997-05-08 | 1999-03-09 | Lucent Medical Systems, Inc. | System and method to determine the location and orientation of an indwelling medical device |
US5947940A (en) * | 1997-06-23 | 1999-09-07 | Beisel; Robert F. | Catheter reinforced to prevent luminal collapse and tensile failure thereof |
US6023636A (en) * | 1997-06-25 | 2000-02-08 | Siemens Aktiengesellschaft | Magnetic resonance apparatus and method for determining the location of a positionable object in a subject |
US5843153A (en) * | 1997-07-15 | 1998-12-01 | Sulzer Intermedics Inc. | Steerable endocardial lead using magnetostrictive material and a magnetic field |
US5952825A (en) * | 1997-08-14 | 1999-09-14 | Honeywell Inc. | Magnetic field sensing device having integral coils for producing magnetic fields |
US6216026B1 (en) * | 1997-08-20 | 2001-04-10 | U.S. Philips Corporation | Method of navigating a magnetic object, and MR device |
US5964705A (en) * | 1997-08-22 | 1999-10-12 | Image-Guided Drug Delivery System, Inc. | MR-compatible medical devices |
US6015414A (en) * | 1997-08-29 | 2000-01-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter |
US6128174A (en) * | 1997-08-29 | 2000-10-03 | Stereotaxis, Inc. | Method and apparatus for rapidly changing a magnetic field produced by electromagnets |
US5964757A (en) * | 1997-09-05 | 1999-10-12 | Cordis Webster, Inc. | Steerable direct myocardial revascularization catheter |
US5897529A (en) * | 1997-09-05 | 1999-04-27 | Cordis Webster, Inc. | Steerable deflectable catheter having improved flexibility |
US5930329A (en) * | 1997-09-22 | 1999-07-27 | Siemens Corporate Research, Inc. | Apparatus and method for detection and localization of a biopsy needle or similar surgical tool in a radiographic image |
US6304769B1 (en) * | 1997-10-16 | 2001-10-16 | The Regents Of The University Of California | Magnetically directable remote guidance systems, and methods of use thereof |
US5882304A (en) * | 1997-10-27 | 1999-03-16 | Picker Nordstar Corporation | Method and apparatus for determining probe location |
US6014580A (en) * | 1997-11-12 | 2000-01-11 | Stereotaxis, Inc. | Device and method for specifying magnetic field for surgical applications |
US6157853A (en) * | 1997-11-12 | 2000-12-05 | Stereotaxis, Inc. | Method and apparatus using shaped field of repositionable magnet to guide implant |
US5938603A (en) * | 1997-12-01 | 1999-08-17 | Cordis Webster, Inc. | Steerable catheter with electromagnetic sensor |
US6083166A (en) * | 1997-12-02 | 2000-07-04 | Situs Corporation | Method and apparatus for determining a measure of tissue manipulation |
US5947900A (en) * | 1998-04-13 | 1999-09-07 | General Electric Company | Dynamic scan plane tracking using MR position monitoring |
US6173199B1 (en) * | 1998-05-05 | 2001-01-09 | Syncro Medical Innovations, Inc. | Method and apparatus for intubation of a patient |
US6594517B1 (en) * | 1998-05-15 | 2003-07-15 | Robin Medical, Inc. | Method and apparatus for generating controlled torques on objects particularly objects inside a living body |
US6522909B1 (en) * | 1998-08-07 | 2003-02-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling catheters in body lumens and cavities |
US6292678B1 (en) * | 1999-05-13 | 2001-09-18 | Stereotaxis, Inc. | Method of magnetically navigating medical devices with magnetic fields and gradients, and medical devices adapted therefor |
US6275722B1 (en) * | 1999-07-29 | 2001-08-14 | Philips Electronics North America Corporation | Methods and apparatus for magnetic resonance imaging with RF coil sweeping |
US6401723B1 (en) * | 2000-02-16 | 2002-06-11 | Stereotaxis, Inc. | Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments |
Cited By (119)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070287909A1 (en) * | 1998-08-07 | 2007-12-13 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling catheters in body lumens and cavities |
US20080047568A1 (en) * | 1999-10-04 | 2008-02-28 | Ritter Rogers C | Method for Safely and Efficiently Navigating Magnetic Devices in the Body |
US7757694B2 (en) | 1999-10-04 | 2010-07-20 | Stereotaxis, Inc. | Method for safely and efficiently navigating magnetic devices in the body |
US7771415B2 (en) | 1999-10-04 | 2010-08-10 | Stereotaxis, Inc. | Method for safely and efficiently navigating magnetic devices in the body |
US7966059B2 (en) | 1999-10-04 | 2011-06-21 | Stereotaxis, Inc. | Rotating and pivoting magnet for magnetic navigation |
US20080016677A1 (en) * | 2002-01-23 | 2008-01-24 | Stereotaxis, Inc. | Rotating and pivoting magnet for magnetic navigation |
US8060184B2 (en) * | 2002-06-28 | 2011-11-15 | Stereotaxis, Inc. | Method of navigating medical devices in the presence of radiopaque material |
US20080077007A1 (en) * | 2002-06-28 | 2008-03-27 | Hastings Roger N | Method of Navigating Medical Devices in the Presence of Radiopaque Material |
US8092450B2 (en) * | 2003-01-21 | 2012-01-10 | Baylis Medical Company Inc. | Magnetically guidable energy delivery apparatus and method of using same |
US20070123964A1 (en) * | 2003-01-21 | 2007-05-31 | Baylis Medical Company | Magnetically guidable energy delivery apparatus and method of using same |
US8196590B2 (en) | 2003-05-02 | 2012-06-12 | Stereotaxis, Inc. | Variable magnetic moment MR navigation |
US20050113812A1 (en) * | 2003-09-16 | 2005-05-26 | Viswanathan Raju R. | User interface for remote control of medical devices |
US7822464B2 (en) * | 2004-12-01 | 2010-10-26 | Siemens Aktiengesellschaft | Guidewire for vascular catheters |
US20060116571A1 (en) * | 2004-12-01 | 2006-06-01 | Siemens Aktiengesellschaft | Guidewire for vascular catheters |
US8369934B2 (en) | 2004-12-20 | 2013-02-05 | Stereotaxis, Inc. | Contact over-torque with three-dimensional anatomical data |
US7708696B2 (en) | 2005-01-11 | 2010-05-04 | Stereotaxis, Inc. | Navigation using sensed physiological data as feedback |
US20060270915A1 (en) * | 2005-01-11 | 2006-11-30 | Ritter Rogers C | Navigation using sensed physiological data as feedback |
US7961926B2 (en) | 2005-02-07 | 2011-06-14 | Stereotaxis, Inc. | Registration of three-dimensional image data to 2D-image-derived data |
US20070060992A1 (en) * | 2005-06-02 | 2007-03-15 | Carlo Pappone | Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery |
US9314222B2 (en) | 2005-07-07 | 2016-04-19 | Stereotaxis, Inc. | Operation of a remote medical navigation system using ultrasound image |
US7769444B2 (en) | 2005-07-11 | 2010-08-03 | Stereotaxis, Inc. | Method of treating cardiac arrhythmias |
US20070060966A1 (en) * | 2005-07-11 | 2007-03-15 | Carlo Pappone | Method of treating cardiac arrhythmias |
US20070016131A1 (en) * | 2005-07-12 | 2007-01-18 | Munger Gareth T | Flexible magnets for navigable medical devices |
US20070062547A1 (en) * | 2005-07-21 | 2007-03-22 | Carlo Pappone | Systems for and methods of tissue ablation |
US20070060829A1 (en) * | 2005-07-21 | 2007-03-15 | Carlo Pappone | Method of finding the source of and treating cardiac arrhythmias |
US7818076B2 (en) | 2005-07-26 | 2010-10-19 | Stereotaxis, Inc. | Method and apparatus for multi-system remote surgical navigation from a single control center |
US20070060962A1 (en) * | 2005-07-26 | 2007-03-15 | Carlo Pappone | Apparatus and methods for cardiac resynchronization therapy and cardiac contractility modulation |
US7772950B2 (en) | 2005-08-10 | 2010-08-10 | Stereotaxis, Inc. | Method and apparatus for dynamic magnetic field control using multiple magnets |
US20070167720A1 (en) * | 2005-12-06 | 2007-07-19 | Viswanathan Raju R | Smart card control of medical devices |
US20070149946A1 (en) * | 2005-12-07 | 2007-06-28 | Viswanathan Raju R | Advancer system for coaxial medical devices |
US20070161882A1 (en) * | 2006-01-06 | 2007-07-12 | Carlo Pappone | Electrophysiology catheter and system for gentle and firm wall contact |
US20070179492A1 (en) * | 2006-01-06 | 2007-08-02 | Carlo Pappone | Electrophysiology catheter and system for gentle and firm wall contact |
US20070197899A1 (en) * | 2006-01-17 | 2007-08-23 | Ritter Rogers C | Apparatus and method for magnetic navigation using boost magnets |
US20070197906A1 (en) * | 2006-01-24 | 2007-08-23 | Ritter Rogers C | Magnetic field shape-adjustable medical device and method of using the same |
US20070250041A1 (en) * | 2006-04-19 | 2007-10-25 | Werp Peter R | Extendable Interventional Medical Devices |
US20080039830A1 (en) * | 2006-08-14 | 2008-02-14 | Munger Gareth T | Method and Apparatus for Ablative Recanalization of Blocked Vasculature |
US7961924B2 (en) | 2006-08-21 | 2011-06-14 | Stereotaxis, Inc. | Method of three-dimensional device localization using single-plane imaging |
US7567233B2 (en) | 2006-09-06 | 2009-07-28 | Stereotaxis, Inc. | Global input device for multiple computer-controlled medical systems |
US20080064933A1 (en) * | 2006-09-06 | 2008-03-13 | Stereotaxis, Inc. | Workflow driven display for medical procedures |
US20080055239A1 (en) * | 2006-09-06 | 2008-03-06 | Garibaldi Jeffrey M | Global Input Device for Multiple Computer-Controlled Medical Systems |
US8806359B2 (en) | 2006-09-06 | 2014-08-12 | Stereotaxis, Inc. | Workflow driven display for medical procedures |
US20080058609A1 (en) * | 2006-09-06 | 2008-03-06 | Stereotaxis, Inc. | Workflow driven method of performing multi-step medical procedures |
US8799792B2 (en) | 2006-09-06 | 2014-08-05 | Stereotaxis, Inc. | Workflow driven method of performing multi-step medical procedures |
US7747960B2 (en) | 2006-09-06 | 2010-06-29 | Stereotaxis, Inc. | Control for, and method of, operating at least two medical systems |
US8244824B2 (en) | 2006-09-06 | 2012-08-14 | Stereotaxis, Inc. | Coordinated control for multiple computer-controlled medical systems |
US8242972B2 (en) | 2006-09-06 | 2012-08-14 | Stereotaxis, Inc. | System state driven display for medical procedures |
US8273081B2 (en) | 2006-09-08 | 2012-09-25 | Stereotaxis, Inc. | Impedance-based cardiac therapy planning method with a remote surgical navigation system |
US20080065061A1 (en) * | 2006-09-08 | 2008-03-13 | Viswanathan Raju R | Impedance-Based Cardiac Therapy Planning Method with a Remote Surgical Navigation System |
US7537570B2 (en) | 2006-09-11 | 2009-05-26 | Stereotaxis, Inc. | Automated mapping of anatomical features of heart chambers |
US20080064969A1 (en) * | 2006-09-11 | 2008-03-13 | Nathan Kastelein | Automated Mapping of Anatomical Features of Heart Chambers |
US11660137B2 (en) | 2006-09-29 | 2023-05-30 | Boston Scientific Medical Device Limited | Connector system for electrosurgical device |
US11666377B2 (en) | 2006-09-29 | 2023-06-06 | Boston Scientific Medical Device Limited | Electrosurgical device |
US11744638B2 (en) | 2006-09-29 | 2023-09-05 | Boston Scientific Medical Device Limited | Electrosurgical device |
US8135185B2 (en) | 2006-10-20 | 2012-03-13 | Stereotaxis, Inc. | Location and display of occluded portions of vessels on 3-D angiographic images |
US20080208912A1 (en) * | 2007-02-26 | 2008-08-28 | Garibaldi Jeffrey M | System and method for providing contextually relevant medical information |
US11937872B2 (en) | 2007-03-13 | 2024-03-26 | University Of Virginia Patent Foundation | Epicardial ablation catheter and method of use |
US20080228068A1 (en) * | 2007-03-13 | 2008-09-18 | Viswanathan Raju R | Automated Surgical Navigation with Electro-Anatomical and Pre-Operative Image Data |
US20080228065A1 (en) * | 2007-03-13 | 2008-09-18 | Viswanathan Raju R | System and Method for Registration of Localization and Imaging Systems for Navigational Control of Medical Devices |
DE102007012361B4 (en) * | 2007-03-14 | 2016-09-22 | Siemens Healthcare Gmbh | Method for determining the position of a medical instrument and position-determining device |
DE102007012361A1 (en) * | 2007-03-14 | 2008-09-25 | Siemens Ag | Method for determining the position of a medical instrument |
US20080292901A1 (en) * | 2007-05-24 | 2008-11-27 | Hon Hai Precision Industry Co., Ltd. | Magnesium alloy and thin workpiece made of the same |
US20080312673A1 (en) * | 2007-06-05 | 2008-12-18 | Viswanathan Raju R | Method and apparatus for CTO crossing |
US8024024B2 (en) | 2007-06-27 | 2011-09-20 | Stereotaxis, Inc. | Remote control of medical devices using real time location data |
US9111016B2 (en) | 2007-07-06 | 2015-08-18 | Stereotaxis, Inc. | Management of live remote medical display |
US8231618B2 (en) | 2007-11-05 | 2012-07-31 | Stereotaxis, Inc. | Magnetically guided energy delivery apparatus |
US11951303B2 (en) | 2007-11-09 | 2024-04-09 | University Of Virginia Patent Foundation | Steerable epicardial pacing catheter system placed via the subxiphoid process |
US20090306643A1 (en) * | 2008-02-25 | 2009-12-10 | Carlo Pappone | Method and apparatus for delivery and detection of transmural cardiac ablation lesions |
US8906056B2 (en) | 2009-05-01 | 2014-12-09 | University Of Virginia Patent Foundation | Access trocar and related method thereof |
US10537713B2 (en) | 2009-05-25 | 2020-01-21 | Stereotaxis, Inc. | Remote manipulator device |
US9439735B2 (en) | 2009-06-08 | 2016-09-13 | MRI Interventions, Inc. | MRI-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time |
US9259290B2 (en) | 2009-06-08 | 2016-02-16 | MRI Interventions, Inc. | MRI-guided surgical systems with proximity alerts |
US8396532B2 (en) | 2009-06-16 | 2013-03-12 | MRI Interventions, Inc. | MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
US8886288B2 (en) | 2009-06-16 | 2014-11-11 | MRI Interventions, Inc. | MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
US8825133B2 (en) | 2009-06-16 | 2014-09-02 | MRI Interventions, Inc. | MRI-guided catheters |
US8768433B2 (en) | 2009-06-16 | 2014-07-01 | MRI Interventions, Inc. | MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
US8369930B2 (en) | 2009-06-16 | 2013-02-05 | MRI Interventions, Inc. | MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
US11083381B2 (en) | 2009-09-11 | 2021-08-10 | University Of Virginia Patent Foundation | Systems and methods for determining pressure frequency changes in a subject |
US8308628B2 (en) | 2009-11-02 | 2012-11-13 | Pulse Therapeutics, Inc. | Magnetic-based systems for treating occluded vessels |
US9339664B2 (en) | 2009-11-02 | 2016-05-17 | Pulse Therapetics, Inc. | Control of magnetic rotors to treat therapeutic targets |
US9345498B2 (en) | 2009-11-02 | 2016-05-24 | Pulse Therapeutics, Inc. | Methods of controlling magnetic nanoparticles to improve vascular flow |
US8715150B2 (en) | 2009-11-02 | 2014-05-06 | Pulse Therapeutics, Inc. | Devices for controlling magnetic nanoparticles to treat fluid obstructions |
US8926491B2 (en) | 2009-11-02 | 2015-01-06 | Pulse Therapeutics, Inc. | Controlling magnetic nanoparticles to increase vascular flow |
US10029008B2 (en) | 2009-11-02 | 2018-07-24 | Pulse Therapeutics, Inc. | Therapeutic magnetic control systems and contrast agents |
US8313422B2 (en) | 2009-11-02 | 2012-11-20 | Pulse Therapeutics, Inc. | Magnetic-based methods for treating vessel obstructions |
US10159734B2 (en) | 2009-11-02 | 2018-12-25 | Pulse Therapeutics, Inc. | Magnetic particle control and visualization |
US11612655B2 (en) | 2009-11-02 | 2023-03-28 | Pulse Therapeutics, Inc. | Magnetic particle control and visualization |
US8529428B2 (en) | 2009-11-02 | 2013-09-10 | Pulse Therapeutics, Inc. | Methods of controlling magnetic nanoparticles to improve vascular flow |
US11000589B2 (en) | 2009-11-02 | 2021-05-11 | Pulse Therapeutics, Inc. | Magnetic particle control and visualization |
US10813997B2 (en) | 2009-11-02 | 2020-10-27 | Pulse Therapeutics, Inc. | Devices for controlling magnetic nanoparticles to treat fluid obstructions |
US9075114B2 (en) * | 2010-06-02 | 2015-07-07 | Siemens Aktiengesellschaft | USB connected MRT receiver coil with local data storage and A/D conversion at the local coil |
US20120139538A1 (en) * | 2010-06-02 | 2012-06-07 | Sebastian Schmidt | Mrt receiver coil with local data storage |
US10646241B2 (en) | 2012-05-15 | 2020-05-12 | Pulse Therapeutics, Inc. | Detection of fluidic current generated by rotating magnetic particles |
US9883878B2 (en) | 2012-05-15 | 2018-02-06 | Pulse Therapeutics, Inc. | Magnetic-based systems and methods for manipulation of magnetic particles |
US11684447B2 (en) | 2012-05-31 | 2023-06-27 | Boston Scientific Medical Device Limited | Radiofrequency perforation apparatus |
US10159782B2 (en) | 2012-09-19 | 2018-12-25 | University Of Virginia Patent Foundation | Method and system for enhanced imaging visualization of deep brain anatomy using infusion |
US10028682B2 (en) | 2012-10-12 | 2018-07-24 | University Of Virginia Patent Foundation | Oxidation measurement system and related method thereof |
US11937873B2 (en) | 2013-03-12 | 2024-03-26 | Boston Scientific Medical Device Limited | Electrosurgical device having a lumen |
US12011210B2 (en) | 2013-03-15 | 2024-06-18 | Boston Scientific Medical Device Limited | Electrosurgical device having a distal aperture |
US11998238B2 (en) | 2013-08-07 | 2024-06-04 | Boston Scientific Medical Device Limited | Methods and devices for puncturing tissue |
EP3093037A1 (en) * | 2015-05-13 | 2016-11-16 | Otto-von-Guericke-Universität Magdeburg | Guidewire |
US11766290B2 (en) | 2015-09-09 | 2023-09-26 | Boston Scientific Medical Device Limited | Epicardial access system and methods |
CN108814599A (en) * | 2017-03-16 | 2018-11-16 | 温伯格医学物理有限公司 | The method and apparatus of rapid evaluation and processing for wound |
US11878131B2 (en) | 2017-12-05 | 2024-01-23 | Boston Scientific Medical Device Limited | Transseptal guide wire puncture system |
US11918315B2 (en) | 2018-05-03 | 2024-03-05 | Pulse Therapeutics, Inc. | Determination of structure and traversal of occlusions using magnetic particles |
US11759190B2 (en) | 2019-10-18 | 2023-09-19 | Boston Scientific Medical Device Limited | Lock for medical devices, and related systems and methods |
US11801087B2 (en) | 2019-11-13 | 2023-10-31 | Boston Scientific Medical Device Limited | Apparatus and methods for puncturing tissue |
US11724070B2 (en) | 2019-12-19 | 2023-08-15 | Boston Scientific Medical Device Limited | Methods for determining a position of a first medical device with respect to a second medical device, and related systems and medical devices |
US11931098B2 (en) | 2020-02-19 | 2024-03-19 | Boston Scientific Medical Device Limited | System and method for carrying out a medical procedure |
US11986209B2 (en) | 2020-02-25 | 2024-05-21 | Boston Scientific Medical Device Limited | Methods and devices for creation of communication between aorta and left atrium |
US12082792B2 (en) | 2020-02-25 | 2024-09-10 | Boston Scientific Medical Device Limited | Systems and methods for creating a puncture between aorta and the left atrium |
US11819243B2 (en) | 2020-03-19 | 2023-11-21 | Boston Scientific Medical Device Limited | Medical sheath and related systems and methods |
US11826075B2 (en) | 2020-04-07 | 2023-11-28 | Boston Scientific Medical Device Limited | Elongated medical assembly |
US12011279B2 (en) | 2020-04-07 | 2024-06-18 | Boston Scientific Medical Device Limited | Electro-anatomic mapping system |
US11938285B2 (en) | 2020-06-17 | 2024-03-26 | Boston Scientific Medical Device Limited | Stop-movement device for elongated medical assembly |
US11793446B2 (en) | 2020-06-17 | 2023-10-24 | Boston Scientific Medical Device Limited | Electroanatomical mapping system with visualization of energy-delivery and elongated needle assemblies |
US11937796B2 (en) | 2020-06-18 | 2024-03-26 | Boston Scientific Medical Device Limited | Tissue-spreader assembly |
US12042178B2 (en) | 2020-07-21 | 2024-07-23 | Boston Scientific Medical Device Limited | System of medical devices and method for pericardial puncture |
US12005202B2 (en) | 2020-08-07 | 2024-06-11 | Boston Scientific Medical Device Limited | Catheter having tissue-engaging device |
US11980412B2 (en) | 2020-09-15 | 2024-05-14 | Boston Scientific Medical Device Limited | Elongated medical sheath |
Also Published As
Publication number | Publication date |
---|---|
WO2002074358A3 (en) | 2002-12-19 |
US20030195412A1 (en) | 2003-10-16 |
US6834201B2 (en) | 2004-12-21 |
WO2002074358A2 (en) | 2002-09-26 |
AU2002255489A1 (en) | 2002-10-03 |
US20020103430A1 (en) | 2002-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6834201B2 (en) | Catheter navigation within an MR imaging device | |
Heunis et al. | Flexible instruments for endovascular interventions: Improved magnetic steering, actuation, and image-guided surgical instruments | |
US6594517B1 (en) | Method and apparatus for generating controlled torques on objects particularly objects inside a living body | |
US6400980B1 (en) | System and method for treating select tissue in a living being | |
US6286514B1 (en) | System and method for treating select tissue in a living being | |
Yang et al. | Magnetically actuated continuum medical robots: A review | |
Nelson et al. | Magnetically actuated medical robots: An in vivo perspective | |
US6304768B1 (en) | Method and apparatus using shaped field of repositionable magnet to guide implant | |
US6298259B1 (en) | Combined magnetic resonance imaging and magnetic stereotaxis surgical apparatus and processes | |
US11957848B2 (en) | Magnetically controlled medical devices for interventional medical procedures and methods of making and controlling the same | |
US20130303878A1 (en) | System and method to estimate location and orientation of an object | |
US20090118620A1 (en) | System and method for tracking an ultrasound catheter | |
US20060114088A1 (en) | Apparatus and method for generating a magnetic field | |
US20050256398A1 (en) | Systems and methods for interventional medicine | |
US20130218005A1 (en) | Minimally invasive neurosurgical intracranial robot system and method | |
US20040054279A1 (en) | Catheter steering apparatus and method | |
EP2897524B1 (en) | Cointegration filter for a catheter navigation system | |
WO2013028937A1 (en) | Em guidance device for a device enabled for endovascular navigation placement including a remote operator capability and em endoluminal imaging technique | |
Yang et al. | Ultrasound-guided wired magnetic microrobot with active steering and ejectable tip | |
Howard et al. | Review of magnetic neurosurgery research | |
Sperry et al. | Screw-tip soft magnetically steerable needles | |
US20240207579A1 (en) | Magnetically controlled medical devices for interventional medical procedures and methods of making and controlling the same | |
US20240041550A1 (en) | Method for controlling a movement of a medical device in a magnetic field | |
Phelan III | Interventional Lorentz Force-Based Actuation Under Magnetic Resonance Imaging | |
Phelan | under Magnetic Resonance Imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNIVERSITY OF VIRGINIA;REEL/FRAME:015734/0575 Effective date: 20050304 Owner name: UNIVERSITY OF VIRGINIA, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GILLIES, GEORGE T.;REEL/FRAME:015750/0581 Effective date: 20050131 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |