US20050101582A1 - Compositions and methods for treating a posterior segment of an eye - Google Patents

Compositions and methods for treating a posterior segment of an eye Download PDF

Info

Publication number
US20050101582A1
US20050101582A1 US10966764 US96676404A US2005101582A1 US 20050101582 A1 US20050101582 A1 US 20050101582A1 US 10966764 US10966764 US 10966764 US 96676404 A US96676404 A US 96676404A US 2005101582 A1 US2005101582 A1 US 2005101582A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
composition
component
present
corticosteroid
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10966764
Inventor
Robert Lyons
James Chang
John Trogden
Scott Whitcup
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allergan Inc
Original Assignee
Allergan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane, progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane, progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears

Abstract

Compositions, and methods of using such compositions, useful for injection into the posterior segments of human or animal eyes are provided. Such compositions include corticosteroid component-containing particles present in a therapeutically effective amount, a viscosity inducing component, and an aqueous carrier component. The compositions have viscosities of at least about 10 cps or about 100 cps at a shear rate of 0.1/second. In a preferred embodiment, the viscosity is in the range of from about 140,000 cps to about 300,000 cps. The compositions advantageously suspend the particles for prolonged periods of time.

Description

    RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/519,237, filed Nov. 12, 2003 and U.S. Provisional Patent Application Ser. No. 60/530,062, filed Dec. 16, 2003, which are hereby incorporated by reference in their entireties.
  • This invention relates to compositions and methods for treating posterior segments of eyes of humans or animals. More particularly, the invention relates to compositions including corticosteroid components which can be effectively injected into posterior segments of such eyes and to methods of using such compositions to provide desired therapeutic effects.
  • Among the therapies currently being practiced to treat ocular posterior segment disorders, such as uveitis, macular degeneration, macular edema and the like, is intravitreal injection of a corticosteroid, such as triamcinolone acetonide (TA). See, for example, Billson et al U.S. Pat. No. 5,770,589, the disclosure of which is incorporated in its entirety herein by reference.
  • One medication commonly employed for this ophthalmic therapy is Kenalog® 40. Each milliliter (ml) of the Kenalog® 40 composition includes 40 milligrams (mg) of TA, sodium chloride as a tonicity agent, 10 mg of benzyl alcohol as a preservative, and 7.5 mg of carboxymethylcellulose and 0.4 mg of polysorbate 80 as resuspension aids. Although widely used by ophthalmologists, this commercially available formulation suffers from several important limitations.
  • For example, the presence of benzyl alcohol preservative and polysorbate 80 surfactant tends to lead to unnecessary and/or undue cell damage or other toxicities in sensitive ocular tissues. Even though some clinicians routinely “wash” the TA precipitate several times with saline to reduce the concentration of these undesirable materials, such washing is inconvenient, time consuming, and most importantly, increases the probability of microbial or endotoxin contamination that could lead to intraocular infection and inflammation.
  • Moreover, the TA in the Kenalog® 40 tends to rapidly separate and precipitate from the remainder of the composition. For example, this composition, if left standing for 1 to 2 hours, results in a substantial separation of a TA precipitate from the remainder of the composition. Thus, if the composition is to be injected into the eye, it must be vigorously shaken and used promptly after being so shaken in order to provide a substantially uniform suspension in the eye. In addition, resuspension processing requires the use of the resuspension aids noted above, at least one of which is less than totally desirable for sensitive ocular tissues.
  • There is a need for new compositions for injection into the posterior segments of eyes of humans or animals and methods for providing desired therapeutic effects in the posterior segments of eyes of humans or animals.
  • SUMMARY OF THE INVENTION
  • New compositions and methods for treating posterior segments of eyes of humans or animals have been discovered. The present compositions are highly suitable for intravitreal administration into the posterior segments of eyes without requiring any “washing step”, while providing for reduced ocular, for example, retinal, damage when used in an eye. The present compositions are advantageously substantially free of added preservative components, for example, contain no benzyl alcohol preservative. In addition, the present compositions advantageously require no resuspension aid or aids. Overall, the present compositions are easily and effectively injectable into the posterior segment of an eye of a human or animal and can be maintained as a substantially uniform suspension for long periods of time, for example, at least about one week or more, without resuspension processing, for example, without requiring shaking or other agitating of the composition to obtain substantial suspension uniformity. In short, the present compositions and methods provide substantial enhancements and advantages, for example, relative to the prior art Kenalog® 40 composition and methods of using such prior art composition, in the posterior segments of human or animal eyes.
  • In one broad aspect of the present invention, compositions useful for injection into a posterior segment of an eye of a human or animal are provided. Such compositions comprise a corticosteroid component, a viscosity inducing component, and an aqueous carrier component. The corticosteroid component is present in a therapeutically effective amount. The corticosteroid component is present in the compositions in a plurality of particles.
  • The present compositions may include a corticosteroid component in an amount of up to about 25% (w/v) or more of the composition. In one very useful embodiment, the corticosteroid component is present in an amount of at least about 80 mg/ml of composition. Preferably, the corticosteroid component is present in an amount in a range of about 1% to about 10% or about 20% (w/v) of the composition.
  • In one very useful embodiment, the corticosteroid component comprises triamcinolone acetonide.
  • The viscosity inducing component is present in an amount effective in increasing the viscosity of the composition.
  • Any suitable, preferably ophthalmically acceptable, viscosity inducing component may be employed in accordance with the present invention. Many such viscosity inducing components have been proposed and/or used in ophthalmic compositions used on or in the eye. Advantageously, the viscosity inducing component is present in an amount in a range of about 0.5% to about 20% (w/v) of the composition. In one particularly useful embodiment, the viscosity inducing component is a hyaluronic acid polymer component, such as sodium hyaluronate.
  • In one embodiment, the present compositions have a viscosity of at least about 10 cps or at least about 100 cps, preferably at least about 1,000 cps, more preferably at least about 10,000 cps and still more preferably at least about 70,000 cps, for example, up to about 250,000 cps, or about 300,000 cps, at a shear rate of 0.1/second. The present compositions are structured or have make-ups so as to be effectively, for example, manually, injected into a posterior segment of an eye of a human or animal, preferably through a 27 gauge needle, more preferably through a 29 or 30 gauge needle.
  • Without wishing to limit the invention to any particular theory of operation, it is believed that the use of relatively high viscosity compositions, as described herein, provides for effective, and preferably substantially uniform, suspension of the steroid component particles while, at the same time, being injectable into the posterior segment of an eye through conventionally, or even smaller than conventionally, used needles.
  • In one embodiment of the invention, the corticosteroid component is present in a plurality of particles which are substantially uniformly suspended in the composition and remain substantially uniformly suspended in the composition for at least about 1 week, preferably at least about 2 weeks or at least about 1 month, and still more preferably at least about 6 months or at least about 1 year or at least about 2 years, without requiring resuspension processing, that is, without requiring being shaken or otherwise agitated to maintain the corticosteroid component particles substantially uniformly suspended in the composition.
  • Compositions having such substantially uniform suspension of corticosteroid component particles provide substantial advantages relative to the prior art. In particular, the present compositions may be manufactured, shipped and stored for substantial periods of time without the corticosteroid component particles precipitating from the remainder of the composition. Having the corticosteroid component particles maintained substantially uniformly suspended in the composition allows the composition to be quickly and effectively used to provide treatment to the posterior segment of an eye of a human or animal without concern for having to resuspend such particles.
  • The aqueous carrier component is advantageously ophthalmically acceptable and may include one or more conventional expedients useful in ophthalmic compositions.
  • For example, the carrier component may include an effective amount of at least one of a preservative component, a tonicity component and a buffer component.
  • In one advantageous embodiment, the present compositions include no added preservative component. This feature reduces or minimizes or even substantially eliminates adverse reactions in the eye which may be caused by or linked to the presence of a preservative component.
  • Although a resuspension component may be employed in accordance with the present invention, in many instances, because of the ability of the present composition to remain a substantially uniform suspension for a long period of time without requiring resuspension processing, the compositions advantageously contain no added resuspension components.
  • Methods of treating posterior segments of the eyes of humans or animals are also disclosed and are included within the scope of the present invention. In general, such methods comprise administering, e.g. injecting a corticosteroid component-containing composition, for example, a composition in accordance with the present intention, to a posterior segment of an eye of a human or animal. Such administering is effective in providing a desired therapeutic effect. The administering step advantageously comprises at least one of intravitreal injecting, subconjunctival injecting, sub-tenon injecting, retrobulbar injecting, suprachoroidal injecting and the like.
  • Each and every feature described herein, and each and every combination of two or more of such features, is included within the scope of the present invention provided that the features included in such a combination are not mutually inconsistent.
  • These and other aspects and advantages of the present invention are apparent in the following detailed description, examples and claims.
  • DETAILED DESCRIPTION
  • The present invention involves compositions useful for placement, preferably by injection, into a posterior segment of an eye of a human or animal. Such compositions in the posterior, e.g., vitreous, of the eye are therapeutically effective against one or more conditions and/or diseases of the posterior of the eye, and/or one or more symptoms of such conditions and/or diseases of the posterior of the eye.
  • In general, the present compositions comprise a corticosteroid component; a viscosity inducing component; and an aqueous carrier component. The compositions are advantageously ophthalmically acceptable.
  • One of the important advantages of the present compositions is that they are more compatible with or friendly to the tissues in the posterior segment of the eye, for example, the retina of the eye, relative to compositions previously proposed for intravitreal injection into a posterior segment of an eye, for example, a composition sold under the trademark Kenalog®-40. In particular, the present compositions advantageously are substantially free of added preservative components or include effective preservative components which are more compatible with or friendly to the posterior segment, e.g., retina, of the eye relative to benzyl alcohol, which is included in the Kenalog®-40 composition as a preservative.
  • In addition, the present compositions preferably include no added resuspension component or a resuspension component which is more compatible with or friendly to the posterior segment, e.g., retina, of the eye relative to polysorbate-80, which is included in the Kenalog®-40 composition. Many of the other features of the present compositions, as described elsewhere herein, also render the present compositions more compatible with or friendly to the posterior segments of the eyes into which the compositions are placed relative to prior art compositions, such as Kenalog®-40.
  • As noted above, the present compositions include a corticosteroid component. Such corticosteroid component is present in the compositions in a therapeutically effective amount, that is in an amount effective in providing a desired therapeutic effect in the eye into which the composition is placed. The corticosteroid component is present in the composition in a plurality of particles.
  • Any suitable corticosteroid component may be employed in according to the present invention. Such corticosteroid component advantageously has a limited solubility in water, for example, at 25° C. For example, the corticosteroid component preferably has a solubility in water at 25° C. of less than 10 mg/ml. Of course, the corticosteroid component should be ophthalmically acceptable, that is, should have substantially no significant or undue detrimental effect of the eye structures or tissues. One particularly useful characteristic of the presently useful corticosteroid components is the ability of such component to reduce inflammation in the posterior segment of the eye into which the composition is placed caused by the result of one or more diseases and/or conditions in the posterior segment of the eye.
  • Examples of useful corticosteroid components include, without limitation, cortisone, prednesolone, triamcinolone, triamcinolone acetonide, fluorometholone, dexamethosone, medrysone, loteprednol, derivatives thereof and mixtures thereof. As used herein, the term “derivative” refers to any substance which is sufficiently structurally similar to the material of which it is identified as a derivative so as to have substantially similar functionality or activity, for example, therapeutic effectiveness, as the material when the substance is used in place of the material.
  • In one very useful embodiment, the corticosteroid component comprises triamcinolone acetonide.
  • The corticosteroid component advantageously is present in an amount of at least about 10 mg per ml of the composition. One important advantage of the present invention is the effective ability of the present compositions to include relatively large amounts or concentrations of the corticosteroid component. Thus, the corticosteroid component may be present in the present compositions in an amount in the range of about 1% or less to about 5% or about 10% or about 20% or about 30% or more (w/v) of the composition. Providing relatively high concentrations or amounts of corticosteroid component in the present compositions is beneficial in that reduced amounts of the composition may be required to be placed or injected into the posterior segment of the eye in order to provide the same amount or more corticosteroid component in the posterior segment of the eye relative to compositions, such as Kenalog®-40, which include less than 4% (w/v) of the corticosteroid component. Thus, in one very useful embodiment, the present compositions include more than about 4% (w/v), for example at least about 5% (w/v), to about 10% (w/v) or about 20% (w/v) or about 30% (w/v) of the corticosteroid component.
  • The viscosity inducing component is present in an effective amount in increasing, advantageously substantially increasing, the viscosity of the composition. Without wishing to limit the invention to any particular theory of operation, it is believed that increasing the viscosity of the compositions to values well in excess of the viscosity of water, for example, at least about 100 cps at a shear rate of 0.1/second, compositions which are highly effective for placement, e.g., injection, into the posterior segment of an eye of a human or animal are obtained. Along with the advantageous placement or injectability of the present compositions into the posterior segment, the relatively high viscosity of the present compositions are believed to enhance the ability of the present compositions to maintain the corticosteroid component particles in substantially uniform suspension in the compositions for prolonged periods of time, for example, for at least about one week, without requiring resuspension processing. The relatively high viscosity of the present compositions may also have an additional benefit of at least assisting the compositions to have the ability to have an increased amount or concentration of the corticosteroid component, as discussed elsewhere herein, for example, while maintaining such corticosteroid component in substantially uniform suspension for prolonged periods of time.
  • Advantageously, the present compositions have viscosities of at least about 10 cps or at least about 100 cps or at least about 1000 cps, more preferably at least about 10,000 cps and still more preferably at least about 70,000 cps or more, for example up to about 200,000 cps or about 250,000 cps, or about 300,000 cps or more, at a shear rate of 0.1/second. The present compositions not only have the relatively high viscosity as noted above but also have the ability or are structured or made up so as to be effectively placeable, e.g., injectable, into a posterior segment of an eye of a human or animal, preferably through a 27 gauge needle, or even through a 30 gauge needle.
  • The presently useful viscosity inducing components preferably are shear thinning components in that as the present composition containing such a shear thinning viscosity inducing component is passed or injected into the posterior segment of an eye, for example, through a narrow space, such as 27 gauge needle, under high shear conditions the viscosity of the composition is substantially reduced during such passage. After such passage, the composition regains substantially its pre-injection viscosity so as to maintain the corticosteroid component particles in suspension in the eye.
  • Any suitable viscosity inducing component, for example, ophthalmically acceptable viscosity inducing component, may be employed in accordance with the present invention. Many such viscosity inducing components have been proposed and/or used in ophthalmic compositions used on or in the eye. The viscosity inducing component is present in an amount effective in providing the desired viscosity to the composition. Advantageously, the viscosity inducing component is present in an amount in a range of about 0.5% or about 1.0% to about 5% or about 10% or about 20% (w/v) of the composition. The specific amount of the viscosity inducing component employed depends upon a number of factors including, for example and without limitation, the specific viscosity inducing component being employed, the molecular weight of the viscosity inducing component being employed, the viscosity desired for the present composition being produced and/or used and the like factors. The viscosity inducing component is chosen to provide at least one advantage, and preferably multiple advantages, to the present compositions, for example, in terms of each of injectability into the posterior segment of the eye, viscosity, sustainability of the corticosteroid component particles in suspension, for example, in substantially uniform suspension, for a prolonged period of time without resuspension processing, compatibility with the tissues in the posterior segment of the eye into which the composition is to be placed and the like advantages. More preferably, the selected viscosity inducing component is effective to provide two or more of the above-noted benefits, and still more preferably to provide all of the above-noted benefits.
  • The viscosity inducing component preferably comprises a polymeric component and/or at least one viscoelastic agent, such as those materials which are useful in ophthalmic surgical procedures.
  • Examples of useful viscosity inducing components include, but are not limited to, hyaluronic acid, carbomers, polyacrylic acid, cellulosic derivatives, polycarbophil, polyvinylpyrrolidone, gelatin, dextrin, polysaccharides, polyacrylamide, polyvinyl alcohol, polyvinyl acetate, derivatives thereof and mixtures thereof.
  • The molecular weight of the presently useful viscosity inducing components may be in a range of about 10,000 Daltons or less to about 2 million Daltons or more. In one particularly useful embodiment, the molecular weight of the viscosity inducing component is in a range of about 100,000 Daltons or about 200,000 Daltons to about 1 million Daltons or about 1.5 million Daltons. Again, the molecular weight of the viscosity inducing component useful in accordance with the present invention, may vary over a substantial range based on the type of viscosity inducing component employed, and the desired final viscosity of the present composition in question, as well as, possibly one or more other factors.
  • In one very useful embodiment, a viscosity inducing component is a polymeric hyaluronate component, for example, a metal hyaluronate component, preferably selected from alkali metal hyaluronates, alkaline earth metal hyaluronates and mixtures thereof, and still more preferably selected from sodium hyaluronates, and mixtures thereof. The molecular weight of such hyaluronate component preferably is in a range of about 50,000 Daltons or about 100,000 Daltons to about 1.3 million Daltons or about 2 million Daltons. In one embodiment, the present compositions include a polymeric hyaluronate component in an amount in a range about 0.05% to about 0.5% (w/v). In a further useful embodiment, the hyaluronate component is present in an amount in a range of about 1% to about 4% (w/v) of the composition. In this latter case, the very high polymer viscosity forms a gel that slows particle sedimentation rate to the extent that often no resuspension processing is necessary over the estimated shelf life, for example, at least about 2 years, of the composition. Such a composition may be marketed in pre-filled syringes since the gel cannot be easily removed by a needle and syringe from a bulk container.
  • The aqueous carrier component is advantageously ophthalmically acceptable and may include one or more conventional excipients useful in ophthalmic compositions.
  • The present compositions preferably include a major amount of liquid water. The present compositions may be, and are preferably, sterile, for example, prior to being used in the eye.
  • The present compositions preferably include at least one buffer component in an amount effective to control the pH of the composition and/or at least one tonicity component in an amount effective to control the tonicity or osmolality of the compositions. More preferably, the present compositions include both a buffer component and a tonicity component.
  • The buffer component and tonicity component may be chosen from those which are conventional and well known in the ophthalmic art.
  • Examples of such buffer components include, but are not limited to, acetate buffers, citrate buffers, phosphate buffers, borate buffers and the like and mixtures thereof. Phosphate buffers are particularly useful. Useful tonicity components include, but are not limited to, salts, particularly sodium chloride, potassium chloride, any other suitable ophthalmically acceptably tonicity component and mixtures thereof.
  • The amount of buffer component employed preferably is sufficient to maintain the pH of the composition in a range of about 6 to about 8, more preferably about 7 to about 7.5. The amount of tonicity component employed preferably is sufficient to provide an osmolality to the present compositions in a range of about 200 to about 400, more preferably about 250 to about 350, mOsmol/kg respectively. Advantageously, the present compositions are substantially isotonic.
  • The present compositions may include one or more other components in amounts effective to provide one or more useful properties and/or benefits to the present compositions. For example, although the present compositions may be substantially free of added preservative components, in other embodiments, the present compositions include effective amounts of preservative components, preferably such components which are more compatible with or friendly to the tissue in the posterior segment of the eye into which the composition is placed than benzyl alcohol. Examples of such preservative components include, without limitation, benzalkonium chloride, chlorhexidine, PHMB (polyhexamethylene biguanide), methyl and ethyl parabens, hexetidine, chlorite components, such as stabilized chlorine dioxide, metal chlorites and the like, other ophthalmically acceptable preservatives and the like and mixtures thereof. The concentration of the preservative component, if any, in the present compositions is a concentration effective to preserve the composition, and is often in a range of about 0.00001% to about 0.05% or about 0.1% (w/v) of the composition.
  • In addition, the present composition may include an effective amount of resuspension component effective to facilitate the suspension or resuspension of the corticosteroid component particles in the present compositions. As noted above, in certain embodiments, the present compositions are free of added resuspension components. In other embodiments of the present compositions effective amounts of resuspension components are employed, for example, to provide an added degree of insurance that the corticosteroid component particles remain in suspension, as desired and/or can be relatively easily resuspended in the present compositions, such resuspension be desired. Advantageously, the resuspension component employed in accordance with the present invention, if any, is chosen to be more compatible with or friendly to the tissue in the posterior segment of the eye into which the composition is placed than polysorbate 80.
  • Any suitable resuspension component may be employed in accordance with the present invention. Examples of such resuspension components include, without limitation, surfactants such as poloxanes, for example, sold under the trademark Pluronic®; tyloxapol; sarcosinates; polyethoxylated castor oils, other surfactants and the like and mixtures thereof.
  • One very useful class of resuspension components are those selected from vitamin derivatives. Although such materials have been previously suggested for use as surfactants in ophthalmic compositions, they have been found to be effective in the present compositions as resuspension components. Examples of useful vitamin derivatives include, without limitation, Vitamin E tocopheryl polyethylene glycol succinates, such as Vitamin E tocopheryl polyethylene glycol 1000 succinate (Vitamin E TPGS). Other useful vitamin derivatives include, again without limitation, Vitamin E tocopheryl polyethylene glycol succinamides, such as Vitamin E tocopheryl polyethylene glycol 1000 succinamide (Vitamin E TPGSA) wherein the ester bond between polyethylene glycol and succinic acid is replaced by an amide group.
  • The presently useful resuspension components are present, if at all, in the compositions in accordance with the present invention in an amount effective to facilitate suspending the particles in the present compositions, for example, during manufacture of the compositions or thereafter. The specific amount of resuspension component employed may vary over a wide range depending, for example, on the specific resuspension component being employed, the specific composition in which the resuspension component is being employed and the like factors. Suitable concentrations of the resuspension component, if any, in the present compositions are often in a range of about 0.01% to about 5%, for example, about 0.02% or about 0.05% to about 1.0% (w/v) of the composition.
  • The availability of minimally soluble corticosteroid components, such as triamcinolone acetonide, to intraocular tissues may be limited by the dissolution rate for these substances. Slow dissolution is both good and bad for the patient. On the one hand, after a single intravitreal injection of the present composition, the mean elimination half-life for triamcinolone acetonide is advantageously quite long, for example, about 19 days in nonvitrectonized patients and measurable drug levels are detected for up to about 3 months. On the other hand, therapeutic drug levels in the vitreous compartment of the eye may not be achieved for about 1 to about 3 days, due to the slow dissolution rate of the corticosteroid component particles.
  • In one embodiment of the present invention, an effective amount of a solubilizing component is provided in the composition to solubilize a minor amount, that is less than 50%, for example in a range of 1% or about 5% to about 10% or about 20% of the corticosteroid component. For example, the inclusion of a cyclodextrin component, such as β-cyclodextrin, sulfo-butylether β-cyclodextrin (SBE), other cyclodextrins and the like and mixtures thereof, at about 0.5 to about 5.0% (w/v) solubilizes about 1 to about 10% of the initial dose of triamcinolone acetonide. This presolubilized fraction provides a readily bioavailable loading dose, thereby avoiding any delay time in therapeutic effectiveness.
  • The use of such a solubilizing component is advantageous to provide any relatively quick release of the corticosteroid component into the eye for therapeutic effectiveness. Such solubilizing component, of course, should be ophthalmically acceptable or at least sufficiently compatible with the posterior segment of the eye into which the composition is placed to avoid undue damage to the tissue in such posterior segment.
  • The pharmacokinetics of the corticosteroid component, for example, triamcinolone acetonide, following intravitreal administration may involve both the rate of drug dissolution and the rate of drug efflux via the anterior route. For example, following a single intravitreal injection of a composition containing 4% (w/v) of triamcinolone acetonide, TA concentration peaks (monitored in aqueous humor) after several days at thousands of nanograms per mL. This peak (Cmax) is followed by a rapid decrease lasting about 200 hours, and ends in a slow elimination phase with a half-life of about 19 days. Patients typically require repeat dosing, for example about every three months.
  • In one embodiment of the present invention, the compositions further contain sustained release components, for example, polymers, such as poly (D,L,-lactide) or poly(D,L-lactide co-glycolide), in amounts effective to reduce local diffusion rates and/or corticosteroid particle dissolution rates. The result is a flatter elimination rate profile with a lower Cmax and a more prolonged therapeutic window, thereby extending the time between required injections for many patients.
  • Any suitable, preferably conditionally acceptable, release component may be employed. Useful examples are set forth above. The sustained release component is preferably biodegradable or bioabsorbable in the eye so that no residue remains over the long term. The amount of the delayed release component included may very over a relatively wide range depending, for example, on the specific sustained release component is being employed, the specific release profile desired and the like factors. Typical amounts of delayed release components, if any, included in the present compositions are in a range of about 0.05 to 0.1 to about 0.5 or about 1 or more percent (w/v) of the composition.
  • The present compositions can be prepared using suitable blending/processing techniques or techniques, for example, one or more conventional blending techniques. The preparation processing should be chosen to provide the present compositions in forms which are useful for placement or injection into the posterior segments of eyes of humans or animals. In one useful embodiment a concentration corticosteroid component dispersion is made by combining the corticosteroid component with water, and the excipient (other than the viscosity inducing component) to be included in the final composition. The ingredients are mixed to disperse the corticosteroid component and then autoclaved. Alternatively, the steroid powder may be γ-irradiated before addition to the sterile carrier. The viscosity inducing component may be purchased sterile or sterilized by conventional processing, for example, by filtering a dilute solution followed by lyophylization to yield a sterile powder. The sterile viscosity inducing component is combined with water to make an aqueous concentrate. Under aseptic conditions, the concentrated corticosteroid component dispersion is mixed and added as a slurry to the viscosity inducing component concentrate. Water is added in a quantity sufficient (q.s.) to provide the desired composition and the composition is mixed until homogenous.
  • Methods of using the present composition are provided and are included within the scope of the present invention. In general, such methods comprise administering a composition in accordance with the present invention to a posterior segment of an eye of a human or animal, thereby obtaining a desired therapeutic effect. The administering step advantageously comprises at least one of intravitreal injecting, subconjunctival injecting, sub-tenon injecting, retrobulbar injecting, suprachoroidal injecting and the like. A syringe apparatus including an appropriately sized needle, for example, a 27 gauge needle or a 30 gauge needle, can be effectively used to inject the composition with the posterior segment of an eye of a human or animal.
  • Among the diseases/conditions which can be treated or addressed in accordance with the present invention include, without limitation, the following:
  • MACULOPATHIES/RETINAL DEGENERATION: Non-Exudative Age Related Macular Degeneration (ARMD), Exudative Age Related Macular Degeneration (ARMD), Choroidal Neovascularization, Diabetic Retinopathy, Acute Macular Neuroretinopathy, Central Serous Chorioretinopathy, Cystoid Macular Edema, Diabetic Macular Edema.
  • UVEITIS/RETINITIS/CHOROIDITIS: Acute Multifocal Placoid Pigment Epitheliopathy, Behcet's Disease, Birdshot Retinochoroidopathy, Infectious (Syphilis, Lyme, Tuberculosis, Toxoplasmosis), Intermediate Uveitis (Pars Planitis), Multifocal Choroiditis, Multiple Evanescent White Dot Syndrome (MEWDS), Ocular Sarcoidosis, Posterior Scleritis, Serpignous Choroiditis, Subretinal Fibrosis and Uveitis Syndrome, Vogt-Koyanagi-Harada Syndrome.
  • VASCULAR DISEASES/EXUDATIVE DISEASES: Retinal Arterial Occlusive Disease, Central Retinal Vein Occlusion, Disseminated Intravascular Coagulopathy, Branch Retinal Vein Occlusion, Hypertensive Fundus Changes, Ocular Ischemic Syndrome, Retinal Arterial Microaneurysms, Coat's Disease, Parafoveal Telangiectasis, Hemi-Retinal Vein Occlusion, Papillophlebitis, Central Retinal Artery Occlusion, Branch Retinal Artery Occlusion, Carotid Artery Disease (CAD), Frosted Branch Angitis, Sickle Cell Retinopathy and other Hemoglobinopathies, Angioid Streaks, Familial Exudative Vitreoretinopathy, Eales Disease.
  • TRAUMATIC/SURGICAL: Sympathetic Ophthalmia, Uveitic Retinal Disease, Retinal Detachment, Trauma, Laser, PDT, Photocoagulation, Hypoperfusion During Surgery, Radiation Retinopathy, Bone Marrow Transplant Retinopathy.
  • PROLIFERATIVE DISORDERS: Proliferative Vitreal Retinopathy and Epiretinal Membranes, Proliferative Diabetic Retinopathy.
  • INFECTIOUS DISORDERS: Ocular Histoplasmosis, Ocular Toxocariasis, Presumed Ocular Histoplasmosis Syndrome (POHS), Endophthalmitis, Toxoplasmosis, Retinal Diseases Associated with HIV Infection, Choroidal Disease Associated with HIV Infection, Uveitic Disease Associated with HIV Infection, Viral Retinitis, Acute Retinal Necrosis, Progressive Outer Retinal Necrosis, Fungal Retinal Diseases, Ocular Syphilis, Ocular Tuberculosis, Diffuse Unilateral Subacute Neuroretinitis, Myiasis.
  • GENETIC DISORDERS: Retinitis Pigmentosa, Systemic Disorders with Accosiated Retinal Dystrophies, Congenital Stationary Night Blindness, Cone Dystrophies, Stargardt's Disease and Fundus Flavimaculatus, Best's Disease, Pattern Dystrophy of the Retinal Pigmented Epithelium, X-Linked Retinoschisis, Sorsby's Fundus Dystrophy, Benign Concentric Maculopathy, Bietti's Crystalline Dystrophy, pseudoxanthoma elasticum.
  • RETINAL TEARS/HOLES: Retinal Detachment, Macular Hole, Giant Retinal Tear.
  • TUMORS: Retinal Disease Associated with Tumors, Congenital Hypertrophy of the RPE, Posterior Uveal Melanoma, Choroidal Hemangioma, Choroidal Osteoma, Choroidal Metastasis, Combined Hamartoma of the Retina and Retinal Pigmented Epithelium, Retinoblastoma, Vasoproliferative Tumors of the Ocular Fundus, Retinal Astrocytoma, Intraocular Lymphoid Tumors.
  • MISCELLANEOUS: Punctate Inner Choroidopathy, Acute Posterior Multifocal Placoid Pigment Epitheliopathy, Myopic Retinal Degeneration, Acute Retinal Pigement Epithelitis and the like.
  • The present methods may comprise a single injection into the posterior segment of an eye or may involve repeated injections, for example over periods of time ranging from about one week or about 1 month or about 3 months to about 6 months or about 1 year or longer.
  • The following non-limiting Examples illustrate certain aspects of the present invention.
  • EXAMPLES 1 TO 4
  • Four compositions are as follows:
    Ingredient Example 1 Example 2 Example 3 Example 4
    Triacinolone acetonide   2%   2%   4%   4% (w/v)
    (w/v) (w/v) (w/v)
    Sodium Hyaluronate 0.05% 0.5% 0.05% 0.5%
    (0.6 × 106 DALTONS) (w/v) (w/v) (w/v) (w/v)
    Sodium Phosphate  0.4% 0.4%  0.4% 0.4%
    (w/v) (w/v) (w/v) (w/v)
    Vitamin E-TPGS  0.5% 0.5%  0.0 0.0
    (w/v) (w/v)
    λ-cyclodextrin  0.5% 0.5%  0.0 0.0
    (w/v) (w/v)
    Water for Injection q.s. q.s. q.s. q.s.
    Viscosity at shear rate 20 cps 500 cps 20 cps 500 cps
    0.1/second
  • Each of these compositions is prepared as follows.
  • A concentrated triamcinolone acetonide dispersion is made by combining triamcinolone acetonide with water, Vitamin E-TPGS and λ-cyclodextrin, if any. These ingredients are mixed to disperse the triamcinolone acetonide, and then autoclaved. The sodium hyaluronate may be purchased as a sterile powder or sterilized by filtering a dilute solution followed by lyophylization to yield a sterile powder. The sterile sodium hyaluronate is dissolved in water to make an aqueous concentrate. The concentrated triamcinolone acetonide dispersion is mixed and added as a slurry to the sodium hyaluronate concentrate. Water is added q.s. and the mixture is mixed until homogenous.
  • Each of these compositions produced a loose floctuation of triamcinolone acetonide that is easily re-suspended by gentle inversion. These compositions can be marketed in small volume pharmaceutical grade glass bottles, and are found to be therapeutically effective against macular edema when injected intravitreally into human eyes.
  • EXAMPLES 5 TO 7
  • Three compositions are as follows:
    Ingredient Example 5 Example 6 Example 7
    Triamcinolone 2.0% (w/v) 4.0% (w/v) 8.0% (w/v)
    acetonide
    Sodium hyaluronate 3.0% (w/v) 2.5% (w/v) 2.0% (w/v)
    Sodium Phosphate 0.4% (w/v) 0.4% (w/v) 0.4% (w/v)
    Water for Injection q.s. q.s. q.s.
    Viscosity at shear 180,000 cps 120,000 cps 80,000 cps
    rate 0.1/second
  • These compositions are prepared in a manner substantially analogous to that set forth in Example 1.
  • The high viscosities of the compositions substantially slows the particle sedimentation rate to an extent that no resuspension processing is necessary or required over the estimated shelf life, e.g., about 2 years, of the compositions. These compositions can be marketed in prefilled syringes since they can not easily be removed by a needle and syringe from a container. However, with the compositions in prefilled syringes, the compositions can be effectively injected into the posterior segment of an eye of a human using a 27 gauge or a 30 gauge needle to provide a desired therapeutic effect in the human eye.
  • The compositions of Examples 5 to 7 employ or contain a sufficient concentration of high molecular weight sodium hyaluronate so as to form a gelatinous plug or drug depot upon intravitreal injection into a human eye. Triamcinolone acetonide particles are, in effect, trapped or held within this viscous plug, so that undesirable “pluming” does not occur, and the risk of drug particles disadvantageously settling directly on the retinal tissue is substantially reduced, for example, relative to using a composition with a water like viscosity, such as Kenalog® 40. Since sodium hyaluronate solutions are subject to dramatic shear thinning, these formulations are easily injected through 27 gauge or even 30 gauge needles.
  • EXAMPLES 8 AND 9
  • Two compositions are as follows:
    Ingredient Example 8 Example 9
    Triamcinolone acetonide  2.0% (w/v)  8.0% (w/v)
    Sodium hyaluronate  2.5% (w/v)  2.3% (w/v)
    Sodium chloride 0.63% (w/v)  0.6% (w/v)
    dibasic sodium phosphate, 0.30% (w/v) 0.30% (w/v)
    heptahydrate
    Monobasic sodium phosphate, 0.04% (w/v) 0.04% (w/v)
    monohydrate
    Water for Injection q.s. q.s.
    Viscosity at shear rate 170,000 ± 25% cps 200,000 ± 25% cps
    0.1/second
  • These compositions are prepared in a manner substantially analogous to that set forth in Example 1.
  • The high viscosities of the compositions substantially slows the particle sedimentation rate to an extent that no resuspension processing is necessary or required over the estimated shelf life, e.g., about 2 years, of the compositions. These compositions can be marketed in prefilled syringes since they can not easily be removed by a needle and syringe from a container. However, with the compositions in prefilled syringes, the compositions can be effectively injected into the posterior segment of an eye of a human using a 27 gauge or a 30 gauge needle to provide a desired therapeutic effect in the human eye.
  • The sodium hyaluronate powders used in these compositions (as well as in the other compositions identified in the Examples herein) have water contents in a range of about 4% to about 20%, preferably about 4% to about 8%, by weight. The water content of the powder, and in particular the variation in water contents for powder to powder, can result in variations in the viscosities of two or more compositions in accordance with the present invention which have the same “nominal” chemical make-ups. Thus, the viscosities indicated herein should be understood to be target viscosities, with the composition being acceptable for use if the actual viscosity of the composition is within plus or minus (±) about 25% or about 30% or about 35% of the target viscosity.
  • Because each of the compositions set forth in the Examples has a density of about 1 gm/ml, the percentages set forth herein as being based on weight per volume (w/v) can also be considered as being based on weight per weight (w/w).
  • The compositions of Examples 8 and 9 employ or contain a sufficient concentration of high molecular weight sodium hyaluronate so as to form a gelatinous plug or drug depot upon intravitreal injection into a human eye. Triamcinolone acetonide particles are, in effect, trapped or held within this viscous plug, so that undesirable “pluming” does not occur, and the risk of drug particles disadvantageously settling directly on the retinal tissue is substantially reduced, for example, relative to using a composition with a water like viscosity, such as Kenalog® 40. Since sodium hyaluronate solutions are subject to dramatic shear thinning, these formulations are easily injected through 27 gauge or even 30 gauge needles.
  • While this invention has been described with respect to various specific examples and embodiments, it is to be understood that the invention is not limited thereto and that it can be variously practiced within the scope of the following claims.

Claims (62)

  1. 1. A composition useful for injection into a posterior segment of an eye of a human or animal comprising:
    a corticosteroid component present in a therapeutically effective amount, the corticosteroid component being present in a plurality of particles;
    a viscosity inducing component in an amount effective in increasing the viscosity of the composition; and
    an aqueous carrier component, the composition having a viscosity of at least about 10 cps at a shear rate of 0.1/second and being effectively injectable into a posterior segment of an eye of a human or animal.
  2. 2. The composition of claim 1 which has a viscosity of at least 100 cps at a shear rate of 0.1/second.
  3. 3. The composition of claim 1 which has a viscosity of at least 10,000 cps at a shear rate of 0.1/second.
  4. 4. The composition of claim 1 which has a viscosity of from about 140,000 cps—about 300,000 cps at a shear rate of 0.1/second.
  5. 5. The composition of claim 1 which is effectively injectable through a 27 gauge needle into a posterior segment of an eye of a human or animal.
  6. 6. The composition of claim 1 which is effectively injectable through a 30 gauge needle into a posterior segment of an eye of a human or animal.
  7. 7. The composition of claim 1 wherein the particles are substantially uniformly suspended in the composition.
  8. 8. The composition of claim 7 wherein the particles remain substantially uniformly suspended in the composition for at least about 1 week without requiring resuspension processing.
  9. 9. The composition of claim 7 wherein the particles remain substantially uniformly suspended in the composition for at least about 1 month without requiring resuspension processing.
  10. 10. The composition of claim 7 wherein the particles remain substantially uniformly suspended in the composition for at least about 6 months without requiring resuspension processing.
  11. 11. The composition of claim 7 wherein the particles remain substantially uniformly suspended in the composition for at least about 1 year without requiring resuspension processing.
  12. 12. The composition of claim 7 wherein the particles remain substantially uniformly suspended in the composition for at least about 2 years without requiring resuspension processing.
  13. 13. The composition of claim 1 wherein the corticosteroid component is present in an amount of up to about 25% (w/v) of the composition.
  14. 14. The composition of claim 1 wherein the corticosteroid component is present in an amount of at least about 10 mg per ml of composition.
  15. 15. The composition of claim 1 wherein the corticosteroid component is present in an amount in a range of about 1% to about 20% (w/v) of the composition.
  16. 16. The composition of claim 1 wherein the corticosteroid component is present in an amount in a range of about 1% to about 10% (w/v) of the composition.
  17. 17. The composition of claim 1 wherein the corticosteroid component has a solubility in water at 25° C. of less than 10 mg/ml.
  18. 18. The composition of claim 1 wherein the corticosteroid component is selected from the group consisting of cortisone, prednisolone, triamcinolone, fluorometholone, dexamethasone, medrysone, loteprednol, derivatives thereof and mixtures thereof.
  19. 19. The composition of claim 1 wherein the corticosteroid component is triamcinolone acetonide.
  20. 20. The composition of claim 1 wherein the carrier component includes an effective amount of at least one of a preservative component, a tonicity component and a buffer component.
  21. 21. The composition of claim 1 which includes no added preservative component.
  22. 22. The composition of claim 1 which includes no added resuspension component.
  23. 23. The composition of claim 1 wherein the viscosity inducing component is present in an amount in a range of about 0.05% to about 20% (w/v) of the composition.
  24. 24. The composition of claim 1 wherein the viscosity inducing component comprises a polymeric component.
  25. 25. The composition of claim 1 wherein the viscosity inducing component comprises at least one viscoelastic agent.
  26. 26. The composition of claim 1 wherein the viscosity inducing component is selected from the group consisting of polymeric hyaluronic acid, carbomers, polyacrylic acid, cellulosic derivatives, polycarbophil, polyvinylpyrrolidone, gelatin, dextrin, polysaccharides, polyacrylamide, polyvinyl alcohol, polyvinyl acetate, derivatives thereof and mixtures thereof.
  27. 27. The composition of claim 1 wherein the viscosity inducing component comprises a hyaluronate component.
  28. 28. The composition of claim 27 wherein the hyaluronate component comprises sodium hyaluronate.
  29. 29. A method of treatment comprising administering the composition of claim 1 to a posterior segment of an eye of a human or animal, thereby obtaining a desired therapeutic effect.
  30. 30. The method of claim 29 wherein the administering step comprises intravitreal injecting.
  31. 31. The method of claim 29 wherein the administering step comprises subconjunctival injecting.
  32. 32. The method of claim 29 wherein the administering step comprises sub-tenon injecting.
  33. 33. The method of claim 29 wherein the administering step comprises retrobulbar injecting.
  34. 34. The method of claim 29 wherein the administering step comprises suprachoroidal injecting.
  35. 35. A composition useful for injection into a posterior segment of an eye of a human or animal comprising:
    a corticosteroid component present in a therapeutic effect amount, the corticosteroid component being present in a plurality of particles;
    a viscosity inducing component in an amount effective in increasing the viscosity of the composition; and
    an aqueous carrier component, the particles being substantially uniformly suspended in the composition and remaining substantially uniformly suspended in the composition for at least about 1 week without requiring resuspension processing.
  36. 36. The composition of claim 35 wherein the particles remain substantially uniformly suspended in the composition for at least about 2 weeks without requiring resuspension processing.
  37. 37. The composition of claim 35 wherein the particles remain substantially uniformly suspended in the composition for at least about 1 month without requiring resuspension processing.
  38. 38. The composition of claim 35 wherein the particles remain substantially uniformly suspended in the composition for at least about 6 months without requiring resuspension processing.
  39. 39. The composition of claim 35 wherein the particles remain substantially uniformly suspended in the composition for at least about 1 year without requiring resuspension processing.
  40. 40. The composition of claim 35 wherein the particles remain substantially uniformly suspended in the composition for at least about 2 years without requiring resuspension processing.
  41. 41. The composition of claim 35 wherein the corticosteroid component is present in an amount of up to about 25% (w/v) of the composition.
  42. 42. The composition of claim 35 wherein the corticosteroid component is present in an amount of at least about 10 mg per ml of composition.
  43. 43. The composition of claim 35 wherein the corticosteroid component is present in an amount in a range of about 1% to about 20% (w/v) of the composition.
  44. 44. The composition of claim 35 wherein the corticosteroid component is present in an amount in a range of about 1% to about 10% (w/v) of the composition.
  45. 45. The composition of claim 35 wherein the corticosteroid component has a solubility in water at 25° C. of less than 10 mg/ml.
  46. 46. The composition of claim 35 wherein the corticosteroid component is selected from the group consisting of cortisone, prednisolone, triamcinolone, fluorometholone, dexamethasone, medrysone, loteprednol, derivatives thereof and mixtures thereof.
  47. 47. The composition of claim 35 wherein the corticosteroid component is triamcinolone acetonide.
  48. 48. The composition of claim 35 wherein the carrier component includes an effective amount of at least one of a preservative component, a tonicity component and a buffer component.
  49. 49. The composition of claim 35 which includes no added preservative component.
  50. 50. The composition of claim 35 which includes no added resuspension component.
  51. 51. The composition of claim 35 wherein the viscosity inducing component is present in an amount in a range of about 0.05% to about 20% (w/v) of the composition.
  52. 52. The composition of claim 35 wherein the viscosity inducing component comprises a polymeric component.
  53. 53. The composition of claim 35 wherein the viscosity inducing component comprises at least one viscoelastic agent.
  54. 54. The composition of claim 35 wherein the viscosity inducing component is selected from the group consisting of polymeric hyaluronic acid, carbomers, polyacrylic acid, cellulosic derivatives, polycarbophil, polyvinylpyrrolidone, gelatin, dextrin, polysaccharides, polyacrylamide, polyvinyl alcohol, polyvinyl acetate, derivatives thereof and mixtures thereof.
  55. 55. The composition of claim 35 wherein the viscosity inducing component comprises a hyaluronate component.
  56. 56. The composition of claim 55 wherein the hyaluronate component comprises sodium hyaluronate.
  57. 57. A method of treatment comprising administering the composition of claim 35 to a posterior segment of an eye of a human or animal, thereby obtaining a desired therapeutic effect.
  58. 58. The method of claim 57 wherein the administering step comprises intravitreal injecting.
  59. 59. The method of claim 57 wherein the administering step comprises subconjunctival injecting.
  60. 60. The method of claim 57 wherein the administering step comprises sub-tenon injecting.
  61. 61. The method of claim 57 wherein the administering step comprises retrobulbar injecting.
  62. 62. The method of claim 57 wherein the administering step comprises suprachoroidal injecting.
US10966764 2003-11-12 2004-10-14 Compositions and methods for treating a posterior segment of an eye Abandoned US20050101582A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US51923703 true 2003-11-12 2003-11-12
US53006203 true 2003-12-16 2003-12-16
US10966764 US20050101582A1 (en) 2003-11-12 2004-10-14 Compositions and methods for treating a posterior segment of an eye

Applications Claiming Priority (32)

Application Number Priority Date Filing Date Title
US10966764 US20050101582A1 (en) 2003-11-12 2004-10-14 Compositions and methods for treating a posterior segment of an eye
JP2006539780A JP5437563B2 (en) 2003-11-12 2004-11-08 Compositions and methods for the rear part of the treatment of the eye
PCT/US2004/037436 WO2005046641A3 (en) 2003-11-12 2004-11-08 Compositions and methods for treating a posterior segment of an eye
DE200460027773 DE602004027773D1 (en) 2003-11-12 2004-11-08 Compositions and methods for treating a posterior segment
CA 2545878 CA2545878C (en) 2003-11-12 2004-11-08 Compositions and methods for treating a posterior segment of an eye
ES04810635T ES2321305T3 (en) 2003-11-12 2004-11-08 Compositions and methods for treating a posterior segment of an eye.
KR20067009154A KR20060113709A (en) 2003-11-12 2004-11-08 Compositions and methods for treating a posterior segment of an eye
EP20040810635 EP1682185B1 (en) 2003-11-12 2004-11-08 Compositions and methods for treating a posterior segment of an eye
ES08016371T ES2345018T3 (en) 2003-11-12 2004-11-08 Compositions and methods for treating the posterior segment of the eye.
DK04810635T DK1682185T3 (en) 2003-11-12 2004-11-08 Compositions and methods of treating a posterior segment of an Öje
CN 201610121191 CN105748407A (en) 2003-11-12 2004-11-08 Compositions and methods for treating a posterior segment of an eye
DK08016371T DK1997497T3 (en) 2003-11-12 2004-11-08 Compositions and methods of treating a posterior segment of an eye
DE200460019801 DE602004019801D1 (en) 2003-11-12 2004-11-08 Compositions and methods of treating a posterior segment of the eye
EP20080016371 EP1997497B1 (en) 2003-11-12 2004-11-08 Compositions and methods for treating a posterior segment of an eye
US11091977 US20050250737A1 (en) 2003-11-12 2005-03-28 Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
PCT/US2005/010579 WO2006043965A1 (en) 2004-10-14 2005-03-28 Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US11354415 US20060141049A1 (en) 2003-11-12 2006-02-14 Triamcinolone compositions for intravitreal administration to treat ocular conditions
US11741366 US20070224278A1 (en) 2003-11-12 2007-04-27 Low immunogenicity corticosteroid compositions
US11828561 US8846094B2 (en) 2003-11-12 2007-07-26 Peripherally administered viscous formulations
US11952927 US20120283232A9 (en) 2003-11-12 2007-12-07 Process for making a pharmaceutical composition
US12172194 US8569272B2 (en) 2003-11-12 2008-07-11 Methods for treating a posterior segment of an eye
US12288806 US20090197846A1 (en) 2003-11-12 2008-10-23 Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US12288752 US20090118246A1 (en) 2003-11-12 2008-10-23 Therapeutic ophthalmic compositions containing retinal friendly recpients and related methods
US12288892 US20090203660A1 (en) 2003-11-12 2008-10-24 Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US12288902 US20090118247A1 (en) 2003-11-12 2008-10-24 Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US12288891 US20090156568A1 (en) 2003-11-12 2008-10-24 Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US12288886 US20090197847A1 (en) 2003-11-12 2008-10-24 Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US12626408 US20100074957A1 (en) 2003-11-12 2009-11-25 Intraocular formulation
JP2011183912A JP5592321B2 (en) 2003-11-12 2011-08-25 Compositions and methods for the rear part of the treatment of the eye
US14064960 US9265775B2 (en) 2003-11-12 2013-10-28 Pharmaceutical compositions
US14298418 US20150147406A1 (en) 2003-11-12 2014-06-06 Intraocular Formulation
US14463337 US9089478B2 (en) 2003-11-12 2014-08-19 Peripherally administered viscous formulations

Related Child Applications (5)

Application Number Title Priority Date Filing Date
US11091977 Continuation US20050250737A1 (en) 2003-11-12 2005-03-28 Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US11091977 Continuation-In-Part US20050250737A1 (en) 2003-11-12 2005-03-28 Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US11116698 Continuation-In-Part US20050281861A1 (en) 2004-04-30 2005-04-27 Macromolecule-containing sustained release intraocular implants and related methods
US11354415 Continuation-In-Part US20060141049A1 (en) 2003-11-12 2006-02-14 Triamcinolone compositions for intravitreal administration to treat ocular conditions
US12172194 Division US8569272B2 (en) 2003-11-12 2008-07-11 Methods for treating a posterior segment of an eye

Publications (1)

Publication Number Publication Date
US20050101582A1 true true US20050101582A1 (en) 2005-05-12

Family

ID=34557415

Family Applications (3)

Application Number Title Priority Date Filing Date
US10966764 Abandoned US20050101582A1 (en) 2003-11-12 2004-10-14 Compositions and methods for treating a posterior segment of an eye
US12172194 Active 2025-08-14 US8569272B2 (en) 2003-11-12 2008-07-11 Methods for treating a posterior segment of an eye
US14064960 Active US9265775B2 (en) 2003-11-12 2013-10-28 Pharmaceutical compositions

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12172194 Active 2025-08-14 US8569272B2 (en) 2003-11-12 2008-07-11 Methods for treating a posterior segment of an eye
US14064960 Active US9265775B2 (en) 2003-11-12 2013-10-28 Pharmaceutical compositions

Country Status (10)

Country Link
US (3) US20050101582A1 (en)
EP (2) EP1682185B1 (en)
JP (2) JP5437563B2 (en)
KR (1) KR20060113709A (en)
CN (1) CN105748407A (en)
CA (1) CA2545878C (en)
DE (2) DE602004027773D1 (en)
DK (2) DK1682185T3 (en)
ES (2) ES2321305T3 (en)
WO (1) WO2005046641A3 (en)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048099A1 (en) * 2003-01-09 2005-03-03 Allergan, Inc. Ocular implant made by a double extrusion process
US20050191334A1 (en) * 1995-06-02 2005-09-01 Allergan, Inc. Formulation for controlled release of drugs by combining hydrophilic and hydrophobic agents
US20050244469A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Extended therapeutic effect ocular implant treatments
US20050250737A1 (en) * 2003-11-12 2005-11-10 Allergan, Inc. Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US20060009498A1 (en) * 2004-07-12 2006-01-12 Allergan, Inc. Ophthalmic compositions and methods for treating ophthalmic conditions
US20060141049A1 (en) * 2003-11-12 2006-06-29 Allergan, Inc. Triamcinolone compositions for intravitreal administration to treat ocular conditions
US20060183773A1 (en) * 2005-01-20 2006-08-17 David Bar-Or Uses of methylphenidate derivatives
US20060280774A1 (en) * 1995-06-02 2006-12-14 Allergan, Inc. Compositions and methods for treating glaucoma
US20070088014A1 (en) * 2005-10-18 2007-04-19 Allergan, Inc. Ocular therapy using glucocorticoid derivatives selectively penetrating posterior segment tissues
US20070178138A1 (en) * 2006-02-01 2007-08-02 Allergan, Inc. Biodegradable non-opthalmic implants and related methods
US20070190112A1 (en) * 2000-11-29 2007-08-16 Allergan, Inc. Methods for reducing or preventing transplant rejection in the eye and intraocular implants for use therefor
US20070202186A1 (en) * 2006-02-22 2007-08-30 Iscience Interventional Corporation Apparatus and formulations for suprachoroidal drug delivery
US20070224278A1 (en) * 2003-11-12 2007-09-27 Lyons Robert T Low immunogenicity corticosteroid compositions
US20070260203A1 (en) * 2006-05-04 2007-11-08 Allergan, Inc. Vasoactive agent intraocular implant
US20070275030A1 (en) * 2006-05-25 2007-11-29 The General Hospital Corporation Dba Massachusetts General Hospital Anti-cross-linking agents and methods for inhibiting cross-linking of injectable hydrogel formulations
US20080131486A1 (en) * 2004-04-30 2008-06-05 Allergan, Inc. Sustained release intraocular implants and related methods
WO2008070402A2 (en) * 2006-12-01 2008-06-12 Allergan, Inc. Intraocular drug delivery systems
US20080269181A1 (en) * 2003-11-12 2008-10-30 Allergan, Inc. Methods for treating a posterior segment of an eye
US20080268051A1 (en) * 2007-04-30 2008-10-30 Allergan, Inc. High viscosity macromolecular compositions for treating ocular conditions
US20080293637A1 (en) * 2007-05-23 2008-11-27 Allergan, Inc. Cross-linked collagen and uses thereof
US20090036403A1 (en) * 2007-07-30 2009-02-05 Allergan, Inc. Tunably Crosslinked Polysaccharide Compositions
WO2009039262A2 (en) * 2007-09-21 2009-03-26 Allergan, Inc. Steroid containing ophthalmic drug delivery systems
US20090143331A1 (en) * 2007-11-30 2009-06-04 Dimitrios Stroumpoulis Polysaccharide gel formulation having increased longevity
US20090143348A1 (en) * 2007-11-30 2009-06-04 Ahmet Tezel Polysaccharide gel compositions and methods for sustained delivery of drugs
US20090148527A1 (en) * 2007-12-07 2009-06-11 Robinson Michael R Intraocular formulation
US20090275614A1 (en) * 2005-01-20 2009-11-05 David Bar-Or Methylphenidate Derivatives and Uses of Them
US20100028438A1 (en) * 2008-08-04 2010-02-04 Lebreton Pierre F Hyaluronic Acid-Based Gels Including Lidocaine
US20100098772A1 (en) * 2008-10-21 2010-04-22 Allergan, Inc. Drug delivery systems and methods for treating neovascularization
US20100098764A1 (en) * 2007-11-30 2010-04-22 Allergan, Inc. Polysaccharide gel formulation having multi-stage bioactive agent delivery
US20100105698A1 (en) * 2008-05-27 2010-04-29 Dmi Life Sciences, Inc. Therapeutic Methods and Compounds
WO2010106313A1 (en) * 2009-03-14 2010-09-23 University Of Strathclyde Improvement in solubility of drugs by means of hyaluronic acid
US20100278897A1 (en) * 2009-05-01 2010-11-04 Allergan, Inc. Intraocular bioactive agent delivery system with molecular partitioning system
US20100324005A1 (en) * 2009-06-22 2010-12-23 Dmi Acquisition Corp. Method for treatment of diseases
US20110118206A1 (en) * 2008-08-04 2011-05-19 Allergan Industrie, Sas Hyaluronic acid based formulations
WO2011075481A1 (en) 2009-12-16 2011-06-23 Allergan, Inc. Intracameral devices for sustained delivery
US20110171286A1 (en) * 2010-01-13 2011-07-14 Allergan, Inc. Hyaluronic acid compositions for dermatological use
US20110171311A1 (en) * 2010-01-13 2011-07-14 Allergan Industrie, Sas Stable hydrogel compositions including additives
US20110171306A1 (en) * 2005-07-12 2011-07-14 David Bar-Or Methods and products for treatment of diseases
US20110182966A1 (en) * 2010-01-22 2011-07-28 Allergan, Inc. Intracameral sustained release therapeutic agent implants
US20110224164A1 (en) * 2010-03-12 2011-09-15 Allergan Industrie, Sas Fluid compositions for improving skin conditions
US20110229574A1 (en) * 2010-03-22 2011-09-22 Allergan, Inc. Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation
US8128960B2 (en) 2008-03-11 2012-03-06 Alcon Research, Ltd. Low viscosity, highly flocculated triamcinolone acetonide suspensions for intravitreal injection
WO2012033792A2 (en) 2010-09-07 2012-03-15 Dmi Acquisition Corp. Treatment of diseases
WO2012087443A1 (en) * 2010-11-22 2012-06-28 Dow Pharmaceutical Sciences, Inc. Pharmaceutical formulations containing corticosteroids for topical administration
US8242099B2 (en) 2000-07-05 2012-08-14 Allergan, Inc. Implants and methods for treating inflammation-mediated conditions of the eye
US8338388B2 (en) 2003-04-10 2012-12-25 Allergan, Inc. Cross-linking of low-molecular weight and high-molecular weight polysaccharides, preparation of injectable monophase hydrogels, polysaccharides and hydrogels obtained
US8697057B2 (en) 2010-08-19 2014-04-15 Allergan, Inc. Compositions and soft tissue replacement methods
US8697044B2 (en) 2007-10-09 2014-04-15 Allergan, Inc. Crossed-linked hyaluronic acid and collagen and uses thereof
US8771722B2 (en) 2004-04-30 2014-07-08 Allergan, Inc. Methods of treating ocular disease using steroid-containing sustained release intraocular implants
US8771745B2 (en) 2008-10-27 2014-07-08 Allergan, Inc. Prostaglandin and prostamide drug delivery systems and intraocular therapeutic uses thereof
US8802128B2 (en) 2006-06-23 2014-08-12 Allergan, Inc. Steroid-containing sustained release intraocular implants and related methods
US8883139B2 (en) 2010-08-19 2014-11-11 Allergan Inc. Compositions and soft tissue replacement methods
US8889123B2 (en) 2010-08-19 2014-11-18 Allergan, Inc. Compositions and soft tissue replacement methods
US8946192B2 (en) 2010-01-13 2015-02-03 Allergan, Inc. Heat stable hyaluronic acid compositions for dermatological use
US9005605B2 (en) 2010-08-19 2015-04-14 Allergan, Inc. Compositions and soft tissue replacement methods
US9050336B2 (en) 2007-12-12 2015-06-09 Allergan, Inc. Botulinum toxin formulation
US9114188B2 (en) 2010-01-13 2015-08-25 Allergan, Industrie, S.A.S. Stable hydrogel compositions including additives
WO2015142853A1 (en) * 2014-03-17 2015-09-24 Encompass Development, Inc. Ocular formulations
US9149422B2 (en) 2011-06-03 2015-10-06 Allergan, Inc. Dermal filler compositions including antioxidants
US9180047B2 (en) 2013-05-03 2015-11-10 Clearside Biomedical, Inc. Apparatus and methods for ocular injection
US9228027B2 (en) 2008-09-02 2016-01-05 Allergan Holdings France S.A.S. Threads of Hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof
US9241829B2 (en) 2011-12-20 2016-01-26 Abbott Medical Optics Inc. Implantable intraocular drug delivery apparatus, system and method
US9265761B2 (en) 2007-11-16 2016-02-23 Allergan, Inc. Compositions and methods for treating purpura
US9351979B2 (en) 2012-12-19 2016-05-31 Ampio Pharmaceuticals, Inc. Methods of treatment of diseases
US9393263B2 (en) 2011-06-03 2016-07-19 Allergan, Inc. Dermal filler compositions including antioxidants
US9408797B2 (en) 2011-06-03 2016-08-09 Allergan, Inc. Dermal filler compositions for fine line treatment
US9572859B2 (en) 2004-01-20 2017-02-21 Allergan, Inc. Compositions and methods for localized therapy of the eye
US9572800B2 (en) 2012-11-08 2017-02-21 Clearside Biomedical, Inc. Methods and devices for the treatment of ocular diseases in human subjects
US9788995B2 (en) 2006-05-02 2017-10-17 Georgia Tech Research Corporation Methods and devices for drug delivery to ocular tissue using microneedle
US9795711B2 (en) 2011-09-06 2017-10-24 Allergan, Inc. Hyaluronic acid-collagen matrices for dermal filling and volumizing applications
EP3157463A4 (en) * 2014-06-17 2018-02-21 Clearside Biomedical, Inc. Methods and devices for treating posterior ocular disorders
US9956114B2 (en) 2014-06-20 2018-05-01 Clearside Biomedical, Inc. Variable diameter cannula and methods for controlling insertion depth for medicament delivery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060073184A1 (en) * 2004-09-29 2006-04-06 Bausch & Lomb Inc. Viscoelastic composition, methods of use and packaging device with anti-oxidant
US20080008762A1 (en) * 2004-11-17 2008-01-10 Government Of The Us, As Represented By The Secretary, Department Of Health And Human Services Steroid Formulation And Methods Of Treatment Using Same
US8821870B2 (en) * 2008-07-18 2014-09-02 Allergan, Inc. Method for treating atrophic age related macular degeneration
KR20130092957A (en) * 2010-04-07 2013-08-21 알러간, 인코포레이티드 Combinations of preservative compositions for ophthalmic formulations
CN105026480A (en) * 2013-01-11 2015-11-04 卡比兰治疗公司 Stabilized compositions comprising hyaluronic acid
WO2014116876A8 (en) * 2013-01-23 2015-08-20 Semnur Pharmaceuticals, Inc. Pharmaceutical formulation comprising an insoluble corticosteroid and a soluble corticosteroid

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3396081A (en) * 1965-03-17 1968-08-06 Etapharm Chem Pharm Lab Ges M Hyaluronic acid preparation and method of producing same
US4008864A (en) * 1974-02-18 1977-02-22 Nils Gustav Yngve Torphammar Locking mechanism for a safety belt
US4014335A (en) * 1975-04-21 1977-03-29 Alza Corporation Ocular drug delivery device
US4088864A (en) * 1974-11-18 1978-05-09 Alza Corporation Process for forming outlet passageways in pills using a laser
US4144317A (en) * 1975-05-30 1979-03-13 Alza Corporation Device consisting of copolymer having acetoxy groups for delivering drugs
US4158005A (en) * 1975-02-10 1979-06-12 Interx Research Corporation Intermediates useful in the synthesis of optically active m-acyloxy-α-[(methylamino)methyl]benzyl alcohols
US4186184A (en) * 1977-12-27 1980-01-29 Alza Corporation Selective administration of drug with ocular therapeutic system
US4190642A (en) * 1978-04-17 1980-02-26 Alza Corporation Ocular therapeutic system for dispensing a medication formulation
US4200098A (en) * 1978-10-23 1980-04-29 Alza Corporation Osmotic system with distribution zone for dispensing beneficial agent
US4327725A (en) * 1980-11-25 1982-05-04 Alza Corporation Osmotic device with hydrogel driving member
US4383992A (en) * 1982-02-08 1983-05-17 Lipari John M Water-soluble steroid compounds
US4425346A (en) * 1980-08-01 1984-01-10 Smith And Nephew Associated Companies Limited Pharmaceutical compositions
US4494274A (en) * 1982-05-28 1985-01-22 Thurlow Heida L Cookware with covers having metal handles
US4521210A (en) * 1982-12-27 1985-06-04 Wong Vernon G Eye implant for relieving glaucoma, and device and method for use therewith
US4599353A (en) * 1982-05-03 1986-07-08 The Trustees Of Columbia University In The City Of New York Use of eicosanoids and their derivatives for treatment of ocular hypertension and glaucoma
US4649151A (en) * 1982-09-27 1987-03-10 Health Research, Inc. Drugs comprising porphyrins
US4656186A (en) * 1985-04-30 1987-04-07 Nippon Petrochemicals Co., Ltd. Tetrapyrrole therapeutic agents
US4668506A (en) * 1985-08-16 1987-05-26 Bausch & Lomb Incorporated Sustained-release formulation containing and amino acid polymer
US4675338A (en) * 1984-07-18 1987-06-23 Nippon Petrochemicals Co., Ltd. Tetrapyrrole therapeutic agents
US4727064A (en) * 1984-04-25 1988-02-23 The United States Of America As Represented By The Department Of Health And Human Services Pharmaceutical preparations containing cyclodextrin derivatives
US4920104A (en) * 1988-05-16 1990-04-24 Medchem Products, Inc. Sodium hyaluronate composition
US4935498A (en) * 1989-03-06 1990-06-19 Board Of Regents, The University Of Texas System Expanded porphyrins: large porphyrin-like tripyrroledimethine-derived macrocycles
US4981871A (en) * 1987-05-15 1991-01-01 Abelson Mark B Treatment of ocular hypertension with class I calcium channel blocking agents
US5002962A (en) * 1988-07-20 1991-03-26 Health Research, Inc. Photosensitizing agents
US5017579A (en) * 1986-02-14 1991-05-21 Sanofi Use of aminoalkoxyphenyl derivatives for reducing and/or controlling excessive intraocular pressure
US5019400A (en) * 1989-05-01 1991-05-28 Enzytech, Inc. Very low temperature casting of controlled release microspheres
US5025621A (en) * 1990-03-16 1991-06-25 Demarco Vito A Combination garden implement
US5034413A (en) * 1989-07-27 1991-07-23 Allergan, Inc. Intraocular pressure reducing 9,11-diacyl prostaglandins
US5089509A (en) * 1988-09-15 1992-02-18 Allergan, Inc. Disubstituted acetylenes bearing heteroaromatic and heterobicyclic groups having retinoid like activity
US5093349A (en) * 1988-07-20 1992-03-03 Health Research Inc. Photosensitizing agents
US5100431A (en) * 1990-09-27 1992-03-31 Allergan, Inc. Single stitch suture needle and method
US5106615A (en) * 1986-10-14 1992-04-21 Shabtay Dikstein Eyedrops having non-newtonian rheological properties
US5190966A (en) * 1988-07-06 1993-03-02 Health Research, Inc. Purified hematoporphyrin dimers and trimers useful in photodynamic therapy
US5198460A (en) * 1988-07-20 1993-03-30 Health Research Inc. Pyropheophorbides and their use in photodynamic therapy
US5209926A (en) * 1990-06-12 1993-05-11 Insite Vision Incorporated Aminosteroids for ophthalmic use
US5300114A (en) * 1992-05-04 1994-04-05 Allergan, Inc. Subconjunctival implants for ocular drug delivery
US5324519A (en) * 1989-07-24 1994-06-28 Atrix Laboratories, Inc. Biodegradable polymer composition
US5324718A (en) * 1992-07-14 1994-06-28 Thorsteinn Loftsson Cyclodextrin/drug complexation
US5332582A (en) * 1990-06-12 1994-07-26 Insite Vision Incorporated Stabilization of aminosteroids for topical ophthalmic and other applications
US5385887A (en) * 1993-09-10 1995-01-31 Genetics Institute, Inc. Formulations for delivery of osteogenic proteins
US5487897A (en) * 1989-07-24 1996-01-30 Atrix Laboratories, Inc. Biodegradable implant precursor
US5494901A (en) * 1993-01-05 1996-02-27 Javitt; Jonathan C. Topical compositions for the eye comprising a β-cyclodextrin derivative and a therapeutic agent
US5501856A (en) * 1990-11-30 1996-03-26 Senju Pharmaceutical Co., Ltd. Controlled-release pharmaceutical preparation for intra-ocular implant
US5504074A (en) * 1993-08-06 1996-04-02 Children's Medical Center Corporation Estrogenic compounds as anti-angiogenic agents
US5516522A (en) * 1994-03-14 1996-05-14 Board Of Supervisors Of Louisiana State University Biodegradable porous device for long-term drug delivery with constant rate release and method of making the same
US5597897A (en) * 1991-06-21 1997-01-28 Genetics Institute, Inc. Pharmaceutical formulations of osteogenic proteins
US5707643A (en) * 1993-02-26 1998-01-13 Santen Pharmaceutical Co., Ltd. Biodegradable scleral plug
US5717030A (en) * 1994-04-08 1998-02-10 Atrix Laboratories, Inc. Adjunctive polymer system for use with medical device
US5747061A (en) * 1993-10-25 1998-05-05 Pharmos Corporation Suspension of loteprednol etabonate for ear, eye, or nose treatment
US5766242A (en) * 1993-11-15 1998-06-16 Oculex Pharmaceuticals, Inc. Biocompatible ocular implants
US5770589A (en) * 1993-07-27 1998-06-23 The University Of Sydney Treatment of macular degeneration
US5776699A (en) * 1995-09-01 1998-07-07 Allergan, Inc. Method of identifying negative hormone and/or antagonist activities
US5780044A (en) * 1994-04-08 1998-07-14 Atrix Laboratories, Inc. Liquid delivery compositions
US5869079A (en) * 1995-06-02 1999-02-09 Oculex Pharmaceuticals, Inc. Formulation for controlled release of drugs by combining hydrophilic and hydrophobic agents
US5877207A (en) * 1996-03-11 1999-03-02 Allergan Sales, Inc. Synthesis and use of retinoid compounds having negative hormone and/or antagonist activities
US5882682A (en) * 1991-12-27 1999-03-16 Merck & Co., Inc. Controlled release simvastatin delivery device
US5906920A (en) * 1995-08-29 1999-05-25 The Salk Institute For Biological Studies Methods for the detection of ligands for retinoid X receptors
US5913884A (en) * 1996-09-19 1999-06-22 The General Hospital Corporation Inhibition of fibrosis by photodynamic therapy
US5919970A (en) * 1997-04-24 1999-07-06 Allergan Sales, Inc. Substituted diaryl or diheteroaryl methanes, ethers and amines having retinoid agonist, antagonist or inverse agonist type biological activity
US5922773A (en) * 1992-12-04 1999-07-13 The Children's Medical Center Corp. Glaucoma treatment
US6051576A (en) * 1994-01-28 2000-04-18 University Of Kentucky Research Foundation Means to achieve sustained release of synergistic drugs by conjugation
US6066675A (en) * 1996-09-13 2000-05-23 The Regents Of The University Of California Method for treatment of retinal diseases
US6074661A (en) * 1997-08-11 2000-06-13 Allergan Sales, Inc. Sterile bioerodible occular implant device with a retinoid for improved biocompatability
US6217869B1 (en) * 1992-06-09 2001-04-17 Neorx Corporation Pretargeting methods and compounds
US6225303B1 (en) * 1994-03-14 2001-05-01 Massachusetts Eye And Ear Infirmary Use of green porphyrins to treat neovasculature in the eye
US6242480B1 (en) * 1994-12-23 2001-06-05 Alcon Laboratories, Inc. Ophthalmic viscoelastic compositions
US6258319B1 (en) * 1989-10-26 2001-07-10 Cerus Corporation Device and method for photoactivation
US6257568B1 (en) * 1998-03-25 2001-07-10 Vijuk Equipment, Inc. Accumulator station with stack height control
US6261583B1 (en) * 1998-07-28 2001-07-17 Atrix Laboratories, Inc. Moldable solid delivery system
US6369116B1 (en) * 1995-06-02 2002-04-09 Oculex Pharmaceuticals, Inc. Composition and method for treating glaucoma
US6387409B1 (en) * 1998-03-30 2002-05-14 Rtp Pharma Inc. Composition and method of preparing microparticles of water-insoluble substances
US6395294B1 (en) * 2000-01-13 2002-05-28 Gholam A. Peyman Method of visualization of the vitreous during vitrectomy
US6403649B1 (en) * 1992-09-21 2002-06-11 Allergan Sales, Inc. Non-acidic cyclopentane heptanoic acid,2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US6407079B1 (en) * 1985-07-03 2002-06-18 Janssen Pharmaceutica N.V. Pharmaceutical compositions containing drugs which are instable or sparingly soluble in water and methods for their preparation
US20020094998A1 (en) * 2000-11-01 2002-07-18 Burke James A. Methods and compositions for treatment of ocular neovascularization and neural injury
US6537568B2 (en) * 1997-08-11 2003-03-25 Allergan, Inc. Implant device with a retinoid for improved biocompatibility
US20030060763A1 (en) * 2000-01-06 2003-03-27 Penfold Philip Leslie Guide means for intraocular injection
US20030069286A1 (en) * 2001-05-31 2003-04-10 Bardeen Sciences Co., Llc Hypotensive lipid and timolol compositions and methods of using same
US6565874B1 (en) * 1998-10-28 2003-05-20 Atrix Laboratories Polymeric delivery formulations of leuprolide with improved efficacy
US6565871B2 (en) * 1994-12-02 2003-05-20 Elan Drug Delivery Ltd. Solid dose delivery vehicle and methods of making same
US6573280B2 (en) * 1997-06-30 2003-06-03 Allergan, Inc. Calcium blockers to treat proliferative vitreoretinopathy
US6595945B2 (en) * 2001-01-09 2003-07-22 J. David Brown Glaucoma treatment device and method
US6699493B2 (en) * 2000-11-29 2004-03-02 Oculex Pharmaceuticals, Inc. Method for reducing or preventing transplant rejection in the eye and intraocular implants for use therefor
US20040054374A1 (en) * 2002-09-18 2004-03-18 David Weber Methods and apparatus for delivery of ocular implants
US6713268B2 (en) * 2001-06-26 2004-03-30 Allergan, Inc. Methods of identifying ocular hypotensive compounds having reduced hyperpigmentation
US6713081B2 (en) * 2001-03-15 2004-03-30 The United States Of America As Represented By The Department Of Health And Human Services Ocular therapeutic agent delivery devices and methods for making and using such devices
US6723353B2 (en) * 1998-09-02 2004-04-20 Allergan, Inc. Preserved cyclodextrin-containing compositions
US20040077562A1 (en) * 2000-11-15 2004-04-22 Chandavarkar Mohan A. Combination drug
US6726918B1 (en) * 2000-07-05 2004-04-27 Oculex Pharmaceuticals, Inc. Methods for treating inflammation-mediated conditions of the eye
US20040137059A1 (en) * 2003-01-09 2004-07-15 Thierry Nivaggioli Biodegradable ocular implant
US6765012B2 (en) * 2001-09-27 2004-07-20 Allergan, Inc. 3-(Arylamino)methylene-1,3-dihydro-2H-indol-2-ones as kinase inhibitors
US20060009498A1 (en) * 2004-07-12 2006-01-12 Allergan, Inc. Ophthalmic compositions and methods for treating ophthalmic conditions
US20060141049A1 (en) * 2003-11-12 2006-06-29 Allergan, Inc. Triamcinolone compositions for intravitreal administration to treat ocular conditions

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052505A (en) 1975-05-30 1977-10-04 Alza Corporation Ocular therapeutic system manufactured from copolymer
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3916899A (en) 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US4063064A (en) 1976-02-23 1977-12-13 Coherent Radiation Apparatus for tracking moving workpiece by a laser beam
US4057619A (en) 1975-06-30 1977-11-08 Alza Corporation Ocular therapeutic system with selected membranes for administering ophthalmic drug
US4285987A (en) 1978-10-23 1981-08-25 Alza Corporation Process for manufacturing device with dispersion zone
US4303637A (en) 1980-04-04 1981-12-01 Alza Corporation Medication indicated for ocular hypertension
US4281654A (en) 1980-04-07 1981-08-04 Alza Corporation Drug delivery system for controlled ocular therapy
US4396625A (en) 1980-05-13 1983-08-02 Sumitomo Chemical Company, Limited Treatment of glaucoma or ocular hypertension and ophthalmic composition
US4304765A (en) 1980-10-14 1981-12-08 Alza Corporation Ocular insert housing steroid in two different therapeutic forms
US4478818A (en) 1982-12-27 1984-10-23 Alza Corporation Ocular preparation housing steroid in two different therapeutic forms
JPS58126435U (en) 1982-02-19 1983-08-27
US5166331A (en) * 1983-10-10 1992-11-24 Fidia, S.P.A. Hyaluronics acid fractions, methods for the preparation thereof, and pharmaceutical compositions containing same
US4693885A (en) 1984-07-18 1987-09-15 Nippon Petrochemicals Co., Ltd. Tetrapyrrole therapeutic agents
US5128326A (en) 1984-12-06 1992-07-07 Biomatrix, Inc. Drug delivery systems based on hyaluronans derivatives thereof and their salts and methods of producing same
FR2577509B1 (en) 1985-02-21 1987-05-07 Nirvana Espar Systems Sa Mast sailing boat
CN85102921B (en) 1985-04-05 1988-06-08 菲地亚有限公司 Method of making pharmaceutical hyaluronic acid components and medical therefrom
US4713446A (en) * 1985-09-06 1987-12-15 Minnesota Mining And Manufacturing Company Viscoelastic collagen solution for ophthalmic use and method of preparation
EP0224987B1 (en) * 1985-11-29 1992-04-15 Biomatrix, Inc. Drug delivery systems based on hyaluronan, derivatives thereof and their salts and method of producing same
EP0244178A3 (en) * 1986-04-28 1989-02-08 Iolab, Inc Intraocular dosage compositions and method of use
US4959217A (en) 1986-05-22 1990-09-25 Syntex (U.S.A.) Inc. Delayed/sustained release of macromolecules
US4863457A (en) 1986-11-24 1989-09-05 Lee David A Drug delivery device
DE3802158A1 (en) 1987-08-11 1989-02-23 Hoechst Ag A device for application of implants
JPH02112A (en) 1987-09-18 1990-01-05 Ethicon Inc Gel compound containing growth factor
DE3734223A1 (en) 1987-10-09 1989-04-20 Boehringer Ingelheim Kg An implantable, biodegradable drug-release system
US4997652A (en) 1987-12-22 1991-03-05 Visionex Biodegradable ocular implants
US4853224A (en) 1987-12-22 1989-08-01 Visionex Biodegradable ocular implants
US4865846A (en) 1988-06-03 1989-09-12 Kaufman Herbert E Drug delivery system
US4968715A (en) 1988-07-06 1990-11-06 Health Research, Inc. Use of purified hematoporphyrin trimers in photodynamic therapy
ES2186670T3 (en) 1988-09-06 2003-05-16 Pharmacia Ab Prostaglandin derivatives for the treatment of glaucoma or ocular hypertension.
US5702716A (en) 1988-10-03 1997-12-30 Atrix Laboratories, Inc. Polymeric compositions useful as controlled release implants
US5457183A (en) 1989-03-06 1995-10-10 Board Of Regents, The University Of Texas System Hydroxylated texaphyrins
US5098443A (en) 1989-03-23 1992-03-24 University Of Miami Method of implanting intraocular and intraorbital implantable devices for the controlled release of pharmacological agents
US5173504A (en) 1989-04-21 1992-12-22 Health Research, Inc. Bacteriochlorophyll-a derivatives useful in photodynamic therapy
US5171741A (en) 1989-04-21 1992-12-15 Health Research, Inc. Bacteriochlorophyll-a derivatives useful in photodynamic therapy
US5077049A (en) 1989-07-24 1991-12-31 Vipont Pharmaceutical, Inc. Biodegradable system for regenerating the periodontium
US6271216B1 (en) 1989-07-24 2001-08-07 Allergan Stable solution of hyaluronate in a balanced salt medium
US5268178A (en) 1989-09-25 1993-12-07 The Board Of Regents, The University Of Texas System Biodegradable antibiotic implants and methods of their use in treating and preventing infections
US5164188A (en) 1989-11-22 1992-11-17 Visionex, Inc. Biodegradable ocular implants
US5075115A (en) 1990-04-02 1991-12-24 Fmc Corporation Process for polymerizing poly(lactic acid)
US5232844A (en) 1990-05-15 1993-08-03 New York Blood Center Photodynamic inactivation of viruses in cell-containing compositions
US5256408A (en) 1990-06-12 1993-10-26 Insite Vision Incorporated Aminosteroids for ophthalmic use
US5492936A (en) 1990-11-30 1996-02-20 Allergan, Inc. Bimodal molecular weight hyaluronate formulations and methods for using same
US5552160A (en) 1991-01-25 1996-09-03 Nanosystems L.L.C. Surface modified NSAID nanoparticles
US5378475A (en) 1991-02-21 1995-01-03 University Of Kentucky Research Foundation Sustained release drug delivery devices
US5356629A (en) 1991-07-12 1994-10-18 United States Surgical Corporation Composition for effecting bone repair
US5169638A (en) 1991-10-23 1992-12-08 E. R. Squibb & Sons, Inc. Buoyant controlled release powder formulation
US5656297A (en) 1992-03-12 1997-08-12 Alkermes Controlled Therapeutics, Incorporated Modulated release from biocompatible polymers
WO1993021172A1 (en) 1992-04-09 1993-10-28 Rotta Research Laboratorium S.P.A. Basic derivatives of glutamic acid and aspartic acid as gastrin or cholecystokinin antagonists
US5655832A (en) 1992-04-16 1997-08-12 Tir Technologies, Inc. Multiple wavelength light processor
US5244914A (en) 1992-04-27 1993-09-14 American Cyanamid Company Stable porfimer sodium compositions and methods for their manufacture
US5472954A (en) 1992-07-14 1995-12-05 Cyclops H.F. Cyclodextrin complexation
US5688819A (en) 1992-09-21 1997-11-18 Allergan Cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
DE4403326C1 (en) 1994-02-03 1995-06-22 Hans Reinhard Prof Dr Koch An intraocular lens assembly for astigmatism
US5422116A (en) * 1994-02-18 1995-06-06 Ciba-Geigy Corporation Liquid ophthalmic sustained release delivery system
US5466233A (en) 1994-04-25 1995-11-14 Escalon Ophthalmics, Inc. Tack for intraocular drug delivery and method for inserting and removing same
US6270492B1 (en) 1994-09-09 2001-08-07 Cardiofocus, Inc. Phototherapeutic apparatus with diffusive tip assembly
US5576311A (en) 1994-11-30 1996-11-19 Pharmos Corporation Cyclodextrins as suspending agents for pharmaceutical suspensions
US5565188A (en) 1995-02-24 1996-10-15 Nanosystems L.L.C. Polyalkylene block copolymers as surface modifiers for nanoparticles
US5958954A (en) 1995-09-01 1999-09-28 Allergan Sales, Inc. Synthesis and use of retinoid compounds having negative hormone and/or antagonist activities
CA2258920C (en) 1996-06-21 2003-12-02 Fidia S.P.A. Autocross-linked hyaluronic acid and related pharmaceutical compositions for the treatment of arthropathies
US6270749B1 (en) 1996-12-11 2001-08-07 Pharmacyclics, Inc. Use of Texaphyrin in ocular diagnosis and therapy
JP3748970B2 (en) * 1997-01-31 2006-02-22 電気化学工業株式会社 Sodium hyaluronate-containing aqueous solution
US6274614B1 (en) 1997-02-11 2001-08-14 Qlt Inc. Methods, compositions and articles for reducing or preventing the effects of inflammation
US6086597A (en) 1997-03-07 2000-07-11 Pharmacia & Upjohn Ab Ophthalmic composition
US6271220B1 (en) 1998-03-11 2001-08-07 Allergan Sales, Inc. Anti-angiogenic agents
US5994309A (en) 1997-07-25 1999-11-30 Angstrom Pharmaceuticals, Inc. Anti-invasive and anti-angiogenic compositions and methods
US6197326B1 (en) * 1997-10-27 2001-03-06 Ssp Co., Ltd. Intra-articular preparation for the treatment of arthropathy
EP0938896A1 (en) 1998-01-15 1999-09-01 Novartis AG Autoclavable pharmaceutical compositions containing a chelating agent
EP1100366B1 (en) 1998-07-09 2009-04-15 Curelight Medical Ltd Apparatus and method for efficient high energy photodynamic therapy of acne vulgaris and seborrhea
EP1104302A4 (en) 1998-07-10 2006-08-09 Retmed Pty Ltd Prophylactic treatments of neovascularisation in macular degeneration
US20040152664A1 (en) 1998-09-02 2004-08-05 Allergan, Inc. Prednisolone compositions
US6143314A (en) 1998-10-28 2000-11-07 Atrix Laboratories, Inc. Controlled release liquid delivery compositions with low initial drug burst
WO2000030532A1 (en) 1998-11-20 2000-06-02 University Of Connecticut Generic integrated implantable potentiostat telemetry unit for electrochemical sensors
US6217895B1 (en) 1999-03-22 2001-04-17 Control Delivery Systems Method for treating and/or preventing retinal diseases with sustained release corticosteroids
US6482854B1 (en) 1999-03-25 2002-11-19 Massachusetts Eye And Ear Infirmary Glaucoma treatment
US6290713B1 (en) 1999-08-24 2001-09-18 Thomas A. Russell Flexible illuminators for phototherapy
US6317616B1 (en) 1999-09-15 2001-11-13 Neil David Glossop Method and system to facilitate image guided surgery
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US6461631B1 (en) 1999-11-16 2002-10-08 Atrix Laboratories, Inc. Biodegradable polymer composition
US6319273B1 (en) 1999-12-16 2001-11-20 Light Sciences Corporation Illuminating device for treating eye disease
CA2398901C (en) 2000-02-10 2010-11-16 Massachusetts Eye And Ear Infirmary Methods and compositions for treating conditions of the eye
CA2414780A1 (en) 2000-07-13 2002-01-24 Tugrul T. Kararli Ophthalmic formulation of a selective cyclooxygenase-2 inhibitory drug
US6357568B1 (en) 2000-09-27 2002-03-19 Shou Mao Chen Structure for protecting a luggage shell
US20020198174A1 (en) 2001-05-07 2002-12-26 Allergan Sales, Inc. Disinfecting and solubilizing steroid compositions
EP1404370A2 (en) * 2001-06-08 2004-04-07 Novartis AG Ophthalmic compositions comprising hyaluronic acid
CA2463687A1 (en) 2001-10-18 2003-04-24 Decode Genetics Ehf Cyclodextrin complexes
JP2005511576A (en) 2001-11-09 2005-04-28 アイテック・ファーマシューティカルズ A method of treating ocular neovascular disease
US6885744B2 (en) 2001-12-20 2005-04-26 Rockwell Electronic Commerce Technologies, Llc Method of providing background and video patterns
US6960346B2 (en) 2002-05-09 2005-11-01 University Of Tennessee Research Foundation Vehicles for delivery of biologically active substances
CN1411814A (en) * 2002-08-21 2003-04-23 王晓伟 Eye lotion
WO2004069280A1 (en) 2003-02-06 2004-08-19 Cipla Ltd Pharmaceutical inclusion complexes containing a steroid and optionally an antibacterial agent
EP1670480A4 (en) * 2003-02-20 2007-10-10 Alcon Inc Use of steroids to treat ocular disorders
JP2006518769A (en) 2003-02-21 2006-08-17 サン・ファーマシューティカル・インダストリーズ・リミテッドSun Pharmaceutical Industries Limited Stable ophthalmic composition
US20050009910A1 (en) 2003-07-10 2005-01-13 Allergan, Inc. Delivery of an active drug to the posterior part of the eye via subconjunctival or periocular delivery of a prodrug
CN1852700A (en) 2003-09-23 2006-10-25 爱尔康公司 Triamcinolone acetonide and anecortave acetate formulations for injection
US20050101582A1 (en) 2003-11-12 2005-05-12 Allergan, Inc. Compositions and methods for treating a posterior segment of an eye
WO2006043965A1 (en) 2004-10-14 2006-04-27 Allergan, Inc. Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
CN100548271C (en) 2004-01-20 2009-10-14 阿勒根公司 Compositions for localized therapy of the eye, comprising preferably triamcinolone acetonide and hyaluronic acid
US8425929B2 (en) 2004-04-30 2013-04-23 Allergan, Inc. Sustained release intraocular implants and methods for preventing retinal dysfunction
WO2005110374A1 (en) 2004-04-30 2005-11-24 Allergan, Inc. Intraocular drug delivery systems containing a therapeutic component, a cyclodextrin, and a polymeric component
US20050244462A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Devices and methods for treating a mammalian eye
US7771742B2 (en) 2004-04-30 2010-08-10 Allergan, Inc. Sustained release intraocular implants containing tyrosine kinase inhibitors and related methods
US7799336B2 (en) 2004-04-30 2010-09-21 Allergan, Inc. Hypotensive lipid-containing biodegradable intraocular implants and related methods
US7589057B2 (en) 2004-04-30 2009-09-15 Allergan, Inc. Oil-in-water method for making alpha-2 agonist polymeric drug delivery systems
US20050244461A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Controlled release drug delivery systems and methods for treatment of an eye
US20050244465A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Drug delivery systems and methods for treatment of an eye
US20050244471A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Estradiol derivative and estratopone containing sustained release intraocular implants and related methods
US20050244463A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Sustained release intraocular implants and methods for treating ocular vasculopathies
US8119154B2 (en) 2004-04-30 2012-02-21 Allergan, Inc. Sustained release intraocular implants and related methods
US20050244458A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Sustained release intraocular implants and methods for treating ocular neuropathies
US20050244466A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Photodynamic therapy in conjunction with intraocular implants
US20050244478A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Anti-excititoxic sustained release intraocular implants and related methods
US8802128B2 (en) 2006-06-23 2014-08-12 Allergan, Inc. Steroid-containing sustained release intraocular implants and related methods
US20070298073A1 (en) 2006-06-23 2007-12-27 Allergan, Inc. Steroid-containing sustained release intraocular implants and related methods

Patent Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3396081A (en) * 1965-03-17 1968-08-06 Etapharm Chem Pharm Lab Ges M Hyaluronic acid preparation and method of producing same
US4008864A (en) * 1974-02-18 1977-02-22 Nils Gustav Yngve Torphammar Locking mechanism for a safety belt
US4088864A (en) * 1974-11-18 1978-05-09 Alza Corporation Process for forming outlet passageways in pills using a laser
US4158005A (en) * 1975-02-10 1979-06-12 Interx Research Corporation Intermediates useful in the synthesis of optically active m-acyloxy-α-[(methylamino)methyl]benzyl alcohols
US4014335A (en) * 1975-04-21 1977-03-29 Alza Corporation Ocular drug delivery device
US4144317A (en) * 1975-05-30 1979-03-13 Alza Corporation Device consisting of copolymer having acetoxy groups for delivering drugs
US4186184A (en) * 1977-12-27 1980-01-29 Alza Corporation Selective administration of drug with ocular therapeutic system
US4190642A (en) * 1978-04-17 1980-02-26 Alza Corporation Ocular therapeutic system for dispensing a medication formulation
US4200098A (en) * 1978-10-23 1980-04-29 Alza Corporation Osmotic system with distribution zone for dispensing beneficial agent
US4425346A (en) * 1980-08-01 1984-01-10 Smith And Nephew Associated Companies Limited Pharmaceutical compositions
US4327725A (en) * 1980-11-25 1982-05-04 Alza Corporation Osmotic device with hydrogel driving member
US4383992A (en) * 1982-02-08 1983-05-17 Lipari John M Water-soluble steroid compounds
US4599353A (en) * 1982-05-03 1986-07-08 The Trustees Of Columbia University In The City Of New York Use of eicosanoids and their derivatives for treatment of ocular hypertension and glaucoma
US4494274A (en) * 1982-05-28 1985-01-22 Thurlow Heida L Cookware with covers having metal handles
US4932934A (en) * 1982-09-27 1990-06-12 Health Research, Inc. Methods for treatment of tumors
US4649151A (en) * 1982-09-27 1987-03-10 Health Research, Inc. Drugs comprising porphyrins
US4521210A (en) * 1982-12-27 1985-06-04 Wong Vernon G Eye implant for relieving glaucoma, and device and method for use therewith
US4727064A (en) * 1984-04-25 1988-02-23 The United States Of America As Represented By The Department Of Health And Human Services Pharmaceutical preparations containing cyclodextrin derivatives
US4675338A (en) * 1984-07-18 1987-06-23 Nippon Petrochemicals Co., Ltd. Tetrapyrrole therapeutic agents
US4656186A (en) * 1985-04-30 1987-04-07 Nippon Petrochemicals Co., Ltd. Tetrapyrrole therapeutic agents
US6407079B1 (en) * 1985-07-03 2002-06-18 Janssen Pharmaceutica N.V. Pharmaceutical compositions containing drugs which are instable or sparingly soluble in water and methods for their preparation
US4668506A (en) * 1985-08-16 1987-05-26 Bausch & Lomb Incorporated Sustained-release formulation containing and amino acid polymer
US5017579A (en) * 1986-02-14 1991-05-21 Sanofi Use of aminoalkoxyphenyl derivatives for reducing and/or controlling excessive intraocular pressure
US5106615A (en) * 1986-10-14 1992-04-21 Shabtay Dikstein Eyedrops having non-newtonian rheological properties
US4981871A (en) * 1987-05-15 1991-01-01 Abelson Mark B Treatment of ocular hypertension with class I calcium channel blocking agents
US4920104A (en) * 1988-05-16 1990-04-24 Medchem Products, Inc. Sodium hyaluronate composition
US5190966A (en) * 1988-07-06 1993-03-02 Health Research, Inc. Purified hematoporphyrin dimers and trimers useful in photodynamic therapy
US5314905A (en) * 1988-07-20 1994-05-24 Health Research, Inc. Pyropheophorbides conjugates and their use in photodynamic therapy
US5198460A (en) * 1988-07-20 1993-03-30 Health Research Inc. Pyropheophorbides and their use in photodynamic therapy
US5093349A (en) * 1988-07-20 1992-03-03 Health Research Inc. Photosensitizing agents
US5002962A (en) * 1988-07-20 1991-03-26 Health Research, Inc. Photosensitizing agents
US5089509A (en) * 1988-09-15 1992-02-18 Allergan, Inc. Disubstituted acetylenes bearing heteroaromatic and heterobicyclic groups having retinoid like activity
US4935498A (en) * 1989-03-06 1990-06-19 Board Of Regents, The University Of Texas System Expanded porphyrins: large porphyrin-like tripyrroledimethine-derived macrocycles
US5019400A (en) * 1989-05-01 1991-05-28 Enzytech, Inc. Very low temperature casting of controlled release microspheres
US5487897A (en) * 1989-07-24 1996-01-30 Atrix Laboratories, Inc. Biodegradable implant precursor
US6395293B2 (en) * 1989-07-24 2002-05-28 Atrix Laboratories Biodegradable implant precursor
US5324519A (en) * 1989-07-24 1994-06-28 Atrix Laboratories, Inc. Biodegradable polymer composition
US5034413A (en) * 1989-07-27 1991-07-23 Allergan, Inc. Intraocular pressure reducing 9,11-diacyl prostaglandins
US6258319B1 (en) * 1989-10-26 2001-07-10 Cerus Corporation Device and method for photoactivation
US5025621A (en) * 1990-03-16 1991-06-25 Demarco Vito A Combination garden implement
US5332582A (en) * 1990-06-12 1994-07-26 Insite Vision Incorporated Stabilization of aminosteroids for topical ophthalmic and other applications
US5209926A (en) * 1990-06-12 1993-05-11 Insite Vision Incorporated Aminosteroids for ophthalmic use
US5100431A (en) * 1990-09-27 1992-03-31 Allergan, Inc. Single stitch suture needle and method
US5501856A (en) * 1990-11-30 1996-03-26 Senju Pharmaceutical Co., Ltd. Controlled-release pharmaceutical preparation for intra-ocular implant
US5597897A (en) * 1991-06-21 1997-01-28 Genetics Institute, Inc. Pharmaceutical formulations of osteogenic proteins
US5882682A (en) * 1991-12-27 1999-03-16 Merck & Co., Inc. Controlled release simvastatin delivery device
US5300114A (en) * 1992-05-04 1994-04-05 Allergan, Inc. Subconjunctival implants for ocular drug delivery
US6217869B1 (en) * 1992-06-09 2001-04-17 Neorx Corporation Pretargeting methods and compounds
US5324718A (en) * 1992-07-14 1994-06-28 Thorsteinn Loftsson Cyclodextrin/drug complexation
US6403649B1 (en) * 1992-09-21 2002-06-11 Allergan Sales, Inc. Non-acidic cyclopentane heptanoic acid,2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US5922773A (en) * 1992-12-04 1999-07-13 The Children's Medical Center Corp. Glaucoma treatment
US5494901A (en) * 1993-01-05 1996-02-27 Javitt; Jonathan C. Topical compositions for the eye comprising a β-cyclodextrin derivative and a therapeutic agent
US5707643A (en) * 1993-02-26 1998-01-13 Santen Pharmaceutical Co., Ltd. Biodegradable scleral plug
US5770589A (en) * 1993-07-27 1998-06-23 The University Of Sydney Treatment of macular degeneration
US5504074A (en) * 1993-08-06 1996-04-02 Children's Medical Center Corporation Estrogenic compounds as anti-angiogenic agents
US5385887A (en) * 1993-09-10 1995-01-31 Genetics Institute, Inc. Formulations for delivery of osteogenic proteins
US5747061A (en) * 1993-10-25 1998-05-05 Pharmos Corporation Suspension of loteprednol etabonate for ear, eye, or nose treatment
US5766242A (en) * 1993-11-15 1998-06-16 Oculex Pharmaceuticals, Inc. Biocompatible ocular implants
US6051576A (en) * 1994-01-28 2000-04-18 University Of Kentucky Research Foundation Means to achieve sustained release of synergistic drugs by conjugation
US5516522A (en) * 1994-03-14 1996-05-14 Board Of Supervisors Of Louisiana State University Biodegradable porous device for long-term drug delivery with constant rate release and method of making the same
US6225303B1 (en) * 1994-03-14 2001-05-01 Massachusetts Eye And Ear Infirmary Use of green porphyrins to treat neovasculature in the eye
US5717030A (en) * 1994-04-08 1998-02-10 Atrix Laboratories, Inc. Adjunctive polymer system for use with medical device
US5780044A (en) * 1994-04-08 1998-07-14 Atrix Laboratories, Inc. Liquid delivery compositions
US6565871B2 (en) * 1994-12-02 2003-05-20 Elan Drug Delivery Ltd. Solid dose delivery vehicle and methods of making same
US6242480B1 (en) * 1994-12-23 2001-06-05 Alcon Laboratories, Inc. Ophthalmic viscoelastic compositions
US5869079A (en) * 1995-06-02 1999-02-09 Oculex Pharmaceuticals, Inc. Formulation for controlled release of drugs by combining hydrophilic and hydrophobic agents
US6369116B1 (en) * 1995-06-02 2002-04-09 Oculex Pharmaceuticals, Inc. Composition and method for treating glaucoma
US20030095995A1 (en) * 1995-06-02 2003-05-22 Vernon Wong Formulation for controlled release of drugs by combining hydrophilic and hydrophobic agents
US5906920A (en) * 1995-08-29 1999-05-25 The Salk Institute For Biological Studies Methods for the detection of ligands for retinoid X receptors
US5776699A (en) * 1995-09-01 1998-07-07 Allergan, Inc. Method of identifying negative hormone and/or antagonist activities
US5877207A (en) * 1996-03-11 1999-03-02 Allergan Sales, Inc. Synthesis and use of retinoid compounds having negative hormone and/or antagonist activities
US6066675A (en) * 1996-09-13 2000-05-23 The Regents Of The University Of California Method for treatment of retinal diseases
US5913884A (en) * 1996-09-19 1999-06-22 The General Hospital Corporation Inhibition of fibrosis by photodynamic therapy
US5919970A (en) * 1997-04-24 1999-07-06 Allergan Sales, Inc. Substituted diaryl or diheteroaryl methanes, ethers and amines having retinoid agonist, antagonist or inverse agonist type biological activity
US6573280B2 (en) * 1997-06-30 2003-06-03 Allergan, Inc. Calcium blockers to treat proliferative vitreoretinopathy
US6074661A (en) * 1997-08-11 2000-06-13 Allergan Sales, Inc. Sterile bioerodible occular implant device with a retinoid for improved biocompatability
US6537568B2 (en) * 1997-08-11 2003-03-25 Allergan, Inc. Implant device with a retinoid for improved biocompatibility
US6257568B1 (en) * 1998-03-25 2001-07-10 Vijuk Equipment, Inc. Accumulator station with stack height control
US6387409B1 (en) * 1998-03-30 2002-05-14 Rtp Pharma Inc. Composition and method of preparing microparticles of water-insoluble substances
US6261583B1 (en) * 1998-07-28 2001-07-17 Atrix Laboratories, Inc. Moldable solid delivery system
US6723353B2 (en) * 1998-09-02 2004-04-20 Allergan, Inc. Preserved cyclodextrin-containing compositions
US6565874B1 (en) * 1998-10-28 2003-05-20 Atrix Laboratories Polymeric delivery formulations of leuprolide with improved efficacy
US20030060763A1 (en) * 2000-01-06 2003-03-27 Penfold Philip Leslie Guide means for intraocular injection
US6395294B1 (en) * 2000-01-13 2002-05-28 Gholam A. Peyman Method of visualization of the vitreous during vitrectomy
US6726918B1 (en) * 2000-07-05 2004-04-27 Oculex Pharmaceuticals, Inc. Methods for treating inflammation-mediated conditions of the eye
US20020094998A1 (en) * 2000-11-01 2002-07-18 Burke James A. Methods and compositions for treatment of ocular neovascularization and neural injury
US20040077562A1 (en) * 2000-11-15 2004-04-22 Chandavarkar Mohan A. Combination drug
US6699493B2 (en) * 2000-11-29 2004-03-02 Oculex Pharmaceuticals, Inc. Method for reducing or preventing transplant rejection in the eye and intraocular implants for use therefor
US6595945B2 (en) * 2001-01-09 2003-07-22 J. David Brown Glaucoma treatment device and method
US6713081B2 (en) * 2001-03-15 2004-03-30 The United States Of America As Represented By The Department Of Health And Human Services Ocular therapeutic agent delivery devices and methods for making and using such devices
US20030069286A1 (en) * 2001-05-31 2003-04-10 Bardeen Sciences Co., Llc Hypotensive lipid and timolol compositions and methods of using same
US6713268B2 (en) * 2001-06-26 2004-03-30 Allergan, Inc. Methods of identifying ocular hypotensive compounds having reduced hyperpigmentation
US6765012B2 (en) * 2001-09-27 2004-07-20 Allergan, Inc. 3-(Arylamino)methylene-1,3-dihydro-2H-indol-2-ones as kinase inhibitors
US20040054374A1 (en) * 2002-09-18 2004-03-18 David Weber Methods and apparatus for delivery of ocular implants
US6899717B2 (en) * 2002-09-18 2005-05-31 Allergan, Inc. Methods and apparatus for delivery of ocular implants
US20040137059A1 (en) * 2003-01-09 2004-07-15 Thierry Nivaggioli Biodegradable ocular implant
US20060141049A1 (en) * 2003-11-12 2006-06-29 Allergan, Inc. Triamcinolone compositions for intravitreal administration to treat ocular conditions
US20060009498A1 (en) * 2004-07-12 2006-01-12 Allergan, Inc. Ophthalmic compositions and methods for treating ophthalmic conditions

Cited By (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060204543A1 (en) * 1995-06-02 2006-09-14 Allergan, Inc. Formulation for controlled release of drugs by combining hydrophilic and hydrophobic agents
US20050191334A1 (en) * 1995-06-02 2005-09-01 Allergan, Inc. Formulation for controlled release of drugs by combining hydrophilic and hydrophobic agents
US20060280774A1 (en) * 1995-06-02 2006-12-14 Allergan, Inc. Compositions and methods for treating glaucoma
US20060067966A1 (en) * 1995-06-02 2006-03-30 Allergan, Inc. Formulation for controlled release of drugs by combining hydrophilic and hydrophobic agents
US9012437B2 (en) 2000-07-05 2015-04-21 Allergan, Inc. Implants and methods for treating inflammation-mediated conditions of the eye
US8242099B2 (en) 2000-07-05 2012-08-14 Allergan, Inc. Implants and methods for treating inflammation-mediated conditions of the eye
US9775849B2 (en) 2000-07-05 2017-10-03 Allergan, Inc. Implants and methods for treating inflammation-mediated conditions of the eye
US7846468B2 (en) 2000-11-29 2010-12-07 Allergan, Inc. Methods for reducing or preventing transplant rejection in the eye and intraocular implants for use therefor
US8071120B2 (en) 2000-11-29 2011-12-06 Allergan, Inc. Methods for treating neovascularization and intravitreal implants
US7767223B2 (en) 2000-11-29 2010-08-03 Allergan, Inc. Methods for reducing or preventing transplant rejection in the eye and intraocular implants for use
US20070298076A1 (en) * 2000-11-29 2007-12-27 Allergan, Inc. Method for reducing or preventing transplant rejection in the eye and intraocular implants for use therefor
US9592242B2 (en) 2000-11-29 2017-03-14 Allergan, Inc. Methods for treating edema in the eye and intraocular implants for use therefor
US20090062249A1 (en) * 2000-11-29 2009-03-05 Allergan, Inc. Methods for reducing or preventing transplant rejection in the eye and intraocular implants for use therefor
US20080069859A1 (en) * 2000-11-29 2008-03-20 Allergan, Inc. Method for treating neovascularization and intravitreal implants
US20070190112A1 (en) * 2000-11-29 2007-08-16 Allergan, Inc. Methods for reducing or preventing transplant rejection in the eye and intraocular implants for use therefor
US9283178B2 (en) 2000-11-29 2016-03-15 Allergan, Inc. Methods for treating edema in the eye and intraocular implants for use therefor
US8828446B2 (en) 2000-11-29 2014-09-09 Allergan, Inc. Method for reducing transplant rejection in the eye and intraocular implants for use therefor
US8043628B2 (en) 2000-11-29 2011-10-25 Allergan, Inc. Methods for reducing edema
US8088407B2 (en) 2000-11-29 2012-01-03 Allergan, Inc. Method for reducing or preventing transplant rejection in the eye and intraocular implants for use therefor
US8034366B2 (en) 2003-01-09 2011-10-11 Allergan, Inc. Ocular implant made by a double extrusion process
US8318070B2 (en) 2003-01-09 2012-11-27 Allergan, Inc. Ocular implant made by a double extrusion process
US10076526B2 (en) 2003-01-09 2018-09-18 Allergan, Inc. Ocular implant made by a double extrusion process
US20050048099A1 (en) * 2003-01-09 2005-03-03 Allergan, Inc. Ocular implant made by a double extrusion process
US8034370B2 (en) 2003-01-09 2011-10-11 Allergan, Inc. Ocular implant made by a double extrusion process
US20080107712A1 (en) * 2003-01-09 2008-05-08 Allergan, Inc. Ocular implant made by a double extrusion process
US9192511B2 (en) 2003-01-09 2015-11-24 Allergan, Inc. Ocular implant made by a double extrusion process
US8506987B2 (en) 2003-01-09 2013-08-13 Allergan, Inc. Ocular implant made by a double extrusion process
US8778381B2 (en) 2003-01-09 2014-07-15 Allergan, Inc. Ocular implant made by a double extrusion process
US8563532B2 (en) 2003-04-10 2013-10-22 Allergan Industrie Sas Cross-linking of low-molecular weight and high-molecular weight polysaccharides, preparation of injectable monophase hydrogels, polysaccharides and hydrogels obtained
US10080767B2 (en) 2003-04-10 2018-09-25 Allergan Industrie Sas Injectable monophase hydrogels
US8338388B2 (en) 2003-04-10 2012-12-25 Allergan, Inc. Cross-linking of low-molecular weight and high-molecular weight polysaccharides, preparation of injectable monophase hydrogels, polysaccharides and hydrogels obtained
US9062130B2 (en) 2003-04-10 2015-06-23 Allergan Industrie Sas Cross-linking of low-molecular weight and high-molecular weight polysaccharides, preparation of injectable monophase hydrogels, polysaccharides and hydrogels obtained
US20080269181A1 (en) * 2003-11-12 2008-10-30 Allergan, Inc. Methods for treating a posterior segment of an eye
US8846094B2 (en) 2003-11-12 2014-09-30 Allergan, Inc. Peripherally administered viscous formulations
US20080044476A1 (en) * 2003-11-12 2008-02-21 Allergan, Inc. Peripherally administered viscous formulations
US9089478B2 (en) 2003-11-12 2015-07-28 Allergen, Inc. Peripherally administered viscous formulations
US20090118246A1 (en) * 2003-11-12 2009-05-07 Hughes Patrick M Therapeutic ophthalmic compositions containing retinal friendly recpients and related methods
US8569272B2 (en) 2003-11-12 2013-10-29 Allergan, Inc. Methods for treating a posterior segment of an eye
US20090118247A1 (en) * 2003-11-12 2009-05-07 Hughes Patrick M Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US20070224278A1 (en) * 2003-11-12 2007-09-27 Lyons Robert T Low immunogenicity corticosteroid compositions
US9265775B2 (en) 2003-11-12 2016-02-23 Allergan, Inc. Pharmaceutical compositions
US20060141049A1 (en) * 2003-11-12 2006-06-29 Allergan, Inc. Triamcinolone compositions for intravitreal administration to treat ocular conditions
US20050250737A1 (en) * 2003-11-12 2005-11-10 Allergan, Inc. Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US20090197847A1 (en) * 2003-11-12 2009-08-06 Hughes Patrick M Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US20090197846A1 (en) * 2003-11-12 2009-08-06 Hughes Patrick M Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US20090156568A1 (en) * 2003-11-12 2009-06-18 Hughes Partick M Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US9572859B2 (en) 2004-01-20 2017-02-21 Allergan, Inc. Compositions and methods for localized therapy of the eye
US8440216B2 (en) 2004-04-30 2013-05-14 Allergan, Inc. Sustained release intraocular implants and related methods
US8298570B2 (en) 2004-04-30 2012-10-30 Allergan, Inc. Sustained release intraocular implants and related methods
US8911768B2 (en) 2004-04-30 2014-12-16 Allergan, Inc. Methods for treating retinopathy with extended therapeutic effect
US8962009B2 (en) 2004-04-30 2015-02-24 Allergan, Inc. Sustained release intraocular implants and related methods
US20080131486A1 (en) * 2004-04-30 2008-06-05 Allergan, Inc. Sustained release intraocular implants and related methods
US9233071B2 (en) 2004-04-30 2016-01-12 Allergan, Inc. Methods for treating retinopathy with extended therapeutic effect
US8771722B2 (en) 2004-04-30 2014-07-08 Allergan, Inc. Methods of treating ocular disease using steroid-containing sustained release intraocular implants
US20060233859A1 (en) * 2004-04-30 2006-10-19 Allergan, Inc. Methods for treating retinopathy with extended therapeutic effect
US20050244469A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Extended therapeutic effect ocular implant treatments
US8263110B2 (en) 2004-04-30 2012-09-11 Allergan, Inc. Sustained release intraocular implants and related methods
US8802129B2 (en) 2004-04-30 2014-08-12 Allergan, Inc. Methods for treating retinopathy with extended therapeutic effect
US20060009498A1 (en) * 2004-07-12 2006-01-12 Allergan, Inc. Ophthalmic compositions and methods for treating ophthalmic conditions
US20060183773A1 (en) * 2005-01-20 2006-08-17 David Bar-Or Uses of methylphenidate derivatives
US20090275614A1 (en) * 2005-01-20 2009-11-05 David Bar-Or Methylphenidate Derivatives and Uses of Them
US8076485B2 (en) 2005-01-20 2011-12-13 Institute For Molecular Medicine, Inc. Methylphenidate derivatives and uses of them
US9463187B2 (en) 2005-01-20 2016-10-11 Ampio Pharmaceuticals, Inc. Methylphenidate derivatives and uses of them
EP2462959A1 (en) 2005-07-12 2012-06-13 DMI Biosciences, Inc. Methods and products for treatment of diseases
EP2468318A1 (en) 2005-07-12 2012-06-27 DMI Biosciences, Inc. Methods and products for treatment of diseases
US20110171306A1 (en) * 2005-07-12 2011-07-14 David Bar-Or Methods and products for treatment of diseases
EP2446887A2 (en) 2005-07-12 2012-05-02 DMI Biosciences, Inc. Use of danazol for the treatment of Alzheimer's disease
EP2468282A2 (en) 2005-07-12 2012-06-27 DMI Biosciences, Inc. Methods and products for treatment of diseases
EP2446888A2 (en) 2005-07-12 2012-05-02 DMI Biosciences, Inc. Use of danazol for the treatment of uveitis
DE202006021081U1 (en) 2005-07-12 2012-05-08 Dmi Biosciences, Inc. Products for the treatment of diseases
US20070088014A1 (en) * 2005-10-18 2007-04-19 Allergan, Inc. Ocular therapy using glucocorticoid derivatives selectively penetrating posterior segment tissues
US8062657B2 (en) 2005-10-18 2011-11-22 Allergan, Inc. Ocular therapy using glucocorticoid derivatives selectively penetrating posterior segment tissues
WO2007047607A3 (en) * 2005-10-18 2007-11-15 Allergan Inc Ocular therapy using glucocorticoid derivatives selectively penetrating posterior segment tissues
WO2007047607A2 (en) 2005-10-18 2007-04-26 Allergan, Inc. Ocular therapy using glucocorticoid derivatives selectively penetrating posterior segment tissues
US9820995B2 (en) 2005-10-18 2017-11-21 Allergan, Inc. Ocular therapy using glucocorticoid derivatives selectively penetrating posterior segment tissues
US20070178138A1 (en) * 2006-02-01 2007-08-02 Allergan, Inc. Biodegradable non-opthalmic implants and related methods
EP1986605A2 (en) * 2006-02-22 2008-11-05 Iscience Interventional Corporation Apparatus and formulations for suprachoroidal drug delivery
EP1986605A4 (en) * 2006-02-22 2013-02-13 Iscience Interventional Corp Apparatus and formulations for suprachoroidal drug delivery
WO2007100745A2 (en) 2006-02-22 2007-09-07 Iscience Interventional Corporation Apparatus and formulations for suprachoroidal drug delivery
US20070202186A1 (en) * 2006-02-22 2007-08-30 Iscience Interventional Corporation Apparatus and formulations for suprachoroidal drug delivery
US9788995B2 (en) 2006-05-02 2017-10-17 Georgia Tech Research Corporation Methods and devices for drug delivery to ocular tissue using microneedle
US20070260203A1 (en) * 2006-05-04 2007-11-08 Allergan, Inc. Vasoactive agent intraocular implant
US20070275030A1 (en) * 2006-05-25 2007-11-29 The General Hospital Corporation Dba Massachusetts General Hospital Anti-cross-linking agents and methods for inhibiting cross-linking of injectable hydrogel formulations
US20090054545A1 (en) * 2006-05-25 2009-02-26 The General Hospital Corporation Dba Massachusetts Ceneral Hospital Anti-cross-linking agents and methods for inhibiting cross-linking of injectable hydrogel formulations
US8802128B2 (en) 2006-06-23 2014-08-12 Allergan, Inc. Steroid-containing sustained release intraocular implants and related methods
WO2008070402A2 (en) * 2006-12-01 2008-06-12 Allergan, Inc. Intraocular drug delivery systems
WO2008070402A3 (en) * 2006-12-01 2008-10-02 Allergan Inc Intraocular drug delivery systems
US20080268051A1 (en) * 2007-04-30 2008-10-30 Allergan, Inc. High viscosity macromolecular compositions for treating ocular conditions
US8338375B2 (en) 2007-05-23 2012-12-25 Allergan, Inc. Packaged product
US20100099623A1 (en) * 2007-05-23 2010-04-22 Allergan, Inc. Cross-Linked Collagen and Uses Thereof
US20100099624A1 (en) * 2007-05-23 2010-04-22 Allergan, Inc. Cross-linked collagen and uses thereof
US20080293637A1 (en) * 2007-05-23 2008-11-27 Allergan, Inc. Cross-linked collagen and uses thereof
US20090036403A1 (en) * 2007-07-30 2009-02-05 Allergan, Inc. Tunably Crosslinked Polysaccharide Compositions
US8318695B2 (en) 2007-07-30 2012-11-27 Allergan, Inc. Tunably crosslinked polysaccharide compositions
WO2009039262A2 (en) * 2007-09-21 2009-03-26 Allergan, Inc. Steroid containing ophthalmic drug delivery systems
WO2009039262A3 (en) * 2007-09-21 2009-05-07 Allergan Inc Steroid containing ophthalmic drug delivery systems
US20110077229A1 (en) * 2007-09-21 2011-03-31 Allergan, Inc. Steroid Containing Drug Delivery Systems
US8703118B2 (en) 2007-10-09 2014-04-22 Allergan, Inc. Crossed-linked hyaluronic acid and collagen and uses thereof
US8697044B2 (en) 2007-10-09 2014-04-15 Allergan, Inc. Crossed-linked hyaluronic acid and collagen and uses thereof
US9265761B2 (en) 2007-11-16 2016-02-23 Allergan, Inc. Compositions and methods for treating purpura
US20100004198A1 (en) * 2007-11-30 2010-01-07 Allergan, Inc. Polysaccharide gel formulation having increased longevity
US20090143331A1 (en) * 2007-11-30 2009-06-04 Dimitrios Stroumpoulis Polysaccharide gel formulation having increased longevity
US8853184B2 (en) 2007-11-30 2014-10-07 Allergan, Inc. Polysaccharide gel formulation having increased longevity
US8394783B2 (en) 2007-11-30 2013-03-12 Allergan, Inc. Polysaccharide gel formulation having multi-stage bioactive agent delivery
US20100098764A1 (en) * 2007-11-30 2010-04-22 Allergan, Inc. Polysaccharide gel formulation having multi-stage bioactive agent delivery
US8513216B2 (en) 2007-11-30 2013-08-20 Allergan, Inc. Polysaccharide gel formulation having increased longevity
US20130136780A1 (en) * 2007-11-30 2013-05-30 Allergan, Inc. Crosslinked polysaccharide gel compositions for medical and cosmetic applications
US20090143348A1 (en) * 2007-11-30 2009-06-04 Ahmet Tezel Polysaccharide gel compositions and methods for sustained delivery of drugs
US8394782B2 (en) 2007-11-30 2013-03-12 Allergan, Inc. Polysaccharide gel formulation having increased longevity
US8394784B2 (en) 2007-11-30 2013-03-12 Allergan, Inc. Polysaccharide gel formulation having multi-stage bioactive agent delivery
US20090148527A1 (en) * 2007-12-07 2009-06-11 Robinson Michael R Intraocular formulation
US9050336B2 (en) 2007-12-12 2015-06-09 Allergan, Inc. Botulinum toxin formulation
US8211880B2 (en) 2008-03-11 2012-07-03 Alcon Research, Ltd. Low viscosity, highly flocculated triamcinolone acetonide suspensions for intravitreal injection
US8128960B2 (en) 2008-03-11 2012-03-06 Alcon Research, Ltd. Low viscosity, highly flocculated triamcinolone acetonide suspensions for intravitreal injection
US9522893B2 (en) 2008-05-27 2016-12-20 Ampio Pharmaceuticals, Inc. Therapeutic methods and compounds
US20100105698A1 (en) * 2008-05-27 2010-04-29 Dmi Life Sciences, Inc. Therapeutic Methods and Compounds
US8217047B2 (en) 2008-05-27 2012-07-10 Dmi Acquisition Corp. Therapeutic methods and compounds
US8871772B2 (en) 2008-05-27 2014-10-28 Ampio Pharmaceuticals, Inc. Therapeutic methods and compounds
US20100028437A1 (en) * 2008-08-04 2010-02-04 Lebreton Pierre F Hyaluronic Acid-Based Gels Including Lidocaine
US8357795B2 (en) 2008-08-04 2013-01-22 Allergan, Inc. Hyaluronic acid-based gels including lidocaine
US9238013B2 (en) 2008-08-04 2016-01-19 Allergan Industrie, Sas Hyaluronic acid-based gels including lidocaine
US9358322B2 (en) 2008-08-04 2016-06-07 Allergan Industrie Sas Hyaluronic acid-based gels including lidocaine
US9089517B2 (en) 2008-08-04 2015-07-28 Allergan Industrie Sas Hyaluronic acid-based gels including lidocaine
US8822676B2 (en) 2008-08-04 2014-09-02 Allergan Industrie, Sas Hyaluronic acid-based gels including lidocaine
US9089518B2 (en) 2008-08-04 2015-07-28 Allergan Industrie Sas Hyaluronic acid-based gels including lidocaine
US9089519B2 (en) 2008-08-04 2015-07-28 Allergan Industrie Sas Hyaluronic acid-based gels including lidocaine
US20110118206A1 (en) * 2008-08-04 2011-05-19 Allergan Industrie, Sas Hyaluronic acid based formulations
US8450475B2 (en) 2008-08-04 2013-05-28 Allergan, Inc. Hyaluronic acid-based gels including lidocaine
US20100028438A1 (en) * 2008-08-04 2010-02-04 Lebreton Pierre F Hyaluronic Acid-Based Gels Including Lidocaine
US9861570B2 (en) 2008-09-02 2018-01-09 Allergan Holdings France S.A.S. Threads of hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof
US9228027B2 (en) 2008-09-02 2016-01-05 Allergan Holdings France S.A.S. Threads of Hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof
US20100098772A1 (en) * 2008-10-21 2010-04-22 Allergan, Inc. Drug delivery systems and methods for treating neovascularization
US8771745B2 (en) 2008-10-27 2014-07-08 Allergan, Inc. Prostaglandin and prostamide drug delivery systems and intraocular therapeutic uses thereof
WO2010106313A1 (en) * 2009-03-14 2010-09-23 University Of Strathclyde Improvement in solubility of drugs by means of hyaluronic acid
US20100278897A1 (en) * 2009-05-01 2010-11-04 Allergan, Inc. Intraocular bioactive agent delivery system with molecular partitioning system
US9987292B2 (en) 2009-06-22 2018-06-05 Ampio Pharmaceuticals, Inc. Method for treatment of diseases
US9233113B2 (en) 2009-06-22 2016-01-12 Ampio Pharmaceuticals, Inc. Method for treatment of diseases
EP2554172A1 (en) 2009-06-22 2013-02-06 DMI Acquistion Corp. Method for treatment of diseases
EP2554170A1 (en) 2009-06-22 2013-02-06 DMI Acquistion Corp. Method for treatment of diseases
EP2554171A1 (en) 2009-06-22 2013-02-06 DMI Acquistion Corp. Method for treatment of diseases
US20100324005A1 (en) * 2009-06-22 2010-12-23 Dmi Acquisition Corp. Method for treatment of diseases
EP2425839A1 (en) 2009-06-22 2012-03-07 DMI Acquistion Corp. Method for treatment of diseases
EP2554174A1 (en) 2009-06-22 2013-02-06 DMI Acquistion Corp. Method for treatment of diseases
EP2554173A1 (en) 2009-06-22 2013-02-06 DMI Acquistion Corp. Method for treatment of diseases
WO2011075481A1 (en) 2009-12-16 2011-06-23 Allergan, Inc. Intracameral devices for sustained delivery
US9655991B2 (en) 2010-01-13 2017-05-23 Allergan Industrie, S.A.S. Stable hydrogel compositions including additives
US20110171311A1 (en) * 2010-01-13 2011-07-14 Allergan Industrie, Sas Stable hydrogel compositions including additives
US9855367B2 (en) 2010-01-13 2018-01-02 Allergan Industrie, Sas Heat stable hyaluronic acid compositions for dermatological use
US9333160B2 (en) 2010-01-13 2016-05-10 Allergan Industrie, Sas Heat stable hyaluronic acid compositions for dermatological use
US20110171286A1 (en) * 2010-01-13 2011-07-14 Allergan, Inc. Hyaluronic acid compositions for dermatological use
US8946192B2 (en) 2010-01-13 2015-02-03 Allergan, Inc. Heat stable hyaluronic acid compositions for dermatological use
US9114188B2 (en) 2010-01-13 2015-08-25 Allergan, Industrie, S.A.S. Stable hydrogel compositions including additives
US20110182966A1 (en) * 2010-01-22 2011-07-28 Allergan, Inc. Intracameral sustained release therapeutic agent implants
US9504696B2 (en) 2010-01-22 2016-11-29 Allergan, Inc. Intracameral sustained release therapeutic agent implants
US8647659B2 (en) 2010-01-22 2014-02-11 Allergan, Inc. Intracameral sustained release therapeutic agent implants
US20110224164A1 (en) * 2010-03-12 2011-09-15 Allergan Industrie, Sas Fluid compositions for improving skin conditions
US8921338B2 (en) 2010-03-12 2014-12-30 Allergan Industrie, Sas Fluid compositions for improving skin conditions
US9125840B2 (en) 2010-03-12 2015-09-08 Allergan Industrie Sas Methods for improving skin conditions
US8586562B2 (en) 2010-03-12 2013-11-19 Allergan Industrie, Sas Fluid compositions for improving skin conditions
US9585821B2 (en) 2010-03-12 2017-03-07 Allergan Industrie Sas Methods for making compositions for improving skin conditions
US20110229574A1 (en) * 2010-03-22 2011-09-22 Allergan, Inc. Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation
US8691279B2 (en) 2010-03-22 2014-04-08 Allergan, Inc. Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation
US9012517B2 (en) 2010-03-22 2015-04-21 Allergan, Inc. Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation
US9480775B2 (en) 2010-03-22 2016-11-01 Allergan, Inc. Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation
US8697057B2 (en) 2010-08-19 2014-04-15 Allergan, Inc. Compositions and soft tissue replacement methods
US8883139B2 (en) 2010-08-19 2014-11-11 Allergan Inc. Compositions and soft tissue replacement methods
US9005605B2 (en) 2010-08-19 2015-04-14 Allergan, Inc. Compositions and soft tissue replacement methods
US8889123B2 (en) 2010-08-19 2014-11-18 Allergan, Inc. Compositions and soft tissue replacement methods
WO2012033792A2 (en) 2010-09-07 2012-03-15 Dmi Acquisition Corp. Treatment of diseases
US8809307B2 (en) 2010-11-22 2014-08-19 Dow Pharmaceutical Sciences, Inc. Pharmaceutical formulations containing corticosteroids for topical administration
WO2012087443A1 (en) * 2010-11-22 2012-06-28 Dow Pharmaceutical Sciences, Inc. Pharmaceutical formulations containing corticosteroids for topical administration
US9737633B2 (en) 2011-06-03 2017-08-22 Allergan, Inc. Dermal filler compositions including antioxidants
US9393263B2 (en) 2011-06-03 2016-07-19 Allergan, Inc. Dermal filler compositions including antioxidants
US9950092B2 (en) 2011-06-03 2018-04-24 Allergan, Inc. Dermal filler compositions for fine line treatment
US9149422B2 (en) 2011-06-03 2015-10-06 Allergan, Inc. Dermal filler compositions including antioxidants
US9408797B2 (en) 2011-06-03 2016-08-09 Allergan, Inc. Dermal filler compositions for fine line treatment
US9962464B2 (en) 2011-06-03 2018-05-08 Allergan, Inc. Dermal filler compositions including antioxidants
US9795711B2 (en) 2011-09-06 2017-10-24 Allergan, Inc. Hyaluronic acid-collagen matrices for dermal filling and volumizing applications
US9821086B2 (en) 2011-09-06 2017-11-21 Allergan, Inc. Hyaluronic acid-collagen matrices for dermal filling and volumizing applications
US9241829B2 (en) 2011-12-20 2016-01-26 Abbott Medical Optics Inc. Implantable intraocular drug delivery apparatus, system and method
US9636332B2 (en) 2012-11-08 2017-05-02 Clearside Biomedical, Inc. Methods and devices for the treatment of ocular diseases in human subjects
US9931330B2 (en) 2012-11-08 2018-04-03 Clearside Biomedical, Inc. Methods and devices for the treatment of ocular diseases in human subjects
US9572800B2 (en) 2012-11-08 2017-02-21 Clearside Biomedical, Inc. Methods and devices for the treatment of ocular diseases in human subjects
US10058562B2 (en) 2012-12-19 2018-08-28 Ampio Pharmaceuticals, Inc. Methods of treatment of diseases
US9351979B2 (en) 2012-12-19 2016-05-31 Ampio Pharmaceuticals, Inc. Methods of treatment of diseases
US9937075B2 (en) 2013-05-03 2018-04-10 Clearside Biomedical, Inc. Apparatus and methods for ocular injection
US9539139B2 (en) 2013-05-03 2017-01-10 Clearside Biomedical, Inc. Apparatus and methods for ocular injection
US9636253B1 (en) 2013-05-03 2017-05-02 Clearside Biomedical, Inc. Apparatus and methods for ocular injection
US9770361B2 (en) 2013-05-03 2017-09-26 Clearside Biomedical, Inc. Apparatus and methods for ocular injection
US9180047B2 (en) 2013-05-03 2015-11-10 Clearside Biomedical, Inc. Apparatus and methods for ocular injection
WO2015142853A1 (en) * 2014-03-17 2015-09-24 Encompass Development, Inc. Ocular formulations
EP3157463A4 (en) * 2014-06-17 2018-02-21 Clearside Biomedical, Inc. Methods and devices for treating posterior ocular disorders
US9956114B2 (en) 2014-06-20 2018-05-01 Clearside Biomedical, Inc. Variable diameter cannula and methods for controlling insertion depth for medicament delivery

Also Published As

Publication number Publication date Type
CN105748407A (en) 2016-07-13 application
EP1682185A2 (en) 2006-07-26 application
JP5592321B2 (en) 2014-09-17 grant
ES2321305T3 (en) 2009-06-04 grant
WO2005046641A3 (en) 2005-11-24 application
JP2012021011A (en) 2012-02-02 application
US8569272B2 (en) 2013-10-29 grant
EP1997497A3 (en) 2009-05-13 application
US9265775B2 (en) 2016-02-23 grant
ES2345018T3 (en) 2010-09-13 grant
EP1997497B1 (en) 2010-06-16 grant
KR20060113709A (en) 2006-11-02 application
DE602004027773D1 (en) 2010-07-29 grant
JP2007510744A (en) 2007-04-26 application
EP1997497A2 (en) 2008-12-03 application
JP5437563B2 (en) 2014-03-12 grant
WO2005046641A2 (en) 2005-05-26 application
DK1997497T3 (en) 2010-09-13 grant
CA2545878A1 (en) 2005-05-26 application
DK1682185T3 (en) 2009-04-20 grant
CA2545878C (en) 2010-01-12 grant
EP1682185B1 (en) 2009-03-04 grant
DE602004019801D1 (en) 2009-04-16 grant
US20140051671A1 (en) 2014-02-20 application
US20080269181A1 (en) 2008-10-30 application

Similar Documents

Publication Publication Date Title
Kok et al. Outcome of intravitreal triamcinolone in uveitis
US20060173060A1 (en) Oil-in-water method for making alpha-2 agonist polymeric drug delivery systems
US20060233860A1 (en) Alpha-2 agonist polymeric drug delivery systems
US20050244506A1 (en) Sustained release intraocular implants and methods for preventing retinal dysfunction
US20050281861A1 (en) Macromolecule-containing sustained release intraocular implants and related methods
US20080033351A1 (en) Ocular implant delivery assemblies with distal caps
US20080107694A1 (en) Sustained release intraocular drug delivery systems comprising a water soluble therapeutic agent and a release modifier
US20060233858A1 (en) Systems and methods providing targeted intraocular drug delivery
US20050244471A1 (en) Estradiol derivative and estratopone containing sustained release intraocular implants and related methods
US8119154B2 (en) Sustained release intraocular implants and related methods
US20080096852A1 (en) Use of oculosurface selective glucocorticoid in the treatment of dry eye
US20060013859A1 (en) Drug delivery system using subconjunctival depot
US20070212395A1 (en) Ocular therapy using sirtuin-activating agents
US20060148686A1 (en) Ophthalmic compositions comprising steroid and cyclosporine for dry eye therapy
US20070298074A1 (en) Steroid-containing sustained release intraocular implants and related methods
US20080145407A1 (en) Methods for reducing neovascularization or edema
US20070020336A1 (en) Cyclodextrin nanotechnology for ophthalmic drug delivery
US20070149480A1 (en) PHARMACEUTICAL COMPOSITION FOR DELIVERY OF RECEPTOR TYROSINE KINASE INHIBITING (RTKi) COMPOUNDS TO THE EYE
US20060009498A1 (en) Ophthalmic compositions and methods for treating ophthalmic conditions
US20110117189A1 (en) Ophthalmic compositions for treating pathologies of the posterior segment of the eye
US20080118549A1 (en) Sustained release intraocular implants and methods for treating ocular vasculopathies
US20050009910A1 (en) Delivery of an active drug to the posterior part of the eye via subconjunctival or periocular delivery of a prodrug
US20080008762A1 (en) Steroid Formulation And Methods Of Treatment Using Same
US20050271705A1 (en) Retinoid-containing sustained release intraocular drug delivery system and related methods
US20120028910A1 (en) Storage-stable aqueous ophthalmic formulations

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALLERGAN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LYONS, ROBERT T.;CHANG, JAMES N.;TROGDEN, JOHN T.;AND OTHERS;REEL/FRAME:015903/0811

Effective date: 20041011