US20050075357A1 - 5-arylpyrimidines as anticancer agents - Google Patents

5-arylpyrimidines as anticancer agents Download PDF

Info

Publication number
US20050075357A1
US20050075357A1 US10/950,375 US95037504A US2005075357A1 US 20050075357 A1 US20050075357 A1 US 20050075357A1 US 95037504 A US95037504 A US 95037504A US 2005075357 A1 US2005075357 A1 US 2005075357A1
Authority
US
United States
Prior art keywords
chloro
pyrimidin
amine
trifluoroethyl
trifluorophenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/950,375
Other versions
US7524849B2 (en
Inventor
Nan Zhang
Semiramis Ayral-Kaloustian
Thai Nguyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
Wyeth LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wyeth LLC filed Critical Wyeth LLC
Priority to US10/950,375 priority Critical patent/US7524849B2/en
Assigned to WYETH HOLDINGS CORPORATION reassignment WYETH HOLDINGS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AYRAL-KALOUSTIAN, SEMIRAMIS, NGUYEN, THAI, ZHANG, NAN
Publication of US20050075357A1 publication Critical patent/US20050075357A1/en
Application granted granted Critical
Publication of US7524849B2 publication Critical patent/US7524849B2/en
Assigned to WYETH HOLDINGS LLC reassignment WYETH HOLDINGS LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: WYETH HOLDINGS CORPORATION
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/48Two nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to certain 5-arylpyrimidine compounds or a pharmaceutically acceptable salt thereof, and compositions containing said compounds or a pharmaceutically acceptable salt thereof, wherein said compounds are anti-cancer agents useful for the treatment of cancer in mammals, treatment or prevention of cancerous tumors that express multiple drug resistance (MDR) or are resistant because of MDR, and treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof by promotion of microtubule polymerization.
  • MDR multiple drug resistance
  • Antimicrotubule drugs are a major category of anticancer agents (Rowinsky, E. K., and Tolcher, A. W. Antimicrotubule agents. In: V. T. Devita, Jr., S. Hellman, and S. A. Rosenberg (eds.), Cancer Principles and Practice, Ed. 6, pp. 431-452. Philadelphia: Lippincott Williams and Wilkins, 2001). They work by interfering with the function of cellular microtubules, particularly the mitotic spindle. The disruption of normal spindle function leads to apoptotic cell death.
  • antimicrotubule pharmacological agents there are three major classes of known antimicrotubule pharmacological agents. Each has a distinct binding region on ⁇ -tubulin and distinct effects on microtubule function. These classes are: 1) taxane-site agents which promote microtubule formation and stabilize microtubules; 2) vinca/peptide-site agents which destabilize microtubules and often induce formation of abnormal polymers or aggregates at high concentrations; and 3) colchicine-site agents which also destabilize microtubules and generally do not induce other polymers (Hamel, E. Antimitotic natural products and their interactions with tubulin. Med. Res. Rev., 16: 207-231,1996). Most of the ligands for all three classes of sites are natural products or semi-synthetic derivatives of natural products.
  • Paclitaxel and its semisynthetic derivative docetaxel interfere with microtubule formation and stabilize microtubules.
  • Paclitaxel (Taxol®), is a diterpene isolated from the bark of the Western ( Pacific) yew, Taxus brevifolia and is representative of a new class of therapeutic agent having a taxane ring system. It was additionally found in other members of the Taxacae family including the yew of Canada ( Taxus canadensis ) found in Gaspesia, eastern Canada and Taxus baccata found in Europe whose needles contain paclitaxel and analogs and hence provide a renewable source of paclitaxel and derivatives.
  • Paclitaxel has been demonstrated to possess antineoplastic activity. More recently, it was shown that the antitumor activity of paclitaxel is due to a promotion of microtubule polymerization (Kumar, N., J. Biol. Chem. 256:10435-10441 (1981); Rowinsky, et al., J. Natl. Cancer Inst., 82:1247-1259 (1990); and Schiff, et al., Nature, 277:665-667 (1979)).
  • Paclitaxel has now demonstrated efficacy in several human tumors in clinical trials (McGuire, et al., Ann. Int. Med., 111:273-279 (1989); Holmes, et al., J. Natl. Cancer Inst., 83:1797-1805 (1991); Kohn et al., J. Natl. Cancer Inst., 86:18-24 (1994); and A. Bicker et al., Anti-Cancer Drugs, 4,141-148 (1993).
  • Taxanes Two taxane-site agents (paclitaxel and docetaxel) and three vinca/peptide-site agents (vinblastine, vincristine, and vinorelbine) are used clinically to treat various human cancers. Taxanes have proven to be of greater utility against solid tumors (e.g., lung, breast, ovarian) than the vinca alkaloids, suggesting that agents that promote microtubule formation might be superior clinically to those that destabilize microtubules. Colchicine-site agents are not used therapeutically.
  • paclitaxel and docetaxel have several limitations that create a need for improved agents.
  • many tumors are inherently resistant (e.g., colon tumors) or become resistant after multiple cycles of treatment, at least in part due to the expression of drug transporters located in cancer cell membranes that pump the drugs out of cells and thereby decrease their efficacy (Gottesman, M. M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 53: 615-627, 2002).
  • the best known of these transporters is P-glycoprotein. Accordingly, there is a need for new agents with taxane-like effects on microtubule polymerization that are not substrates of P-glycoprotein or other such pumps and that therefore will overcome this cause of taxane resistance in patients.
  • paclitaxel and docetaxel have poor water solubility and paclitaxel must be formulated in Cremophor EL, a vehicle that induces serious hypersensitivity reactions (Li, C. L., Newman, R. A., and Wallace, S. Reformulating paclitaxel. Science & Medicine, January/February: 38-47, 1999). Patients are typically premedicated with corticosteroids and antihistamines before administration of paclitaxel to minimize these toxicities. Accordingly, there is a need for new agents with taxane-like effects on microtubule polymerization that are highly water soluble and can be administered in physiological saline or other suitable non-toxic vehicle.
  • paclitaxel is a natural product having a highly complex structure
  • docetaxel is a closely related semisynthetic derivative. Therefore there is a need for compounds which are readily available through synthesis, are structurally different from taxanes and which have taxane-like effects on microtubule polymerization.
  • cytotoxic agents for use in cancer therapy.
  • cytotoxic agents which inhibit or treat the growth of tumors which have an effect similar to paclitaxel and interfere with the process of microtubule formation.
  • agents which accelerate tubulin polymerization and stabilize the assembled microtubules are also a need in the art for cytotoxic agents for use in cancer therapy.
  • the compounds of this invention are a new class of taxane-like agents that satisfy the hereinbefore described needs, and that differ in significant ways from the previously known classes of antimicrotubule compounds.
  • the compounds of this invention bind at the vinca site of ⁇ -tubulin, yet they have many properties that are similar to taxanes and distinct from vinca-site agents.
  • the compounds of this invention enhance the polymerization of microtubule-associated protein (MAP)-rich tubulin in the presence of GTP at low compound:tubulin molar ratios, in a manner similar to paclitaxel and docetaxel.
  • MAP microtubule-associated protein
  • the compounds of this invention also induce polymerization of highly purified tubulin in the absence of GTP under suitable experimental conditions, an activity that is a hallmark of taxanes.
  • the compounds of this invention are potently cytotoxic for many human cancer cell lines in culture, including lines that overexpress the membrane transporters MDR (P-glycoprotein), MRP, and MXR, thus making them active against cell lines that are resistant to paclitaxel and vincristine.
  • MDR membrane transporters
  • MRP membrane transporters
  • MXR membrane transporters
  • representative examples of this invention have high water solubility and can be formulated in saline.
  • Representative examples of this invention are active as anti-tumor agents in athymic mice bearing human tumor xenografts of lung and colon carcinoma, melanoma, and glioblastoma, when dosed either intravenously or orally.
  • alkyl means a straight or branched alkyl moiety of 1 to 3 carbon atoms.
  • alkoxy means an alkyl-O— group in which the alkyl group is as previously described.
  • exemplary alkoxy groups include but are not limited to methoxy, ethoxy, and n-propoxy.
  • alkoxycarbonyl means a moiety —C(O)(O)alkyl in which the alkyl group is as previously described.
  • carboxyl means a —COOH group.
  • alkanoyl means a —C(O)alkyl group where alkyl is previously defined.
  • alkylthio means an alkyl-S— group in which the alkyl group is as previously described.
  • alkylamido means a —C(O)NHalkyl group where alkyl is previously described.
  • heterocyclic ring is a saturated 4 to 6 membered ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with C 1 -C 3 alkyl.
  • Non-limiting representative examples include: morpholine, piperidine, pyrrolidine, piperazine, and azetidine.
  • aryl means a monocyclic or bicyclic aromatic ring having from 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, amino, C 1 -C 3 alkylamino, C 1 -C 3 dialkylamino, formyl, C 1 -C 3 alkoxycarbonyl, carboxyl, C 1 -C 3 alkanoyl, C 1 -C 3 alkylthio, C 1 -C 3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups.
  • a preferred embodiment of aryl is a aromatic ring having 6 carbon atoms.
  • Non-limiting representative aryl examples include: phenyl, 1-naphthyl, and 2-naphthyl.
  • heteroaryl is an aromatic heterocyclic ring system (monocyclic or bicyclic) of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups including but not limited to halogen, azido, nitro, cyano, hydroxy, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, amino, C 1 -C 3 alkylamino, C 1 -C 3 dialkylamino, formyl, C 1 -C 3 alkoxycarbonyl, carboxyl, C 1 -C 3 alkanoyl, C 1 -C 3 alkylthio, C 1 -C 3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups.
  • 1-3 groups including but not limited to halogen, azido, nitro, cyano, hydroxy, C 1 -C 3 alkyl, C 1 -C
  • heteroaryl is a aromatic heterocyclic ring system which has 5 or 6 ring atoms having 1 or 2 nitrogen heteroatoms.
  • Non-limiting representative heteroaryl examples include: 1-pyrazolyl, 2-pyrazinyl, 2-pyridyl, 2-pyrimidinyl, and 3-isoquinolinyl.
  • Cycloalkyl as used herein means a saturated carbocyclic monocyclic ring having from 6 to 8 carbon atoms optionally substituted with C 1 -C 3 alkyl.
  • Non-limiting representative examples include: cyclohexyl, cycloheptyl and cyclooctyl.
  • halogen means F, Cl or Br.
  • Phenyl as used herein refers to a 6-membered carbon aromatic ring.
  • phenoxy means a —O-phenyl group where phenyl is as previously described.
  • benzyl means a —CH 2 -phenyl group where phenyl is as previously described.
  • benzyloxy means a —O—CH 2 -phenyl group where phenyl is as previously described.
  • N-methylamine means a moiety of the formula
  • alkyl amino means a moiety of the formula
  • dialkylamino means a moiety of the formula
  • N-methylcyanamido means a moiety of the formula
  • the present invention provides a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof by administering an effective amount of a compound of Formula (I) and pharmaceutically acceptable salts thereof.
  • the present invention also provides a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in mammals in need thereof by interacting with tubulin and microtubules by promotion of microtubule polymerization which comprises administering to said mammal an effective amount of a compound of Formula (I) and pharmaceutically acceptable salts thereof.
  • a method for promoting tubulin polymerization involves contacting a tubulin containing system with an effective amount of a compound of the invention.
  • Also provided by the present invention is a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
  • MDR multiple drug resistance
  • This invention further provides a method of promoting tubulin polymerization in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
  • this invention provides a method of stabilizing microtubules in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
  • a compound of Formula (I) in combination or association with a pharmaceutically acceptable carrier.
  • the present invention provides a pharmaceutical composition which comprises an effective amount of a compound of Formula (I) and a pharmaceutically acceptable carrier.
  • this invention provides a method of treating, inhibiting the growth of, or eradicating a tumor in a mammal in need thereof wherein said tumor is resistant to at least one chemotherapeutic agent which comprises administering to said mammal an effective amount of the compounds of Formula (I) and pharmaceutically acceptable salts thereof.
  • the compounds of this invention may contain an asymmetric carbon atom and some of the compounds of this invention may contain one or more asymmetric centers and may thus give rise to stereoisomers, such as enantiomers and diastereomers.
  • stereoisomers of the instant invention are named according to the Cahn-Ingold-Prelog System. While shown without respect to stereochemistry in Formula (I), the present invention includes all the individual possible stereoisomers; as well as the racemic mixtures and other mixtures of R and S stereoisomers (scalemic mixtures which are mixtures of unequal amounts of enantiomers) and pharmaceutically acceptable salts thereof.
  • a preferred embodiment of this invention are (S) isomers of compounds of general Formula (I) having a chiral center.
  • An additional preferred embodiment of this invention are (R) isomers of compounds of general Formula (I) having a chiral center.
  • the present invention encompasses all stereoisomers of the compounds whether free from other stereoisomers or admixed with other stereoisomers in any proportion and thus includes, for instance, racemic mixture of enantiomers as well as the diastereomeric mixture of isomers.
  • the absolute configuration of any compound may be determined by conventional X-ray crystallography.
  • Optical isomers may be obtained in pure form by standard separation techiques or enantiomer specific synthesis.
  • a preferred embodiment of the invention is a compound of formula (Ia): or a pharmaceutically acceptable salt thereof.
  • a preferred embodiment of the invention is a compound of formula (Ib): or a pharmaceutically acceptable salt thereof.
  • a further preferred embodiment are compounds of Formula (I) wherein R is the moiety or a pharmaceutically acceptable salt thereof.
  • a further more preferred group of compounds of this invention according to Formula (I) including pharmaceutically acceptable salts thereof are those wherein:
  • Specifically preferred compounds of this invention according to Formula (I) are the following compounds or pharmaceutically acceptable salts thereof:
  • Specifically preferred compounds of this invention according to formula (Ia) are the following compounds or pharmaceutically acceptable salts thereof:
  • Specifically preferred compounds of this invention according to formula (Ib) are the following compounds or pharmaceutically acceptable salts thereof:
  • the present invention provides:
  • the present invention further provides a pharmaceutical composition which comprises a compound of formula (II) in combination or association with a pharmaceutically acceptable carrier.
  • a pharmaceutical composition which comprises an effective amount of a compound of formula (II) and a pharmaceutically acceptable carrier.
  • the compounds of formula (II) may contain an asymmetric carbon atom and some of the compounds of this invention may contain one or more asymmetric centers and may thus give rise to stereoisomers, such as enantiomers and diastereomers.
  • the stereoisomers of formula (II) are named according to the Cahn-Ingold-Prelog System. While shown without respect to stereochemistry in Formula (II), the present invention includes all the individual possible stereoisomers as well as the racemic mixtures and other mixtures of R and S stereoisomers (scalemic mixtures which are mixtures of unequal amounts of enantiomers) and pharmaceutically acceptable salts thereof.
  • a preferred embodiment of this invention are (S) isomers of compounds of general formula (II) having a chiral center.
  • An additional preferred embodiment of this invention are (R) isomers of compounds of general formula (II) having a chiral center.
  • the present invention encompasses all stereoisomers of the compounds whether free from other stereoisomers or admixed with other stereoisomers in any proportion and thus includes, for instance, racemic mixture of enantiomers as well as the diastereomeric mixture of isomers.
  • the absolute configuration of any compound may be determined by conventional X-ray crystallography.
  • Optical isomers may be obtained in pure form by standard separation techiques or enantiomer specific synthesis.
  • the present invention also provides a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof by administering an effective amount of a compound of formula (II): wherein:
  • a preferred embodiment of the present invention is to provide a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof which comprises administering an effective amount of a compound according to Formula (IIa): or pharmaceutically acceptable salts thereof.
  • a preferred embodiment of the present invention is to provide a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof which comprises administering an effective amount of a compound according to Formula (IIb): or pharmaceutically acceptable salts thereof.
  • Further preferred embodiment of the present invention is to provide a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof which comprises administering an effective amount of a compound according to formula (II) wherein R is a moiety or pharmaceutically acceptable salts thereof.
  • a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof comprises administering an effective amount of a compound according to Formula (IIa) including pharmaceutically acceptable salts thereof wherein:
  • a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof comprises administering an effective amount of a compound according to Formula (IIb) including pharmaceutically acceptable salts thereof wherein:
  • a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof comprises administering an effective amount of compounds according to Formula (IIa) including pharmaceutically acceptable salts thereof are those wherein:
  • a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof comprises administering an effective amount of compounds according to Formula (IIb) including pharmaceutically acceptable salts thereof wherein:
  • the present invention provides a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound of formula (II): wherein:
  • Also provided by this invention is a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound of formula (IIa): or pharmaceutically acceptable salts thereof.
  • a preferred embodiment of the present invention is to provide a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound of formula (IIb): or pharmaceutically acceptable salts thereof.
  • Further preferred embodiment of the present invention is to provide a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound according to formula (II) wherein R is a moiety or pharmaceutically acceptable salts thereof.
  • a more preferred embodiment of the present invention is to provide a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound according to formula (IIa) or pharmaceutically acceptable salts thereof wherein:
  • a more preferred embodiment of the present invention is to provide a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound according to formula (IIb) including pharmaceutically acceptable salts thereof wherein:
  • a more preferred embodiment of the present invention is to provide a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound according to formula (IIa) or pharmaceutically acceptable salts thereof wherein:
  • a more preferred embodiment of the present invention is to provide a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound according to Formula (IIb) including pharmaceutically acceptable salts wherein:
  • A is F
  • a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (II) or a pharmaceutically acceptable salt thereof wherein:
  • a preferred embodiment of the present invention is to provide a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIa) or a pharmaceutically acceptable salt thereof or pharmaceutically acceptable salts thereof.
  • a preferred embodiment of the present invention is to provide a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIb) or pharmaceutically acceptable salts thereof.
  • Further preferred embodiment of the present invention is to provide a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (II) wherein R is a moiety
  • a more preferred embodiment of the present invention is to provide a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIa) wherein:
  • a more preferred embodiment of the present invention is to provide a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIb) wherein:
  • a more preferred embodiment of the present invention is to provide a method of stabilizing microtubles in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIa) wherein:
  • a more preferred embodiment of the present invention is to provide a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIb) wherein:
  • Specifically preferred compounds of this invention useful in a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (II) are the following compounds or a pharmaceutically acceptable salt thereof:
  • a more preferred embodiment of this invention useful in a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIa) are the following compounds or a pharmaceutically acceptable salt thereof:
  • a more preferred embodiment of this invention useful in a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIb) are the following compounds or a pharmaceutically acceptable salt thereof:
  • the present invention also provides a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound of formula (II): wherein:
  • a preferred embodiment of the present invention is to provide a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound according to Formula (IIa): or pharmaceutically acceptable salts thereof.
  • MDR multiple drug resistance
  • a preferred embodiment of the present invention is to provide a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound according to Formula (IIb): or pharmaceutically acceptable salts thereof.
  • MDR multiple drug resistance
  • a more preferred embodiment of the present invention is to provide a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound according to formula (IIa) wherein:
  • a more preferred embodiment of the present invention is to provide a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound according to formula (IIb) wherein:
  • a more preferred embodiment of the present invention is to provide a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound according to Formula (IIa) wherein:
  • a more preferred embodiment of the present invention is to provide a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound according to Formula (IIb) wherein:
  • Specifically preferred compounds of this invention according to Formula (II) are the following compounds or pharmaceutically acceptable salts thereof useful in a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof are the following compounds or a pharmaceutically acceptable salt thereof:
  • Specifically preferred compounds of this invention according to Formula (IIa) are the following compounds or pharmaceutically acceptable salts thereof useful in a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof are the following compounds or a pharmaceutically acceptable salt thereof:
  • Specifically preferred compounds of this invention according to Formula (IIb) are the following compounds or pharmaceutically acceptable salts thereof useful in a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof are the following compounds or a pharmaceutically acceptable salt thereof:
  • the compounds of this invention may be prepared from: (a) commercially available starting materials (b) known starting materials which may be prepared as described in literature procedures or (c) new intermediates described in the schemes and experimental procedures herein.
  • Reactions are performed in a solvent appropriate to the reagents and materials employed and suitable for the transformation being effected. It is understood by those skilled in the art of organic synthesis that the various functionalities present on the molecule must be consistent with the chemical transformations proposed. This may necessitate judgement as to the order of synthetic steps. Appropriate consideration must be made as to the protection of reactive functional groups to prevent undesired side reactions.
  • Substituents on the starting materials may be incompatible with some of the reaction conditions. Such restrictions to the substituents which are compatible with the reaction conditions will be apparent to one skilled in the art. Reactions were run under inert atmospheres where appropriate.
  • a compound of Formula (II) wherein Z is the moiety W′ is aryl or heteroaryl as hereinbefore defined can be prepared as shown in Scheme III.
  • Treating diester (VIII, U.S. Pat. No. 6,156,925) with carboxamidine (VII) in the presence of a tertiary amine base, such as tributylamine, at a temperature up to 190° C. provides compound (IX).
  • Halogenation with halogenating agents POX 3 , PX 3 or PX 5 such as phosphorous oxychloride or phosphorous oxybromide gives compound (X).
  • Replacement of one of the halogens with excess amount of an amine (XI) in a suitable solvent, such as methylene chloride, dimethylsulfoxide or dimethylformamide, provides compound (II).
  • compounds of Formula (II) wherein Z is and W′ is heteroaryl having 1 to 4 nitrogen heteroatoms may be prepared wherein reaction of heteroaryl reagent W′—H, in which one nitrogen heteroatom is attached to a hydrogen atom in said heteroaryl reagent W′—H, and said nitrogen heteroatom is further connected to the pyrimidine ring of compound (XV) by reaction of heteroaryl reagent W′—H with compound (XIV), which can be further converted to compounds of formula (II).
  • Ester (XVI) is reacted with acid chloride (XVII), prepared from the corresponding carboxylic acid where Z is C 6 -C 8 cycloalkyl, in the presence of lithium diisopropylamide (LDA) to give ketoester (XVIII) which is further reacted with carboxamidine (VII) in the presence of a tertiary amine base, such as tributylamine, at a temperature up to 190° C. provides compound (XIX).
  • acid chloride (XVII) prepared from the corresponding carboxylic acid where Z is C 6 -C 8 cycloalkyl
  • LDA lithium diisopropylamide
  • ketoester (XVIII) which is further reacted with carboxamidine (VII) in the presence of a tertiary amine base, such as tributylamine, at a temperature up to 190° C. provides compound (XIX).
  • a strong base which includes an alkali metal hydroxide, alkali metal carbonate and alkali hydride, e.g., sodium hydride in an aprotic solvent which includes dimethylsulfoxide, dimethylformamide, and the like to give compound (XXI).
  • Reaction of compound (XIX) with halogenating agents POX 3 , PX 3 , or PX 5 , such as phosphorous oxychloride or phosphorous oxybromide in the presence of a inert base affords compound (II) where X is hereinbefore defined and A is H, F, Cl, Br or Y(CH 2 ) n Q where Q is —NR 3 R 4 and R 3 and R 4 are independently alkyl of 1 to 3 carbon atoms.
  • a strong base which includes an alkali metal hydroxide, alkali metal carbonate and alkali hydride, e.g., sodium hydride in an aprotic solvent which includes dimethylsulfoxide, dimethylformamide, and the like
  • this invention encompasses all crystalline and hydrated forms of compounds of Formulae (I) and (II) and their pharmaceutically acceptable salts.
  • the pharmaceutically acceptable salts of the compounds of this invention are those derived from such organic and inorganic pharmaceutically acceptable salt forming acids as: lactic, citric, acetic, tartaric, fumaric, succinic, maleic, malonic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, benzenesulfonic, L-aspartic, R or S-mandelic, palmitic and similarly known acceptable acids and further including trifluoroacetic acid (TFA).
  • TFA trifluoroacetic acid
  • the hydrochloride, fumarate and succinate salts are preferred.
  • the present invention accordingly provides a pharmaceutical composition which comprises a compound of this invention, (formula I and formula II), in combination or association with a pharmaceutically acceptable carrier.
  • the present invention provides a pharmaceutical composition which comprises an effective amount of a compound of this invention and a pharmaceutically acceptable carrier.
  • the compounds of this invention are useful as agents for treating, inhibiting or controlling the growth of cancerous tumor cells and associated diseases in a mammal in need thereof.
  • the compounds of the invention are useful as agents for treating, inhibiting or controlling the growth of cancerous tumor cells and associated diseases in a mammal in need thereof by interacting with tubulin and microtubules and promoting microtubule polymerization.
  • the compounds of the invention are further useful for the treatment or prevention of cancerous tumors by stabilizing microtubules.
  • the compounds of the invention are also useful for the treatment or prevention of cancerous tumors that express multiple drug resistance (MDR) or are resistant because of MDR.
  • MDR multiple drug resistance
  • a tubulin containing system when contacting a tubulin containing system with an effective amount of a compound of formulae (I) or (II) results in the promotion of microtubule polymerization and further stabilizes microtubules and by promoting microtubule polymerization and stabilizing microtubules said compounds of formulae (I) and (II) are useful as agents for treating, inhibiting or controlling the growth of cancerous tumor cells and associated diseases. Additionally, compounds of formulae (I) and (II) are useful for the treatment or prevention of cancerous tumors that express multiple drug resistance (MDR) or are resistant because of MDR.
  • MDR drug resistance
  • the tubulin containing system may be in a tumor cell, thereby inhibiting neoplastic disease by administering an effective amount of a compound described in the present invention.
  • Mammals may be treated and in particular, humans. Further, said tubulin containing system may be in a patient.
  • cancer treatment it is believed that many neoplasias such as leukemia, lung cancer, colon cancer, thyroid cancer, ovarian cancer, renal cancer, prostate cancer and breast cancers may be treated by effectively administering effective amounts of the compounds of formulae (I) and (II).
  • cancer refers to all types of cancers, or neoplasms or benign or malignant tumors.
  • Preferred cancers for treatment using methods provided herein include carcinoma, sarcoma, lymphoma, or leukemia.
  • carcinoma is meant a benign or malignant epithelial tumor and includes, but is not limited to, breast carcinoma, prostate carcinoma, non-small lung carcinoma, colon carcinoma, melanoma carcinoma, ovarian carcinoma, or renal carcinoma.
  • a preferred host is a human.
  • the effective dosage of active ingredient employed may vary depending on the particular compound employed, the mode of administration and severity of the condition being treated. However, in general satisfactory results are obtained when the compounds of the invention are administered in amounts ranging from about 0.10 to about 100 mg/kg of body weight per day. A preferred regimen for optimum results would be from about 1 mg to about 20 mg/kg of body weight per day and such dosage units are employed that a total of from about 70 mg to about 1400 mg of the active compound for a subject of about 70 kg of body weight are administered in a 24 hour period.
  • the dosage regimen for treating mammals may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation.
  • a decidedly practical advantage is that these active compounds may be administered in any convenient manner such as by the oral, intravenous, intramuscular or subcutaneous routes.
  • the active compounds may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or they may be enclosed in hard or soft shell gelatin capsules, or they may be compressed into tablets or they may be incorporated directly with the food of the diet.
  • these active compounds may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers and the like.
  • Such compositions and preparations should contain at least 0.1% of active compound.
  • the percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2% to about 60% of the weight of the unit.
  • compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between 10 and 1000 mg of active compound.
  • the tablets, troches, pills, capsules and the like may also contain the following: a binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose, or saccharin may be added or a flavoring agnet such as peppermint, oil of wintergreen or cherry flavoring.
  • a binder such as gum tragacanth, acacia, corn starch or gelatin
  • excipients such as dicalcium phosphate
  • a disintegrating agent such as corn starch, potato starch, alginic acid and the like
  • a lubricant such as magnesium stearate
  • the dosage unit form When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills or capsules may be coated with shellac, sugar or both.
  • a syrup or elixir may contain the active compound, sucrose, as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor.
  • any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts used.
  • these active compounds may be incorporated into sustained-release preparations and formulations.
  • active compounds may also be administered parenterally or intraperitoneally.
  • Solutions or suspensions of these active compounds as a free base or pharmacologically acceptable salt can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose.
  • Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth or microorganisms.
  • the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
  • the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be prepared against the contaminating action of microorganisms such as bacteria and fungi.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol and liquid poly-ethylene glycol), suitable mixtures thereof, and vegetable oils.
  • Intravenous administration is a preferred manner of administration of compounds of the invention.
  • suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS).
  • the composition must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof.
  • polyol for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like
  • Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
  • isotonic agents for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition.
  • Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
  • the term providing an effective amount of a compound means either directly administering such compound, or administering a prodrug, derivative, or analog which will form an effective amount of the compound within the body.
  • Examples of this invention are evaluated in several standard pharmacological test procedures that showed that the compounds of this invention possess significant activity as promoters of microtubule polymerization and are antineoplastic agents. Based on the activity shown in the standard pharmacological test procedures, the compounds of this invention are therefore useful as anticancer agents.
  • Associated cancers are selected from the group consisting of breast, colon, lung, prostate, melanoma, epidermal, leukemia, kidney, bladder, mouth, larynx, esophagus, stomach, ovary, pancreas, liver, skin and brain.
  • the compounds of this invention possess an effect similar to Paclitaxel. The test procedures used and results obtained are shown below.
  • MAP Microtubule-associated protein
  • PEM buffer 80 mM piperazine-N,N′-bis[2-ethanesulfonic acid], pH 6.9, 1 mM ethylene glycol-bis( ⁇ -aminoethyl ether)-N,N,N′,N′-tetraacetic acid, 1 mM magnesium chloride
  • GTP guanosine 5′-triphosphate
  • S1 parental line from a subclone of human colon carcinoma line LS174T
  • S1-M1 derived S1-M1-3.2
  • Dr. L. Greenberger, Wyeth Research Rosham, S. K., He, H., Singh, M., Brown, E., Collins, K. I., Annable, T., and Greenberger, L. M.
  • KB-3-1 parental KB-3-1 (herein called KB, cloned from a human epidermoid carcinoma) and the derived lines KB-8-5 and KB-V1, which express moderate and very high levels of the MDR1 (P-glycoprotein) drug transporter protein, respectively, are provided by Dr. M. Gottesman, National Cancer Institute (Shen, D. W., Cardarelli, C., Hwang, J., Cornwell, M., Richert, N., Ishii, S., Pastan, I., and Gottesman, M. M. Multiple drug-resistant human KB carcinoma cells independently selected for high-level resistance to colchicine, adriamycin, or vinblastine show changes in expression of specific proteins. J. Biol. Chem., 261: 7762-7770,1986) via Dr. L. Greenberger, Wyeth Research.
  • the assay which is sold in kit form by Promega (Madison, Wis.; CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay), is based on the conversion by viable cells, but not by dead cells, of the tetrazolium salt, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium, inner salt), into a water-soluble colored formazan which is detected by spectrophotometry. Compounds are tested at nine concentrations, in order to determine IC 50 values.
  • test procedure cells are harvested by trypsinization, washed, counted and distributed to wells of 96-well flat-bottom microtiter plates at 1000 cells per well in 200 ⁇ L of medium. In addition, one row of wells on a separate plate receives cells as above (“time 0” plate). All plates are incubated at 37° in humidified 5% CO 2 in air for about 24 hr.
  • the MTS assay is done on all wells of the experimental plates.
  • the absorbance values of the quadruplicate sample wells are averaged and divided by the average of the “time 0” values.
  • the average of control wells without drug, divided by the average “time 0” value gives the maximal relative increase in MTS color yield due to cell growth during the final three days of culture.
  • the average of control wells with high drug concentration, divided by the “time 0” value gives the minimal relative color yield for cells that were completely killed.
  • the nine values for each compound are plotted against concentration, and the concentration that produces a relative color yield half way between the maximum and minimum is taken as the IC 50 value. The most potent compounds have the lowest IC 50 values.
  • MAP-rich tubulin is dissolved in ice-cold PEM buffer containing 1 mM GTP (GPEM buffer) at a concentration of 1.3 mg/mL.
  • the solution is centrifuged at top speed in an Eppendorf model 5415C microcentrifuge (Brinkmann Instruments, Westbury, N.Y.) for 10 min at 40 immediately before use.
  • the tubulin solution is added to wells of a 1 ⁇ 2-area 96-well plate (Costar No. 3696, Corning, Inc., Corning, N.Y.) already containing the compounds of interest. Each compound is tested in duplicate at a final concentration of 0.3 ⁇ M in a volume of 110 ⁇ L per well. The final DMSO concentration in all wells is 0.3%.
  • Control reactions which receive compound solvent only, are done in quadruplicate.
  • the plate is put in a SpectraMax Plus plate reader (Molecular Devices Corp. Sunnyvale, Calif.) thermostated at 24° and the absorbance of each well at 340 nm, a measure of the appearance of turbidity due to tubulin polymer formation, is determined every minute for 60 minutes.
  • the absorbance at time 0 for each well is subtracted from each of the subsequent absorbance readings for that well, and then the duplicates are averaged.
  • the binding of examples of this invention to highly purified tubulin is studied by competitive inhibition methods.
  • the ⁇ -tubulin heterodimer contains binding sites for the three major classes of microtubule-active pharmacological agents: taxanes, vinca/peptide-site agents, and colchicine-site agents.
  • taxanes a major class of microtubule-active pharmacological agents
  • colchicine-site agents a major class of microtubule-active pharmacological agents.
  • incubations are done under conditions which do not favor polymerization because vinblastine and colchicine bind preferentially to unpolymerized heterodimer.
  • polymerized tubulin microtubules
  • paclitaxel binds preferentially to microtubules.
  • each column effluent (containing tubulin and bound radioligand) is mixed with scintillation fluid and counted in a liquid scintillation spectrometer.
  • Controls include samples without competitor, and samples with unlabeled vincristine, colchicine, or paclitaxel. Quadruplicates are averaged, and the ability of the competitor to inhibit the binding of the radioligand is expressed as a percentage of control binding in the absence of any competitor.
  • tubulin For competition with [ 3 H]paclitaxel, highly purified tubulin is dissolved in PEM buffer containing 0.75 M glutamate and 25 ⁇ M dideoxy-GTP; final protein concentration is 0.25 to 0.35 mg/mL (2.5 to 3.5 ⁇ M). These conditions foster the rapid formation of short, stable microtubule polymers (Hamel, E., del Campo, A. A., and Lin, C. M. Stability of tubulin polymers formed with dideoxyguanosine nucleotides in the presence and absence of microtubule-associated proteins. J. Biol. Chem., 259: 2501-2508,1984). This solution is incubated for 30 min at 370 to allow microtubules to form.
  • [ 3 H]paclitaxel final concentration of 2.1 ⁇ M, 1.2 Ci/mmol
  • competitor final concentration of 20 ⁇ M, except 5 ⁇ M for unlabeled paclitaxel
  • Controls include samples without competitor, and samples with unlabeled vincristine, colchicine, or paclitaxel.
  • the reactions are then centrifuged at top speed in an Eppendorf 5415C microfuge for 20 min at room temperature in order to pellet the microtubule protein. Triplicate aliquots of each supernatant are mixed with scintillation fluid and counted in a liquid scintillation spectrometer.
  • the amount of [ 3 H]paclitaxel bound to pelleted microtubule protein is calculated.
  • the ability of each competitor to inhibit radioligand binding to pelleted protein is expressed as a percent of controls without any competitor.
  • mice of this invention are studied in the athymic mouse xenograft standard pharmacological test.
  • Female nu/nu mice in an outbred albino background are obtained from Charles River Laboratories (Wilmington, Mass.). Animals are injected subcutaneously on the flank with the desired tumor cell suspension. Several days later, mice with tumors of approximately 100 mm 3 are selected from those injected (staged) and randomly distributed into groups of 5-10. The day of staging is called day 0.
  • Tumor/Control is obtained by dividing the mean tumor volume of the treated group by the mean tumor volume of the control group on each measurement day.
  • a treatment dose is defined as active if it produces a statistically significant T/C of 0.50 or less.
  • a treatment dose is defined as toxic if more than 30% of the animals die from a compound-related toxicity.
  • COLO 205 is a human colon carcinoma cell line that is used for comparative testing of the examples of this invention and several reference compounds. This line is sensitive to paclitaxel and vincristine. As shown in Table 1, for example, Example 32a has an IC 50 value of 2.4 nM, comparable to those of paclitaxel and vincristine.
  • the KB lines express different amounts of the P-glycoprotein (MDR1) membrane pump which produces resistance to the action of many cytotoxic compounds, including paclitaxel and vincristine.
  • the parental KB line expresses no P-glycoprotein, HB-8-5 expresses moderate levels of the protein, and KB-V1 expresses very high levels.
  • the ability of P-glycoprotein to recognize and export a potential cytotoxic agent can be inferred from the change in IC 50 values on these lines (Loganzo, F., Discafani, C.
  • a compound is recognized by P-glycoprotein, its IC 50 value will increase substantially (several hundred-fold) on going from KB to KB-8-5 to KB-V1; if a compound is not recognized, it will have similar IC 50 values (3-fold or less difference) on all three lines.
  • Table 2 KB-8-5 cells are moderately resistant to paclitaxel (11-fold), vincristine (26-fold), colchicine (4.7-fold) and doxorubicin (6.8-fold).
  • several representative examples of this invention show less than a 3-fold change in IC 50 values.
  • KB-V1 cells are highly resistant to paclitaxel (822-fold), vincristine (925-fold), colchicine (92-fold), and doxorubicin (>79-fold).
  • Two of the compounds of this invention (Nos. 19 and 30) show less than a 3-fold change in IC 50 compared to the parental KB line. This indicates that these compounds are not recognized at all by P-glycoprotein and therefore that they completely overcome P-glycoprotein-mediated resistance to cell killing.
  • Other representative examples of the invention (Nos. 20a, 21, 25a, and 33a) show recognition by P-glycoprotein, but much less than that shown by paclitaxel and vincristine.
  • HL-60/ADR cells overexpress the multidrug resistance protein MRP1 which mediates resistance to some chemotherapeutics (Gottesman, M. M., Fojo, T., and Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer, 2: 48-58, 2002).
  • MRP1 multidrug resistance protein
  • the IC 50 values of representative examples of this invention, as well as reference compounds, on HL-60/ADR are compared to values on the sensitive parental HL-60 line.
  • S1-M1 cells overexpress the MXR transporter which mediates resistance to some chemotherapeutics (Gottesman, M. M., Fojo, T., and Bates, S. E. Miltidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer, 2: 48-58, 2002).
  • the IC 50 values of representative examples of this invention, as well as reference compounds, on S1-M1 are compared to values on the sensitive parental S1 line.
  • the results, shown in Table 4 indicate that whereas S1-M1 cells show resistance to mitoxantrone (>120-fold) and doxorubicin (47-fold), they show no resistance to any of the examples.
  • control reactions with MAP-rich tubulin show an S-shaped absorbance profile characterized by three phases: first, a lag phase during which no change in absorbance occurs; second, a polymerization phase in which absorbance increases; and third, a plateau phase in which absorbance reaches a maximum and little or no further change occurs.
  • Polymerization enhancers such as paclitaxel and docetaxel shorten or eliminate the lag phase, increase the rate of the polymerization phase, and often increase the height of the plateau.
  • Polymerization inhibitors such as vincristine and colchicine reduce or prevent the absorbance increase.
  • Representative compounds of this invention have a taxane-like effect on the polymerization reaction.
  • Paclitaxel shows an enhancement factor of 2.4
  • docetaxel shows a factor of 8.6.
  • Most examples of this invention have factors ranging from 2.3 to 6.1 while Example 33a, has a value of 0.5.
  • vincristine and colchicine give enhancement factors of 0.2 and 0.5, respectively, because they inhibit polymerization of MAP-rich tubulin.
  • the site on highly purified bovine brain tubulin to which compounds of this invention bind is determined by competitive inhibition studies with the radioactive ligands [ 3 H]vinblastine, [ 3 H]colchicine, and [ 3 H]paclitaxel.
  • the results, shown in Table 6, indicate that all of the tested compounds inhibit the binding of [ 3 H]vinblastine to tubulin heterodimer (12-30% of control), but do not inhibit binding of [ 3 H]colchicine to tubulin heterodimer or of [ 3 H]paclitaxel to microtubules. This is strong evidence that these compounds bind at the vinca/peptide site of tubulin and not at the colchicine or taxane sites.
  • vincristine inhibits [ 3 H]vinblastine binding but not [ 3 H]colchicine
  • colchicine inhibits [ 3 H]colchicine binding but not [ 3 H]vinblastine.
  • Vincristine and colchicine also appear to inhibit the binding of [ 3 H]paclitaxel to microtubules; however, this is not due to binding competition but rather to depolymerization of the microtubules to which [ 3 H]paclitaxel binds.
  • Example 19 of this invention does not reduce [ 3 H]paclitaxel binding to microtubules, which indicates that it neither competes with [ 3 H]paclitaxel for binding nor depolymerizes the microtubules to which [ 3 H]paclitaxel binds.
  • Example 24a inhibits the growth of U87-MG glioblastoma xenografts when dosed intravenously on day 1 with 5 mg/kg, although some compound toxicity is also observed (Table 8). This example also inhibits the growth of H157 NSCLC xenografts when dosed orally on days 1 and 7 with 5 or 1 mg/kg/dose (Table 9).
  • Example 25a inhibits the growth of H157 NSCLC xenografts when dosed intravenously on day 0 with 10, 5, or 2.5 mg/kg (Table 10) although some compound toxicity is observed at the highest dose.
  • Example 29a inhibits the growth of H157 NSCLC xenografts when dosed intravenously on day 0 with 2.5 mg/kg, and when dosed orally on day 0 with 5 mg/kg (Table 11).
  • Example 32a inhibits the growth of H157 NSCLC xenografts as shown in Table 12 when given intravenously on days 0 and 7 at 3 or 1.5 mg/kg/dose.
  • Examples 24a and 29a are also tested against the highly resistant DLD1 colon carcinoma xenograft, which is resistant to paclitaxel and vinblastine because of high expression of the drug transporter P-glycoprotein.
  • Example 24a inhibits the growth of this tumor when given orally on days 1 and 7 at 10 mg/kg/dose, (Table 13).
  • Example 21a in the Human Tumor Xenograft Standard Pharmacological Test Procedure with Mice Bearing H157 Human Non-Small Cell Lung Carcinoma Dose Schedule (mg/ T/C on day Compound (days) Route kg) 0 4 7 11
  • Example 24a In Vivo Activity of Example 24a in the Human Tumor Xenograft Standard Pharmacological Test Procedure with Mice Bearing U87-MG Human Glioblastoma Dose Com- Schedule (mg/ T/C on day pound (days) Route kg) 0 3 7 10
  • Example 24a in the Human Tumor Xenograft Standard Pharmacological Test Procedure with Mice Bearing H157 Human Non-Small Cell Lung Carcinoma Schedule Dose T/C on day Compound (days) Route (mg/kg) 0 4 7 10 13
  • Example 25a In Vivo Activity of Example 25a in the Human Tumor Xenograft Standard Pharmacological Test Procedure with Mice Bearing H157 Human Non-Small Cell Lung Carcinoma Schedule Dose T/C on day Compound (days) Route (mg/kg) 0 3 7 10 13
  • Example 29a In Vivo Activity of Example 29a in the Human Tumor Xenograft Standard Pharmacological Test Procedure with Mice Bearing H157 Human Non-Small Cell Lung Carcinoma Schedule Dose T/C on day Compound (days) Route (mg/kg) 0 2 7 9 14
  • Example 32a in the Human Tumor Xenograft Standard Pharmacological Test Procedure with Mice Bearing H157 Human Non-Small Cell Lung Carcinoma Com- Schedule Dose T/C on day pound (days) Route (mg/kg) 0 4 7 13
  • Vehicle was normal saline
  • Compounds of this invention show potent cytotoxic activity against multiple human cancer cell lines in culture, including lines that are resistant to paclitaxel and vincristine because of drug transporter overexpression.
  • the compounds enhance the initial rate of MAP-rich tubulin polymerization, in a manner reminiscent of taxanes and distinct from the inhibitory effects of depolymerizers such as vinca alkaloids and colchicine, despite the fact that they bind to the vinca/peptide site of tubulin.
  • Representative compounds inhibit the growth of human tumor xenografts in athymic mice by both intravenous and oral dosing, including a tumor resistant to paclitaxel and vinblastine because of P-glycoprotein overexpression.
  • diethyl 2-(2,4,6-trifluorophenyl)malonate is prepared according to the conditions disclosed in U.S. Pat. No. 6,156,925.
  • Step A 5-Chloro-6-(2,4,6-trifluorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine
  • Step B N-[5-Chloro-3-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7(3H)-ylidene]-2,2,2-trifluoroethanamine
  • Step C 4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl(methyl)cyanamide
  • Example 2 is synthesized analogously to Example 1.
  • 2-pyrazinecarboxamidine hydrochloride can be prepared as follows: A solution of 2-pyrazinecarbonitrile (21 g, 200 mmol) in a mixture of 10 mL of methyl alcohol and 120 mL of diethyl ether is treated with hydrogen chloride gas at 0° C. The mixture is then stored at 5° C. for 3 days. The precipitates are collected by filtration and and dried. This solid is then suspended in 100 mL of ethyl alcohol and the mixture is treated with ammonium gas at 0° C. The mixture is then stored at 5° C. for 4 days, and filtered. Concentration of the filtrate gives 2-pyrazinecarboxamidine hydrochloride as a tan solid (2.8 g).
  • Step B 4,6-Dichloro-2-pyrazin-2-yl-5-(2,4,6-trifluorophenyl)pyrimidine
  • Step C 6-Chloro-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine
  • Step B 4,6-Dichloro-2-(1H-imidazol-1-yl)-5-(2,4,6-trifluorophenyl)pyrimidine
  • Step C 6-Chloro-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine
  • Examples 16-18 are synthesized analogously to Example 15.
  • Examples 21-23 are synthesized analogously to Example 19.
  • Examples 25-30 are synthesized analogously to Example 24.
  • Example 32 is synthesized analogously to Example 24 and 31.
  • Step A Ethyl 3-cycloheptyl-3-oxo-2-(2,4,6-trifluorophenyl)propanoate
  • Step B 6-Cycloheptyl-2-pyrazin-2-yl-5-(2,4,6-trifluorophenyl)pyrimidin-4-ol
  • Step C Tert-Butyl ⁇ 3-[4-(4-cycloheptyl-6-hydroxy-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl ⁇ methylcarbamate
  • Step D N- ⁇ 3-[4-(4-Chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl ⁇ -N-methylamine
  • Step A 2-(5-Aminopyridin-2-yl)-6-chloro-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine
  • N,N-Dimethylaminopropan-1-ol 99 ⁇ L, 0.84 mmol
  • 2-(5-aminopyridin-2-yl)-6-chloro-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine 100 mg, from Step A
  • the reaction mixture is cooled to room temperature, and diluted with ethyl acetate.

Abstract

This invention relates to certain 5-arylpyrimidine compounds or a pharmaceutically acceptable salt thereof, and compositions containing said compounds or a pharmaceutically acceptable salt thereof, wherein said compounds are anti-cancer agents useful for the treatment of cancer in mammals. This invention further relates to a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal and further provides a method for the treatment or prevention of cancerous tumors that express multiple drug resistance (MDR) or are resistant because of MDR, in a mammal in need thereof which method comprises administering to said mammal an effective amount of said compounds or a pharmaceutically acceptable salt thereof. More specifically, the present invention relates to a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof by promotion of microtubule polymerization which comprises administering to said mammal an effective amount of said compounds and pharmaceutically acceptable salts thereof.

Description

  • “This application claims priority from copending Provisional Application No. 60/505,487 filed Sep. 24, 2003 the entire disclosure of which is hereby incorporated by reference”.
  • FIELD OF THE INVENTION
  • The present invention relates to certain 5-arylpyrimidine compounds or a pharmaceutically acceptable salt thereof, and compositions containing said compounds or a pharmaceutically acceptable salt thereof, wherein said compounds are anti-cancer agents useful for the treatment of cancer in mammals, treatment or prevention of cancerous tumors that express multiple drug resistance (MDR) or are resistant because of MDR, and treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof by promotion of microtubule polymerization.
  • BACKGROUND OF THE INVENTION
  • Most of the cytostatics in use today either inhibit the formation of essential precursors for biosynthesis of DNA or block DNA polymerases or interfere with the template function of DNA because DNA was the primary target for developing therapeutic drugs for chemotherapy. Unfortunately, inhibition of the formation of essential precursors for biosynthesis of DNA or blocking DNA polymerases or interference with the template function of DNA also affects normal tissues.
  • Antimicrotubule drugs are a major category of anticancer agents (Rowinsky, E. K., and Tolcher, A. W. Antimicrotubule agents. In: V. T. Devita, Jr., S. Hellman, and S. A. Rosenberg (eds.), Cancer Principles and Practice, Ed. 6, pp. 431-452. Philadelphia: Lippincott Williams and Wilkins, 2001). They work by interfering with the function of cellular microtubules, particularly the mitotic spindle. The disruption of normal spindle function leads to apoptotic cell death.
  • Currently, there are three major classes of known antimicrotubule pharmacological agents. Each has a distinct binding region on β-tubulin and distinct effects on microtubule function. These classes are: 1) taxane-site agents which promote microtubule formation and stabilize microtubules; 2) vinca/peptide-site agents which destabilize microtubules and often induce formation of abnormal polymers or aggregates at high concentrations; and 3) colchicine-site agents which also destabilize microtubules and generally do not induce other polymers (Hamel, E. Antimitotic natural products and their interactions with tubulin. Med. Res. Rev., 16: 207-231,1996). Most of the ligands for all three classes of sites are natural products or semi-synthetic derivatives of natural products.
  • Paclitaxel and its semisynthetic derivative docetaxel (Taxotere®) interfere with microtubule formation and stabilize microtubules. Paclitaxel (Taxol®), is a diterpene isolated from the bark of the Western (Pacific) yew, Taxus brevifolia and is representative of a new class of therapeutic agent having a taxane ring system. It was additionally found in other members of the Taxacae family including the yew of Canada (Taxus canadensis) found in Gaspesia, eastern Canada and Taxus baccata found in Europe whose needles contain paclitaxel and analogs and hence provide a renewable source of paclitaxel and derivatives. The crude extract was tested for the first time during the 1960s and its active principle was isolated in 1971 and the chemical structure identified (M. C. Wani et al, J. Am. Chem. Soc., 93, 2325 (1971)). Further, a wide range of activity over melanoma cells, leukemia, various carcinomas, sarcomas and non-Hodgkin lymphomas as well as a number of solid tumors in animals was shown through additional testing. Paclitaxel and its analogs have been produced by partial synthesis from 10-deacetylbaccatin III, a precursor obtained from yew needles and twigs, and by total synthesis (Holton, et al., J. Am. Chem. Soc. 116:1597-1601 (1994) and Nicolaou, et al., Nature 367:630-634 (1994)). Paclitaxel has been demonstrated to possess antineoplastic activity. More recently, it was shown that the antitumor activity of paclitaxel is due to a promotion of microtubule polymerization (Kumar, N., J. Biol. Chem. 256:10435-10441 (1981); Rowinsky, et al., J. Natl. Cancer Inst., 82:1247-1259 (1990); and Schiff, et al., Nature, 277:665-667 (1979)). Paclitaxel has now demonstrated efficacy in several human tumors in clinical trials (McGuire, et al., Ann. Int. Med., 111:273-279 (1989); Holmes, et al., J. Natl. Cancer Inst., 83:1797-1805 (1991); Kohn et al., J. Natl. Cancer Inst., 86:18-24 (1994); and A. Bicker et al., Anti-Cancer Drugs, 4,141-148 (1993).
  • Two taxane-site agents (paclitaxel and docetaxel) and three vinca/peptide-site agents (vinblastine, vincristine, and vinorelbine) are used clinically to treat various human cancers. Taxanes have proven to be of greater utility against solid tumors (e.g., lung, breast, ovarian) than the vinca alkaloids, suggesting that agents that promote microtubule formation might be superior clinically to those that destabilize microtubules. Colchicine-site agents are not used therapeutically.
  • Despite the widespread clinical use of paclitaxel and docetaxel, these drugs have several limitations that create a need for improved agents. First, many tumors are inherently resistant (e.g., colon tumors) or become resistant after multiple cycles of treatment, at least in part due to the expression of drug transporters located in cancer cell membranes that pump the drugs out of cells and thereby decrease their efficacy (Gottesman, M. M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 53: 615-627, 2002). The best known of these transporters is P-glycoprotein. Accordingly, there is a need for new agents with taxane-like effects on microtubule polymerization that are not substrates of P-glycoprotein or other such pumps and that therefore will overcome this cause of taxane resistance in patients.
  • Second, paclitaxel and docetaxel have poor water solubility and paclitaxel must be formulated in Cremophor EL, a vehicle that induces serious hypersensitivity reactions (Li, C. L., Newman, R. A., and Wallace, S. Reformulating paclitaxel. Science & Medicine, January/February: 38-47, 1999). Patients are typically premedicated with corticosteroids and antihistamines before administration of paclitaxel to minimize these toxicities. Accordingly, there is a need for new agents with taxane-like effects on microtubule polymerization that are highly water soluble and can be administered in physiological saline or other suitable non-toxic vehicle.
  • Third, paclitaxel is a natural product having a highly complex structure, and docetaxel is a closely related semisynthetic derivative. Therefore there is a need for compounds which are readily available through synthesis, are structurally different from taxanes and which have taxane-like effects on microtubule polymerization.
  • Accordingly, there is still a need in the art for cytotoxic agents for use in cancer therapy. In particular, there is a need for cytotoxic agents which inhibit or treat the growth of tumors which have an effect similar to paclitaxel and interfere with the process of microtubule formation. Additionally, there is a need in the art for agents which accelerate tubulin polymerization and stabilize the assembled microtubules.
  • Accordingly, it would be advantageous to provide new compounds which provide a method of treating or inhibiting cell proliferation, neoplastic growth and malignant tumor growth in mammals by administering compounds which have paclitaxel like anticancer activity.
  • Additionally, it would be advantageous to provide new compounds which provide a method for treating or inhibiting growth of cancerous tumors that express multiple drug resistance (MDR) or are resistant because of MDR.
  • Further, it would be advantageous to provide new compounds which provide a method of treating or inhibiting the growth of cancerous tumors in a mammal with inherent or acquired resistance to chemotherapeutic agents and in particular antimitotic agents.
  • The preparation and use of 5-phenyl substituted 2-(cyanoamino)pyrimidines having the following general formula as fungicides are disclosed in WO01/96314 A1.
    Figure US20050075357A1-20050407-C00001
  • The preparation and use of 5-phenylpyrimidines having the following general formula as fungicides are disclosed in WO02/074753 A2.
    Figure US20050075357A1-20050407-C00002
  • The preparation and use of 4-amino-2-(pyrin-2-yl)pyrimidines having the following general formula as microbicidal active substances are disclosed in WO02/074753 A2.
    Figure US20050075357A1-20050407-C00003
  • The compounds of this invention are a new class of taxane-like agents that satisfy the hereinbefore described needs, and that differ in significant ways from the previously known classes of antimicrotubule compounds. The compounds of this invention bind at the vinca site of β-tubulin, yet they have many properties that are similar to taxanes and distinct from vinca-site agents. In particular, the compounds of this invention enhance the polymerization of microtubule-associated protein (MAP)-rich tubulin in the presence of GTP at low compound:tubulin molar ratios, in a manner similar to paclitaxel and docetaxel. The compounds of this invention also induce polymerization of highly purified tubulin in the absence of GTP under suitable experimental conditions, an activity that is a hallmark of taxanes. The compounds of this invention are potently cytotoxic for many human cancer cell lines in culture, including lines that overexpress the membrane transporters MDR (P-glycoprotein), MRP, and MXR, thus making them active against cell lines that are resistant to paclitaxel and vincristine. In particular, representative examples of this invention have high water solubility and can be formulated in saline. Representative examples of this invention are active as anti-tumor agents in athymic mice bearing human tumor xenografts of lung and colon carcinoma, melanoma, and glioblastoma, when dosed either intravenously or orally.
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, there are provided compounds represented by Formula (I):
    Figure US20050075357A1-20050407-C00004

    wherein:
    • Z is selected from:
      Figure US20050075357A1-20050407-C00005

      and C6-C8 cycloalkyl;
    • R is a moiety
      Figure US20050075357A1-20050407-C00006
    • n is an integer of 2, 3, or 4;
    • L1 and L2, are each independently H, F, Cl or Br;
    • L3 and L4 are H;
    • X is Cl or Br;
    • Y is O, S, or —NR2;
    • Q is OH or —NR3R4;
    • R1 is H or C1-C3 alky;
    • R2 is H or C1-C3 alkyl;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R5 is CF3 or C2F5;
    • W′ is —NHR6, —N(CN)R6, aryl of 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups; or heteroaryl of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups;
    • R6 is C1-C3 alkyl;
    • R7 is C1-C3 alkyl;
      or a pharmaceutically acceptable salt thereof.
      Definitions
  • As used herein the term alkyl means a straight or branched alkyl moiety of 1 to 3 carbon atoms.
  • As used herein alkoxy means an alkyl-O— group in which the alkyl group is as previously described. Exemplary alkoxy groups include but are not limited to methoxy, ethoxy, and n-propoxy.
  • As used herein alkoxycarbonyl means a moiety —C(O)(O)alkyl in which the alkyl group is as previously described.
  • As used herein carboxyl means a —COOH group.
  • As used herein alkanoyl means a —C(O)alkyl group where alkyl is previously defined.
  • As used herein alkylthio means an alkyl-S— group in which the alkyl group is as previously described.
  • As used herein alkylamido means a —C(O)NHalkyl group where alkyl is previously described.
  • As used herein a heterocyclic ring is a saturated 4 to 6 membered ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with C1-C3 alkyl. Non-limiting representative examples include: morpholine, piperidine, pyrrolidine, piperazine, and azetidine.
  • As used herein aryl means a monocyclic or bicyclic aromatic ring having from 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups. A preferred embodiment of aryl is a aromatic ring having 6 carbon atoms. Non-limiting representative aryl examples include: phenyl, 1-naphthyl, and 2-naphthyl.
  • As used herein heteroaryl is an aromatic heterocyclic ring system (monocyclic or bicyclic) of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups including but not limited to halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups. A preferred embodiment of heteroaryl is a aromatic heterocyclic ring system which has 5 or 6 ring atoms having 1 or 2 nitrogen heteroatoms. Non-limiting representative heteroaryl examples include: 1-pyrazolyl, 2-pyrazinyl, 2-pyridyl, 2-pyrimidinyl, and 3-isoquinolinyl.
  • Cycloalkyl as used herein means a saturated carbocyclic monocyclic ring having from 6 to 8 carbon atoms optionally substituted with C1-C3 alkyl. Non-limiting representative examples include: cyclohexyl, cycloheptyl and cyclooctyl.
  • As used herein halogen means F, Cl or Br.
  • Phenyl as used herein refers to a 6-membered carbon aromatic ring.
  • As used herein phenoxy means a —O-phenyl group where phenyl is as previously described.
  • As used herein benzyl means a —CH2-phenyl group where phenyl is as previously described.
  • As used herein benzyloxy means a —O—CH2-phenyl group where phenyl is as previously described.
  • As used herein N-methylamine means a moiety of the formula
    Figure US20050075357A1-20050407-C00007
  • As used herein alkyl amino means a moiety of the formula
    Figure US20050075357A1-20050407-C00008
  • As used herein dialkylamino means a moiety of the formula
    Figure US20050075357A1-20050407-C00009
  • As used herein N-methylcyanamido means a moiety of the formula
    Figure US20050075357A1-20050407-C00010
  • The present invention provides a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof by administering an effective amount of a compound of Formula (I) and pharmaceutically acceptable salts thereof.
  • The present invention also provides a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in mammals in need thereof by interacting with tubulin and microtubules by promotion of microtubule polymerization which comprises administering to said mammal an effective amount of a compound of Formula (I) and pharmaceutically acceptable salts thereof. A method for promoting tubulin polymerization involves contacting a tubulin containing system with an effective amount of a compound of the invention.
  • Also provided by the present invention is a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
  • This invention further provides a method of promoting tubulin polymerization in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
  • Additionally this invention provides a method of stabilizing microtubules in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
  • Also provided by this invention is a compound of Formula (I) in combination or association with a pharmaceutically acceptable carrier. In particular, the present invention provides a pharmaceutical composition which comprises an effective amount of a compound of Formula (I) and a pharmaceutically acceptable carrier.
  • Additionally this invention provides a method of treating, inhibiting the growth of, or eradicating a tumor in a mammal in need thereof wherein said tumor is resistant to at least one chemotherapeutic agent which comprises administering to said mammal an effective amount of the compounds of Formula (I) and pharmaceutically acceptable salts thereof.
  • The compounds of this invention may contain an asymmetric carbon atom and some of the compounds of this invention may contain one or more asymmetric centers and may thus give rise to stereoisomers, such as enantiomers and diastereomers. The stereoisomers of the instant invention are named according to the Cahn-Ingold-Prelog System. While shown without respect to stereochemistry in Formula (I), the present invention includes all the individual possible stereoisomers; as well as the racemic mixtures and other mixtures of R and S stereoisomers (scalemic mixtures which are mixtures of unequal amounts of enantiomers) and pharmaceutically acceptable salts thereof. Included in the scope of the present invention are (R) and (S) isomers of compounds of general Formula (I) having a chiral center and the racemates thereof and in particular compounds of formula (Ia) and formula (Ib). A preferred embodiment of this invention are (S) isomers of compounds of general Formula (I) having a chiral center. An additional preferred embodiment of this invention are (R) isomers of compounds of general Formula (I) having a chiral center. The present invention encompasses all stereoisomers of the compounds whether free from other stereoisomers or admixed with other stereoisomers in any proportion and thus includes, for instance, racemic mixture of enantiomers as well as the diastereomeric mixture of isomers. The absolute configuration of any compound may be determined by conventional X-ray crystallography.
  • Optical isomers may be obtained in pure form by standard separation techiques or enantiomer specific synthesis.
  • A preferred embodiment of the invention is a compound of formula (Ia):
    Figure US20050075357A1-20050407-C00011

    or a pharmaceutically acceptable salt thereof.
  • A preferred embodiment of the invention is a compound of formula (Ib):
    Figure US20050075357A1-20050407-C00012

    or a pharmaceutically acceptable salt thereof.
  • A further preferred embodiment are compounds of Formula (I) wherein R is the moiety
    Figure US20050075357A1-20050407-C00013

    or a pharmaceutically acceptable salt thereof.
  • Also preferred are compounds of Formula (I) where Z is C6-C8 cycloalkyl or a pharmaceutically acceptable salt thereof.
  • Among the more preferred group of compounds of this invention according to Formula (Ia) including pharmaceutically acceptable salts thereof are those wherein:
    • R is the moiety:
      Figure US20050075357A1-20050407-C00014
    • n=3;
    • R1 is H or methyl;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R5 is CF3;
    • R7 is C1-C3 alkyl;
    • L1 is F;
    • L2 is F;
    • L3 is H;
    • L4 is H;
    • X is Cl;
    • Y is O;
    • W′ is N-methylamino, N-methylcyanamido, 1-pyrazolyl, 2-pyrazinyl, 2-pyridyl, 2-pyrimidinyl, or 3-isoquinolinyl groups.
  • Among the more preferred group of compounds of this invention according to Formula (Ib) including pharmaceutically acceptable salts thereof are those wherein:
    • R is the moiety:
      Figure US20050075357A1-20050407-C00015
    • n=3;
    • R1 is H or methyl;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R5 is CF3;
    • R7 is C1-C3 alkyl;
    • L1 is F;
    • L2 is F;
    • L3 is H;
    • L4 is H;
    • X is Cl;
    • Y is O;
    • W′ is N-methylamino, N-methylcyanamido, 1-pyrazolyl, 2-pyrazinyl, 2-pyridyl, 2-pyrimidinyl, or 3-isoquinolinyl groups.
  • A further more preferred group of compounds of this invention according to Formula (I) including pharmaceutically acceptable salts thereof are those wherein:
    • Z is C6-C8 cycloalkyl;
    • R is the moiety:
      Figure US20050075357A1-20050407-C00016
    • n=3;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R7 is C1-C3 alkyl;
    • L1 is F;
    • L2 is F;
    • L3 is H;
    • L4 is H;
    • X is Cl;
    • Y is O;
    • W′ is N-methylamino, N-methylcyanamido, 1-pyrazolyl, 2-pyrazinyl, 2-pyridyl, 2-pyrimidinyl, or 3-isoquinolinyl groups.
  • Specifically preferred compounds of this invention according to Formula (I) are the following compounds or pharmaceutically acceptable salts thereof:
    • 4-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
    • 6-chloro-5-[(4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl]-N2-methyl-N4-(2,2,2-trifluoroethyl)pyrimidine-2,4-diamine,
    • (4-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 4-chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
    • {4-chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl}methylcyanamide,
    • 6-chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)-2,2′-bipyrimidin-4-amine,
    • 6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine,
    • N-{3-[4-(4-chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}-N-methylamine,
    • 6-chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine and
    • 2-(5-Azidopyridin-2-yl)-6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine.
  • Specifically preferred compounds of this invention according to formula (Ia) are the following compounds or pharmaceutically acceptable salts thereof:
    • (4-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1S)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 6-chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine and
    • 6-chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine.
  • Specifically preferred compounds of this invention according to formula (Ib) are the following compounds or pharmaceutically acceptable salts thereof:
    • (4-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1R)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 6-chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine and
    • 6-chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine.
  • The present invention provides:
      • (i) a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof by administering an effective amount of a compound of formula (II) and pharmaceutically acceptable salts thereof;
      • (ii) a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in mammals in need thereof by interacting with tubulin and microtubules by promotion of microtubule polymerization which comprises administering to said mammal an effective amount of the compounds of formula (II) and pharmaceutically acceptable salts thereof;
      • (iii) a method for promoting tubulin polymerization which involves contacting a tubulin containing system with an effective amount of a compound of the invention;
      • (iv) a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of compounds of formula (II) or pharmaceutically acceptable salts thereof;
      • (v) a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound of formula (II) or pharmaceutically acceptable salts thereof;
      • (vi) a method of stabilizing microtubules in a microtubule containing system which comprises contacting said microtubule containing system with an effective amount of a compound of formula (II) or a pharmaceutically acceptable salt thereof;
      • (vii) a method of treating, inhibiting the growth of, or eradicating a tumor in a mammal in need thereof wherein said tumor is resistant to at least one chemotherapeutic agent which comprises administering to said mammal an effective amount of the compounds of formula (II) and pharmaceutically acceptable salts thereof.
  • The present invention further provides a pharmaceutical composition which comprises a compound of formula (II) in combination or association with a pharmaceutically acceptable carrier. In particular, the present invention provides a pharmaceutical composition which comprises an effective amount of a compound of formula (II) and a pharmaceutically acceptable carrier.
  • The compounds of formula (II) may contain an asymmetric carbon atom and some of the compounds of this invention may contain one or more asymmetric centers and may thus give rise to stereoisomers, such as enantiomers and diastereomers. The stereoisomers of formula (II) are named according to the Cahn-Ingold-Prelog System. While shown without respect to stereochemistry in Formula (II), the present invention includes all the individual possible stereoisomers as well as the racemic mixtures and other mixtures of R and S stereoisomers (scalemic mixtures which are mixtures of unequal amounts of enantiomers) and pharmaceutically acceptable salts thereof. Included in the scope of the present invention are (R) and (S) isomers of compounds of general formula (II) having a chiral center and the racemates thereof and in particular compounds of formula (IIa) and formula (IIb). A preferred embodiment of this invention are (S) isomers of compounds of general formula (II) having a chiral center. An additional preferred embodiment of this invention are (R) isomers of compounds of general formula (II) having a chiral center. The present invention encompasses all stereoisomers of the compounds whether free from other stereoisomers or admixed with other stereoisomers in any proportion and thus includes, for instance, racemic mixture of enantiomers as well as the diastereomeric mixture of isomers. The absolute configuration of any compound may be determined by conventional X-ray crystallography.
  • Optical isomers may be obtained in pure form by standard separation techiques or enantiomer specific synthesis.
  • The present invention also provides a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof by administering an effective amount of a compound of formula (II):
    Figure US20050075357A1-20050407-C00017

    wherein:
    • Z is selected from:
      Figure US20050075357A1-20050407-C00018

      and C6-C8 cycloalkyl;
    • R is a moiety
      Figure US20050075357A1-20050407-C00019
    • X is Cl or Br;
    • L1, L2, L3 and L4 are each independently H, F, Cl or Br;
    • A is H, F, Cl, Br, or Y(CH2)nQ;
    • Y is O, S, or NR2;
    • n is an integer of 2, 3, or 4;
    • Q is OH or —NR3R4;
    • R1 is H or C1-C3 alkyl;
    • R2 is H or C1-C3 alkyl;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R5 is CF3 or C2F5;
    • W′ is —NHR6, —N(CN)R6, aryl of 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups; or heteroaryl of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups;
    • R6 is C1-C3 alkyl;
    • R7 is C1-C3 alkyl;
      and pharmaceutically acceptable salts thereof.
  • A preferred embodiment of the present invention is to provide a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof which comprises administering an effective amount of a compound according to Formula (IIa):
    Figure US20050075357A1-20050407-C00020

    or pharmaceutically acceptable salts thereof.
  • A preferred embodiment of the present invention is to provide a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof which comprises administering an effective amount of a compound according to Formula (IIb):
    Figure US20050075357A1-20050407-C00021

    or pharmaceutically acceptable salts thereof.
  • Further preferred embodiment of the present invention is to provide a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof which comprises administering an effective amount of a compound according to formula (II) wherein R is a moiety
    Figure US20050075357A1-20050407-C00022

    or pharmaceutically acceptable salts thereof.
  • Among the more preferred embodiments of the present invention is to provide a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof which comprises administering an effective amount of a compound according to Formula (IIa) including pharmaceutically acceptable salts thereof wherein:
    • R is a moiety
      Figure US20050075357A1-20050407-C00023
    • n=3;
    • Y is O;
    • Q is —NR3R4;
    • R1 is H or methyl;
    • R5 is CF3;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R6 is C1-C3 alkyl;
    • R7 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or a pharmaceutically acceptable salt thereof.
  • Among the more preferred embodiments of the present invention is to provide a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof which comprises administering an effective amount of a compound according to Formula (IIb) including pharmaceutically acceptable salts thereof wherein:
    • R is a moiety
      Figure US20050075357A1-20050407-C00024
    • n=3;
    • Y is O;
    • Q is —NR3R4;
    • R1 is H or methyl;
    • R5 is CF3;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R6 is C1-C3 alkyl;
    • R7 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or a pharmaceutically acceptable salt thereof.
  • Among the more preferred embodiments of the present invention is to provide a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof which comprises administering an effective amount of compounds according to Formula (IIa) including pharmaceutically acceptable salts thereof are those wherein:
    • R is a moiety
      Figure US20050075357A1-20050407-C00025
    • A is F;
    • R1 is H or methyl;
    • R5 is CF3;
    • R6 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or pharmaceutically acceptable salts thereof.
  • Among the more preferred embodiments of the present invention is to provide a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof which comprises administering an effective amount of compounds according to Formula (IIb) including pharmaceutically acceptable salts thereof wherein:
    • R is a moiety
      Figure US20050075357A1-20050407-C00026
    • A is F;
    • R1 is H or methyl;
    • R5 is CF3;
    • R6 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or pharmaceutically acceptable salts thereof.
  • Specifically preferred compounds of this invention according to formula (II) useful in a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof which comprises administering an effective amount of a compound or pharmaceutically acceptable salt thereof selected from:
    • 4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl(methyl)cyanamide,
    • 4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl]ethylcyanamide,
    • 6-Chloro-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)-2,2′-bipyrimidin-4-amine,
    • 6-Chloro-2-pyridin-4-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-isoquinolin-1-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-isoquinolin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-thien-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(2-furyl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrrol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N2-methyl-N4-(2,2,2-trifluoroethyl)pyrimidine-2,4-diamine,
    • (4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 4-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
    • {4-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl}methylcyanamide,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)-2,2′-bipyrimidin-4-amine,
    • 6-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine,
    • N-{3-[4-(4-Chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}-N-methylamine,
    • 6-Chloro-2-(1-methyl-1H-imidazol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrrol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(4-methylpyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(5-nitropyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine and
    • 2-(5-Azidopyridin-2-yl)-6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine.
  • Specifically preferred compounds of this invention according to formula (IIa) useful in a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof which comprises administering an effective amount of a compound or pharmaceutically acceptable salt thereof selected from:
    • 6-Chloro-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • (4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1S)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine.
  • Specifically preferred compounds of this invention according to formula (IIb) useful in a method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof which comprises administering an effective amount of a compound or pharmaceutically acceptable salt thereof selected from:
    • 6-Chloro-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • (4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1R)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine.
  • The present invention provides a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound of formula (II):
    Figure US20050075357A1-20050407-C00027

    wherein:
    • Z is selected from:
      Figure US20050075357A1-20050407-C00028

      and C6-C8 cycloalkyl;
    • R is a moiety
      Figure US20050075357A1-20050407-C00029
    • X is Cl or Br;
    • L1, L2, L3 and L4 are each independently H, F, Cl or Br;
    • A is H, F, Cl, Br, or Y(CH2)nQ;
    • Y is O, S, or —NR2;
    • n is an integer of 2, 3, or 4;
    • Q is OH or —NR3R4;
    • R1 is H or C1-C3 alkyl;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R5 is CF3 or C2F5;
    • W′ is —NHR6, —N(CN)R6, aryl of 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups; or heteroaryl of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups;
    • R6 is C1-C3 alkyl;
    • R7 is C1-C3 alkyl;
      and pharmaceutically acceptable salts thereof.
  • Also provided by this invention is a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound of formula (IIa):
    Figure US20050075357A1-20050407-C00030

    or pharmaceutically acceptable salts thereof.
  • A preferred embodiment of the present invention is to provide a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound of formula (IIb):
    Figure US20050075357A1-20050407-C00031

    or pharmaceutically acceptable salts thereof.
  • Further preferred embodiment of the present invention is to provide a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound according to formula (II) wherein R is a moiety
    Figure US20050075357A1-20050407-C00032

    or pharmaceutically acceptable salts thereof.
  • A more preferred embodiment of the present invention is to provide a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound according to formula (IIa) or pharmaceutically acceptable salts thereof wherein:
    • R is a moiety
      Figure US20050075357A1-20050407-C00033
    • n=3;
    • Y is O;
    • Q is —NR3R4;
    • R1 is H or methyl;
    • R5 is CF3;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R6 is C1-C3 alkyl;
    • R7 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or pharmaceutically acceptable salts thereof.
  • A more preferred embodiment of the present invention is to provide a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound according to formula (IIb) including pharmaceutically acceptable salts thereof wherein:
    • R is
      Figure US20050075357A1-20050407-C00034
    • n=3;
    • Y is O;
    • Q is —NR3R4;
    • R1 is H or methyl;
    • R5 is CF3;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R6 is C1-C3 alkyl;
    • R7 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or pharmaceutically acceptable salts thereof.
  • A more preferred embodiment of the present invention is to provide a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound according to formula (IIa) or pharmaceutically acceptable salts thereof wherein:
    • R is a moiety
      Figure US20050075357A1-20050407-C00035
    • A is F;
    • R1 is H or methyl;
    • R5 is CF3;
    • R6 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or pharmaceutically acceptable salts thereof.
  • A more preferred embodiment of the present invention is to provide a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound according to Formula (IIb) including pharmaceutically acceptable salts wherein:
    • R is a moiety
      Figure US20050075357A1-20050407-C00036
  • A is F;
    • R1 is H or methyl;
    • R5 is CF3;
    • R6 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or a pharmaceutically acceptable salt thereof.
  • Specifically preferred compounds of this invention useful in a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound according to formula (II) or a pharmaceutically acceptable salt thereof selected from:
    • 4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl(methyl)cyanamide,
    • 4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl]ethylcyanamide,
    • 6-Chloro-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)-2,2′-bipyrimidin-4-amine,
    • 6-Chloro-2-pyridin-4-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-isoquinolin-1-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-isoquinolin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-thien-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(2-furyl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrrol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
    • 6-Chloro-5-[4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl]-N2-methyl-N4-(2,2,2-trifluoroethyl)pyrimidine-2,4-diamine,
    • (4-Chloro-5-[(4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl]-6-{[2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 4-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
    • {4-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl}methylcyanamide,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-[4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl]-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)-2,2′-bipyrimidin-4-amine,
    • 6-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine,
    • N-{3-[4-(4-Chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}-N-methylamine,
    • 6-Chloro-2-(1-methyl-1H-imidazol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrrol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(4-methylpyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(5-nitropyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine and
    • 2-(5-Azidopyridin-2-yl)-6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine.
  • Specifically preferred compounds of this invention useful in a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound according to formula (IIa) or pharmaceutically acceptable salts thereof selected from:
    • 6-Chloro-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • (4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1S)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine.
  • Specifically preferred compounds of this invention useful in a method of promoting tubulin polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound according to formula (IIb) or pharmaceutically acceptable salts thereof selected from:
    • 6-Chloro-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • (4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1R)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine.
  • Further provided by the present invention is a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (II) or a pharmaceutically acceptable salt thereof
    Figure US20050075357A1-20050407-C00037

    wherein:
    • Z is selected from:
      Figure US20050075357A1-20050407-C00038

      and C6-C8 cycloalkyl;
    • R is a moiety
      Figure US20050075357A1-20050407-C00039
    • X is Cl or Br;
    • L1, L2, L3 and L4 are each independently H, F, Cl or Br;
    • A is H, F, Cl, Br, or Y(CH2)nQ;
    • Y is O, S, or —NR2;
    • n is an integer of 2, 3, or 4;
    • Q is OH or —NR3R4;
    • R1 is H or C1-C3 alkyl;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R5 is CF3 or C2F5;
    • W′ is —NHR6, —N(CN)R6, aryl of 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups; or heteroaryl of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups;
    • R6 is C1-C3 alkyl;
    • R7 is C1-C3 alkyl;
      and pharmaceutically acceptable salts thereof.
  • A preferred embodiment of the present invention is to provide a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIa) or a pharmaceutically acceptable salt thereof
    Figure US20050075357A1-20050407-C00040

    or pharmaceutically acceptable salts thereof.
  • A preferred embodiment of the present invention is to provide a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIb)
    Figure US20050075357A1-20050407-C00041

    or pharmaceutically acceptable salts thereof.
  • Further preferred embodiment of the present invention is to provide a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (II) wherein R is a moiety
    Figure US20050075357A1-20050407-C00042
  • A more preferred embodiment of the present invention is to provide a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIa) wherein:
    • R is a moiety
      Figure US20050075357A1-20050407-C00043
    • n=3;
    • Y is O;
    • Q is —NR3R4;
    • R1 is H or methyl;
    • R5 is CF3;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R6 is C1-C3 alkyl;
    • R7 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or pharmaceutically acceptable salts thereof.
  • A more preferred embodiment of the present invention is to provide a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIb) wherein:
    • R is a moiety
      Figure US20050075357A1-20050407-C00044
    • n=3;
    • Y is O;
    • Q is —NR3R4;
    • R1 is H or methyl;
    • R5 is CF3;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R6 is C1-C3 alkyl;
    • R7 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or pharmaceutically acceptable salts thereof.
  • A more preferred embodiment of the present invention is to provide a method of stabilizing microtubles in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIa) wherein:
    • R is a moiety
      Figure US20050075357A1-20050407-C00045
    • A is F;
    • R1 is H or methyl;
    • R5 is CF3;
    • R6 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or pharmaceutically acceptable salts thereof.
  • A more preferred embodiment of the present invention is to provide a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIb) wherein:
    • R is a moiety
      Figure US20050075357A1-20050407-C00046
    • A is F;
    • R1 is H or methyl;
    • R5 is CF3;
    • R6 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or pharmaceutically acceptable salts thereof.
  • Specifically preferred compounds of this invention useful in a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (II) are the following compounds or a pharmaceutically acceptable salt thereof:
    • 4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl(methyl)cyanamide,
    • 4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl]ethylcyanamide,
    • 6-Chloro-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)-2,2′-bipyrimidin-4-amine,
    • 6-Chloro-2-pyridin-4-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-isoquinolin-1-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-isoquinolin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-thien-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(2-furyl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrrol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N2-methyl-N4-(2,2,2-trifluoroethyl)pyrimidine-2,4-diamine,
    • (4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 4-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
    • {4-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl}methylcyanamide,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)-2,2′-bipyrimidin-4-amine,
    • 6-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-(H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine,
    • N-{3-[4-(4-Chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}-N-methylamine,
    • 6-Chloro-2-(1-methyl-1H-imidazol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrrol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(4-methylpyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(5-nitropyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine and
    • 2-(5-Azidopyridin-2-yl)-6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine.
  • A more preferred embodiment of this invention useful in a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIa) are the following compounds or a pharmaceutically acceptable salt thereof:
    • 6-Chloro-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • (4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1S)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
    • 6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine.
  • A more preferred embodiment of this invention useful in a method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (IIb) are the following compounds or a pharmaceutically acceptable salt thereof:
    • 6-Chloro-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • (4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1R)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
    • 6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine.
  • The present invention also provides a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound of formula (II):
    Figure US20050075357A1-20050407-C00047

    wherein:
    • Z is selected from:
      Figure US20050075357A1-20050407-C00048

      and C6-C8 cycloalkyl;
    • R is a moiety of the group
      Figure US20050075357A1-20050407-C00049
    • X is Cl or Br;
    • L1, L2, L3 and L4 are each independently H, F, Cl or Br;
    • A is H, F, Cl, Br, or Y(CH2)nQ;
    • Y is O, S, or —NR2;
    • n is an integer of 2, 3, or 4;
    • Q is OH or —NR3R4;
    • R1 is H or C1-C3 alkyl;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R5 is CF3 or C2F5;
    • W′ is —NHR6, —N(CN)R6, aryl of 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups; or heteroaryl of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups;
    • R6 is C1-C3 alkyl;
    • R7 is C1-C3 alkyl;
      and pharmaceutically acceptable salts thereof.
  • A preferred embodiment of the present invention is to provide a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound according to Formula (IIa):
    Figure US20050075357A1-20050407-C00050

    or pharmaceutically acceptable salts thereof.
  • A preferred embodiment of the present invention is to provide a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound according to Formula (IIb):
    Figure US20050075357A1-20050407-C00051

    or pharmaceutically acceptable salts thereof.
  • Further preferred are compounds of formula (II) wherein R is a moiety
    Figure US20050075357A1-20050407-C00052

    or pharmaceutically acceptable salts thereof.
  • A more preferred embodiment of the present invention is to provide a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound according to formula (IIa) wherein:
    • R is
      Figure US20050075357A1-20050407-C00053
    • n=3;
    • Y is O;
    • Q is —NR3R4;
    • R1 is H or methyl;
    • R5 is CF3;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R6 is C1-C3 alkyl;
    • R7 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or pharmaceutically acceptable salts thereof.
  • A more preferred embodiment of the present invention is to provide a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound according to formula (IIb) wherein:
    • R is
      Figure US20050075357A1-20050407-C00054
    • n=3;
    • Y is O;
    • Q is —NR3R4;
    • R1 is H or methyl;
    • R5 is CF3;
    • R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
    • R6 is C1-C3 alkyl;
    • R7 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or pharmaceutically acceptable salts thereof.
  • A more preferred embodiment of the present invention is to provide a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound according to Formula (IIa) wherein:
    • R is
      Figure US20050075357A1-20050407-C00055
    • A is F;
    • R1 is H or methyl;
    • R5 is CF3;
    • R6 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or pharmaceutically acceptable salts thereof.
  • A more preferred embodiment of the present invention is to provide a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound according to Formula (IIb) wherein:
    • R is
      Figure US20050075357A1-20050407-C00056
    • A is F;
    • R1 is H or methyl;
    • R5 is CF3;
    • R6 is C1-C3 alkyl;
    • L1 is F;
    • L2 is H or F;
    • L3 is H;
    • L4 is H;
    • X is Cl or Br;
      or pharmaceutically acceptable salts thereof.
  • Specifically preferred compounds of this invention according to Formula (II) are the following compounds or pharmaceutically acceptable salts thereof useful in a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof are the following compounds or a pharmaceutically acceptable salt thereof:
    • 4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl(methyl)cyanamide,
    • 4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl]ethylcyanamide,
    • 6-Chloro-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)-2,2′-bipyrimidin-4-amine,
    • 6-Chloro-2-pyridin-4-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-isoquinolin-1-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-isoquinolin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-thien-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(2-furyl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrrol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N2-methyl-N4-(2,2,2-trifluoroethyl)pyrimidine-2,4-diamine,
    • (4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 4-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
    • {4-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl}methylcyanamide,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)-2,2′-bipyrimidin-4-amine,
    • 6-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine,
    • N-{3-[4-(4-Chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}-N-methylamine,
    • 6-Chloro-2-(1-methyl-1H-imidazol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrrol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(4-methylpyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(5-nitropyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine and
    • 2-(5-Azidopyridin-2-yl)-6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine.
  • Specifically preferred compounds of this invention according to Formula (IIa) are the following compounds or pharmaceutically acceptable salts thereof useful in a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof are the following compounds or a pharmaceutically acceptable salt thereof:
    • 6-Chloro-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • (4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(S)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine.
  • Specifically preferred compounds of this invention according to Formula (IIb) are the following compounds or pharmaceutically acceptable salts thereof useful in a method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof are the following compounds or a pharmaceutically acceptable salt thereof:
    • 6-Chloro-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • 6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
    • (4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1R)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
    • 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine.
    DETAILED DESCRIPTION OF THE INVENTION
  • The compounds of this invention may be prepared from: (a) commercially available starting materials (b) known starting materials which may be prepared as described in literature procedures or (c) new intermediates described in the schemes and experimental procedures herein.
  • Reactions are performed in a solvent appropriate to the reagents and materials employed and suitable for the transformation being effected. It is understood by those skilled in the art of organic synthesis that the various functionalities present on the molecule must be consistent with the chemical transformations proposed. This may necessitate judgement as to the order of synthetic steps. Appropriate consideration must be made as to the protection of reactive functional groups to prevent undesired side reactions.
  • Substituents on the starting materials may be incompatible with some of the reaction conditions. Such restrictions to the substituents which are compatible with the reaction conditions will be apparent to one skilled in the art. Reactions were run under inert atmospheres where appropriate.
  • The preparation of the compounds of this invention encompassed by Formulae (I) and (II) wherein
    • Z is
      Figure US20050075357A1-20050407-C00057
    • W′ is —NHR6 or —N(CN)R6 can be prepared by a process shown in Scheme I, which comprises treating a compound of Formula (III) in which R5, R1, L1, L2, L3, L4, A and X are as hereinbefore defined, with an alkylating agent R6-LG (IV), in which LG is a halo group or a moiety —OSO2R5, and R6 is as hereinbefore defined. Compounds of Formula (V) are treated with a strong base which includes an alkali metal hydroxide, alkali metal carbonate and alkali hydride, e.g., sodium hydride, in the presence of an aprotic solvent which includes dimethylsulfoxide, dimethylformamide and the like to yield cyano compounds of Formula (II). Treatment of a cyano compound of Formula (II) when A is a leaving group, in particular a fluorine atom, with a compound of Formula (VI) in which Y, n and Q are as hereinbefore defined, in the presence of a strong base which includes alkali metal hydroxide, alkali metal carbonate and alkali hydride, e.g., sodium hydride, in the presence of an aprotic solvent which includes dimethylsulfoxide, dimethylformamide and the like gives Formula (I). The reaction is suitably carried out at a temperature in the range from about 0° C. to about 100° C.
      Figure US20050075357A1-20050407-C00058
  • The preparation of the compounds of this invention encompassed by Formula (I) wherein Z is
    Figure US20050075357A1-20050407-C00059
    • Y is O, S, or —NR2 and
    • W′ is aryl or heteroaryl as hereinbefore defined, can be prepared by a process shown in Scheme II, which comprises treating a compound of the Formula (II) when A is a leaving group, in particular a fluorine atom with a compound of Formula (VI) in which Y, n and Q are as hereinbefore defined, in the presence of a strong base which includes an alkali metal hydroxide, alkali metal carbonate and alkali hydride, e.g., sodium hydride, in the presence of an aprotic solvent, which includes dimethylsulfoxide, dimethylformamide, and the like. The reaction is suitably carried out at a temperature in the range from about 0° C. to about 100° C.
      Figure US20050075357A1-20050407-C00060
  • A compound of Formula (II) wherein Z is the moiety
    Figure US20050075357A1-20050407-C00061

    W′ is aryl or heteroaryl as hereinbefore defined can be prepared as shown in Scheme III. Treating diester (VIII, U.S. Pat. No. 6,156,925) with carboxamidine (VII) in the presence of a tertiary amine base, such as tributylamine, at a temperature up to 190° C. provides compound (IX). Halogenation with halogenating agents POX3, PX3 or PX5, such as phosphorous oxychloride or phosphorous oxybromide gives compound (X). Replacement of one of the halogens with excess amount of an amine (XI) in a suitable solvent, such as methylene chloride, dimethylsulfoxide or dimethylformamide, provides compound (II).
    Figure US20050075357A1-20050407-C00062
  • Alternatively, as shown in Scheme IV, compounds of Formula (II) wherein Z is
    Figure US20050075357A1-20050407-C00063

    and W′ is heteroaryl having 1 to 4 nitrogen heteroatoms may be prepared wherein reaction of heteroaryl reagent W′—H, in which one nitrogen heteroatom is attached to a hydrogen atom in said heteroaryl reagent W′—H, and said nitrogen heteroatom is further connected to the pyrimidine ring of compound (XV) by reaction of heteroaryl reagent W′—H with compound (XIV), which can be further converted to compounds of formula (II). Treating compound (VIII, U.S. Pat. No. 6,156,925) with urea (XII) in the presence of a tertiary amine base, such as tributylamine, at a temperature up to 190° C. provides compound (XIII). Halogenation with halogenating agents POX3, PX3 or PX5, such as phosphorous oxychloride or phosphorous oxybromide gives compound (XIV). Replacement of the 2-halogen of compound (XIV) by reaction with heteroaryl reagent W′—H gives compound (XV). Replacement of an additional halogen of compound (XV) with excess amount of an amine (XI) in a suitable solvent, such as methylene chloride, dimethylsulfoxide or dimethylformamide, provides compounds of formula (II).
    Figure US20050075357A1-20050407-C00064
  • The preparation of the compounds of this invention encompassed by Formulae (I) and (II) wherein Z is C6-C8 cycloalkyl; Y is O, S, or —NR2 and W′ is as hereinbefore defined, can be prepared by a process shown in Scheme V and Scheme VI wherein L1, L2, L3, L4, A, X and n are as defined above.
  • Ester (XVI) is reacted with acid chloride (XVII), prepared from the corresponding carboxylic acid where Z is C6-C8 cycloalkyl, in the presence of lithium diisopropylamide (LDA) to give ketoester (XVIII) which is further reacted with carboxamidine (VII) in the presence of a tertiary amine base, such as tributylamine, at a temperature up to 190° C. provides compound (XIX). When A is a leaving group, in particular a fluorine atom, reaction with compound (XX), in which Q is —OH or —NR3R4 wherein at least one of R3 or R4 is hydrogen, and Q is protected, as the 4-methoxybenzyl group when Q is —OH or as the tert-butoxy carbonyl (t-BOC) group when Q is —NR3R4 in the presence of a strong base which includes an alkali metal hydroxide, alkali metal carbonate and alkali hydride, e.g., sodium hydride in an aprotic solvent which includes dimethylsulfoxide, dimethylformamide, and the like to give compound (XXI). Reaction of compound (XXI) with with halogenating agents POX3, PX3, or PX5, such as phosphorous oxychloride or phosphorous oxybromide in the presence of a inert base affords compound (XXII) where X is hereinbefore defined. Deprotection of the protecting group on Q with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in the case of the 4-methoxybenzyl protecting group or trifluoroacetic acid in the case of the tert-butoxy carbonyl (t-BOC) protecting group gives compound (I) where Z is C6-C8 cycloalkyl.
  • Reaction of compound (XIX) with halogenating agents POX3, PX3, or PX5, such as phosphorous oxychloride or phosphorous oxybromide in the presence of a inert base affords compound (II) where X is hereinbefore defined and A is H, F, Cl, Br or Y(CH2)nQ where Q is —NR3R4 and R3 and R4 are independently alkyl of 1 to 3 carbon atoms.
    Figure US20050075357A1-20050407-C00065
    Figure US20050075357A1-20050407-C00066
  • As shown in Scheme VI, when A is a leaving group, in particular a fluorine atom, reaction with compound (VI), in which Q is —NR3R4 and R3 and R4 are independently alkyl in the presence of a strong base which includes an alkali metal hydroxide, alkali metal carbonate and alkali hydride, e.g., sodium hydride in an aprotic solvent which includes dimethylsulfoxide, dimethylformamide, and the like to give compound (XXIII). Reaction of compound (XXIII) with halogenating agents POX3, PX3, or PX5, such as phosphorous oxychloride or phosphorous oxybromide in the presence of a inert base affords compound (I) where X is hereinbefore defined.
    Figure US20050075357A1-20050407-C00067
  • It is understood that this invention encompasses all crystalline and hydrated forms of compounds of Formulae (I) and (II) and their pharmaceutically acceptable salts. The pharmaceutically acceptable salts of the compounds of this invention are those derived from such organic and inorganic pharmaceutically acceptable salt forming acids as: lactic, citric, acetic, tartaric, fumaric, succinic, maleic, malonic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, benzenesulfonic, L-aspartic, R or S-mandelic, palmitic and similarly known acceptable acids and further including trifluoroacetic acid (TFA). In particular the hydrochloride, fumarate and succinate salts are preferred.
  • The present invention accordingly provides a pharmaceutical composition which comprises a compound of this invention, (formula I and formula II), in combination or association with a pharmaceutically acceptable carrier. In particular, the present invention provides a pharmaceutical composition which comprises an effective amount of a compound of this invention and a pharmaceutically acceptable carrier.
  • Based on the results of these standard pharmacological test procedures, the compounds of this invention are useful as agents for treating, inhibiting or controlling the growth of cancerous tumor cells and associated diseases in a mammal in need thereof. The compounds of the invention are useful as agents for treating, inhibiting or controlling the growth of cancerous tumor cells and associated diseases in a mammal in need thereof by interacting with tubulin and microtubules and promoting microtubule polymerization. The compounds of the invention are further useful for the treatment or prevention of cancerous tumors by stabilizing microtubules. The compounds of the invention are also useful for the treatment or prevention of cancerous tumors that express multiple drug resistance (MDR) or are resistant because of MDR.
  • In particular, when contacting a tubulin containing system with an effective amount of a compound of formulae (I) or (II) results in the promotion of microtubule polymerization and further stabilizes microtubules and by promoting microtubule polymerization and stabilizing microtubules said compounds of formulae (I) and (II) are useful as agents for treating, inhibiting or controlling the growth of cancerous tumor cells and associated diseases. Additionally, compounds of formulae (I) and (II) are useful for the treatment or prevention of cancerous tumors that express multiple drug resistance (MDR) or are resistant because of MDR. The tubulin containing system may be in a tumor cell, thereby inhibiting neoplastic disease by administering an effective amount of a compound described in the present invention. Mammals may be treated and in particular, humans. Further, said tubulin containing system may be in a patient. In the case of cancer treatment, it is believed that many neoplasias such as leukemia, lung cancer, colon cancer, thyroid cancer, ovarian cancer, renal cancer, prostate cancer and breast cancers may be treated by effectively administering effective amounts of the compounds of formulae (I) and (II). As used herein, cancer refers to all types of cancers, or neoplasms or benign or malignant tumors. Preferred cancers for treatment using methods provided herein include carcinoma, sarcoma, lymphoma, or leukemia. By carcinoma is meant a benign or malignant epithelial tumor and includes, but is not limited to, breast carcinoma, prostate carcinoma, non-small lung carcinoma, colon carcinoma, melanoma carcinoma, ovarian carcinoma, or renal carcinoma. A preferred host is a human.
  • The effective dosage of active ingredient employed may vary depending on the particular compound employed, the mode of administration and severity of the condition being treated. However, in general satisfactory results are obtained when the compounds of the invention are administered in amounts ranging from about 0.10 to about 100 mg/kg of body weight per day. A preferred regimen for optimum results would be from about 1 mg to about 20 mg/kg of body weight per day and such dosage units are employed that a total of from about 70 mg to about 1400 mg of the active compound for a subject of about 70 kg of body weight are administered in a 24 hour period.
  • The dosage regimen for treating mammals may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation. A decidedly practical advantage is that these active compounds may be administered in any convenient manner such as by the oral, intravenous, intramuscular or subcutaneous routes.
  • The active compounds may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or they may be enclosed in hard or soft shell gelatin capsules, or they may be compressed into tablets or they may be incorporated directly with the food of the diet. For oral therapeutic administration, these active compounds may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers and the like. Such compositions and preparations should contain at least 0.1% of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2% to about 60% of the weight of the unit. The amount of active compound in such therapeutically useful compositions is such that a suitable dosage will be obtained. Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between 10 and 1000 mg of active compound. The tablets, troches, pills, capsules and the like may also contain the following: a binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose, or saccharin may be added or a flavoring agnet such as peppermint, oil of wintergreen or cherry flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose, as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts used. In addition, these active compounds may be incorporated into sustained-release preparations and formulations.
  • These active compounds may also be administered parenterally or intraperitoneally. Solutions or suspensions of these active compounds as a free base or pharmacologically acceptable salt can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth or microorganisms.
  • The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be prepared against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol and liquid poly-ethylene glycol), suitable mixtures thereof, and vegetable oils.
  • Intravenous administration is a preferred manner of administration of compounds of the invention. For intravenous administration examples of non-limiting suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). The composition must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
  • As used in accordance with this invention, the term providing an effective amount of a compound means either directly administering such compound, or administering a prodrug, derivative, or analog which will form an effective amount of the compound within the body.
  • In addition to the above utilities some of the compounds of this invention are useful for the preparation of other compounds of this invention.
  • Examples of this invention are evaluated in several standard pharmacological test procedures that showed that the compounds of this invention possess significant activity as promoters of microtubule polymerization and are antineoplastic agents. Based on the activity shown in the standard pharmacological test procedures, the compounds of this invention are therefore useful as anticancer agents. Associated cancers are selected from the group consisting of breast, colon, lung, prostate, melanoma, epidermal, leukemia, kidney, bladder, mouth, larynx, esophagus, stomach, ovary, pancreas, liver, skin and brain. In particular, the compounds of this invention possess an effect similar to Paclitaxel. The test procedures used and results obtained are shown below.
  • Materials and Methods
  • 1. Cell Culture Media and Reagents
  • Medium is RPMI-1640 with L-glutamine, supplemented with 10% heat-inactivated fetal calf serum, 100 units/mL penicillin, and 100 μg/mL streptomycin (Gibco, Grand Island, N.Y.). Microtubule-associated protein (MAP)-rich tubulin, containing about 70% tubulin and 30% MAPs (#ML113), and highly purified tubulin (>99% pure, #TL238), both from bovine brain, are obtained from Cytoskeleton, Inc., Denver, Colo. PEM buffer (80 mM piperazine-N,N′-bis[2-ethanesulfonic acid], pH 6.9, 1 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid, 1 mM magnesium chloride) and guanosine 5′-triphosphate (GTP) are also obtained from Cytoskeleton. [3H]paclitaxel, specific activity 14.7 Ci/mmol, is purchased from Moravek Biochemicals (Brea, Calif.). [3H]vinblastine, specific activity 9.60 Ci/mmol and MicroSpin G-50 columns are obtained from Amersham Biosciences (Piscataway, N.J.). [3H]colchicine, specific activity 76.5 Ci/mmol, is obtained from New England Nuclear (Boston, Mass.). Other reagents are obtained from Sigma (St. Louis, Mo.).
  • 2. Cell Lines
  • Human cancer cell lines, unless otherwise noted, are obtained from the American Type Culture Collection (Rockville, Md.). The following drug-sensitive parental cell lines, and their derived drug-resistant counterparts, are obtained from the originators as listed: (a) S1 (parental line from a subclone of human colon carcinoma line LS174T) and derived S1-M1-3.2 (herein called S1-M1) which expresses the MXR drug transporter protein, are provided by Dr. L. Greenberger, Wyeth Research (Rabindran, S. K., He, H., Singh, M., Brown, E., Collins, K. I., Annable, T., and Greenberger, L. M. Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Res., 58: 5850-5858,1998); (b) parental HL-60 human promyelocytic leukemia line and derived HL-60/ADR, which expresses the MRP1 drug transporter protein, are provided by Dr. M. Center, University of Kansas (McGrath, T., and Center, M. S. Adriamycin resistance in HL60 cells in the absence of detectable P-glycoprotein. Biochem. Biophys. Res. Commun., 145: 1171-1176, 1987), via Dr. L. Greenberger, Wyeth Research; and (c) parental KB-3-1 (herein called KB, cloned from a human epidermoid carcinoma) and the derived lines KB-8-5 and KB-V1, which express moderate and very high levels of the MDR1 (P-glycoprotein) drug transporter protein, respectively, are provided by Dr. M. Gottesman, National Cancer Institute (Shen, D. W., Cardarelli, C., Hwang, J., Cornwell, M., Richert, N., Ishii, S., Pastan, I., and Gottesman, M. M. Multiple drug-resistant human KB carcinoma cells independently selected for high-level resistance to colchicine, adriamycin, or vinblastine show changes in expression of specific proteins. J. Biol. Chem., 261: 7762-7770,1986) via Dr. L. Greenberger, Wyeth Research.
  • 3. Cytotoxicity Standard Pharmacological Test Procedure
  • The assay, which is sold in kit form by Promega (Madison, Wis.; CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay), is based on the conversion by viable cells, but not by dead cells, of the tetrazolium salt, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium, inner salt), into a water-soluble colored formazan which is detected by spectrophotometry. Compounds are tested at nine concentrations, in order to determine IC50 values. For the test procedure, cells are harvested by trypsinization, washed, counted and distributed to wells of 96-well flat-bottom microtiter plates at 1000 cells per well in 200 μL of medium. In addition, one row of wells on a separate plate receives cells as above (“time 0” plate). All plates are incubated at 37° in humidified 5% CO2 in air for about 24 hr.
  • On day 2, compounds for test are diluted and added to wells. Compounds are dissolved in DMSO at 10 mg/mL. For each compound, nine serial 2-fold dilutions are prepared in DMSO. Ten μL of each dilution in DMSO are transferred to 100 μL of medium, mixed well, and then 5 μL of this dilution are transferred in quadruplicate to wells containing cells. The final high concentration of each compound is typically 5 μM. Plates are returned to the incubator for three days. At the time of drug addition to the experimental plates, the MTS assay is run on the “time 0” plate. This produces the “time 0 MTS value” which is related to the number of viable cells per well at the time of drug addition.
  • After three days of culture with test compounds (day 5 overall), the MTS assay is done on all wells of the experimental plates. The absorbance values of the quadruplicate sample wells are averaged and divided by the average of the “time 0” values. The average of control wells without drug, divided by the average “time 0” value, gives the maximal relative increase in MTS color yield due to cell growth during the final three days of culture. The average of control wells with high drug concentration, divided by the “time 0” value, gives the minimal relative color yield for cells that were completely killed. The nine values for each compound are plotted against concentration, and the concentration that produces a relative color yield half way between the maximum and minimum is taken as the IC50 value. The most potent compounds have the lowest IC50 values.
  • 4. Tubulin Polymerization Standard Pharmacological Test Procedure
  • MAP-rich tubulin is dissolved in ice-cold PEM buffer containing 1 mM GTP (GPEM buffer) at a concentration of 1.3 mg/mL. The solution is centrifuged at top speed in an Eppendorf model 5415C microcentrifuge (Brinkmann Instruments, Westbury, N.Y.) for 10 min at 40 immediately before use. The tubulin solution is added to wells of a ½-area 96-well plate (Costar No. 3696, Corning, Inc., Corning, N.Y.) already containing the compounds of interest. Each compound is tested in duplicate at a final concentration of 0.3 μM in a volume of 110 μL per well. The final DMSO concentration in all wells is 0.3%. Control reactions, which receive compound solvent only, are done in quadruplicate. The plate is put in a SpectraMax Plus plate reader (Molecular Devices Corp. Sunnyvale, Calif.) thermostated at 24° and the absorbance of each well at 340 nm, a measure of the appearance of turbidity due to tubulin polymer formation, is determined every minute for 60 minutes. The absorbance at time 0 for each well is subtracted from each of the subsequent absorbance readings for that well, and then the duplicates are averaged.
  • 5. Competitive Binding Standard Pharmacological Test Procedure
  • The binding of examples of this invention to highly purified tubulin is studied by competitive inhibition methods. The αβ-tubulin heterodimer contains binding sites for the three major classes of microtubule-active pharmacological agents: taxanes, vinca/peptide-site agents, and colchicine-site agents. To study possible competition at the vinca/peptide and colchicine sites, incubations are done under conditions which do not favor polymerization because vinblastine and colchicine bind preferentially to unpolymerized heterodimer. To study possible competition at the taxane site, on the other hand, polymerized tubulin (microtubules) is used because paclitaxel binds preferentially to microtubules.
  • Highly purified tubulin is dissolved in PEM buffer without GTP and used at a final concentration of 1.0 to 1.3 mg/ml (10 to 13 μM). To aliquots of the tubulin solution are added various competitors (in quadruplicate) at 100 μM final concentrations, and [3H]vinblastine or [3H]colchicine at final concentrations of 100 nM or 50 nM, respectively. These solutions are incubated at 240 for 1 hr and then applied to MicroSpin G-50 columns which are centrifuged for 2 min at 3000 rpm in an Eppendorf 5415C microfuge. An aliquot of each column effluent (containing tubulin and bound radioligand) is mixed with scintillation fluid and counted in a liquid scintillation spectrometer. Controls include samples without competitor, and samples with unlabeled vincristine, colchicine, or paclitaxel. Quadruplicates are averaged, and the ability of the competitor to inhibit the binding of the radioligand is expressed as a percentage of control binding in the absence of any competitor.
  • For competition with [3H]paclitaxel, highly purified tubulin is dissolved in PEM buffer containing 0.75 M glutamate and 25 μM dideoxy-GTP; final protein concentration is 0.25 to 0.35 mg/mL (2.5 to 3.5 μM). These conditions foster the rapid formation of short, stable microtubule polymers (Hamel, E., del Campo, A. A., and Lin, C. M. Stability of tubulin polymers formed with dideoxyguanosine nucleotides in the presence and absence of microtubule-associated proteins. J. Biol. Chem., 259: 2501-2508,1984). This solution is incubated for 30 min at 370 to allow microtubules to form. Then [3H]paclitaxel (final concentration of 2.1 μM, 1.2 Ci/mmol) and competitor (final concentration of 20 μM, except 5 μM for unlabeled paclitaxel) are added to aliquots of the polymerized tubulin solution and incubation at 37° is continued for another 30 min. Controls include samples without competitor, and samples with unlabeled vincristine, colchicine, or paclitaxel. The reactions are then centrifuged at top speed in an Eppendorf 5415C microfuge for 20 min at room temperature in order to pellet the microtubule protein. Triplicate aliquots of each supernatant are mixed with scintillation fluid and counted in a liquid scintillation spectrometer. From the amount of radioactivity in the supernatants and the measured total starting radioactivity, the amount of [3H]paclitaxel bound to pelleted microtubule protein is calculated. The ability of each competitor to inhibit radioligand binding to pelleted protein is expressed as a percent of controls without any competitor.
  • 6. Antitumor Activity in Athymic Mice Bearing Human Tumor Xenografts Standard Pharmacological Test Procedure
  • The ability of compounds of this invention to inhibit tumor growth in animals is studied in the athymic mouse xenograft standard pharmacological test. Female nu/nu mice in an outbred albino background are obtained from Charles River Laboratories (Wilmington, Mass.). Animals are injected subcutaneously on the flank with the desired tumor cell suspension. Several days later, mice with tumors of approximately 100 mm3 are selected from those injected (staged) and randomly distributed into groups of 5-10. The day of staging is called day 0. Compounds of the invention, formulated in saline, are administered to animals by intravenous injection or oral gavage on various schedules starting on day 0 or 1, as noted in the tables. The control group in each experiment is dosed with vehicle on the same schedule. Tumor size is measured every 3-7 days with calipers in two orthogonal dimensions, and tumor volume is calculated from the formula volume=[(length×width2)/2].
  • Tumor/Control (T/C) is obtained by dividing the mean tumor volume of the treated group by the mean tumor volume of the control group on each measurement day. A treatment dose is defined as active if it produces a statistically significant T/C of 0.50 or less. A p value ≦0.05, determined by one-side Student's t-test, is required for statistical significance. A treatment dose is defined as toxic if more than 30% of the animals die from a compound-related toxicity.
  • Results
  • 1. Cytotoxicity Standard Pharmacological Test Procedure
  • 1.1. With COLO 205 Cells
  • COLO 205 is a human colon carcinoma cell line that is used for comparative testing of the examples of this invention and several reference compounds. This line is sensitive to paclitaxel and vincristine. As shown in Table 1, for example, Example 32a has an IC50 value of 2.4 nM, comparable to those of paclitaxel and vincristine.
    TABLE 1
    Activity of Representative Examples of the Invention and Reference
    Compounds in the MTS Cytotoxicity Standard Pharmacological
    Test Procedure with COLO 205 Cells1
    Example or
    Reference
    Compound Salt IC50 (nM) SD n
     1 214 41 9
     2 304 153 2
     3 51 2 3
     4 84 11 5
     5 265 1
     6 7050 1
     7 3930 373 2
     8 39 8 5
     9 29 6 4
    10 250 23 2
    11 4680 251 2
    12 119 4 2
    13 3465 1
    14 232 1
    15 3030 111 3
    16 53 5 5
    17 19 6 4
    18 7080 1
    19 52 12 8
    20a TFA salt 56 3 2
    21 36 10 4
    22 532 1
    23 229 1
    24 6.9 2.2 5
    24a HCl salt 8.9 0.7 4
    25 22 5 9
    25a HCl salt 18 3 4
    26 49 1
    27 128 47 3
    28 32 14 3
    29a HCl salt 5.2 1.3 4
    30 7.4 1
    31 682 232 2
    32a HCl salt 2.4 0.3 10
    33a TFA salt 8.2 0.6 2
    34 77 22 2
    35 7027 1
    36 109 1
    37 132 24 2
    38 23 1
    Paclitaxel 3.3 1.0 20
    Vincristine 2.6 0.5 7

    1IC50 values and standard deviations are from the indicated number of independent experiments
  • 1.2 With KB, KB-8-5, and KB-V1 Cells
  • The KB lines express different amounts of the P-glycoprotein (MDR1) membrane pump which produces resistance to the action of many cytotoxic compounds, including paclitaxel and vincristine. The parental KB line expresses no P-glycoprotein, HB-8-5 expresses moderate levels of the protein, and KB-V1 expresses very high levels. The ability of P-glycoprotein to recognize and export a potential cytotoxic agent can be inferred from the change in IC50 values on these lines (Loganzo, F., Discafani, C. M., Annable, T., Beyer, C., Musto, S., Hari, M., Tan, X., Hardy, C., Hernandez, R., Baxter, M., Singanallore, T., Khafizova, G., Poruchynsky, M. S., Fojo, T., Nieman, J. A., Ayral-Kaloustian, S., Zask, A., Andersen, R. J., and Greenberger, L. M. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res., 63: 1838-1845, 2003). If a compound is recognized by P-glycoprotein, its IC50 value will increase substantially (several hundred-fold) on going from KB to KB-8-5 to KB-V1; if a compound is not recognized, it will have similar IC50 values (3-fold or less difference) on all three lines. For example, as shown in Table 2, KB-8-5 cells are moderately resistant to paclitaxel (11-fold), vincristine (26-fold), colchicine (4.7-fold) and doxorubicin (6.8-fold). In contrast, several representative examples of this invention (Nos. 19, 20a, 21, 25a, 30, and 33a) show less than a 3-fold change in IC50 values.
  • Even slight interactions of compounds with P-glycoprotein can be determined with the KB-V1 line, which expresses a level of this protein higher than is typically found in clinical samples from a variety of tumors (Goldstein, L. J., Galski, H., Fojo, T., Willingham, M., Lai, S. L., Gazdar, A., Pirker, R., Green, A., Crist, W., Brodeur, G. M., Lieber, M., Cossman, J., Gottesman, M. M., and Pastan, I. Expression of a multidrug resistance gene in human cells. J. Natl. Cancer Inst. (Bethesda), 81: 116-124,1989). As also shown in Table 2, KB-V1 cells are highly resistant to paclitaxel (822-fold), vincristine (925-fold), colchicine (92-fold), and doxorubicin (>79-fold). Two of the compounds of this invention (Nos. 19 and 30) show less than a 3-fold change in IC50 compared to the parental KB line. This indicates that these compounds are not recognized at all by P-glycoprotein and therefore that they completely overcome P-glycoprotein-mediated resistance to cell killing. Other representative examples of the invention (Nos. 20a, 21, 25a, and 33a) show recognition by P-glycoprotein, but much less than that shown by paclitaxel and vincristine.
    TABLE 2
    Activity of Representative Examples of the
    Invention and Reference Compounds in
    the MTS Cytotoxicity Standard
    Pharmacological Test Procedure with KB, KB-8.5 and
    KB-VI Cells
    Example or IC50 (nM)1 Ratio2
    Reference Salt KB KB 8.5 KB VI 8.5/KB VI/KB
    19 63 69 176 1.1 2.8
    20a TFA 26 57 140 2.2 5.5
    21 24 59 82 2.5 3.5
    24a HCl 7.0 24 405 3.5 58
    25a HCl 20 24 99 1.2 4.9
    29a HCl 6.2 21 423 3.4 69
    30 60 68 82 1.1 1.4
    32a HCl 2.4 32 569 14 242
    33a TFA 6.8 7.5 91 1.1 13
    Paclitaxel 2.5 26 2014 11 822
    Vincristine 2.2 58 2036 26 925
    Colchicine 13 61 1195 4.7 92
    Mitoxantrone 132 256 401 1.9 3.0
    Doxorubicin 38 255 >300 6.8 >79

    1IC50 values are means of 2 independent experiments.

    2Ratio = IC50 on KB 8.5 or KB VI cells/IC50 on KB cells. A ratio of about 1 indicates no resistance.
  • 1.3. With HL-60 and HL-60/ADR Cells
  • HL-60/ADR cells overexpress the multidrug resistance protein MRP1 which mediates resistance to some chemotherapeutics (Gottesman, M. M., Fojo, T., and Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer, 2: 48-58, 2002). The IC50 values of representative examples of this invention, as well as reference compounds, on HL-60/ADR are compared to values on the sensitive parental HL-60 line. The results, shown in Table 3, indicate that whereas HL-60/ADR cells show resistance to vincristine (9.6-fold), colchicine (8.7-fold), mitoxantrone (15-fold), and doxorubicin (>75-fold), these cells show no resistance to any of the representative examples. This indicates that the compounds of this invention are not recognized by MRP1 and therefore overcome cellular resistance mediated by this transporter.
    TABLE 3
    Activity of Representative Examples of the Invention and Reference
    Compounds in the MTS Cytotoxicity Standard Pharmacological
    Test Procedure with HL-60 and HL-60/ADR Cells
    Example or IC50 (nM)1
    Reference Salt HL-60 HL-60/ADR Ratio2
    19 66 60 0.9
    20a TFA 72 68 0.9
    21 58 37 0.6
    24a HCl 6.6 6.3 1.0
    25a HCl 23 21 0.9
    29a HCl 6.9 6.8 1.0
    30 88 71 0.8
    32a HCl 2.6 2.2 0.8
    33a TFA 6.9 6.1 0.9
    Paclitaxel 3.0 3.5 1.2
    Vincristine 2.5 24 9.6
    Colchicine 21 182 8.7
    Mitoxantrone 17 259 15
    Doxorubicin 40 >3000 >75

    1IC50 values are means of 2 independent experiments.

    2Ratio = IC50 on HL-60/ADR cells/IC50 on HL-60 cells. A ratio of about 1 indicates no resistance.
  • 1.4. With S1 and S1-M1 Cells
  • S1-M1 cells overexpress the MXR transporter which mediates resistance to some chemotherapeutics (Gottesman, M. M., Fojo, T., and Bates, S. E. Miltidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer, 2: 48-58, 2002). The IC50 values of representative examples of this invention, as well as reference compounds, on S1-M1 are compared to values on the sensitive parental S1 line. The results, shown in Table 4, indicate that whereas S1-M1 cells show resistance to mitoxantrone (>120-fold) and doxorubicin (47-fold), they show no resistance to any of the examples. This indicates that the compounds of this invention are not recognized by MXR and therefore overcome cellular resistance mediated by this transporter.
    TABLE 4
    Activity of Representative Examples of the Invention and Reference
    Compounds in the MTS Cytotoxicity Standard Pharmacological
    Test Procedure with S1 and S1-M1 Cells
    Example or IC50 (nM)1
    Reference Salt S1 S1-M1 Ratio2
    19 88 88 1.0
    20a TFA 95 82 0.9
    21 66 76 1.2
    24a HCl 20 53 2.7
    25a HCl 27 36 1.3
    29a HCl 7.9 21 2.7
    30 138 201 1.5
    32a HCl 9.9 8.7 0.9
    33a TFA 8.5 12 1.4
    Paclitaxel 4.2 2.7 0.6
    Vincristine 14 7.9 0.6
    Colchicine 37 109 2.9
    Mitoxantrone 25 >3000 >120
    Doxorubicin 61 2875 47

    1IC50 values are means of 2 independent experiments.

    2Ratio = IC50 on S1-M1 cells/IC50 on S1 cells. A ratio of about 1 indicates no resistance.

    2. Effects of Compounds on Polymerization of MAP-Rich Tubulin in Vitro
  • In this assay, control reactions with MAP-rich tubulin show an S-shaped absorbance profile characterized by three phases: first, a lag phase during which no change in absorbance occurs; second, a polymerization phase in which absorbance increases; and third, a plateau phase in which absorbance reaches a maximum and little or no further change occurs. Polymerization enhancers such as paclitaxel and docetaxel shorten or eliminate the lag phase, increase the rate of the polymerization phase, and often increase the height of the plateau. Polymerization inhibitors such as vincristine and colchicine reduce or prevent the absorbance increase. Representative compounds of this invention have a taxane-like effect on the polymerization reaction. This is expressed quantitatively in Table 5 by dividing the mean A340 of each sample at 20 min by the mean A340 of the control at 20 min to give a fold enhancement over control. Paclitaxel shows an enhancement factor of 2.4, and docetaxel shows a factor of 8.6. Most examples of this invention have factors ranging from 2.3 to 6.1 while Example 33a, has a value of 0.5. In contrast, vincristine and colchicine give enhancement factors of 0.2 and 0.5, respectively, because they inhibit polymerization of MAP-rich tubulin.
    TABLE 5
    Activity of Representative Examples of the Invention and Reference
    Compounds in the Tubulin Polymerization Standard Pharmacological
    Test Procedure with MAP-rich Tubulin
    Example or
    Reference A340 Compound
    Compound Salt A340 Control
    21 6.1
    24a HCl 2.3
    29a HCl 2.4
    32a HCl 2.3
    33a TFA 0.5
    Paclitaxel 2.4
    Docetaxel 8.6
    Vincristine 0.2
    Colchicine 0.5
    Control 1.0

    3. Binding of Compounds to Tubulin
  • The site on highly purified bovine brain tubulin to which compounds of this invention bind is determined by competitive inhibition studies with the radioactive ligands [3H]vinblastine, [3H]colchicine, and [3H]paclitaxel. The results, shown in Table 6, indicate that all of the tested compounds inhibit the binding of [3H]vinblastine to tubulin heterodimer (12-30% of control), but do not inhibit binding of [3H]colchicine to tubulin heterodimer or of [3H]paclitaxel to microtubules. This is strong evidence that these compounds bind at the vinca/peptide site of tubulin and not at the colchicine or taxane sites. Among the control compounds tested, vincristine inhibits [3H]vinblastine binding but not [3H]colchicine, and colchicine inhibits [3H]colchicine binding but not [3H]vinblastine. Vincristine and colchicine also appear to inhibit the binding of [3H]paclitaxel to microtubules; however, this is not due to binding competition but rather to depolymerization of the microtubules to which [3H]paclitaxel binds. Example 19 of this invention does not reduce [3H]paclitaxel binding to microtubules, which indicates that it neither competes with [3H]paclitaxel for binding nor depolymerizes the microtubules to which [3H]paclitaxel binds.
    TABLE 6
    Activity of Representative Examples of the
    Invention and Reference Compounds in
    the Competitive Binding Standard
    Pharmacological Test Procedure1
    Radioactive Ligand
    [3H]Vinblastine [3H]Colchicine [3H]Paclitaxel
    Competitor Mean2 SD2 Mean2 SD2 Mean3 SD3
    Control 100 100 100
    Example 1 30 1.8 47 3.1
    Example 19 22 4.7 116 4.6 103 3.1
    Example 21 12 1.8 105 6.3
    Vincristine 5 1.0 99 7.9 22 0.9
    Colchicine 125 12.6 6 1.9 19 0.2
    Paclitaxel 92 7.8 93 12.3 35 1.6

    1Results are expressed as percent of binding to control without competitor.

    2Data are from 1 (4 replicates) or 2 (8 replicates) independent experiments.

    3Data are from 1 to 4 independent experiments (3 to 12 replicates).

    4. In Vivo Anti-Tumor Activity of Compounds
  • Several experiments with human tumor xenografts in athymic mice are done to evaluate the ability of compounds of this invention to inhibit tumor growth in vivo. Table 7 shows results for example 21a with mice bearing H157 non-small cell lung carcinoma (NSCLC). The compound inhibits tumor growth when dosed intravenously at 5 mg/kg/dose on days 1 and 8.
  • Example 24a inhibits the growth of U87-MG glioblastoma xenografts when dosed intravenously on day 1 with 5 mg/kg, although some compound toxicity is also observed (Table 8). This example also inhibits the growth of H157 NSCLC xenografts when dosed orally on days 1 and 7 with 5 or 1 mg/kg/dose (Table 9).
  • Example 25a inhibits the growth of H157 NSCLC xenografts when dosed intravenously on day 0 with 10, 5, or 2.5 mg/kg (Table 10) although some compound toxicity is observed at the highest dose.
  • Example 29a inhibits the growth of H157 NSCLC xenografts when dosed intravenously on day 0 with 2.5 mg/kg, and when dosed orally on day 0 with 5 mg/kg (Table 11).
  • Example 32a inhibits the growth of H157 NSCLC xenografts as shown in Table 12 when given intravenously on days 0 and 7 at 3 or 1.5 mg/kg/dose. Examples 24a and 29a are also tested against the highly resistant DLD1 colon carcinoma xenograft, which is resistant to paclitaxel and vinblastine because of high expression of the drug transporter P-glycoprotein. Example 24a inhibits the growth of this tumor when given orally on days 1 and 7 at 10 mg/kg/dose, (Table 13).
    TABLE 7
    In Vivo Activity of Example 21a in the
    Human Tumor Xenograft Standard
    Pharmacological Test Procedure with
    Mice Bearing H157 Human Non-Small Cell
    Lung Carcinoma
    Dose
    Schedule (mg/ T/C on day
    Compound (days) Route kg) 0 4 7 11
    Example 1, 8 IV 10 1.01 0.87 0.73 0.73
    21a, HCl salt 5 0.99 0.49* 0.44** 0.38**
    1 0.97 0.76 0.70 0.67

    *= p < 0.05

    **= p < 0.01

    Vehicle was normal saline
  • TABLE 8
    In Vivo Activity of Example 24a in the
    Human Tumor Xenograft Standard
    Pharmacological Test Procedure with
    Mice Bearing U87-MG Human Glioblastoma
    Dose
    Com- Schedule (mg/ T/C on day
    pound (days) Route kg) 0 3 7 10
    Example 1 IV 10 1.04 0.31** Toxic
    24a,
    HCl salt 5 1.04 0.41** 0.21** 0.17**
    1 1.03 0.71* 0.75 0.86

    *= p < 0.05

    **= p < 0.01

    Vehicle was normal saline

    Note:

    3 out of 10 animals in the group dosed at 5 mg/kg died from compound toxicity
  • TABLE 9
    In Vivo Activity of Example 24a in the
    Human Tumor Xenograft Standard
    Pharmacological Test Procedure with
    Mice Bearing H157 Human Non-Small Cell
    Lung Carcinoma
    Schedule Dose T/C on day
    Compound (days) Route (mg/kg) 0 4 7 10 13
    Example 24a, 1, 7 PO 5 0.98 0.64** 0.51** 0.16** 0.12**
    HCl salt 1 0.96 0.73* 0.70 0.58 0.50*

    *= p < 0.05

    **= p < 0.01

    Vehicle was normal saline
  • TABLE 10
    In Vivo Activity of Example 25a in the
    Human Tumor Xenograft Standard
    Pharmacological Test Procedure with
    Mice Bearing H157 Human Non-Small Cell
    Lung Carcinoma
    Schedule Dose T/C on day
    Compound (days) Route (mg/kg) 0 3 7 10 13
    Example 25a, 0 IV 10 1.01 0.49** 0.36** 0.22** 0.12**
    HCl salt 5 1.02 0.69* 0.44** 0.29** 0.23**
    2.5 1.05 0.84 0.51* 0.48* 0.43*

    *= p < 0.05

    **= p < 0.01

    Vehicle was normal saline

    Note:

    1 out of 10 animals in the group dosed at 10 mg/kg died from compound toxicity
  • TABLE 11
    In Vivo Activity of Example 29a in the
    Human Tumor Xenograft Standard
    Pharmacological Test Procedure with
    Mice Bearing H157 Human Non-Small Cell
    Lung Carcinoma
    Schedule Dose T/C on day
    Compound (days) Route (mg/kg) 0 2 7 9 14
    Example 29a, 0 IV 5 1.03 0.34** Toxic
    HCl salt 2.5 0.99 0.51** 0.55** 0.32** 0.27**
    1.25 1.01 0.59** 0.72 0.67 0.68
    0 PO 5 1.02 0.43** 0.37** 0.33** 0.25**

    *= p < 0.05

    **= p < 0.01

    Vehicle was normal saline
  • TABLE 12
    In Vivo Activity of Example 32a in the
    Human Tumor Xenograft Standard
    Pharmacological Test Procedure with
    Mice Bearing H157 Human Non-Small Cell
    Lung Carcinoma
    Com- Schedule Dose T/C on day
    pound (days) Route (mg/kg) 0 4 7 13
    Example 0, 7 IV 3 0.95 0.72 0.46** 0.10**
    32a,
    HCl salt 1.5 0.95 0.89 0.63* 0.48*

    *= p < 0.05

    **= p < 0.01

    Vehicle was normal saline
  • TABLE 13
    In Vivo Activity of Examples 24a and 29a in the
    Human Tumor Xenograft Standard
    Pharmacological Test Procedure with
    Mice Bearing DLD1 Human Colon Carcinoma
    Schedule Dose T/C on day
    Compound (days) Route (mg/kg) 0 7 14
    Example 1, 7 PO 10 1.0 0.82 0.28**
    24a, HCl 5 1.0 1.07 0.85
    salt 2.5 1.0 0.87 0.80
    Example 1, 7 IV 10 1.0 Toxic
    24a, HCl 5 1.0 0.24** Toxic
    salt 2.5 1.0 1.14 0.91
    Example 1, 7 PO 5 1.0 0.79 0.59*
    29a, HCl 2.5 1.0 1.33 1.10
    salt 1 1.0 1.40 1.02
    Example 1, 7 IV 5 1.0 0.22** Toxic
    29a, HCl 2.5 1.0 0.66* 0.62*
    salt 1 1.0 0.63* 0.71*

    *= p < 0.05

    **= p < 0.01

    Vehicle was normal saline

    Note:

    1 out of 5 animals in the group dosed orally with Example 24a at 10 mg/kg died from compound toxicity
  • Compounds of this invention show potent cytotoxic activity against multiple human cancer cell lines in culture, including lines that are resistant to paclitaxel and vincristine because of drug transporter overexpression. The compounds enhance the initial rate of MAP-rich tubulin polymerization, in a manner reminiscent of taxanes and distinct from the inhibitory effects of depolymerizers such as vinca alkaloids and colchicine, despite the fact that they bind to the vinca/peptide site of tubulin. Representative compounds inhibit the growth of human tumor xenografts in athymic mice by both intravenous and oral dosing, including a tumor resistant to paclitaxel and vinblastine because of P-glycoprotein overexpression.
  • The following reference examples are useful for the preparation of the representative non-limiting examples of compounds of this invention which are useful as promoters of microtubule polymerization and as anticancer agents.
  • REFERENCE EXAMPLE 1 (1S)-2,2,2-Trifluoro-1-methylethylamine Hydrogen Chloride
  • The product (1S)-2,2,2-trifluoro-1-methylethylamine hydrogen chloride is prepared according to the conditions disclosed in U.S. Pat. No. 5,986,135 and U.S. Pat. No. 6,204,269.
  • REFERENCE EXAMPLE 2 5,7-Dichloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine
  • The product, 5,7-dichloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine is prepared according to the conditions disclosed in U.S. Pat. No. 6,117,876 and U.S. Pat. No. 6,297,251.
  • REFERENCE EXAMPLE 3 Diethyl 2-(2,4,6-trifluorophenyl)malonate
  • The product diethyl 2-(2,4,6-trifluorophenyl)malonate is prepared according to the conditions disclosed in U.S. Pat. No. 6,156,925.
  • REFERENCE EXAMPLE 4 3-(Methylamino)propan-1-ol
  • The product 3-(methylamino)propan-1-ol is prepared according to the conditions disclosed in J. Org. Chem. 44, 2718 (1979).
  • REFERENCE EXAMPLE 5 5-Nitropyridine-2-carbonitrile
  • The product, 5-nitropyridine-2-carbonitrile is prepared according to the conditions described in J. Med. Chem. 37, 18 (1994).
  • EXAMPLE 1 4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl(methyl)cyanamide
  • Figure US20050075357A1-20050407-C00068
  • Step A: 5-Chloro-6-(2,4,6-trifluorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine
  • A mixture of 5,7-dichloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine (3.19 g, 10 mmol), 2,2,2-trifluoroethylamine (3.0 g, 30 mmol), and triethylamine (3.0 g, 30 mmol) in 30 mL of N,N-dimethylformamide is stirred at room temperature under nitrogen atmosphere for 1 h. The reaction mixture is diluted with ethyl acetate. The organic layer is washed with saturated sodium chloride (×3), dried over magnesium sulfate, and concentrated. The residue is filtered through hydrous magnesium silicate. Concentration provides 5-chloro-6-(2,4,6-trifluorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine as a light yellow solid (3.70 g). MS: m/z 381.9 (M+H).
  • Step B: N-[5-Chloro-3-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7(3H)-ylidene]-2,2,2-trifluoroethanamine
  • To a solution of 5-chloro-6-(2,4,6-trifluorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine (300 mg, 0.78 mmol) in 4 mL of dimethylsulfoxide at room temperature is added iodomethane (146 μL, 2.34 mmol) followed by sodium hydride (60% in mineral oil, 31 mg, 0.78 mmol). The mixture is then stirred at room temperature for 18 h, and diluted with ethyl acetate. The organic layer is washed with water and saturated sodium chloride, dried over magnesium sulfate, and concentrated. The residue is chromatographed over silica gel, eluting with 20% ethyl acetate in hexanes. Concentration provides N-[5-chloro-3-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7(3H)-ylidene]-2,2,2-trifluoroethanamine as a white solid (76 mg). MS: m/z 396.0 (M+H).
  • Step C: 4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl(methyl)cyanamide
  • To a solution of N-[5-chloro-3-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7(3H)-ylidene]-2,2,2-trifluoroethanamine (345 mg, 0.87 mmol) in 1 mL of dimethylsulfoxide at room temperature is added sodium hydride (60% in mineral oil, 35 mg, 0.87 mmol). The mixture is then stirred at room temperature for 2 h, and diluted with ethyl acetate. The organic layer is washed with water and saturated sodium chloride, dried over magnesium sulfate, and concentrated. The residue is chromatographed over silica gel, eluting with 10% ethyl acetate in hexanes. Concentration provides 4-chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl(methyl)cyanamide as a white solid (157 mg). MS: m/z 396.1 (M+H).
  • Example 2 is synthesized analogously to Example 1.
  • EXAMPLE 2 4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl]ethylcyanamide; 410.0 (M+H)
  • Figure US20050075357A1-20050407-C00069
  • EXAMPLE 3 6-Chloro-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine;
  • Figure US20050075357A1-20050407-C00070
  • Step A: 2-Pyrazinecarboxamidine Hydrochloride
  • To 20 mL of methyl alcohol is added sodium (109 mg, 4.74 mmol) with stirring. After disappearance of the solid, 2-pyrazinecarbonitrile (5.0 g, 47.6 mmol) is added. The mixture is stirred at room temperature for 6 h, and ammonium chloride (2.8 g, 52.3 mmol) is added. The mixture is then stirred at room temperature for 18 h. Diethyl ether (50 mL) is added to the reaction mixture, and the precipitates are collected by filtration. The solid was washed with diethyl ether (×2) and dried in vacuum oven to give 2-pyrazinecarboxamidine hydrochloride as a white solid (6.5 g). MS: m/z 123.1 (M+H).
  • Alternatively, 2-pyrazinecarboxamidine hydrochloride can be prepared as follows: A solution of 2-pyrazinecarbonitrile (21 g, 200 mmol) in a mixture of 10 mL of methyl alcohol and 120 mL of diethyl ether is treated with hydrogen chloride gas at 0° C. The mixture is then stored at 5° C. for 3 days. The precipitates are collected by filtration and and dried. This solid is then suspended in 100 mL of ethyl alcohol and the mixture is treated with ammonium gas at 0° C. The mixture is then stored at 5° C. for 4 days, and filtered. Concentration of the filtrate gives 2-pyrazinecarboxamidine hydrochloride as a tan solid (2.8 g).
  • Step B: 4,6-Dichloro-2-pyrazin-2-yl-5-(2,4,6-trifluorophenyl)pyrimidine
  • A mixture of diethyl 2-(2,4,6-trifluorophenyl)malonate (U.S. Pat. No. 6,156,925) (870 mg, 3.0 mmol), 2-pyrazinecarboxamidine hydrochloride (500 mg, 3.15 mmol), and 600 mg of tributylamine is stirred under nitrogen atmosphere at 180° C. for 1 h and cooled to room temperature. The mixture is cooled to room temperature and treated with 1.0 N hydrochloric acid. The precipitates are collected by filtration, washed with water and dried to give 2-pyrazin-2-yl-5-(2,4,6-trifluorophenyl)pyrimidine-4,6-diol as a tan solid (401 mg), which is used directly in the next step.
  • A mixture of 2-pyrazin-2-yl-5-(2,4,6-trifluorophenyl)pyrimidine-4,6-diol (401 mg) in 5 mL of phosphorous oxychloride and 1 mL of 2,6-lutidine is heated at 110° C. for 16 h. The excess phosphorous oxychloride is removed in vaccuo, and the resulting residue is dissolved in ethyl acetate. The organic layer is washed with water and saturated sodium chloride, dried over magnesium sulfate, and concentrated. The residue is chromatographed over silica gel, eluting with a gradient of 20% ethyl acetate in hexanes to 33% ethyl acetate in hexanes. Concentration provides 4,6-dichloro-2-pyrazin-2-yl-5-(2,4,6-trifluorophenyl)pyrimidine as a red solid (201 mg). MS: m/z 356.9 (M+H).
  • Step C: 6-Chloro-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine
  • A mixture of 4,6-dichloro-2-pyrazin-2-yl-5-(2,4,6-trifluorophenyl)pyrimidine (205 mg, 0.57 mmol), (1S)-2,2,2-trifluoro-1-methylethylamine hydrogen chloride (298 mg, 2 mmol), and N,N-diisopropylethylamine (258 mg, 2 mmol) in 5 mL of N,N-dimethylformamide is stirred at 90° C. in a sealed tube for 18 h. The reaction mixture is partitioned between ethyl acetate and saturated sodium chloride. The organic layer is washed with saturated sodium chloride (×3), dried over magnesium sulfate, and concentrated. The residue is chromatographed over silica gel, eluting with a gradient of 20% ethyl acetate in hexanes to 50% ethyl acetate in hexanes. Concentration provides 6-chloro-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine as a light yellow solid (111 mg). MS: m/z 434.1 (M+H).
  • Examples 4-14 are synthesized analogously to Example 3.
  • EXAMPLE 4 6-Chloro-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 419.9 (M+H)
  • Figure US20050075357A1-20050407-C00071
  • EXAMPLE 5 6-Chloro-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)-2,2′-bipyrimidin-4-amine; 420.0 (M+H)
  • Figure US20050075357A1-20050407-C00072
  • EXAMPLE 6 6-Chloro-2-pyridin-4-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; (419.0)
  • Figure US20050075357A1-20050407-C00073
  • EXAMPLE 7 6-Chloro-2-pyridin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 419.1 (M+H)
  • Figure US20050075357A1-20050407-C00074
  • EXAMPLE 8 6-Chloro-2-pyridin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 419.0 (M+H)
  • Figure US20050075357A1-20050407-C00075
  • EXAMPLE 9 6-Chloro-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 433.0 (M+H)
  • Figure US20050075357A1-20050407-C00076
  • EXAMPLE 10 6-Chloro-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 469.0 (M+H)
  • Figure US20050075357A1-20050407-C00077
  • EXAMPLE 11 6-Chloro-2-isoquinolin-1-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 469.0 (M+H)
  • Figure US20050075357A1-20050407-C00078
  • EXAMPLE 12 6-Chloro-2-isoquinolin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 469.0 (M+H)
  • Figure US20050075357A1-20050407-C00079
  • EXAMPLE 13 6-Chloro-2-thien-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 424.0 (M+H)
  • Figure US20050075357A1-20050407-C00080
  • EXAMPLE 14 6-Chloro-2-(2-furyl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 408.0 (M+H)
  • Figure US20050075357A1-20050407-C00081
  • EXAMPLE 15 6-Chloro-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine;
  • Figure US20050075357A1-20050407-C00082
  • Step A: 5-(2,4,6-Trifluorophenyl)pyrimidine-2,4,6-triol
  • To a mixture of diethyl 2-(2,4,6-trifluorophenyl)malonate (580 mg, 2.0 mmol, U.S. Pat. No. 6,156,925) and urea (360 mg, 6.0 mmol) in 10 mL of ethyl alcohol at room temperature is added sodium hydride (60% in mineral oil, 160 mg, 4.0 mmol). The mixture is then heated at 80° C. for 3 days, cooled to room temperature, and partitioned between ethyl acetate and 1 N hydrochloric acid. The aqueous layer is extracted with ethyl acetate, and the combined organic extracts are dried over magnesium sulfate, and concentrated. The residue is chromatographed over silica gel, eluting with a gradient of ethyl acetate to 10% methyl alcohol in ethyl acetate. Concentration provides 5-(2,4,6-trifluorophenyl)pyrimidine-2,4,6-triol as a light tan solid (148 mg). MS: m/z 257.0 (M−H).
  • Step B: 4,6-Dichloro-2-(1H-imidazol-1-yl)-5-(2,4,6-trifluorophenyl)pyrimidine
  • A mixture of 5-(2,4,6-trifluorophenyl)pyrimidine-2,4,6-triol (258 mg, 1.0 mmol) in 2.5 mL of phosphorous oxychloride and 0.5 mL of 2,6-lutidine is heated at 110° C. for 16 h. The excess phosphorous oxychloride is removed in vaccuo, and the resulting residue is dissolved in a 1:1 mixture of methylene chloride and hexanes. The organic layer is filtered through hydrous magnesium silicate, and the filtrate is concentrated to provide crude 2,4,6-trichloro-5-(2,4,6-trifluorophenyl)pyrimidine as a dark solid (104 mg).
  • A mixture of the above 2,4,6-trichloro-5-(2,4,6-trifluorophenyl)pyrimidine (104 mg), imidazole (23 mg, 0.33 mmol), and potassium carbonate (92 mg, 0.66 mmol) in 2 mL of N,N-dimethylformamide is stirred at room temperature for 3 h. The mixture is partitioned between ethyl acetate and saturated sodium chloride. The organic layer is washed with saturated sodium chloride (×4), dried over magnesium sulfate, and concentrated. The residue is chromatographed over silica gel, eluting with a gradient of hexanes to 50% ethyl acetate in hexanes. Concentration provides 4,6-dichloro-2-(1H-imidazol-1-yl)-5-(2,4,6-trifluorophenyl)pyrimidine as a tan solid (71 mg, mp 72-74° C.). MS: m/z 345.2 (M+H).
  • Step C: 6-Chloro-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine
  • A solution of 4,6-dichloro-2-(1H-imidazol-1-yl)-5-(2,4,6-trifluorophenyl)pyrimidine (35 mg, 0.10 mmol) and 2,2,2-trifluoroethylamine (50 mg, 0.5 mmol) in 2 mL of N,N-dimethylformamide is stirred at room temperature for 1 h. A saturated sodium chloride solution is added, and the product is extracted with ehtyl acetate. The organic solution is washed with saturated sodium chloride (×4), dried over magnesium sulfate, and concentrated. The residue is chromatographed over silica gel, eluting with a gradient of 20% ethyl acetate in hexanes to 50% ethyl acetate in hexanes. Concentration provides 6-chloro-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine as a light tan solid (36 mg, mp 168-170° C.). MS: m/z 408.2 (M+H).
  • Examples 16-18 are synthesized analogously to Example 15.
  • EXAMPLE 16 6-Chloro-2-(1H-pyrazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 407.9 (M+H)
  • Figure US20050075357A1-20050407-C00083
  • EXAMPLE 17 6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 422.0 (M+H)
  • Figure US20050075357A1-20050407-C00084
  • EXAMPLE 18 6-Chloro-2-(1H-pyrrol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 407.1 (M+H)
  • Figure US20050075357A1-20050407-C00085
  • EXAMPLE 19 4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide;
  • Figure US20050075357A1-20050407-C00086
  • To a stirred mixture of sodium hydride (60% in mineral oil, 12 mg, 0.30 mmol) in 2 mL of dimethylsulfoxide is added 3-dimethylamino-1-propanol (27 μL, 0.23 mmol). The mixture is then stirred at room temperature for 1 h. 4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl(methyl)cyanamide (60 mg, 0.152 mmol) is then added, and the reaction mixture is heated at 60° C. for 4 h, and diluted with ethyl acetate. The organic layer is washed with water and saturated sodium chloride, dried over magnesium sulfate, and concentrated. The residue is chromatographed over silica gel, eluting with a gradient of ethyl acetate to 50% methyl alcohol in ethyl acetate to methyl alcohol. Concentration provides 4-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide as a light yellow semisolid solid (20 mg). MS: m/z 479.3(M+H).
  • EXAMPLE 19a 4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide hydrogen chloride
  • 4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide (165 mg) is dissolved in methylene chloride and filtered. To the filtrate is bubbled hydrogen chloride gas. Concentration provides hydrogen chloride salt as a red solid (170 mg).
  • EXAMPLE 20 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N2-methyl-N4-(2,2,2-trifluoroethyl)pyrimidine-2,4-diamine;
  • Figure US20050075357A1-20050407-C00087
  • EXAMPLE 20a 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N2-methyl-N4-(2,2,2-trifluoroethyl)pyrimidine-2,4-diamine trifluoroacetic acid salt EXAMPLE 19b 4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide trifluoroacetic acid salt
  • To a stirred mixture of sodium hydride (60% in mineral oil, 308 mg, 7.7 mmol) in 10 mL of dimethylsulfoxide is added 3-dimethylamino-1-propanol (0.91 mL, 7.7 mmol). The mixture is then stirred at room temperature for 1 h. 4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl(methyl)cyanamide (762 mg, 1.93 mmol) is then added, and the reaction mixture is heated at 90° C. for 1 h, and diluted with ethyl acetate. The organic layer is washed with water and saturated sodium chloride, dried over magnesium sulfate, and concentrated. The residue is chromatographed over silica gel, eluting with a gradient of ethyl acetate to 50% methyl alcohol in ethyl acetate to methyl alcohol. Concentration provides a light yellow solid, which is further purified by HPLC to yield 6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N2-methyl-N4-(2,2,2-trifluoroethyl)pyrimidine-2,4-diamine trifluoroacetic acid salt as a white solid (8 mg), MS: m/z 454.3(M+H) and 4-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide trifluoroacetic acid salt as a white solid (50 mg), MS: m/z 479.3(M+H).
  • Examples 21-23 are synthesized analogously to Example 19.
  • EXAMPLE 21 (4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1S)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide; 493.2 (M+H)
  • Figure US20050075357A1-20050407-C00088
  • EXAMPLE 21a (4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1S)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide Hydrochloride; 493.2 (M+H) EXAMPLE 22 4-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide; 465.2 (M+H)
  • Figure US20050075357A1-20050407-C00089
  • EXAMPLE 23 {4-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl}methylcyanamide; 493.2 (M+H)
  • Figure US20050075357A1-20050407-C00090
  • EXAMPLE 24 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine;
  • Figure US20050075357A1-20050407-C00091
  • To a solution of 6-chloro-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine (251 mg, 0.58 mmol) and 3-(methylamino)propan-1-ol (267 mg, 3.0 mmol) in 3 mL of dimethylsulfoxide at room temperature is added sodium hydride (60% in mineral oil, 120 mg, 3.0 mmol). The mixture is stirred at 60° C. for 2 h, cooled to room temperature, and partitioned between ethyl acetate and saturated sodium chloride. The organic layer is washed with saturated sodium chloride (×3), dried over magnesium sulfate, and concentrated. The residue is chromatographed over silica gel, eluting with a gradient of ethyl acetate to 50% methyl alcohol in ethyl acetate. Concentration provides 6-chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine as a light tan solid (181 mg, mp 48-50° C.). MS: m/z 503.1 (M+H).
  • EXAMPLE 24a 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine Hygrogen Chloride
  • The product thus obtained is dissolved in methylene chloride and filtered. To the filtrate is bubbled hydrogen chloride gas. Concentration provides hydrogen chloride salt as a red solid (210 mg).
  • Examples 25-30 are synthesized analogously to Example 24.
  • EXAMPLE 25 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine; 503.0 (M+H)
  • Figure US20050075357A1-20050407-C00092
  • EXAMPLE 25a 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine Hygrogen Chloride; 503.0 (M+H) EXAMPLE 26 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)-2,2′-bipyrimidin-4-amine; 503.1 (M+H)
  • Figure US20050075357A1-20050407-C00093
  • EXAMPLE 27 6-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine; 489.2 (M+H)
  • Figure US20050075357A1-20050407-C00094
  • EXAMPLE 28 6-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine; 517.2 (M+H)
  • Figure US20050075357A1-20050407-C00095
  • EXAMPLE 29 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine; 502.1 (M+H)
  • Figure US20050075357A1-20050407-C00096
  • EXAMPLE 29a 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine Hydrogen Chloride EXAMPLE 30 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine; 552.1 (M+H)
  • Figure US20050075357A1-20050407-C00097
  • EXAMPLE 31 6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine
  • Figure US20050075357A1-20050407-C00098
  • To a solution of 6-chloro-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine (20 mg, 0.05 mmol) and 3-dimethylamino-1-propanol (103 mg, 1.0 mmol) in 3 mL of dimethylsulfoxide at room temperature is added sodium hydride (60% in mineral oil, 40 mg, 1.0 mmol). The mixture is stirred at 60° C. for 2 h, cooled to room temperature, and partitioned between ethyl acetate and saturated sodium chloride. The organic layer is washed with saturated sodium chloride (×3), dried over magnesium sulfate, and concentrated. The residue is chromatographed over silica gel, eluting with a gradient of ethyl acetate to 50% methyl alcohol in ethyl acetate. Concentration provides 6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine as a light tan solid (16 mg, mp 47-49° C.). MS: m/z 491.1 (M+H).
  • Example 32 is synthesized analogously to Example 24 and 31.
  • EXAMPLE 32 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine; 491.0 (M+H)
  • Figure US20050075357A1-20050407-C00099
  • EXAMPLE 32a 6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine Hydrogen Chloride; 491.0 (M+H) EXAMPLE 33 N-{3-[4-(4-Chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}-N-methylamine;
  • Figure US20050075357A1-20050407-C00100
  • EXAMPLE 33a N-{3-[4-(4-Chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}-N-methylamine Trifluoroacetic Acide Salt; Step A: Ethyl 3-cycloheptyl-3-oxo-2-(2,4,6-trifluorophenyl)propanoate
  • A mixture of 2,4,6-trifluorophenylacetic acid (570 mg, 3.0 mmol), iodoethane (1.56 g, 10 mmol), and potassium carbonate (1.38 g, 10 mmol) in 5 mL of dimethylsulfoxide is stirred at 50° C. for 3 h, and cooled to room temperature. The mixture is partitioned between diethyl ether and water. The organic layer is washed with water, and saturated sodium chloride, dried over magnesium sulfate, and filtered through hydrous magnesium silicate. The filtrate is concentrated to give ethyl 2,4,6-trifluorophenylacetate as a light yellow oil (581 mg, 2.66 mmol).
  • A mixture of cycloheptanecarboxylic acid (5.0 g, 35.2 mmol) in 25 mL of thionyl chloride is refluxed for 1 h, and concentrated. The crude cycloheptanecarboxylic acid chloride thus obtained is used directly in the next step.
  • A solution of ethyl 2,4,6-trifluorophenylacetate (436 mg, 2.0 mmol) in 3 mL of tetrahydrofuran is cooled to −78° C., and lithium diisopropylamide (2.0 M in heptane/tetrahydrofuran/ethylbenzene, 1.0 mL, 2.0 mmol) is added dropwise with stirring. The mixture is stirred at −78° C. for 1 h, and cycloheptanecarboxylic acid chloride (321 mg, 2.0 mmol) is added dropwise. The mixture is warmed to room temperature and acidified with 2 mL of 1.0 N hydrochloric acid. The product is extracted with ethyl acetate. The organic layer is washed with saturated sodium chloride, dried over magnesium sulfate, and concentrated. The residue is chromatographed over silica gel, eluting with a gradient of hexanes to 10% ethyl acetate in hexanes. Concentration provides ethyl 3-cycloheptyl-3-oxo-2-(2,4,6-trifluorophenyl)propanoate as a colorless oil (410 mg). MS: m/z 341.2 (M−H).
  • Step B: 6-Cycloheptyl-2-pyrazin-2-yl-5-(2,4,6-trifluorophenyl)pyrimidin-4-ol
  • A mixture of ethyl 3-cycloheptyl-3-oxo-2-(2,4,6-trifluorophenyl)propanoate (649 mg, 1.9 mmol) and 2-pyrazinecarboxamidine hydrochloride (452 mg, 2.85 mmol) in 1.5 mL of tributylamine is stirred under nitrogen atmosphere at 160° C. for 4 h. The mixture is cooled to room temperature and the excess of tributylamine is decanted off. The residue is washed with hexanes and chromatographed over silica gel, eluting with 10% methanol in ethyl acetate. Concentration provides 6-cycloheptyl-2-pyrazin-2-yl-5-(2,4,6-trifluorophenyl)pyrimidin-4-ol as a light yelllow solid. MS: m/z 401.2 (M+H).
  • Step C: Tert-Butyl {3-[4-(4-cycloheptyl-6-hydroxy-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}methylcarbamate
  • To a mixture of sodium hydride (60% in mineral oil, 102 mg, 2.55 mmol) in 4 mL of dimethylsulfoxide at room temperature is added 3-(methylamino)propan-1-ol (224 mg, 2.51 mmol). The mixture is stirred at room temperature for 1 h, and 6-cycloheptyl-2-pyrazin-2-yl-5-(2,4,6-trifluorophenyl)pyrimidin-4-ol (336 mg, 0.84 mmol) is added. The mixture is stirred at 60° C. for 14 h, and cooled to room temperature. Di-tert-butyl dicarbonate (550 mg, 2.5 mmol) is added, and the mixture is stirred at room temperature for 16 h. The mixture is diluted with ethyl acetate. The organic layer is washed with water and saturated sodium chloride, dried over magnesium sulfate, and concentrated. The residue is chromatographed over silica gel, eluting with 10% methanol in ethyl acetate. Concentration provides tert-butyl {3-[4-(4-cycloheptyl-6-hydroxy-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}methylcarbamate as a light yellow solid (320 mg). MS: m/z 570.3 (M+H).
  • Step D: N-{3-[4-(4-Chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}-N-methylamine
  • To tert-butyl {3-[4-(4-cycloheptyl-6-hydroxy-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}methylcarbamate (130 mg, 0.23 mmol) is added 2.0 mL of phosphorous oxychloride and 1.0 mL of 2,6-lutidine, and the mixture is heated at 110° C. for 12 h. The excess phosphorous oxychloride is removed in vaccuo, and the resulting residue is chromatographed over silica gel, eluting with 30% ethyl acetate in hexanes. Concentration provides tert-butyl {3-[4-(6-chloro-4-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}methylcarbamate as a light yellow semi-solid (23 mg). MS: m/z 588.0 (M+H). This product is dissolved in 2 mL of methylene chloride, and 2.3 mL of trifluoroacetic acid is added. The mixture is stirred at 40° C. for 20 h, and concentrated in vaccuo, yielding N-{3-[4-(4-chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}-N-methylamine as a trifluoroacetic acid salt as a light yellow semi-solid (24 mg). MS: m/z 488.2 (M+H).
  • Examples 34-37 are synthesized analogously to Example 3.
  • EXAMPLE 34 6-Chloro-2-(1-methyl-1H-imidazol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 422.0 (M+H)
  • Figure US20050075357A1-20050407-C00101
  • Step A: 1-Methyl-2-imidazole Carbonitrile
  • 1-Methyl-2-imidazole carboxaldehyde (1.7 g, 15.4 mmol) is stirred in 10 mL of methyl alcohol. N,N-Dimethylhydrazine (1.4 g, 23.3 mmol) is then added. The mixture is stirred for 5 h, and the resulting hydrazone solution is added dropwise into a solution of magnesium monoperoxyphtalate hexahydrate (23.9 g, 80%, 38.6 mmol) in 20 mL of methyl alcohol at 0° C. The resulting reaction mixture is allowed to warm to room temperature overnight and concentrated. The residue is diluted with water, then extracted with methylene chloride (×3). The combined organic is washed with saturated sodium chloride, dried over magnesium sulfate and concentrated. The residue is chromatographed, eluting with 40% ethyl acetate in hexanes to give 1-methyl-2-imidazole carbonitrile as a yellow oil.
  • Step B: 1-Methyl-2-imidazole Carboxamidine Hydrochloride
  • To 10 mL of methyl alcohol in a sealed tube is added sodium hydride (440 mg, 11 mmol) with stirring. 1-Methyl-2-imidazole carbonitrile (1.18 g, 11 mmol) is added. The mixture is stirred at room temperature for 20 h, and ammonium chloride (588 mg, 11 mmol) is added. The bottle is then sealed and stirred at 80° C. for 8 h, and cooled to room temperature. The mixture is filtered, and the filtrate is concentrated. The residue is treated with 1% methyl alcohol in diethyl ether, and the precipitates are collected by filtration and dried to give 1-methyl-2-imidazole carboxamidine hydrochloride as a gray solid (1.6 g). MS: m/z 125.2 (M+H).
  • EXAMPLE 35 6-Chloro-2-(1H-pyrrol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 407.0 (M+H)
  • Figure US20050075357A1-20050407-C00102
  • EXAMPLE 36 6-Chloro-2-(4-methylpyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 433.0 (M+H)
  • Figure US20050075357A1-20050407-C00103
  • EXAMPLE 37 6-Chloro-2-(5-nitropyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine; 464.0 (M+H)
  • Figure US20050075357A1-20050407-C00104
  • EXAMPLE 38 2-(5-Azidopyridin-2-yl)-6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine;
  • Figure US20050075357A1-20050407-C00105
  • Step A: 2-(5-Aminopyridin-2-yl)-6-chloro-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine
  • A mixture of 6-chloro-2-(5-nitropyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine (101 mg, 0.22 mmol) and Iron powder (256 mg, 4.58 mmol) in 2 mL of methyl alcohol and 1 mL of acetic acid is heated at 100° C. for 1 h. The reaction mixture is cooled to room temperature and diluted with ethyl acetate. The organic layer is washed with saturated sodium bicarbonate and then with saturated sodium chloride, dried over magnesium sulfate, filtered, concentrated and dried under reduced pressure to yield 2-(5-aminopyridin-2-yl)-6-chloro-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine as a light yellow oil (100 mg). MS: m/z 434.2 (M+H). This product is used in the next step with out further purification.
  • Sep B: 2-(5-Aminopyridin-2-yl)-6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine
  • To a mixture of sodium hydride (33.6 mg, 0.84 mmol) in 2 mL of dimethylsulfide is added N,N-Dimethylaminopropan-1-ol (99 μL, 0.84 mmol) slowly. After 30 minutes, 2-(5-aminopyridin-2-yl)-6-chloro-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine (100 mg, from Step A) is added and the resulting reaction mixture is heated at 60° C. for 4 h. The reaction mixture is cooled to room temperature, and diluted with ethyl acetate. The organic layer is washed with water and then with saturated sodium chloride solution, dried over magnesium sulfate, filtered, concentrated and dried under reduced pressure to yield 2-(5-aminopyridin-2-yl)-6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine as a yellow semi-solid (60 mg). MS: m/z 517.3 (M+H). This product was used in the next step without further purification.

Claims (92)

1. A compound of Formula (I)
Figure US20050075357A1-20050407-C00106
wherein:
Z is selected from:
Figure US20050075357A1-20050407-C00107
and C6-C8 cycloalkyl;
R is a moiety
Figure US20050075357A1-20050407-C00108
n is an integer of 2, 3, or 4;
L1 and L2, are each independently H, F, Cl or Br;
L3 and L4 are H;
X is Cl or Br;
Y is O, S, or —NR2;
Q is OH or —NR3R4;
R1 is H or C1-C3 alkyl;
R2 is H or C1-C3 alkyl;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R5 is CF3 or C2F5;
W′ is —NHR5, —N(CN)R6, aryl of 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups; or heteroaryl of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
or a pharmaceutically acceptable salt thereof.
2. A compound according to claim 1, wherein Formula (I) is represented by formula (Ia)
Figure US20050075357A1-20050407-C00109
or pharmaceutically acceptable salts thereof.
3. A compound according to claim 1, wherein Formula (I) is represented by formula (Ib)
Figure US20050075357A1-20050407-C00110
or pharmaceutically acceptable salts thereof.
4. A compound according to claim 1 wherein R is
Figure US20050075357A1-20050407-C00111
or pharmaceutically acceptable salts thereof.
5. A compound according to claim 1 wherein Z is C6-C8 cycloalkyl or pharmaceutically acceptable salts thereof.
6. A compound according to claim 2 wherein
R is the moiety:
Figure US20050075357A1-20050407-C00112
n=3;
R1 is H or methyl;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R5 is CF3;
R7 is C1-C3 alkyl;
L1 is F;
L2 is F;
L3 is H;
L4 is H;
X is Cl;
Y is O;
W′ is N-methylamino, N-methylcyanamido, 1-pyrazolyl, 2-pyrazinyl, 2-pyridyl, 2-pyrimidinyl, or 3-isoquinolinyl groups
or pharmaceutically acceptable salts thereof.
7. A compound according to claim 3 wherein:
R is the moiety:
Figure US20050075357A1-20050407-C00113
n=3;
R1 is H or methyl;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R5 is CF3;
R7 is C1-C3 alkyl;
L1 is F;
L2 is F;
L3 is H;
L4 is H;
X is Cl;
Y is O;
W′ is N-methylamino, N-methylcyanamido, 1-pyrazolyl, 2-pyrazinyl, 2-pyridyl, 2-pyrimidinyl, or 3-isoquinolinyl groups
or pharmaceutically acceptable salts thereof.
8. A compound according to claim 5 wherein
R is the moiety:
Figure US20050075357A1-20050407-C00114
n=3;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R7 is C1-C3 alkyl;
L1 is F;
L2 is F;
L3 is H;
L4 is H;
X is Cl;
Y is O;
W′ is N-methylamino, N-methylcyanamido, 1-pyrazolyl, 2-pyrazinyl, 2-pyridyl, 2-pyrimidinyl, or 3-isoquinolinyl groups
or pharmaceutically acceptable salts thereof.
9. The compound according to claim 1, 4-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide or pharmaceutically acceptable salts thereof.
10. The compound according to claim 1, 6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N2-methyl-N4-(2,2,2-trifluoroethyl)pyrimidine-2,4-diamine or pharmaceutically acceptable salt thereof.
11. The compound according to claim 1, (4-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide or pharmaceutically acceptable salts thereof.
12. The compound according to claim 1, 4-chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide or pharmaceutically acceptable salts thereof.
13. The compound according to claim 1, {4-chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl}methylcyanamide or pharmaceutically acceptable salts thereof.
14. The compound according to claim 1, 6-chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
15. The compound according to claim 1, 6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
16. The compound according to claim 1, 6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)-2,2′-bipyrimidin-4-amine or pharmaceutically acceptable salts thereof.
17. The compound according to claim 1, 6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
18. The compound according to claim 1, 6-chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
19. The compound according to claim 1, N-{3-[4-(4-chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}-N-methylamine or pharmaceutically acceptable salts thereof.
20. The compound according to claim 1, 6-chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
21. The compound according to claim 1, 6-chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
22. The compound according to claim 1, 6-chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
23. The compound according to claim 1, 6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
24. The compound according to claim 1, 2-(5-Azidopyridin-2-yl)-6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine; or pharmaceutically acceptable salts thereof.
25. The compound according to claim 2, (4-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1S)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide or pharmaceutically acceptable salts thereof.
26. The compound according to claim 2, 6-chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
27. The compound according to claim 2, 6-chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
28. The compound according to claim 2, 6-chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
29. The compound according to claim 3, (4-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1R)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide or pharmaceutically acceptable salts thereof.
30. The compound according to claim 3, 6-chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
31. The compound according to claim 3, 6-chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
32. The compound according to claim 3, 6-chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
33. A method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal by administering an effective amount of a compound of Formula (I) as defined in claim 1 and pharmaceutically acceptable salts thereof.
34. A method of promoting tubulin polymerization by contacting a tubulin-containing system with an effective amount of a compound of Formula (I) as defined in claim 1 and pharmaceutically acceptable salts thereof.
35. A method of stabilizing microtubules by contacting a tubulin-containing system with an effective amount of a compound of Formula (I) as defined in claim 1 and pharmaceutically acceptable salts thereof.
36. A method for the treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound of Formula (I) as defined in claim 1 or pharmaceutically acceptable salts thereof.
37. A pharmaceutical composition which comprises an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof together with a pharmaceutically acceptable carrier.
38. A method of treating or inhibiting the growth of cancerous tumor cells and associated diseases in a mammal in need thereof by administering an effective amount of a compound of formula (II):
Figure US20050075357A1-20050407-C00115
wherein:
Z is selected from:
Figure US20050075357A1-20050407-C00116
and C6-C8 cycloalkyl;
R is a moiety
Figure US20050075357A1-20050407-C00117
X is Cl or Br;
L1, L2, L3 and L4 are each independently H, F, Cl or Br;
A is H, F, Cl, Br, or Y(CH2)nQ;
Y is O, S, or —NR2;
n is an integer of 2, 3, or 4;
Q is OH or —NR3R4;
R1 is H or C1-C3 alkyl;
R2 is H or C1-C3 alkyl;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R5 is CF3 or C2F5;
W′ is —NHR6, —N(CN)R6, aryl of 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups; or heteroaryl of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
or a pharmaceutically acceptable salt thereof.
39. A method according to claim 38 wherein formula II is represented by formula IIa
Figure US20050075357A1-20050407-C00118
or pharmaceutically acceptable salts thereof.
40. A method according to claim 38 wherein formula II is represented by formula IIb
Figure US20050075357A1-20050407-C00119
or pharmaceutically acceptable salts thereof.
41. A method according to claim 38 wherein R is
Figure US20050075357A1-20050407-C00120
or pharmaceutically acceptable salts thereof.
42. A method according to claim 39 wherein:
R is a moiety
Figure US20050075357A1-20050407-C00121
n=3;
Y is O;
Q is —NR3R4;
R1 is H or methyl;
R5 is CF3;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
43. A method according to claim 40
R is a moiety
Figure US20050075357A1-20050407-C00122
n=3;
Y is O;
Q is —NR3R4;
R1 is H or methyl;
R5 is CF3;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
44. A method according to claim 39
wherein:
R is a moiety
Figure US20050075357A1-20050407-C00123
A is F;
R1 is H or methyl;
R5 is CF3;
R6 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
45. A method according to claim 40
wherein:
R is a moiety
Figure US20050075357A1-20050407-C00124
A is F;
R1 is H or methyl;
R5 is CF3;
R6 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
46. A method according to claim 39 wherein compounds are selected from
4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl(methyl)cyanamide,
4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl]ethylcyanamide,
6-Chloro-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)-2,2′-bipyrimidin-4-amine,
6-Chloro-2-pyridin-4-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-isoquinolin-1-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-isoquinolin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-thien-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(2-furyl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrrol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N2-methyl-N4-(2,2,2-trifluoroethyl)pyrimidine-2,4-diamine,
(4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
4-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
{4-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl}methylcyanamide,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)-2,2′-bipyrimidin-4-amine,
6-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine,
N-{3-[4-(4-Chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}-N-methylamine,
6-Chloro-2-(1-methyl-1H-imidazol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrrol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(4-methylpyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(5-nitropyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine and
2-(5-Azidopyridin-2-yl)-6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine
or pharmaceutically acceptable salts thereof.
47. A method according to claim 39 wherein the compounds are selected from:
6-Chloro-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
(4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1S)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine; or pharmaceutically acceptable salts thereof.
48. A method according to claim 40 wherein the compounds are selected from:
6-Chloro-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
(4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1R)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
49. A method of promoting microtubule polymerization in a tubulin containing system which comprises contacting said tubulin containing system with an effective amount of a compound of formula (II):
Figure US20050075357A1-20050407-C00125
wherein:
Z is selected from:
Figure US20050075357A1-20050407-C00126
and C6-C8 cycloalkyl;
R is a moiety
Figure US20050075357A1-20050407-C00127
X is Cl or Br;
L1, L2, L3 and L4 are each independently H, F, Cl or Br;
A is H, F, Cl, Br, or Y(CH2)nQ;
Y is O, S, or —NR2;
n is an integer of 2, 3, or 4;
Q is OH or —NR3R4;
R1 is H or C1-C3 alkyl;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R5 is CF3 or C2F5;
W′ is —NHR6, —N(CN)R6, aryl of 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups; or heteroaryl of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
or a pharmaceutically acceptable salt thereof.
50. A method according to claim 49 wherein formula II is represented by formula IIa
Figure US20050075357A1-20050407-C00128
or pharmaceutically acceptable salts thereof.
51. A method according to claim 49 wherein formula II is represented by formula IIb
Figure US20050075357A1-20050407-C00129
or pharmaceutically acceptable salts thereof.
52. A method according to claim 49 wherein R is
Figure US20050075357A1-20050407-C00130
or pharmaceutically acceptable salts thereof.
53. A method according to claim 50 wherein:
R is a moiety
Figure US20050075357A1-20050407-C00131
n=3;
Y is —O—;
Q is —NR3R4;
R1 is H or methyl;
R5 is CF3;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
54. A method according to claim 51
R is a moiety
Figure US20050075357A1-20050407-C00132
n=3;
Y is O;
Q is —NR6R7;
R1 is H or methyl;
R5 is CF3;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
55. The method according to claim 50
wherein:
R is a moiety
Figure US20050075357A1-20050407-C00133
A is F;
R1 is H or methyl;
R5 is CF3;
R6 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
56. The method according to claim 51
wherein:
R is a moiety
Figure US20050075357A1-20050407-C00134
A is F;
R1 is H or methyl;
R5 is CF3;
R6 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
56. A method according to claim 49 wherein compounds are selected from
4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl(methyl)cyanamide,
4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl]ethylcyanamide,
6-Chloro-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)-2,2′-bipyrimidin-4-amine,
6-Chloro-2-pyridin-4-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-isoquinolin-1-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-isoquinolin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-thien-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(2-furyl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrrol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
4-Chloro-5-[(4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl]-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N2-methyl-N4-(2,2,2-trifluoroethyl)pyrimidine-2,4-diamine,
(4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
4-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
{4-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl}methylcyanamide,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)-2,2′-bipyrimidin-4-amine,
6-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine,
N-{3-[4-(4-Chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}-N-methylamine,
6-Chloro-2-(1-methyl-1H-imidazol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrrol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(4-methylpyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(5-nitropyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine and
2-(5-Azidopyridin-2-yl)-6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine
or pharmaceutically acceptable salts thereof.
58. A method according to claim 50 wherein the compounds are selected from:
6-Chloro-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
(4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1S)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
59. A method according to claim 51 wherein the compounds are selected from:
6-Chloro-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
(4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1R)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
60. A method of stabilizing microtubules in a tubulin containing system by contacting said tubulin containing system with an effective amount of a compound of formula (II) or a pharmaceutically acceptable salt thereof
Figure US20050075357A1-20050407-C00135
wherein:
Z is selected from:
Figure US20050075357A1-20050407-C00136
and C6-C8 cycloalkyl;
R is a moiety
Figure US20050075357A1-20050407-C00137
X is Cl or Br;
L1, L2, L3 and L4 are each independently H, F, Cl or Br;
A is H, F, Cl, Br, or Y(CH2)nQ;
Y is O, S, or —NR2;
n is an integer of 2, 3, or 4;
Q is OH or —NR3R4;
R1 is H or C1-C3 alkyl;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R5 is CF3 or C2F5;
W′ is —NHR6, —N(CN)R6, aryl of 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups; or heteroaryl of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
or a pharmaceutically acceptable salt thereof.
61. A method according to claim 60 wherein formula (II) is represented by formula (IIa)
Figure US20050075357A1-20050407-C00138
or pharmaceutically acceptable salts thereof.
62. A method according to claim 60 wherein formula (II) is represented by formula (IIb)
Figure US20050075357A1-20050407-C00139
or pharmaceutically acceptable salts thereof.
63. A method according to claim 60 wherein R is a moiety
Figure US20050075357A1-20050407-C00140
or a pharmaceutically acceptable salt thereof.
64. A method according to claim 61 wherein:
R is a moiety
Figure US20050075357A1-20050407-C00141
n=3;
Y is O;
Q is —NR3R4;
R1 is H or methyl;
R5 is CF3;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
65. A method according to claim 62 wherein:
R is a moiety
Figure US20050075357A1-20050407-C00142
n=3;
Y is O;
Q is —NR3R4;
R1 is H or methyl;
R5 is CF3;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
66. A method according to claim 61 wherein:
R is a moiety
Figure US20050075357A1-20050407-C00143
A is F;
R1 is H or methyl;
R5 is CF3;
R6 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
67. A method according to claim 62 wherein:
R is a moiety
Figure US20050075357A1-20050407-C00144
A is F;
R1 is H or methyl;
R5 is CF3;
R6 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
68. A method according to claim 60 wherein compounds are selected from
4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl(methyl)cyanamide,
4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl]ethylcyanamide,
6-Chloro-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)-2,2′-bipyrimidin-4-amine,
6-Chloro-2-pyridin-4-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-isoquinolin-1-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-isoquinolin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-thien-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(2-furyl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrrol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N2-methyl-N4-(2,2,2-trifluoroethyl)pyrimidine-2,4-diamine,
(4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
4-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
{4-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl}methylcyanamide,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)-2,2′-bipyrimidin-4-amine,
6-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine,
N-{3-[4-(4-Chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}-N-methylamine,
6-Chloro-2-(1-methyl-1H-imidazol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrrol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(4-methylpyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(5-nitropyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine and
2-(5-Azidopyridin-2-yl)-6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine
or pharmaceutically acceptable salts thereof.
69. A method according to claim 61 wherein the compounds are selected from
6-Chloro-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
(4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1S)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine
or pharmaceutically acceptable salts thereof.
70. A method according to claim 62 wherein the compounds are selected from
6-Chloro-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
(4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1R)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine.
71. A method of treatment or prevention of tumors that express multiple drug resistance (MDR) or are resistant because of MDR in a mammal in need thereof which method comprises administering to said mammal an effective amount of a compound of formula (II):
Figure US20050075357A1-20050407-C00145
wherein:
Z is selected from:
Figure US20050075357A1-20050407-C00146
and C6-C8 cycloalkyl;
R is a moiety
Figure US20050075357A1-20050407-C00147
X is Cl or Br;
L1, L2, L3 and L4 are each independently H, F, Cl or Br;
A is H, F, Cl, Br, or Y(CH2)nQ;
Y is O, S, or —NR2;
n is an integer of 2, 3, or 4;
Q is OH or —NR3R4;
R1 is H or C1-C3 alkyl;
R2 is H or C1-C3 alkyl;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R5 is CF3 or C2F5;
W′ is —NHR5, —N(CN)R6, aryl of 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups; or heteroaryl of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
or a pharmaceutically acceptable salt thereof.
72. A method according to claim 71 wherein formula (II) is represented by formula (IIa)
Figure US20050075357A1-20050407-C00148
or pharmaceutically acceptable salts thereof.
73. A method according to claim 71 wherein formula (II) is represented by formula (IIb)
Figure US20050075357A1-20050407-C00149
or pharmaceutically acceptable salts thereof.
74. A method according to claim 71 wherein R is
Figure US20050075357A1-20050407-C00150
or pharmaceutically acceptable salts thereof.
75. A method according to claim 72 wherein:
R is a moiety
Figure US20050075357A1-20050407-C00151
n=3;
Y is O;
Q is —NR3R4;
R1 is H or methyl;
R5 is CF3;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
76. A method according to claim 73 wherein:
R is a moiety
Figure US20050075357A1-20050407-C00152
n=3;
Y is O;
Q is —NR3R4;
R1 is H or methyl;
R5 is CF3;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
77. The method according to claim 72 wherein:
wherein:
R is a moiety
Figure US20050075357A1-20050407-C00153
A is F;
R1 is H or methyl;
R5 is CF3;
R6 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
78. The method according to claim 73 wherein:
wherein:
R is a moiety
Figure US20050075357A1-20050407-C00154
A is F;
R1 is H or methyl;
R5 is CF3;
R6 is C1-C3 alkyl;
L1 is F;
L2 is H or F;
L3 is H;
L4 is H;
X is Cl or Br;
or pharmaceutically acceptable salts thereof.
79. A method according to claim 71 wherein compounds are selected from
4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl(methyl)cyanamide,
4-Chloro-6-[(2,2,2-trifluoroethyl)amino]-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl]ethylcyanamide,
6-Chloro-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)-2,2′-bipyrimidin-4-amine,
6-Chloro-2-pyridin-4-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-isoquinolin-1-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-isoquinolin-3-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-thien-2-yl-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(2-furyl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrrol-1-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N2-methyl-N4-(2,2,2-trifluoroethyl)pyrimidine-2,4-diamine,
(4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
4-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl(methyl)cyanamide,
{4-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-6-[(2,2,2-trifluoroethyl)amino]pyrimidin-2-yl}methylcyanamide,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)-2,2′-bipyrimidin-4-amine,
6-Chloro-5-{4-[2-(dimethylamino)ethoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{4-[4-(dimethylamino)butoxy]-2,6-difluorophenyl}-2-pyrazin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-quinolin-2-yl-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-2-(1H-imidazol-1-yl)-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine,
N-{3-[4-(4-Chloro-6-cycloheptyl-2-pyrazin-2-ylpyrimidin-5-yl)-3,5-difluorophenoxy]propyl}-N-methylamine,
6-Chloro-2-(1-methyl-1H-imidazol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrrol-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(4-methylpyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(5-nitropyridin-2-yl)-N-(2,2,2-trifluoroethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine and
2-(5-Azidopyridin-2-yl)-6-chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-N-(2,2,2-trifluoroethyl)pyrimidin-4-amine
or pharmaceutically acceptable salts thereof.
80. A method according to claim 72 wherein the compounds are selected from:
6-Chloro-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
(4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1S)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1S)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
81. A method according to claim 73 wherein the compounds are selected from:
6-Chloro-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
6-Chloro-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)-5-(2,4,6-trifluorophenyl)pyrimidin-4-amine,
(4-Chloro-5-{4-[3-(dimethylamino)propoxy]-2,6-difluorophenyl}-6-{[(1R)-2,2,2-trifluoro-1-methylethyl]amino}pyrimidin-2-yl)methylcyanamide,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyrazin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine,
6-Chloro-5-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}-2-pyridin-2-yl-N-[(1R)-2,2,2-trifluoro-1-methylethyl]pyrimidin-4-amine and
6-Chloro-5-{2,6-difluoro-4-[3-(dimethylamino)propoxy]phenyl}-2-(1H-pyrazol-1-yl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl)pyrimidin-4-amine or pharmaceutically acceptable salts thereof.
82. A process for the preparation of a compound of Formula (I)
Figure US20050075357A1-20050407-C00155
wherein:
Z is:
Figure US20050075357A1-20050407-C00156
R is a moiety
Figure US20050075357A1-20050407-C00157
n is an integer of 2, 3, or 4;
L1 and L2, are each independently H, F, Cl or Br;
L3 and L4 are H;
X is Cl or Br;
Y is O, S, or —NR2;
Q is OH or —NR3R4;
R1 is H or C1-C3 alkyl;
R2 is H or C1—C3 alkyl;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R5 is CF3 or C2F5;
W′ is —NHR6, —N(CN)R6, aryl of 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups; or heteroaryl of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
or a pharmaceutically acceptable salt thereof.
comprising the step of reacting a compound of the formula
Figure US20050075357A1-20050407-C00158
where A is a leaving group with a compound of the formula HY—(CH2)nQ in the presence of a strong base optionally in the presence of an aprotic solvent to give a compound of Formula (I).
83. A process according to claim 82 wherein the leaving group A is F and Y is O.
84. A process according to claim 82 wherein the strong base is selected from an alkali metal hydroxide, alkali metal carbonate and alkali hydride.
85. A process according to claim 82 wherein the aprotic solvent is selected from dimethylsulfoxide and dimethylformamide.
86. A pharmaceutical composition which comprises an effective amount of a compound of Formula (II)
Figure US20050075357A1-20050407-C00159
wherein:
Z is selected from:
Figure US20050075357A1-20050407-C00160
and C6-C8 cycloalkyl;
R is a moiety
Figure US20050075357A1-20050407-C00161
X is Cl or Br;
L1, L2, L3 and L4 are each independently H, F, Cl or Br;
A is H, F, Cl, Br, or Y(CH2)nQ;
Y is O, S, or —NR2;
n is an integer of 2, 3, or 4;
Q is OH or —NR3R4;
R1 is H or C1-C3 alkyl;
R2 is H or C1-C3 alkyl;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R5 is CF3 or C2F5;
W′ is —NHR6, —N(CN)R6, aryl of 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups; or heteroaryl of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
or pharmaceutically acceptable salts thereof together with a pharmaceutical acceptable carrier.
87. A method of treating, inhibiting the growth of, or eradicating a tumor in a mammal in need thereof wherein said tumor is resistant to at least one chemotherapeutic agent which method comprises providing to said mammal an effective amount of a compound of claim 1.
88. A method of treating, inhibiting the growth of, or eradicating a tumor in a mammal in need thereof wherein said tumor is resistant to at least one chemotherapeutic agent which method comprises providing to said mammal an effective amount of a compound of formula (II)
Figure US20050075357A1-20050407-C00162
wherein:
Z is selected from:
Figure US20050075357A1-20050407-C00163
and C6-C8 cycloalkyl;
R is a moiety
Figure US20050075357A1-20050407-C00164
X is Cl or Br;
L1, L2, L3 and L4 are each independently H, F, Cl or Br;
A is H, F, Cl, Br, or Y(CH2)nQ;
Y is O, S, or —NR2;
n is an integer of 2, 3, or 4;
Q is OH or —NR3R4;
R1 is H or C1-C3 alkyl;
R2 is H or C1-C3 alkyl;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R5 is CF3 or C2F5;
W′ is —NHR6, —N(CN)R6, aryl of 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups; or heteroaryl of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
or pharmaceutically acceptable salts thereof.
89. A compound of Formula (I)
Figure US20050075357A1-20050407-C00165
wherein:
Z is:
Figure US20050075357A1-20050407-C00166
R is a moiety
Figure US20050075357A1-20050407-C00167
n is an integer of 2, 3, or 4;
L1 and L2, are each independently H, F, Cl or Br;
L3 and L4 are H;
X is Cl or Br;
Y is O, S, or —NR2;
Q is OH or —NR3R4;
R1 is H or C1-C3 alkyl;
R2 is H or C1—C3 alkyl;
R3 and R4 are each independently H or C1-C3 alkyl; or R3 and R4 when optionally taken together with the nitrogen atom to which each is attached form a saturated 4 to 6 member heterocyclic ring which contains 1-2 nitrogen atoms, 0-1 oxygen atoms and 0-1 sulfur atoms within the ring where said ring is optionally substituted with R7;
R5 is CF3 or C2F5;
W′ is —NHR6, —N(CN)R6, aryl of 6 to 12 carbon atoms optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups; or heteroaryl of 5 to 10 ring atoms having from 1 to 4 heteroatoms selected from S, O and N and optionally substituted with 1-3 groups independently selected from halogen, azido, nitro, cyano, hydroxy, C1-C3 alkyl, C1-C3 alkoxy, amino, C1-C3 alkylamino, C1-C3 dialkylamino, formyl, C1-C3 alkoxycarbonyl, carboxyl, C1-C3 alkanoyl, C1-C3 alkylthio, C1-C3 alkylamido, phenyl, phenoxy, benzyl, benzoxy, furyl, and cyclopropyl groups;
R6 is C1-C3 alkyl;
R7 is C1-C3 alkyl;
or a pharmaceutically acceptable salt thereof
produced by the process which comprises the step of reacting a compound of the formula
Figure US20050075357A1-20050407-C00168
where A is a leaving group with a compound of the formula HY—(CH2)nQ in the presence of a strong base optionally in the presence of an aprotic solvent to give a compound of Formula (I).
90. A compound produced by the process according to claim 89 wherein the leaving group A is F and Y is O.
91. A compound produced by the process according to claim 89 wherein the strong base is selected from an alkali metal hydroxide, alkali metal carbonate and alkali hydride.
92. A process according to claim 89 wherein the aprotic solvent is selected from dimethylsulfoxide and dimethylformamide.
US10/950,375 2003-09-24 2004-09-24 5-arylpyrimidines as anticancer agents Expired - Fee Related US7524849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/950,375 US7524849B2 (en) 2003-09-24 2004-09-24 5-arylpyrimidines as anticancer agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50548703P 2003-09-24 2003-09-24
US10/950,375 US7524849B2 (en) 2003-09-24 2004-09-24 5-arylpyrimidines as anticancer agents

Publications (2)

Publication Number Publication Date
US20050075357A1 true US20050075357A1 (en) 2005-04-07
US7524849B2 US7524849B2 (en) 2009-04-28

Family

ID=34393022

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/950,375 Expired - Fee Related US7524849B2 (en) 2003-09-24 2004-09-24 5-arylpyrimidines as anticancer agents

Country Status (24)

Country Link
US (1) US7524849B2 (en)
EP (1) EP1663241B1 (en)
JP (1) JP2007506746A (en)
KR (1) KR20060089215A (en)
CN (1) CN1871009A (en)
AR (1) AR045811A1 (en)
AT (1) ATE432077T1 (en)
AU (1) AU2004275733A1 (en)
BR (1) BRPI0414736A (en)
CA (1) CA2539235A1 (en)
CO (1) CO5690592A2 (en)
DE (1) DE602004021269D1 (en)
EC (1) ECSP066457A (en)
GT (1) GT200400188A (en)
IL (1) IL174305A0 (en)
MX (1) MXPA06003207A (en)
NO (1) NO20061319L (en)
PA (1) PA8613201A1 (en)
PE (1) PE20050470A1 (en)
RU (1) RU2006107578A (en)
SA (1) SA04250303A (en)
TW (1) TW200512198A (en)
WO (1) WO2005030216A1 (en)
ZA (1) ZA200602386B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060281760A1 (en) * 2005-06-13 2006-12-14 Wyeth Tubulin inhibitor and process for its preparation
WO2021097075A1 (en) * 2019-11-13 2021-05-20 Arbutus Biopharma, Inc. Substituted isoindolonyl 2,2'-bipyrimidinyl compounds, analogues thereof, and methods using same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200637556A (en) * 2005-01-31 2006-11-01 Basf Ag Substituted 5-phenyl pyrimidines I in therapy
WO2006138180A1 (en) * 2005-06-13 2006-12-28 Wyeth Tubulin inhibitor and process for its preparation
CA2645779A1 (en) * 2006-03-27 2007-10-04 Basf Se Substituted 5-hetaryl-4-aminopyrimidines
CL2007002231A1 (en) * 2006-08-02 2008-04-11 Basf Ag USE OF COMPOUNDS DERIVED FROM 5- (HET) ARILPIRIMIDINE TO COMBAT DANGINE FUNGES; COMPOUNDS DERIVED FROM 5- (HET) ARILPIRIMIDINA; FUNGICIDE AGENT; AND PHARMACEUTICAL AGENT.
TW200836741A (en) * 2007-01-11 2008-09-16 Basf Ag 2-substituted pyrimidines I in therapy
WO2009007187A1 (en) * 2007-07-09 2009-01-15 Basf Se Substituted 5-hetarylpyrimidines
EP4328223A2 (en) 2011-04-22 2024-02-28 Signal Pharmaceuticals, LLC Substituted diaminocarboxamide and diaminocarbonitrile pyrimidines, compositions thereof, and methods of treatment therewith
EP3219207A1 (en) * 2012-09-19 2017-09-20 The Trustees Of The University Of Pennsylvania Heterocyclic compounds and their use for the treatment of neurodegenerative tauopathies
NZ715903A (en) 2014-01-30 2017-06-30 Signal Pharm Llc Solid forms of 2-(tert-butylamino)-4-((1r,3r,4r)-3-hydroxy-4-methylcyclohexylamino)-pyrimidine-5-carboxamide, compositions thereof and methods of their use
JP6903577B2 (en) 2014-12-16 2021-07-14 シグナル ファーマシューティカルズ,エルエルシー Method for measuring inhibition of c-Jun N-terminal kinase in skin
MX2017007883A (en) 2014-12-16 2017-09-05 Signal Pharm Llc Formulations of 2-(tert-butylamino)-4-((1r,3r,4r)-3-hydroxy-4-met hycyclohexylamino)-pyrimidine-5-carboxamide.
EP3250557A4 (en) 2015-01-29 2018-06-20 Signal Pharmaceuticals, LLC Isotopologues of 2-(tert-butylamino)-4-((1r,3r,4r)-3-hydroxy-4-methylcyclohexylamino)-pyrimidine-5-carboxamide
MX2020001720A (en) 2015-07-24 2021-08-13 Celgene Corp Methods of synthesis of (1r,2r,5r)-5-amino-2-methylcyclohexanol hydrochloride and intermediates useful therein.
EP3758696A4 (en) 2018-03-02 2021-12-08 The Trustees of the University of Pennsylvania [1,2,4]triazolo[1,5-a]pyrimidine compounds and use in stabilizing microtubules
JP7109684B2 (en) * 2019-11-01 2022-07-29 ユニマテック株式会社 Fluorine-containing pyrimidine compound and method for producing the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US61889A (en) * 1867-02-05 Improvement in animal teaps
US69242A (en) * 1867-09-24 Calvin pepper
US88096A (en) * 1869-03-23 t h a y e r
US116429A (en) * 1871-06-27 Improvement in dial-telegraph apparatus
US147744A (en) * 1874-02-24 Improvement in locomotive-furnaces
US5986135A (en) * 1998-09-25 1999-11-16 American Cyanamid Company Fungicidal trifluoromethylalkylamino-triazolopyrimidines
US6117876A (en) * 1997-04-14 2000-09-12 American Cyanamid Company Fungicidal trifluorophenyl-triazolopyrimidines
US6156925A (en) * 1998-09-25 2000-12-05 American Cyanamid Company Process for the preparation of halogenated phenylmaloates
US6509354B1 (en) * 1998-04-27 2003-01-21 Kumiai Chemical Industry Co., Ltd. 3-arylphenyl sulfide derivative and insecticide and miticide
US20030092718A1 (en) * 2001-04-20 2003-05-15 Wolfgang Haap 4-amino-2-(2-pyridyl)pyrimidines as microbicidal active substances
US6632821B2 (en) * 2000-06-13 2003-10-14 Basf Aktiengesellschaft Fungicidal 5-phenyl substituted 2-(cyanoamino) pyrimidines
US6670362B2 (en) * 2000-09-20 2003-12-30 Pfizer Inc. Pyridazine endothelin antagonists

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9700664D0 (en) 1997-01-14 1997-03-05 British Tech Group Anti-cancer agents
BR0207975A (en) 2001-03-15 2004-06-15 Basf Ag Compound, process for preparing 5 phenylpyridines, intermediate product, suitable agent for combating phytopathogenic harmful fungi, and process for combating phytopathogenic harmful fungi
WO2003043993A1 (en) 2001-11-19 2003-05-30 Basf Aktiengesellschaft 5-phenylpyrimidines, agents comprising the same, method for production and use thereof
EP1504001B1 (en) 2002-02-21 2009-04-15 Basf Se 2-(2-pyridyl)-5-phenyl-6-aminopyrimidine, method and intermediate products for the production and use thereof for combating noxious fungi
JP2005520821A (en) 2002-03-15 2005-07-14 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 4-Aminopyrimidine and its use for antimicrobial treatment of surfaces
DK2316831T3 (en) 2002-11-21 2013-06-10 Novartis Ag 2- (Morpholin-4-yl) pyrimidines as phosphotidylinositol (PI) -3-kinase inhibitors and their use in the treatment of cancer

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US61889A (en) * 1867-02-05 Improvement in animal teaps
US69242A (en) * 1867-09-24 Calvin pepper
US88096A (en) * 1869-03-23 t h a y e r
US116429A (en) * 1871-06-27 Improvement in dial-telegraph apparatus
US147744A (en) * 1874-02-24 Improvement in locomotive-furnaces
US6117876A (en) * 1997-04-14 2000-09-12 American Cyanamid Company Fungicidal trifluorophenyl-triazolopyrimidines
US6297251B1 (en) * 1997-04-14 2001-10-02 American Cyanamid Co. Fungicidal trifluorophenyl-triazolopyrimidines
US6509354B1 (en) * 1998-04-27 2003-01-21 Kumiai Chemical Industry Co., Ltd. 3-arylphenyl sulfide derivative and insecticide and miticide
US5986135A (en) * 1998-09-25 1999-11-16 American Cyanamid Company Fungicidal trifluoromethylalkylamino-triazolopyrimidines
US6156925A (en) * 1998-09-25 2000-12-05 American Cyanamid Company Process for the preparation of halogenated phenylmaloates
US6204269B1 (en) * 1998-09-25 2001-03-20 American Cyanamid Co. Fungicidal trifluoromethylalkylamino-triazolopyrimidines
US6632821B2 (en) * 2000-06-13 2003-10-14 Basf Aktiengesellschaft Fungicidal 5-phenyl substituted 2-(cyanoamino) pyrimidines
US6670362B2 (en) * 2000-09-20 2003-12-30 Pfizer Inc. Pyridazine endothelin antagonists
US20030092718A1 (en) * 2001-04-20 2003-05-15 Wolfgang Haap 4-amino-2-(2-pyridyl)pyrimidines as microbicidal active substances

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060281760A1 (en) * 2005-06-13 2006-12-14 Wyeth Tubulin inhibitor and process for its preparation
US7244736B2 (en) 2005-06-13 2007-07-17 Wyeth Tubulin inhibitor and process for its preparation
US20070249627A1 (en) * 2005-06-13 2007-10-25 Wyeth Tubulin inhibitor and process for its preparation
US7501423B2 (en) 2005-06-13 2009-03-10 Wyeth Tubulin inhibitor and process for its preparation
WO2021097075A1 (en) * 2019-11-13 2021-05-20 Arbutus Biopharma, Inc. Substituted isoindolonyl 2,2'-bipyrimidinyl compounds, analogues thereof, and methods using same

Also Published As

Publication number Publication date
AR045811A1 (en) 2005-11-16
NO20061319L (en) 2006-04-20
AU2004275733A1 (en) 2005-04-07
PE20050470A1 (en) 2005-10-03
GT200400188A (en) 2005-05-02
ZA200602386B (en) 2009-03-25
BRPI0414736A (en) 2006-11-21
ECSP066457A (en) 2006-09-18
RU2006107578A (en) 2007-10-27
KR20060089215A (en) 2006-08-08
SA04250303A (en) 2005-12-03
CA2539235A1 (en) 2005-04-07
US7524849B2 (en) 2009-04-28
IL174305A0 (en) 2008-02-09
MXPA06003207A (en) 2006-06-23
CO5690592A2 (en) 2006-10-31
WO2005030216A1 (en) 2005-04-07
EP1663241A1 (en) 2006-06-07
JP2007506746A (en) 2007-03-22
CN1871009A (en) 2006-11-29
DE602004021269D1 (en) 2009-07-09
ATE432077T1 (en) 2009-06-15
TW200512198A (en) 2005-04-01
PA8613201A1 (en) 2005-11-25
EP1663241B1 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
US7524849B2 (en) 5-arylpyrimidines as anticancer agents
US6884799B2 (en) Non-cross-linking pyrrolo[2,1-c][1,4]benzodiazepines and process thereof
US7582631B2 (en) Substituted heterocyclic compounds and methods of use
US10919899B2 (en) Imidazopyrazine compounds, preparation methods and uses thereof
US7507739B2 (en) 6-[(substituted)phenyl]triazolopyrimidines as anticancer agents
US10745410B2 (en) Substituted [5,6]cyclic-4(3H)-pyrimidinones as anticancer agents
US7915266B2 (en) 6-aryl-7-halo-imidazo[1,2-a]pyrimidines as anticancer agents
US20230137932A1 (en) Cyano-pyrimidine inhibitors of egfr/her2
US20230106731A1 (en) Inhibitors of mutant family tyrosine-kinases
US20100216817A1 (en) Antitumoral Tetrahydro-Pyrimidines
KR20160089378A (en) Protein kinase inhibitors
US20240051938A1 (en) Selective brd4-degrader molecules
AU2006329862A1 (en) Dimers and adducts of 6-[(substituted) phenyl] triazolopyrimidines useful as anticancer agents

Legal Events

Date Code Title Description
AS Assignment

Owner name: WYETH HOLDINGS CORPORATION, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, NAN;AYRAL-KALOUSTIAN, SEMIRAMIS;NGUYEN, THAI;REEL/FRAME:015325/0797

Effective date: 20041028

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: WYETH HOLDINGS LLC, NEW JERSEY

Free format text: CHANGE OF NAME;ASSIGNOR:WYETH HOLDINGS CORPORATION;REEL/FRAME:031636/0645

Effective date: 20131025

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210428