US20050067731A1 - Process and system for fabricating a reinforcing preform - Google Patents

Process and system for fabricating a reinforcing preform Download PDF

Info

Publication number
US20050067731A1
US20050067731A1 US10/820,573 US82057304A US2005067731A1 US 20050067731 A1 US20050067731 A1 US 20050067731A1 US 82057304 A US82057304 A US 82057304A US 2005067731 A1 US2005067731 A1 US 2005067731A1
Authority
US
United States
Prior art keywords
reinforcing thread
thread
binder
reinforcing
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/820,573
Other versions
US7115180B2 (en
Inventor
Alain Bruyere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hexcel Fabrics SA
Original Assignee
Hexcel Fabrics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hexcel Fabrics SA filed Critical Hexcel Fabrics SA
Assigned to HEXCEL REINFORCEMENTS reassignment HEXCEL REINFORCEMENTS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRUYERE, ALAIN
Publication of US20050067731A1 publication Critical patent/US20050067731A1/en
Application granted granted Critical
Publication of US7115180B2 publication Critical patent/US7115180B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • B29C70/382Automated fiber placement [AFP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/336Feeding of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • B29C70/382Automated fiber placement [AFP]
    • B29C70/384Fiber placement heads, e.g. component parts, details or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present invention concerns the technical area of fabricating preforms or multidirectional fibrous reinforcements designed for fabricating parts made of composite materials.
  • Patent application FR 2 581 379 proposed to make preforms for truncated conic or ellipsoid revolving parts, such as jet engine vents, by winding a reinforcing thread that has been pre-impregnated with a binding agent, on a support having teeth, designed to avoid any relative slippage of the thread on the support, so as to preserve a perfectly even distribution of the reinforcing thread on the fibrous reinforcement.
  • the process according to patent application FR 2 581 379 has the disadvantage of placing the reinforcing thread, while it is being laid down, in a state that could be described as a pre-constraint or pre-stressed.
  • the pre-constraint influences the mechanical behavior of the multidirectional fibrous reinforcement and can affect the performance of the part incorporating the fibrous reinforcement.
  • the present invention concerns a fabrication process for a multidirectional fibrous reinforcement designed to be a porous preform for producing a part made of a composite material.
  • the process involves depositing at least one reinforcing thread in successive layers on a support, associated with a binder, so as to ensure that the first layer adheres to the support surface and also that the successive layers are bonded to each other.
  • the fabrication process when the reinforcing thread is laid down, the fabrication process also consists in pressing the reinforcing thread against the support or against a previous layer by exercising pressure substantially perpendicular to the support surface at the point where the thread is laid down.
  • a binder associated with pressure on the thread when the thread is laid down allows the reinforcing thread or threads laid down to be very precisely positioned according to predefined curves that do not necessarily correspond to the geodesic lines of the support surface.
  • the process according to the invention allows preforms to be shaped on a level support or, again, preforms to be shaped on a conical support, depositing reinforcing threads around the circumference and according to the surface contours.
  • the fabrication process according to the invention may be used for various other support forms.
  • the reinforcing thread will advance as it is deposited, so as not to cause any tension in the reinforcing thread and so as to lay it down in its state of repose.
  • This advantage of the invention allows a multidirectional fibrous reinforcement to be made that could be considered as having isotropic behavior or at the very least, as not having a favored direction of resistance caused by thread tension insofar as, according to this characteristic of the invention, the reinforcing threads laid down are free of any pre-constraint.
  • the binder used is activated while the reinforcing thread is being deposited.
  • the binder will then be first deposited either on the support or on the reinforcing thread.
  • the binder is instead deposited while the reinforcing thread is being deposited and ahead of the point where the reinforcing thread is being deposited.
  • the reinforcing thread may be deposited in any appropriate fashion, manually or even automatically.
  • the reinforcing thread is deposited automatically or by means of a robot equipped with a deposit finger that has a presser head designed to exert pressure on the reinforcing thread and a thread guide groove leading to the presser head.
  • pressure perpendicular to the surface of the presser head is exerted on the deposit finger.
  • the surface of the presser head is preferably kept tangent to the support surface while the reinforcing thread is being laid down.
  • one or more reinforcing threads may be laid down simultaneously according to parallel deposit trajectories. It may then be possible to use as many deposit fingers as there are reinforcing threads simultaneously deposited.
  • thermoplastic powder or a thermosetting powder or a mixture of the two is used as a binder.
  • thermoplastic powders the following may be cited as non-limiting examples: polyolefin, polyamide, and polyether sulfone powders, and among the thermosetting powders, epoxy resins with or without a hardening agent, phenol powders and polyester powders may be cited.
  • the process then involves heating the area where the reinforcing thread is deposited. Heating may be achieved at the point of the deposit finger using a heater or a radiant heat source directed towards the area where the reinforcing thread is deposited.
  • the powder indicated above may be used in different ways.
  • the powder is either first associated with the reinforcing thread so that it at least partially covers the thread or instead, the powder is projected onto the support surface or onto the preceding layers of reinforcing threads while the reinforcing thread is being deposited.
  • thermoplastic and/or thermosetting powder it is also possible to use a support surface that has been first at least partially covered with a thermoplastic and/or thermosetting powder.
  • a resin may also be used as a binder wherein the resin has the same chemical qualities as the powders indicated above and used in a melted state called “hot melt.”
  • the hot-melt resin is then deposited on the support, then on the previous thread layers while the reinforcing thread is being laid down and ahead of the deposit of the reinforcing thread.
  • thermoplastic thread may be used as a binder wherein the thermoplastic thread is wrapped around the reinforcing thread and then heated at the point of deposit.
  • the thermoplastic thread may be of any appropriate kind, and examples may include, but are not limited to, polyamide, polyolefin, polyether sulfone, polyether ether acetone (PEEK) or polyether imide (PEI) thread.
  • a binder is used that is closely bound to the reinforcing thread to form a hybrid reinforcing thread.
  • thermoplastic filaments that are of the same kind as the thermoplastic threads indicated above and that will be mixed with filaments made of reinforcing material, which mixture will be spun to form a hybrid reinforcing material.
  • a pulverizable solution or emulsion of at least one adhesive resin is used as a binder, such as, for example, but not limited to, a polyacrylic, polyvinyl or polyurethane resin.
  • the reinforcing thread may be laid down continuously or in discontinuous segments.
  • 0.01-30 bar pressure preferably 0.1-1 bar, will be applied to the reinforcing thread while it is being laid down.
  • the point of deposition of the reinforcing thread will be heated to a temperature of 50-450° C., preferably 50-150° C.
  • the fabrication process according to the invention may use different types of reinforcing threads including but not limited to threads made of carbon, glass, polyester, aramid, metal or even mixtures of those materials.
  • reinforcing thread should be understood in the broad sense; it includes, for example, bundles or strands as well as braided threads.
  • the invention also concerns a preform comprising several layers of reinforcing threads arranged in at least two directions and made solid with a binder, characterized in that they are fabricated in accordance with the process according to the invention.
  • the reinforcing threads making up the porous preform are in a state of repose and not subject to any pre-constraint.
  • the invention also concerns a system for using the above fabrication process.
  • a system for using the above fabrication process includes the following:
  • the means of deposit may be implemented in any appropriate manner.
  • the means of deposit include at least one deposit finger having a presser head designed to exert pressure on the reinforcing thread against the support and a thread guide groove leading to the presser head.
  • the system includes means to lead or advance the reinforcing thread as it is laid down so as not to cause any tension in the reinforcing thread.
  • the system also includes means to apply a binder.
  • the system may also include means to activate the binder that can be implemented in any appropriate fashion.
  • the means of activation include means for heating the deposit area and for pressing the reinforcing thread.
  • the means for heating may be implemented in different ways such as, for example, in the form of a heater incorporated in the deposit finger or again in the form of a radiant source such as, for example, a source of infrared rays.
  • the means of activation is a source of ultraviolet rays.
  • FIG. 1 is a general view of a system that is one example of a system for implementing the fabrication process according to the invention.
  • FIG. 2 is a detailed view of a means for laying down a reinforcing thread that is part of the system illustrated in FIG. 1 .
  • FIG. 3 is a view analogous to FIG. 2 , showing the means of deposit in contact with a convex surface.
  • FIGS. 4-6 are views of different phases of fabricating a multidirectional fibrous reinforcement or preform in accordance with the process according to the invention.
  • FIG. 7 illustrates a variant for implementing means of deposit suitable for equipping a system for implementing the fabrication process according to the invention.
  • the invention aims to allow the fabrication of a multidirectional fibrous reinforcement that may have an awkward or complex tri-dimensional shape and designed to be a porous preform for producing a part made of a composite material, for example by injecting a resin in the porous preform, previously arranged in a mold.
  • the invention aims to offer great freedom of form for making a multidirectional fibrous reinforcement in order to permit a large variety of applications.
  • the invention purposes to use a system such as the one illustrated in FIG. 1 and designated generally at 1 .
  • the system 1 enables the automatic or semi-automatic implementation of the process according to the invention.
  • system 1 comprises a support 2 , the support surface 3 of which may be considered as a male or female imprint depending on the application side of the reinforcing thread.
  • support 2 is bome by a table 4 , capable of being moved horizontally according to two orthogonal axes X and Y, and rotated R, again horizontally around a vertical axis.
  • the system 1 also includes at least one and according to the example illustrated, exactly one deposit head 5 .
  • the deposit head 5 is mounted on a portal frame 6 that has a path 7 along which the head 5 may be moved.
  • the portal 6 is also supported by a column 8 , along which the portal may be moved vertically in direction Z.
  • table 4 portal 6 and column 8 are equipped with appropriate means of automation and motorization constituting means of moving the deposit head 5 in relation to the surface 3 of the support.
  • the deposit head 5 includes a means of deposit 10 , illustrated in more detail in FIG. 2 .
  • the means for deposit 10 are made up of a deposit finger 11 that at its end has a presser head 13 , the surface of which is designed, as will be seen next, to press the reinforcing thread F against the surface 3 of the support 2 .
  • the finger also has a groove 13 1 , to guide the thread to the presser head 13 .
  • the deposit head 5 of course has a means to guide the reinforcing thread F to the finger 11 , which can be implemented in any appropriate fashion, such as by grooves or tubes 14 through which the reinforcing thread F passes.
  • the deposit finger 11 rotates in relation to the head 5 around an axis A. Rotation around this axis is accomplished by motor means that are not shown.
  • the finger 11 moves in relation to the head 5 along the axis A by motor means that are not shown, thus permitting the pressure of the presser head 13 on the surface 3 to be regulated.
  • system 1 also includes means for storing 15 the reinforcing thread F that may be implemented in any appropriate fashion such as, for example, in the form of a reel, not shown.
  • the system 1 also includes means 16 for guiding the reinforcing thread from the means of storage 15 to the deposit head 5 .
  • the means for guiding 16 may be implemented in any appropriate manner, and according to the example illustrated, in the form of a flexible sheath, inside which the reinforcing thread F freely moves.
  • the fabrication system 1 also includes means 20 to command means of moving the head 5 , means of moving the finger 11 , and means of moving the support 2 .
  • the means of command 20 are, for example, implemented in the form of a command unit or a programmable robot adapted to pilot the system so as to ensure the movement of the finger 11 against the support surface 3 and to deposit the thread F in accordance with the invention.
  • the means of command 20 ensure that the deposit head 5 will move in relation to the support surface 3 so as to move the means of deposit 10 against the support surface 3 according to a predetermined trajectory, pressing the reinforcing thread F against the support surface 3 and maintaining the pressing surface 13 tangent to the support surface 3 as shown in FIG. 3 , so that the pressure exerted on the thread F has a normal direction in relation to the support surface 3 .
  • the reinforcing thread F is a thread that is at least in part covered with a thermoplastic powder and the deposit finger 11 then includes a heater 21 that permits the thermoplastic powder to be melted as the thread F is deposited, so as to cause the thread F to adhere first to the surface 3 of the support 2 on the first pass, then to the previous layer of threads in the succeeding passes.
  • the deposit head 5 includes means 22 for leading or advancing the reinforcing thread.
  • the means for leading 22 comprise, for example, a set of rollers 23 that grip the reinforcing thread and that are rotated by motor means (not shown). Rotation of the rollers 23 is governed by the command unit 20 so as to feed the finger 11 with a length of reinforcing thread F that substantially matches the length of the finger trajectory 11 on the surface 3 , so that the reinforcing thread is deposited thereon without tension or pre-constraint.
  • the reinforcing thread F illustrated by dash/dot lines in FIG. 1 , may be deposited in generally ovoid spirals on the same plane as the support plane on the first pass, then, in radial or centrifugal directions for the second pass, then again in spirals for the third pass, and so on, until the desired shape and thickness are obtained.
  • the means of deposit also include means 24 for cutting the thread F guided by the command unit 20 .
  • FIGS. 4 and 5 illustrate another example of implementing the process according to the invention, wherein the preform to be made must have a cylindrical body 30 with a flange 31 .
  • the system and process according to the invention permit the thread to be deposited in successive layers in two perpendicular orientations, as shown comparatively in FIGS. 4 and 5 .
  • the process and system according to the invention ensure that a reinforcing thread is deposited in accordance with a deposit trajectory contained on a radial plane in the reentering angle 32 .
  • FIG. 6 illustrates an example of the trajectory for simultaneously depositing two parallel reinforcing threads.
  • the deposit head may be equipped with different accessories.
  • FIG. 7 illustrates another type of implementation according to which the deposit finger 11 is equipped with means 35 for applying a binder such as, for example, a spray nozzle and means for activating 36 , which in the present case is an ultraviolet ray source.
  • a binder such as, for example, a spray nozzle and means for activating 36 , which in the present case is an ultraviolet ray source.
  • the means of application 35 are a nozzle for depositing a hot-melt resin ahead of the support thread as the support thread is being deposited.
  • system according to the invention may be implemented in any other way and, for example, may use an automaton or robot with articulated arms.

Abstract

Process and system for fabricating a multidirectional fibrous reinforcement designed to be a porous preform for producing a part made of a composite material. Reinforcing thread is deposited in successive layers on a support surface. A binder is provided in association with the reinforcing thread so as to adhere the reinforcing thread to the support surface and the successive layers of thread. The reinforcing thread is pressed against the support surface in a manner that exerts a pressure substantially perpendicular to the support surface at the point where the thread is deposited. The binder may be pre-applied to the support surface or it can be applied simultaneously with the reinforcement thread.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention concerns the technical area of fabricating preforms or multidirectional fibrous reinforcements designed for fabricating parts made of composite materials.
  • 2. Description of Related Art
  • In that technical area it is known, specifically from patent application FR 2 581 379, starting with reinforcing threads, how to make a preform or multidirectional fibrous reinforcement designed to be resin-injected and become a part made of a composite material.
  • Patent application FR 2 581 379 proposed to make preforms for truncated conic or ellipsoid revolving parts, such as jet engine vents, by winding a reinforcing thread that has been pre-impregnated with a binding agent, on a support having teeth, designed to avoid any relative slippage of the thread on the support, so as to preserve a perfectly even distribution of the reinforcing thread on the fibrous reinforcement.
  • Using such a fabrication procedure, it is possible to make spoolable multidirectional fibrous reinforcements that are rotationally symmetrical. However, this fabrication process has the disadvantage of not permitting the fabrication of multidirectional fibrous reinforcements having complex or awkward forms, with no favored axis of rotational symmetry or, again, having locally concave areas, with regard to the general form of the fibrous reinforcement.
  • In addition, the process according to patent application FR 2 581 379 has the disadvantage of placing the reinforcing thread, while it is being laid down, in a state that could be described as a pre-constraint or pre-stressed. The pre-constraint influences the mechanical behavior of the multidirectional fibrous reinforcement and can affect the performance of the part incorporating the fibrous reinforcement.
  • Also, because of the tension applied to the reinforcing thread, winding it requires a deposit path that necessarily corresponds geodesically to the support surface and thus limits the types of reinforcing structures that can be made.
  • Thus arises the need to have a new fabrication process available that permits preforms or multidirectional fibrous reinforcements to be made that can have complex or awkward forms, specifically with locally concave areas and specifically in these areas having reinforcing threads arranged in different directions.
  • SUMMARY OF THE INVENTION
  • In order to attain the above goal, the present invention concerns a fabrication process for a multidirectional fibrous reinforcement designed to be a porous preform for producing a part made of a composite material. The process involves depositing at least one reinforcing thread in successive layers on a support, associated with a binder, so as to ensure that the first layer adheres to the support surface and also that the successive layers are bonded to each other.
  • According to the invention, when the reinforcing thread is laid down, the fabrication process also consists in pressing the reinforcing thread against the support or against a previous layer by exercising pressure substantially perpendicular to the support surface at the point where the thread is laid down.
  • Using a binder associated with pressure on the thread when the thread is laid down allows the reinforcing thread or threads laid down to be very precisely positioned according to predefined curves that do not necessarily correspond to the geodesic lines of the support surface. Thus the process according to the invention allows preforms to be shaped on a level support or, again, preforms to be shaped on a conical support, depositing reinforcing threads around the circumference and according to the surface contours. Of course, the fabrication process according to the invention may be used for various other support forms.
  • According to another characteristic of the invention, the reinforcing thread will advance as it is deposited, so as not to cause any tension in the reinforcing thread and so as to lay it down in its state of repose.
  • This advantage of the invention allows a multidirectional fibrous reinforcement to be made that could be considered as having isotropic behavior or at the very least, as not having a favored direction of resistance caused by thread tension insofar as, according to this characteristic of the invention, the reinforcing threads laid down are free of any pre-constraint.
  • According to the invention, it is possible to use any type of binder compatible with the nature of the multidirectional fibrous reinforcement and with the treatment given the reinforcement, specifically during fabrication of the part made of a composite material.
  • According to a characteristic of the invention, the binder used is activated while the reinforcing thread is being deposited. In this case, the binder will then be first deposited either on the support or on the reinforcing thread.
  • According to another characteristic of the invention, the binder is instead deposited while the reinforcing thread is being deposited and ahead of the point where the reinforcing thread is being deposited.
  • According to the invention, the reinforcing thread may be deposited in any appropriate fashion, manually or even automatically.
  • According to a preferred characteristic, the reinforcing thread is deposited automatically or by means of a robot equipped with a deposit finger that has a presser head designed to exert pressure on the reinforcing thread and a thread guide groove leading to the presser head.
  • According to a preferred characteristic, but not strictly necessary for implementation, pressure perpendicular to the surface of the presser head is exerted on the deposit finger. In addition, the surface of the presser head is preferably kept tangent to the support surface while the reinforcing thread is being laid down.
  • Note that, according to the invention, one or more reinforcing threads may be laid down simultaneously according to parallel deposit trajectories. It may then be possible to use as many deposit fingers as there are reinforcing threads simultaneously deposited.
  • As previously stated, it is possible to use any appropriate type of binder.
  • According to one form of implementing the invention, a thermoplastic powder or a thermosetting powder or a mixture of the two is used as a binder. Among usable thermoplastic powders, the following may be cited as non-limiting examples: polyolefin, polyamide, and polyether sulfone powders, and among the thermosetting powders, epoxy resins with or without a hardening agent, phenol powders and polyester powders may be cited. The process then involves heating the area where the reinforcing thread is deposited. Heating may be achieved at the point of the deposit finger using a heater or a radiant heat source directed towards the area where the reinforcing thread is deposited.
  • Similarly, the powder indicated above may be used in different ways. The powder is either first associated with the reinforcing thread so that it at least partially covers the thread or instead, the powder is projected onto the support surface or onto the preceding layers of reinforcing threads while the reinforcing thread is being deposited.
  • According to the invention, it is also possible to use a support surface that has been first at least partially covered with a thermoplastic and/or thermosetting powder.
  • According to another characteristic of the invention, a resin may also be used as a binder wherein the resin has the same chemical qualities as the powders indicated above and used in a melted state called “hot melt.” The hot-melt resin is then deposited on the support, then on the previous thread layers while the reinforcing thread is being laid down and ahead of the deposit of the reinforcing thread.
  • According to another characteristic of the invention, a thermoplastic thread may be used as a binder wherein the thermoplastic thread is wrapped around the reinforcing thread and then heated at the point of deposit. The thermoplastic thread may be of any appropriate kind, and examples may include, but are not limited to, polyamide, polyolefin, polyether sulfone, polyether ether acetone (PEEK) or polyether imide (PEI) thread.
  • According to another characteristic of the invention, a binder is used that is closely bound to the reinforcing thread to form a hybrid reinforcing thread. Thus it is possible to use thermoplastic filaments as a binder, that are of the same kind as the thermoplastic threads indicated above and that will be mixed with filaments made of reinforcing material, which mixture will be spun to form a hybrid reinforcing material.
  • According to another characteristic of the invention, a pulverizable solution or emulsion of at least one adhesive resin is used as a binder, such as, for example, but not limited to, a polyacrylic, polyvinyl or polyurethane resin.
  • According to the invention the reinforcing thread may be laid down continuously or in discontinuous segments.
  • According to the invention, depending on the type of reinforcing thread and binder used, 0.01-30 bar pressure, preferably 0.1-1 bar, will be applied to the reinforcing thread while it is being laid down.
  • Similarly, depending on the nature of the binder used and the reinforcing thread and, more particularly, if a thermoplastic or thermo-adhesive binder is used, the point of deposition of the reinforcing thread will be heated to a temperature of 50-450° C., preferably 50-150° C.
  • Naturally, the fabrication process according to the invention may use different types of reinforcing threads including but not limited to threads made of carbon, glass, polyester, aramid, metal or even mixtures of those materials.
  • In addition, the term “reinforcing thread” should be understood in the broad sense; it includes, for example, bundles or strands as well as braided threads.
  • The invention also concerns a preform comprising several layers of reinforcing threads arranged in at least two directions and made solid with a binder, characterized in that they are fabricated in accordance with the process according to the invention.
  • According to a preferred, but not strictly necessary characteristic of the invention, the reinforcing threads making up the porous preform are in a state of repose and not subject to any pre-constraint.
  • The invention also concerns a system for using the above fabrication process. Such a system includes the following:
      • a support with a surface having the shape of the fibrous reinforcement to be fabricated;
      • means for storing at least one reinforcing thread;
      • at least one deposit head that includes a means of guiding the reinforcing thread to the means of deposit, having a surface to press the reinforcing thread against the support surface;
      • means to guide the reinforcing thread from the means of storage to the deposit head;
      • means to move the deposit head; and
      • means of commanding the means to move, adapted to ensure moving the deposit head in relation to the support surface so as to move the means of deposit against the support surface according to a predetermined trajectory, pressing the reinforcing thread against the support surface and maintaining the pressing surface tangent to the support surface so that the pressure exerted keeps a normal direction in relation to the support surface.
  • The means of deposit may be implemented in any appropriate manner. According to a preferred form, but not strictly necessary to implement, the means of deposit include at least one deposit finger having a presser head designed to exert pressure on the reinforcing thread against the support and a thread guide groove leading to the presser head.
  • According to another characteristic of the invention, also preferred but not strictly necessary, the system includes means to lead or advance the reinforcing thread as it is laid down so as not to cause any tension in the reinforcing thread.
  • According to yet another characteristic of the invention, the system also includes means to apply a binder.
  • Depending on the nature of the binder used, whether or not applied using the system, the system may also include means to activate the binder that can be implemented in any appropriate fashion. When using a thermoplastic or thermofusible binder, the means of activation include means for heating the deposit area and for pressing the reinforcing thread. The means for heating may be implemented in different ways such as, for example, in the form of a heater incorporated in the deposit finger or again in the form of a radiant source such as, for example, a source of infrared rays.
  • When using a binder resin that polymerizes under ultraviolet rays, the means of activation is a source of ultraviolet rays.
  • Various other characteristics of the process for fabricating the preform and the system necessary to implement the process can be seen in the description below referring to the attached drawings that illustrate one form, preferred but not limiting, for implementing a fabrication system in accordance with the invention, and also non-limiting examples of preforms fabricated according to the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a general view of a system that is one example of a system for implementing the fabrication process according to the invention.
  • FIG. 2 is a detailed view of a means for laying down a reinforcing thread that is part of the system illustrated in FIG. 1.
  • FIG. 3 is a view analogous to FIG. 2, showing the means of deposit in contact with a convex surface.
  • FIGS. 4-6 are views of different phases of fabricating a multidirectional fibrous reinforcement or preform in accordance with the process according to the invention.
  • FIG. 7 illustrates a variant for implementing means of deposit suitable for equipping a system for implementing the fabrication process according to the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention aims to allow the fabrication of a multidirectional fibrous reinforcement that may have an awkward or complex tri-dimensional shape and designed to be a porous preform for producing a part made of a composite material, for example by injecting a resin in the porous preform, previously arranged in a mold.
  • The various techniques for fabricating parts of composite materials from porous preforms are amply known to a person skilled in the art and do not fall under the present invention. Thus it appears not necessary to describe them any further.
  • The invention aims to offer great freedom of form for making a multidirectional fibrous reinforcement in order to permit a large variety of applications. To that end, the invention purposes to use a system such as the one illustrated in FIG. 1 and designated generally at 1. The system 1 enables the automatic or semi-automatic implementation of the process according to the invention.
  • Thus, system 1 comprises a support 2, the support surface 3 of which may be considered as a male or female imprint depending on the application side of the reinforcing thread. In order to facilitate the operation of laying down reinforcing threads, support 2 is bome by a table 4, capable of being moved horizontally according to two orthogonal axes X and Y, and rotated R, again horizontally around a vertical axis.
  • In order to allow the reinforcing thread to be deposited on surface 3 according to the invention, the system 1 also includes at least one and according to the example illustrated, exactly one deposit head 5. In the system example illustrated, the deposit head 5 is mounted on a portal frame 6 that has a path 7 along which the head 5 may be moved.
  • So as to give additional degree of freedom of movement to the deposit head 5, the portal 6 is also supported by a column 8, along which the portal may be moved vertically in direction Z.
  • Note that the table 4, portal 6 and column 8 are equipped with appropriate means of automation and motorization constituting means of moving the deposit head 5 in relation to the surface 3 of the support.
  • So as to ensure, according to the invention, its purpose of laying down a reinforcing thread, the deposit head 5 includes a means of deposit 10, illustrated in more detail in FIG. 2.
  • According to the example illustrated, the means for deposit 10 are made up of a deposit finger 11 that at its end has a presser head 13, the surface of which is designed, as will be seen next, to press the reinforcing thread F against the surface 3 of the support 2. The finger also has a groove 13 1, to guide the thread to the presser head 13. The deposit head 5 of course has a means to guide the reinforcing thread F to the finger 11, which can be implemented in any appropriate fashion, such as by grooves or tubes 14 through which the reinforcing thread F passes. According to the example illustrated, the deposit finger 11 rotates in relation to the head 5 around an axis A. Rotation around this axis is accomplished by motor means that are not shown. Furthermore, the finger 11 moves in relation to the head 5 along the axis A by motor means that are not shown, thus permitting the pressure of the presser head 13 on the surface 3 to be regulated.
  • Note that the system 1 also includes means for storing 15 the reinforcing thread F that may be implemented in any appropriate fashion such as, for example, in the form of a reel, not shown. The system 1 also includes means 16 for guiding the reinforcing thread from the means of storage 15 to the deposit head 5. The means for guiding 16 may be implemented in any appropriate manner, and according to the example illustrated, in the form of a flexible sheath, inside which the reinforcing thread F freely moves.
  • The fabrication system 1 also includes means 20 to command means of moving the head 5, means of moving the finger 11, and means of moving the support 2.
  • The means of command 20 are, for example, implemented in the form of a command unit or a programmable robot adapted to pilot the system so as to ensure the movement of the finger 11 against the support surface 3 and to deposit the thread F in accordance with the invention.
  • The means of command 20 ensure that the deposit head 5 will move in relation to the support surface 3 so as to move the means of deposit 10 against the support surface 3 according to a predetermined trajectory, pressing the reinforcing thread F against the support surface 3 and maintaining the pressing surface 13 tangent to the support surface 3 as shown in FIG. 3, so that the pressure exerted on the thread F has a normal direction in relation to the support surface 3.
  • According to the example illustrated, the reinforcing thread F is a thread that is at least in part covered with a thermoplastic powder and the deposit finger 11 then includes a heater 21 that permits the thermoplastic powder to be melted as the thread F is deposited, so as to cause the thread F to adhere first to the surface 3 of the support 2 on the first pass, then to the previous layer of threads in the succeeding passes.
  • According to a preferred characteristic of the invention, the deposit head 5 includes means 22 for leading or advancing the reinforcing thread. The means for leading 22 comprise, for example, a set of rollers 23 that grip the reinforcing thread and that are rotated by motor means (not shown). Rotation of the rollers 23 is governed by the command unit 20 so as to feed the finger 11 with a length of reinforcing thread F that substantially matches the length of the finger trajectory 11 on the surface 3, so that the reinforcing thread is deposited thereon without tension or pre-constraint.
  • Using the system as specifically illustrated in FIG. 1 permits, for example, the use of a preform to make an airplane window frame, for example. Note that in this case the reinforcing thread F, illustrated by dash/dot lines in FIG. 1, may be deposited in generally ovoid spirals on the same plane as the support plane on the first pass, then, in radial or centrifugal directions for the second pass, then again in spirals for the third pass, and so on, until the desired shape and thickness are obtained.
  • By modifying the dimensions of the different passes it is possible to free or modify the form of the final composite structure, at least partially, from the form of the deposit surface.
  • So that the reinforcing thread F may be deposited in independent or discontinuous segments, the means of deposit also include means 24 for cutting the thread F guided by the command unit 20.
  • FIGS. 4 and 5 illustrate another example of implementing the process according to the invention, wherein the preform to be made must have a cylindrical body 30 with a flange 31. According to this example, the system and process according to the invention permit the thread to be deposited in successive layers in two perpendicular orientations, as shown comparatively in FIGS. 4 and 5. Note that the process and system according to the invention ensure that a reinforcing thread is deposited in accordance with a deposit trajectory contained on a radial plane in the reentering angle 32.
  • FIG. 6 illustrates an example of the trajectory for simultaneously depositing two parallel reinforcing threads.
  • In addition, depending on the type of binder used to ensure that the first layer of threads bonds to the support surface and also that the layers of threads bond to each other, the deposit head may be equipped with different accessories.
  • FIG. 7 illustrates another type of implementation according to which the deposit finger 11 is equipped with means 35 for applying a binder such as, for example, a spray nozzle and means for activating 36, which in the present case is an ultraviolet ray source.
  • According to another implementation of the invention, the means of application 35 are a nozzle for depositing a hot-melt resin ahead of the support thread as the support thread is being deposited.
  • Naturally, various other means of depositing a binder may be envisaged, depending upon the binder used.
  • Similarly, the system according to the invention may be implemented in any other way and, for example, may use an automaton or robot with articulated arms.
  • Various other modifications may also be made to the invention without going beyond its scope as set forth in the following claims.

Claims (39)

1. A process for fabricating a multidirectional fibrous reinforcement designed to be a porous preform for producing a part made of a composite material, said process comprising the steps of:
depositing at least one reinforcing thread in at least two successive layers on a support surface;
providing a binder in association with said reinforcing thread so as to adhere said reinforcing thread to said support surface wherein said binder also provides a bond between said successive layers; and
pressing said reinforcing thread against the support surface during said depositing step in a manner that exerts a pressure substantially perpendicular to said support surface at the point where the thread is deposited.
2. A process for fabricating a multidirectional fibrous reinforcement according to claim 1 wherein said reinforcing thread is advanced as the reinforcing thread is deposited so as not to cause any tension in said reinforcing thread and so as to deposit the thread without tension.
3. A process for fabricating a multidirectional fibrous reinforcement according to claim 1 wherein said step of providing said binder in association with said reinforcing thread comprises the step of activating said binder as the reinforcing thread is deposited.
4. A process for fabricating a multidirectional fibrous reinforcement according to claim 1 wherein said step of providing said binder in association with said reinforcing thread comprises depositing said binder on said support surface ahead of the reinforcing thread while the reinforcing thread is being deposited.
5. A process for fabricating a multidirectional fibrous reinforcement according to claim 1 wherein said step of depositing reinforcing thread is accomplished using a deposit finger having a presser head that is shaped to exert said pressure on the reinforcing thread and a thread guide groove in said deposit finger for leading said reinforcing thread to the presser head.
6. A process for fabricating a multidirectional fibrous reinforcement according to claim 5 wherein said pressure is exerted perpendicular to the surface of the presser head on the deposit finger and wherein the surface of the presser head is kept substantially tangent to the support surface while the reinforcing thread is being deposited thereon.
7. A process for fabricating a multidirectional fibrous reinforcement according to claim 5 wherein said step of depositing reinforcing thread comprises simultaneously depositing several reinforcing threads on said support surface in parallel deposit trajectories.
8. A process for fabricating a multidirectional fibrous reinforcement according to claim 1 wherein said binder comprises a thermoplastic powder and wherein the area where the reinforcing thread is to be deposited is heated.
9. A process for fabricating a multidirectional fibrous reinforcement according to claim 8 wherein said thermoplastic powder is co-deposited onto said support surface with said reinforcing thread.
10. A process for fabricating a multidirectional fibrous reinforcement according to claim 9 wherein said reinforcing thread is covered at least partially with said thermoplastic powder.
11. A process for fabricating a multidirectional fibrous reinforcement according to claim 8 wherein said support surface is covered at least partially with a thermoplastic powder prior to deposition of said reinforcing thread thereon.
12. A process for fabricating a multidirectional fibrous reinforcement according to claim 1 wherein said binder comprises a hot-melt resin that is deposited on said support surface when said reinforcing thread is being deposited thereon and wherein said hot-melt resin is deposited ahead of the deposit of the reinforcing thread on said support surface.
13. A process for fabricating a multidirectional fibrous reinforcement according to claim 1 wherein said binder comprises a thermoplastic thread wrapped around the reinforcing thread to form a binder/reinforcement thread and wherein said binder/reinforcement thread is heated at the point where said binder/reinforcement thread is deposited.
14. A process for fabricating a multidirectional fibrous reinforcement according to claim 1 wherein said binder comprises a pulverizable solution or emulsion of at least one adhesive resin.
15. A process for fabricating a multidirectional fibrous reinforcement according to claim 1 wherein said binder is bound to the reinforcing thread so as to form a hybrid reinforcing thread comprising said binder and said reinforcing thread.
16. A process for fabricating a multidirectional fibrous reinforcement according to claim 1 wherein said reinforcing thread is deposited in discontinuing segments.
17. A process for fabricating a multidirectional fibrous reinforcement according to claim 1 wherein said support surface comprises an area having a concave or convex shape and wherein said reinforcing thread is deposited at least in said area of the support surface that has said concave or convex shape.
18. A process for fabricating a multidirectional fibrous reinforcement according to claim 1 wherein said pressure exerted against said reinforcing thread is between 0.01 and 30 bar.
19. A process for fabricating a multidirectional fibrous reinforcement according to claim 1 wherein the location where the reinforcing thread is deposited on said support surface is heated to a temperature of between 50 and 450° C.
20. A porous preform comprising several layers of reinforcing threads arranged in at least two directions and bound to one another by a binder wherein said porous perform is fabricated in accordance with the process set forth in claim 1.
21. A porous preform according to claim 20, wherein said reinforcing threads are without tension and not subject to any pre-constraint.
22. A system for fabricating a multidirectional fibrous reinforcement, said system comprising:
a support comprising a surface that has the form of the fibrous reinforcement to be fabricated;
means for providing at least one reinforcing thread, at least one deposit head which includes a presser surface for pressing the reinforcing thread against the surface of said support;
means for guiding the reinforcing thread to the presser surface of said deposit head;
means for moving said deposit head in relation to the surface of said support such that the reinforcing thread is pressed against the surface of said support and wherein said presser surface is maintained substantially tangent to the surface of said support so that the pressure exerted by said deposit head is substantially perpendicular to the surface of said support.
23. A system according to claim 22 that comprises a deposit finger that includes said deposit head and wherein said means for guiding the reinforcing thread to the presser surface comprises a thread guide groove located in said deposit finger.
24. A system according to claim 22 wherein said means for guiding the reinforcing thread to the presser surface comprises means for feeding the reinforcing thread to said presser surface so as not to cause any tension in the reinforcing thread.
25. A system according to claim 22 that comprises means for applying a binder to said reinforcing thread.
26. A system according to claims 25 that comprises means for activating said binder.
27. A system according to claim 25 wherein said means for applying said binder in to said reinforcing thread comprises means for depositing said binder on said support surface ahead of the reinforcing thread while the reinforcing thread is being deposited.
28. A system according to claim 22 that includes at least two deposit heads that are oriented so as to provide simultaneous deposit of at least two reinforcing threads on said support surface in parallel deposit trajectories.
29. A system according to claim 25 wherein said binder comprises a thermoplastic powder and wherein said means for activating said binder comprises means for heating the area where the reinforcing thread is deposited.
30. A system according to claim 29 wherein said means for applying said binder comprises means for co-depositing said thermoplastic powder and said reinforcing thread onto said support surface.
31. A system according to claim 25 wherein said means for applying said binder comprises means for covering said reinforcing thread at least partially with said thermoplastic powder prior to depositing said reinforcing thread on the surface of said support.
32. A system according to claim 25 wherein said means for applying said binder comprises means for covering the surface of said support at least partially with a thermoplastic powder prior to deposition of said reinforcing thread thereon.
33. A system according to claim 25 wherein said means for applying said binder comprises means for applying a hot-melt resin on said support surface when said reinforcing thread is being deposited thereon wherein said hot-melt resin is deposited ahead of the deposit of the reinforcing thread on said support surface.
34. A system according to claim 22 wherein said reinforcing thread comprises a thermoplastic thread wrapped around the reinforcing thread to form a binder/reinforcement thread and wherein means for activating said binder/reinforcement thread comprises means for heating the point where said binder/reinforcement thread is deposited.
35. A system according to claim 25 wherein said binder comprises a pulverizable solution or emulsion of at least one adhesive resin.
36. A system according to claim 22 wherein means are provided for depositing said reinforcing thread on the surface of said support in discontinuous segments.
37. A system according to claim 22 wherein said support surface comprises an area having a concave or convex shape.
38. A system according to claim 22 wherein said means for moving said deposit head comprises means for exerting a pressure against said reinforcing thread that is between 0.01 and 30 bar.
39. A system according to claim 26 wherein said means for activating said binder comprises means for heating the location where the reinforcing thread is deposited on said support surface to a temperature of between 50 and 450° C.
US10/820,573 2003-04-17 2004-04-07 Process and system for fabricating a reinforcing preform Active 2024-07-31 US7115180B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0304805 2003-04-17
FR0304805A FR2853914B1 (en) 2003-04-17 2003-04-17 METHOD AND INSTALLATION FOR MANUFACTURING A REINFORCING PREFORM

Publications (2)

Publication Number Publication Date
US20050067731A1 true US20050067731A1 (en) 2005-03-31
US7115180B2 US7115180B2 (en) 2006-10-03

Family

ID=32893381

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/820,573 Active 2024-07-31 US7115180B2 (en) 2003-04-17 2004-04-07 Process and system for fabricating a reinforcing preform

Country Status (7)

Country Link
US (1) US7115180B2 (en)
EP (1) EP1469113B1 (en)
JP (1) JP4708725B2 (en)
AT (1) ATE371048T1 (en)
DE (1) DE602004008366T2 (en)
ES (1) ES2293189T3 (en)
FR (1) FR2853914B1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119002A2 (en) * 2005-05-03 2006-11-09 The Boeing Company Method of manufacturing curved composite structural elements
WO2009077582A1 (en) * 2007-12-19 2009-06-25 Vestas Wind Systems A/S A method for preparing a pre-form
US20090263618A1 (en) * 2008-04-17 2009-10-22 The Boeing Company Method for producing contoured composite structures and structures produced thereby
WO2009077581A3 (en) * 2007-12-19 2009-12-03 Vestas Wind Systems A/S An apparatus for preparing a pre-form
US20110097554A1 (en) * 2008-04-17 2011-04-28 The Boeing Company Curved composite frames and method of making the same
EP2565023A1 (en) * 2011-08-31 2013-03-06 SSM Schärer Schweiter Mettler AG Thread rail and thread laying device
CN104755241A (en) * 2012-10-22 2015-07-01 乌本产权有限公司 Method and device for producing preforms for producing a rotor blade
US9090028B2 (en) 2008-04-17 2015-07-28 The Boeing Company Method for producing contoured composite structures and structures produced thereby
US20150344118A1 (en) * 2013-07-30 2015-12-03 Airbus Helicopters Aircraft fuselage frame made of laminated composite materials and including reinforcement curved zones of varying value of radius of curvature
US9278484B2 (en) 2008-04-17 2016-03-08 The Boeing Company Method and apparatus for producing contoured composite structures and structures produced thereby
EP3623129A3 (en) * 2018-09-14 2020-05-06 REbuild Sp. z o.o. Device for automatic reinforcement of structures, and method for automatic reinforcement of structures
CN111542435A (en) * 2017-12-06 2020-08-14 赛峰航空器发动机 Method for in-situ additive manufacturing of coatings on turbine engine casings
EP3827967A1 (en) 2019-11-26 2021-06-02 Fundación Tecnalia Research & Innovation Method for additive manufacturing of a preform
EP4257321A1 (en) * 2022-04-07 2023-10-11 Siemens Gamesa Renewable Energy A/S Method for manufacturing a preform building element and mold arrangement

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7341086B2 (en) * 2004-10-29 2008-03-11 The Boeing Company Automated fabric layup system and method
FR2889104B1 (en) * 2005-07-29 2009-08-28 Hexcel Reinforcements Soc Par A NOVEL METHOD OF PLACING AT LEAST ONE WIRED ELEMENT, ESPECIALLY ADAPTED TO THE CONSTITUTION OF ANNULAR OR ELLIPSOIDAL TYPE PREFORMS
EP1749643B1 (en) 2005-07-29 2008-12-24 Hexcel Reinforcements Method of placement of at least one wire element, particularly adapted to the forming of annular or ellipsoidal preforms
CN101589127B (en) * 2006-11-21 2012-10-10 汉高公司 Toughened binder compositions for use in advance processes
FR2917330B1 (en) * 2007-06-12 2012-10-05 Hexcel Reinforcements METHOD FOR MANUFACTURING A COMPOSITE MATERIAL IN WHICH AT LEAST ONE TWIN YARN IS REMOVED
BRPI0811456B1 (en) * 2007-06-12 2018-11-27 Hexcel Reinforcements process for obtaining a composite material having at least one twisted wire deposited on it
WO2009156157A1 (en) * 2008-06-25 2009-12-30 Zsk Stickmaschinen Gmbh Device and method for applying a band-shaped material
DE102010004678A1 (en) * 2010-01-15 2011-07-21 KraussMaffei Technologies GmbH, 80997 Apparatus and method for direct sliver spraying
FR2962933B1 (en) 2010-07-22 2012-09-14 Hexcel Reinforcements NEW INTERMEDIATE REINFORCING MATERIAL CONSISTING OF A SET OF SPACED SAIL THREADS
US8919410B2 (en) 2012-03-08 2014-12-30 Fives Machining Systems, Inc. Small flat composite placement system
DE102012102841B3 (en) * 2012-04-02 2013-07-11 Institut Für Verbundwerkstoffe Gmbh Preparing a roving useful for producing a preform of a component from a fiber reinforced plastic, comprises e.g. burning a fuel gas or oxygen mixture in a fuel gas nozzle and applying the heated binder material on and in the roving
FR2999973B1 (en) * 2012-12-21 2015-04-10 Coriolis Composites PROCESS FOR MAKING PREFORMS FROM FIBERS WITH BINDER AND CORRESPONDING MACHINE
DE102016123631A1 (en) 2016-12-07 2018-06-07 MM Printed Composites GmbH Apparatus and method for generating three-dimensional objects and three-dimensional object

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410385A (en) * 1981-01-28 1983-10-18 General Electric Company Method of making a composite article
US4539249A (en) * 1983-09-06 1985-09-03 Textile Products, Incorporated Method and apparatus for producing blends of resinous, thermoplastic fiber, and laminated structures produced therefrom
US4735672A (en) * 1982-05-27 1988-04-05 Lockheed Corporation Automated fiber lay-up machine
US4750960A (en) * 1984-09-10 1988-06-14 Rensselaer Polytechnic Institute Robotic winding system and method
US5213646A (en) * 1988-12-28 1993-05-25 Andrew M. Zsolnay Precision method for placing filaments
US5409757A (en) * 1989-04-17 1995-04-25 Georgia Tech Research Corporation Flexible multiply towpreg tape from powder fusion coated towpreg
US5447586A (en) * 1994-07-12 1995-09-05 E. I. Du Pont De Nemours And Company Control of thermoplastic tow placement
US5518564A (en) * 1992-02-17 1996-05-21 Aerospatiale Societe Nationale Industrielle Method to embody a complex structural piece by wire or strip contact placing
US20020162624A1 (en) * 1999-12-01 2002-11-07 Marco Ebert Method for producing a fiber composite component, and apparatus for producing such a component
US20030196743A1 (en) * 2002-04-17 2003-10-23 Vincent Borbone Apparatus and methods for producing tow based patterns

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2474136A1 (en) * 1980-01-17 1981-07-24 Europ Propulsion ANNULAR THREE-DIMENSIONAL STRUCTURE
GB2105247B (en) * 1981-06-23 1985-04-24 Courtaulds Plc Process for making a fibre-reinforced moulding
US4594122A (en) * 1985-02-26 1986-06-10 E. I. Du Pont De Nemours And Company Apparatus for preparing a contoured preform
JPS61202824A (en) * 1985-03-06 1986-09-08 Suriibondo:Kk Manufacture of stereostructural material
FR2581379B1 (en) * 1985-05-02 1988-07-29 Europ Propulsion PROCESS FOR MANUFACTURING A PREFORM FOR THE PRODUCTION OF A PART IN COMPOSITE MATERIAL
JP2996495B2 (en) * 1990-08-02 1999-12-27 バンドー化学株式会社 Method for producing flexible bag fiber molded product
JPH07290475A (en) * 1994-04-22 1995-11-07 Asahi Koruku Kogyo Kk Method and apparatus for producing resin felt
DE69736005T2 (en) * 1996-10-18 2006-12-28 E.I. Dupont De Nemours And Co., Wilmington FAST METHOD FOR PRODUCING A SUBSTANCE

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410385A (en) * 1981-01-28 1983-10-18 General Electric Company Method of making a composite article
US4735672A (en) * 1982-05-27 1988-04-05 Lockheed Corporation Automated fiber lay-up machine
US4539249A (en) * 1983-09-06 1985-09-03 Textile Products, Incorporated Method and apparatus for producing blends of resinous, thermoplastic fiber, and laminated structures produced therefrom
US4750960A (en) * 1984-09-10 1988-06-14 Rensselaer Polytechnic Institute Robotic winding system and method
US5213646A (en) * 1988-12-28 1993-05-25 Andrew M. Zsolnay Precision method for placing filaments
US5409757A (en) * 1989-04-17 1995-04-25 Georgia Tech Research Corporation Flexible multiply towpreg tape from powder fusion coated towpreg
US5518564A (en) * 1992-02-17 1996-05-21 Aerospatiale Societe Nationale Industrielle Method to embody a complex structural piece by wire or strip contact placing
US5447586A (en) * 1994-07-12 1995-09-05 E. I. Du Pont De Nemours And Company Control of thermoplastic tow placement
US20020162624A1 (en) * 1999-12-01 2002-11-07 Marco Ebert Method for producing a fiber composite component, and apparatus for producing such a component
US20030196743A1 (en) * 2002-04-17 2003-10-23 Vincent Borbone Apparatus and methods for producing tow based patterns

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119002A3 (en) * 2005-05-03 2007-04-05 Boeing Co Method of manufacturing curved composite structural elements
US9630390B2 (en) 2005-05-03 2017-04-25 The Boeing Company Method of manufacturing curved composite structural elements
WO2006119002A2 (en) * 2005-05-03 2006-11-09 The Boeing Company Method of manufacturing curved composite structural elements
US8632653B2 (en) 2005-05-03 2014-01-21 The Boeing Company Method of manufacturing curved composite structural elements
US8580060B2 (en) 2007-12-19 2013-11-12 Vestas Wind Systems A/S Apparatus for preparing a pre-form
WO2009077582A1 (en) * 2007-12-19 2009-06-25 Vestas Wind Systems A/S A method for preparing a pre-form
WO2009077581A3 (en) * 2007-12-19 2009-12-03 Vestas Wind Systems A/S An apparatus for preparing a pre-form
US20100310380A1 (en) * 2007-12-19 2010-12-09 Vestas Wind Systems A/S Method for preparing a pre-form
US20110000608A1 (en) * 2007-12-19 2011-01-06 Vestas Wind Systems A/S Apparatus for preparing a pre-form
US8827655B2 (en) 2007-12-19 2014-09-09 Vestas Wind Systems A/S Method for preparing a pre-form
US20110097554A1 (en) * 2008-04-17 2011-04-28 The Boeing Company Curved composite frames and method of making the same
US9278484B2 (en) 2008-04-17 2016-03-08 The Boeing Company Method and apparatus for producing contoured composite structures and structures produced thereby
US8349105B2 (en) 2008-04-17 2013-01-08 The Boeing Company Curved composite frames and method of making the same
US8932423B2 (en) 2008-04-17 2015-01-13 The Boeing Company Method for producing contoured composite structures and structures produced thereby
US9090028B2 (en) 2008-04-17 2015-07-28 The Boeing Company Method for producing contoured composite structures and structures produced thereby
US9096305B2 (en) 2008-04-17 2015-08-04 The Boeing Company Curved composite frames and method of making the same
US20090263618A1 (en) * 2008-04-17 2009-10-22 The Boeing Company Method for producing contoured composite structures and structures produced thereby
EP2565023A1 (en) * 2011-08-31 2013-03-06 SSM Schärer Schweiter Mettler AG Thread rail and thread laying device
WO2013030192A3 (en) * 2011-08-31 2013-04-25 SSM Schärer Schweiter Mettler AG Thread transfer device
CN104755241A (en) * 2012-10-22 2015-07-01 乌本产权有限公司 Method and device for producing preforms for producing a rotor blade
US9517828B2 (en) * 2013-07-30 2016-12-13 Airbus Helicopters Aircraft fuselage frame made of laminated composite materials and including reinforcement curved zones of varying value of radius of curvature
US20150344118A1 (en) * 2013-07-30 2015-12-03 Airbus Helicopters Aircraft fuselage frame made of laminated composite materials and including reinforcement curved zones of varying value of radius of curvature
CN111542435A (en) * 2017-12-06 2020-08-14 赛峰航空器发动机 Method for in-situ additive manufacturing of coatings on turbine engine casings
EP3623129A3 (en) * 2018-09-14 2020-05-06 REbuild Sp. z o.o. Device for automatic reinforcement of structures, and method for automatic reinforcement of structures
WO2020052836A3 (en) * 2018-09-14 2020-05-07 Rebuild Sp. Z O.O. Device for automatic reinforcement of structures, and method for automatic reinforcement of structures
EP3827967A1 (en) 2019-11-26 2021-06-02 Fundación Tecnalia Research & Innovation Method for additive manufacturing of a preform
EP4257321A1 (en) * 2022-04-07 2023-10-11 Siemens Gamesa Renewable Energy A/S Method for manufacturing a preform building element and mold arrangement
WO2023193994A1 (en) * 2022-04-07 2023-10-12 Siemens Gamesa Renewable Energy A/S Method for manufacturing a preform building element and mold arrangement

Also Published As

Publication number Publication date
JP2004316062A (en) 2004-11-11
EP1469113A1 (en) 2004-10-20
JP4708725B2 (en) 2011-06-22
FR2853914B1 (en) 2005-11-25
ES2293189T3 (en) 2008-03-16
ATE371048T1 (en) 2007-09-15
DE602004008366T2 (en) 2008-05-15
EP1469113B1 (en) 2007-08-22
DE602004008366D1 (en) 2007-10-04
US7115180B2 (en) 2006-10-03
FR2853914A1 (en) 2004-10-22

Similar Documents

Publication Publication Date Title
US7115180B2 (en) Process and system for fabricating a reinforcing preform
JP4933584B2 (en) Manufacturing method of resin-impregnated composite material having multiple orientations
US20170341300A1 (en) Additive Manufacturing Process Continuous Reinforcement Fibers And High Fiber Volume Content
US20180065320A1 (en) Additive manufacturing system having shutter machanism
JP2020505248A (en) Additional manufacturing system that automatically passes reinforcement
US6254710B1 (en) Method and apparatus for making a paint roller
JP2019533587A (en) Additive manufacturing system with variable curing configuration
WO2017124085A1 (en) Continuous and random reinforcement in a 3d printed part
CN111163921A (en) Method for manufacturing an article made of composite material by 3D printing
US11633926B2 (en) Aligned fiber reinforced molding
JP6000330B2 (en) An apparatus and method for producing a fiber preform, which is a preform in particular for producing a fiber-reinforced plastic member
JP7037542B2 (en) The method of processing the fiber, the equipment for processing the fiber and the tape made of the treated fiber obtained thereby.
JPS6034832A (en) Method and device for manufacturing high strength composite structure
US11840022B2 (en) System and method for additive manufacturing
JPH11342233A (en) Carbon fiber reinforced plastic golf shaft
US10919239B2 (en) Method and system for fabricating a composite structure
US20170341978A1 (en) Method and apparatus for resin film infusion
KR101914705B1 (en) Three-dimensional product manufacturing robot system using polymer composite material
JP4072930B2 (en) Manufacturing method and manufacturing apparatus for reinforcing member for pressure vessel
KR102202377B1 (en) Fiber reinforced composite material and methode for manufacturing the same
JPS6055296B2 (en) Manufacturing method of fiber reinforced resin structure
GB2177062A (en) Manufacture of composite material components
WO1999012716A1 (en) Process for producing a hollow body of fibre-reinforced thermoplastic and an arrangement for carrying out the process
JPH04294130A (en) Preparation of fiber-reinforced resin-made t-shaped pipe
JPS61144334A (en) Manufacture of coil-like fiber reinforced plastic laminate

Legal Events

Date Code Title Description
AS Assignment

Owner name: HEXCEL REINFORCEMENTS, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BRUYERE, ALAIN;REEL/FRAME:014629/0839

Effective date: 20040429

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12