US20050063614A1 - Input/output interface for computer aided diagnosis (CAD) system - Google Patents
Input/output interface for computer aided diagnosis (CAD) system Download PDFInfo
- Publication number
- US20050063614A1 US20050063614A1 US10/984,789 US98478904A US2005063614A1 US 20050063614 A1 US20050063614 A1 US 20050063614A1 US 98478904 A US98478904 A US 98478904A US 2005063614 A1 US2005063614 A1 US 2005063614A1
- Authority
- US
- United States
- Prior art keywords
- cad
- user
- input
- computer
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H15/00—ICT specially adapted for medical reports, e.g. generation or transmission thereof
Definitions
- the present invention relates to methods and systems for the computer aided diagnosis (CAD) of abnormalities and digital processing of radiological images. More specifically, the present invention relates to a user interface for an automated method and system for the re-screening and detection of abnormalities.
- CAD computer aided diagnosis
- CAD Computer-aided diagnosis
- U.S. Pat. No. 5,917,929 describes a user interface for facilitating the input of films into a CAD system.
- the user interface includes a scanner that receives and scans the film-based images and a film feeder that holds and transports them to the scanner.
- a touch-sensitive display screen is provided to display status information to and receive instructions from an operator.
- the display screen displays miniature images of the films having color-coded borders, the colors indicating to the operator the stage of the processing of the films.
- the interface also includes a bar code reader and allows the operator to conduct procedures for testing the scanner.
- the object of the current invention is to provide a more flexible user interface for a CAD system with greater capabilities than in prior art user interfaces. More specifically, the current invention has as its objects at least the following: (1) to allow the user to change diagnosis results from the output of the CAD system; (2) to allow the user to manipulate images after the CAD processing; (3) to allow the CAD processor to connect to an image acquisition device such as a film developer, film digitizer or phospher-plate scanner directly without human interface; (4) to allow the CAD processor to connect to multiple image acquisition devices; and (5) to allow the entry of multiple image identification for multiple image scanning.
- the present invention comprises a user interface including an input interface.
- the input interface may accommodate both image inputs and data inputs.
- the input interface may comprise at least one film feeder and at least one image acquisition device. It may further comprise multiple image feeders and scanners. At least one of the image feeders and/or scanners may receive input directly from an image developer.
- the input interface may further comprise means by which to receive digital image inputs, including via wireless communications and via computer networks.
- the invention comprises an output interface including display means.
- the display means may include small “thumbnail” displays of multiple images, and it may also include a large display of a single image.
- the display may include indications of suspected abnormalities detected by CAD processing.
- the display may further accommodate user-identified user-accepted, and user-deleted abnormalities, entered using an input interface.
- the output interface may further include displays of image data and of comments entered by a user. It may also include options and displays for use in conjunction with an input interface.
- a “computer” refers to any apparatus that is capable of accepting a structured input, processing the structured input according to prescribed rules, and producing results of the processing as output.
- Examples of a computer include a computer; a general-purpose computer; a supercomputer; a mainframe; a super mini-computer; a mini-computer; a workstation; a microcomputer; a server; an interactive television; a hybrid combination of a computer and an interactive television; and application-specific hardware to emulate a computer and/or software.
- a computer can have a single processor or multiple processors, which can operate in parallel and/or not in parallel.
- a computer also refers to two or more computers connected together via a network for transmitting or receiving information between the computers.
- An example of such a computer includes a distributed computer system for processing information via computers linked by a network.
- a “computer-readable medium” refers to any storage device used for storing data accessible by a computer. Examples of a computer-readable medium include a magnetic hard disk; a floppy disk; an optical disk, like a CD-ROM or a DVD; a magnetic tape; a memory chip; and a carrier wave used to carry computer-readable electronic data, such as those used in transmitting and receiving e-mail or in accessing a network.
- Software refers to prescribed rules to operate a computer. Examples of software include software; code segments; instructions; computer programs; and programmed logic.
- a “computer system” refers to a system having a computer, where the computer comprises a computer-readable medium embodying software to operate the computer.
- a “network” refers to a number of computers and associated devices that are connected by communication facilities.
- a network involves permanent connections such as cables or temporary connections such as those made through telephone or other communication links, or both.
- Examples of a network include an internet, such as the Internet; an intranet; a local area network (LAN); a wide area network (WAN); and a combination of networks, such as an internet and an intranet.
- a “computer-aided diagnosis (CAD) system” is a computer system that:
- a physician or other health care provider can use the CAD results along with other tools and information to determine the specifics and locations of diseases for the patients.
- FIG. 1 shows a general block diagram of a CAD system
- FIG. 2 shows a block diagram of a CAD system according to one embodiment of the invention, showing an exemplary embodiment of an input interface
- FIG. 3 shows a block diagram of a CAD system according to an embodiment of the invention
- FIG. 4 shows a screen shot demonstrating an embodiment of an interface for inputting image ID numbers using bar codes
- FIGS. 5-8 show screen shots demonstrating embodiments of an output interface according to the invention.
- a chest X-ray based CAD system is used as an example.
- the invention is not, however, limited to such a system, but is applicable to CAD systems, in general.
- the embodiments described here involve a single processing unit connecting with one or multiple image acquisition devices; however, the invention is also applicable to a configuration consisting of multiple processing units.
- the invention comprises a method and system for providing interfaces with a CAD system.
- Such interfaces include both input and output interfaces.
- FIG. 1 shows a block diagram of a typical CAD system.
- the heart of the system is a computer system 2 , which runs software implementing the CAD functionality. Data from users and/or other systems enters computer system 2 through input interface 1 .
- Computer system 2 provides outputs through an output interface 3 . While input interface 1 and output interface 3 are shown as separate blocks, they may be combined as a single input/output interface.
- Input interface 1 may comprise a number of different input devices.
- Computer system 2 may have the capability of interacting with only a single input device; however, it will typically be capable of interacting with multiple input devices.
- user input e.g., alphanumeric data, bar code data, selections/instructions, marks of user-identified or other-devices-identified abnormalities, and the like
- image data e.g., X-ray images, computer tomography (CT) images, and the like.
- Input interface 1 will generally include means for facilitating both types of inputs.
- FIG. 2 shows a block diagram of a computer system capable of receiving input from multiple image input devices.
- computer system 2 and output interface 3 are shown as a single block, labeled “2, 3”, for convenience.
- image input devices are connected to the system 2 , 3 and provide source interfaces with multiple image sources. These devices may include single film scanners 11 , 12 or multiple film scanners 10 , 12 or other image acquisition devices, which would include digitization if the images were not already in digital form. For example, digital image data may be input directly from a digital image source 13 .
- Such other image acquisition devices are intended to include, for example, means for receiving wireless transmissions of images and means for receiving images from a computer network.
- a multiple film scanner can be a single scanner 12 with multi-film feeder 10 , or several scanners 12 , each with a single film feeder 11 , or multiple scanners 12 , each with a multi-film feeder 10 .
- FIG. 3 Yet another image input possibility for a film-based CAD system is for a film scanner to be directly connected to a film processor. This is shown in FIG. 3 .
- film developer 15 is connected to film feeder 14 , which may be either a single film feeder or a multiple film feeder.
- film feeder 14 feeds the film(s) to a film scanner 12 , which provides image input to the CAD system 2 , 3 .
- developed films are thereby automatically sent to the CAD system and processed.
- Output interface 3 generally consists of all devices providing output to the system user. Such devices may include monitors, touch screens, audio speakers, or any other output devices. Output interface 3 , together with input interface 1 permits a user to initiate, control, and review and manipulate results of CAD processing.
- thumbnail images in FIG. 5 may be replaced by a text-only displays for the images, in an alternative embodiment of the invention.
- the results of CAD processing will generally be displayed on the image.
- suspected abnormalities as determined by a CAD system, are shown surrounded by circles 56 . Other shapes may alternatively be used.
- Output interface 3 may enable the user to perform numerous types of post-processing manipulation of CAD results.
- FIG. 6 depicts a screen shot showing display of an image after CAD processing is complete.
- Image display 55 again contains an image, and the image is now a diagnosis image that includes indications of potential abnormalities (e.g., as indicated by reference numeral 62 ) identified by the CAD processing.
- Potential abnormalities may be indicated not only by encirclement, as shown, but by any other means; for example, any shape (not just circles) may be used, arrows may be used, coloring may be used, etc.
- the output interface 3 as shown in FIGS. 6-8 also includes a field 63 having an image data display and a display of options that includes various input options. These input options permit, for example, printouts, image manipulation, and other post-processing functionalities. Image manipulation techniques implemented may include, for example, zoom in/out (i.e., magnification), masking, image rotation, etc.
- FIG. 8 shows a case in which a user has selected magnification button 82 in order to look at a particular region 81 of image display 55 in greater detail.
- a CAD result that is discarded (i.e., disagreed with) by a user is shown having dashed encirclement 73 .
- a user diagnosis, not detected by CAD processing is shown having thick encirclement 74 .
- Many other methods of such indications e.g., different shapes, different colors, etc. are possible.
- the results of the result editing can then be stored as the final results, along with any comments 71 the user may have.
- the output interface shown in FIGS. 6-8 may enable additional functions. For example, a user may select a small region of interest and have the CAD system compute feature parameters on that small region. The user may also select a region of interest and have the CAD system re-examine that region. As with the initial output images from the CAD system, the resulting output images from such operations are then linked to output interface 3 for further examination by the user.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
- This application is a continuation of co-pending U.S. patent application Ser. No. 10/414,292, filed on Apr. 16, 2003, commonly-assigned, having the same title as this application, and which claims the benefit of the priority date of U.S. Provisional Application No. 60/394,239, filed on Jul. 9, 2002. Both of these applications are incorporated herein by reference in their entireties.
- 1. Field of the Invention
- The present invention relates to methods and systems for the computer aided diagnosis (CAD) of abnormalities and digital processing of radiological images. More specifically, the present invention relates to a user interface for an automated method and system for the re-screening and detection of abnormalities.
- 2. Background Art
- Computer-aided diagnosis (CAD) systems use digital processing methods to assist users in the identification of abnormalities. U.S. Pat. No. 5,917,929 describes a user interface for facilitating the input of films into a CAD system. The user interface includes a scanner that receives and scans the film-based images and a film feeder that holds and transports them to the scanner. A touch-sensitive display screen is provided to display status information to and receive instructions from an operator. The display screen displays miniature images of the films having color-coded borders, the colors indicating to the operator the stage of the processing of the films. The interface also includes a bar code reader and allows the operator to conduct procedures for testing the scanner. However, there are a number of capabilities, in addition to the above, that could be furnished, but are not.
- The object of the current invention is to provide a more flexible user interface for a CAD system with greater capabilities than in prior art user interfaces. More specifically, the current invention has as its objects at least the following: (1) to allow the user to change diagnosis results from the output of the CAD system; (2) to allow the user to manipulate images after the CAD processing; (3) to allow the CAD processor to connect to an image acquisition device such as a film developer, film digitizer or phospher-plate scanner directly without human interface; (4) to allow the CAD processor to connect to multiple image acquisition devices; and (5) to allow the entry of multiple image identification for multiple image scanning.
- In one embodiment, the present invention comprises a user interface including an input interface. The input interface may accommodate both image inputs and data inputs. To accommodate image input, the input interface may comprise at least one film feeder and at least one image acquisition device. It may further comprise multiple image feeders and scanners. At least one of the image feeders and/or scanners may receive input directly from an image developer. The input interface may further comprise means by which to receive digital image inputs, including via wireless communications and via computer networks.
- To accommodate data inputs, the input interface may comprise a keyboard, a keypad, a mouse, a bar code reader, and/or other input devices. It may further include a voice interface and/or a writing interface (e.g., a digital tablet). Such data inputs may also be furnished via wireless means or via computer networks.
- In another embodiment, the invention comprises an output interface including display means. The display means may include small “thumbnail” displays of multiple images, and it may also include a large display of a single image. The display may include indications of suspected abnormalities detected by CAD processing. The display may further accommodate user-identified user-accepted, and user-deleted abnormalities, entered using an input interface.
- The output interface may further include displays of image data and of comments entered by a user. It may also include options and displays for use in conjunction with an input interface.
- Definitions
- In describing the invention, the following definitions are applicable throughout (including above).
- A “computer” refers to any apparatus that is capable of accepting a structured input, processing the structured input according to prescribed rules, and producing results of the processing as output. Examples of a computer include a computer; a general-purpose computer; a supercomputer; a mainframe; a super mini-computer; a mini-computer; a workstation; a microcomputer; a server; an interactive television; a hybrid combination of a computer and an interactive television; and application-specific hardware to emulate a computer and/or software. A computer can have a single processor or multiple processors, which can operate in parallel and/or not in parallel. A computer also refers to two or more computers connected together via a network for transmitting or receiving information between the computers. An example of such a computer includes a distributed computer system for processing information via computers linked by a network.
- A “computer-readable medium” refers to any storage device used for storing data accessible by a computer. Examples of a computer-readable medium include a magnetic hard disk; a floppy disk; an optical disk, like a CD-ROM or a DVD; a magnetic tape; a memory chip; and a carrier wave used to carry computer-readable electronic data, such as those used in transmitting and receiving e-mail or in accessing a network.
- “Software” refers to prescribed rules to operate a computer. Examples of software include software; code segments; instructions; computer programs; and programmed logic.
- A “computer system” refers to a system having a computer, where the computer comprises a computer-readable medium embodying software to operate the computer.
- A “network” refers to a number of computers and associated devices that are connected by communication facilities. A network involves permanent connections such as cables or temporary connections such as those made through telephone or other communication links, or both. Examples of a network include an internet, such as the Internet; an intranet; a local area network (LAN); a wide area network (WAN); and a combination of networks, such as an internet and an intranet.
- A “computer-aided diagnosis (CAD) system” is a computer system that:
-
- receives patients' diagnosis images such as patients' x-ray images, pap smears, mammograms, or the like;
- processes patients' diagnosis images; and
- generates CAD results indicating either potential abnormalities at specific locations (for example, the location of a disease) in the patients' diagnosis images or potential abnormalities appearing on entire patients' diagnosis images. (CAD usually only indicates that the image may have some abnormality but does not specify the specific location on the image.)
- A physician or other health care provider can use the CAD results along with other tools and information to determine the specifics and locations of diseases for the patients.
- Embodiments of the invention will now be described in conjunction with the accompanying drawings, in which:
-
FIG. 1 shows a general block diagram of a CAD system; -
FIG. 2 shows a block diagram of a CAD system according to one embodiment of the invention, showing an exemplary embodiment of an input interface; -
FIG. 3 shows a block diagram of a CAD system according to an embodiment of the invention; -
FIG. 4 shows a screen shot demonstrating an embodiment of an interface for inputting image ID numbers using bar codes; and -
FIGS. 5-8 show screen shots demonstrating embodiments of an output interface according to the invention. - In this disclosure, a chest X-ray based CAD system is used as an example. The invention is not, however, limited to such a system, but is applicable to CAD systems, in general. Furthermore, the embodiments described here involve a single processing unit connecting with one or multiple image acquisition devices; however, the invention is also applicable to a configuration consisting of multiple processing units.
- The invention comprises a method and system for providing interfaces with a CAD system. Such interfaces include both input and output interfaces.
-
FIG. 1 shows a block diagram of a typical CAD system. The heart of the system is acomputer system 2, which runs software implementing the CAD functionality. Data from users and/or other systems enterscomputer system 2 throughinput interface 1.Computer system 2 provides outputs through anoutput interface 3. Whileinput interface 1 andoutput interface 3 are shown as separate blocks, they may be combined as a single input/output interface. -
Input interface 1 may comprise a number of different input devices.Computer system 2 may have the capability of interacting with only a single input device; however, it will typically be capable of interacting with multiple input devices. In general, there are two types of inputs: user input (e.g., alphanumeric data, bar code data, selections/instructions, marks of user-identified or other-devices-identified abnormalities, and the like) and image data (e.g., X-ray images, computer tomography (CT) images, and the like).Input interface 1 will generally include means for facilitating both types of inputs. -
FIG. 2 shows a block diagram of a computer system capable of receiving input from multiple image input devices. InFIG. 2 ,computer system 2 andoutput interface 3 are shown as a single block, labeled “2, 3”, for convenience. As shown inFIG. 2 , image input devices are connected to thesystem single film scanners multiple film scanners digital image source 13. Such other image acquisition devices are intended to include, for example, means for receiving wireless transmissions of images and means for receiving images from a computer network. As shown, a multiple film scanner can be asingle scanner 12 withmulti-film feeder 10, orseveral scanners 12, each with asingle film feeder 11, ormultiple scanners 12, each with amulti-film feeder 10. - There are several types of film scanners on the market. One exemplary type is a laser scanner made by Lumysis (now part of Kodak). The Lumysis scanner emits laser light and uses a photo multiplier to acquire the signal. Another type of scanner is a CCD scanner, like those produced by Howtek and Vidar. The Vidar scanner emits fluorescence light and uses a CCD to acquire the image, whereas the Howtek scanner emits narrow-bandwidth light and uses a CCD to acquire the image. The Vidar scanner, used in an exemplary system embodiment, can accept up to twenty-five films at a time in its feeder.
- Yet another image input possibility for a film-based CAD system is for a film scanner to be directly connected to a film processor. This is shown in
FIG. 3 . As shown,film developer 15 is connected to filmfeeder 14, which may be either a single film feeder or a multiple film feeder. As inFIG. 2 ,film feeder 14 feeds the film(s) to afilm scanner 12, which provides image input to theCAD system -
Input interface 1 may further facilitate multiple image ID management using bar codes or data entered using a numeric keypad, keyboard, network (for example, over an Internet connection), or other input devices.FIG. 4 shows an exemplary implementation of the invention using a bar code image ID input function (i.e.,FIG. 4 is a screen shot of what would be displayed to the user; the display itself is technically part of output interface 3). In this implementation, a user can use bar codes to input multiple image IDs prior to the film scanning (or other image input). The user may, alternatively, use a keyboard, keypad, or other means for inputting image IDs. During film scanning (image input) processing, each ID will be assigned to each digitized image in a pre-sorted order or according to some other predetermined order, which may be determined by a user. - As discussed above,
input interface 1 also generally includes devices to facilitate user input. Such devices may include, for example, a numeric keypad, a keyboard, a mouse, an electronic pen, a touch screen (which would be ahybrid input interface 1/output interface 3), or a voice interface. Inputs made using such devices may be used for either or both purposes of inputting data about images and inputting information necessary to run the CAD system (e.g., telling the system to run, entering parameters, accepting and rejecting marks/indications associated with abnormalities identified by the CAD system, adding a new mark/indication identified by the user, selecting images, etc.). In the case of a voice interface, exemplary voice interfaces include a voice-activated device that could be used to operate the CAD system and/or a voice recording device to record a physician's diagnosis or other comments. -
Output interface 3 generally consists of all devices providing output to the system user. Such devices may include monitors, touch screens, audio speakers, or any other output devices.Output interface 3, together withinput interface 1 permits a user to initiate, control, and review and manipulate results of CAD processing. - A particular embodiment of an
output interface 3 of a CAD system according to the present invention allows a user, in either a new diagnosis result or result modified from the CAD result, to -
- Accept CAD results by keeping some or all CAD results;
- Reject CAD results by removing some or all CAD results;
- Add new diagnosis result(s);
- Apply any combination of the above to generate a final diagnosis result.
Particular embodiments ofoutput interface 3 that support these functions will be discussed below.
-
FIG. 5 shows a screen shot depicting exemplary features for implementing the functions discussed above.FIG. 5 includes a mosaic arrangement/image management display 51 consisting of multiple thumbnail images, where a display of image identification data is included for each image. The individual thumbnail images may be implemented with means by which to indicate processing status to a user; this may be done in a number of ways. For example, in U.S. Pat. No. 5,917,929, aborder 52 of each thumbnail image takes on a different color at each stage of processing. This could be similarly implemented using a dot that turns a different color to indicate each stage of processing. Alternatively, a number of different colored dots could be used for each image, with each color associated with a different stage of processing; in this implementation one dot, indicating the current stage of processing for the image, would be brighter than the others (similar to colored lights being turned on and off). In another embodiment, this function is implemented by means of an alphanumeric display associated with each thumbnail image, the alphanumeric display indicating the stage of processing of the associated image; this may be in the form of a statement of the stage of processing or a code indicating the stage. In yet another embodiment, the display indicating the stage of processing may be in the form of a pictorial display for each thumbnail image including one or more symbols indicating the stage of processing. - The thumbnail images in
FIG. 5 may be replaced by a text-only displays for the images, in an alternative embodiment of the invention. -
FIG. 5 also includes animage display 55 of a CAD result or other image.Image display 55 preferably comprises at least one-fourth of the total available area of the screen, in order to provide the user with an image suitable for careful inspection. The image to be displayed in theimage display 55 may be selected by a user.Image display 55 may also be outfitted withscale indicators 57.Scale indicators 57 may be provided in units of inches, centimeters, etc.; in an exemplary embodiment of the invention, the units are user-selected. In an exemplary embodiment of the invention,image display 55 may be capable of supporting various output image resolutions (for example, 37.5, 75, 150, 300, 600 dpi); furthermore, the output image resolution may be user-selectable. - When the image displayed in the
image display 55 represents a CAD output, the results of CAD processing will generally be displayed on the image. InFIG. 5 , suspected abnormalities, as determined by a CAD system, are shown surrounded bycircles 56. Other shapes may alternatively be used. - The screen shown in
FIG. 5 also includes aninformation display field 54.Information display field 54 may be used to display, for example, date, time, operator, patient ID number, or other similar information. InFIG. 5 ,information display field 54 shows an exemplary embodiment in which the information displayed is taken from a portion of an image input indicating such information as previously described. - The
output interface 3 may also serve as part ofinput interface 1. InFIG. 5 , a display ofoptions 53 contains several different “buttons” for selection by a user, using an input device (e.g., mouse, electronic pen, etc.). In the exemplary embodiment shown, the user can perform such functions as setting up an ID range, requesting a printout, directing the system to perform cancer detection, etc. -
Output interface 3 may enable the user to perform numerous types of post-processing manipulation of CAD results.FIG. 6 depicts a screen shot showing display of an image after CAD processing is complete.Image display 55 again contains an image, and the image is now a diagnosis image that includes indications of potential abnormalities (e.g., as indicated by reference numeral 62) identified by the CAD processing. Potential abnormalities may be indicated not only by encirclement, as shown, but by any other means; for example, any shape (not just circles) may be used, arrows may be used, coloring may be used, etc. - The output interface shown in
FIG. 6 also provides adisplay 61 for showing comments provided by a user (e.g., a physician). The user may enter such comments by any known means, for example, a keyboard, a keypad, a voice interface, a handwriting interface (tablet), a bar code reader, etc.Such comments 71 are shown, for example, inFIGS. 7 and 8 . - The
output interface 3 as shown inFIGS. 6-8 also includes afield 63 having an image data display and a display of options that includes various input options. These input options permit, for example, printouts, image manipulation, and other post-processing functionalities. Image manipulation techniques implemented may include, for example, zoom in/out (i.e., magnification), masking, image rotation, etc.FIG. 8 , in particular, shows a case in which a user has selectedmagnification button 82 in order to look at aparticular region 81 ofimage display 55 in greater detail. - Another important function enabled by
output interface 3 is what may be termed, “result editing.” Such result editing involves the user reviewing the CAD findings (as shown, e.g., byreference numeral 62 inFIG. 6 ) and making decisions regarding them. The user may agree or disagree with the CAD findings, may delete any or all of them, and may add his or her own diagnostic findings to the image, using a pointing device (e.g., mouse, electronic pen, etc.).FIG. 7 depicts one exemplary way in which such result editing might be implemented. Inimage display 55, a CAD result that is confirmed (i.e., agreed with) by a user is shown havingthin encirclement 72. A CAD result that is discarded (i.e., disagreed with) by a user is shown having dashedencirclement 73. Finally, a user diagnosis, not detected by CAD processing, is shown havingthick encirclement 74. Many other methods of such indications (e.g., different shapes, different colors, etc.) are possible. The results of the result editing can then be stored as the final results, along with anycomments 71 the user may have. - The output interface shown in
FIGS. 6-8 may enable additional functions. For example, a user may select a small region of interest and have the CAD system compute feature parameters on that small region. The user may also select a region of interest and have the CAD system re-examine that region. As with the initial output images from the CAD system, the resulting output images from such operations are then linked tooutput interface 3 for further examination by the user. - The invention has been described in detail with respect to preferred embodiments, and it will now be apparent from the foregoing to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects. The invention, therefore, as defined in the appended claims, is intended to cover all such changes and modifications as fall within the true spirit of the invention.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/984,789 US20050063614A1 (en) | 2002-07-09 | 2004-11-10 | Input/output interface for computer aided diagnosis (CAD) system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39423902P | 2002-07-09 | 2002-07-09 | |
US10/414,292 US6873717B2 (en) | 2002-07-09 | 2003-04-16 | Input/output interface for computer aided diagnosis (CAD) system |
US10/984,789 US20050063614A1 (en) | 2002-07-09 | 2004-11-10 | Input/output interface for computer aided diagnosis (CAD) system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/414,292 Continuation US6873717B2 (en) | 2002-07-09 | 2003-04-16 | Input/output interface for computer aided diagnosis (CAD) system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050063614A1 true US20050063614A1 (en) | 2005-03-24 |
Family
ID=30118405
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/414,292 Expired - Fee Related US6873717B2 (en) | 2002-07-09 | 2003-04-16 | Input/output interface for computer aided diagnosis (CAD) system |
US10/984,789 Abandoned US20050063614A1 (en) | 2002-07-09 | 2004-11-10 | Input/output interface for computer aided diagnosis (CAD) system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/414,292 Expired - Fee Related US6873717B2 (en) | 2002-07-09 | 2003-04-16 | Input/output interface for computer aided diagnosis (CAD) system |
Country Status (6)
Country | Link |
---|---|
US (2) | US6873717B2 (en) |
EP (1) | EP1540573A1 (en) |
JP (1) | JP2006502751A (en) |
CN (1) | CN1666221A (en) |
AU (1) | AU2003251544A1 (en) |
WO (1) | WO2004006167A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102081496A (en) * | 2009-11-30 | 2011-06-01 | 索尼公司 | Information processing apparatus, method, and computer-readable medium |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2004266022B2 (en) * | 2003-08-13 | 2009-03-05 | Siemens Healthcare Gmbh | Computer-aided decision support systems and methods |
US7929740B2 (en) * | 2004-11-26 | 2011-04-19 | Hologic, Inc. | User definable scanning protocols for use with mammographic computer-aided detection and film scanning systems |
US20060126909A1 (en) * | 2004-11-26 | 2006-06-15 | Julian Marshall | Monitoring and control of mammographic computer-aided detection processing |
US7729523B2 (en) * | 2004-12-21 | 2010-06-01 | General Electric Company | Method and system for viewing image data |
AU2006254689B2 (en) * | 2005-06-02 | 2012-03-08 | Salient Imaging, Inc. | System and method of computer-aided detection |
US7889896B2 (en) * | 2005-08-18 | 2011-02-15 | Hologic, Inc. | Patient worklist management in digital radiography review workstations |
US8014576B2 (en) * | 2005-11-23 | 2011-09-06 | The Medipattern Corporation | Method and system of computer-aided quantitative and qualitative analysis of medical images |
WO2007089227A2 (en) * | 2006-02-01 | 2007-08-09 | Ansul, Incorporated | Fire suppression system design tool |
US8194947B2 (en) * | 2006-11-21 | 2012-06-05 | Hologic, Inc. | Facilitating comparison of medical images |
CN101464861A (en) * | 2007-12-21 | 2009-06-24 | Ge医疗系统环球技术有限公司 | Medical image information management system and program product |
CN102361594B (en) * | 2009-03-26 | 2014-10-29 | 皇家飞利浦电子股份有限公司 | Pet/ct based therapy monitoring system supported by a clinical guideline navigator |
BR112012024955B1 (en) * | 2010-03-31 | 2021-12-07 | Interdigital Ce Patent Holdings | METHOD, DEVICE AND PROCESSOR-READable MEDIA FOR 3D DISPARITY MAPS |
WO2014012475A1 (en) * | 2012-07-16 | 2014-01-23 | 北京怡和嘉业医疗科技有限公司 | Remote information transmission method for medical equipment, and medical equipment |
US10929904B1 (en) | 2012-10-23 | 2021-02-23 | Protolabs, Inc. | Automated fabrication price quoting and fabrication ordering for computer-modeled structures |
KR102043133B1 (en) * | 2012-11-16 | 2019-11-12 | 삼성전자주식회사 | Computer-aided diagnosis supporting apparatus and method |
US9606701B1 (en) | 2013-10-14 | 2017-03-28 | Benko, LLC | Automated recommended joining data with presented methods for joining in computer-modeled structures |
US10373183B1 (en) | 2013-10-16 | 2019-08-06 | Alekhine, Llc | Automatic firm fabrication price quoting and fabrication ordering for computer-modeled joining features and related structures |
US11537765B1 (en) | 2014-02-20 | 2022-12-27 | Benko, LLC | Placement and pricing of part marks in computer-modeled structures |
US11410224B1 (en) * | 2014-03-28 | 2022-08-09 | Desprez, Llc | Methods and software for requesting a pricing in an electronic marketplace using a user-modifiable spectrum interface |
US10552882B1 (en) | 2014-05-20 | 2020-02-04 | Desprez, Llc | Methods and software for enabling custom pricing in an electronic commerce system |
US10713394B1 (en) | 2014-06-12 | 2020-07-14 | Benko, LLC | Filtering components compatible with a computer-modeled structure |
US11392396B1 (en) | 2014-06-24 | 2022-07-19 | Desprez, Llc | Systems and methods for automated help |
US10025805B1 (en) | 2014-06-24 | 2018-07-17 | Benko, LLC | Systems and methods for automated help |
US10460342B1 (en) | 2014-08-12 | 2019-10-29 | Benko, LLC | Methods and software for providing targeted advertising to a product program |
US9613020B1 (en) * | 2014-09-15 | 2017-04-04 | Benko, LLC | Natural language user interface for computer-aided design systems |
US10162337B2 (en) * | 2014-09-15 | 2018-12-25 | Desprez, Llc | Natural language user interface for computer-aided design systems |
US11599086B2 (en) | 2014-09-15 | 2023-03-07 | Desprez, Llc | Natural language user interface for computer-aided design systems |
US10095217B2 (en) * | 2014-09-15 | 2018-10-09 | Desprez, Llc | Natural language user interface for computer-aided design systems |
US11023934B1 (en) | 2014-10-30 | 2021-06-01 | Desprez, Llc | Business variable optimization for manufacture or supply of designed products |
US11276095B1 (en) | 2014-10-30 | 2022-03-15 | Desprez, Llc | Methods and software for a pricing-method-agnostic ecommerce marketplace for manufacturing services |
US10073439B1 (en) | 2014-10-31 | 2018-09-11 | Desprez, Llc | Methods, systems, and software for processing expedited production or supply of designed products |
US11415961B1 (en) | 2014-10-31 | 2022-08-16 | Desprez, Llc | Automated correlation of modeled product and preferred manufacturers |
US10235009B1 (en) | 2014-10-31 | 2019-03-19 | Desprez, Llc | Product variable optimization for manufacture or supply of designed products |
US10836110B2 (en) | 2014-10-31 | 2020-11-17 | Desprez, Llc | Method and system for ordering expedited production or supply of designed products |
US11004126B1 (en) | 2016-03-17 | 2021-05-11 | Desprez, Llc | Systems, methods, and software for generating, customizing, and automatedly e-mailing a request for quotation for fabricating a computer-modeled structure from within a CAD program |
US10803501B1 (en) | 2015-03-17 | 2020-10-13 | Desprez, Llc | Systems, methods, and software for generating, customizing, and automatedly e-mailing a request for quotation for fabricating a computer-modeled structure from within a CAD program |
US11423449B1 (en) | 2016-03-23 | 2022-08-23 | Desprez, Llc | Electronic pricing machine configured to generate prices based on supplier willingness and a user interface therefor |
US10556309B1 (en) | 2016-03-24 | 2020-02-11 | Proto Labs Inc. | Methods of subtractively manufacturing a plurality of discrete objects from a single workpiece using a removable fixating material |
US10401824B2 (en) | 2016-04-14 | 2019-09-03 | The Rapid Manufacturing Group LLC | Methods and software for reducing machining equipment usage when machining multiple objects from a single workpiece |
US10545481B2 (en) | 2016-12-28 | 2020-01-28 | Proto Labs Inc | Methods and software for providing graphical representations of a plurality of objects in a central through opening |
JPWO2022113798A1 (en) * | 2020-11-25 | 2022-06-02 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4945476A (en) * | 1988-02-26 | 1990-07-31 | Elsevier Science Publishing Company, Inc. | Interactive system and method for creating and editing a knowledge base for use as a computerized aid to the cognitive process of diagnosis |
US5235510A (en) * | 1990-11-22 | 1993-08-10 | Kabushiki Kaisha Toshiba | Computer-aided diagnosis system for medical use |
US5799101A (en) * | 1994-09-30 | 1998-08-25 | Neopath, Inc. | Method and apparatus for highly efficient computer aided screening |
US5878746A (en) * | 1993-08-25 | 1999-03-09 | Lemelson; Jerome H. | Computerized medical diagnostic system |
US5917929A (en) * | 1996-07-23 | 1999-06-29 | R2 Technology, Inc. | User interface for computer aided diagnosis system |
US5987345A (en) * | 1996-11-29 | 1999-11-16 | Arch Development Corporation | Method and system for displaying medical images |
US6246745B1 (en) * | 1999-10-29 | 2001-06-12 | Compumed, Inc. | Method and apparatus for determining bone mineral density |
US6283761B1 (en) * | 1992-09-08 | 2001-09-04 | Raymond Anthony Joao | Apparatus and method for processing and/or for providing healthcare information and/or healthcare-related information |
US6434262B2 (en) * | 1993-09-29 | 2002-08-13 | Shih-Ping Wang | Computer-aided diagnosis system and method |
US6606400B1 (en) * | 1998-08-20 | 2003-08-12 | Fuji Photo Film Co., Ltd. | Abnormal pattern detection processing method and system |
US6630937B2 (en) * | 1997-10-30 | 2003-10-07 | University Of South Florida | Workstation interface for use in digital mammography and associated methods |
-
2003
- 2003-04-16 US US10/414,292 patent/US6873717B2/en not_active Expired - Fee Related
- 2003-06-19 CN CN03816194XA patent/CN1666221A/en active Pending
- 2003-06-19 AU AU2003251544A patent/AU2003251544A1/en not_active Abandoned
- 2003-06-19 EP EP03762997A patent/EP1540573A1/en not_active Withdrawn
- 2003-06-19 JP JP2004519605A patent/JP2006502751A/en active Pending
- 2003-06-19 WO PCT/US2003/019087 patent/WO2004006167A1/en active Application Filing
-
2004
- 2004-11-10 US US10/984,789 patent/US20050063614A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4945476A (en) * | 1988-02-26 | 1990-07-31 | Elsevier Science Publishing Company, Inc. | Interactive system and method for creating and editing a knowledge base for use as a computerized aid to the cognitive process of diagnosis |
US5235510A (en) * | 1990-11-22 | 1993-08-10 | Kabushiki Kaisha Toshiba | Computer-aided diagnosis system for medical use |
US6283761B1 (en) * | 1992-09-08 | 2001-09-04 | Raymond Anthony Joao | Apparatus and method for processing and/or for providing healthcare information and/or healthcare-related information |
US5878746A (en) * | 1993-08-25 | 1999-03-09 | Lemelson; Jerome H. | Computerized medical diagnostic system |
US6434262B2 (en) * | 1993-09-29 | 2002-08-13 | Shih-Ping Wang | Computer-aided diagnosis system and method |
US6628815B2 (en) * | 1993-09-29 | 2003-09-30 | Shih-Ping Wang | Computer-aided diagnosis system and method |
US5799101A (en) * | 1994-09-30 | 1998-08-25 | Neopath, Inc. | Method and apparatus for highly efficient computer aided screening |
US5917929A (en) * | 1996-07-23 | 1999-06-29 | R2 Technology, Inc. | User interface for computer aided diagnosis system |
US5987345A (en) * | 1996-11-29 | 1999-11-16 | Arch Development Corporation | Method and system for displaying medical images |
US6630937B2 (en) * | 1997-10-30 | 2003-10-07 | University Of South Florida | Workstation interface for use in digital mammography and associated methods |
US6606400B1 (en) * | 1998-08-20 | 2003-08-12 | Fuji Photo Film Co., Ltd. | Abnormal pattern detection processing method and system |
US6246745B1 (en) * | 1999-10-29 | 2001-06-12 | Compumed, Inc. | Method and apparatus for determining bone mineral density |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102081496A (en) * | 2009-11-30 | 2011-06-01 | 索尼公司 | Information processing apparatus, method, and computer-readable medium |
Also Published As
Publication number | Publication date |
---|---|
AU2003251544A1 (en) | 2004-01-23 |
US6873717B2 (en) | 2005-03-29 |
EP1540573A1 (en) | 2005-06-15 |
WO2004006167A1 (en) | 2004-01-15 |
JP2006502751A (en) | 2006-01-26 |
CN1666221A (en) | 2005-09-07 |
US20040008876A1 (en) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6873717B2 (en) | Input/output interface for computer aided diagnosis (CAD) system | |
CN1615489B (en) | Image reporting method and system | |
JP3083606B2 (en) | Medical diagnosis support system | |
US6597762B1 (en) | Method and apparatus of lesion detection and validation based on multiple reviews of a CT image | |
CN103460213B (en) | Image acquisition and/or image-related parameter recommender | |
JP4706941B2 (en) | Image acquisition / display apparatus and method for editing photographing conditions using the apparatus | |
US20110028825A1 (en) | Systems and methods for efficient imaging | |
US20050111733A1 (en) | Automated digitized film slicing and registration tool | |
JP2003506797A (en) | Methods and systems for generating reports | |
JP4744926B2 (en) | Medical image display device and medical image display method | |
US20030110178A1 (en) | Method and system of tracking medical films and associated digital images for computer-aided and diagnostic analysis | |
JP2005537101A (en) | Patient identification method for X-ray film user interface | |
JP5537088B2 (en) | Medical image display device and medical image management system | |
JP3788510B2 (en) | Medical image apparatus, display screen transition method and screen transition program in the apparatus | |
CN1672176A (en) | System and method for assigning a computer aided detection application to a digital image | |
JP2003284709A (en) | Image acquisition display device and radiographing condition editing method using the same, and radiographing condition arranging program | |
JP6579849B2 (en) | Interpretation report creation support system, interpretation report creation support method, and interpretation report creation support program | |
WO2009107644A1 (en) | Medical image management device, printing screen display method and program | |
ZA200500063B (en) | Input/outpu for computer aided diagnosis (CAD) system | |
JP2009232970A (en) | Medical image managing device, printed image order setting method and program | |
JP2004290225A (en) | Medical image processor, medical network system and program for medical image processor | |
JP2009211118A (en) | Medical image management device, printed image order setting method, and program | |
JP2005073818A (en) | Medical image displaying device, medical image storage searching system | |
JP2009207508A (en) | Medical image management device, output image display method and program | |
JP2004113444A (en) | Medical image processor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CETUS CORP., OHIO Free format text: SECURITY INTEREST;ASSIGNOR:RIVERAIN MEDICAL GROUP, LLC;REEL/FRAME:015841/0352 Effective date: 20050303 |
|
AS | Assignment |
Owner name: CETUS CORP., OHIO Free format text: AMENDED ASSIGNMENT FOR SECURITY;ASSIGNOR:RIVERAIN MEDICAL GROUP, LLC;REEL/FRAME:021861/0704 Effective date: 20081110 Owner name: CETUS CORP.,OHIO Free format text: AMENDED ASSIGNMENT FOR SECURITY;ASSIGNOR:RIVERAIN MEDICAL GROUP, LLC;REEL/FRAME:021861/0704 Effective date: 20081110 |
|
AS | Assignment |
Owner name: RCDI INVESTMENTS, INC., OHIO Free format text: PARTIAL ASSIGNMENT FOR SECURITY;ASSIGNOR:CETUS CORP.;REEL/FRAME:021876/0269 Effective date: 20081020 Owner name: RCDI INVESTMENTS, INC.,OHIO Free format text: PARTIAL ASSIGNMENT FOR SECURITY;ASSIGNOR:CETUS CORP.;REEL/FRAME:021876/0269 Effective date: 20081020 |
|
AS | Assignment |
Owner name: RCDI INVESTMENTS, INC., OHIO Free format text: ASSIGNMENT FOR SECURITY;ASSIGNOR:RIVERAIN MEDICAL GROUP, LLC;REEL/FRAME:021901/0560 Effective date: 20081020 Owner name: RCDI INVESTMENTS, INC.,OHIO Free format text: ASSIGNMENT FOR SECURITY;ASSIGNOR:RIVERAIN MEDICAL GROUP, LLC;REEL/FRAME:021901/0560 Effective date: 20081020 |
|
AS | Assignment |
Owner name: RIVERAIN EQUITY INVESTMENTS III, LLC, OHIO Free format text: ASSIGNMENT FOR SECURITY;ASSIGNOR:RIVERAIN MEDICAL GROUP, LLC;REEL/FRAME:022203/0925 Effective date: 20081020 Owner name: RIVERAIN EQUITY INVESTMENTS III, LLC,OHIO Free format text: ASSIGNMENT FOR SECURITY;ASSIGNOR:RIVERAIN MEDICAL GROUP, LLC;REEL/FRAME:022203/0925 Effective date: 20081020 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |