US20050039883A1 - High flux heat removal system using liquid ice - Google Patents

High flux heat removal system using liquid ice Download PDF

Info

Publication number
US20050039883A1
US20050039883A1 US10/945,714 US94571404A US2005039883A1 US 20050039883 A1 US20050039883 A1 US 20050039883A1 US 94571404 A US94571404 A US 94571404A US 2005039883 A1 US2005039883 A1 US 2005039883A1
Authority
US
United States
Prior art keywords
ice
liquid ice
heat
liquid
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/945,714
Inventor
Gary Kramer
Richard Frankel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/945,714 priority Critical patent/US20050039883A1/en
Publication of US20050039883A1 publication Critical patent/US20050039883A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20345Sprayers; Atomizers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • F25C5/24Distributing ice for storing bins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • H01L23/4735Jet impingement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • F25C1/14Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/16Producing ice by partially evaporating water in a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2301/00Special arrangements or features for producing ice
    • F25C2301/002Producing ice slurries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/908Fluid jets

Definitions

  • the present invention relates to cooling systems and, more particularly, to cooling systems for electrical apparatus.
  • the present invention provides a cooling system for apparatus powered by electricity, that generates a substantial amount of heat during operation, and the heat must be dissipated to avoid failure of electrical and/or electronic components, such as semiconductor devices and integrated circuits, comprising the electrical apparatus.
  • one embodiment of the present invention provides a cooling system preferably employing liquid ice jet impinged on a heat sink thermally coupled to electrical apparatus, and the attendant phase changes of the liquid ice first to water and then to steam to remove a substantial amount of waste heat to prevent failure of the electrical apparatus.
  • Cooling is an important process associated with operation of high-density electronic devices.
  • Existing waste heat removal technology is limited to approximately 100 W/cm 2 .
  • spray cooling with water is a known cooling technique to remove heat from electronics relatively efficiently. See, Kuszewski and Zerby, supra. In situations where cooling very hot surfaces or protecting sensitive surfaces from overheating is important, then the most effective technique available is direct impact by impingement jets (not necessarily sprays).
  • impingement jets not necessarily sprays.
  • the reverse side of a mounting plate, on which the electronic devices are disposed, is sprayed by high velocity impinging jets of water. The heat generated by the electronics is removed at constant temperature by the liquid vapor phase of the water.
  • the challenge presented by the need to conduct waste heat from electronic devices efficiently and to provide removal of waste heat on the order of 1,000 W/cm 2 at a rate that will maintain the operating temperature of electronic devices at or below 125° C. is imposing.
  • the 125° C. limit requires efficient heat transfer to sink heat away from the electronic apparatus.
  • the high heat flux (1,000 W/cm 2 ) furher requires an effective heat removal process to maintain the operating temperature of electronic devices at or below the 125° C. limit.
  • One embodiment of the present invention provides a cooling system for thermally conducting and removing high heat flux waste heat.
  • the cooling system in accordance with one embodiment of the present invention employs a refrigerant or coolant, preferably, liquid ice, and, preferably, at reduced pressure to improve high heat flux waste heat removal by a factor of ten times over known cooling techniques.
  • One embodiment of the cooling system in accordance with the present invention is especially suitable to the challenge of removing high heat flux waste heat resulting from operation of power electronics given the severe limitation on the maximum operating temperature allowable for electronic devices.
  • One preferred embodiment of the cooling system in accordance with the present invention provides a heat transfer plate consisting of copper, aluminum, silver, or another suitable thermally conductive material, such as beryllium oxide ceramic, boron nitride, aluminum nitride ceramic, or diamond, with high tensile strength to enable efficient heat transfer by thermal conduction, in thermal contact with the electrical apparatus.
  • the heat transfer plate also serves as a structural component of a circulation subsystem that contains the refrigerant or coolant. Impinging jets deliver copious amounts of a refrigerant or coolant to the hot surface of the heat transfer plate opposite the side on which the electronic apparatus is disposed in thermal contact with the heat transfer plate.
  • jet impingement of a refrigerant or coolant in the form of liquid ice is employed.
  • Jet impingement of liquid ice is provided on the heat transfer plate at atmospheric pressure or at a reduced pressure.
  • the liquid ice may be maintained at less than atmospheric pressure, for example, in a partial vacuum, wherein the temperatures associated with phase changes of melting and boiling are lowered.
  • FIG. 1 is a block diagram of one embodiment of the cooling system in accordance with the present invention employing liquid ice as a refrigerant or coolant.
  • the principle underlying the cooling system in accordance with one embodiment of the present invention is the substantial amount of heat that is required to transition ice to water and then water to steam.
  • the cooling system of the present invention therefore pertains to two distinct operating regimes in cooling, namely, the heat of fusion incident to the phase change of ice to water at 0° C. and the heat of evaporation incident to the subsequent phase change of water to steam at 100° C. These phase changes occur very rapidly when liquid ice is employed as a refrigerant or coolant exposed to waste heat on the order of 1,000 W/cm 2 .
  • One gram of liquid water at 100° C. must absorb 540 calories of thermal energy in order to vaporize, forming steam.
  • the 540 calories required to vaporize a gram of water at 100° C. is a relatively large amount of energy, much more than the amount required to bring a gram of ice at absolute zero ( ⁇ 273° C.) to boiling water at 100° C.
  • Bubbles of vapor typically form in the water and are buoyed to the surface, where they escape. Bubbles form at the boiling temperature, when the pressure of the vapor within them is great enough to resist the pressure exerted by the surrounding liquid phase water, which is determined in part by the atmospheric pressure. Lowering the pressure lowers the boiling temperature.
  • the embodiments in accordance with the present invention provide a cooling system implementing a novel thermal management method to remove waste heat from electrical apparatus and/or electronic devices, such as power semiconductors, with heat flux densities on the order of 1,000 W/cm 2 .
  • the embodiments of the present invention also maintain the semiconductor junctions at 125° C. or below with no waste heat added into the workspace.
  • liquid ice means liquid ice, slurry ice, pumpable ice, slush ice, binary ice, and equivalent material.
  • Liquid ice typically consists of a suspension of relatively small (100-700 microns effective diameter) ice crystals in a mixture of water and freezing point depressant.
  • the ice in the water comprises crystals no greater than 200 microns effective diameter, although it is conceivable that many crystals of the ice may form clusters, the aggregate size of which is greater.
  • Liquid ice at concentrations in the range of 5-30% water by weight, has flow properties approximating those of water, i.e., the liquid ice can be handled, unlike normal ice, by standard equipment, such as pumps, pipes, and nozzles. Unlike slowly melting normal ice, liquid ice undergoes near instantaneous phase change because of the vast surface area to volume ratio of the microscopic liquid ice crystals.
  • Typical freezing point depressants include salts (for example, NaCl), ethanol, methanol, propylene glycol, or ethylene glycol.
  • Other contemplated freezing point depressants include sodium bicarbonate, sugar, acetic acid, citric acid, and Talin. A mixture of any of the freezing point depressants can also be used.
  • the seawater which already contains salt, can be pumped through an icemaker to create ice crystals within the seawater.
  • the substance used as the freezing point depressant and the concentration in water largely determine the characteristics of the resulting liquid ice. See, ASHRAE Research Project 1166, “Behavior of ice slurry in thermal storage systems,” 2002.
  • X ice 1 ⁇ X 0 /X cf
  • X ice is the equilibrium ice concentration in suspension
  • X cf is the mass concentration of freezing point depressant in liquid phase
  • X 0 is the overall initial concentration of depressant.
  • Ice crystals in a liquid ice mixture are formed from pure water. As the number and size of ice crystals increase, the concentration of freezing point depressant in the remaining fluid increases until equilibrium is reached where no further ice formation at the operating temperature of the cooling system occurs. Since the ice generated consists of pure water only, the concentration of freezing point depressant in the remaining mixture rises and acts to “lubricate” the liquid ice, preventing localized melting and re-freezing that would otherwise cause agglomeration. At concentrations of up to 5-40% water by weight, liquid ice is relatively easy to produce (at approximately ⁇ 2° C.) and store and has flow properties approximating those of water, allowing the liquid ice to be handled by standard equipment, such as pumps, pipes, and nozzles.
  • the percentage of ice to water by weight is above 20% and below 40%.
  • any percentage of ice will be effective as long as the liquid ice is pumpable.
  • liquid ice At a 20% concentration, liquid ice has approximately six times the cooling capacity of water at 6° C., and the latent heat needed to melt the ice content is about 70 kJ per kilogram of mixture.
  • the volumetric flow rate of liquid ice having a 20% concentration of solids may be three to eight times lower than that of chilled water to obtain the same cooling effect. See, Bellas J, Chaer I, and Tassou S A, “Heat transfer and pressure drop of ice slurries in plate heat exchangers,” Proc. 6 th UK Heat Transfer Conference, I. Chem. E., Nottingham, England, 2001.
  • liquid ice is the refrigerant or coolant, at atmospheric pressure or at a subatmospheric pressure.
  • the preferred embodiment in accordance with the present invention makes use of liquid ice at a subatmospheric pressure.
  • the particular vapor-compression cycle of the cooling system shown in FIG. 1 is a high waste heat removal cycle employing active components including a chiller, evacuator, an array of spray nozzles, and condensers.
  • the preferred embodiment of the active high flux heat removal cooling system in accordance with the present invention illustrates an application using liquid ice.
  • the liquid ice is made from a mixture of water and ethanol, because ethanol reduces the boiling point as it depresses the freezing point of the binary solution. A reduced boiling point allows more flexibility in choosing the material used to shield the electrical apparatus from direct contact with the liquid ice.
  • the cooling system preferably employs a 30% ice mixture concentration to provide more than 1,000 BTU/hr per pound of liquid ice flowing with an inlet temperature of ⁇ 2° C. and a boiling point of +80° C. in a partial vacuum of 6.72 psia, as shown in FIG. 1 .
  • Liquid ice in bulk form or in a fluidized bed provides exceptionally high cooling rates at solid surfaces.
  • the cooling system comprises a heat transfer plate 10 consisting of copper, aluminum, silver, or another suitable thermally conductive material, such as beryllium oxide ceramic, boron nitride, aluminum oxide ceramic, or diamond, with high tensile strength to enable efficient heat transfer by thermal conduction.
  • the external electrical apparatus for example, electronic devices, that generate the input heat flux indicated in FIG. 1 , are disposed in heat transfer relationship with the heat transfer plate 10 , for example, the electrical apparatus can be mounted in thermal contact with the heat transfer plate.
  • the heat transfer plate 10 is thin to maximize the thermal gradient and avoid heat stored in the heat transfer plate.
  • the thickness of the heat transfer plate 10 is on the order of approximately one to two millimeters and has a thickness that is the minimum thickness that enables the heat transfer plate to provide the structural portion of the circulation subsystem at the location at which the liquid ice removes high heat flux from the heat transfer plate.
  • the heat transfer plate 10 comprises all or a portion of a wall of a vacuum tank 12 .
  • the heat transfer plate 10 must have sufficient structural integrity to withstand external atmospheric pressure. Because the heat transfer plate 10 forms a portion of the cooling system, in order to have a heat transfer plate thin enough to provide effective heat transfer, the heat transfer plate can be internally reinforced, for example, by means of a honeycomb material 14 , to prevent implosion under atmospheric pressure if the cooling system is operated at subatmospheric pressure. If the honeycomb material 14 is used for reinforcement, jets of liquid ice are preferably directed at the centers of the honeycomb openings to optimize heat transfer efficiency.
  • Honeycomb material 14 attached to the heat transfer plate 10 may help increase the heat transfer rate via the finning effect and by controlling the allocation of a portion of the hot surface to each jet flow.
  • a series of parallel slots may also be beneficial, with some slots dedicated to vapor removal and sized appropriately.
  • the cooling system further comprises a liquid ice generator 16 .
  • the liquid ice generator 16 can be a commercially available scraped surface ice slurry generator (for example, a Sunwell ice generator), an orbital rod system, or a vacuum ice system chiller. The latter type is shown in FIG. 1 and can provide up to 10,000 tons/day of liquid ice.
  • the liquid ice generator 16 can be modulated from idle to full power either proportionally or by on/off cycling determined by a controller 18 .
  • a cooling water supply 20 is connected to the liquid ice generator 16 to provide cooling for the internal compressor of the liquid ice generator (not shown).
  • the liquid ice generator 16 is connected by a pipe 22 to an inlet located proximate the top of a liquid ice reservoir 24 .
  • An outlet located proximate the bottom of the liquid ice reservoir 24 is connected through a pipe 26 to a first variable frequency drive (VFD) controlled liquid pump 28 that returns liquid ice to the liquid ice generator 16 to maintain the temperature of the liquid ice in the liquid ice reservoir at a predetermined temperature, for example, ⁇ 2° C.
  • VFD variable frequency drive
  • a stirring pump 30 maintains the liquid ice mixture uniformly isothermal.
  • the stirring pump 30 recirculates the liquid ice mixture through a pipe 32 connected between an outlet proximate the bottom of the liquid ice reservoir 24 and an inlet proximate the top of the liquid ice reservoir.
  • a second VFD controlled liquid pump 34 delivers the liquid ice mixture through a pipe 36 from the liquid ice reservoir 24 to an array of orifices 38 that cause jet impingement of the liquid ice on the heat transfer plate 10 .
  • the heat transfer plate 10 is constructed of a suitable material with high heat conductivity. Materials such as copper or aluminum are preferred. If, however, an electrically insulating material is needed, then diamond, beryllium oxide ceramic, boron nitride, or aluminum nitride ceramic can be used. The material may be chosen by tensile strength to heat conductivity ratio. The thicker the heat transfer plate 10 , the lower the temperature on the cooled side must be.
  • the temperature of the side that is cooled would need to be +80° C. in order to conduct 1,000 W/cm 2 through the heat transfer plate 10 , if the temperature on the side heated by the electrical apparatus were to be maintained at 125° C.
  • the thickness of the heat transfer plate 10 would be correspondingly reduced. Maximizing exposed surface area of the cooled side of the heat transfer plate 10 by judicious use of finning is preferred in order to increase surface area and increase cooling efficiency.
  • the array of orifices 38 can comprise relatively large aperture nozzles through which the liquid ice can be pumped.
  • the array of orifices 38 can comprise a matrix of pressure jet nozzles having a diameter of approximately 2 millimeters.
  • a carefully arranged array of round nozzles can be more effective than a slot nozzle system for a given mass flow of liquid ice, but depending on the geometry of the surface to be cooled, slots can be superior.
  • the second VFD controlled liquid pump 34 can be controlled by the controller 18 to provide continuous or pulsating jet operation by the array of orifices 38 . It should be noted that high-speed jets can cause cavitation and erosion of metals. (The leading edges of aircraft wings are damaged in this way when they fly through rainstorms.) This sets an upper limit on jet speed and has material property implications such that the choice of material for the heat transfer plate 10 and the design of the heat transfer plate are both important when using liquid ice.
  • the first VFD controlled liquid pump 28 pumps the spent liquid through a pipe 40 that preferably connects to the pipe 26 so that the liquid is returned to the liquid ice generator 16 .
  • a heat exchanger 42 is interconnected in the pipe 40 , and the heat exchanger is connected to a cooling water supply 44 . The heat exchanger 42 cools the liquid with cooling water to reduce the load of the liquid ice generator 16 .
  • a vacuum pump 46 preferably evacuates the vacuum tank 12 to a predetermined reduced pressure, for example, a partial vacuum of approximately 6.72 psia.
  • a predetermined reduced pressure for example, a partial vacuum of approximately 6.72 psia.
  • the steam resulting from boiling of the melted liquid ice is discharged by the vacuum pump 46 and is preferably condensed by a condenser heat exchanger 48 connected to a cooling water supply 50 . From there, the condensate is pumped by the first VFD controlled liquid pump 28 through a pipe 52 that preferably connects to the pipe 26 so that the condensate is returned to the liquid ice generator 16 .
  • the controller 18 controls the VFD controlled liquid pumps 28 and 34 to adjust the flow from the liquid ice generator 16 and the liquid ice reservoir 24 for varying thermal loads.
  • Temperature sensors 54 , 56 , 58 , and 60 provide feedback information to the controller 18 to allow the variable load adjustments.
  • the temperature sensors 54 , 56 , 58 , and 60 can be RTDs (Resistance Temperature Devices), thermocouples, or thermistors, for example.
  • an inlet 62 is provided at the top of the liquid ice reservoir 24 to initially charge the cooling system with water and freezing point depressant or to add water and/or freezing point depressant during operation. If the cooling system is installed on board a ship, seawater can be supplied through the inlet 62 for use in the production of liquid ice.
  • the active vapor-compression cycle cooling system shown in FIG. 1 employing low-pressure liquid ice as a refrigerant or coolant, provides an efficient high flux heat removal system.
  • Heat is removed from the primary heat source, such as semiconductor modules, in thermal contact with the heat transfer plate 10 using liquid ice impinged on the heat transfer plate by the array of orifices 38 . Since approximately 70% of the liquid ice is water, the impinging jet is believed to consist of droplets of water/freezing point depressant, larger particles of ice with most of the liquid stripped from them during jet impingement, and droplets of water containing the smallest ice particles.
  • the ice particles and ice-containing droplets are most likely to reach the heat transfer plate 10 to provide improved cooling, while the liquid-only droplets will be the first to vaporize.
  • the liquid ice is produced by the liquid ice generator 16 , using water and a freezing point depressant, preferably ethanol, and stored in the liquid ice reservoir 24 from which the liquid ice is pumped by the second VFD controlled liquid pump 34 as and when required.
  • the heat absorbed by the liquid ice, causing the liquid ice to undergo phase changes first to liquid and then to steam, is dissipated by the heat exchanger 42 and condenser 48 , and residual liquid and condensate are recirculated to the liquid ice generator 16 .
  • the cooling system can be operated at atmospheric pressure (1 bar).
  • Operating at atmospheric pressure has advantages including obviating the need for the honeycomb material 14 and enabling the thickness of the heat transfer plate 10 to be decreased for improved thermal conduction.
  • Inclusion of the vacuum pump 46 is preferred even if the cooling system is operated at atmospheric pressure. Unless the steam is drawn out of the vacuum tank 12 , the pressure will rise and directly raise the liquid boiling temperature, reducing the cooling efficiency.
  • the heat exchanger 42 is cooled by the cooling water supply 44
  • the condenser 48 is cooled by the cooling water supply 50 .
  • variable performance can result because of the non-constant temperature of seawater. Consequently, one contemplated modification to the embodiments of the present invention is to substitute a liquid ice cooling supply for one or both of the cooling water supplies 44 , 50 .
  • the liquid ice can be fed from the liquid ice reservoir 24 or from an auxiliary liquid ice reservoir.
  • the final step in dissipating the heat would continue to use cooling water, for example, seawater, either directly in the condenser of the liquid ice generator 16 , or through heat transfer panels built into the side of a ship, for example, assuming that sufficient surface area exists.
  • cooling water for example, seawater
  • the cooling system can advantageously control thermal load shifting and storage for the cooling system.
  • the cooling system in accordance with the present invention enables improved cooling of electrical apparatus that generates substantial waste heat, for example, waste heat on the order of 1,000 W/cm 2 .
  • waste heat on the order of 1,000 W/cm 2 .
  • the liquid ice can be atomized by passing it through a conventional pressure jet nozzle, in a manner similar to water mist systems.
  • an ice mist can be created by pumping liquid ice having a 20-25% concentration through a 500-micron nozzle at 70 bar.
  • liquid ice is also a superior cooling fluid for both medium- and low-density heat exchange applications.
  • the liquid ice is applied directly to a thermally conducting barrier.
  • the liquid ice can be used to chill a secondary liquid in which the hot components of a conventional fluorochemical closed loop cooling system are immersed.
  • the liquid ice can be used for air chilling.
  • the cooling system can integrate within the overall cooling services aboard a ship via a liquid ice generator and thermal energy storage tank.

Abstract

A cooling system for apparatus powered by electricity, that generates a substantial amount of heat during operation, and the heat must be dissipated to avoid failure of electrical and/or electronic components, such as semiconductor devices and integrated circuits, comprising the electrical apparatus. The cooling system employs liquid ice impinged on a heat sink thermally coupled with electrical apparatus. The attendant phase changes of the liquid ice first to water and then to steam remove a substantial amount of waste heat to prevent failure of the electrical apparatus.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to cooling systems and, more particularly, to cooling systems for electrical apparatus. Generally, the present invention provides a cooling system for apparatus powered by electricity, that generates a substantial amount of heat during operation, and the heat must be dissipated to avoid failure of electrical and/or electronic components, such as semiconductor devices and integrated circuits, comprising the electrical apparatus. Specifically, one embodiment of the present invention provides a cooling system preferably employing liquid ice jet impinged on a heat sink thermally coupled to electrical apparatus, and the attendant phase changes of the liquid ice first to water and then to steam to remove a substantial amount of waste heat to prevent failure of the electrical apparatus.
  • 2. Description of the Prior Art
  • Cooling is an important process associated with operation of high-density electronic devices. Existing waste heat removal technology is limited to approximately 100 W/cm2.
  • In the next ten years, the power density of high-power electronics is expected to increase and generate waste heat that will exceed 1,000 W/cm2. Thermal management technology capable of removing waste heat of 1,000 W/cm2 produced by advanced power electronic devices is needed.
  • For example, the U.S. Department of Navy has reported that the cooling requirements are expected to increase at least an order of magnitude during the next decade. As stated in “Next Generation Navy Thermal Management Program,” CARDIVNSWC-TR-82-2002/12, by Michael Kuszewski and Mark Zerby, Naval Surface Warfare Center:
      • “It is expected that heat fluxes for new technologies such as Advanced Radar will exceed 1000 W/cm2, and some advanced weapons may be higher. These heat fluxes are expected to be present by the end of this decade. Heat fluxes are growing so fast in the electronics arena that even Intel, who has been designing its Thermal Management Systems to handle less than 100 W/cm2, has extrapolated its increase of heat flux to reach 1000 W/cm2 before the end of this decade.”
  • Accordingly, the U.S. Navy recently published RFQ N03-T022 Acquisition Program: DD(X); CVN(X) having the:
      • “OBJECTIVE: To develop advanced thermal management technologies to improve high flux waste heat removal by a factor of 10× over existing technologies in electronic devices.”
        Also,
      • “The proposed solution must be able to keep the semiconductor junction below 125F [sic, 125C]. . . . ”
  • Considered in more detail, spray cooling with water is a known cooling technique to remove heat from electronics relatively efficiently. See, Kuszewski and Zerby, supra. In situations where cooling very hot surfaces or protecting sensitive surfaces from overheating is important, then the most effective technique available is direct impact by impingement jets (not necessarily sprays). The reverse side of a mounting plate, on which the electronic devices are disposed, is sprayed by high velocity impinging jets of water. The heat generated by the electronics is removed at constant temperature by the liquid vapor phase of the water.
  • The heat transfer processes involved in water sprays impinging on hot surfaces have been studied by, among others, Bernardin J D, and Mudawar I, “Film boiling heat transfer of droplet streams and sprays,” Intl. J. Heat Mass Transfer, 40 (11), 2579-2593 (1997). Rockwell has also published a paper that reports having achieved removal of 1,000 W/cm2 using a water jet plus boiling. However, Rockwell was only able to cool a very small area (unspecified).
  • The challenge presented by the need to conduct waste heat from electronic devices efficiently and to provide removal of waste heat on the order of 1,000 W/cm2 at a rate that will maintain the operating temperature of electronic devices at or below 125° C. is imposing. The 125° C. limit requires efficient heat transfer to sink heat away from the electronic apparatus. The high heat flux (1,000 W/cm2) furher requires an effective heat removal process to maintain the operating temperature of electronic devices at or below the 125° C. limit.
  • It would therefore be desirable to provide removal of waste heat from electronic devices to maintain the operating temperature of electronic devices at or below 125° C. It would also be desirable to remove waste heat at a rate to prevent the operating temperature of electronic devices from exceeding the 125° C. limit. Furthermore, it would be desirable to achieve these objectives for electrical apparatus that generates waste heat on the order of 1,000 W/cm2.
  • SUMMARY OF THE INVENTION
  • One embodiment of the present invention provides a cooling system for thermally conducting and removing high heat flux waste heat. The cooling system in accordance with one embodiment of the present invention employs a refrigerant or coolant, preferably, liquid ice, and, preferably, at reduced pressure to improve high heat flux waste heat removal by a factor of ten times over known cooling techniques. One embodiment of the cooling system in accordance with the present invention is especially suitable to the challenge of removing high heat flux waste heat resulting from operation of power electronics given the severe limitation on the maximum operating temperature allowable for electronic devices.
  • One preferred embodiment of the cooling system in accordance with the present invention provides a heat transfer plate consisting of copper, aluminum, silver, or another suitable thermally conductive material, such as beryllium oxide ceramic, boron nitride, aluminum nitride ceramic, or diamond, with high tensile strength to enable efficient heat transfer by thermal conduction, in thermal contact with the electrical apparatus. The heat transfer plate also serves as a structural component of a circulation subsystem that contains the refrigerant or coolant. Impinging jets deliver copious amounts of a refrigerant or coolant to the hot surface of the heat transfer plate opposite the side on which the electronic apparatus is disposed in thermal contact with the heat transfer plate. In a preferred embodiment of the present invention, jet impingement of a refrigerant or coolant in the form of liquid ice is employed.
  • Jet impingement of liquid ice is provided on the heat transfer plate at atmospheric pressure or at a reduced pressure. Preferably, the liquid ice may be maintained at less than atmospheric pressure, for example, in a partial vacuum, wherein the temperatures associated with phase changes of melting and boiling are lowered.
  • With the operating temperature of electronic devices required to be at 125° C. or below, and the temperature of the liquid ice at approximately −2° C., there is a large temperature differential and two phase changes as the liquid ice first transforms to water and then to steam to effect heat removal and cooling as the steam is circulated by the circulation subsystem away from the heat transfer plate. In addition, the super-cooled liquid consisting of liquid ice maintains steam bubbles associated with melted liquid ice boiling small, resulting in more effective heat transfer. Finally, use of liquid ice as a refrigerant or coolant is compatible with cooling systems aboard ships operated by the U.S. Navy, thereby satisfying the apparent desirability and advantage to integrate the cooling system in accordance with the embodiments of the present invention with other cooling systems on a ship (for example, air conditioning systems).
  • The foregoing and other objects, features, and advantages of the present invention will become more readily apparent from the following detailed description of various embodiments, which proceeds with reference to the accompanying drawing.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The various embodiments of the present invention will be described in conjunction with the accompanying figure of the drawing to facilitate an understanding of the present invention. In the drawing:
  • FIG. 1 is a block diagram of one embodiment of the cooling system in accordance with the present invention employing liquid ice as a refrigerant or coolant.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The principle underlying the cooling system in accordance with one embodiment of the present invention is the substantial amount of heat that is required to transition ice to water and then water to steam. The cooling system of the present invention therefore pertains to two distinct operating regimes in cooling, namely, the heat of fusion incident to the phase change of ice to water at 0° C. and the heat of evaporation incident to the subsequent phase change of water to steam at 100° C. These phase changes occur very rapidly when liquid ice is employed as a refrigerant or coolant exposed to waste heat on the order of 1,000 W/cm2.
  • Considered in more detail, at 0° C., the temperature of ice ceases to rise, even though heat continues to be applied and absorbed. The reason for this phenomenon is added heat is used to break crystal bonds in the ice. Melting one gram of ice requires 80 calories/gram.
  • Only when all of the ice melts does the temperature of the resulting water begin to rise. Then, each calorie absorbed by the water increases the water temperature by 1° C. until the boiling temperature, 100° C., is reached. At this point, the 100° C. temperature remains constant as heat is applied until the boiling water is vaporized to steam.
  • One gram of liquid water at 100° C. must absorb 540 calories of thermal energy in order to vaporize, forming steam. The 540 calories required to vaporize a gram of water at 100° C. is a relatively large amount of energy, much more than the amount required to bring a gram of ice at absolute zero (−273° C.) to boiling water at 100° C.
  • It should also be noted that evaporation occurs beneath the surface of liquid water in the boiling process. Bubbles of vapor typically form in the water and are buoyed to the surface, where they escape. Bubbles form at the boiling temperature, when the pressure of the vapor within them is great enough to resist the pressure exerted by the surrounding liquid phase water, which is determined in part by the atmospheric pressure. Lowering the pressure lowers the boiling temperature.
  • The embodiments in accordance with the present invention provide a cooling system implementing a novel thermal management method to remove waste heat from electrical apparatus and/or electronic devices, such as power semiconductors, with heat flux densities on the order of 1,000 W/cm2. The embodiments of the present invention also maintain the semiconductor junctions at 125° C. or below with no waste heat added into the workspace.
  • The cooling system for removing waste heat from electronic devices using the refrigerant or coolant will be described below. The refrigerant or coolant employed in accordance with the embodiments of the present invention is generally referred to as “liquid ice.” The term “liquid ice” means liquid ice, slurry ice, pumpable ice, slush ice, binary ice, and equivalent material. Liquid ice typically consists of a suspension of relatively small (100-700 microns effective diameter) ice crystals in a mixture of water and freezing point depressant. Preferably, the ice in the water comprises crystals no greater than 200 microns effective diameter, although it is conceivable that many crystals of the ice may form clusters, the aggregate size of which is greater. Liquid ice, at concentrations in the range of 5-30% water by weight, has flow properties approximating those of water, i.e., the liquid ice can be handled, unlike normal ice, by standard equipment, such as pumps, pipes, and nozzles. Unlike slowly melting normal ice, liquid ice undergoes near instantaneous phase change because of the vast surface area to volume ratio of the microscopic liquid ice crystals.
  • Typical freezing point depressants include salts (for example, NaCl), ethanol, methanol, propylene glycol, or ethylene glycol. Other contemplated freezing point depressants include sodium bicarbonate, sugar, acetic acid, citric acid, and Talin. A mixture of any of the freezing point depressants can also be used. In the case of a ship, the seawater, which already contains salt, can be pumped through an icemaker to create ice crystals within the seawater. The substance used as the freezing point depressant and the concentration in water largely determine the characteristics of the resulting liquid ice. See, ASHRAE Research Project 1166, “Behavior of ice slurry in thermal storage systems,” 2002.
  • The substance used as a freezing point depressant and its concentration in water largely determines the particular nature of the resulting liquid ice. In general, Xice=1−X0/Xcf where Xice is the equilibrium ice concentration in suspension, Xcf is the mass concentration of freezing point depressant in liquid phase, and X0 is the overall initial concentration of depressant. Thus, a 20% solids concentration of ice in liquid ice made from brine can be produced at −6° C. using a starting solution with 8% by weight of salt.
  • Ice crystals in a liquid ice mixture are formed from pure water. As the number and size of ice crystals increase, the concentration of freezing point depressant in the remaining fluid increases until equilibrium is reached where no further ice formation at the operating temperature of the cooling system occurs. Since the ice generated consists of pure water only, the concentration of freezing point depressant in the remaining mixture rises and acts to “lubricate” the liquid ice, preventing localized melting and re-freezing that would otherwise cause agglomeration. At concentrations of up to 5-40% water by weight, liquid ice is relatively easy to produce (at approximately −2° C.) and store and has flow properties approximating those of water, allowing the liquid ice to be handled by standard equipment, such as pumps, pipes, and nozzles.
  • Preferably, the percentage of ice to water by weight is above 20% and below 40%. However, any percentage of ice will be effective as long as the liquid ice is pumpable.
  • At a 20% concentration, liquid ice has approximately six times the cooling capacity of water at 6° C., and the latent heat needed to melt the ice content is about 70 kJ per kilogram of mixture. When used as a heat exchange fluid in contact with a solid surface, the volumetric flow rate of liquid ice having a 20% concentration of solids may be three to eight times lower than that of chilled water to obtain the same cooling effect. See, Bellas J, Chaer I, and Tassou S A, “Heat transfer and pressure drop of ice slurries in plate heat exchangers,” Proc. 6th UK Heat Transfer Conference, I. Chem. E., Nottingham, England, 2001. At the highest concentrations compatible with pumpability (approximately 40%), pressure drops of three times those of chilled water have been reported. Very high energy transfer rates (above 3 kWm−2K−1) are ensured by the vast quantities, omnipresence, and large surface area of the microscopic ice crystals, which undergo nearly instantaneous phase change at constant temperature on receipt of the enthalpy of the crystal.
  • The high flux heat removal cooling system in accordance with various embodiments of the present invention will now be described in conjunction with FIG. 1. The basic vapor-compression cycle provided by the cooling system shown in FIG. 1 is similar regardless of the concentration of the liquid ice mixture. In accordance with various embodiments of the present invention, liquid ice is the refrigerant or coolant, at atmospheric pressure or at a subatmospheric pressure.
  • The preferred embodiment in accordance with the present invention makes use of liquid ice at a subatmospheric pressure. The particular vapor-compression cycle of the cooling system shown in FIG. 1 is a high waste heat removal cycle employing active components including a chiller, evacuator, an array of spray nozzles, and condensers.
  • For applications requiring extremely high heat removal rates in a continuous duty cycle, the preferred embodiment of the active high flux heat removal cooling system in accordance with the present invention illustrates an application using liquid ice. In a preferred embodiment, the liquid ice is made from a mixture of water and ethanol, because ethanol reduces the boiling point as it depresses the freezing point of the binary solution. A reduced boiling point allows more flexibility in choosing the material used to shield the electrical apparatus from direct contact with the liquid ice. The cooling system preferably employs a 30% ice mixture concentration to provide more than 1,000 BTU/hr per pound of liquid ice flowing with an inlet temperature of −2° C. and a boiling point of +80° C. in a partial vacuum of 6.72 psia, as shown in FIG. 1. Liquid ice in bulk form or in a fluidized bed provides exceptionally high cooling rates at solid surfaces.
  • As shown in FIG. 1, the cooling system comprises a heat transfer plate 10 consisting of copper, aluminum, silver, or another suitable thermally conductive material, such as beryllium oxide ceramic, boron nitride, aluminum oxide ceramic, or diamond, with high tensile strength to enable efficient heat transfer by thermal conduction. The external electrical apparatus, for example, electronic devices, that generate the input heat flux indicated in FIG. 1, are disposed in heat transfer relationship with the heat transfer plate 10, for example, the electrical apparatus can be mounted in thermal contact with the heat transfer plate. Preferably, the heat transfer plate 10 is thin to maximize the thermal gradient and avoid heat stored in the heat transfer plate. Preferably, the thickness of the heat transfer plate 10 is on the order of approximately one to two millimeters and has a thickness that is the minimum thickness that enables the heat transfer plate to provide the structural portion of the circulation subsystem at the location at which the liquid ice removes high heat flux from the heat transfer plate.
  • In the preferred embodiment in accordance with the present invention in which the cooling system is operated at partial vacuum, the heat transfer plate 10 comprises all or a portion of a wall of a vacuum tank 12. The heat transfer plate 10 must have sufficient structural integrity to withstand external atmospheric pressure. Because the heat transfer plate 10 forms a portion of the cooling system, in order to have a heat transfer plate thin enough to provide effective heat transfer, the heat transfer plate can be internally reinforced, for example, by means of a honeycomb material 14, to prevent implosion under atmospheric pressure if the cooling system is operated at subatmospheric pressure. If the honeycomb material 14 is used for reinforcement, jets of liquid ice are preferably directed at the centers of the honeycomb openings to optimize heat transfer efficiency.
  • Honeycomb material 14 attached to the heat transfer plate 10, if designed with optimal jet spacing as the controlling factor, may help increase the heat transfer rate via the finning effect and by controlling the allocation of a portion of the hot surface to each jet flow. A series of parallel slots may also be beneficial, with some slots dedicated to vapor removal and sized appropriately.
  • As shown in FIG. 1, the cooling system further comprises a liquid ice generator 16. The liquid ice generator 16 can be a commercially available scraped surface ice slurry generator (for example, a Sunwell ice generator), an orbital rod system, or a vacuum ice system chiller. The latter type is shown in FIG. 1 and can provide up to 10,000 tons/day of liquid ice. The liquid ice generator 16 can be modulated from idle to full power either proportionally or by on/off cycling determined by a controller 18. A cooling water supply 20 is connected to the liquid ice generator 16 to provide cooling for the internal compressor of the liquid ice generator (not shown).
  • The liquid ice generator 16 is connected by a pipe 22 to an inlet located proximate the top of a liquid ice reservoir 24. An outlet located proximate the bottom of the liquid ice reservoir 24 is connected through a pipe 26 to a first variable frequency drive (VFD) controlled liquid pump 28 that returns liquid ice to the liquid ice generator 16 to maintain the temperature of the liquid ice in the liquid ice reservoir at a predetermined temperature, for example, −2° C.
  • During conditions of light or low heat input loads, a stirring pump 30 maintains the liquid ice mixture uniformly isothermal. The stirring pump 30 recirculates the liquid ice mixture through a pipe 32 connected between an outlet proximate the bottom of the liquid ice reservoir 24 and an inlet proximate the top of the liquid ice reservoir.
  • A second VFD controlled liquid pump 34 delivers the liquid ice mixture through a pipe 36 from the liquid ice reservoir 24 to an array of orifices 38 that cause jet impingement of the liquid ice on the heat transfer plate 10. The heat transfer plate10 is constructed of a suitable material with high heat conductivity. Materials such as copper or aluminum are preferred. If, however, an electrically insulating material is needed, then diamond, beryllium oxide ceramic, boron nitride, or aluminum nitride ceramic can be used. The material may be chosen by tensile strength to heat conductivity ratio. The thicker the heat transfer plate 10, the lower the temperature on the cooled side must be. For example, for copper having a 1.8 millimeter thickness, the temperature of the side that is cooled would need to be +80° C. in order to conduct 1,000 W/cm2 through the heat transfer plate 10, if the temperature on the side heated by the electrical apparatus were to be maintained at 125° C. When using a higher boiling point, the thickness of the heat transfer plate 10 would be correspondingly reduced. Maximizing exposed surface area of the cooled side of the heat transfer plate 10 by judicious use of finning is preferred in order to increase surface area and increase cooling efficiency.
  • The array of orifices 38 can comprise relatively large aperture nozzles through which the liquid ice can be pumped. For example, the array of orifices 38 can comprise a matrix of pressure jet nozzles having a diameter of approximately 2 millimeters. For flat surfaces, a carefully arranged array of round nozzles can be more effective than a slot nozzle system for a given mass flow of liquid ice, but depending on the geometry of the surface to be cooled, slots can be superior.
  • The second VFD controlled liquid pump 34 can be controlled by the controller 18 to provide continuous or pulsating jet operation by the array of orifices 38. It should be noted that high-speed jets can cause cavitation and erosion of metals. (The leading edges of aircraft wings are damaged in this way when they fly through rainstorms.) This sets an upper limit on jet speed and has material property implications such that the choice of material for the heat transfer plate 10 and the design of the heat transfer plate are both important when using liquid ice.
  • After the liquid ice is impinged on the heat transfer plate 10, the spent liquid ice mixture that has not vaporized falls to the bottom of the vacuum tank 12 as a liquid. The first VFD controlled liquid pump 28 pumps the spent liquid through a pipe 40 that preferably connects to the pipe 26 so that the liquid is returned to the liquid ice generator 16. Preferably, a heat exchanger 42 is interconnected in the pipe 40, and the heat exchanger is connected to a cooling water supply 44. The heat exchanger 42 cools the liquid with cooling water to reduce the load of the liquid ice generator 16.
  • Additionally, at the top of the vacuum tank 12, a vacuum pump 46 preferably evacuates the vacuum tank 12 to a predetermined reduced pressure, for example, a partial vacuum of approximately 6.72 psia. A consequence of employing liquid ice as the refrigerant or coolant is that the compressor (not shown) of the vacuum pump 46 shown in FIG. 1 should not use oil as a lubricant. The water will wash the oil away. Dry lubricants or water/steam should be considered as alternative lubricants.
  • The steam resulting from boiling of the melted liquid ice is discharged by the vacuum pump 46 and is preferably condensed by a condenser heat exchanger 48 connected to a cooling water supply 50. From there, the condensate is pumped by the first VFD controlled liquid pump 28 through a pipe 52 that preferably connects to the pipe 26 so that the condensate is returned to the liquid ice generator 16.
  • The controller 18 controls the VFD controlled liquid pumps 28 and 34 to adjust the flow from the liquid ice generator 16 and the liquid ice reservoir 24 for varying thermal loads. Temperature sensors 54, 56, 58, and 60 provide feedback information to the controller 18 to allow the variable load adjustments. The temperature sensors 54, 56, 58, and 60 can be RTDs (Resistance Temperature Devices), thermocouples, or thermistors, for example. Finally, an inlet 62 is provided at the top of the liquid ice reservoir 24 to initially charge the cooling system with water and freezing point depressant or to add water and/or freezing point depressant during operation. If the cooling system is installed on board a ship, seawater can be supplied through the inlet 62 for use in the production of liquid ice.
  • In operation, the active vapor-compression cycle cooling system shown in FIG. 1, employing low-pressure liquid ice as a refrigerant or coolant, provides an efficient high flux heat removal system. Heat is removed from the primary heat source, such as semiconductor modules, in thermal contact with the heat transfer plate 10 using liquid ice impinged on the heat transfer plate by the array of orifices 38. Since approximately 70% of the liquid ice is water, the impinging jet is believed to consist of droplets of water/freezing point depressant, larger particles of ice with most of the liquid stripped from them during jet impingement, and droplets of water containing the smallest ice particles. The ice particles and ice-containing droplets are most likely to reach the heat transfer plate 10 to provide improved cooling, while the liquid-only droplets will be the first to vaporize. The liquid ice is produced by the liquid ice generator 16, using water and a freezing point depressant, preferably ethanol, and stored in the liquid ice reservoir 24 from which the liquid ice is pumped by the second VFD controlled liquid pump 34 as and when required. The heat absorbed by the liquid ice, causing the liquid ice to undergo phase changes first to liquid and then to steam, is dissipated by the heat exchanger 42 and condenser 48, and residual liquid and condensate are recirculated to the liquid ice generator 16.
  • In accordance with another embodiment of the present invention, instead of the cooling system operating at partial vacuum, the cooling system can be operated at atmospheric pressure (1 bar). Operating at atmospheric pressure has advantages including obviating the need for the honeycomb material 14 and enabling the thickness of the heat transfer plate 10 to be decreased for improved thermal conduction. Inclusion of the vacuum pump 46 is preferred even if the cooling system is operated at atmospheric pressure. Unless the steam is drawn out of the vacuum tank 12, the pressure will rise and directly raise the liquid boiling temperature, reducing the cooling efficiency.
  • As shown in FIG. 1, the heat exchanger 42 is cooled by the cooling water supply 44, and the condenser 48 is cooled by the cooling water supply 50. In the application in which the cooling system is installed aboard ship and the cooling water supplies 44, 50 employ seawater, variable performance can result because of the non-constant temperature of seawater. Consequently, one contemplated modification to the embodiments of the present invention is to substitute a liquid ice cooling supply for one or both of the cooling water supplies 44, 50. The liquid ice can be fed from the liquid ice reservoir 24 or from an auxiliary liquid ice reservoir. Nevertheless, the final step in dissipating the heat would continue to use cooling water, for example, seawater, either directly in the condenser of the liquid ice generator 16, or through heat transfer panels built into the side of a ship, for example, assuming that sufficient surface area exists. Note that by using liquid ice as the primary cooling medium for the electrical apparatus and also for the condensation of the resulting steam and cooling of the liquid effluent, the cooling system can advantageously control thermal load shifting and storage for the cooling system.
  • The cooling system in accordance with the present invention enables improved cooling of electrical apparatus that generates substantial waste heat, for example, waste heat on the order of 1,000 W/cm2. While various embodiments of the cooling system of the present invention and various contemplated modifications have been described above, other modifications and variations will likely occur to those persons skilled in the art. For example, rather than using continuous or pulsating jet impingement, the liquid ice can be atomized by passing it through a conventional pressure jet nozzle, in a manner similar to water mist systems. For example, an ice mist can be created by pumping liquid ice having a 20-25% concentration through a 500-micron nozzle at 70 bar. In addition to high-density heat removal, liquid ice is also a superior cooling fluid for both medium- and low-density heat exchange applications. As described above, for high-energy heat removal, the liquid ice is applied directly to a thermally conducting barrier. For medium energy devices, the liquid ice can be used to chill a secondary liquid in which the hot components of a conventional fluorochemical closed loop cooling system are immersed. For air-cooled low energy devices and general air conditioning, the liquid ice can be used for air chilling. Thus, the cooling system can integrate within the overall cooling services aboard a ship via a liquid ice generator and thermal energy storage tank. The foregoing description of the embodiments of the present invention is therefore exemplary and not limited to the specific embodiments that are disclosed above. The scope of the invention can only be ascertained with reference to the appended claims and the equivalents thereof.

Claims (3)

1-18. (canceled).
19. A method for thermally conducting and removing high heat flux waste heat from electrical apparatus, comprising:
providing liquid ice at a predetermined pressure;
providing a heat transfer plate having a first side thermally coupled with the electrical apparatus, the heat transfer plate being constructed from a thermally conductive material with high tensile strength to enable efficient heat transfer by thermal conduction; and
impinging the liquid ice on a second side of the heat transfer plate opposite the side on which the electronic apparatus is disposed.
20. The method according to claim 19 wherein the predetermined pressure is a partial vacuum, whereby the temperatures associated with phase changes of melting and boiling are lowered.
US10/945,714 2003-06-12 2004-09-20 High flux heat removal system using liquid ice Abandoned US20050039883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/945,714 US20050039883A1 (en) 2003-06-12 2004-09-20 High flux heat removal system using liquid ice

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/460,351 US6793007B1 (en) 2003-06-12 2003-06-12 High flux heat removal system using liquid ice
US10/945,714 US20050039883A1 (en) 2003-06-12 2004-09-20 High flux heat removal system using liquid ice

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/460,351 Division US6793007B1 (en) 2003-06-12 2003-06-12 High flux heat removal system using liquid ice

Publications (1)

Publication Number Publication Date
US20050039883A1 true US20050039883A1 (en) 2005-02-24

Family

ID=32990958

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/460,351 Expired - Fee Related US6793007B1 (en) 2003-06-12 2003-06-12 High flux heat removal system using liquid ice
US10/945,714 Abandoned US20050039883A1 (en) 2003-06-12 2004-09-20 High flux heat removal system using liquid ice

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/460,351 Expired - Fee Related US6793007B1 (en) 2003-06-12 2003-06-12 High flux heat removal system using liquid ice

Country Status (1)

Country Link
US (2) US6793007B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010527A2 (en) * 2005-07-15 2007-01-25 Pulsacool Ltd. Method and apparatus for cooling electronic or other devices
WO2014176320A3 (en) * 2013-04-23 2015-03-19 Xiaodong Xiang A cooling mechanism for batteries using l-v phase change materials
US20160273819A1 (en) * 2015-02-10 2016-09-22 Peter B. Choi Ice Slurry Manufacturing Process
US20170167770A1 (en) * 2014-08-28 2017-06-15 Abb Schweiz Ag Method and apparatus for solidifying a polar substance

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154916B2 (en) * 2001-07-26 2006-12-26 The Directv Group, Inc. Method for real-time insertion of auxiliary data packets into DSS bitstream in the presence of one or more service channels
US7159407B2 (en) * 2004-06-09 2007-01-09 Chen Kuo-Mei Atomized liquid jet refrigeration system
US7184269B2 (en) * 2004-12-09 2007-02-27 International Business Machines Company Cooling apparatus and method for an electronics module employing an integrated heat exchange assembly
US9766017B2 (en) * 2012-06-15 2017-09-19 Mitsubishi Electric Corporation Heating apparatus
EP2972020A4 (en) * 2013-03-14 2017-04-19 Foodexus, LLC Closed loop ice slurry refrigeration system
CN103175360B (en) * 2013-04-10 2015-02-18 中南大学 Injection type vacuum ice slurry preparation system
CN104729177B (en) * 2015-03-09 2018-02-27 深圳市兄弟制冰系统有限公司 Frozen water blender
US10634397B2 (en) * 2015-09-17 2020-04-28 Purdue Research Foundation Devices, systems, and methods for the rapid transient cooling of pulsed heat sources
WO2017059382A1 (en) 2015-09-30 2017-04-06 Microfabrica Inc. Micro heat transfer arrays, micro cold plates, and thermal management systems for cooling semiconductor devices, and methods for using and making such arrays, plates, and systems
CN108471760A (en) * 2015-11-19 2018-08-31 布兰克特克株式会社 Ice, refrigerant, the manufacturing method of ice, the manufacturing method of cooled object, animals and plants or part thereof are frozen manufacturing method, thawed material or its machining object of fresh animals and plants or part thereof and the refrigerant of fresh animals and plants or part thereof by the refrigeration agent of the manufacturing method of refrigeration object, animals and plants or part thereof
US10096537B1 (en) 2015-12-31 2018-10-09 Microfabrica Inc. Thermal management systems, methods for making, and methods for using
WO2017150993A1 (en) 2016-03-03 2017-09-08 Normax-Invest Sp. Z.O.O. Tube freeze exchanger, particularly for feeding a chili accumulator
CN106425887B (en) * 2016-12-07 2018-06-19 河南理工大学 A kind of forward and backward hybrid ice pellets gas jet device and method
CN106475911B (en) * 2016-12-07 2019-08-06 河南理工大学 A kind of ice pellets gas jet quick preparation device and method
US10234186B1 (en) * 2017-11-09 2019-03-19 James Chun Koh Apparatus for manufacturing powdered ice with salinity
ES2910262T3 (en) * 2018-03-13 2022-05-12 Thorsteinn I Viglundsson Method and apparatus for making wet snow
CN108731325B (en) * 2018-06-11 2023-08-22 深圳市兄弟制冰系统有限公司 Full-automatic storage, conveying and metering system for fluidized ice
DE102018121390A1 (en) * 2018-09-03 2020-03-05 Hanon Systems Thermal management arrangement for vehicles and method for operating a thermal management arrangement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932168A (en) * 1987-06-23 1990-06-12 Tsiyo Sanso Co., Ltd. Processing apparatus for semiconductor wafers
US5326406A (en) * 1991-07-31 1994-07-05 Kawasaki Steel Corporation Method of cleaning semiconductor substrate and apparatus for carrying out the same
US5931003A (en) * 1995-09-01 1999-08-03 Natron Corporation Method and system for electronically controlling the location of the formation of ice within a closed loop water circulating unit
US20020096196A1 (en) * 2001-01-23 2002-07-25 Takayuki Toshima Substrate processing apparatus and substrate processing method
US6498725B2 (en) * 2001-05-01 2002-12-24 Mainstream Engineering Corporation Method and two-phase spray cooling apparatus
US6543246B2 (en) * 2001-07-24 2003-04-08 Kryotech, Inc. Integrated circuit cooling apparatus
US6827135B1 (en) * 2003-06-12 2004-12-07 Gary W. Kramer High flux heat removal system using jet impingement of water at subatmospheric pressure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126530A (en) * 1983-12-08 1985-07-06 Hitachi Zosen C B I Kk Method and apparatus for producing, storing and using ice for performing cooling and refrigeration
JP2995590B2 (en) * 1991-06-26 1999-12-27 株式会社日立製作所 Semiconductor cooling device
US5263536A (en) * 1991-07-19 1993-11-23 Thermo Electron Technologies Corp. Miniature heat exchanger
US6650542B1 (en) * 2003-01-06 2003-11-18 Intel Corporation Piezoelectric actuated jet impingement cooling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932168A (en) * 1987-06-23 1990-06-12 Tsiyo Sanso Co., Ltd. Processing apparatus for semiconductor wafers
US5326406A (en) * 1991-07-31 1994-07-05 Kawasaki Steel Corporation Method of cleaning semiconductor substrate and apparatus for carrying out the same
US5931003A (en) * 1995-09-01 1999-08-03 Natron Corporation Method and system for electronically controlling the location of the formation of ice within a closed loop water circulating unit
US20020096196A1 (en) * 2001-01-23 2002-07-25 Takayuki Toshima Substrate processing apparatus and substrate processing method
US6498725B2 (en) * 2001-05-01 2002-12-24 Mainstream Engineering Corporation Method and two-phase spray cooling apparatus
US6543246B2 (en) * 2001-07-24 2003-04-08 Kryotech, Inc. Integrated circuit cooling apparatus
US6827135B1 (en) * 2003-06-12 2004-12-07 Gary W. Kramer High flux heat removal system using jet impingement of water at subatmospheric pressure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010527A2 (en) * 2005-07-15 2007-01-25 Pulsacool Ltd. Method and apparatus for cooling electronic or other devices
WO2007010527A3 (en) * 2005-07-15 2009-01-08 Pulsacool Ltd Method and apparatus for cooling electronic or other devices
US20090120621A1 (en) * 2005-07-15 2009-05-14 Pulsacool Ltd. Method and apparatus for cooling electronic or other devices
WO2014176320A3 (en) * 2013-04-23 2015-03-19 Xiaodong Xiang A cooling mechanism for batteries using l-v phase change materials
CN105210231A (en) * 2013-04-23 2015-12-30 项晓东 A cooling mechanism for batteries using L-V phase change materials
US9865907B2 (en) 2013-04-23 2018-01-09 Xiaodong Xiang Cooling mechanism for batteries using L-V phase change materials
US10615471B2 (en) 2013-04-23 2020-04-07 Xiaodong Xiang Cooling mechanism for batteries using L-V phase change materials
US20170167770A1 (en) * 2014-08-28 2017-06-15 Abb Schweiz Ag Method and apparatus for solidifying a polar substance
US11060781B2 (en) * 2014-08-28 2021-07-13 Abb Schweiz Ag Method and apparatus for solidifying a polar substance
US20160273819A1 (en) * 2015-02-10 2016-09-22 Peter B. Choi Ice Slurry Manufacturing Process
US10415864B2 (en) * 2015-02-10 2019-09-17 Peter B. Choi Ice slurry manufacturing process

Also Published As

Publication number Publication date
US6793007B1 (en) 2004-09-21

Similar Documents

Publication Publication Date Title
US6793007B1 (en) High flux heat removal system using liquid ice
US6827135B1 (en) High flux heat removal system using jet impingement of water at subatmospheric pressure
US8490418B2 (en) Method and apparatus for cooling electronics with a coolant at a subambient pressure
US20060179861A1 (en) Method and apparatus for cooling with coolant at a subambient pressure
JP6588654B2 (en) Working medium contact cooling system for high power components and method of operating the same
US7035104B2 (en) Apparatus for heat transfer and critical heat flux enhancement
EP1380799B1 (en) Method and apparatus for cooling with coolant at a subambient pressure
US20170268829A1 (en) Method and apparatus for absorbing thermal energy
EP2203696B1 (en) Cooling system
EP2274965B1 (en) Systems and methods for cooling a computing component in a computing rack
EP2000753B1 (en) System and method for separating components of a fluid coolant for cooling a structure
EP1793422A2 (en) System and method of enhanced boiling heat transfer using pin fins
CN108362025B (en) Airborne spray cooling system using phase change material to cool spray medium and micro-channel heat exchanger to prevent failure
CN115802698A (en) Heat dissipation system, control method thereof and high-altitude high-speed aircraft
CN108458509B (en) High-temperature stability refrigerant cooling system
EP2201311B1 (en) System and method for cooling structures having both an active state and an inactive state
CN111156843A (en) Sheet type stacked liquid cooling heat exchanger
CN216218363U (en) Refrigerating pump driving phase-change heat exchange cold plate heat dissipation system combined with vapor chamber
CN115185357A (en) Active and passive coupling heat dissipation system and method in limited space
US20090101311A1 (en) System and Method for Cooling Using Two Separate Coolants
JP2005300044A (en) Ice making method and device by supercooling brine
CN113747774A (en) Temperature control cooling system and use method thereof
CN213636151U (en) Water chilling unit and energy storage system
Yeh Review of Liquid Cooled Microelectronic Equipment
JP2001033069A (en) Thermal storage system and melting method in the thermal storage system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION