US20050004585A1 - Magnetically navigable and/or controllable device for removing material from body lumens and cavities - Google Patents
Magnetically navigable and/or controllable device for removing material from body lumens and cavities Download PDFInfo
- Publication number
- US20050004585A1 US20050004585A1 US10/852,304 US85230404A US2005004585A1 US 20050004585 A1 US20050004585 A1 US 20050004585A1 US 85230404 A US85230404 A US 85230404A US 2005004585 A1 US2005004585 A1 US 2005004585A1
- Authority
- US
- United States
- Prior art keywords
- cutting head
- magnetic
- cavity
- lumen
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320758—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22038—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
- A61B2017/22042—Details of the tip of the guide wire
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B2017/320004—Surgical cutting instruments abrasive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0127—Magnetic means; Magnetic markers
Definitions
- This invention relates to devices for removing material from body lumens and cavities, and in particular to such devices that can be magnetically navigated and/or controlled.
- Atherectomy devices typically comprise a blade or cutting bit or burr on the distal end of a flexible drive shaft.
- the drive shaft is preferably contained within a flexible sheath to protect the walls of the blood vessels from the rotation of the drive shaft. Examples of such devices include Shiber, U.S. Pat. No. 4,842,579, Simpson et al., U.S. Pat. No. 5,047,040; and Auth et al., U.S. Pat. No. 5,314,407, incorporated herein by reference.
- An atherectomy device is typically navigated to the site of the disease by mechanically manipulating a guide wire to the site of the disease, and then advancing the atherectomy device over the guide wire to the site.
- the navigation of the guide wire through the blood vessel can be a slow and tedious process, requiring great skill.
- Once at the site of the disease it can be difficult to precisely control the atherectomy device to satisfactorily remove the atheromatous material. Part of this difficulty arises from guide wire bias, for example as the atherectomy device traverses bends in the blood vessels the guide wire and device tend to move toward the outside of the bend, making it difficult to remove atheromatous material from the insides of the bends.
- the present invention relates to an atherectomy device that can be magnetically controlled, and to the magnetic control of atherectomy devices.
- the atherectomy device of the present invention comprises a flexible drive shaft, with a cutting head on the distal end of the drive shaft.
- a magnet is associated with the cutting head.
- the cutting head itself is made of a magnetic material, either a permanent magnet or a permeable magnet.
- a magnet is disposed between the cutting head and the drive shaft.
- the distal end portion of the drive shaft adjacent the cutting head is magnetic.
- a magnet is positioned on the distal end of the sheath, in proximity to the cutting head.
- the magnet can be any material with magnetic properties (i.e., responsive to a magnetic field or magnetic gradient), and may either be a separate part or constitute a magnetic portion of an existing part.
- the magnet associated with the cutting head facilitates navigation of the atherectomy device to the procedure site, and control of the cutting head at the procedure site through the application of a magnetic field and/or magnetic field gradient.
- a magnetic field can be applied to orient the atherectomy device in the blood vessel for navigating to the procedure site.
- the applied magnetic field aligns the magnet associated with cutting head in the direction of the field, so that the atherectomy device can be more easily steered through the blood vessels.
- the device can then be advanced in the desired direction simply by pushing on the proximal end.
- a magnetic field gradient can be applied to the magnet associated with the cutting head to apply force to the atherectomy device to actually move the device through the blood vessel, or assist the mechanical pushing of the device through the blood vessel.
- magnetic fields and/or magnetic field gradients can be applied to the magnet associated with the cutting head to control the orientation of the device and its position within the cross-section of the blood vessel.
- the cutting portion of the cutting head can be oriented toward the accumulated atheromatous material, and the cutting tool itself can be moved within the cross-section of the blood vessel to act on the accumulated atheromatous material, for example on the insides of bends. Because the tool can be both oriented and moved, the tool can open a passage in the blood vessel that is larger than the cross section of the device itself.
- the procedure can be automated, so that once the tool is navigated to the site of the disease, the tool is automatically precessed to clear the cross-section of the vessel in adjacent the atherectomy device of the atheromatous material.
- precessing the cutting head by continuously changing the magnetic field it is also possible to continuously move the cutting head around the cross-section of the vessel by continuously varying the magnetic gradient.
- both the magnetic field and magnetic gradient can be simultaneously changed to cause the orientation and the position of the cutting head to change to remove material from around the cross section of the vessel.
- the atherectomy device can be used in conjunction with a magnetic guide wire.
- a magnet can be provided on the end of a conventional guide wire, or a portion of the guide wire can be made magnetic.
- the guide wire is then navigated to the diseased site.
- the magnet on or in the guide wire facilitates orienting and/or moving the guide wire through the blood vessels.
- the atherectomy device can be brought into close association with the magnet on the guide wire, and the magnet on the guide wire can be used to orient and to move the cutting head within the blood vessel.
- the atherectomy device of the present invention can be quickly and easily navigated to the site of the disease. This makes the procedure easier on the physician and the on patient. Once at the site, the tool can be operated more effectively, removing atheramotous material from around the entire circumference of the blood vessel, and clearing a passageway larger than the cross section of the atherectomy device itself.
- FIG. 1 is a partial longitudinal cross sectional view of an atherectomy device constructed according the principles of this invention
- FIG. 2 is a partial longitudinal cross sectional view of an alternate construction of the atherectomy device, incorporating a discrete magnet;
- FIG. 3 is a partial longitudinal cross-sectional view of an alternate construction of the atherectomy device, in which a portion of the drive shaft is magnetic;
- FIG. 4 is a partial longitudinal cross-sectional view of an alternate construction of the atherectomy device, incorporating a magnet on the sheath;
- FIG. 5A is a longitudinal cross-sectional view of a blood vessel showing an atherectomy device of the present invention therein before the application of a magnetic gradient;
- FIG. 5B is a longitudinal cross-sectional view of a blood vessel showing an atherectomy device of the present invention therein during the application of a magnetic gradient;
- FIG. 6A is a longitudinal cross-sectional view of a curved segment of a blood vessel showing an atherectomy device of the present invention therein, before the application of a magnetic gradient;
- FIG. 6B is a longitudinal cross-sectional view of a curved segment of a blood vessel showing an atherectomy device of the present invention therein, during the application of a magnetic gradient;
- FIG. 7 is a transverse cross section of a blood vessel showing the possible positions of an atherectomy device of the present invention with the application of a magnetic gradient
- FIG. 8 is a longitudinal cross-sectional view of the blood vessel showing a atherectomy tool oriented by a magnetic field to remove accumulated atheromatous material
- FIG. 9A is a partial longitudinal cross sectional view of an atherectomy device constructed according to the principles of this invention, employing a magnetic guide wire with a discrete magnet;
- FIG. 9B is a partial longitudinal cross sectional view of an atherectomy device constructed according to the principles of this invention, employing a magnetic guide wire with a magnetic portion;
- FIG. 10 is a partial longitudinal cross sectional view of an athrectomy device constructed according to the principles of this invention without a guide wire.
- FIG. 1 An atherectomy device constructed according to the principles of this invention is indicated generally as 20 in FIG. 1 . While the drawings and description of this preferred embodiment show and describe an atherectomy device for removing atheromatous material from the walls of blood vessels, the invention is not so limited, and applies to any magnetically navigable and/or controllable device for removing material from the surface of a body lumen or cavity.
- the atherectomy device 20 comprises a flexible drive shaft 22 and a cutting head 24 .
- the drive shaft 22 is preferably made from a tight helically coiled wire.
- the cutting head 24 is preferably an oblate spheroid, with an abrasive, such as diamond particles on the distal end.
- the drive shaft 22 rotates the cutting head 24 , and the abrasive on the distal end of the cutting head abrades the atheromatous material in the vessel.
- the guide wire 28 can be advanced in the blood vessel and then the atherectomy device 20 is advanced over the guide wire to the procedure site.
- the end 30 of the guide wire 28 may have a stop 32 , to prevent the guide wire from being withdrawn entirely into the passage 26 , and to blunt the end of the guide wire so that it does not puncture the blood vessel.
- the athrectomy device can be used without a guide wire and guided magnetically.
- the cutting head 24 is made from or contains a magnetic material, for example a permanent magnetic materials such as Hiperco® (available from Carpenter Steel, Reading, Pa.) or a permeable magnetic material such as neodymium-iron-boron (Nd—Fe—B) (available from Magstar Technologies, Minneapolis, Minn.
- the cutting head 24 may be coated with an abrasive material, such as diamond dust embedded in the distal surface of the head.
- the drive shaft 22 is preferably enclosed in a sheath 34 , that protects the blood vessel from the rotating drive shaft.
- the sheath 34 may be made of a conventional medical catheter material such as polyvinylchloride.
- FIG. 2 A first alternative construction of the atherectomy device 20 , indicated as 20 ′, is shown in FIG. 2 .
- the atherectomy device 20 ′ is similar in construction to atherectomy device 20 , except that instead of the cutting head 24 being made from a magnetic material, a magnet 36 is disposed between the drive shaft 22 and the cutting head 24 .
- This magnet may be a permanent magnetic material such as Hiperco®, or a permeable magnetic material such as Nd—Fe—B.
- FIG. 3 A second alternative construction of the atherectomy device 20 , indicated generally as 20 ′′, is shown in FIG. 3 .
- the atherectomy device 20 ′′ is similar in construction to atherectomy device 20 , except that instead of the cutting head 24 being made from a magnetic material, the distal portion 38 of drive shaft 22 is magnetic. This distal portion may be made from a permanent magnetic material such as Hiperco® or a permeable magnetic material such as Nd—Fe—B.
- FIG. 4 A third alternative construction of the atherectomy device 20 , indicated generally as 20 ′′′ is shown in FIG. 4 .
- the atherectomy device is similar in construction to atherectomy device 20 , except that instead of the cutting head 24 being made from a magnetic material, the distal portion of the sheath has a magnet 40 thereon.
- the magnet may be embedded in the distal end portion of the catheter, or secured on the end, for example with a suitable medical grade adhesive.
- the cutting head can be retracted against the magnet 40 , so that the magnet is closely associated with the cutting head 24 .
- a magnetic field can be applied to orient the atherectomy device in the blood vessel for navigating to the procedure site.
- the externally applied magnetic field may be applied, for example with a magnetic surgery system like that disclosed in co-pending U.S. patent application Ser. No. 08-920,446, filed Aug. 29, 1997, entitled Method and Apparatus for Magnetically Controlling Motion Direction of a Mechanically Pushed Catheter, incorporated herein by reference.
- the applied magnetic field aligns the magnet associated with cutting head, e.g., the magnetic cutting head 24 in device 20 , the magnet 36 associated with the cutting head in device 20 ′, or the magnetic distal end portion 38 of the drive shaft 22 in device 20 ′′, in the direction of the field, so that the atherectomy device can be more easily steered through the blood vessels.
- the device can then be advanced in the desired direction simply by pushing on the proximal end.
- a magnetic field gradient can be applied to the to the magnet associated with the cutting head to apply force to the atherectomy device to actually advance the device through the blood vessel. This force can be the only force used to move the atherectomy device, or this force can merely be used to assist the mechanical pushing of the device through the blood vessel.
- FIG. 5A shows an atherectomy device 20 in a blood vessel.
- the device is positioned generally along the guide wire 28 .
- the cutting head 24 can be drawn toward the accumulated atheromatous material, to more completely and effectively abrade the material from the vessel wall.
- This technique is particularly advantageous in the bends of blood vessels, as shown in FIG. 6A , wherein the natural stiffness of the guide wire and the device causes the atherectomy device to a position away from the inside of the curve and toward the outside of the curve.
- the cutting head 24 upon the application of a magnetic field gradient, the cutting head 24 can be drawn against the accumulated atheromatous a material on the inside of the bend, to remove this material and more completely open the blood vessel.
- FIG. 7 by controlling the direction of the applied magnetic gradient, it is possible to move the cutting head to any position in the cross section of the blood vessel.
- the field direction can be along the axis of the vessel, to keep the cutting head oriented along the vessel.
- the field direction can be at an angle with respect to the vessel, to tilt the cutting head into the atheromatous material.
- the cutting head 24 by continuously moving the applied magnetic field, it is possible to precess the cutting head 24 around the circumference of the vessel, moving the cutting head to clear substantially the entire cross section of the vessel.
- the cutting tool can be automatically precessed within the vessel.
- the atherectomy tool can be used to create a flow pathway through the vessel that is actually larger than the cross section of the atherectomy device.
- the cutting head As the cutting head is precessing, it can be slowly advanced across the accumulated atheromatous material.
- both the magnetic field and magnetic gradient can be simultaneously changed to cause the orientation and the position of the cutting head to change to remove material from around the cross section of the vessel.
- the atherectomy device can be used in conjunction with a magnetic guide wire 100 , having a magnetic distal end portion.
- the guide wire 100 has a discrete magnet 102 on its distal end.
- the distal end portion 104 of the guide wire 100 is made from a magnetic wire material.
- the guide wire is then navigated to the diseased site.
- the magnet on or in the guide wire facilitate orienting and/or moving the guide wire through the blood vessels.
- the atherectomy device can be brought into close association with the magnet on the guide wire, and the magnet on the guide wire can be used to orient and to move the cutting head within the blood vessel.
- the atherectomy device can be used without any guide wire.
- the device is navigated solely by the application of magnetic fields and/or gradients, which apply a force through the magnet associated with the cutting head.
- One method of navigating such an atherectomy device is that disclosed in co-assigned U.S. patent application Ser. No. 60/095,710 filed Aug. 7, 1998, and incorporated herein by reference.
- the operating region in the patient is viewed on two planar fluoroscopic images of the operating region.
- the physician identifies the current position of the atherectomy device on each display, for example by using a mouse or similar device to point and click on the desired location.
- a computer can control an electromagnetic system for generating an electromagnetic field and/or gradient for orienting and/or moving the distal end of the atherectomy device as input by the physician.
- the distal end of the atherectomy device is advanced manually or automatically, or in some cases it can be moved by a magnetic field or gradient.
- the atherectomy device can be magnetically directed to the site of the occlusion without a guide wire, and once at the site of the occlusion can be magnetically manipulated to remove the material blocking the vessel or lumen.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
A magnetically navigable atherectomy device includes a cutting head, a flexible drive shaft having a proximal and a distal end, with the cutting device on the distal end, and a magnet associated with the cutting head, the magnet of sufficient size to allow the cutting head to be oriented by an externally applied magnetic field. The magnet may be a portion of the cutting head made from a magnetically permeable or permanent magnetic material, a portion of the drive shaft made from a magnetically permeable or permanent magnetic material; a separate magnet between the cutting head and the drive shaft, a portion a magnet on a sheath covering the drive shaft. Alternatively a guide wire can provided with a magnetic material on its distal end. Through the application of a magnetic field and/or a magnetic gradient, the artherectomy device can be guided to the location of the atheromatous material in the body. Once at the site of atheromatous material, through the application of a magnetic field or magnetic gradient, the device can be manipulated into proximity to the atheromatous material to remove the material.
Description
- This invention relates to devices for removing material from body lumens and cavities, and in particular to such devices that can be magnetically navigated and/or controlled.
- There are many medical conditions where it is desirable to remove material from the surface of a body lumen or cavity. For example in the case of occluded blood vessels, one method of treating this condition to use a cutting tool in the blood vessel to remove accumulated atheromatous material. These tools, frequently called atherectomy devices, typically comprise a blade or cutting bit or burr on the distal end of a flexible drive shaft. The drive shaft is preferably contained within a flexible sheath to protect the walls of the blood vessels from the rotation of the drive shaft. Examples of such devices include Shiber, U.S. Pat. No. 4,842,579, Simpson et al., U.S. Pat. No. 5,047,040; and Auth et al., U.S. Pat. No. 5,314,407, incorporated herein by reference.
- An atherectomy device is typically navigated to the site of the disease by mechanically manipulating a guide wire to the site of the disease, and then advancing the atherectomy device over the guide wire to the site. The navigation of the guide wire through the blood vessel can be a slow and tedious process, requiring great skill. Once at the site of the disease, it can be difficult to precisely control the atherectomy device to satisfactorily remove the atheromatous material. Part of this difficulty arises from guide wire bias, for example as the atherectomy device traverses bends in the blood vessels the guide wire and device tend to move toward the outside of the bend, making it difficult to remove atheromatous material from the insides of the bends. Even in straighter segments of blood vessels, it is difficult to control the position of the atherectomy device within the cross section of the blood vessel, or the orientation of the cutting head of the atherectomy device within the blood vessel, and thus it is difficult to form a passage through the vessel larger than that cross section of the tool.
- The present invention relates to an atherectomy device that can be magnetically controlled, and to the magnetic control of atherectomy devices. Generally, the atherectomy device of the present invention comprises a flexible drive shaft, with a cutting head on the distal end of the drive shaft. A magnet is associated with the cutting head. In one construction, the cutting head itself is made of a magnetic material, either a permanent magnet or a permeable magnet. In another construction a magnet is disposed between the cutting head and the drive shaft. In still another construction, the distal end portion of the drive shaft adjacent the cutting head is magnetic. In still another construction, a magnet is positioned on the distal end of the sheath, in proximity to the cutting head. The magnet can be any material with magnetic properties (i.e., responsive to a magnetic field or magnetic gradient), and may either be a separate part or constitute a magnetic portion of an existing part.
- The magnet associated with the cutting head facilitates navigation of the atherectomy device to the procedure site, and control of the cutting head at the procedure site through the application of a magnetic field and/or magnetic field gradient. A magnetic field can be applied to orient the atherectomy device in the blood vessel for navigating to the procedure site. The applied magnetic field aligns the magnet associated with cutting head in the direction of the field, so that the atherectomy device can be more easily steered through the blood vessels. The device can then be advanced in the desired direction simply by pushing on the proximal end. Alternatively, or in addition, a magnetic field gradient can be applied to the magnet associated with the cutting head to apply force to the atherectomy device to actually move the device through the blood vessel, or assist the mechanical pushing of the device through the blood vessel. Once at the procedure site, magnetic fields and/or magnetic field gradients can be applied to the magnet associated with the cutting head to control the orientation of the device and its position within the cross-section of the blood vessel. Thus, with the application of a magnetic field, the cutting portion of the cutting head can be oriented toward the accumulated atheromatous material, and the cutting tool itself can be moved within the cross-section of the blood vessel to act on the accumulated atheromatous material, for example on the insides of bends. Because the tool can be both oriented and moved, the tool can open a passage in the blood vessel that is larger than the cross section of the device itself. By automating the control of the direction and/or gradient of the applied magnetic field, the procedure can be automated, so that once the tool is navigated to the site of the disease, the tool is automatically precessed to clear the cross-section of the vessel in adjacent the atherectomy device of the atheromatous material. In addition to precessing the cutting head by continuously changing the magnetic field, it is also possible to continuously move the cutting head around the cross-section of the vessel by continuously varying the magnetic gradient. Of course both the magnetic field and magnetic gradient can be simultaneously changed to cause the orientation and the position of the cutting head to change to remove material from around the cross section of the vessel.
- In accordance with another embodiment of this invention, it is also possible that instead of, or in addition to, associating a magnet with the cutting head, the atherectomy device can be used in conjunction with a magnetic guide wire. A magnet can be provided on the end of a conventional guide wire, or a portion of the guide wire can be made magnetic. The guide wire is then navigated to the diseased site. The magnet on or in the guide wire facilitates orienting and/or moving the guide wire through the blood vessels. Once at the site, the atherectomy device can be brought into close association with the magnet on the guide wire, and the magnet on the guide wire can be used to orient and to move the cutting head within the blood vessel.
- The atherectomy device of the present invention can be quickly and easily navigated to the site of the disease. This makes the procedure easier on the physician and the on patient. Once at the site, the tool can be operated more effectively, removing atheramotous material from around the entire circumference of the blood vessel, and clearing a passageway larger than the cross section of the atherectomy device itself. These and other features and advantages will be in part apparent and in part pointed out hereinafter.
-
FIG. 1 is a partial longitudinal cross sectional view of an atherectomy device constructed according the principles of this invention; -
FIG. 2 is a partial longitudinal cross sectional view of an alternate construction of the atherectomy device, incorporating a discrete magnet; -
FIG. 3 is a partial longitudinal cross-sectional view of an alternate construction of the atherectomy device, in which a portion of the drive shaft is magnetic; -
FIG. 4 is a partial longitudinal cross-sectional view of an alternate construction of the atherectomy device, incorporating a magnet on the sheath; -
FIG. 5A is a longitudinal cross-sectional view of a blood vessel showing an atherectomy device of the present invention therein before the application of a magnetic gradient; -
FIG. 5B is a longitudinal cross-sectional view of a blood vessel showing an atherectomy device of the present invention therein during the application of a magnetic gradient; -
FIG. 6A is a longitudinal cross-sectional view of a curved segment of a blood vessel showing an atherectomy device of the present invention therein, before the application of a magnetic gradient; -
FIG. 6B is a longitudinal cross-sectional view of a curved segment of a blood vessel showing an atherectomy device of the present invention therein, during the application of a magnetic gradient; -
FIG. 7 is a transverse cross section of a blood vessel showing the possible positions of an atherectomy device of the present invention with the application of a magnetic gradient;FIG. 8 is a longitudinal cross-sectional view of the blood vessel showing a atherectomy tool oriented by a magnetic field to remove accumulated atheromatous material; -
FIG. 9A is a partial longitudinal cross sectional view of an atherectomy device constructed according to the principles of this invention, employing a magnetic guide wire with a discrete magnet; -
FIG. 9B is a partial longitudinal cross sectional view of an atherectomy device constructed according to the principles of this invention, employing a magnetic guide wire with a magnetic portion; and -
FIG. 10 is a partial longitudinal cross sectional view of an athrectomy device constructed according to the principles of this invention without a guide wire. - Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
- An atherectomy device constructed according to the principles of this invention is indicated generally as 20 in
FIG. 1 . While the drawings and description of this preferred embodiment show and describe an atherectomy device for removing atheromatous material from the walls of blood vessels, the invention is not so limited, and applies to any magnetically navigable and/or controllable device for removing material from the surface of a body lumen or cavity. As shown inFIG. 1 , theatherectomy device 20 comprises aflexible drive shaft 22 and a cuttinghead 24. Thedrive shaft 22 is preferably made from a tight helically coiled wire. The cuttinghead 24 is preferably an oblate spheroid, with an abrasive, such as diamond particles on the distal end. Thedrive shaft 22 rotates the cuttinghead 24, and the abrasive on the distal end of the cutting head abrades the atheromatous material in the vessel. There is apassage 26 through cuttinghead 24, and through thedrive shaft 22 for receiving aguide wire 28. Theguide wire 28 can be advanced in the blood vessel and then theatherectomy device 20 is advanced over the guide wire to the procedure site. Theend 30 of theguide wire 28 may have astop 32, to prevent the guide wire from being withdrawn entirely into thepassage 26, and to blunt the end of the guide wire so that it does not puncture the blood vessel. Of course, as described below, the athrectomy device can be used without a guide wire and guided magnetically. This is particularly advantageous in totally occluded vessels where the guide wire cannot extend in front of the atherectomy device because of the occlusion. According to the principles of this invention, the cuttinghead 24 is made from or contains a magnetic material, for example a permanent magnetic materials such as Hiperco® (available from Carpenter Steel, Reading, Pa.) or a permeable magnetic material such as neodymium-iron-boron (Nd—Fe—B) (available from Magstar Technologies, Minneapolis, Minn. The cuttinghead 24 may be coated with an abrasive material, such as diamond dust embedded in the distal surface of the head. - The
drive shaft 22 is preferably enclosed in asheath 34, that protects the blood vessel from the rotating drive shaft. Thesheath 34 may be made of a conventional medical catheter material such as polyvinylchloride. - A first alternative construction of the
atherectomy device 20, indicated as 20′, is shown inFIG. 2 . Theatherectomy device 20′ is similar in construction to atherectomydevice 20, except that instead of the cuttinghead 24 being made from a magnetic material, amagnet 36 is disposed between thedrive shaft 22 and the cuttinghead 24. This magnet may be a permanent magnetic material such as Hiperco®, or a permeable magnetic material such as Nd—Fe—B. - A second alternative construction of the
atherectomy device 20, indicated generally as 20″, is shown inFIG. 3 . Theatherectomy device 20″ is similar in construction to atherectomydevice 20, except that instead of the cuttinghead 24 being made from a magnetic material, thedistal portion 38 ofdrive shaft 22 is magnetic. This distal portion may be made from a permanent magnetic material such as Hiperco® or a permeable magnetic material such as Nd—Fe—B. - A third alternative construction of the
atherectomy device 20, indicated generally as 20′″ is shown inFIG. 4 . The atherectomy device is similar in construction to atherectomydevice 20, except that instead of the cuttinghead 24 being made from a magnetic material, the distal portion of the sheath has amagnet 40 thereon. The magnet may be embedded in the distal end portion of the catheter, or secured on the end, for example with a suitable medical grade adhesive. The cutting head can be retracted against themagnet 40, so that the magnet is closely associated with the cuttinghead 24. - Regardlesss of the means by which the magnet is associated with the atherectomy device, a magnetic field can be applied to orient the atherectomy device in the blood vessel for navigating to the procedure site. The externally applied magnetic field may be applied, for example with a magnetic surgery system like that disclosed in co-pending U.S. patent application Ser. No. 08-920,446, filed Aug. 29, 1997, entitled Method and Apparatus for Magnetically Controlling Motion Direction of a Mechanically Pushed Catheter, incorporated herein by reference. The applied magnetic field aligns the magnet associated with cutting head, e.g., the
magnetic cutting head 24 indevice 20, themagnet 36 associated with the cutting head indevice 20′, or the magneticdistal end portion 38 of thedrive shaft 22 indevice 20″, in the direction of the field, so that the atherectomy device can be more easily steered through the blood vessels. Once the distal end of the device is oriented in the desired direction of travel by the magnetic field, the device can then be advanced in the desired direction simply by pushing on the proximal end. Alternatively, or in addition, a magnetic field gradient can be applied to the to the magnet associated with the cutting head to apply force to the atherectomy device to actually advance the device through the blood vessel. This force can be the only force used to move the atherectomy device, or this force can merely be used to assist the mechanical pushing of the device through the blood vessel. - Once at the site, magnetic fields can be applied to the magnet associated with the cutting head to control the orientation of the device and its position within the cross-section of the blood vessel. Thus, with the application of a magnetic field, the cutting portion of the cutting head can be oriented toward the accumulated atheromatous material, and the cutting tool itself can be moved within the cross-section of the blood vessel to act on the accumulated atheromatous material, for example on the insides of bends.
FIG. 5A shows anatherectomy device 20 in a blood vessel. The device is positioned generally along theguide wire 28. However, as shown inFIG. 5B upon the application of a magnetic field gradient, the cuttinghead 24 can be drawn toward the accumulated atheromatous material, to more completely and effectively abrade the material from the vessel wall. This technique is particularly advantageous in the bends of blood vessels, as shown inFIG. 6A , wherein the natural stiffness of the guide wire and the device causes the atherectomy device to a position away from the inside of the curve and toward the outside of the curve. However, as shown inFIG. 6B , upon the application of a magnetic field gradient, the cuttinghead 24 can be drawn against the accumulated atheromatous a material on the inside of the bend, to remove this material and more completely open the blood vessel. As shown inFIG. 7 , by controlling the direction of the applied magnetic gradient, it is possible to move the cutting head to any position in the cross section of the blood vessel. - As shown in
FIG. 8 , it is also possible to apply a magnetic field to simply orient the cuttinghead 24, positioning the distal abrasive cutting surface of the cutting head against the atheromatous material on the vessel wall. The effects of orientation with a magnetic field and positioning with a magnetic gradient can be combined. While the gradient pulls the cutting head into the atheromatous material, the field direction can be along the axis of the vessel, to keep the cutting head oriented along the vessel. Alternatively, the field direction can be at an angle with respect to the vessel, to tilt the cutting head into the atheromatous material. - Further, by continuously moving the applied magnetic field, it is possible to precess the cutting
head 24 around the circumference of the vessel, moving the cutting head to clear substantially the entire cross section of the vessel. By employing a microprocessor control, or other automated control to change the magnetic field as a function of time, the cutting tool can be automatically precessed within the vessel. Thus the atherectomy tool can be used to create a flow pathway through the vessel that is actually larger than the cross section of the atherectomy device. As the cutting head is precessing, it can be slowly advanced across the accumulated atheromatous material. In addition to precessing the cutting head by continuously changing the magnetic field, it is also possible to continuously move the cutting head around the cross-section of the vessel by continuously varying the magnetic gradient. Of course both the magnetic field and magnetic gradient can be simultaneously changed to cause the orientation and the position of the cutting head to change to remove material from around the cross section of the vessel. - In accordance with a second embodiment of this invention, shown in
FIG. 9A and 9B , it is also possible that instead of, or in addition to, associating a magnetic with the cutting head, the atherectomy device can be used in conjunction with amagnetic guide wire 100, having a magnetic distal end portion. As shown inFIG. 9A , theguide wire 100 has adiscrete magnet 102 on its distal end. As shown inFIG. 9B , thedistal end portion 104 of theguide wire 100 is made from a magnetic wire material. The guide wire is then navigated to the diseased site. The magnet on or in the guide wire facilitate orienting and/or moving the guide wire through the blood vessels. Once at the site, the atherectomy device can be brought into close association with the magnet on the guide wire, and the magnet on the guide wire can be used to orient and to move the cutting head within the blood vessel. - In accordance with a third embodiment of this invention, shown in
FIG. 10 , the atherectomy device can be used without any guide wire. The device is navigated solely by the application of magnetic fields and/or gradients, which apply a force through the magnet associated with the cutting head. One method of navigating such an atherectomy device is that disclosed in co-assigned U.S. patent application Ser. No. 60/095,710 filed Aug. 7, 1998, and incorporated herein by reference. In this method of navigation, the operating region in the patient is viewed on two planar fluoroscopic images of the operating region. The physician identifies the current position of the atherectomy device on each display, for example by using a mouse or similar device to point and click on the desired location. Similarly the physician can identify the desired new position of the atherectomy device on each display. A computer can control an electromagnetic system for generating an electromagnetic field and/or gradient for orienting and/or moving the distal end of the atherectomy device as input by the physician. The distal end of the atherectomy device is advanced manually or automatically, or in some cases it can be moved by a magnetic field or gradient. In this manner, the atherectomy device can be magnetically directed to the site of the occlusion without a guide wire, and once at the site of the occlusion can be magnetically manipulated to remove the material blocking the vessel or lumen.
Claims (27)
1. A device for removing material from the surface of body lumens and cavities, the device comprising:
a cutting head; and
a magnet associated with the cutting head, the magnet of sufficient size to allow the cutting head to be oriented by an externally applied magnetic field.
2. The device according to claim 1 wherein the magnet comprises a portion of the cutting head made from a magnetically permeable or permanent magnetic material.
3. The device according to claim 1 further comprising a flexible drive shaft having a proximal and a distal end, with the cutting device on the distal end, and wherein the magnet comprises a portion of the flexible drive shaft being made of a magnetically permeable or permanent magnetic material.
4. The device according to claim 1 wherein the magnet is a magnetically permeable or permanent magnetic material disposed between the cutting head and the flexible drive shaft.
5. The device according to claim 1 further comprising a sheath, over the drive shaft, and wherein the magnet is on the distal end of the sheath.
6. The device according to claim 1 further comprising a generally axially extending passage through the cutting head and the drive shaft for accommodating a guide wire.
7. A method of removing material from the surface of a body lumen or cavity, the method comprising:
introducing a guide wire having magnetic material at its distal end into the body lumen or cavity, and navigating the guide wire to the site of the material to be removed by successively applying a magnetic field to orient the distal end of the guide wire and advancing the guide wire in the lumen or cavity to the site of the material to be removed;
advancing a tool having a cutting head for removing the material, along the guide wire to the site of the material, and
operating the cutting head to remove the material from the walls of the blood vessel.
8. The method according to claim 7 wherein the step of advancing the guide wire comprises applying a magnetic field gradient to the distal end of the guide wire to apply a motive force to move the distal end of the guide wire.
9. The method according to claim 7 wherein the step of operating the cutting head to remove the material comprises advancing the tool over the guide wire into close proximity with the magnetic material, and applying a magnetic field to the magnetic material to orient the cutting head of the tool.
10. The method according to claim 7 wherein the step of operating the cutting head to remove the material comprises advancing the tool over the guide wire into close proximity with the magnetic material, and applying a magnetic gradient to the magnetic material to move the cutting head toward the material in the lumen or cavity.
11. The method according to claim 7 wherein the step of operating the cutting head to remove the material comprises advancing the tool over the guide wire into close proximity with the magnetic material, and applying a magnetic field to orient the cutting head and a magnetic gradient to move the cutting head toward the material in the lumen or cavity.
12. A method of removing material from the surface of a body lumen or cavity, the method comprising:
introducing a guide wire having magnetic material at its distal end into the body lumen or cavity, and navigating the guide wire to the site of the material to be removed;
advancing a tool having a cutting head for removing the material, along the guide wire to the site of the material and into close proximity with the magnetic material; and
operating the cutting head to remove the material from the walls of the lumen or cavity by applying at least a magnetic field to orient the cutting head or a magnetic gradient to move the cutting head within the lumen or cavity.
13. The method according to claim 12 wherein the step of operating the cutting head to remove the material comprises applying a magnetic field to the magnetic material to orient the cutting head of the tool toward the material in the lumen or cavity.
14. The method according to claim 12 wherein the step of operating the cutting head to remove the material comprises applying a magnetic gradient to the magnetic material to move the cutting head toward the material in the lumen or cavity.
15. The method according to claim 12 wherein the step of operating the cutting head to remove the material comprises applying both a magnetic field to orient the cutting head and a magnetic gradient to move the cutting head toward the material in the lumen or cavity.
16. A method of removing material from the walls of a body lumen or cavity, comprising:
introducing a tool having a cutting head on its distal end and a magnet associated with the cutting head into the lumen or cavity, and navigating the tool to the site of the material to be removed by successively applying a magnetic field to orient the distal end of tool and advancing the tool in the lumen or cavity to the site of the material to be removed; and
operating the cutting head to remove the material from the surface of the lumen or cavity.
17. The method according to claim 16 wherein the step of advancing the tool comprises applying a magnetic field gradient to the distal end of the tool to apply a motive force to move the distal end of the tool.
18. The method according to claim 16 wherein the step of operating the cutting head to remove the material comprises applying a magnetic field to the magnet associated with the cutting head to orient the cutting head of the tool.
19. The method according to claim 16 wherein the step of operating the cutting head to remove the material comprises applying a magnetic field gradient to the magnetic material associated with the cutting head to move the cutting head within the lumen or cavity.
20. The method according to claim 16 wherein the magnet associated with the cutting head is at least a part of the cutting head made of a magnetic material.
21. A method of removing material from the walls of a body lumen or cavity, comprising:
introducing a tool having a cutting head on its distal end and a magnet associated with the cutting head into the lumen or cavity, and navigating the tool to the site of the material to be removed;
operating the cutting head to remove the material from the surface of the lumen or cavity by applying at least a magnetic field to orient the cutting head or a magnetic gradient to move the cutting head within the lumen or cavity.
22. The method according to claim 23 wherein the step of operating the cutting head to remove the material comprises applying a magnetic field to the magnet associated with the cutting head to orient the cutting head of the tool.
23. The method according to claim 23 wherein the step of operating the cutting head to remove the material comprises applying a magnetic gradient to the magnetic material associated with the cutting head to move the cutting head within the lumen or cavity.
24. The method according to claim 23 wherein the step of operating the cutting head to remove the material comprises applying both a magnetic field to orient the cutting head and a magnetic gradient to move the cutting head toward the material in the lumen or cavity.
25. The method according to claim 21 further comprising the step of applying a continuously changing magnetic field to precess the cutting head within the lumen or cavity.
26. The method according to claim 25 wherein the step of applying a continuously changing magnetic field is done with a computer controlled magnet.
27. The method according to claim 21 further comprising the step of applying a continuously changing magnetic gradient to move the cutting head within the lumen or cavity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/852,304 US20050004585A1 (en) | 1998-10-02 | 2004-05-24 | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16569498A | 1998-10-02 | 1998-10-02 | |
US09/281,241 US6428551B1 (en) | 1999-03-30 | 1999-03-30 | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
US10/212,458 US6740103B2 (en) | 1998-10-02 | 2002-08-05 | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
US10/852,304 US20050004585A1 (en) | 1998-10-02 | 2004-05-24 | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/212,458 Continuation US6740103B2 (en) | 1998-10-02 | 2002-08-05 | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050004585A1 true US20050004585A1 (en) | 2005-01-06 |
Family
ID=26861625
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/951,129 Expired - Fee Related US6733511B2 (en) | 1998-10-02 | 2001-09-12 | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
US10/212,458 Expired - Fee Related US6740103B2 (en) | 1998-10-02 | 2002-08-05 | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
US10/852,304 Abandoned US20050004585A1 (en) | 1998-10-02 | 2004-05-24 | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/951,129 Expired - Fee Related US6733511B2 (en) | 1998-10-02 | 2001-09-12 | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
US10/212,458 Expired - Fee Related US6740103B2 (en) | 1998-10-02 | 2002-08-05 | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
Country Status (5)
Country | Link |
---|---|
US (3) | US6733511B2 (en) |
EP (1) | EP1119299A1 (en) |
JP (1) | JP2002526148A (en) |
AU (1) | AU6279299A (en) |
WO (1) | WO2000019917A1 (en) |
Cited By (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040169316A1 (en) * | 2002-03-28 | 2004-09-02 | Siliconix Taiwan Ltd. | Encapsulation method and leadframe for leadless semiconductor packages |
US20050113812A1 (en) * | 2003-09-16 | 2005-05-26 | Viswanathan Raju R. | User interface for remote control of medical devices |
US20060270915A1 (en) * | 2005-01-11 | 2006-11-30 | Ritter Rogers C | Navigation using sensed physiological data as feedback |
US20070016131A1 (en) * | 2005-07-12 | 2007-01-18 | Munger Gareth T | Flexible magnets for navigable medical devices |
US20070060962A1 (en) * | 2005-07-26 | 2007-03-15 | Carlo Pappone | Apparatus and methods for cardiac resynchronization therapy and cardiac contractility modulation |
US20070060966A1 (en) * | 2005-07-11 | 2007-03-15 | Carlo Pappone | Method of treating cardiac arrhythmias |
US20070060992A1 (en) * | 2005-06-02 | 2007-03-15 | Carlo Pappone | Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery |
US20070060829A1 (en) * | 2005-07-21 | 2007-03-15 | Carlo Pappone | Method of finding the source of and treating cardiac arrhythmias |
US20070062547A1 (en) * | 2005-07-21 | 2007-03-22 | Carlo Pappone | Systems for and methods of tissue ablation |
US20070123964A1 (en) * | 2003-01-21 | 2007-05-31 | Baylis Medical Company | Magnetically guidable energy delivery apparatus and method of using same |
US20070149946A1 (en) * | 2005-12-07 | 2007-06-28 | Viswanathan Raju R | Advancer system for coaxial medical devices |
US20070146106A1 (en) * | 1999-10-04 | 2007-06-28 | Creighton Francis M Iv | Rotating and pivoting magnet for magnetic navigation |
US20070161882A1 (en) * | 2006-01-06 | 2007-07-12 | Carlo Pappone | Electrophysiology catheter and system for gentle and firm wall contact |
US20070167720A1 (en) * | 2005-12-06 | 2007-07-19 | Viswanathan Raju R | Smart card control of medical devices |
US20070197906A1 (en) * | 2006-01-24 | 2007-08-23 | Ritter Rogers C | Magnetic field shape-adjustable medical device and method of using the same |
US20070197899A1 (en) * | 2006-01-17 | 2007-08-23 | Ritter Rogers C | Apparatus and method for magnetic navigation using boost magnets |
US20070250041A1 (en) * | 2006-04-19 | 2007-10-25 | Werp Peter R | Extendable Interventional Medical Devices |
US20070287909A1 (en) * | 1998-08-07 | 2007-12-13 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling catheters in body lumens and cavities |
US20080004644A1 (en) * | 2006-06-30 | 2008-01-03 | Atheromed, Inc. | Atherectomy devices and methods |
US20080015670A1 (en) * | 2006-01-17 | 2008-01-17 | Carlo Pappone | Methods and devices for cardiac ablation |
US20080016677A1 (en) * | 2002-01-23 | 2008-01-24 | Stereotaxis, Inc. | Rotating and pivoting magnet for magnetic navigation |
US20080039830A1 (en) * | 2006-08-14 | 2008-02-14 | Munger Gareth T | Method and Apparatus for Ablative Recanalization of Blocked Vasculature |
US20080045986A1 (en) * | 2006-06-30 | 2008-02-21 | Atheromed, Inc. | Atherectomy devices and methods |
US20080047568A1 (en) * | 1999-10-04 | 2008-02-28 | Ritter Rogers C | Method for Safely and Efficiently Navigating Magnetic Devices in the Body |
US20080059598A1 (en) * | 2006-09-06 | 2008-03-06 | Garibaldi Jeffrey M | Coordinated Control for Multiple Computer-Controlled Medical Systems |
US20080058609A1 (en) * | 2006-09-06 | 2008-03-06 | Stereotaxis, Inc. | Workflow driven method of performing multi-step medical procedures |
US20080055239A1 (en) * | 2006-09-06 | 2008-03-06 | Garibaldi Jeffrey M | Global Input Device for Multiple Computer-Controlled Medical Systems |
US20080065061A1 (en) * | 2006-09-08 | 2008-03-13 | Viswanathan Raju R | Impedance-Based Cardiac Therapy Planning Method with a Remote Surgical Navigation System |
US20080065124A1 (en) * | 1999-08-19 | 2008-03-13 | Foxhollow Technologies, Inc. | High capacity debulking catheter with razor edge cutting window |
US20080064969A1 (en) * | 2006-09-11 | 2008-03-13 | Nathan Kastelein | Automated Mapping of Anatomical Features of Heart Chambers |
US20080077007A1 (en) * | 2002-06-28 | 2008-03-27 | Hastings Roger N | Method of Navigating Medical Devices in the Presence of Radiopaque Material |
US20080097200A1 (en) * | 2006-10-20 | 2008-04-24 | Blume Walter M | Location and Display of Occluded Portions of Vessels on 3-D Angiographic Images |
US20080132910A1 (en) * | 2006-11-07 | 2008-06-05 | Carlo Pappone | Control for a Remote Navigation System |
US20080200913A1 (en) * | 2007-02-07 | 2008-08-21 | Viswanathan Raju R | Single Catheter Navigation for Diagnosis and Treatment of Arrhythmias |
US20080208912A1 (en) * | 2007-02-26 | 2008-08-28 | Garibaldi Jeffrey M | System and method for providing contextually relevant medical information |
US20080228065A1 (en) * | 2007-03-13 | 2008-09-18 | Viswanathan Raju R | System and Method for Registration of Localization and Imaging Systems for Navigational Control of Medical Devices |
US20080228068A1 (en) * | 2007-03-13 | 2008-09-18 | Viswanathan Raju R | Automated Surgical Navigation with Electro-Anatomical and Pre-Operative Image Data |
US20080287909A1 (en) * | 2007-05-17 | 2008-11-20 | Viswanathan Raju R | Method and apparatus for intra-chamber needle injection treatment |
US20080292901A1 (en) * | 2007-05-24 | 2008-11-27 | Hon Hai Precision Industry Co., Ltd. | Magnesium alloy and thin workpiece made of the same |
US20080294232A1 (en) * | 2007-05-22 | 2008-11-27 | Viswanathan Raju R | Magnetic cell delivery |
US20080312673A1 (en) * | 2007-06-05 | 2008-12-18 | Viswanathan Raju R | Method and apparatus for CTO crossing |
US20090012821A1 (en) * | 2007-07-06 | 2009-01-08 | Guy Besson | Management of live remote medical display |
US20090018565A1 (en) * | 2006-06-30 | 2009-01-15 | Artheromed, Inc. | Atherectomy devices, systems, and methods |
US20090018567A1 (en) * | 2006-06-30 | 2009-01-15 | Artheromed, Inc. | Atherectomy devices, systems, and methods |
US20090018566A1 (en) * | 2006-06-30 | 2009-01-15 | Artheromed, Inc. | Atherectomy devices, systems, and methods |
US20090024085A1 (en) * | 2006-06-30 | 2009-01-22 | Artheromed, Inc | Atherectomy devices, systems, and methods |
US20090062789A1 (en) * | 2007-08-24 | 2009-03-05 | Boston Scientific Scimed, Inc. | Magnetically steerable catheter assembly |
US20090062646A1 (en) * | 2005-07-07 | 2009-03-05 | Creighton Iv Francis M | Operation of a remote medical navigation system using ultrasound image |
US20090082722A1 (en) * | 2007-08-21 | 2009-03-26 | Munger Gareth T | Remote navigation advancer devices and methods of use |
US20090131927A1 (en) * | 2007-11-20 | 2009-05-21 | Nathan Kastelein | Method and apparatus for remote detection of rf ablation |
US20090177032A1 (en) * | 1999-04-14 | 2009-07-09 | Garibaldi Jeffrey M | Method and apparatus for magnetically controlling endoscopes in body lumens and cavities |
US20090177037A1 (en) * | 2007-06-27 | 2009-07-09 | Viswanathan Raju R | Remote control of medical devices using real time location data |
US20090216180A1 (en) * | 2008-02-25 | 2009-08-27 | Fox Hollow Technologies, Inc. | Methods and devices for cutting tissue |
US20090234378A1 (en) * | 2007-10-22 | 2009-09-17 | Atheromed, Inc. | Atherectomy devices and methods |
US20090306643A1 (en) * | 2008-02-25 | 2009-12-10 | Carlo Pappone | Method and apparatus for delivery and detection of transmural cardiac ablation lesions |
US20100049225A1 (en) * | 2007-10-22 | 2010-02-25 | Atheromed, Inc. | Atherectomy devices and methods |
US20100069733A1 (en) * | 2008-09-05 | 2010-03-18 | Nathan Kastelein | Electrophysiology catheter with electrode loop |
US20100163061A1 (en) * | 2000-04-11 | 2010-07-01 | Creighton Francis M | Magnets with varying magnetization direction and method of making such magnets |
US7772950B2 (en) | 2005-08-10 | 2010-08-10 | Stereotaxis, Inc. | Method and apparatus for dynamic magnetic field control using multiple magnets |
US20100222669A1 (en) * | 2006-08-23 | 2010-09-02 | William Flickinger | Medical device guide |
US7818076B2 (en) | 2005-07-26 | 2010-10-19 | Stereotaxis, Inc. | Method and apparatus for multi-system remote surgical navigation from a single control center |
US20100298845A1 (en) * | 2009-05-25 | 2010-11-25 | Kidd Brian L | Remote manipulator device |
US20100312263A1 (en) * | 2009-04-29 | 2010-12-09 | Fox Hollow Technologies, Inc. | Methods and devices for cutting and abrading tissue |
US20110022029A1 (en) * | 2004-12-20 | 2011-01-27 | Viswanathan Raju R | Contact over-torque with three-dimensional anatomical data |
US20110033100A1 (en) * | 2005-02-07 | 2011-02-10 | Viswanathan Raju R | Registration of three-dimensional image data to 2d-image-derived data |
US20110046618A1 (en) * | 2009-08-04 | 2011-02-24 | Minar Christopher D | Methods and systems for treating occluded blood vessels and other body cannula |
US20110112563A1 (en) * | 2006-06-30 | 2011-05-12 | Atheromed, Inc. | Atherectomy devices and methods |
US20110130718A1 (en) * | 2009-05-25 | 2011-06-02 | Kidd Brian L | Remote Manipulator Device |
US7961924B2 (en) | 2006-08-21 | 2011-06-14 | Stereotaxis, Inc. | Method of three-dimensional device localization using single-plane imaging |
US8007506B2 (en) | 2006-06-30 | 2011-08-30 | Atheromed, Inc. | Atherectomy devices and methods |
US8192452B2 (en) | 2009-05-14 | 2012-06-05 | Tyco Healthcare Group Lp | Easily cleaned atherectomy catheters and methods of use |
US8196590B2 (en) | 2003-05-02 | 2012-06-12 | Stereotaxis, Inc. | Variable magnetic moment MR navigation |
US8226674B2 (en) | 2000-12-20 | 2012-07-24 | Tyco Healthcare Group Lp | Debulking catheters and methods |
US8231618B2 (en) | 2007-11-05 | 2012-07-31 | Stereotaxis, Inc. | Magnetically guided energy delivery apparatus |
US20120197276A1 (en) * | 2004-03-26 | 2012-08-02 | Henry William Lupton | Guide wire for use in re-canalising a vascular occlusion in a human or animal subject |
US8242972B2 (en) | 2006-09-06 | 2012-08-14 | Stereotaxis, Inc. | System state driven display for medical procedures |
US8246640B2 (en) | 2003-04-22 | 2012-08-21 | Tyco Healthcare Group Lp | Methods and devices for cutting tissue at a vascular location |
US8308628B2 (en) | 2009-11-02 | 2012-11-13 | Pulse Therapeutics, Inc. | Magnetic-based systems for treating occluded vessels |
US8361094B2 (en) | 2006-06-30 | 2013-01-29 | Atheromed, Inc. | Atherectomy devices and methods |
US8414604B2 (en) | 2008-10-13 | 2013-04-09 | Covidien Lp | Devices and methods for manipulating a catheter shaft |
US8469979B2 (en) | 2000-12-20 | 2013-06-25 | Covidien Lp | High capacity debulking catheter with distal driven cutting wheel |
US8496677B2 (en) | 2009-12-02 | 2013-07-30 | Covidien Lp | Methods and devices for cutting tissue |
US8597315B2 (en) | 1999-08-19 | 2013-12-03 | Covidien Lp | Atherectomy catheter with first and second imaging devices |
US8795306B2 (en) | 2011-10-13 | 2014-08-05 | Atheromed, Inc. | Atherectomy apparatus, systems and methods |
US8808186B2 (en) | 2010-11-11 | 2014-08-19 | Covidien Lp | Flexible debulking catheters with imaging and methods of use and manufacture |
US8920450B2 (en) | 2010-10-28 | 2014-12-30 | Covidien Lp | Material removal device and method of use |
US8992717B2 (en) | 2011-09-01 | 2015-03-31 | Covidien Lp | Catheter with helical drive shaft and methods of manufacture |
US8998937B2 (en) | 1999-08-19 | 2015-04-07 | Covidien Lp | Methods and devices for cutting tissue |
US9028512B2 (en) | 2009-12-11 | 2015-05-12 | Covidien Lp | Material removal device having improved material capture efficiency and methods of use |
US9119662B2 (en) | 2010-06-14 | 2015-09-01 | Covidien Lp | Material removal device and method of use |
US9532844B2 (en) | 2012-09-13 | 2017-01-03 | Covidien Lp | Cleaning device for medical instrument and method of use |
US9883878B2 (en) | 2012-05-15 | 2018-02-06 | Pulse Therapeutics, Inc. | Magnetic-based systems and methods for manipulation of magnetic particles |
US9974930B2 (en) | 2005-03-24 | 2018-05-22 | Brivant Research & Development Limited | Guide wire for use in re-canalising a vascular occlusion in a human or animal subject |
US20180242999A1 (en) * | 2017-02-28 | 2018-08-30 | Angiosafe, Inc. | Device and method for centering and crossing a vascular occlusion |
US10213224B2 (en) | 2014-06-27 | 2019-02-26 | Covidien Lp | Cleaning device for catheter and catheter including the same |
US10292721B2 (en) | 2015-07-20 | 2019-05-21 | Covidien Lp | Tissue-removing catheter including movable distal tip |
US10314667B2 (en) | 2015-03-25 | 2019-06-11 | Covidien Lp | Cleaning device for cleaning medical instrument |
US10314664B2 (en) | 2015-10-07 | 2019-06-11 | Covidien Lp | Tissue-removing catheter and tissue-removing element with depth stop |
US11207096B2 (en) | 2006-06-30 | 2021-12-28 | Atheromed, Inc. | Devices systems and methods for cutting and removing occlusive material from a body lumen |
US11304723B1 (en) | 2020-12-17 | 2022-04-19 | Avantec Vascular Corporation | Atherectomy devices that are self-driving with controlled deflection |
US11660137B2 (en) | 2006-09-29 | 2023-05-30 | Boston Scientific Medical Device Limited | Connector system for electrosurgical device |
US11684447B2 (en) | 2012-05-31 | 2023-06-27 | Boston Scientific Medical Device Limited | Radiofrequency perforation apparatus |
US11724070B2 (en) | 2019-12-19 | 2023-08-15 | Boston Scientific Medical Device Limited | Methods for determining a position of a first medical device with respect to a second medical device, and related systems and medical devices |
US11744638B2 (en) | 2006-09-29 | 2023-09-05 | Boston Scientific Medical Device Limited | Electrosurgical device |
US11759190B2 (en) | 2019-10-18 | 2023-09-19 | Boston Scientific Medical Device Limited | Lock for medical devices, and related systems and methods |
US11766290B2 (en) | 2015-09-09 | 2023-09-26 | Boston Scientific Medical Device Limited | Epicardial access system and methods |
US11793446B2 (en) | 2020-06-17 | 2023-10-24 | Boston Scientific Medical Device Limited | Electroanatomical mapping system with visualization of energy-delivery and elongated needle assemblies |
US11801087B2 (en) | 2019-11-13 | 2023-10-31 | Boston Scientific Medical Device Limited | Apparatus and methods for puncturing tissue |
US11819243B2 (en) | 2020-03-19 | 2023-11-21 | Boston Scientific Medical Device Limited | Medical sheath and related systems and methods |
US11826075B2 (en) | 2020-04-07 | 2023-11-28 | Boston Scientific Medical Device Limited | Elongated medical assembly |
US11878131B2 (en) | 2017-12-05 | 2024-01-23 | Boston Scientific Medical Device Limited | Transseptal guide wire puncture system |
US11918315B2 (en) | 2018-05-03 | 2024-03-05 | Pulse Therapeutics, Inc. | Determination of structure and traversal of occlusions using magnetic particles |
US11931098B2 (en) | 2020-02-19 | 2024-03-19 | Boston Scientific Medical Device Limited | System and method for carrying out a medical procedure |
US11937796B2 (en) | 2020-06-18 | 2024-03-26 | Boston Scientific Medical Device Limited | Tissue-spreader assembly |
US11937873B2 (en) | 2013-03-12 | 2024-03-26 | Boston Scientific Medical Device Limited | Electrosurgical device having a lumen |
US11938285B2 (en) | 2020-06-17 | 2024-03-26 | Boston Scientific Medical Device Limited | Stop-movement device for elongated medical assembly |
US11980412B2 (en) | 2020-09-15 | 2024-05-14 | Boston Scientific Medical Device Limited | Elongated medical sheath |
US11986209B2 (en) | 2020-02-25 | 2024-05-21 | Boston Scientific Medical Device Limited | Methods and devices for creation of communication between aorta and left atrium |
US11998238B2 (en) | 2013-08-07 | 2024-06-04 | Boston Scientific Medical Device Limited | Methods and devices for puncturing tissue |
US12005202B2 (en) | 2020-08-07 | 2024-06-11 | Boston Scientific Medical Device Limited | Catheter having tissue-engaging device |
US12011279B2 (en) | 2020-04-07 | 2024-06-18 | Boston Scientific Medical Device Limited | Electro-anatomic mapping system |
US12011210B2 (en) | 2013-03-15 | 2024-06-18 | Boston Scientific Medical Device Limited | Electrosurgical device having a distal aperture |
US12042178B2 (en) | 2020-07-21 | 2024-07-23 | Boston Scientific Medical Device Limited | System of medical devices and method for pericardial puncture |
US12082792B2 (en) | 2020-02-25 | 2024-09-10 | Boston Scientific Medical Device Limited | Systems and methods for creating a puncture between aorta and the left atrium |
Families Citing this family (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6703418B2 (en) * | 1991-02-26 | 2004-03-09 | Unimed Pharmaceuticals, Inc. | Appetite stimulation and induction of weight gain in patients suffering from symptomatic HIV infection |
US7066924B1 (en) * | 1997-11-12 | 2006-06-27 | Stereotaxis, Inc. | Method of and apparatus for navigating medical devices in body lumens by a guide wire with a magnetic tip |
US6505062B1 (en) * | 1998-02-09 | 2003-01-07 | Stereotaxis, Inc. | Method for locating magnetic implant by source field |
US6401723B1 (en) * | 2000-02-16 | 2002-06-11 | Stereotaxis, Inc. | Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments |
US6524303B1 (en) * | 2000-09-08 | 2003-02-25 | Stereotaxis, Inc. | Variable stiffness magnetic catheter |
US7766856B2 (en) * | 2001-05-06 | 2010-08-03 | Stereotaxis, Inc. | System and methods for advancing a catheter |
US7635342B2 (en) * | 2001-05-06 | 2009-12-22 | Stereotaxis, Inc. | System and methods for medical device advancement and rotation |
EP1389958B1 (en) * | 2001-05-06 | 2008-10-29 | Stereotaxis, Inc. | System for advancing a catheter |
US7769427B2 (en) * | 2002-07-16 | 2010-08-03 | Magnetics, Inc. | Apparatus and method for catheter guidance control and imaging |
AU2003295741A1 (en) | 2002-11-18 | 2004-06-15 | Stereotaxis, Inc. | Magnetically navigable balloon catheters |
US20040225233A1 (en) * | 2003-05-09 | 2004-11-11 | Frankowski Brian J. | Magnetic guidewires |
US6980843B2 (en) * | 2003-05-21 | 2005-12-27 | Stereotaxis, Inc. | Electrophysiology catheter |
US20050075561A1 (en) * | 2003-10-01 | 2005-04-07 | Lucent Medical Systems, Inc. | Method and apparatus for indicating an encountered obstacle during insertion of a medical device |
US7280863B2 (en) * | 2003-10-20 | 2007-10-09 | Magnetecs, Inc. | System and method for radar-assisted catheter guidance and control |
DE102004015641B3 (en) * | 2004-03-31 | 2006-03-09 | Siemens Ag | Device for elimination of complete occlusion with IVUS monitoring |
US20060041181A1 (en) | 2004-06-04 | 2006-02-23 | Viswanathan Raju R | User interface for remote control of medical devices |
US20060036163A1 (en) * | 2004-07-19 | 2006-02-16 | Viswanathan Raju R | Method of, and apparatus for, controlling medical navigation systems |
US20080006280A1 (en) * | 2004-07-20 | 2008-01-10 | Anthony Aliberto | Magnetic navigation maneuvering sheath |
US20060144407A1 (en) * | 2004-07-20 | 2006-07-06 | Anthony Aliberto | Magnetic navigation manipulation apparatus |
US20060144408A1 (en) * | 2004-07-23 | 2006-07-06 | Ferry Steven J | Micro-catheter device and method of using same |
EP4197447A1 (en) * | 2004-08-16 | 2023-06-21 | Corindus, Inc. | Image-guided navigation for catheter-based interventions |
US7831294B2 (en) * | 2004-10-07 | 2010-11-09 | Stereotaxis, Inc. | System and method of surgical imagining with anatomical overlay for navigation of surgical devices |
US7742803B2 (en) * | 2005-05-06 | 2010-06-22 | Stereotaxis, Inc. | Voice controlled user interface for remote navigation systems |
WO2006121974A2 (en) * | 2005-05-06 | 2006-11-16 | Stereotaxis, Inc. | User interfaces and navigation methods for vascular navigation |
EP1896114B1 (en) * | 2005-05-10 | 2017-07-12 | Corindus Inc. | User interface for remote control catheterization |
US8027714B2 (en) * | 2005-05-27 | 2011-09-27 | Magnetecs, Inc. | Apparatus and method for shaped magnetic field control for catheter, guidance, control, and imaging |
US20070062546A1 (en) * | 2005-06-02 | 2007-03-22 | Viswanathan Raju R | Electrophysiology catheter and system for gentle and firm wall contact |
US20070021744A1 (en) * | 2005-07-07 | 2007-01-25 | Creighton Francis M Iv | Apparatus and method for performing ablation with imaging feedback |
US20070038065A1 (en) * | 2005-07-07 | 2007-02-15 | Creighton Francis M Iv | Operation of a remote medical navigation system using ultrasound image |
US7603905B2 (en) * | 2005-07-08 | 2009-10-20 | Stereotaxis, Inc. | Magnetic navigation and imaging system |
US7690619B2 (en) * | 2005-07-12 | 2010-04-06 | Stereotaxis, Inc. | Apparatus for pivotally orienting a projection device |
US7416335B2 (en) * | 2005-07-15 | 2008-08-26 | Sterotaxis, Inc. | Magnetically shielded x-ray tube |
US8192374B2 (en) * | 2005-07-18 | 2012-06-05 | Stereotaxis, Inc. | Estimation of contact force by a medical device |
US20070040670A1 (en) * | 2005-07-26 | 2007-02-22 | Viswanathan Raju R | System and network for remote medical procedures |
US20070043455A1 (en) * | 2005-07-26 | 2007-02-22 | Viswanathan Raju R | Apparatus and methods for automated sequential movement control for operation of a remote navigation system |
US8784336B2 (en) | 2005-08-24 | 2014-07-22 | C. R. Bard, Inc. | Stylet apparatuses and methods of manufacture |
US20070049909A1 (en) * | 2005-08-26 | 2007-03-01 | Munger Gareth T | Magnetically enabled optical ablation device |
US20070055124A1 (en) * | 2005-09-01 | 2007-03-08 | Viswanathan Raju R | Method and system for optimizing left-heart lead placement |
EP1928337B1 (en) * | 2005-09-29 | 2012-11-21 | Corindus Inc. | Apparatus for treatment of hollow organs |
US20070161888A1 (en) * | 2005-12-30 | 2007-07-12 | Sherman Jason T | System and method for registering a bone of a patient with a computer assisted orthopaedic surgery system |
US7525309B2 (en) | 2005-12-30 | 2009-04-28 | Depuy Products, Inc. | Magnetic sensor array |
US8862200B2 (en) * | 2005-12-30 | 2014-10-14 | DePuy Synthes Products, LLC | Method for determining a position of a magnetic source |
US20070167741A1 (en) * | 2005-12-30 | 2007-07-19 | Sherman Jason T | Apparatus and method for registering a bone of a patient with a computer assisted orthopaedic surgery system |
US7869854B2 (en) * | 2006-02-23 | 2011-01-11 | Magnetecs, Inc. | Apparatus for magnetically deployable catheter with MOSFET sensor and method for mapping and ablation |
US20080015427A1 (en) * | 2006-06-30 | 2008-01-17 | Nathan Kastelein | System and network for remote medical procedures |
GB0613981D0 (en) * | 2006-07-13 | 2006-08-23 | Shturman Leonid | |
GB0613980D0 (en) | 2006-07-13 | 2006-08-23 | Shturman Leonid | Rotational Atherectomy Device with Fluid Inflatable Elements supported by Fluid Bearings |
US7794407B2 (en) | 2006-10-23 | 2010-09-14 | Bard Access Systems, Inc. | Method of locating the tip of a central venous catheter |
US8388546B2 (en) | 2006-10-23 | 2013-03-05 | Bard Access Systems, Inc. | Method of locating the tip of a central venous catheter |
US8068648B2 (en) * | 2006-12-21 | 2011-11-29 | Depuy Products, Inc. | Method and system for registering a bone of a patient with a computer assisted orthopaedic surgery system |
US20080249395A1 (en) * | 2007-04-06 | 2008-10-09 | Yehoshua Shachar | Method and apparatus for controlling catheter positioning and orientation |
US20090131798A1 (en) * | 2007-11-19 | 2009-05-21 | Minar Christopher D | Method and apparatus for intravascular imaging and occlusion crossing |
US8781555B2 (en) | 2007-11-26 | 2014-07-15 | C. R. Bard, Inc. | System for placement of a catheter including a signal-generating stylet |
US10751509B2 (en) | 2007-11-26 | 2020-08-25 | C. R. Bard, Inc. | Iconic representations for guidance of an indwelling medical device |
US10524691B2 (en) | 2007-11-26 | 2020-01-07 | C. R. Bard, Inc. | Needle assembly including an aligned magnetic element |
AU2008329807B2 (en) | 2007-11-26 | 2014-02-27 | C. R. Bard, Inc. | Integrated system for intravascular placement of a catheter |
US9456766B2 (en) | 2007-11-26 | 2016-10-04 | C. R. Bard, Inc. | Apparatus for use with needle insertion guidance system |
US9521961B2 (en) | 2007-11-26 | 2016-12-20 | C. R. Bard, Inc. | Systems and methods for guiding a medical instrument |
US10449330B2 (en) | 2007-11-26 | 2019-10-22 | C. R. Bard, Inc. | Magnetic element-equipped needle assemblies |
US8849382B2 (en) | 2007-11-26 | 2014-09-30 | C. R. Bard, Inc. | Apparatus and display methods relating to intravascular placement of a catheter |
US9649048B2 (en) | 2007-11-26 | 2017-05-16 | C. R. Bard, Inc. | Systems and methods for breaching a sterile field for intravascular placement of a catheter |
US8118845B2 (en) * | 2008-02-01 | 2012-02-21 | William M White | Apparatus and procedure for anterior cervical microdiskectomy |
US8478382B2 (en) | 2008-02-11 | 2013-07-02 | C. R. Bard, Inc. | Systems and methods for positioning a catheter |
US20090275828A1 (en) * | 2008-05-01 | 2009-11-05 | Magnetecs, Inc. | Method and apparatus for creating a high resolution map of the electrical and mechanical properties of the heart |
EP2821094B1 (en) | 2008-05-06 | 2018-07-04 | Corindus Inc. | Catheter system |
EP2313143B1 (en) | 2008-08-22 | 2014-09-24 | C.R. Bard, Inc. | Catheter assembly including ecg sensor and magnetic assemblies |
WO2010025336A1 (en) * | 2008-08-29 | 2010-03-04 | Corindus Ltd. | Catheter simulation and assistance system |
EP2320990B2 (en) * | 2008-08-29 | 2023-05-31 | Corindus, Inc. | Catheter control system and graphical user interface |
US8437833B2 (en) | 2008-10-07 | 2013-05-07 | Bard Access Systems, Inc. | Percutaneous magnetic gastrostomy |
US8457714B2 (en) * | 2008-11-25 | 2013-06-04 | Magnetecs, Inc. | System and method for a catheter impedance seeking device |
WO2010068783A1 (en) | 2008-12-12 | 2010-06-17 | Corindus Inc. | Remote catheter procedure system |
EP4252820A3 (en) | 2009-03-18 | 2023-11-29 | Corindus, Inc. | Remote catheter system with steerable catheter |
US9532724B2 (en) | 2009-06-12 | 2017-01-03 | Bard Access Systems, Inc. | Apparatus and method for catheter navigation using endovascular energy mapping |
ES2745861T3 (en) | 2009-06-12 | 2020-03-03 | Bard Access Systems Inc | Apparatus, computer-aided data-processing algorithm, and computer storage medium for positioning an endovascular device in or near the heart |
WO2011019760A2 (en) | 2009-08-10 | 2011-02-17 | Romedex International Srl | Devices and methods for endovascular electrography |
EP2517622A3 (en) | 2009-09-29 | 2013-04-24 | C. R. Bard, Inc. | Stylets for use with apparatus for intravascular placement of a catheter |
US11103213B2 (en) | 2009-10-08 | 2021-08-31 | C. R. Bard, Inc. | Spacers for use with an ultrasound probe |
US10639008B2 (en) | 2009-10-08 | 2020-05-05 | C. R. Bard, Inc. | Support and cover structures for an ultrasound probe head |
WO2011046874A1 (en) | 2009-10-12 | 2011-04-21 | Corindus Inc. | Catheter system with percutaneous device movement algorithm |
US9962229B2 (en) | 2009-10-12 | 2018-05-08 | Corindus, Inc. | System and method for navigating a guide wire |
US20110092808A1 (en) * | 2009-10-20 | 2011-04-21 | Magnetecs, Inc. | Method for acquiring high density mapping data with a catheter guidance system |
US20110091853A1 (en) * | 2009-10-20 | 2011-04-21 | Magnetecs, Inc. | Method for simulating a catheter guidance system for control, development and training applications |
US20110112396A1 (en) | 2009-11-09 | 2011-05-12 | Magnetecs, Inc. | System and method for targeting catheter electrodes |
ES2811107T3 (en) | 2010-02-02 | 2021-03-10 | Bard Inc C R | Apparatus and method for catheter conduction and tip localization |
US9907567B2 (en) | 2010-05-04 | 2018-03-06 | Samuel Shiber | Mechanical — pharmaceutical system for opening obstructed bodily vessels |
US10952764B2 (en) | 2010-05-04 | 2021-03-23 | Samuel Shiber | Rotary catheter drive unit containing seal-sets |
US20150094733A1 (en) | 2010-05-04 | 2015-04-02 | Samuel Shiber | Rotary catheter drive unit containing seal-sets |
EP2575610B1 (en) | 2010-05-28 | 2022-10-05 | C. R. Bard, Inc. | Insertion guidance system for needles and medical components |
MX338127B (en) | 2010-08-20 | 2016-04-04 | Bard Inc C R | Reconfirmation of ecg-assisted catheter tip placement. |
US9833293B2 (en) | 2010-09-17 | 2017-12-05 | Corindus, Inc. | Robotic catheter system |
CN103189009B (en) | 2010-10-29 | 2016-09-07 | C·R·巴德股份有限公司 | The bio-impedance auxiliary of Medical Devices is placed |
KR20140051284A (en) | 2011-07-06 | 2014-04-30 | 씨. 알. 바드, 인크. | Needle length determination and calibration for insertion guidance system |
USD699359S1 (en) | 2011-08-09 | 2014-02-11 | C. R. Bard, Inc. | Ultrasound probe head |
USD724745S1 (en) | 2011-08-09 | 2015-03-17 | C. R. Bard, Inc. | Cap for an ultrasound probe |
ES2657019T3 (en) * | 2011-08-17 | 2018-03-01 | Samuel Shiber | Adaptive rotating catheter to open clogged body vessels |
US9211107B2 (en) | 2011-11-07 | 2015-12-15 | C. R. Bard, Inc. | Ruggedized ultrasound hydrogel insert |
US20130303886A1 (en) * | 2012-05-09 | 2013-11-14 | Doron Moshe Ludwin | Locating a catheter sheath end point |
US10820885B2 (en) | 2012-06-15 | 2020-11-03 | C. R. Bard, Inc. | Apparatus and methods for detection of a removable cap on an ultrasound probe |
EP3073910B1 (en) | 2014-02-06 | 2020-07-15 | C.R. Bard, Inc. | Systems for guidance and placement of an intravascular device |
EP3116417B1 (en) | 2014-03-12 | 2021-09-08 | Boston Scientific Limited | Infusion lubricated atherectomy catheter |
DE102014105943A1 (en) * | 2014-04-28 | 2015-10-29 | Vossamed Gmbh & Co. Kg | Device for creating cuts or perforations on the eye |
EP3226800B1 (en) | 2014-12-05 | 2021-10-06 | Corindus, Inc. | System for navigating a guide wire |
US10973584B2 (en) | 2015-01-19 | 2021-04-13 | Bard Access Systems, Inc. | Device and method for vascular access |
US9355768B1 (en) * | 2015-03-05 | 2016-05-31 | Le Etta Scherban | Battery removal tool |
US10349890B2 (en) | 2015-06-26 | 2019-07-16 | C. R. Bard, Inc. | Connector interface for ECG-based catheter positioning system |
CN105268086B (en) * | 2015-11-13 | 2018-03-30 | 中国人民解放军第二军医大学 | Magnetic control guiding wire system |
US11000207B2 (en) | 2016-01-29 | 2021-05-11 | C. R. Bard, Inc. | Multiple coil system for tracking a medical device |
US10588656B2 (en) | 2017-11-10 | 2020-03-17 | Penumbra, Inc. | Thrombectomy catheter |
US11147582B2 (en) | 2018-06-14 | 2021-10-19 | Cardio Flow, Inc. | Atherectomy devices and methods |
WO2020033260A1 (en) | 2018-08-07 | 2020-02-13 | Cardio Flow, Inc. | Atherectomy devices and methods |
CN112867443B (en) | 2018-10-16 | 2024-04-26 | 巴德阿克塞斯系统股份有限公司 | Safety equipment connection system for establishing electrical connection and method thereof |
KR102208265B1 (en) * | 2018-12-21 | 2021-01-27 | 재단법인대구경북과학기술원 | Micro-robot for steering guidewire |
WO2020141721A1 (en) * | 2018-12-31 | 2020-07-09 | 한양대학교 산학협력단 | Tube body cleaning apparatus |
WO2024047935A1 (en) * | 2022-08-31 | 2024-03-07 | テルモ株式会社 | Computer program, information processing device, and information processing method |
US12004771B1 (en) | 2023-06-27 | 2024-06-11 | Cardio Flow, Inc. | Rotational atherectomy devices and methods |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4696667A (en) * | 1986-03-20 | 1987-09-29 | Helmut Masch | Intravascular catheter and method |
US4842579A (en) * | 1984-05-14 | 1989-06-27 | Surgical Systems & Instruments, Inc. | Atherectomy device |
US5047040A (en) * | 1987-11-05 | 1991-09-10 | Devices For Vascular Intervention, Inc. | Atherectomy device and method |
US5314407A (en) * | 1986-11-14 | 1994-05-24 | Heart Technology, Inc. | Clinically practical rotational angioplasty system |
US5824036A (en) * | 1995-09-29 | 1998-10-20 | Datascope Corp | Stent for intraluminal grafts and device and methods for delivering and assembling same |
US5989276A (en) * | 1996-11-08 | 1999-11-23 | Advanced Bypass Technologies, Inc. | Percutaneous bypass graft and securing system |
US6015414A (en) * | 1997-08-29 | 2000-01-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter |
US6428551B1 (en) * | 1999-03-30 | 2002-08-06 | Stereotaxis, Inc. | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE336642B (en) * | 1969-10-28 | 1971-07-12 | Astra Meditec Ab | |
US4244362A (en) * | 1978-11-29 | 1981-01-13 | Anderson Charles C | Endotracheal tube control device |
US4895560A (en) * | 1988-03-31 | 1990-01-23 | Papantonakos Apostolos C | Angioplasty apparatus |
CA2107741C (en) * | 1992-10-07 | 2000-06-27 | Peter T. Keith | Ablation devices and methods of use |
US5356418A (en) * | 1992-10-28 | 1994-10-18 | Shturman Cardiology Systems, Inc. | Apparatus and method for rotational atherectomy |
US5334207A (en) * | 1993-03-25 | 1994-08-02 | Allen E. Coles | Laser angioplasty device with magnetic direction control |
CA2157697C (en) * | 1995-01-10 | 2007-03-13 | Banning Gray Lary | Vascular incisor/dilator |
US5845646A (en) * | 1996-11-05 | 1998-12-08 | Lemelson; Jerome | System and method for treating select tissue in a living being |
US6272370B1 (en) * | 1998-08-07 | 2001-08-07 | The Regents Of University Of Minnesota | MR-visible medical device for neurological interventions using nonlinear magnetic stereotaxis and a method imaging |
-
1999
- 1999-10-01 EP EP99950054A patent/EP1119299A1/en not_active Withdrawn
- 1999-10-01 WO PCT/US1999/022744 patent/WO2000019917A1/en not_active Application Discontinuation
- 1999-10-01 AU AU62792/99A patent/AU6279299A/en not_active Abandoned
- 1999-10-01 JP JP2000573280A patent/JP2002526148A/en active Pending
-
2001
- 2001-09-12 US US09/951,129 patent/US6733511B2/en not_active Expired - Fee Related
-
2002
- 2002-08-05 US US10/212,458 patent/US6740103B2/en not_active Expired - Fee Related
-
2004
- 2004-05-24 US US10/852,304 patent/US20050004585A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4842579A (en) * | 1984-05-14 | 1989-06-27 | Surgical Systems & Instruments, Inc. | Atherectomy device |
US4842579B1 (en) * | 1984-05-14 | 1995-10-31 | Surgical Systems & Instr Inc | Atherectomy device |
US4696667A (en) * | 1986-03-20 | 1987-09-29 | Helmut Masch | Intravascular catheter and method |
US5314407A (en) * | 1986-11-14 | 1994-05-24 | Heart Technology, Inc. | Clinically practical rotational angioplasty system |
US5047040A (en) * | 1987-11-05 | 1991-09-10 | Devices For Vascular Intervention, Inc. | Atherectomy device and method |
US5824036A (en) * | 1995-09-29 | 1998-10-20 | Datascope Corp | Stent for intraluminal grafts and device and methods for delivering and assembling same |
US5989276A (en) * | 1996-11-08 | 1999-11-23 | Advanced Bypass Technologies, Inc. | Percutaneous bypass graft and securing system |
US6015414A (en) * | 1997-08-29 | 2000-01-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter |
US6428551B1 (en) * | 1999-03-30 | 2002-08-06 | Stereotaxis, Inc. | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
Cited By (221)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070287909A1 (en) * | 1998-08-07 | 2007-12-13 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling catheters in body lumens and cavities |
US20100063385A1 (en) * | 1998-08-07 | 2010-03-11 | Garibaldi Jeffrey M | Method and apparatus for magnetically controlling catheters in body lumens and cavities |
US20090177032A1 (en) * | 1999-04-14 | 2009-07-09 | Garibaldi Jeffrey M | Method and apparatus for magnetically controlling endoscopes in body lumens and cavities |
US8597315B2 (en) | 1999-08-19 | 2013-12-03 | Covidien Lp | Atherectomy catheter with first and second imaging devices |
US8998937B2 (en) | 1999-08-19 | 2015-04-07 | Covidien Lp | Methods and devices for cutting tissue |
US9532799B2 (en) | 1999-08-19 | 2017-01-03 | Covidien Lp | Method and devices for cutting tissue |
US9615850B2 (en) | 1999-08-19 | 2017-04-11 | Covidien Lp | Atherectomy catheter with aligned imager |
US8911459B2 (en) | 1999-08-19 | 2014-12-16 | Covidien Lp | Debulking catheters and methods |
US8328829B2 (en) | 1999-08-19 | 2012-12-11 | Covidien Lp | High capacity debulking catheter with razor edge cutting window |
US20080065124A1 (en) * | 1999-08-19 | 2008-03-13 | Foxhollow Technologies, Inc. | High capacity debulking catheter with razor edge cutting window |
US7966059B2 (en) | 1999-10-04 | 2011-06-21 | Stereotaxis, Inc. | Rotating and pivoting magnet for magnetic navigation |
US20070146106A1 (en) * | 1999-10-04 | 2007-06-28 | Creighton Francis M Iv | Rotating and pivoting magnet for magnetic navigation |
US7771415B2 (en) | 1999-10-04 | 2010-08-10 | Stereotaxis, Inc. | Method for safely and efficiently navigating magnetic devices in the body |
US20080047568A1 (en) * | 1999-10-04 | 2008-02-28 | Ritter Rogers C | Method for Safely and Efficiently Navigating Magnetic Devices in the Body |
US7757694B2 (en) | 1999-10-04 | 2010-07-20 | Stereotaxis, Inc. | Method for safely and efficiently navigating magnetic devices in the body |
US20100163061A1 (en) * | 2000-04-11 | 2010-07-01 | Creighton Francis M | Magnets with varying magnetization direction and method of making such magnets |
US8469979B2 (en) | 2000-12-20 | 2013-06-25 | Covidien Lp | High capacity debulking catheter with distal driven cutting wheel |
US8226674B2 (en) | 2000-12-20 | 2012-07-24 | Tyco Healthcare Group Lp | Debulking catheters and methods |
US9241733B2 (en) | 2000-12-20 | 2016-01-26 | Covidien Lp | Debulking catheter |
US20080016677A1 (en) * | 2002-01-23 | 2008-01-24 | Stereotaxis, Inc. | Rotating and pivoting magnet for magnetic navigation |
US20040169316A1 (en) * | 2002-03-28 | 2004-09-02 | Siliconix Taiwan Ltd. | Encapsulation method and leadframe for leadless semiconductor packages |
US8060184B2 (en) | 2002-06-28 | 2011-11-15 | Stereotaxis, Inc. | Method of navigating medical devices in the presence of radiopaque material |
US20080077007A1 (en) * | 2002-06-28 | 2008-03-27 | Hastings Roger N | Method of Navigating Medical Devices in the Presence of Radiopaque Material |
US8092450B2 (en) | 2003-01-21 | 2012-01-10 | Baylis Medical Company Inc. | Magnetically guidable energy delivery apparatus and method of using same |
US20070123964A1 (en) * | 2003-01-21 | 2007-05-31 | Baylis Medical Company | Magnetically guidable energy delivery apparatus and method of using same |
US8961546B2 (en) | 2003-04-22 | 2015-02-24 | Covidien Lp | Methods and devices for cutting tissue at a vascular location |
US8246640B2 (en) | 2003-04-22 | 2012-08-21 | Tyco Healthcare Group Lp | Methods and devices for cutting tissue at a vascular location |
US9999438B2 (en) | 2003-04-22 | 2018-06-19 | Covidien Lp | Methods and devices for cutting tissue at a vascular location |
US8196590B2 (en) | 2003-05-02 | 2012-06-12 | Stereotaxis, Inc. | Variable magnetic moment MR navigation |
US20050113812A1 (en) * | 2003-09-16 | 2005-05-26 | Viswanathan Raju R. | User interface for remote control of medical devices |
US20120197276A1 (en) * | 2004-03-26 | 2012-08-02 | Henry William Lupton | Guide wire for use in re-canalising a vascular occlusion in a human or animal subject |
US9802026B2 (en) * | 2004-03-26 | 2017-10-31 | Brivant Research & Development Limited | Guide wire for use in re-canalising a vascular occlusion in a human or animal subject |
US20110022029A1 (en) * | 2004-12-20 | 2011-01-27 | Viswanathan Raju R | Contact over-torque with three-dimensional anatomical data |
US8369934B2 (en) | 2004-12-20 | 2013-02-05 | Stereotaxis, Inc. | Contact over-torque with three-dimensional anatomical data |
US7708696B2 (en) | 2005-01-11 | 2010-05-04 | Stereotaxis, Inc. | Navigation using sensed physiological data as feedback |
US20060270915A1 (en) * | 2005-01-11 | 2006-11-30 | Ritter Rogers C | Navigation using sensed physiological data as feedback |
US20110033100A1 (en) * | 2005-02-07 | 2011-02-10 | Viswanathan Raju R | Registration of three-dimensional image data to 2d-image-derived data |
US7961926B2 (en) | 2005-02-07 | 2011-06-14 | Stereotaxis, Inc. | Registration of three-dimensional image data to 2D-image-derived data |
US9974930B2 (en) | 2005-03-24 | 2018-05-22 | Brivant Research & Development Limited | Guide wire for use in re-canalising a vascular occlusion in a human or animal subject |
US20070060992A1 (en) * | 2005-06-02 | 2007-03-15 | Carlo Pappone | Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery |
US20090062646A1 (en) * | 2005-07-07 | 2009-03-05 | Creighton Iv Francis M | Operation of a remote medical navigation system using ultrasound image |
US9314222B2 (en) | 2005-07-07 | 2016-04-19 | Stereotaxis, Inc. | Operation of a remote medical navigation system using ultrasound image |
US7769444B2 (en) | 2005-07-11 | 2010-08-03 | Stereotaxis, Inc. | Method of treating cardiac arrhythmias |
US20070060966A1 (en) * | 2005-07-11 | 2007-03-15 | Carlo Pappone | Method of treating cardiac arrhythmias |
US20070016131A1 (en) * | 2005-07-12 | 2007-01-18 | Munger Gareth T | Flexible magnets for navigable medical devices |
US20070060829A1 (en) * | 2005-07-21 | 2007-03-15 | Carlo Pappone | Method of finding the source of and treating cardiac arrhythmias |
US20070062547A1 (en) * | 2005-07-21 | 2007-03-22 | Carlo Pappone | Systems for and methods of tissue ablation |
US7818076B2 (en) | 2005-07-26 | 2010-10-19 | Stereotaxis, Inc. | Method and apparatus for multi-system remote surgical navigation from a single control center |
US20110087237A1 (en) * | 2005-07-26 | 2011-04-14 | Viswanathan Raju R | Method and apparatus for multi-system remote surgical navigation from a single control center |
US20070060962A1 (en) * | 2005-07-26 | 2007-03-15 | Carlo Pappone | Apparatus and methods for cardiac resynchronization therapy and cardiac contractility modulation |
US7772950B2 (en) | 2005-08-10 | 2010-08-10 | Stereotaxis, Inc. | Method and apparatus for dynamic magnetic field control using multiple magnets |
US20070167720A1 (en) * | 2005-12-06 | 2007-07-19 | Viswanathan Raju R | Smart card control of medical devices |
US20070149946A1 (en) * | 2005-12-07 | 2007-06-28 | Viswanathan Raju R | Advancer system for coaxial medical devices |
US20070179492A1 (en) * | 2006-01-06 | 2007-08-02 | Carlo Pappone | Electrophysiology catheter and system for gentle and firm wall contact |
US20100168549A1 (en) * | 2006-01-06 | 2010-07-01 | Carlo Pappone | Electrophysiology catheter and system for gentle and firm wall contact |
US20070161882A1 (en) * | 2006-01-06 | 2007-07-12 | Carlo Pappone | Electrophysiology catheter and system for gentle and firm wall contact |
US20070197899A1 (en) * | 2006-01-17 | 2007-08-23 | Ritter Rogers C | Apparatus and method for magnetic navigation using boost magnets |
US20080015670A1 (en) * | 2006-01-17 | 2008-01-17 | Carlo Pappone | Methods and devices for cardiac ablation |
US20070197906A1 (en) * | 2006-01-24 | 2007-08-23 | Ritter Rogers C | Magnetic field shape-adjustable medical device and method of using the same |
US20070250041A1 (en) * | 2006-04-19 | 2007-10-25 | Werp Peter R | Extendable Interventional Medical Devices |
US8361094B2 (en) | 2006-06-30 | 2013-01-29 | Atheromed, Inc. | Atherectomy devices and methods |
US8628549B2 (en) | 2006-06-30 | 2014-01-14 | Atheromed, Inc. | Atherectomy devices, systems, and methods |
US9308016B2 (en) | 2006-06-30 | 2016-04-12 | Atheromed, Inc. | Devices, systems, and methods for performing atherectomy including delivery of a bioactive material |
US20080004644A1 (en) * | 2006-06-30 | 2008-01-03 | Atheromed, Inc. | Atherectomy devices and methods |
US7981128B2 (en) | 2006-06-30 | 2011-07-19 | Atheromed, Inc. | Atherectomy devices and methods |
US9492192B2 (en) | 2006-06-30 | 2016-11-15 | Atheromed, Inc. | Atherectomy devices, systems, and methods |
US20080045986A1 (en) * | 2006-06-30 | 2008-02-21 | Atheromed, Inc. | Atherectomy devices and methods |
US9492193B2 (en) | 2006-06-30 | 2016-11-15 | Atheromed, Inc. | Devices, systems, and methods for cutting and removing occlusive material from a body lumen |
US8920448B2 (en) | 2006-06-30 | 2014-12-30 | Atheromed, Inc. | Atherectomy devices and methods |
US8888801B2 (en) | 2006-06-30 | 2014-11-18 | Atheromed, Inc. | Atherectomy devices and methods |
US9668767B2 (en) | 2006-06-30 | 2017-06-06 | Atheromed, Inc. | Atherectomy devices and methods |
US9675376B2 (en) | 2006-06-30 | 2017-06-13 | Atheromed, Inc. | Atherectomy devices and methods |
US20090018567A1 (en) * | 2006-06-30 | 2009-01-15 | Artheromed, Inc. | Atherectomy devices, systems, and methods |
US8007506B2 (en) | 2006-06-30 | 2011-08-30 | Atheromed, Inc. | Atherectomy devices and methods |
US10154853B2 (en) | 2006-06-30 | 2018-12-18 | Atheromed, Inc. | Devices, systems, and methods for cutting and removing occlusive material from a body lumen |
US9314263B2 (en) | 2006-06-30 | 2016-04-19 | Atheromed, Inc. | Atherectomy devices, systems, and methods |
US10154854B2 (en) | 2006-06-30 | 2018-12-18 | Atheromed, Inc. | Atherectomy devices and methods |
US10226275B2 (en) | 2006-06-30 | 2019-03-12 | Atheromed, Inc. | Devices, systems, and methods for debulking restenosis of a blood vessel |
US20090018565A1 (en) * | 2006-06-30 | 2009-01-15 | Artheromed, Inc. | Atherectomy devices, systems, and methods |
US20090024085A1 (en) * | 2006-06-30 | 2009-01-22 | Artheromed, Inc | Atherectomy devices, systems, and methods |
US20110112563A1 (en) * | 2006-06-30 | 2011-05-12 | Atheromed, Inc. | Atherectomy devices and methods |
US11207096B2 (en) | 2006-06-30 | 2021-12-28 | Atheromed, Inc. | Devices systems and methods for cutting and removing occlusive material from a body lumen |
US20090018566A1 (en) * | 2006-06-30 | 2009-01-15 | Artheromed, Inc. | Atherectomy devices, systems, and methods |
US20080039830A1 (en) * | 2006-08-14 | 2008-02-14 | Munger Gareth T | Method and Apparatus for Ablative Recanalization of Blocked Vasculature |
US7961924B2 (en) | 2006-08-21 | 2011-06-14 | Stereotaxis, Inc. | Method of three-dimensional device localization using single-plane imaging |
US20100222669A1 (en) * | 2006-08-23 | 2010-09-02 | William Flickinger | Medical device guide |
US8242972B2 (en) | 2006-09-06 | 2012-08-14 | Stereotaxis, Inc. | System state driven display for medical procedures |
US8799792B2 (en) | 2006-09-06 | 2014-08-05 | Stereotaxis, Inc. | Workflow driven method of performing multi-step medical procedures |
US20080064933A1 (en) * | 2006-09-06 | 2008-03-13 | Stereotaxis, Inc. | Workflow driven display for medical procedures |
US20100097315A1 (en) * | 2006-09-06 | 2010-04-22 | Garibaldi Jeffrey M | Global input device for multiple computer-controlled medical systems |
US7747960B2 (en) | 2006-09-06 | 2010-06-29 | Stereotaxis, Inc. | Control for, and method of, operating at least two medical systems |
US20080059598A1 (en) * | 2006-09-06 | 2008-03-06 | Garibaldi Jeffrey M | Coordinated Control for Multiple Computer-Controlled Medical Systems |
US20080058609A1 (en) * | 2006-09-06 | 2008-03-06 | Stereotaxis, Inc. | Workflow driven method of performing multi-step medical procedures |
US20080055239A1 (en) * | 2006-09-06 | 2008-03-06 | Garibaldi Jeffrey M | Global Input Device for Multiple Computer-Controlled Medical Systems |
US7567233B2 (en) | 2006-09-06 | 2009-07-28 | Stereotaxis, Inc. | Global input device for multiple computer-controlled medical systems |
US8244824B2 (en) | 2006-09-06 | 2012-08-14 | Stereotaxis, Inc. | Coordinated control for multiple computer-controlled medical systems |
US8806359B2 (en) | 2006-09-06 | 2014-08-12 | Stereotaxis, Inc. | Workflow driven display for medical procedures |
US20080065061A1 (en) * | 2006-09-08 | 2008-03-13 | Viswanathan Raju R | Impedance-Based Cardiac Therapy Planning Method with a Remote Surgical Navigation System |
US8273081B2 (en) | 2006-09-08 | 2012-09-25 | Stereotaxis, Inc. | Impedance-based cardiac therapy planning method with a remote surgical navigation system |
US7537570B2 (en) | 2006-09-11 | 2009-05-26 | Stereotaxis, Inc. | Automated mapping of anatomical features of heart chambers |
US20080064969A1 (en) * | 2006-09-11 | 2008-03-13 | Nathan Kastelein | Automated Mapping of Anatomical Features of Heart Chambers |
US11666377B2 (en) | 2006-09-29 | 2023-06-06 | Boston Scientific Medical Device Limited | Electrosurgical device |
US11660137B2 (en) | 2006-09-29 | 2023-05-30 | Boston Scientific Medical Device Limited | Connector system for electrosurgical device |
US11744638B2 (en) | 2006-09-29 | 2023-09-05 | Boston Scientific Medical Device Limited | Electrosurgical device |
US20080097200A1 (en) * | 2006-10-20 | 2008-04-24 | Blume Walter M | Location and Display of Occluded Portions of Vessels on 3-D Angiographic Images |
US8135185B2 (en) | 2006-10-20 | 2012-03-13 | Stereotaxis, Inc. | Location and display of occluded portions of vessels on 3-D angiographic images |
US20080132910A1 (en) * | 2006-11-07 | 2008-06-05 | Carlo Pappone | Control for a Remote Navigation System |
US20080200913A1 (en) * | 2007-02-07 | 2008-08-21 | Viswanathan Raju R | Single Catheter Navigation for Diagnosis and Treatment of Arrhythmias |
US20080208912A1 (en) * | 2007-02-26 | 2008-08-28 | Garibaldi Jeffrey M | System and method for providing contextually relevant medical information |
US20080228068A1 (en) * | 2007-03-13 | 2008-09-18 | Viswanathan Raju R | Automated Surgical Navigation with Electro-Anatomical and Pre-Operative Image Data |
US20080228065A1 (en) * | 2007-03-13 | 2008-09-18 | Viswanathan Raju R | System and Method for Registration of Localization and Imaging Systems for Navigational Control of Medical Devices |
US20080287909A1 (en) * | 2007-05-17 | 2008-11-20 | Viswanathan Raju R | Method and apparatus for intra-chamber needle injection treatment |
US20080294232A1 (en) * | 2007-05-22 | 2008-11-27 | Viswanathan Raju R | Magnetic cell delivery |
US20080292901A1 (en) * | 2007-05-24 | 2008-11-27 | Hon Hai Precision Industry Co., Ltd. | Magnesium alloy and thin workpiece made of the same |
US20080312673A1 (en) * | 2007-06-05 | 2008-12-18 | Viswanathan Raju R | Method and apparatus for CTO crossing |
US8024024B2 (en) | 2007-06-27 | 2011-09-20 | Stereotaxis, Inc. | Remote control of medical devices using real time location data |
US20090177037A1 (en) * | 2007-06-27 | 2009-07-09 | Viswanathan Raju R | Remote control of medical devices using real time location data |
US9111016B2 (en) | 2007-07-06 | 2015-08-18 | Stereotaxis, Inc. | Management of live remote medical display |
US20090012821A1 (en) * | 2007-07-06 | 2009-01-08 | Guy Besson | Management of live remote medical display |
US20090082722A1 (en) * | 2007-08-21 | 2009-03-26 | Munger Gareth T | Remote navigation advancer devices and methods of use |
WO2009029523A1 (en) * | 2007-08-24 | 2009-03-05 | Boston Scientific Scimed, Inc. | Magnetically steerable catheter assembly |
US8394091B2 (en) | 2007-08-24 | 2013-03-12 | Boston Scientific Scimed, Inc. | Magnetically steerable catheter assembly |
US20090062789A1 (en) * | 2007-08-24 | 2009-03-05 | Boston Scientific Scimed, Inc. | Magnetically steerable catheter assembly |
US8236016B2 (en) | 2007-10-22 | 2012-08-07 | Atheromed, Inc. | Atherectomy devices and methods |
US9198679B2 (en) | 2007-10-22 | 2015-12-01 | Atheromed, Inc. | Atherectomy devices and methods |
US8337516B2 (en) | 2007-10-22 | 2012-12-25 | Atheromed, Inc. | Atherectomy devices and methods |
US20100049225A1 (en) * | 2007-10-22 | 2010-02-25 | Atheromed, Inc. | Atherectomy devices and methods |
US8070762B2 (en) | 2007-10-22 | 2011-12-06 | Atheromed Inc. | Atherectomy devices and methods |
US9333007B2 (en) | 2007-10-22 | 2016-05-10 | Atheromed, Inc. | Atherectomy devices and methods |
US9095371B2 (en) | 2007-10-22 | 2015-08-04 | Atheromed, Inc. | Atherectomy devices and methods |
US20090234378A1 (en) * | 2007-10-22 | 2009-09-17 | Atheromed, Inc. | Atherectomy devices and methods |
US8647355B2 (en) | 2007-10-22 | 2014-02-11 | Atheromed, Inc. | Atherectomy devices and methods |
US8231618B2 (en) | 2007-11-05 | 2012-07-31 | Stereotaxis, Inc. | Magnetically guided energy delivery apparatus |
US20090131927A1 (en) * | 2007-11-20 | 2009-05-21 | Nathan Kastelein | Method and apparatus for remote detection of rf ablation |
US20090216180A1 (en) * | 2008-02-25 | 2009-08-27 | Fox Hollow Technologies, Inc. | Methods and devices for cutting tissue |
US10219824B2 (en) | 2008-02-25 | 2019-03-05 | Covidien Lp | Methods and devices for cutting tissue |
US9445834B2 (en) | 2008-02-25 | 2016-09-20 | Covidien Lp | Methods and devices for cutting tissue |
US8784440B2 (en) | 2008-02-25 | 2014-07-22 | Covidien Lp | Methods and devices for cutting tissue |
US20090306643A1 (en) * | 2008-02-25 | 2009-12-10 | Carlo Pappone | Method and apparatus for delivery and detection of transmural cardiac ablation lesions |
US20100069733A1 (en) * | 2008-09-05 | 2010-03-18 | Nathan Kastelein | Electrophysiology catheter with electrode loop |
US8414604B2 (en) | 2008-10-13 | 2013-04-09 | Covidien Lp | Devices and methods for manipulating a catheter shaft |
US9192406B2 (en) | 2008-10-13 | 2015-11-24 | Covidien Lp | Method for manipulating catheter shaft |
US10507037B2 (en) | 2008-10-13 | 2019-12-17 | Covidien Lp | Method for manipulating catheter shaft |
US20100312263A1 (en) * | 2009-04-29 | 2010-12-09 | Fox Hollow Technologies, Inc. | Methods and devices for cutting and abrading tissue |
US9687266B2 (en) | 2009-04-29 | 2017-06-27 | Covidien Lp | Methods and devices for cutting and abrading tissue |
US10555753B2 (en) | 2009-04-29 | 2020-02-11 | Covidien Lp | Methods and devices for cutting and abrading tissue |
US8192452B2 (en) | 2009-05-14 | 2012-06-05 | Tyco Healthcare Group Lp | Easily cleaned atherectomy catheters and methods of use |
US8574249B2 (en) | 2009-05-14 | 2013-11-05 | Covidien Lp | Easily cleaned atherectomy catheters and methods of use |
US9220530B2 (en) | 2009-05-14 | 2015-12-29 | Covidien Lp | Easily cleaned atherectomy catheters and methods of use |
US20100298845A1 (en) * | 2009-05-25 | 2010-11-25 | Kidd Brian L | Remote manipulator device |
US10537713B2 (en) | 2009-05-25 | 2020-01-21 | Stereotaxis, Inc. | Remote manipulator device |
US20110130718A1 (en) * | 2009-05-25 | 2011-06-02 | Kidd Brian L | Remote Manipulator Device |
US20110046618A1 (en) * | 2009-08-04 | 2011-02-24 | Minar Christopher D | Methods and systems for treating occluded blood vessels and other body cannula |
US10813997B2 (en) | 2009-11-02 | 2020-10-27 | Pulse Therapeutics, Inc. | Devices for controlling magnetic nanoparticles to treat fluid obstructions |
US8308628B2 (en) | 2009-11-02 | 2012-11-13 | Pulse Therapeutics, Inc. | Magnetic-based systems for treating occluded vessels |
US11000589B2 (en) | 2009-11-02 | 2021-05-11 | Pulse Therapeutics, Inc. | Magnetic particle control and visualization |
US10029008B2 (en) | 2009-11-02 | 2018-07-24 | Pulse Therapeutics, Inc. | Therapeutic magnetic control systems and contrast agents |
US8926491B2 (en) | 2009-11-02 | 2015-01-06 | Pulse Therapeutics, Inc. | Controlling magnetic nanoparticles to increase vascular flow |
US11612655B2 (en) | 2009-11-02 | 2023-03-28 | Pulse Therapeutics, Inc. | Magnetic particle control and visualization |
US8715150B2 (en) | 2009-11-02 | 2014-05-06 | Pulse Therapeutics, Inc. | Devices for controlling magnetic nanoparticles to treat fluid obstructions |
US8313422B2 (en) | 2009-11-02 | 2012-11-20 | Pulse Therapeutics, Inc. | Magnetic-based methods for treating vessel obstructions |
US9345498B2 (en) | 2009-11-02 | 2016-05-24 | Pulse Therapeutics, Inc. | Methods of controlling magnetic nanoparticles to improve vascular flow |
US10159734B2 (en) | 2009-11-02 | 2018-12-25 | Pulse Therapeutics, Inc. | Magnetic particle control and visualization |
US9339664B2 (en) | 2009-11-02 | 2016-05-17 | Pulse Therapetics, Inc. | Control of magnetic rotors to treat therapeutic targets |
US8529428B2 (en) | 2009-11-02 | 2013-09-10 | Pulse Therapeutics, Inc. | Methods of controlling magnetic nanoparticles to improve vascular flow |
US9687267B2 (en) | 2009-12-02 | 2017-06-27 | Covidien Lp | Device for cutting tissue |
US10499947B2 (en) | 2009-12-02 | 2019-12-10 | Covidien Lp | Device for cutting tissue |
US8496677B2 (en) | 2009-12-02 | 2013-07-30 | Covidien Lp | Methods and devices for cutting tissue |
US9028512B2 (en) | 2009-12-11 | 2015-05-12 | Covidien Lp | Material removal device having improved material capture efficiency and methods of use |
US9913659B2 (en) | 2009-12-11 | 2018-03-13 | Covidien Lp | Material removal device having improved material capture efficiency and methods of use |
US10751082B2 (en) | 2009-12-11 | 2020-08-25 | Covidien Lp | Material removal device having improved material capture efficiency and methods of use |
US9855072B2 (en) | 2010-06-14 | 2018-01-02 | Covidien Lp | Material removal device and method of use |
US9119662B2 (en) | 2010-06-14 | 2015-09-01 | Covidien Lp | Material removal device and method of use |
US10952762B2 (en) | 2010-10-28 | 2021-03-23 | Covidien Lp | Material removal device and method of use |
US8920450B2 (en) | 2010-10-28 | 2014-12-30 | Covidien Lp | Material removal device and method of use |
US9717520B2 (en) | 2010-10-28 | 2017-08-01 | Covidien Lp | Material removal device and method of use |
US9326789B2 (en) | 2010-11-11 | 2016-05-03 | Covidien Lp | Flexible debulking catheters with imaging and methods of use and manufacture |
US8808186B2 (en) | 2010-11-11 | 2014-08-19 | Covidien Lp | Flexible debulking catheters with imaging and methods of use and manufacture |
US10335188B2 (en) | 2011-09-01 | 2019-07-02 | Covidien Lp | Methods of manufacture of catheter with helical drive shaft |
US8992717B2 (en) | 2011-09-01 | 2015-03-31 | Covidien Lp | Catheter with helical drive shaft and methods of manufacture |
US9345511B2 (en) | 2011-10-13 | 2016-05-24 | Atheromed, Inc. | Atherectomy apparatus, systems and methods |
US11259835B2 (en) | 2011-10-13 | 2022-03-01 | Atheromed, Inc. | Atherectomy apparatus systems and methods |
US8795306B2 (en) | 2011-10-13 | 2014-08-05 | Atheromed, Inc. | Atherectomy apparatus, systems and methods |
US10226277B2 (en) | 2011-10-13 | 2019-03-12 | Atheromed, Inc. | Atherectomy apparatus, systems, and methods |
US9883878B2 (en) | 2012-05-15 | 2018-02-06 | Pulse Therapeutics, Inc. | Magnetic-based systems and methods for manipulation of magnetic particles |
US10646241B2 (en) | 2012-05-15 | 2020-05-12 | Pulse Therapeutics, Inc. | Detection of fluidic current generated by rotating magnetic particles |
US11684447B2 (en) | 2012-05-31 | 2023-06-27 | Boston Scientific Medical Device Limited | Radiofrequency perforation apparatus |
US9579157B2 (en) | 2012-09-13 | 2017-02-28 | Covidien Lp | Cleaning device for medical instrument and method of use |
US9532844B2 (en) | 2012-09-13 | 2017-01-03 | Covidien Lp | Cleaning device for medical instrument and method of use |
US10434281B2 (en) | 2012-09-13 | 2019-10-08 | Covidien Lp | Cleaning device for medical instrument and method of use |
US10406316B2 (en) | 2012-09-13 | 2019-09-10 | Covidien Lp | Cleaning device for medical instrument and method of use |
US11937873B2 (en) | 2013-03-12 | 2024-03-26 | Boston Scientific Medical Device Limited | Electrosurgical device having a lumen |
US12011210B2 (en) | 2013-03-15 | 2024-06-18 | Boston Scientific Medical Device Limited | Electrosurgical device having a distal aperture |
US11998238B2 (en) | 2013-08-07 | 2024-06-04 | Boston Scientific Medical Device Limited | Methods and devices for puncturing tissue |
US12048453B2 (en) | 2014-06-27 | 2024-07-30 | Covidien Lp | Cleaning device for catheter and catheter including the same |
US10213224B2 (en) | 2014-06-27 | 2019-02-26 | Covidien Lp | Cleaning device for catheter and catheter including the same |
US10314667B2 (en) | 2015-03-25 | 2019-06-11 | Covidien Lp | Cleaning device for cleaning medical instrument |
US10292721B2 (en) | 2015-07-20 | 2019-05-21 | Covidien Lp | Tissue-removing catheter including movable distal tip |
US11766290B2 (en) | 2015-09-09 | 2023-09-26 | Boston Scientific Medical Device Limited | Epicardial access system and methods |
US10314664B2 (en) | 2015-10-07 | 2019-06-11 | Covidien Lp | Tissue-removing catheter and tissue-removing element with depth stop |
US20180242999A1 (en) * | 2017-02-28 | 2018-08-30 | Angiosafe, Inc. | Device and method for centering and crossing a vascular occlusion |
US11123098B2 (en) * | 2017-02-28 | 2021-09-21 | Angiosafe, Inc. | Device and method for centering and crossing a vascular occlusion |
US11878131B2 (en) | 2017-12-05 | 2024-01-23 | Boston Scientific Medical Device Limited | Transseptal guide wire puncture system |
US11918315B2 (en) | 2018-05-03 | 2024-03-05 | Pulse Therapeutics, Inc. | Determination of structure and traversal of occlusions using magnetic particles |
US11759190B2 (en) | 2019-10-18 | 2023-09-19 | Boston Scientific Medical Device Limited | Lock for medical devices, and related systems and methods |
US11801087B2 (en) | 2019-11-13 | 2023-10-31 | Boston Scientific Medical Device Limited | Apparatus and methods for puncturing tissue |
US11724070B2 (en) | 2019-12-19 | 2023-08-15 | Boston Scientific Medical Device Limited | Methods for determining a position of a first medical device with respect to a second medical device, and related systems and medical devices |
US11931098B2 (en) | 2020-02-19 | 2024-03-19 | Boston Scientific Medical Device Limited | System and method for carrying out a medical procedure |
US11986209B2 (en) | 2020-02-25 | 2024-05-21 | Boston Scientific Medical Device Limited | Methods and devices for creation of communication between aorta and left atrium |
US12082792B2 (en) | 2020-02-25 | 2024-09-10 | Boston Scientific Medical Device Limited | Systems and methods for creating a puncture between aorta and the left atrium |
US11819243B2 (en) | 2020-03-19 | 2023-11-21 | Boston Scientific Medical Device Limited | Medical sheath and related systems and methods |
US12011279B2 (en) | 2020-04-07 | 2024-06-18 | Boston Scientific Medical Device Limited | Electro-anatomic mapping system |
US11826075B2 (en) | 2020-04-07 | 2023-11-28 | Boston Scientific Medical Device Limited | Elongated medical assembly |
US11938285B2 (en) | 2020-06-17 | 2024-03-26 | Boston Scientific Medical Device Limited | Stop-movement device for elongated medical assembly |
US11793446B2 (en) | 2020-06-17 | 2023-10-24 | Boston Scientific Medical Device Limited | Electroanatomical mapping system with visualization of energy-delivery and elongated needle assemblies |
US11937796B2 (en) | 2020-06-18 | 2024-03-26 | Boston Scientific Medical Device Limited | Tissue-spreader assembly |
US12042178B2 (en) | 2020-07-21 | 2024-07-23 | Boston Scientific Medical Device Limited | System of medical devices and method for pericardial puncture |
US12005202B2 (en) | 2020-08-07 | 2024-06-11 | Boston Scientific Medical Device Limited | Catheter having tissue-engaging device |
US11980412B2 (en) | 2020-09-15 | 2024-05-14 | Boston Scientific Medical Device Limited | Elongated medical sheath |
US11304723B1 (en) | 2020-12-17 | 2022-04-19 | Avantec Vascular Corporation | Atherectomy devices that are self-driving with controlled deflection |
US12089867B2 (en) | 2020-12-17 | 2024-09-17 | Avantec Vascular Corporation | Telescoping atherectomy device |
Also Published As
Publication number | Publication date |
---|---|
US6733511B2 (en) | 2004-05-11 |
JP2002526148A (en) | 2002-08-20 |
AU6279299A (en) | 2000-04-26 |
US20020029056A1 (en) | 2002-03-07 |
WO2000019917A1 (en) | 2000-04-13 |
US20030014066A1 (en) | 2003-01-16 |
EP1119299A1 (en) | 2001-08-01 |
US6740103B2 (en) | 2004-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6428551B1 (en) | Magnetically navigable and/or controllable device for removing material from body lumens and cavities | |
US6733511B2 (en) | Magnetically navigable and/or controllable device for removing material from body lumens and cavities | |
US10960178B2 (en) | Hydrodynamic vortex aspiration catheter | |
US5312427A (en) | Device and method for directional rotational atherectomy | |
US11135019B2 (en) | Occlusion-crossing devices, atherectomy devices, and imaging | |
US7066924B1 (en) | Method of and apparatus for navigating medical devices in body lumens by a guide wire with a magnetic tip | |
US6113614A (en) | Medical device for dissolution of tissue within the human body | |
US7771437B2 (en) | Guide for medical devices | |
US5554163A (en) | Atherectomy device | |
US4653496A (en) | Transluminal lysing system | |
US11931055B2 (en) | Hydrodynamic vortex aspiration catheter | |
US5792157A (en) | Expandable intravascular occlusion material removal devices and methods of use | |
US5356418A (en) | Apparatus and method for rotational atherectomy | |
US20090234278A1 (en) | Catheter insertion sheath with adjustable flexibility | |
US20050113853A1 (en) | Guidewire for crossing occlusions or stenoses | |
EP0934727A1 (en) | Rotary catheter for atherectomy system | |
AU613322B2 (en) | Transluminal microdissection device | |
WO1999040957A1 (en) | Method of and apparatus for navigating medical devices in body lumens | |
US20080132910A1 (en) | Control for a Remote Navigation System | |
EP2775945B1 (en) | Occlusion-crossing devices, atherectomy devices, and imaging | |
US20140094807A1 (en) | Transpedicular Disk Access System | |
Fotopoulos et al. | Percutaneous forceps extraction of retained biliary tract calculi | |
CA2488588C (en) | Guidewire for crossing occlusions or stenosis | |
US20210346649A1 (en) | Magnetizable clamp for a catheter | |
Coleman et al. | Fluoroscopically guided techniques for renal and ureteral stone removal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |