US20040261331A1 - Studding layout - Google Patents

Studding layout Download PDF

Info

Publication number
US20040261331A1
US20040261331A1 US10/876,943 US87694304A US2004261331A1 US 20040261331 A1 US20040261331 A1 US 20040261331A1 US 87694304 A US87694304 A US 87694304A US 2004261331 A1 US2004261331 A1 US 2004261331A1
Authority
US
United States
Prior art keywords
respect
anchor plate
floor anchor
floor
stud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/876,943
Inventor
Velibor Kilibarda
Michael Dugas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Comau LLC
Original Assignee
Progressive Tool and Industries Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Progressive Tool and Industries Co filed Critical Progressive Tool and Industries Co
Priority to US10/876,943 priority Critical patent/US20040261331A1/en
Assigned to PROGRESSIVE TOOL & INDUSTRIES, CO. reassignment PROGRESSIVE TOOL & INDUSTRIES, CO. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUGAS, MICHAEL R., KILIBARDA, VELIBOR
Publication of US20040261331A1 publication Critical patent/US20040261331A1/en
Assigned to COMAU PICO INC. reassignment COMAU PICO INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: PROGRESSIVE TOOL & INDUSTRIES COMPANY
Assigned to COMAU, INC. reassignment COMAU, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: COMAU PICO INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M7/00Details of attaching or adjusting engine beds, frames, or supporting-legs on foundation or base; Attaching non-moving engine parts, e.g. cylinder blocks

Definitions

  • the invention relates to a method for accurately positioning an apparatus, such as an entire assembly line, a workstation, and/or a particular item of equipment, with respect to a floor anchor plate fixed to the floor of a manufacturing facility.
  • an entire assembly line, a workstation, and/or a particular item of equipment each require accurate positioning in order to operate as intended.
  • the support structure of an assembly line, workstation and/or particular item of equipment can include one or more members for positioning the support structure in a desired location relative to the floor of a manufacturing facility.
  • adjustable support legs for equipment can be raised or lowered to ensure that the equipment is level.
  • the equipment can be fastened with respect to the floor of the manufacturing facility to prevent movement from a desired location.
  • the fastening can be accomplished directly with concrete anchor bolts and/or accomplished using a combination of a foot assembly with a base plate having preassembled studs.
  • the base plate and preassembled studs can be fixed with respect to the floor using concrete anchor bolts or any other suitable means.
  • the foot assembly is then typically connected to the base plate through apertures for receiving the bolts. Nuts can be threadingly received on the studs or bolts extending through the apertures of the base plates for anchoring the equipment.
  • the apertures through the base plates can be elongated or enlarged to provide a limited amount of adjustment of the equipment with respect to the base plate.
  • the known systems for anchoring do not provide an accurate, low cost, positioning system for equipment, workstations, and/or assembly lines.
  • the known systems require high cost, can be extremely labor intensive, and can result in tolerance buildup while positioning each concrete anchor bolt to the detriment of the equipment to be accurately positioned. It would be desirable to provide a low cost, inexpensive, accurate positioning system for equipment, workstations, and/or assembly lines.
  • the present invention permits the assembly line, workstation, and/or a particular item of equipment, to be laid out along a centerline of an assembly line structure.
  • Assembly line structures typically can be approximately eight feet wide and approximately eighty feet or ninety feet in length.
  • Assembly line structures can be mounted on parallel legs or risers, and these legs can be spaced approximately eight feet apart laterally, and spaced approximately every twenty-four feet longitudinally along the length of the assembly line structure.
  • the legs or risers can carry a framing structure on top and can be quite large.
  • the present invention advantageously allows positioning of the individual components along the longitudinal length of the assembly line structure and centered transversely with respect to a longitudinal centerline.
  • the feet of the assembly line structure can laterally straddle the centerline, so that the each foot can be located at a position, for example four feet, spaced from the centerline and can be spaced longitudinally from one another every twenty-four feet.
  • the bottom of the feet of these legs can have three apertures.
  • the feet can be located on the floor, and three corresponding studs extend upwardly from the floor through the three apertures in the feet in the legs of the support structure. Then, corresponding nuts can be positioned on the studs to lock the studs into place.
  • the present invention enables an installer to precisely locate the three studs on each side of the centerline, so that when the feet can, in turn, be attached to the studs, the entire structure can be centered along the centerline.
  • the present invention includes placing a centerline, literally or figuratively, drawn along the floor for the entire length of the structure to be installed. Then the installer can measure four feet on either side of the centerline while positioned at locations spaced approximately twenty-four feet apart, where the floor anchor plates can be roughly positioned and secured.
  • the floor anchor plates can be any desired size and shape.
  • floor anchor plates can be between approximately six inches by six inches square and approximately eight inches by eight inches square.
  • the floor anchor plates can be located approximately four feet out from the centerline and space longitudinally from one another every twenty-four feet.
  • the floor anchor plates can be positioned along transversely extending lines perpendicular to the centerline, where floor anchor plates on each side of the centerline form parallel lines with respect to the centerline and with respect to one another.
  • the floor anchor plates can be roughly located, since the degree of accuracy does not have to be precise according to the present invention.
  • the floor anchor plates can be fastened to the floor through appropriate mounting studs.
  • a stud-locating template fixture can be placed on top of the floor anchor plates.
  • an optical tracking device by way of example and not limitation, such as a laser, the installer can accurately locate each stud-locating template fixture with respect to the centerline, and if more than one template fixture is being used with respect to one another.
  • the template fixture can be nothing more than a rectangular bar positioned extending transversely between two floor anchor plates, i.e. the bar can be approximately eight feet long and approximately six inches wide, and can be mounted between two floor anchor plates located on opposite sides of the centerline previously established.
  • the installer can locate each template fixture, so that predetermined points on the template fixture can be positioned perpendicular to the centerline and located at exactly equal distances on opposite sides of the centerline, while the template fixture is positioned with respect to the two floor anchor plates on opposite sides of the centerline.
  • the stud-locating template fixture can include three apertures on either end, and studs can be driven into or passed through these apertures into the floor anchor plate below.
  • This process locates the three mounting studs at precise locations with respect to the floor anchor plates enabling the installer to mount the legs of the support structure for the assembly line onto the floor anchor plates, and therefore accurately locate the assembly line with respect to a horizontal x-axis and a horizontal y-axis of a Cartesian coordinate system having a vertically extending z-axis.
  • the equipment and/or workstations spaced along the longitudinal length of the assembly line can be installed parallel to one another and to the centerline in order to precisely locate the equipment and/or workstations with respect to the centerline marked on the floor of the manufacturing facility corresponding to the y-axis, and the x-axis being marked perpendicular to the y-axis while also being located perpendicular to the centerline.
  • the installer can fix one floor anchor plate using this process, and then locate the floor anchor plates further longitudinally along the assembly line in either direction.
  • the installer again can mount the floor anchor plates to the floor, and can place the template fixture on the transversely opposite floor anchor plates to locate the apertures for the mounting studs.
  • the mounting studs can then be attached to the floor anchor plates. This process is repeated progressively along the longitudinal length of the assembly line until the installer has all of the mounting studs fixed in position with respect to the corresponding floor anchor plates. Then the installer can install the workstation legs on top of each of the mounting studs associated with each floor anchor plate.
  • the workstation legs can be manufactured as precision pieces, so when the installer mounts the workstation legs on the studs, a precisely located position with respect to the x-axis and y-axis can be achieved.
  • the position with respect to the z-axis can be accomplished in a simple manner as described in detail below.
  • the present invention also provides a method or process for positioning at least one support member, such as a workstation leg, in an accurately located position with respect to the floor of a manufacturing facility.
  • the method or process includes the step of fixedly positioning at least first and second floor anchor plates with respect to a centerline or path of travel through the assembly line, where the centerline can be accurately located and marked, either actually or figuratively, on a floor of a manufacturing facility.
  • Each of the first and second floor anchor plates can be individually located on opposite sides of the centerline or path with respect to one another.
  • the centerline or path can define a general line or trajectory of travel for parts to be processed passing through the assembly line.
  • the method or process according to the present invention can also include the step of locating a first stud with respect to the first floor anchor plate after the positioning step of the floor anchor plate with respect to the floor of the manufacturing facility.
  • the first stud can be fixedly attached with respect to the first floor anchor plate after being properly located according to the present invention in an appropriate manner, such as the process described in greater detail above.
  • the first stud can be welded in the desired position after being located during the locating step to the first floor anchor plate with a weld gun.
  • the method can include the step of positioning a template with respect to the first and second floor anchor plates.
  • the template fixture can define at least one first aperture for guiding a mounting stud to be fixedly attached to the corresponding floor anchor plate.
  • the template fixture can include at least one first aperture positioned adjacent the first plate and at least one second aperture positionable adjacent the second plate.
  • a weld gun, or other fastening device can be operably engaged with respect to each stud position defined by a corresponding aperture in the template to fasten the stud in the desired position with respect to the respective floor anchor plate.
  • the template functions to selectively locate each stud in a precise location with a floor anchor plate in reference, at least in part, to a position of at least one other floor anchor plate and/or to a position of the centerline or path through the assembly line in the manufacturing facility.
  • the method can also include the step of assembling the at least one member or leg of the support structure with respect to each corresponding stud.
  • the method can also include the steps of threadably engaging at least one nut with respect to each stud, and supporting the at least one member or leg of the support structure with the nut.
  • the method can also include the step of adjustably turning the nut with respect to a threaded portion of the corresponding stud to move the at least one member or leg of the support structure with respect to the first floor anchor plate to selectively position the member or leg in a desired vertical position with respect to the floor of the manufacturing facility.
  • FIG. 1 is a perspective view of a portion of a manufacturing assembly line
  • FIG. 2 is a simplified perspective view of a portion of a centerline marked on the floor extending through an assembly line of a manufacturing facility;
  • FIG. 3 is a simplified perspective view of a plurality of floor anchor plates connected to the floor at various locations along the centerline marked on the floor extending through the assembly line of the manufacturing facility;
  • FIG. 4 is a simplified detailed perspective view of an anchor plate illustrated in FIG. 3 according to the present invention.
  • FIG. 5 is a simplified perspective view of a plurality of floor anchor plates connected to the floor at various locations along the centerline marked on the floor extending through the assembly line of the manufacturing facility with a template fixture operably engaging two anchor plates located transversely on opposite sides of the centerline and with studs attached to various anchor plates after being accurately located with the template fixture according to the present invention;
  • FIG. 6 is a simplified detailed perspective view of the stud-locating template fixture illustrated in FIG. 5 according to the present invention.
  • FIG. 7 is a simplified detailed perspective view of a floor anchor plate with in situ accurately located, and attached studs illustrated in FIG. 5 according to the present invention
  • FIG. 8 is a simplified perspective view of a leg or riser positioned with respect to the path according to the present invention.
  • FIG. 9 is a simplified detailed perspective view of a foot assembly including a foot plate attached to studs extending from a floor anchor plate illustrated in FIG. 8 according to the present invention.
  • FIG. 10A is a plan view of a floor anchor plate according to the present invention.
  • FIG. 10B is a side elevational view of the floor anchor plate of FIG. 10A;
  • FIG. 11A is a plan view of a floor anchor plate with attached studs according to the present invention.
  • FIG. 11B is a side elevational view of the floor anchor plate with attached studs of FIG. 11A;
  • FIG. 12A is a plan view of a floor anchor plate with attached studs and connected foot assembly according to the present invention.
  • FIG. 12B is a side elevational view of the floor anchor plate with attached studs and connected foot assembly of FIG. 12A;
  • FIG. 13 is a simplified flow chart illustrating steps for accurately positioning a particular item of equipment, workstation, and/or entire assembly line with respect to a centerline or path of travel for the parts or articles to be processed according to the present invention.
  • the present invention can include a process or method for positioning at least one support member, by way of example and not limitation, such as a leg or riser, with respect to a centerline or path of travel for articles to be manufactured while moving along the path of travel.
  • the method can include the steps of roughly positioning at least first and second floor anchor plates in fixed locations on opposite sides with respect to the path and generally at equal distances from the path or centerline with respect to one another.
  • the method can also include the step of engaging a template fixture for locating a first stud with respect to the first floor anchor plate after the positioning step.
  • a support structure 14 can be located in a spaced relationship with respect to the centerline 12 , actually or figuratively, marked on a floor 18 of a manufacturing facility, and can include transversely extending lines 12 a , actually or figuratively, marked on the floor 18 of the manufacturing facility.
  • the centerline and transverse line configuration for the floor 18 can best be seen in FIG. 2.
  • the portion of the assembly line 10 can include a support structure 14 operable to accommodate the movement of workpieces along the path of travel 12 during processing of the articles or workpieces by the assembly line.
  • the support structure 14 can be supported with respect to the floor 18 with one or more legs or risers 16 .
  • Each leg or riser 16 can include a foot assembly 20 having a foot plate 22 .
  • Each foot assembly 20 can engage a corresponding floor anchor plate 24 attached to the floor 18 of the manufacturing facility to connect the support structure 14 with respect to the floor 18 .
  • connection between the foot plate 22 and the floor anchor plate 24 can provide for vertical adjustment or Z-axis adjustment, while providing accurate X-axis and Y-axis locations as a result of the accurate positioning and attachment of each stud with respect to the floor anchor plate 24 using a template fixture 32 as described in greater detail below.
  • a plurality of floor anchor plates 24 can be roughly positioned along opposite sides of the path 12 as illustrated in FIGS. 2, 3, 10 A, and 10 B.
  • the floor anchor plates can support one or more legs or risers 16 associated with the support structure 14 .
  • First and second floor anchor plates 24 a and 24 b can be fixedly positioned with respect to the floor 18 .
  • the floor anchor plates 24 a and 24 b can be individually roughly positioned at equal distances from the centerline or path 12 , on opposite sides of the path 12 a along one of the transversely extending lines 12 a .
  • the floor anchor plates 24 can be roughly positioned, since accurate positioning of each anchor plate with respect to the floor 18 is not required according to the present invention.
  • a template fixture 32 can then be positioned over the roughly positioned first and second floor anchor plates 24 a , 24 b as illustrated in FIGS. 5 and 6.
  • the template fixture 32 can define triangulated apertures 34 a , 34 b and 34 c positionable adjacent the first floor anchor plate 24 a and triangulated apertures 36 a , 36 b and 36 c positionable adjacent the second floor anchor plate 24 b .
  • the shape of the template 32 can correspond to the combined foot print of the floor anchor plate 24 a and the floor anchor plate 24 b when the floor anchor plates are positioned on opposite sides of the path 12 a so that a desired position of the apertures 34 a - 34 c and 36 a - 36 c can be realized when the template 32 simultaneously engages the floor anchor plates 24 a and 24 b and is accurately located with an appropriate instrument, by way of example and not limitation, such as a laser tracker device.
  • the apertures 34 a - 34 c and 36 a - 36 c can be roughly positioned adjacent the floor anchor plates 24 a and 24 b when the side edge surface 38 of the template 32 is aligned with the side edge surface 40 of the floor anchor plate 24 a , and the side edge surface 42 of the template 32 is aligned with the side edge surface 44 of the floor anchor plate 24 b .
  • the final position of the template fixture 32 can be determined with the appropriate instrumentation, such as the laser tracker device.
  • Template fixture 32 can also define a central aperture 46 to roughly position the template 32 prior to accurate positioning with the laser tracker device.
  • the template fixture can be roughly aligned with the path 12 a , when an actually marked centerline or path of travel can be viewed through the aperture 46 .
  • the process for adjustably fastening at least one leg or riser of the support structure with respect to the floor of a manufacturing facility is shown in the flow diagram of FIG. 13.
  • the process can start at step 100 .
  • a centerline or path of travel 12 best seen in FIGS. 2 and 3 is defined along the floor 18 of a manufacturing facility.
  • first and second floor anchor plates 24 a , 24 b are positioned along the path 12 a on opposite sides of the path 12 .
  • a template fixture 32 best seen in FIGS. 5 and 6 is simultaneously positioned over the first and second floor anchor plates 24 a , 24 b.
  • an appropriate attachment device by way of example and not limitation, such as a weld gun, can be operably engaged with the template fixture to attach the studs 52 a , 52 b , 52 c engaged and guided within apertures 34 a , 34 b and 34 c to the first floor anchor plate 24 a in the triangulated pattern defined by the apertures 34 a , 34 b and 34 c .
  • the apertures 34 a - 34 c can be sized to correspond to the outer diameter of the studs 52 a , 52 b and 52 c to hold the studs in position during attachment to the corresponding floor anchor plates.
  • the appropriate attachment device can then be operably engaged with the template fixture to attach the studs 52 d , 52 e , 52 f engaged and guided within apertures 36 a , 36 b and 36 c to the second floor anchor plate 24 b in the triangulated pattern defined by apertures 36 a , 36 b and 36 c.
  • the template fixture 32 can be removed from the first and second floor anchor plates 24 a , 24 b .
  • nuts 56 can be individually threadably engaged with the threaded studs.
  • first and second legs or risers 16 a , 16 b of the support structure can be positioned with respect to the first and second floor anchor plates 24 a , 24 b .
  • riser or leg 16 a can be positioned over floor anchor plate 24 a by engaging triangulated apertures 58 a , 58 b , 58 c in the footplate 22 over the triangulated studs extending outwardly from floor anchor plate 24 a to seat the footplate on top of the nuts 56
  • riser or leg 16 b of the support structure can be positioned over floor anchor plate 24 b by engaging triangulated apertures 58 d , 58 e , 58 f in the footplate 22 over the triangulated studs extending outwardly from floor anchor plate 24 b to seat the footplate on top of the lower nuts 56 .
  • the legs or risers can be anchored to the floor anchor plates using upper nuts 60 threaded onto corresponding studs 52 a - 52 f and engaging an upper face of footplates 22 . It can be seen that selective turning of the lower nuts 56 with respect to the studs can selectively adjust the elevation along the Z-axis of the legs or risers with respect to the floor surface 18 , while the precisely located apertures 58 a - 58 f accurately define the location of the support structure along the X-axis and the Y-axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)

Abstract

An anchoring system for a support structure with respect to a floor of a manufacturing facility can include at least one floor anchor plate roughly positioned along a path of travel. A template can be engaged with the floor anchor plate for accurately locating the position of studs to be attached to the floor anchor plate. In the case of two floor anchor plates, the plates are preferably positioned equidistantly along a transversely extending line on opposite sides of the path of travel. The template can define one or more apertures adjacent each of the floor anchor plates for receiving a stud to be attached thereto. A stud can be inserted and guided into position within each aperture to attached to the adjacent floor anchor plate. The elevation of the support structure can be adjusted by turning lower nuts threadingly engaged with the studs.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of the priority date of co-pending Provisional Application Ser. No. 60/483,498, filed Jun. 27, 2003, the entire contents of which are incorporated herein by reference.[0001]
  • FIELD OF THE INVENTION
  • The invention relates to a method for accurately positioning an apparatus, such as an entire assembly line, a workstation, and/or a particular item of equipment, with respect to a floor anchor plate fixed to the floor of a manufacturing facility. [0002]
  • BACKGROUND OF THE INVENTION
  • An entire assembly line, a workstation, and/or a particular item of equipment, each require accurate positioning in order to operate as intended. By way of example and not limitation, the support structure of an assembly line, workstation and/or particular item of equipment can include one or more members for positioning the support structure in a desired location relative to the floor of a manufacturing facility. [0003]
  • By way of example, adjustable support legs for equipment can be raised or lowered to ensure that the equipment is level. The equipment can be fastened with respect to the floor of the manufacturing facility to prevent movement from a desired location. The fastening can be accomplished directly with concrete anchor bolts and/or accomplished using a combination of a foot assembly with a base plate having preassembled studs. When using the combination, the base plate and preassembled studs can be fixed with respect to the floor using concrete anchor bolts or any other suitable means. The foot assembly is then typically connected to the base plate through apertures for receiving the bolts. Nuts can be threadingly received on the studs or bolts extending through the apertures of the base plates for anchoring the equipment. In many applications, the apertures through the base plates can be elongated or enlarged to provide a limited amount of adjustment of the equipment with respect to the base plate. The known systems for anchoring do not provide an accurate, low cost, positioning system for equipment, workstations, and/or assembly lines. The known systems require high cost, can be extremely labor intensive, and can result in tolerance buildup while positioning each concrete anchor bolt to the detriment of the equipment to be accurately positioned. It would be desirable to provide a low cost, inexpensive, accurate positioning system for equipment, workstations, and/or assembly lines. [0004]
  • SUMMARY OF THE INVENTION
  • The present invention permits the assembly line, workstation, and/or a particular item of equipment, to be laid out along a centerline of an assembly line structure. Assembly line structures typically can be approximately eight feet wide and approximately eighty feet or ninety feet in length. Assembly line structures can be mounted on parallel legs or risers, and these legs can be spaced approximately eight feet apart laterally, and spaced approximately every twenty-four feet longitudinally along the length of the assembly line structure. The legs or risers can carry a framing structure on top and can be quite large. The present invention advantageously allows positioning of the individual components along the longitudinal length of the assembly line structure and centered transversely with respect to a longitudinal centerline. By way of example and not limitation, the feet of the assembly line structure can laterally straddle the centerline, so that the each foot can be located at a position, for example four feet, spaced from the centerline and can be spaced longitudinally from one another every twenty-four feet. [0005]
  • The bottom of the feet of these legs can have three apertures. The feet can be located on the floor, and three corresponding studs extend upwardly from the floor through the three apertures in the feet in the legs of the support structure. Then, corresponding nuts can be positioned on the studs to lock the studs into place. The present invention enables an installer to precisely locate the three studs on each side of the centerline, so that when the feet can, in turn, be attached to the studs, the entire structure can be centered along the centerline. [0006]
  • The present invention includes placing a centerline, literally or figuratively, drawn along the floor for the entire length of the structure to be installed. Then the installer can measure four feet on either side of the centerline while positioned at locations spaced approximately twenty-four feet apart, where the floor anchor plates can be roughly positioned and secured. The floor anchor plates can be any desired size and shape. By way of example and not limitation, floor anchor plates can be between approximately six inches by six inches square and approximately eight inches by eight inches square. By way of example and not limitation, the floor anchor plates can be located approximately four feet out from the centerline and space longitudinally from one another every twenty-four feet. According to the present invention, the floor anchor plates can be positioned along transversely extending lines perpendicular to the centerline, where floor anchor plates on each side of the centerline form parallel lines with respect to the centerline and with respect to one another. The floor anchor plates can be roughly located, since the degree of accuracy does not have to be precise according to the present invention. Then, the floor anchor plates can be fastened to the floor through appropriate mounting studs. A stud-locating template fixture can be placed on top of the floor anchor plates. By using an optical tracking device, by way of example and not limitation, such as a laser, the installer can accurately locate each stud-locating template fixture with respect to the centerline, and if more than one template fixture is being used with respect to one another. By way of example and not limitation, the template fixture can be nothing more than a rectangular bar positioned extending transversely between two floor anchor plates, i.e. the bar can be approximately eight feet long and approximately six inches wide, and can be mounted between two floor anchor plates located on opposite sides of the centerline previously established. Using the laser tracker the installer can locate each template fixture, so that predetermined points on the template fixture can be positioned perpendicular to the centerline and located at exactly equal distances on opposite sides of the centerline, while the template fixture is positioned with respect to the two floor anchor plates on opposite sides of the centerline. The stud-locating template fixture can include three apertures on either end, and studs can be driven into or passed through these apertures into the floor anchor plate below. This process locates the three mounting studs at precise locations with respect to the floor anchor plates enabling the installer to mount the legs of the support structure for the assembly line onto the floor anchor plates, and therefore accurately locate the assembly line with respect to a horizontal x-axis and a horizontal y-axis of a Cartesian coordinate system having a vertically extending z-axis. The equipment and/or workstations spaced along the longitudinal length of the assembly line can be installed parallel to one another and to the centerline in order to precisely locate the equipment and/or workstations with respect to the centerline marked on the floor of the manufacturing facility corresponding to the y-axis, and the x-axis being marked perpendicular to the y-axis while also being located perpendicular to the centerline. The installer can fix one floor anchor plate using this process, and then locate the floor anchor plates further longitudinally along the assembly line in either direction. The installer again can mount the floor anchor plates to the floor, and can place the template fixture on the transversely opposite floor anchor plates to locate the apertures for the mounting studs. The mounting studs can then be attached to the floor anchor plates. This process is repeated progressively along the longitudinal length of the assembly line until the installer has all of the mounting studs fixed in position with respect to the corresponding floor anchor plates. Then the installer can install the workstation legs on top of each of the mounting studs associated with each floor anchor plate. Of course the workstation legs can be manufactured as precision pieces, so when the installer mounts the workstation legs on the studs, a precisely located position with respect to the x-axis and y-axis can be achieved. The position with respect to the z-axis can be accomplished in a simple manner as described in detail below. [0007]
  • The present invention also provides a method or process for positioning at least one support member, such as a workstation leg, in an accurately located position with respect to the floor of a manufacturing facility. As previously described, the method or process includes the step of fixedly positioning at least first and second floor anchor plates with respect to a centerline or path of travel through the assembly line, where the centerline can be accurately located and marked, either actually or figuratively, on a floor of a manufacturing facility. Each of the first and second floor anchor plates can be individually located on opposite sides of the centerline or path with respect to one another. The centerline or path can define a general line or trajectory of travel for parts to be processed passing through the assembly line. The method or process according to the present invention can also include the step of locating a first stud with respect to the first floor anchor plate after the positioning step of the floor anchor plate with respect to the floor of the manufacturing facility. The first stud can be fixedly attached with respect to the first floor anchor plate after being properly located according to the present invention in an appropriate manner, such as the process described in greater detail above. By way of example and not limitation, the first stud can be welded in the desired position after being located during the locating step to the first floor anchor plate with a weld gun. The method can include the step of positioning a template with respect to the first and second floor anchor plates. The template fixture can define at least one first aperture for guiding a mounting stud to be fixedly attached to the corresponding floor anchor plate. The template fixture can include at least one first aperture positioned adjacent the first plate and at least one second aperture positionable adjacent the second plate. A weld gun, or other fastening device, can be operably engaged with respect to each stud position defined by a corresponding aperture in the template to fasten the stud in the desired position with respect to the respective floor anchor plate. The template functions to selectively locate each stud in a precise location with a floor anchor plate in reference, at least in part, to a position of at least one other floor anchor plate and/or to a position of the centerline or path through the assembly line in the manufacturing facility. The method can also include the step of assembling the at least one member or leg of the support structure with respect to each corresponding stud. The method can also include the steps of threadably engaging at least one nut with respect to each stud, and supporting the at least one member or leg of the support structure with the nut. The method can also include the step of adjustably turning the nut with respect to a threaded portion of the corresponding stud to move the at least one member or leg of the support structure with respect to the first floor anchor plate to selectively position the member or leg in a desired vertical position with respect to the floor of the manufacturing facility. [0008]
  • Other applications of the present invention will become apparent to those skilled in the art when the following description of the best mode contemplated for practicing the invention is read in conjunction with the accompanying drawings. [0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein: [0010]
  • FIG. 1 is a perspective view of a portion of a manufacturing assembly line; [0011]
  • FIG. 2 is a simplified perspective view of a portion of a centerline marked on the floor extending through an assembly line of a manufacturing facility; [0012]
  • FIG. 3 is a simplified perspective view of a plurality of floor anchor plates connected to the floor at various locations along the centerline marked on the floor extending through the assembly line of the manufacturing facility; [0013]
  • FIG. 4 is a simplified detailed perspective view of an anchor plate illustrated in FIG. 3 according to the present invention; [0014]
  • FIG. 5 is a simplified perspective view of a plurality of floor anchor plates connected to the floor at various locations along the centerline marked on the floor extending through the assembly line of the manufacturing facility with a template fixture operably engaging two anchor plates located transversely on opposite sides of the centerline and with studs attached to various anchor plates after being accurately located with the template fixture according to the present invention; [0015]
  • FIG. 6 is a simplified detailed perspective view of the stud-locating template fixture illustrated in FIG. 5 according to the present invention; [0016]
  • FIG. 7 is a simplified detailed perspective view of a floor anchor plate with in situ accurately located, and attached studs illustrated in FIG. 5 according to the present invention; [0017]
  • FIG. 8 is a simplified perspective view of a leg or riser positioned with respect to the path according to the present invention; [0018]
  • FIG. 9 is a simplified detailed perspective view of a foot assembly including a foot plate attached to studs extending from a floor anchor plate illustrated in FIG. 8 according to the present invention; [0019]
  • FIG. 10A is a plan view of a floor anchor plate according to the present invention; [0020]
  • FIG. 10B is a side elevational view of the floor anchor plate of FIG. 10A; [0021]
  • FIG. 11A is a plan view of a floor anchor plate with attached studs according to the present invention; [0022]
  • FIG. 11B is a side elevational view of the floor anchor plate with attached studs of FIG. 11A; [0023]
  • FIG. 12A is a plan view of a floor anchor plate with attached studs and connected foot assembly according to the present invention; [0024]
  • FIG. 12B is a side elevational view of the floor anchor plate with attached studs and connected foot assembly of FIG. 12A; and [0025]
  • FIG. 13 is a simplified flow chart illustrating steps for accurately positioning a particular item of equipment, workstation, and/or entire assembly line with respect to a centerline or path of travel for the parts or articles to be processed according to the present invention.[0026]
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention can include a process or method for positioning at least one support member, by way of example and not limitation, such as a leg or riser, with respect to a centerline or path of travel for articles to be manufactured while moving along the path of travel. The method can include the steps of roughly positioning at least first and second floor anchor plates in fixed locations on opposite sides with respect to the path and generally at equal distances from the path or centerline with respect to one another. The method can also include the step of engaging a template fixture for locating a first stud with respect to the first floor anchor plate after the positioning step. [0027]
  • Referring now to FIG. 1, at least a portion of a [0028] manufacturing assembly line 10 is illustrated having a path or centerline 12 extending therethrough. A support structure 14, by way of example and not limitation, such as support legs or riser members, can be located in a spaced relationship with respect to the centerline 12, actually or figuratively, marked on a floor 18 of a manufacturing facility, and can include transversely extending lines 12 a, actually or figuratively, marked on the floor 18 of the manufacturing facility. The centerline and transverse line configuration for the floor 18 can best be seen in FIG. 2. The portion of the assembly line 10 can include a support structure 14 operable to accommodate the movement of workpieces along the path of travel 12 during processing of the articles or workpieces by the assembly line. The support structure 14 can be supported with respect to the floor 18 with one or more legs or risers 16. Each leg or riser 16 can include a foot assembly 20 having a foot plate 22. Each foot assembly 20 can engage a corresponding floor anchor plate 24 attached to the floor 18 of the manufacturing facility to connect the support structure 14 with respect to the floor 18. The connection between the foot plate 22 and the floor anchor plate 24 can provide for vertical adjustment or Z-axis adjustment, while providing accurate X-axis and Y-axis locations as a result of the accurate positioning and attachment of each stud with respect to the floor anchor plate 24 using a template fixture 32 as described in greater detail below.
  • Prior to positioning the [0029] assembly line 10 with respect to the centerline or path 12, a plurality of floor anchor plates 24 can be roughly positioned along opposite sides of the path 12 as illustrated in FIGS. 2, 3, 10A, and 10B. The floor anchor plates can support one or more legs or risers 16 associated with the support structure 14. First and second floor anchor plates 24 a and 24 b can be fixedly positioned with respect to the floor 18. The floor anchor plates 24 a and 24 b can be individually roughly positioned at equal distances from the centerline or path 12, on opposite sides of the path 12 a along one of the transversely extending lines 12 a. The floor anchor plates 24 can be roughly positioned, since accurate positioning of each anchor plate with respect to the floor 18 is not required according to the present invention.
  • According to the present invention, a [0030] template fixture 32 can then be positioned over the roughly positioned first and second floor anchor plates 24 a, 24 b as illustrated in FIGS. 5 and 6. By way of example and not limitation, the template fixture 32 can define triangulated apertures 34 a, 34 b and 34 c positionable adjacent the first floor anchor plate 24 a and triangulated apertures 36 a, 36 b and 36 c positionable adjacent the second floor anchor plate 24 b. The shape of the template 32 can correspond to the combined foot print of the floor anchor plate 24 a and the floor anchor plate 24 b when the floor anchor plates are positioned on opposite sides of the path 12 a so that a desired position of the apertures 34 a-34 c and 36 a-36 c can be realized when the template 32 simultaneously engages the floor anchor plates 24 a and 24 b and is accurately located with an appropriate instrument, by way of example and not limitation, such as a laser tracker device. By way of example and not limitation, the apertures 34 a-34 c and 36 a-36 c can be roughly positioned adjacent the floor anchor plates 24 a and 24 b when the side edge surface 38 of the template 32 is aligned with the side edge surface 40 of the floor anchor plate 24 a, and the side edge surface 42 of the template 32 is aligned with the side edge surface 44 of the floor anchor plate 24 b. The final position of the template fixture 32 can be determined with the appropriate instrumentation, such as the laser tracker device. Template fixture 32 can also define a central aperture 46 to roughly position the template 32 prior to accurate positioning with the laser tracker device. In particular, the template fixture can be roughly aligned with the path 12 a, when an actually marked centerline or path of travel can be viewed through the aperture 46.
  • The process for adjustably fastening at least one leg or riser of the support structure with respect to the floor of a manufacturing facility is shown in the flow diagram of FIG. 13. The process can start at [0031] step 100. At step 102, a centerline or path of travel 12 best seen in FIGS. 2 and 3, is defined along the floor 18 of a manufacturing facility. At step 104, first and second floor anchor plates 24 a, 24 b, best seen in FIGS. 3 and 4, are positioned along the path 12 a on opposite sides of the path 12. At step 106, a template fixture 32 best seen in FIGS. 5 and 6 is simultaneously positioned over the first and second floor anchor plates 24 a, 24 b.
  • At [0032] step 108, an appropriate attachment device, by way of example and not limitation, such as a weld gun, can be operably engaged with the template fixture to attach the studs 52 a, 52 b, 52 c engaged and guided within apertures 34 a, 34 b and 34 c to the first floor anchor plate 24 a in the triangulated pattern defined by the apertures 34 a, 34 b and 34 c. The apertures 34 a-34 c can be sized to correspond to the outer diameter of the studs 52 a, 52 b and 52 c to hold the studs in position during attachment to the corresponding floor anchor plates. The appropriate attachment device can then be operably engaged with the template fixture to attach the studs 52 d, 52 e, 52 f engaged and guided within apertures 36 a, 36 b and 36 c to the second floor anchor plate 24 b in the triangulated pattern defined by apertures 36 a, 36 b and 36 c.
  • At [0033] step 112, the template fixture 32 can be removed from the first and second floor anchor plates 24 a, 24 b. At step 114, nuts 56 can be individually threadably engaged with the threaded studs. At step 116, first and second legs or risers 16 a, 16 b of the support structure can be positioned with respect to the first and second floor anchor plates 24 a, 24 b. Specifically, riser or leg 16 a can be positioned over floor anchor plate 24 a by engaging triangulated apertures 58 a, 58 b, 58 c in the footplate 22 over the triangulated studs extending outwardly from floor anchor plate 24 a to seat the footplate on top of the nuts 56, while riser or leg 16 b of the support structure can be positioned over floor anchor plate 24 b by engaging triangulated apertures 58 d, 58 e, 58 f in the footplate 22 over the triangulated studs extending outwardly from floor anchor plate 24 b to seat the footplate on top of the lower nuts 56. Finally, the legs or risers can be anchored to the floor anchor plates using upper nuts 60 threaded onto corresponding studs 52 a-52 f and engaging an upper face of footplates 22. It can be seen that selective turning of the lower nuts 56 with respect to the studs can selectively adjust the elevation along the Z-axis of the legs or risers with respect to the floor surface 18, while the precisely located apertures 58 a-58 f accurately define the location of the support structure along the X-axis and the Y-axis.
  • While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law. [0034]

Claims (18)

What is claimed is:
1. A process for anchoring support structure with respect to a floor of a manufacturing facility comprising the steps of:
roughly positioning at least one floor anchor plate with respect to a path of travel of workpieces;
fixedly anchoring the at least one floor anchor plate to the floor of the manufacturing facility;
accurately positioning at least one stud with respect to the at least one floor anchor plate with a position locating device; and
fixedly attaching the at least one stud with respect to the at least one floor anchor plate after the positioning step.
2. The process of claim 1 further comprising the step of:
positioning a template with respect to the at least one floor anchor plates, the template defining at least one aperture positionable with respect to the at least one floor anchor plate.
3. The process of claim 2 further comprising the step of:
individually attaching a plurality of studs with respect to the at least one floor anchor plate, while the at least one stud is held in a located position by the at least one aperture with respect to the at least one floor anchor plate.
4. The process of claim 1 further comprising the step of:
slidably engaging the support structure with respect to the first stud after the engaging step.
5. The process of claim 1 further comprising the steps of:
threadingly engaging a lower nut with respect to the at least one stud; and
supporting the support structure with the lower nut.
6. The process of claim 1 further comprising the step of:
turning the nut with respect to the at least one stud to adjust an elevation of the support structure with respect to the at least one floor anchor plate.
7. A process for anchoring support structure with respect to a floor of a manufacturing facility comprising the steps of:
fixedly anchoring at least one first floor anchor plate and at least one second floor anchor plates with respect to a path of travel of workpieces along the floor of the manufacturing facility, wherein each of the at least one first floor anchor plate and at least one second floor anchor plate are individually roughly positioned along a transversely extending line to the path of travel and are roughly located equidistantly on opposite sides of the path of travel with respect to one another;
positioning a template with respect to the at least one first floor anchor plate and at least one second floor anchor plate, the template defining at least one first aperture positionable adjacent the first floor anchor plate and at least one second aperture positionable adjacent the second floor anchor plate;
locating at least one first stud and at least one second stud within the at least one first aperture and at least one second aperture within the template with respect to the first floor anchor plate and the second floor anchor plate respectively; and
fixedly connecting the at least one first stud and the at least one second stud to the corresponding first and second floor anchor plates respectively while being accurately located with the template.
8. The process of claim 7 further comprising the steps of:
threadingly engaging a lower nut with respect to the first stud;
operably engaging the first stud within a footplate of the support structure; and
supporting the support structure in a desired elevation with the lower nut engaged on the threaded stud of the first floor anchor plate.
9. The process of claim 8 further comprising the step of:
turning the lower nut with respect to the first stud to selectively change a desired elevation of the support structure with respect to the first floor anchor plate.
10. An anchoring system for a support structure with respect to a floor of a manufacturing facility comprising:
means roughly positioning at least one floor anchor plate with respect to a path of travel of workpieces;
means for fixedly anchoring the at least one floor anchor plate to the floor of the manufacturing facility;
means for accurately positioning at least one stud with respect to the at least one floor anchor plate with a position locating device; and
means for fixedly attaching the at least one stud with respect to the at least one floor anchor plate after the positioning step.
11. The anchoring system of claim 10 further comprising:
means for positioning a template with respect to the at least one floor anchor plates, the template defining at least one aperture positionable with respect to the at least one floor anchor plate.
12. The anchoring system of claim 11 further comprising:
means for individually attaching a plurality of studs with respect to the at least one floor anchor plate, while the at least one stud is held in a located position by the at least one aperture with respect to the at least one floor anchor plate.
13. The anchoring system of claim 10 further comprising:
means for slidably engaging the support structure with respect to the first stud after the engaging step.
14. The anchoring system of claim 10 further comprising:
means for threadingly engaging a lower nut with respect to the at least one stud; and
means for supporting the support structure with the lower nut.
15. The anchoring system of claim 10 further comprising:
means for turning the nut with respect to the at least one stud to adjust an elevation of the support structure with respect to the at least one floor anchor plate.
16. An anchoring system for a support structure with respect to a floor of a manufacturing facility comprising:
means for fixedly anchoring at least one first floor anchor plate and at least one second floor anchor plates with respect to a path of travel of workpieces along the floor of the manufacturing facility, wherein each of the at least one first floor anchor plate and at least one second floor anchor plate are individually roughly positioned along a transversely extending line to the path of travel and are roughly located equidistantly on opposite sides of the path of travel with respect to one another;
means for positioning a template with respect to the at least one first floor anchor plate and at least one second floor anchor plate, the template defining at least one first aperture positionable adjacent the first floor anchor plate and at least one second aperture positionable adjacent the second floor anchor plate;
means for locating at least one first stud and at least one second stud within the at least one first aperture and at least one second aperture within the template with respect to the first floor anchor plate and the second floor anchor plate respectively; and
means for fixedly connecting the at least one first stud and the at least one second stud to the corresponding first and second floor anchor plates respectively while being accurately located with the template.
17. The anchoring system of claim 16 further comprising:
means for threadingly engaging a lower nut with respect to the first stud;
means for operably engaging the first stud within a footplate of the support structure; and
means for supporting the support structure in a desired elevation with the lower nut engaged on the threaded stud of the first floor anchor plate.
18. The anchoring system of claim 17 further comprising:
means for turning the lower nut with respect to the first stud to selectively change a desired elevation of the support structure with respect to the first floor anchor plate.
US10/876,943 2003-06-27 2004-06-25 Studding layout Abandoned US20040261331A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/876,943 US20040261331A1 (en) 2003-06-27 2004-06-25 Studding layout

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US48349803P 2003-06-27 2003-06-27
US10/876,943 US20040261331A1 (en) 2003-06-27 2004-06-25 Studding layout

Publications (1)

Publication Number Publication Date
US20040261331A1 true US20040261331A1 (en) 2004-12-30

Family

ID=33544674

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/876,943 Abandoned US20040261331A1 (en) 2003-06-27 2004-06-25 Studding layout

Country Status (1)

Country Link
US (1) US20040261331A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102409844A (en) * 2011-09-02 2012-04-11 中铁上海工程局有限公司 Formwork support system of second sectional pier body for turnover formwork construction of pier body and construction method
US20230120759A1 (en) * 2020-04-06 2023-04-20 Bystronic Laser Ag Machine Frame For A Machine Tool and Machine Tool

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2295676A (en) * 1941-03-08 1942-09-15 Lee R Meyer Standard supporting bracket
US5138128A (en) * 1991-01-29 1992-08-11 Foster Wheeler Energy Corporation Front end fixture and method for stud welding gun
US5452839A (en) * 1994-06-20 1995-09-26 Solar Turbines Incorporated Stud gun positioning apparatus
US5503082A (en) * 1994-08-29 1996-04-02 Bosma Machine & Tool Corporation Load-bearing rail and floor system having slotted rails embedded in concrete for the reception of machine mounts or railcar wheels
US5558455A (en) * 1995-05-30 1996-09-24 Emery Fixtures Inc. Break-away banner rod fitter
US6047940A (en) * 1998-04-13 2000-04-11 Kaplan; Charles Removably fixed and restorable auditorium seating
US6163005A (en) * 1999-08-09 2000-12-19 Nelson Stud Welding, Inc. Stud welding gun
US6176662B1 (en) * 1999-03-17 2001-01-23 Nelson Stud Welding, Inc. Stud having annular rings
US6339320B1 (en) * 1997-12-17 2002-01-15 Nelson Stud Welding, Inc. Power transformer for a switched mode power supply, especially for stud welding devices
US20020014573A1 (en) * 2000-07-31 2002-02-07 Anderson Phillip S. Machine leveler and method
USD454578S1 (en) * 2001-02-15 2002-03-19 Nelson Stud Welding, Inc. Stud welding unit
USD455448S1 (en) * 2001-02-15 2002-04-09 Nelson Stud Welding, Inc. Stud welding user interface
US6840022B1 (en) * 2002-07-26 2005-01-11 Space Saver Corporation System for mounting a rail or the like to a support surface such as a floor
US6868641B2 (en) * 2002-05-01 2005-03-22 Michael D. Conner Breakaway post base
US6912774B2 (en) * 2002-05-09 2005-07-05 Progressive Tool & Industries Co. Apparatus and method for assembly of motorcycle frame

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2295676A (en) * 1941-03-08 1942-09-15 Lee R Meyer Standard supporting bracket
US5138128A (en) * 1991-01-29 1992-08-11 Foster Wheeler Energy Corporation Front end fixture and method for stud welding gun
US5452839A (en) * 1994-06-20 1995-09-26 Solar Turbines Incorporated Stud gun positioning apparatus
US5503082A (en) * 1994-08-29 1996-04-02 Bosma Machine & Tool Corporation Load-bearing rail and floor system having slotted rails embedded in concrete for the reception of machine mounts or railcar wheels
US5558455A (en) * 1995-05-30 1996-09-24 Emery Fixtures Inc. Break-away banner rod fitter
US6339320B1 (en) * 1997-12-17 2002-01-15 Nelson Stud Welding, Inc. Power transformer for a switched mode power supply, especially for stud welding devices
US6047940A (en) * 1998-04-13 2000-04-11 Kaplan; Charles Removably fixed and restorable auditorium seating
US6176662B1 (en) * 1999-03-17 2001-01-23 Nelson Stud Welding, Inc. Stud having annular rings
US6175094B1 (en) * 1999-08-09 2001-01-16 Nelson Stud Welding, Inc. Stud welding gun
US6163005A (en) * 1999-08-09 2000-12-19 Nelson Stud Welding, Inc. Stud welding gun
US6476339B2 (en) * 1999-08-09 2002-11-05 Nelson Stud Welding Stud welding gun
US20020014573A1 (en) * 2000-07-31 2002-02-07 Anderson Phillip S. Machine leveler and method
USD454578S1 (en) * 2001-02-15 2002-03-19 Nelson Stud Welding, Inc. Stud welding unit
USD455448S1 (en) * 2001-02-15 2002-04-09 Nelson Stud Welding, Inc. Stud welding user interface
US6868641B2 (en) * 2002-05-01 2005-03-22 Michael D. Conner Breakaway post base
US6912774B2 (en) * 2002-05-09 2005-07-05 Progressive Tool & Industries Co. Apparatus and method for assembly of motorcycle frame
US6840022B1 (en) * 2002-07-26 2005-01-11 Space Saver Corporation System for mounting a rail or the like to a support surface such as a floor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102409844A (en) * 2011-09-02 2012-04-11 中铁上海工程局有限公司 Formwork support system of second sectional pier body for turnover formwork construction of pier body and construction method
US20230120759A1 (en) * 2020-04-06 2023-04-20 Bystronic Laser Ag Machine Frame For A Machine Tool and Machine Tool
US11927296B2 (en) * 2020-04-06 2024-03-12 Bystronic Laser Ag Machine frame for a machine tool and machine tool

Similar Documents

Publication Publication Date Title
US6364302B2 (en) Modular system and fixture for positioning and clamping a workpiece
CN101138773B (en) Method for alignment of a vehicle and levelling bench arrangement
US20170186345A1 (en) System for mounting a plurality of display units
JP2006307525A (en) Method and implement for constructing wall panel
US20040261331A1 (en) Studding layout
US20210071906A1 (en) Method for Mounting Air Outlet Structure of Air Conditioner and Air Outlet Mounting Structure of Air Conditioner
RU2684876C1 (en) Positioning device for assembly fitting
JP4380429B2 (en) Anchor bolt installation method and anchor bolt installation device for steel pipe foundation pile
KR20180109531A (en) Grounding Stone Assembly Having Position Adjustable Bracket
JP2006291550A (en) Method and apparatus for installing column fixing member in steel pipe foundation pile
CN213118160U (en) Fixing device of laser emitter
CN111502176B (en) Method for mounting fabricated raised floor
CN111254967B (en) Positioning device and positioning installation method for wireless frame bolt
CN210141458U (en) Test support and system
JPH0592812A (en) Pallet locating structure
CN109680711B (en) Ring-arranged direct-buried bolt pre-embedding positioning device and construction method
CN202403668U (en) Detachable positioning device for column type dashboard skeleton of automobile
CN111622511A (en) Modular installation device and method for embedded parts of group anchor hole
CN210413349U (en) A adjustable quick change tool for sprayer assembly
JPS63272855A (en) Execution method of free access floor
CN112779827B (en) Method and tool for installing rubber wheel rail guide rail
CN102564310A (en) Detachable positioning device for tubular column type dashboard frameworks of automobiles
JP7042011B1 (en) A vehicle side line display device and a device for positioning a vehicle sensor adjustment reference tool using this display device.
CN216107854U (en) Installation frock of rubber tyer rail guided way
CN217951742U (en) Support frame for laser range finder

Legal Events

Date Code Title Description
AS Assignment

Owner name: PROGRESSIVE TOOL & INDUSTRIES, CO., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KILIBARDA, VELIBOR;DUGAS, MICHAEL R.;REEL/FRAME:015519/0885

Effective date: 20040526

AS Assignment

Owner name: COMAU PICO INC., MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:PROGRESSIVE TOOL & INDUSTRIES COMPANY;REEL/FRAME:019215/0615

Effective date: 20050131

AS Assignment

Owner name: COMAU, INC., MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:COMAU PICO INC.;REEL/FRAME:019224/0614

Effective date: 20070102

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE