US20040256065A1 - Method for producing corn stalk pulp and paper products from corn stalk pulp - Google Patents

Method for producing corn stalk pulp and paper products from corn stalk pulp Download PDF

Info

Publication number
US20040256065A1
US20040256065A1 US10/463,346 US46334603A US2004256065A1 US 20040256065 A1 US20040256065 A1 US 20040256065A1 US 46334603 A US46334603 A US 46334603A US 2004256065 A1 US2004256065 A1 US 2004256065A1
Authority
US
United States
Prior art keywords
pulp
cornstalk
bleached
chemical
bleaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/463,346
Other languages
English (en)
Inventor
Aziz Ahmed
Jong-Myoung Won
Haiil Ryu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CORN PULP AND PAPER Inc
Original Assignee
CORN PULP AND PAPER Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CORN PULP AND PAPER Inc filed Critical CORN PULP AND PAPER Inc
Priority to US10/463,346 priority Critical patent/US20040256065A1/en
Assigned to CORN PULP AND PAPER, INC. reassignment CORN PULP AND PAPER, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AZIZ-AHMED, RYU, HAIIL, WON, JONG-MYOUNG
Priority to MXPA05001337A priority patent/MXPA05001337A/es
Priority to PCT/US2004/017341 priority patent/WO2005001195A1/en
Priority to AU2004233518A priority patent/AU2004233518A1/en
Priority to EA200500246A priority patent/EA200500246A1/ru
Priority to EP04754044A priority patent/EP1604060A4/en
Priority to JP2006517169A priority patent/JP2006527800A/ja
Priority to KR1020047019573A priority patent/KR20060008222A/ko
Priority to CNA2004800003254A priority patent/CN1697901A/zh
Priority to BR0405647-7A priority patent/BRPI0405647A/pt
Priority to CA002485520A priority patent/CA2485520A1/en
Priority to ZA200409578A priority patent/ZA200409578B/xx
Priority to NO20045187A priority patent/NO20045187L/no
Publication of US20040256065A1 publication Critical patent/US20040256065A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/12Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
    • D21B1/14Disintegrating in mills
    • D21B1/16Disintegrating in mills in the presence of chemical agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/12Pulp from non-woody plants or crops, e.g. cotton, flax, straw, bagasse
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • D21C1/06Pretreatment of the finely-divided materials before digesting with alkaline reacting compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/02Pulping cellulose-containing materials with inorganic bases or alkaline reacting compounds, e.g. sulfate processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/20Pulping cellulose-containing materials with organic solvents or in solvent environment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/16Bleaching ; Apparatus therefor with per compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor

Definitions

  • the present invention relates to a process for separating a portion of a corn plants and producing pulp from the plant for making paper products. More specifically, the present invention relates to a method for harvesting portions of corn plants, that is, harvesting portions from the ground up to about the ears of the corn plant. Additionally, the present invention relates to a versatile pulping process including at least one of mechanical, semi-chemical, and chemical process in order to produce pulp suitable for various paper products and producing various paper products from the pulp.
  • Trees provide a major source of the fiber supply for paper and paperboard products industries.
  • Softwood is a very suitable species for mechanical pulping. Chemical pulps of softwood are used where the strength of the paper product is important. Hardwood has a much shorter fiber than softwood and typically is not suitable for mechanical pulping, but suitable for chemical and semi-chemical pulping. Hardwood chemical pulp is used in paper products where surface smoothness and optical properties are important. Wood based fiber is expensive as it incurs a high chemical charge for pulping, high energy input for cooking and refining, and high cost chemical recovery systems. Additionally, the environmental impact of wood based fiber is disadvantageous.
  • Agricultural residues such as cornstalks offer a promising alternative source of fiber.
  • they can serve as important raw materials for making paper products, including products for printing, writing, top linerboard, liner, tissue paper and other specialty grade paper.
  • environmental concerns have heightened the interest in using agricultural fibers. Exploitation of agro-based resources for making paper products is important to improve farm profitability and reduce environmental pollution from burning and land disposal.
  • the use of agricultural plants for making paper products is negligible. This is especially true in the United States where nearly 284 million tons of total agricultural residues, including 150 million tons of cornstalks are available annually.
  • Cornstalk as a fiber source for papermaking is not popular in major pulp and paper producing countries as there are abundant and secure supplies of pulpwood meeting the raw material requirements for large-scale capital-intensive pulp mills.
  • a large-scale pulp mill based on agricultural residues needs a large supply of bulky raw materials, thereby creating transportation problems. Additionally, agricultural residues are seasonal, thereby creating storage problems. Separation of appropriate parts of cornstalk residue during harvesting will reduce transportation and storage problems.
  • a pulp mill based on cornstalk should be small scale and community based.
  • a large-scale mill may be used depending on the availability of cornstalk and supply logistic.
  • the related art covering non-wood pulping and papermaking include U.S. Pat. No. 6,302,997 issued to Hurter et al. This describes methods of non-wood pulping for papermaking. Cornstover (stalks, leaves and husks) are used in this process and contain low quality fiber and a high quantity of debris. Accordingly, transport and storage problems in the farm as well as in the mill are present in the related art. Additionally, pith, leaves, and husk contain a small quantity of good fibers. Therefore, tube grinders, conveyers, hydrapulpers, pumps, magnetic separators, and dewatering screens have to handle huge volumes of unnecessary materials.
  • the invention has a number of drawbacks, for example: 1) dealing with cornstover having materials such as pith, leaves and husk that have very little fiber value; 2) carrying the unnecessary mass to the mill creates transportation and storage and disposal problems of the large supply of reject materials; 3) low pulp yield; 4) high chemical consumption in acid stage, bleaching stage and in adjustments of pH; 5) the process involves extra steps that increases capital costs and operating expenses; and 6) the process saves energy during alkaline cooking but consumes more energy through refining.
  • drawbacks for example: 1) dealing with cornstover having materials such as pith, leaves and husk that have very little fiber value; 2) carrying the unnecessary mass to the mill creates transportation and storage and disposal problems of the large supply of reject materials; 3) low pulp yield; 4) high chemical consumption in acid stage, bleaching stage and in adjustments of pH; 5) the process involves extra steps that increases capital costs and operating expenses; and 6) the process saves energy during alkaline cooking but consumes more energy through refining.
  • the present invention focuses on non-wood paper making having an advantageous approach.
  • harvesting, pressing and bailing processes on the farm By establishing harvesting, pressing and bailing processes on the farm and allowing for gathering places of goods and storage.
  • it is to establish a mini mill at the center of the corn growing area where farmers will have their own storage facility and will transport the materials to the mill at a schedule set by the mill.
  • mill storage should not be more than about 15 days in order to optimize the mill spatially.
  • the mill should use a simple and environmentally benign process with low capital and operating costs to compete with the larger wood based mills. These processes are not currently available in the art.
  • the present invention is directed to a process for producing pulp and paper products from pulp that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
  • a process for producing pulps suitable for use in papermaking, top white liner making, liner making and other specialty papermaking includes a harvesting process for separating portions of the cornstalk that are most suitable as fiber source in the field, digesting the selected cornstalk portions with an alkaline pulping solution with or without the presence of anthraquinone and/or other catalysts, and treating the pulp with elemental chlorine free bleaching solution in order to produce bleached pulp suitable for papermaking.
  • An advantage of the present invention is to provide a cornstalk harvesting process that will take the bottom portion of the cornstalk plant below about the ears of the plant, which contains mostly the good fiber and less pith and leaving behind the rest of the plant in the field for traditional farm use.
  • Another advantage of the present invention is to chop the selected cornstalk section using a modified wood chipper.
  • Another advantage of the present invention is to separate the chopped leaves and piths from the chopped stem pneumatically.
  • Another advantage of the present invention is to reduce the cornstalk processing steps from harvesting to digestion.
  • Another advantage of the present invention is to accept up to 15% of pith in the digester to simplify the separation process.
  • Another advantage of the present invention is to provide a cornstalk pulping process that requires a minimum number of processing steps. Another advantage of the present invention is to provide a cornstalk pulping process that is cost effective and environmentally benign at small- to medium-scale level.
  • Another advantage of the present invention is to provide a cornstalk harvesting and pulping process that uses a minimal amount of readily available and inexpensive equipment.
  • Another advantage of the present invention is to provide a cornstalk processing system during harvesting to separate the bottom portion of the cornstalk plant, below about the ears of the cornstalk plant, from the rest of the plant, which is still available to the farmer for traditional farm use.
  • Another advantage of the present invention is to make compact square bales of dried cornstalk during the harvesting process to reduce bulk to avoid transport and storage problem.
  • Another advantage of the present invention is to develop a management system for transportation and storage of selected cornstalk
  • Another advantage of present invention is to transport cornstalk from the collecting point to the mill.
  • Another advantage of the present invention is to leave portions of the cornstalk plant rejected during harvesting in the field for soil conditioning and other traditional farm uses.
  • Another advantage of the present invention is to reduce the contaminants in cornstalk during harvesting and compact baling processes in order to reduce hot water requirements in washing stage before chemical impregnation and digestion steps.
  • Another advantage of the present invention is to chop the cornstalk followed by hot water washing and compression in screw feeder where impregnated with cooking chemical before entering into the digester.
  • a further advantage of the present invention is to add cooking chemicals just after the compression step for better chemical impregnation of de-structured raw materials in a continuous digester.
  • Another advantage of the present invention is to apply a compression step to increase the digester input and to increase the liquor impregnation into the material.
  • Another advantage of the present invention is to use the standard paper mill equipment to process the cooked fiber.
  • Another advantage of the present invention is to digest the raw materials at low temperatures in the range of about 110 to 160° C. with a retention time of about 30 to 180 minutes.
  • Another advantage of the present invention is to add a pretreatment step just after the washing and compression step, where cellulose protecting agents such as MgCl 2 or MgCO 3 , and the like, will be impregnated at a temperature in the range of about 60 to 100° C. for a period of time in the range of about 30 to 60 minutes.
  • cellulose protecting agents such as MgCl 2 or MgCO 3 , and the like
  • Another advantage of present invention is to maximize the hemicelluloses content of cornstalk chemical pulp by introducing a pre-impregnation stage using cellulose protecting agents.
  • Another advantage of present invention is to take benefit of hemicelluloses content in cornstalk pulp in papermaking process by blending with softwood kraft pulp and using wet end chemistry.
  • Another advantage of present invention is to find the synergic effect of cornstalk pulp in a typical papermaking/boardmaking furnish.
  • Another advantage of the present invention is to use less chemicals, for example, 8 to 20% active alkali with or without the presence of catalyst such as anthraquinone and the like.
  • Another advantage of the present invention is to use less chemicals in the elemental chlorine-free bleaching process.
  • Another advantage of the present invention is to apply chlorine dioxide, alkaline extraction, peroxide, ozone, and oxygen bleaching stages to obtain about 80 to 95% of brightness.
  • Another advantage of the present invention is to avoid sulfur based chemicals in cooking liquor or in bleaching liquor to remain committed to environmentally benign pulping and bleaching processes.
  • Another advantage of the present invention is to fractionate the fiber after bleaching into long fibers (mainly from cornstalk skin) and into short fibers (mostly from pith). Another advantage of the present invention is to use the cornstalk pulp to produce various grades of paper without even fiber fractionation into long and short fiber fraction.
  • Another advantage of the present invention is the flexibility of using chemical pulp in a blend with bleached soft wood kraft pulp (with or without prior refining) and filler.
  • Another advantage of the present invention is that the long fiber fractions will be refined to approximately 250-500 ml CSF and then added to the short fiber fraction before papermaking step.
  • Another advantage of the present invention is a cornstalk pulping process that minimizes water use by reducing the number of washing stages and by minimizing the number of dilution and thickening stages, by recycling the internal water as much as possible.
  • Another advantage of the present invention is to improve the paper quality made from the bleached cornstalk pulp by adding bleached softwood kraft pulp approximately 5 to 20%, inorganic filler approximately 5 to 60%, starch approximately 0.25 to 4%, sizing agent approximately 0.025 to 0.5%, cationic, anionic and/or amphoteric retention aids, and the like.
  • Another advantage of the present invention is to use cornstalk chemical pulp with or without refining in a blend with bleached softwood kraft (with or without prior refining) and filler.
  • Another advantage of the present invention is to use the bleached cornstalk chemical pulp in a blend with bleached softwood kraft pulp, bleached hardwood chemical pulp and filler.
  • Another advantage of the present invention is to use the bleached cornstalk chemical pulp in a blend with hardwood CTMP (chemi-thermo mechanical pulp) and/or BCTMP (bleached chemi-thermo mechanical pulp) and filler.
  • CTMP chemi-thermo mechanical pulp
  • BCTMP bleached chemi-thermo mechanical pulp
  • Another advantage of the present invention is to use the bleached cornstalk chemical pulp in a blend with bleached cornstalk chemi-thermo mechanical pulp (CTMP/BCTMP), bleached hardwood mechanical pulp, bleached softwood kraft pulp and filler.
  • CMP/BCTMP bleached cornstalk chemi-thermo mechanical pulp
  • Another advantage of the present invention is to use the bleached cornstalk mechanical pulp in a blend with hardwood chemical pulp and/or bleached hardwood mechanical pulp, bleached softwood kraft pulp and filler.
  • Another advantage of the present invention is to use unbleached cornstalk chemical and/or semi-chemical pulp in a blend with unbleached softwood kraft pulp and/or unbleached softwood semi-chemical (kraft) pulp to prepare packaging grade paper.
  • Another advantage of the present invention is to apply the bleached cornstalk chemical pulp in a blend with bleached softwood kraft pulp (0 to 10%) and filler (10 to 60%) in the outer layer of the multi layer papers.
  • the inner layer of the paper may contain inferior quality fibers, such as recycled fiber, inferior virgin fiber, pulp having extractives and pulp unsuitable for exposure on paper surface.
  • Another advantage of the present invention is to use the bleached cornstalk chemical pulp in top liner by blending with bleached softwood kraft pulp (0 to 10%) and filler (0 to 60%) along with very small quantities of starch, sizing agents and retention aid.
  • Another advantage of the present invention is to use the bleached cornstalk chemical pulp in an existing mill using the furnish consisted of hardwood and softwood pulp and filler in order to enhance the paper strength properties through superior fiber bonding capability of cornstalk pulp.
  • Another advantage of the present invention is to use the bleached cornstalk chemical pulp to increase the filler retention in the paper without compromising strength properties.
  • Another advantage of the present invention is to use the unbleached cornstalk chemical pulp with unbleached chemical or semi chemical softwood kraft pulp to enhance strength properties of papers such as sack paper, packaging paper etc.
  • FIG. 1 is a flow chart describing a chemical pulping process for corn stalk pulp.
  • FIG. 2 is a flow chart describing a mechanical pulping and high yield pulping process for corn stalk pulp.
  • FIG. 3 is a flow chart describing a paper making process from corn stalk pulp.
  • the present invention emphasizes the need of the paper industry to move to mini mill processes and to use agricultural residues, such as corn stalks, and the like as fiber sources.
  • the process is a combination of compression impregnation and chemical processes to produce high quality pulps.
  • cornstalk is an agricultural residue, as it remains in the field after harvesting the main product corn.
  • the residual cornstalk has very little or no commercial value at present.
  • other agricultural residues may also be utilized and have been contemplated.
  • the present invention provides a cost effective and environmentally benign process. For example, one stage of compression impregnation and pulping and three to seven subsequent stages of bleaching convert the selected part of cornstalk into high quality, bright papermaking pulps of excellent strength, cleanliness, and drainage rate.
  • the process utilizes a portion of the cornstalk plant below about the ears, for example, approximately the bottom 2 to 3 ft of cornstalk plant (without leaves and husk). These portions contain up to approximately 15% pith without using any type of mechanical or chemical de-pithing, thereby producing pulps having strength properties that are similar and/or superior to the properties of hardwood pulps in lab-scale trial.
  • a total pulp yield of about 46-50% may be achieved on selected cornstalk portions, which is equal to or better than the total yield value of hardwood pulps.
  • the hardwood pulp process utilizes harsher pulping conditions and more costly pulping and bleaching processes.
  • the processing of the present invention establishes a high yield using low chemical charges, temperature, and pressure.
  • the process of the present invention includes a unique harvesting process that separates portions of the cornstalk plant, that is portions from the ground up to about the ears of the plant.
  • the portion separated may be approximately the bottom 2 to 3 ft of cornstalk plant. Of course, this depends on the characteristics of the plant.
  • the separated cornstalk portions are compacted into a bale. For example, they are compacted into a square or rectangular bales and stored at the farm until a predetermined time, when it is then transported to the mill.
  • the alkaline pulping step used in the present invention in pulping is milder than that used in hard wood pulping process.
  • the pulping step uses both batch and continuous processes.
  • a Pandia type continuous digester is suitable for alkaline pulping of cornstalk.
  • Pulp from the digester contains low lignin, for example, kappa 8 to 10. Additionally, the pulp can be bleached to a high brightness by using fewer steps than hardwood pulp process and obtaining a similar yield.
  • the harvester removes a portion of the cornstalk plant.
  • the harvester cuts the cornstalk just below the ears.
  • the first cut may be used for soil conditioning, animal bedding and other traditional farm uses.
  • the second cut removes a portion of the cornstalk plant below about the ears of the cornstalk plant.
  • This portion has moisture content of about 10 to 20% and is compacted into a bale. Typically, it is compacted into a rectangular bale or square bale, which is then transported to a storage facility.
  • the bale is stored in a dry atmosphere in order to avoid fungi and the like.
  • Each farmer in approximately 50 mile radius relative to the pulp mill stores the compact bales on the farm until a predetermined time for delivering the materials to the mill. This allows the mill to keep an inventory of compact bales for a reduced time, for example, about 2 weeks. Of course the time of storage of the bales may be longer or shorter. This type of management will reduce storage requirements at the mill site. The mill may pay the farmers for storage time or some other form of contractual relationship may be established with the farmers.
  • the next step in the process is to arrange the raw materials into a digester.
  • the compacted bales of cornstalk portions will be loosened and chopped to approximately 25 to 40 mm size.
  • the chopped material is arranged, for example dumped, onto a lower part of an inclined conveyer belt.
  • the conveyer belt may be fitted in a steel housing filled with hot water under constant circulation.
  • the conveyer will transport the cornstalk within the liquid from one end of the conveyer to the other end of the conveyer. This is the process of wetting the cornstalk.
  • dirt and/or other foreign materials attached to cornstalk portions are loosened and separated via hot water soluble materials into the water media.
  • the upper end of the conveyer may be slightly inclined and another conveyer may be fitted in a steel housing and having an incline of about 30 degrees.
  • the conveyor belt leads to a hopper.
  • the configuration of the belt may be in any suitable configuration leading to the hopper.
  • the incline may be less than or greater than 30 degrees.
  • In-situ cleaning process is performed on the cornstalk as it is transported along the conveyor belt. For example, continuous hot water is sprayed onto the material being transported along the conveyor belt to clean off the residual dirt and any other foreign material.
  • the cleaned material which may be saturated with hot water, is arranged into the hopper.
  • the material may be fed into the hopper with a plug screw feeder or any other suitable technique.
  • the plug screw feeder compresses the cornstalk coming from the feeder and removes the excess water and hot water soluble extracts. At the end of the screw feeder, the compressed cornstalk comes in contact with cooking liquor, thereby providing better penetration of cooking liquor as it enters into the digester. In this zone the cooking liquor flow is controlled in order to have liquor to cornstalk ratio of about 3:1 to 7:1.
  • a variety of different digesters may be used, for example, a Pandia digester and the like.
  • the Pandia digester is a horizontal continuous digester that is well suited for the production of pulp from all different non-wood fiber raw materials and provides excellent results for high yield processing.
  • the temperature may be raised to about 120 to 170° C. at the end of first tube and about 120 to 170° C. in the second tube for continuing the cooking, and in the third tube to about 100 to 110° C. for cooling down, before letting it blow to the blow tank.
  • the ramp time in the first horizontal tube may vary from about 20 to 40 minutes
  • the cooking time at the second tube may vary from about 20 to 90 minutes
  • cooling time in the third horizontal tube may vary from about 10 to 15 minutes.
  • the blow tank may include an agitator fitted to defibrate the cooked fiber in a hot spent liquor media.
  • a plug screw feeder compacts the bulky cornstalk to allow for a maximum load.
  • the load fills a rotating and/or stationary digester with a liquor to solid content of about 3:1 to 7:1.
  • the cooking temperature varies from about 120 to 170° C. for a period between about 30 to 120 minutes.
  • the ramp time for raising the temperature from feed temperature to cooking temperature varies from about 15 to 60 minutes.
  • the temperature of the digester is lowered to about 100 to 110° C. and the pulp is released to a blow tank. In the blow tank, an agitator is fitted to defibrate the cooked fiber in hot spent liquor media.
  • the cooking liquor includes about 2 to 20% active alkali.
  • About 12 to 15% active alkali (on oven dry cornstalk basis) cooking solution may be used to obtain a bleachable grade cornstalk pulp of yield range of about 45 to 50%.
  • the active alkalinity may be in the range of about 6 to 10%, and to obtain corrugating medium at the yield range of about 80 to 95%, the active alkalinity may be in the range of about 2 to 4%.
  • the cooking liquor may contain any combination of catalytic anthraquinone, and/or other similar reagents.
  • the agitator that may be fitted at the bottom accomplishes defibration in the presence of hot liquor. Defibrating separates the fiber for thorough pulp washing and the fibers might need to be further refined for papermaking.
  • ultra-high yield pulp of about 80 to 95% obtained for corrugating medium the pulps are refined to separate the individual fibers.
  • pulps After disintegration in a blow tank, pulps will be sent through a coarse screen to remove uncooked and/or semi-cooked and/or fiber lumps before sending the pulp to washing stage. Black liquor will be separated at screening and washing stages and sent to a chemical recovery boiler for recycling. The chemical pulps require thorough washing in order to recover processing chemicals and to clean the pulp. The brown stock can be washed by the existing commercial washer. Screening and cleaning of cornstalk pulp are preferably done before bleaching. This will save bleaching chemicals and improve the bleachability of the pulp.
  • a moderate application of bleaching solution for example, chlorine dioxide, alkaline hydrogen peroxide, and alkaline extraction solutions may be used to remove the residual lignin and to increase the pulp brightness to a predetermined level.
  • Bleaching conditions such as temperature, time, and bleaching liquor concentration, typically depends on lignin content of the pulp and on the optimum conditions for particular bleaching agents.
  • temperatures ranging from about 60 to about 90° C. are used when using chlorine dioxide or alkaline peroxide as a bleaching agent in a closed system.
  • the bleaching processes last about 30 to 120 minutes, which includes the time required to adjust the pulp temperature to the desired temperature level.
  • the bleaching temperature is maintained for about 30 to 120 minutes.
  • a three step bleaching sequence (hereinafter “DED”) can raise the cornstalk pulps' brightness to about 80 to 85% ISO level and addition of one of more bleaching stages such as peroxide, ozone, or oxygen bleaching stage can raise the brightness to about 86 to 95% ISO.
  • the bleached pulp is a mixture of long fiber mainly derived from cornstalk skin and short fiber derived mainly from pith. Refining of this mixture before papermaking will create more fines resulting in a water drainage problem because the fines hold more water than the fiber.
  • Short fiber does not need refining, whereas the long fibers might or might not need refining in order to develop bonding properties.
  • the bleached fiber should be fractionated into long and short fiber fractions.
  • the long fiber fraction will be refined and then mixed with the short fiber fraction before papermaking.
  • the bleached pulp is used to prepare paper, for example, printing and writing paper, photocopy paper, top white linerboard, tissue paper, base paper, wood free papers, coated paper, multiplayer paper/paper board, specialty papers, and the like.
  • CTMP and BCTMP of cornstalk can be used to prepare newsprint by blending with softwood kraft pulp (5 to 20%).
  • Bleached cornstalk CTMP can be blended with cornstalk bleached chemical pulp for preparing writing & printing grade paper.
  • the high yield semi-chemical cornstalk paper can be blended with high yield softwood kraft pulp to produce sack paper, wrapping paper, packaging board, carton board etc. Dissolving pulp and useful by-products derived from hemicellulose can be produced from cornstalk.
  • Printing and writing paper, photocopy paper, and top white linerboard may contain approximately 5 to 20% bleached softwood Kraft pulp, having approximately 5 to 60% filler content.
  • the filler may include any combination of calcium carbonate, clay, talc, kaolin, titanium dioxide, and the like.
  • any combination of sizing agents, dry strength agents, wet strength resins, and retention aids may be applied during the paper making.
  • the sizing agents may include any combination of rosin emulsion, alkenyl succinic anhydride (ASA), alkyl ketene dimmer (AKD), and the like.
  • the dry strength agents may include any combination of starch, gums, soluble cellulose derivatives, and the like.
  • the wet strength resins may include any combination of polyvinyl alcohol, latex, and the like.
  • the retention aid may include any combination of polyacrylamide, polyethylene amine, and the like.
  • cornstalk portions were separated manually from the leaves and other unwanted materials.
  • the cornstalk stems were then broken into small pieces mechanically.
  • the mechanical separation was accomplished with two oppositely rotating devil teeth plates.
  • the system separates the skin, however, a substantial quantity of pith remains with the skin. It is noted that any other suitable mechanical separating tool may be utilized.
  • cornstalk pulp requires less bleaching chemicals than half of those required for softwood and hardwood pulp.
  • the raw cornstalk material from the bottom portion of the plant, comprises mostly skin and includes knots and pith. That includes, the lower portion of the cornstalk plant below about the ears of the plant, for example, about the bottom 2 to 3 ft of cornstalk. This consists of thick skin and relatively low pith.
  • the leaves present in the lower part of cornstalk may be easily removed after chopping. The removal or separation of the leaves may be done by blowing air due to the difference in density of chopped cornstalk and leaves. The fiber quality is not significantly affected due to the presence of a small quantity of pith in the lower part of the cornstalk as shown in example 1.
  • the results demonstrate that cornstalk pulp can obtain a high brightness level while using low amounts of chemicals.
  • the results are due to lower lignin content of the pulp correspond to one third of softwood and hardwood chemical pulps.
  • the cornstalk needs less cooking chemicals, lower cooking temperatures and less cooking time compared to the wood.
  • the cornstalk processing cost will be similar to that wood when using a selected portion of the lower part of cornstalk. Additionally, the cost of storage and transportation will be minimized by low cost of cornstalk, and ultimately the cost of cornstalk at the mill gate will be much lower than that of wood.
  • CSF Canadian Standard freeness
  • the blow tank includes a screen at the bottom to facilitate washing the pulp with hot water after the transfer of the pulp to the blow tank.
  • the pulp was washed with hot water and then transferred to a large screen having 0.008 inches wide slots.
  • the screen reject was less than about 0.07%.
  • the pulp was then dewatered under pressure to about 30% solid content.
  • the dewatered pulp was then shredded and kept in a cold room for future use.
  • the screened pulp yield was around 46.5%, which was similar to lab scale studies. Three samples, each of about 30 g on oven dry basis, were refined at 400, 700, and 1000 revolutions in a PFI mill.
  • Handsheets were prepared and tested according to TAPPI standard methods. Table 6 shows the results from the three samples refined at 400, 700, and 1000 revolutions in PFI mill, respectively. TABLE 6 Physical, mechanical and optical properties of screened unbleached pulp from pilot scale pulping. Tensile Tear index Burst index Scatt. CSF Density Elongation Index (mN ⁇ (kPa ⁇ Brightness Opacity Coeff.
  • the handsheet demonstrates very good mechanical properties with tensile index: 82 N-m/g, tear index 4.5 mN.m 2 /g, and burst index 5.5 kPa.m 2 /g. It is important to note that during lab-scale pulping, cornstalks were washed well with hot water and pith contents were adjusted manually. However, during the pilot scale trial we could not wash and adjust the pith content due to large amount of materials involved. As a result, cornstalk used in pilot scale cooking might contain higher percentage of dirt and pith compared to cornstalk used in lab-scale cooking. This is one of the reasons of getting slightly inferior pulp and low initial brightness compared to lab-scale pulp. These problems can be solved if pulp is produced at the pulp mill and incorporated with a full set of washing, screening and cleaning systems.
  • the furnish for the preparation of cornstalk paper is as follows: Bleached cornstalk chemical pulp: 60%, Bleached northern softwood kraft pulp (commercial grade): 20%, filler (precipitated calcium carbonate): 20%; starch: 0.5% (based on o.d. fiber basis); Hercon size 79 AKD (0.5%): 0.2% (o.d fiber basis) and Nalco 7520 Retention aid (0.1%): 0.05% (o.d. fiber basis).
  • Bleached cornstalk pulp (never dried) is blended with softwood kraft pulp in a hydrapulper. No refining was required, as just agitation of hydrapulper dropped the freeness to about 400 ml. Filler and starch are added to the machine chest. The sizing agent and retention aid are metered into the machine chest.
  • the furnish for the preparation of hardwood paper is as follows: bleached mixed hardwood pulp (commercial grade): 60%, bleached northern softwood kraft pulp (commercial grade): 20%; filler (precipitated calcium carbonate): 20%; starch: 0.5%; Hercon size 79AKD (0.5%): 0.2%, and Nalco 7520 retention aid (0.1%): 0.05%.
  • Hardwood and softwood kraft pulp laps are mixed in a hydrapulper and refined at 3.71% consistency to 470 ml CSF level. Filler and starch are added to machine chest. The Sizing agent and retention aid are metered into the machine chest.
  • Table 8 shows that the density of cornstalk pulp was higher than those of wood pulp. Brightness of cornstalk pulp is nearly 1 point higher than wood pulp, but the printing opacity is more than 2 points lower. Both scattering coefficient and absorption coefficient for wood pulp were slightly higher than cornstalk pulp. Scattering coefficient is inversely related to paper bonding property. Porosity for cornstalk pulp is 171 sec/100 ml compared to 7.1 sec/100 ml for wood pulp. That means wood pulp result in much more porous structure than cornstalk pulp.
  • Table-9 shows that CIE Whiteness of cornstalk pulp was about 4 points higher than wood pulp and CIE Tint was lower than wood pulp. Brightness, opacity, scattering coefficient, absorption coefficient of cornstalk pulp and wood pulp were similar. LL* that represents lightness increasing from zero for black to 100 for perfect white, is similar for both cornstalk pulp and wood pulp; a,a* that represents redness when plus, is higher for cornstalk pulp than wood pulp; b,b* that represents yellowness when plus, is higher for wood pulp than cornstalk pulp.
  • Table-10 shows the comparison of strength properties of wood pulp and cornstalk pulp both in machine-direction (MD) and cross-direction (CD). All of the strength properties of cornstalk pulp are 40% to 300% higher than that of wood pulp. Tensile strength properties of cornstalk pulp in machine direction was about 50% higher, and in cross-direction is 122% higher than those of wood pulp. Stretch value of cornstalk pulp in MD and CD directions were respectively 50% and 100% higher than those of hardwood pulp. TEA (tensile energy absorption) value of cornstalk pulp in MD direction is 130% and in CD direction is 200% higher than those of hardwood pulp. Similarly tear index of cornstalk pulp in MD direction is 55% higher and CD direction is 36% higher than those of hardwood pulp.
  • MD machine-direction
  • CD cross-direction
  • cornstalk pulp in general, are responsible for weak bonding properties of paper. Although cornstalk pulp retained 22% filler compared to 17% filler in wood pulp, cornstalk pulp was much stronger than wood pulp. Pilot paper machine trial has further demonstrated that cornstalk pulp can hold the filler in the fiber matrix more efficiently than does wood pulp.
  • Table 11 shows the Sheffield smoothness, burst index, Taber stiffness and number of double folds of both cornstalk and hardwood pulp. Sheffield smoothness of cornstalk pulp and hardwood pulp were similar in the felt direction, whereas in wire direction cornstalk pulp was more smooth than hardwood pulp. Burst strength of cornstalk pulp was more than 100% stronger than hardwood pulp. Number of double folds for cornstalk pulp in MD and CD directions are respectively 41 and 19 compared to 23* and 8* for wood pulp. Since wood pulp is too weak to fold under 1 kg tension, 0.5 kg tension was applied. 8* is actually equivalent to 1 number of fold and 23* is equivalent to only 8 number of fold, if measured under 1 kg tension.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paper (AREA)
US10/463,346 2003-06-18 2003-06-18 Method for producing corn stalk pulp and paper products from corn stalk pulp Abandoned US20040256065A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US10/463,346 US20040256065A1 (en) 2003-06-18 2003-06-18 Method for producing corn stalk pulp and paper products from corn stalk pulp
CA002485520A CA2485520A1 (en) 2003-06-18 2004-06-03 Method for producing corn stalk pulp and paper products from corn stalk pulp
JP2006517169A JP2006527800A (ja) 2003-06-18 2004-06-03 トウモロコシ茎パルプ製造方法、およびトウモロコシ茎パルプからの製紙方法
CNA2004800003254A CN1697901A (zh) 2003-06-18 2004-06-03 制备玉米杆浆及由玉米杆浆制备纸产品的方法
AU2004233518A AU2004233518A1 (en) 2003-06-18 2004-06-03 Method for producing corn stalk pulp and paper products from corn stalk pulp
EA200500246A EA200500246A1 (ru) 2003-06-18 2004-06-03 Способ получения волокнистой массы из стеблей кукурузы и способ изготовления бумажной продукции из указанной волокнистой массы
EP04754044A EP1604060A4 (en) 2003-06-18 2004-06-03 METHOD FOR PRODUCING CORNEAL PULSE AND PAPER PRODUCTS MANUFACTURED THEREOF
MXPA05001337A MXPA05001337A (es) 2003-06-18 2004-06-03 Metodo para producir pulpa de tallos de maiz y productos de papel hechos de pulpa de tallos de maiz.
KR1020047019573A KR20060008222A (ko) 2003-06-18 2004-06-03 옥수수대 펄프 및 옥수수대 펄프로부터의 종이 제품의제조 방법
PCT/US2004/017341 WO2005001195A1 (en) 2003-06-18 2004-06-03 Method for producing corn stalk pulp and paper products from corn stalk pulp
BR0405647-7A BRPI0405647A (pt) 2003-06-18 2004-06-03 Método para a produção de produtos de papel e polpa de talo de milho a partir de polpa de talo de milho
NO20045187A NO20045187L (no) 2003-06-18 2004-11-26 Fremgangsmate til a fremstille maisstilkmasse og papirprodukter fra maisstilkmasse
ZA200409578A ZA200409578B (en) 2003-06-18 2004-11-26 Method for producing corn stalk pulp and paper products from corn stalk pulp.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/463,346 US20040256065A1 (en) 2003-06-18 2003-06-18 Method for producing corn stalk pulp and paper products from corn stalk pulp

Publications (1)

Publication Number Publication Date
US20040256065A1 true US20040256065A1 (en) 2004-12-23

Family

ID=33517088

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/463,346 Abandoned US20040256065A1 (en) 2003-06-18 2003-06-18 Method for producing corn stalk pulp and paper products from corn stalk pulp

Country Status (13)

Country Link
US (1) US20040256065A1 (ja)
EP (1) EP1604060A4 (ja)
JP (1) JP2006527800A (ja)
KR (1) KR20060008222A (ja)
CN (1) CN1697901A (ja)
AU (1) AU2004233518A1 (ja)
BR (1) BRPI0405647A (ja)
CA (1) CA2485520A1 (ja)
EA (1) EA200500246A1 (ja)
MX (1) MXPA05001337A (ja)
NO (1) NO20045187L (ja)
WO (1) WO2005001195A1 (ja)
ZA (1) ZA200409578B (ja)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060060315A1 (en) * 2003-11-28 2006-03-23 Cheng Xiang W Catalyzer for clean pulping and process for using the same
WO2006132462A1 (en) * 2005-06-09 2006-12-14 Hong, Hook Manufacturing method of mechanical pulp from cornstalk cellulose
US20090104458A1 (en) * 2005-12-13 2009-04-23 Ryu Hai-Il Functional cornstalk board and preparation method thereof
WO2009122018A2 (en) * 2008-04-02 2009-10-08 Hannu Ilvesniemi Method of treating biomass
US20110061825A1 (en) * 2007-12-05 2011-03-17 Shandong Fuyin Paper & Environmental Protection Technology Co., Ltd. Grass type unbleached paper products and production method thereof
US20110297343A1 (en) * 2008-12-09 2011-12-08 Shandong Fuyin Paper & Enviromental Protection Technology Co., Ltd. Raw paper and production method and application thereof
US20120006501A1 (en) * 2010-06-25 2012-01-12 Jeff Golfman Method for Preparing Nonwood Fiber Paper
WO2012007642A1 (en) * 2010-07-13 2012-01-19 Olli Joutsimo Improved method of processing chemical pulp
CN103061173A (zh) * 2012-11-27 2013-04-24 山东泉林纸业有限责任公司 一种玉米秸秆原料
KR101299665B1 (ko) 2012-04-30 2013-09-09 주식회사 씨피엔피홀딩스 옥수수대 펄프의 제조 방법
US20140020856A1 (en) * 2011-03-31 2014-01-23 Aikawa Iron Works Co., Ltd. Processes for preparing pulp and paper
US20140166222A1 (en) * 2011-07-28 2014-06-19 Cargill, Incorporated Compositions for use in the wet-end of papermaking
WO2015016431A1 (ko) * 2013-07-31 2015-02-05 무림피앤피 주식회사 펄프에서 유래한 노트의 섬유화방법, 섬유화된 노트 및 이를 이용한 종이 제품
RU2547689C1 (ru) * 2013-12-10 2015-04-10 Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран) Способ получения целлюлозы
EP2751333A4 (en) * 2011-08-30 2015-04-29 Cargill Inc FUSION PROCESS
WO2015167440A1 (en) * 2014-04-28 2015-11-05 Hewlett-Packard Development Company, L.P. Lightweight digital printing medium
EP2900869A4 (en) * 2012-09-28 2016-06-22 Kimberly Clark Co HYBRID FIBER COMPOSITIONS AND PACKAGING USES IN CORRUGATED CARDBOARD PAPER
US9420745B2 (en) 2013-02-20 2016-08-23 Shandong Tralin Paper Co., Ltd. Corn stalk material, a method and apparatus for preparing it
WO2016173684A1 (en) * 2015-04-29 2016-11-03 Billerudkorsnäs Ab Disintegratable brown sack paper
EP3146110A4 (en) * 2014-05-20 2017-12-20 Georgia-Pacific Consumer Products LP Bleaching and shive reduction process for non-wood fibers
EP3146109A4 (en) * 2014-05-20 2017-12-20 Georgia-Pacific Consumer Products LP Bleaching and shive reduction process for non-wood fibers
US9908680B2 (en) 2012-09-28 2018-03-06 Kimberly-Clark Worldwide, Inc. Tree-free fiber compositions and uses in containerboard packaging
US20180105982A1 (en) * 2015-03-11 2018-04-19 Andritz Inc. Processes and systems for the pulping of lignocellulosic materials
US20190003125A1 (en) * 2015-12-25 2019-01-03 Ecolab Usa Inc. A Sizing Method for Making Paper and Paper Prepared Thereof
US10458067B2 (en) 2017-01-31 2019-10-29 Kimberly-Clark Worldwide, Inc. High bulk tissue comprising cross-linked fibers
US10640899B2 (en) 2014-05-20 2020-05-05 Gpcp Ip Holdings Llc Bleaching and shive reduction process for non-wood fibers
US10920375B2 (en) 2016-09-30 2021-02-16 Kemira Oyj Method for increasing dimensional stability of a paper or a board product
CN112726249A (zh) * 2020-12-29 2021-04-30 陕西科技大学 一种利用玉米秸秆皮制备的溶解浆及方法
WO2021141712A1 (en) * 2020-01-09 2021-07-15 Westrock Mwv, Llc Method for manufacturing bleached pulp from a feedstock comprising recycled paper
EP3981912A1 (en) * 2020-10-12 2022-04-13 AustroCel Hallein GmbH Method of manufacturing a blend of fibers
US11970819B2 (en) 2020-01-30 2024-04-30 Kimberly-Clark Worldwide, Inc. Tissue products comprising crosslinked fibers

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4973284B2 (ja) * 2007-03-30 2012-07-11 栗田工業株式会社 パルプ洗浄剤、パルプ製造方法、及びパルプ洗浄方法
EP2158357B1 (en) * 2007-05-23 2013-11-27 Alberta Innovates - Technology Futures Method to remove hemicellulose from cellulosic fibres using a solution of ammonia and hydrogen peroxide
KR100847730B1 (ko) * 2008-01-03 2008-07-23 남해산업(주) 과피 흑변 또는 갈변 방지용 기능성 과실 봉지
WO2010005247A2 (ko) * 2008-07-09 2010-01-14 Hong Eun-Young 옥수수대 겉대 분말을 포함하는 폴리머 복합체 및 옥수수 식물로부터 옥수수대 겉대 스트립을 얻는 방법 및 장치
US20100224333A1 (en) * 2009-03-09 2010-09-09 Prasad Duggirala Method and chemical composition to improve efficiency of mechanical pulp
CN102561100B (zh) * 2010-12-21 2015-09-02 上峰集团有限公司 污泥瓦楞原纸的配方、生产工艺及用其生产的瓦楞纸板
CN102248562B (zh) * 2011-04-29 2013-07-24 强光初 一种生产纸板和纸管的方法
CN102251428A (zh) * 2011-07-27 2011-11-23 安徽丰原发酵技术工程研究有限公司 秸秆类木质纤维素原料处理产生的黑液的处理方法
AR087707A1 (es) * 2011-08-30 2014-04-09 Cargill Inc Articulos manufacturados a partir de una composicion de pulpa
EP2761082A4 (en) * 2011-09-28 2015-06-24 Prairie Paper Ventures Inc PROCESS FOR THE PREPARATION OF NONWOVEN FIBER PAPER
CN102978981B (zh) * 2012-11-27 2015-03-25 山东泉林纸业有限责任公司 一种造纸用纤维原料
CN102953284B (zh) * 2012-11-27 2015-03-11 山东泉林纸业有限责任公司 一种造纸用玉米秸秆原料
CN102978983B (zh) * 2012-11-27 2015-09-02 山东泉林纸业有限责任公司 一种工业用玉米秸秆原料
CN103031759B (zh) * 2012-11-27 2015-09-02 山东泉林纸业有限责任公司 一种造纸用玉米秸秆原料
CN102978982B (zh) * 2012-11-27 2015-09-02 山东泉林纸业有限责任公司 一种造纸用玉米秸秆原料
CN102995473B (zh) * 2012-11-27 2015-03-25 山东泉林纸业有限责任公司 一种用于造纸的玉米秸秆原料
CN102965992B (zh) * 2012-11-27 2015-03-25 山东泉林纸业有限责任公司 一种纤维原料
CN103757975B (zh) * 2014-01-07 2016-03-30 昆明理工大学 一种高效分离皮浆与秆芯浆的方法
CN104746371B (zh) * 2015-03-05 2016-06-01 新疆国力源环保科技有限公司 蓖麻杆漂白化学机械浆的制备工艺
WO2016159403A1 (ko) * 2015-03-30 2016-10-06 주식회사 아시아모빌 킬레이트 화합물을 이용한 펄프 표백방법
CN104846676B (zh) * 2015-05-25 2016-08-24 南宁糖业股份有限公司 一种利用桉木片制取漂白化机浆的方法
CN105178076B (zh) * 2015-09-18 2017-03-29 新疆国力源投资有限公司 三道绒本色浆的制备方法
KR101929987B1 (ko) * 2016-04-04 2019-03-14 (주)뉴트리피앤피 옥수수대의 펄프 제조방법
JP7108245B2 (ja) * 2019-12-04 2022-07-28 雅子 加藤 ティッシュペーパ
WO2022054297A1 (ja) * 2020-09-11 2022-03-17 修弘 中村 紙類
CN112832054A (zh) * 2020-12-29 2021-05-25 江苏悦达印刷有限公司 一种多功能印刷用纸浆
CN113508719B (zh) * 2021-03-23 2023-11-28 广西壮族自治区林业科学研究院 一种林下立体高效栽培香椿的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1846511A (en) * 1928-12-13 1932-02-23 Cornstalk Products Company Inc Manufacture of cellulose from cornstalks
US1932904A (en) * 1933-01-04 1933-10-31 Ralph H Mckee Process of making paper pulp
US2029973A (en) * 1934-08-22 1936-02-04 Gerald D Muggieton Paper pulp making process
US5944953A (en) * 1996-03-12 1999-08-31 Le Centre Specialise En Pates Et Papiers (Cspp) Du College D'enseignement General Et Professionnel De Trois-Riveres Process for simultaneous mechanical and chemical defibration of corn stalks and straw materials
US6302997B1 (en) * 1999-08-30 2001-10-16 North Carolina State University Process for producing a pulp suitable for papermaking from nonwood fibrous materials
US20030196771A1 (en) * 2002-04-22 2003-10-23 Shaull Judith Kay Corn starch and corn by products as materials to produce paper

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI9911229B1 (pt) * 1998-06-17 2016-04-12 Alex Alt Biomass Inc processo para produção de um produto de papel de arundo donax e produto de papel de arundo donax
US7186316B1 (en) * 2000-06-29 2007-03-06 Cp & P Co., Ltd. Method for preparing pulp from cornstalk

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1846511A (en) * 1928-12-13 1932-02-23 Cornstalk Products Company Inc Manufacture of cellulose from cornstalks
US1932904A (en) * 1933-01-04 1933-10-31 Ralph H Mckee Process of making paper pulp
US2029973A (en) * 1934-08-22 1936-02-04 Gerald D Muggieton Paper pulp making process
US5944953A (en) * 1996-03-12 1999-08-31 Le Centre Specialise En Pates Et Papiers (Cspp) Du College D'enseignement General Et Professionnel De Trois-Riveres Process for simultaneous mechanical and chemical defibration of corn stalks and straw materials
US6302997B1 (en) * 1999-08-30 2001-10-16 North Carolina State University Process for producing a pulp suitable for papermaking from nonwood fibrous materials
US20030196771A1 (en) * 2002-04-22 2003-10-23 Shaull Judith Kay Corn starch and corn by products as materials to produce paper

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264690B2 (en) * 2003-11-28 2007-09-04 Xiang Wu Cheng Catalyzer for clean pulping and process for using the same
US20060060315A1 (en) * 2003-11-28 2006-03-23 Cheng Xiang W Catalyzer for clean pulping and process for using the same
US8012308B2 (en) * 2005-06-09 2011-09-06 Hai-il Ryu Manufacturing method of mechanical pulp from cornstalk cellulose
US20090020246A1 (en) * 2005-06-09 2009-01-22 Hyeok HONG Manufacturing method of mechanical pulp from cornstalk cellulose
WO2006132462A1 (en) * 2005-06-09 2006-12-14 Hong, Hook Manufacturing method of mechanical pulp from cornstalk cellulose
US20090104458A1 (en) * 2005-12-13 2009-04-23 Ryu Hai-Il Functional cornstalk board and preparation method thereof
US7838578B2 (en) * 2005-12-13 2010-11-23 Hail-Il Ryu Functional cornstalk board and preparation method thereof
US20110061825A1 (en) * 2007-12-05 2011-03-17 Shandong Fuyin Paper & Environmental Protection Technology Co., Ltd. Grass type unbleached paper products and production method thereof
US8303772B2 (en) * 2007-12-05 2012-11-06 Shangdong Fuyin Paper & Environmental Protection Technology Co., Ltd. Method for preparing a grass-type unbleached paper product
WO2009122018A2 (en) * 2008-04-02 2009-10-08 Hannu Ilvesniemi Method of treating biomass
WO2009122018A3 (en) * 2008-04-02 2009-12-23 Hannu Ilvesniemi Method of treating biomass
US8771465B2 (en) * 2008-12-09 2014-07-08 Shandong Fuyin Paper & Environmental Protection Technology Co., Ltd Raw Paper
US20110297343A1 (en) * 2008-12-09 2011-12-08 Shandong Fuyin Paper & Enviromental Protection Technology Co., Ltd. Raw paper and production method and application thereof
US20120006501A1 (en) * 2010-06-25 2012-01-12 Jeff Golfman Method for Preparing Nonwood Fiber Paper
US8795469B2 (en) * 2010-06-25 2014-08-05 Prairie Paper Ventures Inc. Method for preparing nonwood fiber paper
US9139955B2 (en) 2010-07-13 2015-09-22 Olli Joutsimo Method of processing chemical pulp
WO2012007642A1 (en) * 2010-07-13 2012-01-19 Olli Joutsimo Improved method of processing chemical pulp
US20140020856A1 (en) * 2011-03-31 2014-01-23 Aikawa Iron Works Co., Ltd. Processes for preparing pulp and paper
US8926793B2 (en) * 2011-03-31 2015-01-06 Nippon Paper Industries Co., Ltd. Processes for preparing pulp and paper
US20140166222A1 (en) * 2011-07-28 2014-06-19 Cargill, Incorporated Compositions for use in the wet-end of papermaking
EP2751333A4 (en) * 2011-08-30 2015-04-29 Cargill Inc FUSION PROCESS
KR101299665B1 (ko) 2012-04-30 2013-09-09 주식회사 씨피엔피홀딩스 옥수수대 펄프의 제조 방법
US9908680B2 (en) 2012-09-28 2018-03-06 Kimberly-Clark Worldwide, Inc. Tree-free fiber compositions and uses in containerboard packaging
EP2900869A4 (en) * 2012-09-28 2016-06-22 Kimberly Clark Co HYBRID FIBER COMPOSITIONS AND PACKAGING USES IN CORRUGATED CARDBOARD PAPER
US9816233B2 (en) 2012-09-28 2017-11-14 Kimberly-Clark Worldwide, Inc. Hybrid fiber compositions and uses in containerboard packaging
CN103061173A (zh) * 2012-11-27 2013-04-24 山东泉林纸业有限责任公司 一种玉米秸秆原料
US9420745B2 (en) 2013-02-20 2016-08-23 Shandong Tralin Paper Co., Ltd. Corn stalk material, a method and apparatus for preparing it
WO2015016431A1 (ko) * 2013-07-31 2015-02-05 무림피앤피 주식회사 펄프에서 유래한 노트의 섬유화방법, 섬유화된 노트 및 이를 이용한 종이 제품
RU2547689C1 (ru) * 2013-12-10 2015-04-10 Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран) Способ получения целлюлозы
WO2015167440A1 (en) * 2014-04-28 2015-11-05 Hewlett-Packard Development Company, L.P. Lightweight digital printing medium
US9920481B2 (en) 2014-04-28 2018-03-20 Hewlett-Packard Development Company, L.P. Lightweight digital printing medium
US10844538B2 (en) 2014-05-20 2020-11-24 Gpcp Ip Holdings Llc Bleaching and shive reduction process for non-wood fibers
US10640899B2 (en) 2014-05-20 2020-05-05 Gpcp Ip Holdings Llc Bleaching and shive reduction process for non-wood fibers
EP3146110A4 (en) * 2014-05-20 2017-12-20 Georgia-Pacific Consumer Products LP Bleaching and shive reduction process for non-wood fibers
EP3146109A4 (en) * 2014-05-20 2017-12-20 Georgia-Pacific Consumer Products LP Bleaching and shive reduction process for non-wood fibers
US10711399B2 (en) 2014-05-20 2020-07-14 Gpcp Ip Holdings Llc Bleaching and shive reduction process for non-wood fibers
CN110241656A (zh) * 2014-05-20 2019-09-17 Gpcp知识产权控股有限责任公司 非-木纤维的漂白和植物性杂质减少方法
US10724174B2 (en) * 2015-03-11 2020-07-28 Andritz Inc. Processes and systems for the pulping of lignocellulosic materials
US20180105982A1 (en) * 2015-03-11 2018-04-19 Andritz Inc. Processes and systems for the pulping of lignocellulosic materials
US11352746B2 (en) 2015-03-11 2022-06-07 Andritz Inc. Processes and systems for the pulping of lignocellulosic materials
WO2016173684A1 (en) * 2015-04-29 2016-11-03 Billerudkorsnäs Ab Disintegratable brown sack paper
US20190003125A1 (en) * 2015-12-25 2019-01-03 Ecolab Usa Inc. A Sizing Method for Making Paper and Paper Prepared Thereof
US10889939B2 (en) * 2015-12-25 2021-01-12 Ecolab Usa Inc. Sizing method for making paper and paper prepared thereof
US10920375B2 (en) 2016-09-30 2021-02-16 Kemira Oyj Method for increasing dimensional stability of a paper or a board product
US10458067B2 (en) 2017-01-31 2019-10-29 Kimberly-Clark Worldwide, Inc. High bulk tissue comprising cross-linked fibers
WO2021141712A1 (en) * 2020-01-09 2021-07-15 Westrock Mwv, Llc Method for manufacturing bleached pulp from a feedstock comprising recycled paper
US11970819B2 (en) 2020-01-30 2024-04-30 Kimberly-Clark Worldwide, Inc. Tissue products comprising crosslinked fibers
EP3981912A1 (en) * 2020-10-12 2022-04-13 AustroCel Hallein GmbH Method of manufacturing a blend of fibers
CN112726249A (zh) * 2020-12-29 2021-04-30 陕西科技大学 一种利用玉米秸秆皮制备的溶解浆及方法

Also Published As

Publication number Publication date
EP1604060A4 (en) 2006-08-02
JP2006527800A (ja) 2006-12-07
WO2005001195A1 (en) 2005-01-06
KR20060008222A (ko) 2006-01-26
BRPI0405647A (pt) 2005-06-28
NO20045187L (no) 2005-03-31
ZA200409578B (en) 2006-03-29
CA2485520A1 (en) 2004-12-18
MXPA05001337A (es) 2005-10-18
EA200500246A1 (ru) 2005-12-29
EP1604060A1 (en) 2005-12-14
AU2004233518A1 (en) 2005-02-03
CN1697901A (zh) 2005-11-16

Similar Documents

Publication Publication Date Title
US20040256065A1 (en) Method for producing corn stalk pulp and paper products from corn stalk pulp
Jiménez et al. Soda-anthraquinone pulping of palm oil empty fruit bunches and beating of the resulting pulp
CA2171681C (en) Improved pulping process
US7186316B1 (en) Method for preparing pulp from cornstalk
Ashori Pulp and paper from kenaf bast fibers
US20020003032A1 (en) Method for pre-processing and processing pulp
US20020014317A1 (en) Method for processing straw pulp
KR100662043B1 (ko) 제지용 대나무 펄프의 제조방법과 그 펄프 및 그 지류제조방법
Tripathi et al. Suitability of banana stem pulp as replacement of softwood pulp for making superior grade unbleached paper from agro residue pulp
Sharma et al. Characterisation of Moringa oleifera (drumstick) wood for pulp and paper making
KR101929987B1 (ko) 옥수수대의 펄프 제조방법
US6017415A (en) Method for co-pulping waste cellulosic material and wood chips
Shaikh Blending of cotton stalk pulp with bagasse pulp for paper making
Pekarovic et al. Two-step straw processing–a new concept of silica problem solution
US20220389657A1 (en) System and method for refining agricultural fibers to a pulp specification
Tripathi et al. Pulping and papermaking of cornstalk
Bublitz Pulping characteristics of Willamette Valley grass straws
Finell The use of reed canary-grass
Ali et al. Pulp and paper from certain fast-growing plant species
US20220389171A1 (en) Lignocellulosic composite formed by a first source from maize plant waste with cellulose fibres from a second source and production method
Kamal El-Dean et al. Kraft Pulping of Date Palm Rachis from Egypt
Ghosh et al. Sterculia villosa Roxb—A potential source of wood-fibre for pulp and paper making
Byrd Jr The response of whole-stalk kenaf and kenaf core to chemimechanical treatments
Merrill Utilization of American flax straw in the paper and fiber-board industry
EP0791683A1 (en) Method for the production of cellulose pulp

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORN PULP AND PAPER, INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AZIZ-AHMED;WON, JONG-MYOUNG;RYU, HAIIL;REEL/FRAME:014729/0064

Effective date: 20030818

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE