US20040237737A1 - Process and device for moving and positioning sheets of glass - Google Patents
Process and device for moving and positioning sheets of glass Download PDFInfo
- Publication number
- US20040237737A1 US20040237737A1 US10/885,575 US88557504A US2004237737A1 US 20040237737 A1 US20040237737 A1 US 20040237737A1 US 88557504 A US88557504 A US 88557504A US 2004237737 A1 US2004237737 A1 US 2004237737A1
- Authority
- US
- United States
- Prior art keywords
- glass sheet
- cutting
- glass
- edge
- carriage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/02—Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
- C03B33/023—Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
- C03B33/03—Glass cutting tables; Apparatus for transporting or handling sheet glass during the cutting or breaking operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G49/00—Conveying systems characterised by their application for specified purposes not otherwise provided for
- B65G49/05—Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
- B65G49/06—Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
- B65G49/063—Transporting devices for sheet glass
- B65G49/064—Transporting devices for sheet glass in a horizontal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G49/00—Conveying systems characterised by their application for specified purposes not otherwise provided for
- B65G49/05—Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
- B65G49/06—Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
- B65G49/063—Transporting devices for sheet glass
- B65G49/064—Transporting devices for sheet glass in a horizontal position
- B65G49/065—Transporting devices for sheet glass in a horizontal position supported partially or completely on fluid cushions, e.g. a gas cushion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G49/00—Conveying systems characterised by their application for specified purposes not otherwise provided for
- B65G49/05—Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
- B65G49/06—Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
- B65G49/067—Sheet handling, means, e.g. manipulators, devices for turning or tilting sheet glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G2249/00—Aspects relating to conveying systems for the manufacture of fragile sheets
- B65G2249/04—Arrangements of vacuum systems or suction cups
- B65G2249/045—Details of suction cups suction cups
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T225/00—Severing by tearing or breaking
- Y10T225/10—Methods
- Y10T225/12—With preliminary weakening
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T225/00—Severing by tearing or breaking
- Y10T225/30—Breaking or tearing apparatus
- Y10T225/307—Combined with preliminary weakener or with nonbreaking cutter
- Y10T225/321—Preliminary weakener
- Y10T225/325—With means to apply moment of force to weakened work
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T225/00—Severing by tearing or breaking
- Y10T225/30—Breaking or tearing apparatus
- Y10T225/371—Movable breaking tool
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/02—Other than completely through work thickness
- Y10T83/0333—Scoring
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/02—Other than completely through work thickness
- Y10T83/0333—Scoring
- Y10T83/0341—Processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/04—Processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/202—With product handling means
- Y10T83/2092—Means to move, guide, or permit free fall or flight of product
- Y10T83/2183—Product mover including gripper means
- Y10T83/2185—Suction gripper
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/202—With product handling means
- Y10T83/2092—Means to move, guide, or permit free fall or flight of product
- Y10T83/2192—Endless conveyor
- Y10T83/2194—And means to remove product therefrom
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/465—Cutting motion of tool has component in direction of moving work
- Y10T83/4757—Tool carrier shuttles rectilinearly parallel to direction of work feed
- Y10T83/476—Including means to secure work to carrier
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/525—Operation controlled by detector means responsive to work
- Y10T83/533—With photo-electric work-sensing means
Definitions
- the invention relates to a process and a device for moving and positioning glass sheets in conjunction with the cutting of sheets of glass (glass cutting).
- the glass sheets under consideration here are for example float glass and laminated glass.
- Glass sheets must be positioned on glass cutting tables not only accurately, but also promptly. This is not possible with the known devices or is possible only with considerable effort.
- glass sheets with a weight of up to 1000 kg laminate glass
- the glass sheets on the glass cutting tables must be moved in different directions, for example to make X and Y cuts.
- the object of the invention is to devise a process and a device of the initially mentioned type which allow accurate, prompt and simple movement of glass sheets (float glass and laminated glass) in their positioning and which do not require complex conveying means for moving and positioning the glass sheets to be cut or glass sheet shapes to be further cut.
- the process as claimed in the invention takes place such that the support surface on which the glass sheet which is to be moved lies is tilted such that it slopes in the direction to a defined reference line (contact edge) and the glass sheet which lies on it slides up to this reference line (contact edge).
- the glass sheet or a glass sheet shape are then positioned by adjoining at least one reference line (contact edge).
- the glass sheets slide on an air cushion which is formed between the support surface and the glass sheet.
- An air cushion as the sliding surface for glass sheets also has the advantage that the friction between the glass sheet and the support surface can be set by setting the pressure with which air flows out of the air cushion openings in the support surface to the value which is desired at the time and if necessary can be changed during the movement of the glass sheet. This offers for example the possibility of reducing the friction at the start of the movement of the glass sheet and of increasing the friction before the end of the movement of the glass sheet, for example when it is approaching the reference line (contact edge) by lowering the pressure of the air which forms the air cushion.
- a glass sheet which rests on at least one contact edge which forms the reference line is moved by force-fitted coupling of the glass sheet to a conveyor means by defined distances in order to feed it in a defined manner to the cutting point at which the glass sheet is cut (scratched).
- the process as claimed in the invention also makes it possible to continue to move and position the cut glass sheets, especially parts of glass sheets which are obtained after cutting the traverses (X cuts) and to feed them accurately positioned to the next cutting point where Y cuts are made.
- the glass sheet shapes are positioned preferably such that a glass sheet shape is moved by inclining the support surface after the first cutting site with one of its corners at a reference point which is defined for example by two contact edges which are at an angle of 90° to one another.
- the support surfaces before and after the cutting devices therefore the feed table of the first cutting device (for X cuts), the second table with which the glass sheet shapes after the first cut (X cut) are moved to the second cutting device (for Y cuts), and finally the delivery table in the direction to at least one contact edge is tilted down or optionally is made additionally to be able to tilt so that they are aligned at an angle to the horizontal.
- each table at least one contact edge is formed as the reference line which is generally aligned normally to the downstream cutting site.
- This reference line (contact edge) is for example a conveyor belt.
- a glass sheet which is to be moved by the conveyor belt along the contact edge or a glass sheet shape is coupled to the respective conveyor belt.
- This coupling takes place for example via at least one coupling suction head which is movably guided on a rail parallel to the conveyor belt and can be loaded in the direction to the conveyor belt after being applied to the glass sheet, so that between the conveyor belt and the glass sheet frictional adherence is formed which makes it possible to move the glass sheet by sliding using the conveyor belt on the support surface.
- FIG. 1 shows a (laminated) glass cutting unit in an overhead view
- FIG. 2 shows a (laminated) glass cutting unit in an oblique view
- FIG. 3 schematically shows a suction head for coupling a glass sheet in a conveyor belt
- FIG. 4 shows a modified embodiment with a second conveyor means in the area in front of the first cutting site
- FIG. 5 schematically shows a suction head on the conveyor device from FIG. 4.
- the illustrated unit for cutting laminated glass is made. This means that at each cutting site there are not only means for scratching the laminated glass from overhead and underneath, but also means for breaking the scratched laminated glass and for cutting the plastic film between the two panes of glass of the laminated glass.
- the unit as claimed in the invention is designed as one for cutting of normal glass, it is generally such that the scratching of the glass sheet along the cutting contour takes place separately from the breaking of the scratched glass sheets which is carried out at the cutting sites A, B into glass shapes as is described for example in U.S. Pat. No. 5,857,603 A.
- the cutting unit for laminated glass on the one hand has a table I on which glass sheets are placed in the direction of the arrow 10 .
- the table I can also be folded up around its inlet-side edge 11 so that on it glass sheets from a glass sheet storage are set up on support hooks 12 on this edge 11 and then by folding back the table 1 into the initial position which is essentially horizontal they can be shifted.
- the table I and the stationary strip 14 are preferably made as an air cushion table. i.e. there are openings 15 distributed over their support surfaces, out of which compressed air flows so that a glass sheet lying on the table I floats on an air cushion.
- the support surface of the Table 1 can be equipped for example with rollers like the tables II and II still to be explained on its support surface.
- the table I is tilted in its base position (initial position) down towards the contact edge 12 or can be tilted around the edge 13 which lies in the area of the joint 16 between the table I and the strip 14 , in order to align the table I such that it is tilted down towards the contact edge 21 .
- the edge 11 of the table I equipped with the hooks 12 is higher or can be raised so that the table I slopes down in the direction to the strip 14 .
- a glass sheet which lies on the table I which is tilted beforehand or which is slanted by tilting slides on the table I, for example on an air cushion, “down” until it rests against the contact edge 21 which is formed by the strand 22 of the conveyor belt 20 .
- This contact edge 21 which is formed by the conveyor belt 20 forms a reference line and defines the location of the glass sheet before it is moved to the cutting site A (cutting device for glass or laminated glass).
- the cutting device A is likewise tilted and with the horizontal includes the same angle as the table I (it rises away from the contact edge 21 ).
- edge 11 of the table I for a table length of 3-5 m can be roughly 2 cm higher than the edge 13 .
- hydraulic motor 32 which is installed in the carriage 30 such that it pulls the glass sheet G against the strand 22 of the conveyor belt 20 which forms the contact edge 21 (reference line), by which the glass sheet G is coupled by force-fit to the conveyor belt 20 .
- the glass sheet G can be moved on the table I, the friction being kept small by the air cushion of the table I.
- the glass sheet is moved gradually to the cutting point A and X cuts (traverses) are made in the glass sheet.
- the extent of feed of the glass sheet G to the cutting point A is detected with a path transducer which is coupled to the conveyor belt 20 , especially to its drive (incremental transducer) and based on the paths of the glass sheet which have been detected in this way it is aligned relative to the cutting site A such that it is cut at the desired site.
- the table I is moved (tilted) into its location which is parallel to the alignment of the cutting site A.
- the resulting glass strips travel onto the table II.
- This table II is aligned in its base position which it assumes when executing the cutting processes at the cutting site A in a plane with the table I, i.e. it is tilted to the horizontal by the same angle as Table I and the cutting device of the cutting site A, its also sloping down towards its contact edge.
- This alignment of the table II can also be induced by lifting in the area of the its edge 40 which is adjacent to the cutting site A.
- the Table II can be inclined after each cutting process which is executed at the cutting site A such that the glass sheet shape on the table II which now is also aligned sloping down away from the cutting site A or its edge 40 slides out of the position located first directly to the right next to the cutting site A into the position shown by the broken line in the drawings. To do this the table II is raised in the area of the edge 40 which is located next to the cutting site A.
- the table II in the area of its edge 41 can also be raised so that a glass sheet shape slides reliably on the table II in contact with the two contact edges 44 , 45 which are the two strands of the conveyor belts 20 .
- the one corner of the glass sheet shape is located at a reference point 43 , in the example the intersection point of the two contact edges 44 , 45 .
- the corner which forms the reference point 43 is the lowest point of the table II since (as a result) the corner of the table II has been raised.
- a limit switch 47 establishes that a glass sheet shape rests on the reference edge 45 . As soon as this is ascertained, the edge 40 which is adjacent to the cutting site A and also the edge 41 of the table II which is normal thereto is lowered so that the table II is again aligned flush with the table I (lying in one plane).
- the conveyor belt 20 on the contact edge 44 of the table II perpendicular to the cutting site A is designed essentially to support the motion of a glass sheet shape to the reference point 43 , especially when a glass sheet shape is to be tilted and should rest with one or two corners on one or two conveyor belts 20 which form the contact edges 44 , 45 .
- the carriage 30 which is provided in the embodiment from FIG. 1 at the contact edge 41 with the suction head 31 is not absolutely necessary and is generally not provided.
- the table III which is located following the cutting site B is flush with the table II and is first tilted rising away from the cutting site B. It is important that the tables II and III lie in a (single) (for example tilted) plane. In order to facilitate the removal of the glass sheet shape obtained after cutting by the cutting site B, the table III can even be lowered after executing the cutting process in the area of its edge 50 . In the table III lifting strips 55 can also be recessed for tilting the glass sheet shape up.
- each of the contact edges 21 and 45 there are carriages 30 with at least one suction head 31 (on the carriages 30 there can also be two suction heads 31 each). It should be pointed out that this is a minimum requirement since there can also be two or more carriages 30 with at least one suction head 31 each on the contact edge 21 and/or the contact edge 45 in order to reliably move large and/or heavy glass sheets (compare FIG. 2). Generally however one carriage 30 per contact edge is sufficient, especially when it engages in the middle area of the glass sheet and pulls it with relatively great force against the strand 22 of the respective conveyor belt 20 which forms the contact edge 21 , 44 , 45 (reference line). If for example there are two carriages 30 (FIG. 2) with at least one suction head 31 each on the contact edges 21 and 45 , they can also alternately engage glass sheets or glass sheet shapes.
- the respective conveyor belt 20 is reversed, i.e. it runs in the opposite direction and the carriage 30 is coupled via a driver to the conveyor belt 20 by pressing the driver against the conveyor belt 20 .
- the movement of the tables preferably takes place by movement of their frames which are located underneath their support surfaces by hydraulic cylinders which are supported on the bottom engaging the frames.
- Table 1 is folded up around its edge 11 to accept a glass sheet from a stack 51 of glass sheets.
- the glass sheet is fixed on the table I via several suction heads 52 .
- the table II is raised in the area of its edge 40 which is adjacent to the cutting site A so that it also slopes down obliquely toward the contact edge 45 .
- the glass sheet shape moves (slides) on the table II into the position in which it adjoins the contact edge 45 and the contact edge 44 .
- the table II is moved back into its initial position which is flush with the table I and which declines towards the contact edge 44 .
- the table II therefor rises toward the cutting site B in this position from the contact edge 44 toward the edge 41 . 12 .
- the glass sheet shape is advanced towards the cutting site B.
- the glass sheet shape is further cut into shapes by the cutting device at the cutting site B.
- the table III can be tilted such that it is aligned sloping down from the cutting site B toward the edge 50 .
- glass sheet shapes can be lifted off the table III and can be aligned essentially vertically.
- FIG. 4 in the area of the support surface of the table I there is another conveyor device 60 .
- This additional conveyor device 60 can be used to move the glass sheet to the first cutting site A in combination with the conveyor device with the conveyor belt 20 and the suction head 30 .
- the second conveyor means 60 can however also be used to move another glass sheet to the cutting site A at the same time or independently of the transport of a glass sheet by the conveyor device 20 with the suction head 30 on contact surface 21 .
- the second conveyor means 60 in the area over the support surface of the table I is built as follows: On the beam 62 which is mounted stationary on the table I there is a continuously turning conveyor belt 20 for example in the form of a toothed belt at a distance over the support surface of the table I with a contact surface 21 which is aligned essentially normally to the support surface I. Above the conveyor belt 20 on the beam 62 which can be mounted on the one hand on the table I and on the other on the beam 64 of the cutting site A there is a guide rail 25 for (at least) one carriage 66 . This carriage 66 bears at least one suction head 31 which can be lowered onto a glass sheet G which lies on the support surface of the table I (arrow 34 ).
- the arrangement of the conveyor belt 20 is such that it has a distance from the support surface of the table I which is so great that the thickest glass sheet G can be moved through under it.
- the conveyor means 60 can be adjustable instead of stationary so that its distance from the contact edge 21 which is formed by the conveyor belt 20 can be changed.
- a system for cutting glass sheets into glass sheet shapes there is at least one cutting site A, B.
- the tables I, II In order to align the glass sheet which is to be cut or the glass sheet shape into a defined position, on the edge of the tables I and II there are contact edges 21 , 44 , 45 .
- the tables I, II In order to move the glass sheets and the glass sheet shapes into contact with the contact edges 21 , 44 , 45 the tables I, II are aligned sloping down toward the contact edges 21 , 44 , 45 so that the glass sheets and glass sheet shapes slide on air cushions produced between the glass sheets or glass sheet shapes and the tables I, II in contact with the contact edges 21 , 44 , 45 .
- the glass sheets or glass sheet shapes which adjoin the contact edges 21 , 45 are coupled by force-fit to the conveyor belts 20 which are provided in the area of the contact edges 21 , 45 and then moved to the cutting site A, B which is located following the table I, II.
- the table II can be inclined between the two cutting sites A, B such that the intersection point which is used as the reference point 43 between the two contact edges 44 , 45 is the lowest point of the table II.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Sheets, Magazines, And Separation Thereof (AREA)
- Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Magnetic Heads (AREA)
Abstract
In a system for cutting glass sheets into shapes there is at least one cutting site (A, B). In order to align the glass sheet which is to be cut or the glass sheet shape into a defined position, on the edge of the support surfaces (I and II) there are contact edges (21, 44, 45). In order to move the glass sheets and the glass sheet shapes along the contact edges (21, 44, 45), the glass sheets or glass sheet shapes which adjoin the contact edges (21, 45) are coupled by force-fit to the conveyor belts (20) which are provided in the area of the contact edges (21, 45) and then moved for example to the cutting sites (A, B).
Description
- This application is a division of co-pending application Ser. No. 10/469,291, filed on Aug. 28, 2003. Application Ser. No. 10/469,291 is the national phase of PCT International Application No. PCT/AT03/00006 filed on Jan. 9, 2003 under 35 U.S.C. § 371, which claims priority of European Patent Application No. 02 450 224.7, filed on Oct. 4, 2002. The entire contents of each of the above-identified applications are hereby incorporated by reference.
- The invention relates to a process and a device for moving and positioning glass sheets in conjunction with the cutting of sheets of glass (glass cutting). The glass sheets under consideration here are for example float glass and laminated glass.
- In known devices for cutting glass sheets (“glass cutting tables”) as are known for example from
EP 0 564 758 A, to move and position the glass sheets conveyor belts and/or conveyor rollers are used which are recessed into the support surfaces of the glass cutting tables and which are raised over the support surface when a glass sheet is to be transported. - These conveyor belts are also known in devices for cutting laminated glass (WO 95/16640 A=
EP 0 708 741 A). - To move glass sheets on glass cutting tables, providing drivers for the glass sheets on the cutting bridge is furthermore known. Vacuums heads mounted on the cutting bridge (
EP 0 192 290 A), or drivers which can be placed on one edge of a glass sheet (U.S. Pat. No. 5,944,244) are known. - Glass sheets must be positioned on glass cutting tables not only accurately, but also promptly. This is not possible with the known devices or is possible only with considerable effort. Here it must be considered that glass sheets with a weight of up to 1000 kg (laminated glass) must be moved and positioned accurately. Furthermore, it can be considered that the glass sheets on the glass cutting tables must be moved in different directions, for example to make X and Y cuts.
- The object of the invention is to devise a process and a device of the initially mentioned type which allow accurate, prompt and simple movement of glass sheets (float glass and laminated glass) in their positioning and which do not require complex conveying means for moving and positioning the glass sheets to be cut or glass sheet shapes to be further cut.
- This object is achieved as claimed in the invention with a process which has the features of claim1.
- With respect to the device, this object is achieved with a device which has the features of the main apparatus claim.
- Preferred and advantageous developments of the process as claimed in the invention on the one hand and the device as claimed in the invention on the other are the subject matter of the dependent claims.
- The process as claimed in the invention takes place such that the support surface on which the glass sheet which is to be moved lies is tilted such that it slopes in the direction to a defined reference line (contact edge) and the glass sheet which lies on it slides up to this reference line (contact edge). The glass sheet or a glass sheet shape are then positioned by adjoining at least one reference line (contact edge).
- By choosing the angle of the tilt of the support surface and/or by choosing the coefficient of friction between the glass sheet and the surface of the support surface, glass sheets of varied size and weight can be taken into account.
- In one preferred embodiment the glass sheets slide on an air cushion which is formed between the support surface and the glass sheet. An air cushion as the sliding surface for glass sheets also has the advantage that the friction between the glass sheet and the support surface can be set by setting the pressure with which air flows out of the air cushion openings in the support surface to the value which is desired at the time and if necessary can be changed during the movement of the glass sheet. This offers for example the possibility of reducing the friction at the start of the movement of the glass sheet and of increasing the friction before the end of the movement of the glass sheet, for example when it is approaching the reference line (contact edge) by lowering the pressure of the air which forms the air cushion.
- In the procedure as claimed in the invention in one embodiment a glass sheet which rests on at least one contact edge which forms the reference line is moved by force-fitted coupling of the glass sheet to a conveyor means by defined distances in order to feed it in a defined manner to the cutting point at which the glass sheet is cut (scratched).
- The process as claimed in the invention also makes it possible to continue to move and position the cut glass sheets, especially parts of glass sheets which are obtained after cutting the traverses (X cuts) and to feed them accurately positioned to the next cutting point where Y cuts are made.
- The glass sheet shapes are positioned preferably such that a glass sheet shape is moved by inclining the support surface after the first cutting site with one of its corners at a reference point which is defined for example by two contact edges which are at an angle of 90° to one another.
- To the extent the device is affected, the support surfaces before and after the cutting devices, therefore the feed table of the first cutting device (for X cuts), the second table with which the glass sheet shapes after the first cut (X cut) are moved to the second cutting device (for Y cuts), and finally the delivery table in the direction to at least one contact edge is tilted down or optionally is made additionally to be able to tilt so that they are aligned at an angle to the horizontal.
- Furthermore in the device as claimed in the invention, on the edge of each table at least one contact edge is formed as the reference line which is generally aligned normally to the downstream cutting site. This reference line (contact edge) is for example a conveyor belt. A glass sheet which is to be moved by the conveyor belt along the contact edge or a glass sheet shape is coupled to the respective conveyor belt. This coupling takes place for example via at least one coupling suction head which is movably guided on a rail parallel to the conveyor belt and can be loaded in the direction to the conveyor belt after being applied to the glass sheet, so that between the conveyor belt and the glass sheet frictional adherence is formed which makes it possible to move the glass sheet by sliding using the conveyor belt on the support surface. There is no separate drive for the carriage which bears the coupling suction head to move it along the contact edge.
- Other details and features as well as advantages of the invention derive from the following description of one preferred embodiment with respect to the drawings in which a cutting unit (for laminated glass) is shown.
- FIG. 1 shows a (laminated) glass cutting unit in an overhead view,
- FIG. 2 shows a (laminated) glass cutting unit in an oblique view,
- FIG. 3 schematically shows a suction head for coupling a glass sheet in a conveyor belt,
- FIG. 4 shows a modified embodiment with a second conveyor means in the area in front of the first cutting site, and
- FIG. 5 schematically shows a suction head on the conveyor device from FIG. 4.
- In the embodiments shown in FIGS.1 to 5 the illustrated unit for cutting laminated glass is made. This means that at each cutting site there are not only means for scratching the laminated glass from overhead and underneath, but also means for breaking the scratched laminated glass and for cutting the plastic film between the two panes of glass of the laminated glass.
- If the unit as claimed in the invention is designed as one for cutting of normal glass, it is generally such that the scratching of the glass sheet along the cutting contour takes place separately from the breaking of the scratched glass sheets which is carried out at the cutting sites A, B into glass shapes as is described for example in U.S. Pat. No. 5,857,603 A.
- The cutting unit for laminated glass on the one hand has a table I on which glass sheets are placed in the direction of the
arrow 10. The table I can also be folded up around its inlet-side edge 11 so that on it glass sheets from a glass sheet storage are set up onsupport hooks 12 on thisedge 11 and then by folding back the table 1 into the initial position which is essentially horizontal they can be shifted. - On the
edge 13 which is opposite theedge 11 which is equipped with thehook 12 the table I adjoins astationary strip 14. - The table I and the
stationary strip 14 are preferably made as an air cushion table. i.e. there areopenings 15 distributed over their support surfaces, out of which compressed air flows so that a glass sheet lying on the table I floats on an air cushion. - The support surface of the Table1 can be equipped for example with rollers like the tables II and II still to be explained on its support surface.
- The table I, more accurately its support surface, is tilted in its base position (initial position) down towards the
contact edge 12 or can be tilted around theedge 13 which lies in the area of thejoint 16 between the table I and thestrip 14, in order to align the table I such that it is tilted down towards thecontact edge 21. For example, theedge 11 of the table I equipped with thehooks 12 is higher or can be raised so that the table I slopes down in the direction to thestrip 14. A glass sheet which lies on the table I which is tilted beforehand or which is slanted by tilting slides on the table I, for example on an air cushion, “down” until it rests against thecontact edge 21 which is formed by thestrand 22 of theconveyor belt 20. Thiscontact edge 21 which is formed by theconveyor belt 20 forms a reference line and defines the location of the glass sheet before it is moved to the cutting site A (cutting device for glass or laminated glass). - If the support surface of the table I is tilted down towards the
contact edge 21 in the initial position, the cutting device A is likewise tilted and with the horizontal includes the same angle as the table I (it rises away from the contact edge 21). - For reliable movement of the glass sheets on the table I (and the other tables II and III) small angles are sufficient, especially in air cushion tables. For example the
edge 11 of the table I for a table length of 3-5 m can be roughly 2 cm higher than theedge 13. - To move the glass sheet G on the table I in the direction to the cutting site A (compare FIG. 3), on a frame-mounted
guide rail 25 which is aligned parallel to theconveyor belt 20 at least onecarriage 30 on which at least onesuction head 31 is located is guided to be able to move freely. Thesuction head 31 can be lowered for resting against the glass sheet G which lies on the support surface of the table I which is formed for example by a feltlayer 18 by ahydraulic motor 33 which is installed in the carriage 30 (arrow 34, FIG. 3) and can then be loaded using another (arrow 35, FIG. 3)hydraulic motor 32 which is installed in thecarriage 30 such that it pulls the glass sheet G against thestrand 22 of theconveyor belt 20 which forms the contact edge 21 (reference line), by which the glass sheet G is coupled by force-fit to theconveyor belt 20. By moving theconveyor belt 20 the glass sheet G can be moved on the table I, the friction being kept small by the air cushion of the table I. - Just before the cutting point A on the table I there is a
device 35 which detects the front edge of a glass sheets which is to be moved in order to define the reference position. Instead of this device there can also be a simple stop which is moved away after fixing the reference position, for example, lowered. - By moving the
conveyor belt 20 with which the glass sheet is coupled via thecarriage 30 to the suction head 31 (there can be a separate drive for thecarriage 30, but it is generally not essential), the glass sheet is moved gradually to the cutting point A and X cuts (traverses) are made in the glass sheet. The extent of feed of the glass sheet G to the cutting point A is detected with a path transducer which is coupled to theconveyor belt 20, especially to its drive (incremental transducer) and based on the paths of the glass sheet which have been detected in this way it is aligned relative to the cutting site A such that it is cut at the desired site. Before displacement of the glass sheet G starts, the table I is moved (tilted) into its location which is parallel to the alignment of the cutting site A. - The resulting glass strips (glass shapes) travel onto the table II. This table II is aligned in its base position which it assumes when executing the cutting processes at the cutting site A in a plane with the table I, i.e. it is tilted to the horizontal by the same angle as Table I and the cutting device of the cutting site A, its also sloping down towards its contact edge. This alignment of the table II can also be induced by lifting in the area of the its
edge 40 which is adjacent to the cutting site A. - To convey a glass sheet shape away from the cutting site A the Table II can be inclined after each cutting process which is executed at the cutting site A such that the glass sheet shape on the table II which now is also aligned sloping down away from the cutting site A or its
edge 40 slides out of the position located first directly to the right next to the cutting site A into the position shown by the broken line in the drawings. To do this the table II is raised in the area of theedge 40 which is located next to the cutting site A. - In addition, the table II in the area of its
edge 41 can also be raised so that a glass sheet shape slides reliably on the table II in contact with the twocontact edges conveyor belts 20. Thus, the one corner of the glass sheet shape is located at areference point 43, in the example the intersection point of the twocontact edges reference point 43 is the lowest point of the table II since (as a result) the corner of the table II has been raised. - A
limit switch 47 establishes that a glass sheet shape rests on thereference edge 45. As soon as this is ascertained, theedge 40 which is adjacent to the cutting site A and also theedge 41 of the table II which is normal thereto is lowered so that the table II is again aligned flush with the table I (lying in one plane). - In this embodiment, on the two
contact edges conveyor belts 20 to which suction heads 31 on carriages 30 (compare FIG. 3) are assigned, as was described above for Table 1. Thesuction head 31 on thecontact edge 45 of the table II which is normal to the cutting site B and which is opposite (away from) and parallel to the cutting site A is essential since via thiscarriage 30 with at least onesuction head 31 and the assigned conveyor belt 20 a glass sheet/glass sheet shape is gradually transported to the cutting site B (second cutting device) in order to execute the cutting processes in the Y direction. There can also be asensor 35 for detecting the forward edge of the glass sheet shape in front of the cutting site B. - The
conveyor belt 20 on thecontact edge 44 of the table II perpendicular to the cutting site A is designed essentially to support the motion of a glass sheet shape to thereference point 43, especially when a glass sheet shape is to be tilted and should rest with one or two corners on one or twoconveyor belts 20 which form the contact edges 44, 45. Thecarriage 30 which is provided in the embodiment from FIG. 1 at thecontact edge 41 with thesuction head 31 is not absolutely necessary and is generally not provided. - The table III which is located following the cutting site B is flush with the table II and is first tilted rising away from the cutting site B. It is important that the tables II and III lie in a (single) (for example tilted) plane. In order to facilitate the removal of the glass sheet shape obtained after cutting by the cutting site B, the table III can even be lowered after executing the cutting process in the area of its
edge 50. In the table III lifting strips 55 can also be recessed for tilting the glass sheet shape up. - In the embodiment shown in FIG. 1 on each of the contact edges21 and 45 there are
carriages 30 with at least one suction head 31 (on thecarriages 30 there can also be two suction heads 31 each). It should be pointed out that this is a minimum requirement since there can also be two ormore carriages 30 with at least onesuction head 31 each on thecontact edge 21 and/or thecontact edge 45 in order to reliably move large and/or heavy glass sheets (compare FIG. 2). Generally however onecarriage 30 per contact edge is sufficient, especially when it engages in the middle area of the glass sheet and pulls it with relatively great force against thestrand 22 of therespective conveyor belt 20 which forms thecontact edge suction head 31 each on the contact edges 21 and 45, they can also alternately engage glass sheets or glass sheet shapes. - In order to move the
carriages 30 back into their initial position, therespective conveyor belt 20 is reversed, i.e. it runs in the opposite direction and thecarriage 30 is coupled via a driver to theconveyor belt 20 by pressing the driver against theconveyor belt 20. - The movement of the tables, especially of the tables II and III, preferably takes place by movement of their frames which are located underneath their support surfaces by hydraulic cylinders which are supported on the bottom engaging the frames.
- The operating sequence of the (laminated) glass cutting system with tables which can be inclined or which are inclined in their initial position can be described by way of example with reference to FIG. 2 as follows:
- 1. Table1 is folded up around its
edge 11 to accept a glass sheet from astack 51 of glass sheets. The glass sheet is fixed on the table I via several suction heads 52. - 2. The table I is folded back into the initial position which slopes down toward the
contact edge 21. The glass sheet then slides on the air cushion toward thecontact edge 21. - 3. In this position the glass sheet is coupled by force-fit to the
conveyor belt 20 by thesuction head 31 on the carriage 30 (or by the suction heads on the two carriages). - 4. By actuating the
conveyor belt 20 the glass sheet is advanced until it is correctly aligned relative to the cutting device A for one cutting process. - 5. Then, when the tables I and II are flush with one another (both are tilted down towards the
contact edge 21 and 44) the glass sheet shape is cut by the cutting device of the cutting site A. The resulting glass sheet shape (“traverse”) lies on the table II. - 6. The table II is raised in the area of its
edge 40 which is adjacent to the cutting site A so that it also slopes down obliquely toward thecontact edge 45. - 7. The glass sheet shape moves (slides) on the table II into the position in which it adjoins the
contact edge 45 and thecontact edge 44. - 8. By raising the table II in the area of its
edge 41 adjacent to the cutting site B the table II is tilted such that its corner between the contact edges 44, 45 is the lowest point. This ensures that the glass sheet shape with its corner is located at thereference point 43 and adjoins the contact edges 44, 45 with two edges which run towards its corners. - 9. When the glass sheet shape moves on the table II the
conveyor belt 20 is actuated in order to support this motion, especially when the glass sheet shape is inclined. - 10. The glass sheet shape on the
conveyor belt 20 in the area of thecontact edge 45 is fixed by force-fit by thesuction head 31 on thecarriage 30 in the area of thecontact edge 45, while it is located with its corner at thereference point 43. - 11. The table II is moved back into its initial position which is flush with the table I and which declines towards the
contact edge 44. The table II therefor rises toward the cutting site B in this position from thecontact edge 44 toward theedge 41. 12. By actuating theconveyor belt 20 the glass sheet shape is advanced towards the cutting site B. - 13. The glass sheet shape is further cut into shapes by the cutting device at the cutting site B.
- 14. During this cutting process the tables II and III are aligned rising in a plane from the
contact edge 44 of the table II toward theedge 50 of the table III. - 15. To remove the shapes which are formed following the cutting site B the table III can be tilted such that it is aligned sloping down from the cutting site B toward the
edge 50. Using the lifting strips 55 glass sheet shapes can be lifted off the table III and can be aligned essentially vertically. - In the embodiment shown in FIG. 4 in the area of the support surface of the table I there is another
conveyor device 60. Thisadditional conveyor device 60 can be used to move the glass sheet to the first cutting site A in combination with the conveyor device with theconveyor belt 20 and thesuction head 30. The second conveyor means 60 can however also be used to move another glass sheet to the cutting site A at the same time or independently of the transport of a glass sheet by theconveyor device 20 with thesuction head 30 oncontact surface 21. - In particular the second conveyor means60 in the area over the support surface of the table I is built as follows: On the
beam 62 which is mounted stationary on the table I there is a continuously turningconveyor belt 20 for example in the form of a toothed belt at a distance over the support surface of the table I with acontact surface 21 which is aligned essentially normally to the support surface I. Above theconveyor belt 20 on thebeam 62 which can be mounted on the one hand on the table I and on the other on thebeam 64 of the cutting site A there is aguide rail 25 for (at least) onecarriage 66. Thiscarriage 66 bears at least onesuction head 31 which can be lowered onto a glass sheet G which lies on the support surface of the table I (arrow 34). Here the arrangement of theconveyor belt 20 is such that it has a distance from the support surface of the table I which is so great that the thickest glass sheet G can be moved through under it. - In order to couple the
carriage 66 to thesuction head 31 with theconveyor belt 20, on thecarriage 66 there is ahydraulic motor 68 which presses aplunger 70 against thestrand 72 of theconveyor belt 20 which is adjacent to thecarriage 66 so that the carriage moves with the conveyor belt and thus also a glass sheet G on which thesuction head 31 of thecarriage 66 has been placed is entrained. - In order to align a glass sheet G parallel to the direction of motion of the
conveyor belt 20, there can be lowerable stops 80, for example contact pins, which define a “zero line” (reference line) and against which the glass sheet G is brought into contact. - It goes without saying that instead of one
carriage 66 with at least onesuction head 31 there can also be two ormore carriages 66 each with at least onesuction head 31 in order to enable safe transport of glass sheets G by the additional conveyor means 60 in the area of the support surface of the table I. - In one modified embodiment the conveyor means60 can be adjustable instead of stationary so that its distance from the
contact edge 21 which is formed by theconveyor belt 20 can be changed. - In summary, one embodiment of the invention can be described as follows:
- In a system for cutting glass sheets into glass sheet shapes there is at least one cutting site A, B. In order to align the glass sheet which is to be cut or the glass sheet shape into a defined position, on the edge of the tables I and II there are
contact edges conveyor belts 20 which are provided in the area of the contact edges 21, 45 and then moved to the cutting site A, B which is located following the table I, II. When there are two cutting sites A, B the table II can be inclined between the two cutting sites A, B such that the intersection point which is used as thereference point 43 between the twocontact edges
Claims (30)
1. Process for moving glass sheets (G) and glass sheet shapes when cutting glass sheets (G) on a device for cutting of glass sheets (G) with at least one cutting site (A, B) and with support surfaces (I, II, III) which are located on either side of the cutting site (A, B) for the glass sheet (G) which is to be cut and for the glass sheet shape which has been obtained after the sheet is cut, characterized in that a glass sheet which is lying on the support surface (I, II) or a glass sheet shape is detected in the area of one edge adjoining the contact edge (21, 45) and is moved relative to the cutting site (A, B).
2. Process as claimed in claim 1 , wherein the glass sheet (G) is moved on a horizontal or essentially vertical support surface (I, II).
3. Process as claimed in claim 1 , wherein the glass sheet (G) is moved gradually to the cutting site (A, B) and a cutting process is carried outer after each advance step.
4. Process as claimed in claim 1 , wherein the glass sheet (G) is coupled by force-fit to the conveyor means (20) with its edge which adjoins the contact edge (21, 45).
5. Process as claimed in claim 4 , wherein the glass sheet (G) is moved by the conveyor means (20) in the direction which is normal to the direction of action of the cutting site (A, B).
6. Process as claimed in claim 1 , wherein the reference position of a glass sheet or a glass sheet shape thereof is defined at two contact edges (44, 45) which are perpendicular to one another.
7. Process as claimed in claim 6 , wherein the corner of the glass sheet shape which is located on the edge of the glass sheet shape away from the first cutting site (A) is located at the intersection point (43) of the contact edges (44, 45).
8. Process as claimed in claim 1 , wherein an air cushion is formed between the support surfaces (I, II, III) and a glass sheet (G) and a glass sheet shape
9. Device for carrying out the process as claimed in claim 1 with at least one cutting device (A, B), with at least one support surface (I, II, III) which is made as a table, and with at least one means for conveying glass sheets (G) or a glass sheet shape on the table (I, II, III), wherein there is a conveyor means (20) for glass sheets (G) or glass sheet shapes in the area of one contact edge (21, 44, 45) for the glass sheets or glass sheet shapes.
10. Device as claimed in claim 9 , wherein the conveyor means comprises a continuous conveyor belt (20).
11. Device as claimed in claim 10 , wherein one strand (22) of the conveyor belt (20) forms the contact edge (21, 44, 45).
12. Device as claimed in claim 9 , wherein the contact edge (21, 45) which is equipped with the conveyor means (20) is aligned normally to the cutting device (A, B) which is adjacent to the table (I, II).
13. Device as claimed in claim 9 , wherein there is a device (30, 31) for force-fitted coupling of the glass sheet (G) or the glass sheet shape to the conveyor means (20).
14. Device as claimed in claim 13 , wherein the device for force-fitted coupling has at least one driver (31) which engages the surface of the glass sheet (G) or glass sheet shape pointing up, and with which the glass sheet (G) or the glass sheet shape can be loaded against the strand (22) of the conveyor belt (20) which forms the contact edge (21, 45).
15. Device as claimed in claim 14 , wherein the driver is at least one suction head (31).
16. Device as claimed in claim 14 , wherein the driver (31) is guided via a carriage (30) on a guide rail (25) which is aligned parallel to the conveyor belt (20).
17. Device as claimed in claim 16 , wherein at least one suction head (31) is mounted to be raised and lowered in the carriage (30) and to be able to move horizontally by hydraulic motors (32, 33).
18. Device as claimed in claim 9 , wherein the table (II) located between the two cutting devices (A, B) is made with two contact edges (44, 45), these contact edges (44, 45) each being opposite one of the cutting devices (A, B).
19. Device as claimed in claim 9 , wherein the support surface of the tables (I, II, III) is equipped with rollers.
20. Device as claimed in claim 9 , wherein holes (15) which can be supplied with compressed air discharge in the support surface of the tables (I, II, III).
21. Device as claimed in claim 20 , wherein the support surface of the tables (I, II, III) is formed by a felt support (19).
22. Device as claimed in claim 16 , wherein the carriage (30) for moving back into its initial position can be coupled via a driver to the conveyor belt (20) which runs in the opposite direction.
23. Device as claimed in claim 9 , wherein in the area of the first table (1) there is a conveyor device (60) which is aligned parallel to the conveyor device (20, 30) on the edge of the table (1) and normal to the first cutting site (A).
24. Device as claimed in claim 23 , wherein the conveyor means (60) has a continuous belt (20) which is located at a distance from the support surface of the table (1) and there is at least one carriage (66) with a means (31) for coupling the carriage (66) to one of the glass sheets (G) lying on the table (1).
25. Device as claimed in claim 24 , wherein the means for coupling the carriage (66) to the glass sheet (G) is at least one suction head (31).
26. Device as claimed in claim 24 , wherein the carriage (66) can be coupled to the transport belt (20).
27. Device as claimed in claim 26 , wherein to couple the carriage (66) to the transport belt (20) on the carriage (66) there is a plunger which can be placed against the transport belt (20).
28. Device as claimed in one of claims 23, wherein on the conveyor means (60) there is at least one stop (80) for aligning one edge of a glass sheet (G) which is to be transported, the glass sheet (G) being aligned by being placed against this stop (80).
29. Device as claimed in claim 28 , wherein the stop device has at least two lowerable pins (80).
30. Device as claimed in claim 23 , wherein the conveyor device (60) comprises a beam (62) which is mounted on the one hand on the machine frame and on the other on the beam (64) of the first cutting device (A).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/885,575 US20040237737A1 (en) | 2002-10-04 | 2004-07-08 | Process and device for moving and positioning sheets of glass |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20020450224 EP1405832A1 (en) | 2002-10-04 | 2002-10-04 | Process and apparatus for moving and positioning glass sheets |
EP02450224.7 | 2002-10-04 | ||
US10/469,291 US7207250B2 (en) | 2002-10-04 | 2003-01-09 | Process and device for moving and positioning sheets of glass |
US10/885,575 US20040237737A1 (en) | 2002-10-04 | 2004-07-08 | Process and device for moving and positioning sheets of glass |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AT2003/000006 Division WO2004035493A1 (en) | 2002-10-04 | 2003-01-09 | Method and device for moving and positioning glass plates |
US10/469,291 Division US7207250B2 (en) | 2002-10-04 | 2003-01-09 | Process and device for moving and positioning sheets of glass |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040237737A1 true US20040237737A1 (en) | 2004-12-02 |
Family
ID=31985190
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/469,291 Expired - Lifetime US7207250B2 (en) | 2002-10-04 | 2003-01-09 | Process and device for moving and positioning sheets of glass |
US10/885,575 Abandoned US20040237737A1 (en) | 2002-10-04 | 2004-07-08 | Process and device for moving and positioning sheets of glass |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/469,291 Expired - Lifetime US7207250B2 (en) | 2002-10-04 | 2003-01-09 | Process and device for moving and positioning sheets of glass |
Country Status (9)
Country | Link |
---|---|
US (2) | US7207250B2 (en) |
EP (3) | EP1405832A1 (en) |
CN (2) | CN1247475C (en) |
AT (1) | ATE294767T1 (en) |
AU (1) | AU2003205402A1 (en) |
DE (1) | DE50300515D1 (en) |
ES (1) | ES2240935T3 (en) |
RU (2) | RU2266263C2 (en) |
WO (1) | WO2004035493A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1770031A1 (en) | 2005-09-30 | 2007-04-04 | Z. BAVELLONI S.p.A. | Assembly for conveying sheets on machines for working sheets, particularly glass sheets and the like |
US9595398B2 (en) | 2013-08-30 | 2017-03-14 | Corning Incorporated | Low resistance ultracapacitor electrode and manufacturing method thereof |
CN107546167A (en) * | 2017-07-25 | 2018-01-05 | 武汉华星光电半导体显示技术有限公司 | A kind of alignment device |
US9951553B2 (en) | 2014-06-05 | 2018-04-24 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
US10253552B2 (en) | 2016-04-21 | 2019-04-09 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
US20200407180A1 (en) * | 2018-03-06 | 2020-12-31 | Vmi Holland B.V. | Apparatus and method for correcting misalignment of a strip |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070152654A1 (en) * | 2001-05-14 | 2007-07-05 | Herbert Tsai | Integrated circuit (IC) transporting device for IC probe apparatus |
DE502005010044D1 (en) * | 2004-06-03 | 2010-09-16 | Oerlikon Solar Ip Ag | N FOR MACHINING A WORKPIECE ON SUCH A WORKPIECE |
EP1647533A1 (en) * | 2004-10-15 | 2006-04-19 | Bystronic Maschinen AG | Apparatus for processing glass sheets |
US7716949B2 (en) * | 2007-04-04 | 2010-05-18 | Glasstech, Inc. | Method for positioning glass sheets for forming |
DE102007052027B3 (en) * | 2007-10-31 | 2009-04-16 | Grenzebach Maschinenbau Gmbh | Method and device for the contamination-free treatment of shock-sensitive glass plates in clean rooms |
DE102007052183A1 (en) * | 2007-10-31 | 2009-06-25 | Grenzebach Maschinenbau Gmbh | Apparatus and method for aligning shock-sensitive glass plates in clean rooms |
US8047354B2 (en) * | 2008-09-26 | 2011-11-01 | Corning Incorporated | Liquid-ejecting bearings for transport of glass sheets |
US8656738B2 (en) * | 2008-10-31 | 2014-02-25 | Corning Incorporated | Glass sheet separating device |
ITVI20090259A1 (en) * | 2009-10-28 | 2011-04-28 | G F P M Srl | MACHINE FOR CUTTING MATERIALS INTO SLAB |
JP5615218B2 (en) * | 2010-03-26 | 2014-10-29 | テソン エンジニアリング カンパニー リミテッド | Air supply device |
US9993014B2 (en) * | 2011-11-11 | 2018-06-12 | Loesch Verpackungstechnik Gmbh | Method and device for separating sheet-shaped objects into strip-shaped or slab-shaped object sub-units |
TWI498990B (en) * | 2012-12-19 | 2015-09-01 | Genesis Photonics Inc | Splitting apparatus |
CN103466929B (en) * | 2013-08-28 | 2017-02-15 | 深圳市华星光电技术有限公司 | Liquid crystal panel cutter and fixing device |
US20150101527A1 (en) * | 2013-10-16 | 2015-04-16 | Litemax Electronics Inc. | Duplex partially cutting apparatus |
CN105314831B (en) * | 2014-07-30 | 2017-11-28 | 东莞奔迅汽车玻璃有限公司 | Glass positioning table and glass localization method |
JP6117755B2 (en) * | 2014-09-22 | 2017-04-19 | ファナック株式会社 | Device, robot, and robot system for releasing catch of substrate cut in advance |
CN104900757A (en) * | 2015-05-11 | 2015-09-09 | 武汉帝尔激光科技有限公司 | Device and method for automatically cleaving battery pieces |
CN105036535B (en) * | 2015-07-25 | 2017-08-01 | 安徽卡塔门窗有限公司 | A kind of glass-cutting support platform |
JP2017088467A (en) * | 2015-11-16 | 2017-05-25 | 旭硝子株式会社 | Device and method for forming hole in glass substrate |
BR212018003148Y1 (en) * | 2016-06-20 | 2019-09-03 | Peri Lamezon Marcelo | configuration applied to flat glass waterjet machine |
US20180118602A1 (en) * | 2016-11-01 | 2018-05-03 | Corning Incorporated | Glass sheet transfer apparatuses for laser-based machining of sheet-like glass substrates |
CN107030402B (en) * | 2017-04-13 | 2019-02-22 | 浙江嘉福玻璃有限公司 | A kind of glass automatic punch |
CN108861585A (en) * | 2017-05-11 | 2018-11-23 | 彼得·李赛克 | glass bracket |
CN108383368A (en) * | 2018-05-08 | 2018-08-10 | 蚌埠市昆宇机械加工厂 | A kind of glass manufacture cutting device for processing |
DE102018111810A1 (en) * | 2018-05-16 | 2019-11-21 | Homag Plattenaufteiltechnik Gmbh | Handling device for handling a plate-shaped workpiece, plate processing system, method for operating a handling device, and control and / or regulating device |
CN110627352A (en) * | 2019-08-27 | 2019-12-31 | 宿州市天艺钢化玻璃有限公司 | Glass production is with location cutting device |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3253756A (en) * | 1963-04-29 | 1966-05-31 | Pittsburgh Plate Glass Co | Apparatus and method for cutting glass sheets |
US3374078A (en) * | 1964-12-24 | 1968-03-19 | Pittsburgh Plate Glass Co | Apparatus for supporting and heating glass sheets on a gas bed |
US3424357A (en) * | 1966-07-28 | 1969-01-28 | Ppg Industries Inc | Automatically sizing and severing glass sheets |
US4054201A (en) * | 1975-09-09 | 1977-10-18 | Rexnord, Inc. | Luggage sortation device |
US4085839A (en) * | 1976-08-30 | 1978-04-25 | Genevieve I. Hanscom, Robert M. Magnuson & Lois J. Thomson, Trustees Of The Estate Of Roy M. Magnuson | Apparatus for conveying and turning articles |
US4471895A (en) * | 1982-04-28 | 1984-09-18 | Lisec Peter Jun | Process and apparatus for cutting laminated glass |
US4889224A (en) * | 1989-03-27 | 1989-12-26 | Doboy Packaging Machinery, Inc. | Product alignment device |
US5415281A (en) * | 1993-03-25 | 1995-05-16 | Rapistan Demag Corporation | High speed article unscrambler and aligner |
US5475196A (en) * | 1992-11-02 | 1995-12-12 | Lisec; Peter | Process and apparatus to cut laminated glass |
US5873922A (en) * | 1995-01-24 | 1999-02-23 | Lisec; Peter | Process for dividing glass panels into blanks |
US5944244A (en) * | 1994-07-04 | 1999-08-31 | Lisec; Peter | Apparatus for dividing laminated glass |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3033382A (en) * | 1958-02-10 | 1962-05-08 | Jack D Noble | Plate-lifting device |
US3165017A (en) * | 1962-07-16 | 1965-01-12 | Saint Gobain | Method and apparatus for automatically cutting a strip of glass |
US3279664A (en) * | 1964-08-11 | 1966-10-18 | Rolland Glass Company | Apparatus for cutting glass |
US3446256A (en) * | 1967-05-01 | 1969-05-27 | Fmc Corp | Positioning mechanism |
FR1572186A (en) * | 1967-12-12 | 1969-06-27 | ||
US3665148A (en) * | 1971-04-07 | 1972-05-23 | Gen Motors Corp | Six-axis manipulator |
JPS5317936Y2 (en) * | 1972-02-01 | 1978-05-13 | ||
US4181054A (en) * | 1978-04-11 | 1980-01-01 | Ludwig Striebig | Apparatus for cutting panels to size |
BR8003369A (en) * | 1979-10-25 | 1981-04-28 | Scm Finanz | MACHINES FOR MACHINING PANELS, BOARDS, PROFILES OR SIMILAR, IN PARTICULAR FOR WOOD AND ITS DERIVATIVES |
NL8503477A (en) | 1985-02-04 | 1986-09-01 | Philips Nv | ELECTRIC LAMP WITH AN ELECTROSTATICALLY COVERED LAMP VESSEL. |
DE3505193A1 (en) * | 1985-02-15 | 1986-08-28 | Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen mbH, 3000 Hannover | REMOTE-CONTROLLED CARRIER DEVICE FOR RECEIVING AND POSITIONING REMOTE HANDLING DEVICES |
AT386595B (en) * | 1985-02-25 | 1988-09-12 | Lisec Peter Glastech Ind | GLASS CUTTING TABLE |
FR2633597B1 (en) * | 1988-07-01 | 1991-04-12 | Sgn Soc Gen Tech Nouvelle | DEVICE FOR VERTICAL STACKING OF PLATES, ESPECIALLY GLASS PLATES |
US5036736A (en) * | 1990-02-12 | 1991-08-06 | Hillock Ronald A | Method and apparatus for mar free handling of sheet steel |
JPH04342431A (en) * | 1991-05-16 | 1992-11-27 | Central Glass Co Ltd | Cutting system for thick plate glass |
AT403687B (en) * | 1992-04-06 | 1998-04-27 | Lisec Peter | METHOD AND DEVICE FOR DIVIDING GLASS PANELS INTO CUTS |
KR970006993B1 (en) * | 1992-04-16 | 1997-05-01 | 반토오 기코 가부시끼가이샤 | Glass plate cutting device |
DE59402391D1 (en) | 1993-12-13 | 1997-05-15 | Peter Lisec | DEVICE FOR DIVIDING COMPOSITE GLASS |
JP2000296435A (en) * | 1999-04-12 | 2000-10-24 | Central Glass Co Ltd | Positioning method and device for deformed glass |
IT1319624B1 (en) * | 2000-01-14 | 2003-10-20 | Bottero Spa | UNIT FOR THE ENGRAVING OF A LAYERED GLASS SHEET. |
DE10041519C1 (en) * | 2000-08-24 | 2001-11-22 | Schott Spezialglas Gmbh | Cutting flat glass plate into several rectangular plates comprises cutting the flat glass plate along cutting lines into several partial plates |
ITTO20010594A1 (en) * | 2001-06-19 | 2002-12-19 | Bimatech S R L | METHOD FOR THE SETTING OF AN OPERATING MACHINE FOR THE PROCESSING OF A GLASS SHEET, AND OPERATING MACHINE CONFIGURABLE ACCORDING TO TA |
US6796588B2 (en) * | 2002-08-27 | 2004-09-28 | Tsung-Chang Hsieh | Suction device with telescopic evacuating pipes |
-
1997
- 1997-03-05 RU RU2003128826A patent/RU2266263C2/en not_active IP Right Cessation
-
2002
- 2002-10-04 EP EP20020450224 patent/EP1405832A1/en not_active Withdrawn
-
2003
- 2003-01-09 AT AT03702174T patent/ATE294767T1/en active
- 2003-01-09 WO PCT/AT2003/000006 patent/WO2004035493A1/en not_active Application Discontinuation
- 2003-01-09 EP EP20030024693 patent/EP1440922A3/en not_active Ceased
- 2003-01-09 EP EP20030702174 patent/EP1434744B1/en not_active Expired - Lifetime
- 2003-01-09 AU AU2003205402A patent/AU2003205402A1/en not_active Abandoned
- 2003-01-09 RU RU2003126598A patent/RU2266262C2/en not_active IP Right Cessation
- 2003-01-09 ES ES03702174T patent/ES2240935T3/en not_active Expired - Lifetime
- 2003-01-09 US US10/469,291 patent/US7207250B2/en not_active Expired - Lifetime
- 2003-01-09 CN CNB03800030XA patent/CN1247475C/en not_active Expired - Fee Related
- 2003-01-09 CN CNB2004100598416A patent/CN100418909C/en not_active Expired - Fee Related
- 2003-01-09 DE DE50300515T patent/DE50300515D1/en not_active Expired - Lifetime
-
2004
- 2004-07-08 US US10/885,575 patent/US20040237737A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3253756A (en) * | 1963-04-29 | 1966-05-31 | Pittsburgh Plate Glass Co | Apparatus and method for cutting glass sheets |
US3374078A (en) * | 1964-12-24 | 1968-03-19 | Pittsburgh Plate Glass Co | Apparatus for supporting and heating glass sheets on a gas bed |
US3424357A (en) * | 1966-07-28 | 1969-01-28 | Ppg Industries Inc | Automatically sizing and severing glass sheets |
US4054201A (en) * | 1975-09-09 | 1977-10-18 | Rexnord, Inc. | Luggage sortation device |
US4085839A (en) * | 1976-08-30 | 1978-04-25 | Genevieve I. Hanscom, Robert M. Magnuson & Lois J. Thomson, Trustees Of The Estate Of Roy M. Magnuson | Apparatus for conveying and turning articles |
US4471895A (en) * | 1982-04-28 | 1984-09-18 | Lisec Peter Jun | Process and apparatus for cutting laminated glass |
US4889224A (en) * | 1989-03-27 | 1989-12-26 | Doboy Packaging Machinery, Inc. | Product alignment device |
US5475196A (en) * | 1992-11-02 | 1995-12-12 | Lisec; Peter | Process and apparatus to cut laminated glass |
US5415281A (en) * | 1993-03-25 | 1995-05-16 | Rapistan Demag Corporation | High speed article unscrambler and aligner |
US5944244A (en) * | 1994-07-04 | 1999-08-31 | Lisec; Peter | Apparatus for dividing laminated glass |
US5873922A (en) * | 1995-01-24 | 1999-02-23 | Lisec; Peter | Process for dividing glass panels into blanks |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1770031A1 (en) | 2005-09-30 | 2007-04-04 | Z. BAVELLONI S.p.A. | Assembly for conveying sheets on machines for working sheets, particularly glass sheets and the like |
US9595398B2 (en) | 2013-08-30 | 2017-03-14 | Corning Incorporated | Low resistance ultracapacitor electrode and manufacturing method thereof |
US9941059B2 (en) | 2013-08-30 | 2018-04-10 | Corning Incorporated | Low resistance ultracapacitor electrode and manufacturing method thereof |
US9951553B2 (en) | 2014-06-05 | 2018-04-24 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
US10988974B2 (en) | 2014-06-05 | 2021-04-27 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
US10253552B2 (en) | 2016-04-21 | 2019-04-09 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
US10704319B2 (en) | 2016-04-21 | 2020-07-07 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
US11174671B2 (en) | 2016-04-21 | 2021-11-16 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
US11828104B2 (en) | 2016-04-21 | 2023-11-28 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
CN107546167A (en) * | 2017-07-25 | 2018-01-05 | 武汉华星光电半导体显示技术有限公司 | A kind of alignment device |
US20200407180A1 (en) * | 2018-03-06 | 2020-12-31 | Vmi Holland B.V. | Apparatus and method for correcting misalignment of a strip |
Also Published As
Publication number | Publication date |
---|---|
RU2266263C2 (en) | 2005-12-20 |
RU2266262C2 (en) | 2005-12-20 |
CN1566004A (en) | 2005-01-19 |
EP1440922A3 (en) | 2004-08-25 |
CN100418909C (en) | 2008-09-17 |
DE50300515D1 (en) | 2005-06-09 |
WO2004035493A1 (en) | 2004-04-29 |
US7207250B2 (en) | 2007-04-24 |
US20040232188A1 (en) | 2004-11-25 |
RU2003128826A (en) | 2005-03-20 |
CN1524065A (en) | 2004-08-25 |
EP1434744A1 (en) | 2004-07-07 |
AU2003205402A1 (en) | 2004-05-04 |
CN1247475C (en) | 2006-03-29 |
ATE294767T1 (en) | 2005-05-15 |
EP1405832A1 (en) | 2004-04-07 |
EP1434744B1 (en) | 2005-05-04 |
RU2003126598A (en) | 2005-02-27 |
ES2240935T3 (en) | 2005-10-16 |
EP1440922A2 (en) | 2004-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7207250B2 (en) | Process and device for moving and positioning sheets of glass | |
US7651089B2 (en) | Method and device for forming stacks of flat elements | |
US6142050A (en) | Cutting machine for elongate workpieces | |
US5857603A (en) | Process and apparatus for dividing glass sheets into cuts | |
US20040188485A1 (en) | Process and device for dividing sheets of glass | |
TWI529146B (en) | Plate glass cutting apparatus | |
JP3969992B2 (en) | LCD panel cutting system | |
KR102227955B1 (en) | Plywood processing apparatus for automatic cutting of plywood sheet | |
JP4762116B2 (en) | Sheet feeding device | |
CN215477973U (en) | Automatic metal plate aligning equipment and metal plate processing and feeding device | |
EP0508276B1 (en) | Bilaterally acting pressure beam for a cutting machine | |
JPH07144778A (en) | Sheet accumulated bundle transfer method and device | |
JP2001247224A (en) | Cover feeding device | |
CN115892885A (en) | Manual microscopic examination operating equipment for automatic incoming materials | |
CN211541323U (en) | Coil stock cutting device and system thereof | |
CN212289099U (en) | Panel wainscot production system | |
CN212400453U (en) | Paper feeding system for carton processing | |
JP4703914B2 (en) | Sheet alignment device | |
JP2539341B2 (en) | High stacking paper alignment device | |
JP3052003B2 (en) | Thin work transfer equipment | |
CN216100486U (en) | Accurate combined system of software material | |
JPH1120939A (en) | Carrying apparatus of block material laminate body | |
CN220500067U (en) | Carton raw materials feeding system | |
JP2703435B2 (en) | Automatic dough cutting method and apparatus | |
JP2805470B2 (en) | Method and apparatus for cutting decorative sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |