US20040195883A1 - Seating unit for supporting a body or part of a body - Google Patents

Seating unit for supporting a body or part of a body Download PDF

Info

Publication number
US20040195883A1
US20040195883A1 US10/479,391 US47939104A US2004195883A1 US 20040195883 A1 US20040195883 A1 US 20040195883A1 US 47939104 A US47939104 A US 47939104A US 2004195883 A1 US2004195883 A1 US 2004195883A1
Authority
US
United States
Prior art keywords
spring
supporting part
seating unit
supporting
unit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/479,391
Inventor
Niels Vrijlandt
Justus Herder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEROME BV
Original Assignee
GIO HOLDING BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GIO HOLDING BV filed Critical GIO HOLDING BV
Assigned to GIO HOLDING B.V. reassignment GIO HOLDING B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HERDER, JUSTUS LAURENS, VRIJLANDT, NIELS
Publication of US20040195883A1 publication Critical patent/US20040195883A1/en
Assigned to GEROME B.V. reassignment GEROME B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GIO HOLDING B.V.
Priority to US11/877,034 priority Critical patent/US20080106133A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C31/00Details or accessories for chairs, beds, or the like, not provided for in other groups of this subclass, e.g. upholstery fasteners, mattress protectors, stretching devices for mattress nets
    • A47C31/12Means, e.g. measuring means for adapting chairs, beds or mattresses to the shape or weight of persons
    • A47C31/126Means, e.g. measuring means for adapting chairs, beds or mattresses to the shape or weight of persons for chairs
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/031Reclining or easy chairs having coupled concurrently adjustable supporting parts
    • A47C1/032Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest
    • A47C1/03255Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest with a central column, e.g. rocking office chairs
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/031Reclining or easy chairs having coupled concurrently adjustable supporting parts
    • A47C1/032Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest
    • A47C1/03261Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means
    • A47C1/03266Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means with adjustable elasticity
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/031Reclining or easy chairs having coupled concurrently adjustable supporting parts
    • A47C1/032Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest
    • A47C1/03261Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means
    • A47C1/03272Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means with coil springs
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/031Reclining or easy chairs having coupled concurrently adjustable supporting parts
    • A47C1/032Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest
    • A47C1/03294Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest slidingly movable in the base frame, e.g. by rollers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C3/00Chairs characterised by structural features; Chairs or stools with rotatable or vertically-adjustable seats
    • A47C3/20Chairs or stools with vertically-adjustable seats
    • A47C3/22Chairs or stools with vertically-adjustable seats with balancing device, e.g. by spring, by weight

Definitions

  • the invention relates to a seating unit for supporting a body or part of a body, comprising a base part and at least one supporting part for supporting the body or part of the body, the supporting part being situated or being capable of being placed in a set nominal height position relative to the base part.
  • Such a seating unit is known, for example in the form of an office chair.
  • Known office chairs are available in various embodiments and often have several adjustment facilities.
  • the seat is adjustable in height and to various angular positions.
  • the backrest and the armrests are also usually adjustable to various positions.
  • the object of these adjustment facilities is to prevent physical and psychosomatic complaints that result from sitting for long periods, for example when working in front of a VDU.
  • the object of the present invention is to provide an improved seating unit of the type mentioned in the preamble, in which the abovementioned physical and psychosomatic complaints are prevented even more effectively.
  • the supporting part is movable at least in the vertical direction over a certain movement range relative to the nominal height position, in such a way that within this movement range the supporting part can take up various positions of equilibrium when there is a certain weight on the supporting part.
  • the invention is based on the insight that a dynamic body support ensures more movement while a person is sitting on a chair, which very probably acts preventively against physical and psychosomatic complaints. These movements must be easy to carry out, without all kinds of adjustments having to be carried out on the chair. On the other hand, these movements must take place within a limited range, since otherwise sitting on the chair gives a feeling of instability.
  • FIG. 1 is a side view of an office chair according to the invention
  • FIG. 2 shows a part of the office chair of FIG. 1 on an enlarged scale
  • FIG. 3 shows diagrammatically the spring compensation mechanism used in the case of the office chair of FIG. 1;
  • FIGS. 4 a and 4 b show the basic principle of a spring compensation mechanism in two embodiments
  • FIG. 5 shows diagrammatically the movement range of the seat of the office chair of FIG. 1;
  • FIG. 6 shows a part of an office chair with a different embodiment of a spring compensation mechanism
  • FIG. 7 shows diagrammatically a spring compensation mechanism in the case of an office chair in which the bridge piece of the seat is movable in the vertical direction relative to the rod mechanism.
  • FIG. 1 An office chair according to the invention is shown in FIG. 1.
  • the office chair is essentially designed as a conventional office chair with a pedestal 1 , consisting of a star base 2 , which is provided with castors 3 , and a gas lift 4 or another height-adjustable central column fitted on the star base.
  • a supporting part for a part of the body is fitted on the gas lift 4 , said supporting part being in the form of a seat 6 fitted on a bridge piece 5 .
  • the chair is further provided with a backrest 7 and armrests 8 .
  • Such an office chair which is generally known as regards the abovementioned parts, usually has several adjustment facilities.
  • the height of the seat 6 is adjustable by means of the gas lift 4 .
  • the seat 6 can be tilted by means of the bridge piece 5 .
  • the backrest 7 and the armrests 8 are adjustable into various positions.
  • the various adjustment facilities serve to place the respective parts of a chair in the optimum position for the user.
  • the office chair according to the invention has yet a further facility, the purpose of which is to make the user of the chair move more while sitting, for example while working in front of a VDU, in order to prevent physical and psychosomatic complaints as a result of sitting for long periods.
  • This facility is composed of a balancing mechanism fitted between the gas spring 4 and the bridge piece 5 of the seat 6 , in the form of a spring compensation mechanism 10 , which is shown in greater detail in FIG. 2.
  • This spring compensation mechanism 10 is designed in such a way that the seat is movable over a certain movement range at least in the vertical direction relative to the nominal height position, which is determined by the height adjustment by means of the gas lift 4 , in such a way that within said movement range at substantially the same vertical load (part of the weight of the chair and of the user who is sitting on the chair) the seat can take up various positions of equilibrium.
  • the spring compensation mechanism 10 comprises at least one rod mechanism, consisting of two parallel rods 11 and 12 placed one above the other, which rods at one end are pivotally connected to the bridge piece 5 by means of pivots 13 and 14 , and at the other end are pivotally connected to the gas lift 4 by means of pivots 15 and 16 .
  • the pivots 15 and 16 may, if desired, be fitted on an intermediate part (not shown here) fitted on the gas lift 4 .
  • the bridge piece 5 and the seat fitted on it are consequently movable in height, parallel to themselves, relative to the gas lift 4 . Owing to the construction of the rod mechanism, during a movement in the vertical direction the bridge piece 5 and the seat 6 will also carry out a slight movement in the horizontal direction.
  • the top rod 11 is extended on the side of the pivot point 15 that is situated opposite the pivot point 13 .
  • a cable 18 is attached to the rod 11 near the end 17 of the extended part.
  • Said cable 18 runs downwards over a pulley 19 that is concentric with the pivot point 16 , and is fixed to a spring 20 , which is fitted around the gas lift 4 .
  • the spring 20 in the form of a coil spring, pulls the end 17 of the rod 11 downwards by means of the cable 18 .
  • the spring constant of the spring 20 is adjustable by means of a nut 21 , which is fitted inside the spring 20 .
  • the nut 21 is fitted on a threaded rod, the pitch of the screw thread corresponding substantially to the pitch of the spring 20 in the released position.
  • Pins 22 that engage between the coils of the spring 20 are fitted on the outside of the nut 21 .
  • the nut 21 can be screwed up and down by means of a control knob 23 .
  • the spring constant of the spring 20 must be adapted to the weight of the user of the chair, in such a way that when the user is sitting on the chair and moves slightly, the seat 6 automatically moves with the user, without a significant force being necessary to achieve this.
  • the user sitting on the chair experiences a “floating” sensation during this movement.
  • FIG. 3 in which said mechanism is shown diagrammatically.
  • FIGS. 4 a and 4 b in which the basic principle of a spring compensation mechanism is shown in two exemplary embodiments.
  • the various distances R, d, 1 and A are indicated in FIG. 3 and FIGS. 4 a and 4 b .
  • the load G is caused by a part of the weight of the chair and of the user sitting on the chair.
  • the height of the action point of the load G on the rod 11 relative to the point of rotation 15 of the rod 11 is indicated by h.
  • the distance between the connection point of the cable 18 with the end 17 of the rod 11 and the point of contact 24 of the cable 18 with the pulley 19 is 1.
  • the point of contact 24 lies substantially directly below the point of rotation 15 of the rod 11 .
  • the distance 1 corresponds to the extension of the spring 20 from the released position.
  • the spring constant of the spring 20 is c.
  • the angle ⁇ is the angle between the rod 11 and the line between the point of rotation 15 and the point of contact 24 .
  • the so-called “floating range” is fixed at approximately 30 mm. A shorter range has the result that the user sitting on the chair moves too little. If the movement range is greater, an unstable feeling is produced, and the user who sits down on the chair first has to overcome a certain anxiety before the “floating movement” can be enjoyed.
  • a range with a certain damping is provided at each of the two ends of the movement range.
  • the length of these damping ranges is approximately 7.5 mm. This damping can be produced by means of rubber shock absorbers.
  • FIG. 5 shows diagrammatically the abovementioned ranges of the seat 6 .
  • the movement of the seat 6 can be compared to the movement of a ball in a channel of the shape indicated in FIG. 5.
  • the rods 11 and 12 are fitted in such a way that relative to the gas spring 4 they are directed towards the front side of the chair.
  • the description discloses a rod mechanism composed of two rods 11 and 12 placed one above the other.
  • rods 11 and 12 each in the form of double rods, the partial rods being fitted on either side of the gas lift 4 .
  • leaf springs could also be used, said leaf springs being provided with reinforcement pieces, in such a way that the parts provided with reinforcement pieces act as rods, and the parts not provided with reinforcement pieces act as pivots.
  • FIG. 6 shows a different embodiment of a spring compensation mechanism fitted between the gas spring 4 and the bridge piece 5 of the seat 6 .
  • parts of the spring compensation mechanism that correspond functionally to parts of the spring compensation mechanism shown in FIG. 2 are indicated by the same reference numerals, but provided with the prefix “1”.
  • the spring compensation mechanism shown in FIG. 6 comprises at least one rod mechanism composed of two parallel rods 111 and 112 , which are placed one above the other and at one end are pivotally connected by means of pivots 113 and 114 to a first intermediate part 128 that is connected to the bridge piece 5 , and at the other end are pivotally connected by means of pivots 115 and 116 to a second intermediate part 129 that is fitted on the gas lift 4 .
  • the pivots 114 and 116 are in the form of, for example, ball bearings or roller bearings.
  • the pivots 113 and 115 in FIG. 6 are in the form of rolling links, which have a very low friction.
  • the pivots 113 and 115 could, however, also be in the form of ball bearings or roller bearings.
  • At least some of the pivot points of the rod mechanism and of the connection of the spring are pivot points with a low friction.
  • the friction in the spring compensation mechanism is such that in the main an additional force of a maximum of 25N, in particular a maximum of 10N, is needed to be able to set the supporting part in motion in the movement range.
  • the spring compensation mechanism further comprises a spring 120 , which is active between the second intermediate part 129 mounted on the gas lift 4 and the bridge piece 5 of the seat 6 .
  • the spring 120 is connected on the side of the gas lift 4 to one end of a flexible belt 131 , which is fixed at the other end, at the position of a fixing point 132 , on the outside of a part 133 , which projects towards the side and is immovably connected to the second intermediate part 129 , and which is at least partially circular cylindrical in shape. From the fixing point 132 onwards, the flexible belt 131 rests at least partially against the outside of the projecting part 133 .
  • the spring 120 is fixed, at the position of a fixing point 134 , to one end of an arm 135 .
  • the arm 135 is connected to one end of a flexible belt 136 , which at the other end is fixed, at the position of a fixing point 137 , on the outside of a part 138 , which projects towards the side and is immovably connected to the bridge piece 5 , and which is at least partially circular cylindrical in shape. From the fixing point 137 onwards, the flexible belt 136 rests at least partially against the outside of the projecting part 138 .
  • an L-shaped supporting arm 139 is fixed on the end of the arm 135 , the end part of which supporting arm rests against a roller element 140 , which is fitted at the position of the projecting part 133 and preferably concentrically with the circular cylindrical external surface of said projecting part.
  • the supporting arm 139 could also be of another shape.
  • the supporting arm 139 could also be fixed on the arm 135 at another point, for example near the projecting part 138 .
  • the pulling force of the spring 120 ensures that the first and second intermediate part 128 and 129 are pulled towards each other. This means that if the pivots 113 and 115 are in the form of rolling links, the rod 111 will remain in place.
  • the spring compensation mechanism shown in FIG. 6 can be adapted to the weight on the seat by setting the spring constant of the spring 120 , in a similar way to that of the spring compensation mechanism shown in FIGS. 1-3.
  • the first intermediate part 128 in that case is immovably connected to the bridge piece 5 of the seat 6 .
  • the spring compensation mechanism shown in FIG. 6 can also be set in another way.
  • the bridge piece 5 of the seat is movable in the vertical direction relative to the first intermediate part 128 . All this is shown diagrammatically in FIG. 7.
  • parts that correspond functionally to parts of the spring compensation mechanism shown in FIG. 6 are indicated by the same reference numerals, but provided with the suffix “a”.
  • the setting of the spring compensation mechanism (spring constant of the spring or the position of the bridge piece of the seat relative to the first intermediate part of the rod mechanism) could also be achieved electronically.
  • the spring compensation mechanism can be adapted continuously (possibly with a certain time delay) to the weight of the user of the chair.
  • An office chair according to the invention is described above.
  • the invention is not limited to an office chair, but also extends to other seating elements, for example a simple chair or a stool.

Abstract

A seating unit for supporting a body or part of a body comprises a base part and at least one supporting part for supporting the body or part of the body. The supporting part is situated or can be placed in a set nominal height position relative to the base part. In addition, the supporting part is movable at least in the vertical direction over a certain movement range relative to the nominal height position, in such a way that within this movement range the supporting part can take up various positions of equilibrium when there is a certain weight on the supporting part.
The supporting part is preferably supported by a balancing mechanism, in particular a spring compensation mechanism.

Description

  • The invention relates to a seating unit for supporting a body or part of a body, comprising a base part and at least one supporting part for supporting the body or part of the body, the supporting part being situated or being capable of being placed in a set nominal height position relative to the base part. [0001]
  • Such a seating unit is known, for example in the form of an office chair. Known office chairs are available in various embodiments and often have several adjustment facilities. The seat is adjustable in height and to various angular positions. The backrest and the armrests are also usually adjustable to various positions. The object of these adjustment facilities is to prevent physical and psychosomatic complaints that result from sitting for long periods, for example when working in front of a VDU. [0002]
  • The object of the present invention is to provide an improved seating unit of the type mentioned in the preamble, in which the abovementioned physical and psychosomatic complaints are prevented even more effectively. [0003]
  • This object is achieved according to the invention by the fact that the supporting part is movable at least in the vertical direction over a certain movement range relative to the nominal height position, in such a way that within this movement range the supporting part can take up various positions of equilibrium when there is a certain weight on the supporting part. [0004]
  • The invention is based on the insight that a dynamic body support ensures more movement while a person is sitting on a chair, which very probably acts preventively against physical and psychosomatic complaints. These movements must be easy to carry out, without all kinds of adjustments having to be carried out on the chair. On the other hand, these movements must take place within a limited range, since otherwise sitting on the chair gives a feeling of instability. [0005]
  • Preferred embodiments of the seating unit according to the invention are set out in the subclaims.[0006]
  • The invention will be explained in greater detail in the description below of a number of preferred embodiments of the seating unit according to the invention in the form of a chair, in particular an office chair, with reference to the drawing, in which: [0007]
  • FIG. 1 is a side view of an office chair according to the invention; [0008]
  • FIG. 2 shows a part of the office chair of FIG. 1 on an enlarged scale; [0009]
  • FIG. 3 shows diagrammatically the spring compensation mechanism used in the case of the office chair of FIG. 1; [0010]
  • FIGS. 4[0011] a and 4 b show the basic principle of a spring compensation mechanism in two embodiments;
  • FIG. 5 shows diagrammatically the movement range of the seat of the office chair of FIG. 1; [0012]
  • FIG. 6 shows a part of an office chair with a different embodiment of a spring compensation mechanism; and [0013]
  • FIG. 7 shows diagrammatically a spring compensation mechanism in the case of an office chair in which the bridge piece of the seat is movable in the vertical direction relative to the rod mechanism.[0014]
  • An office chair according to the invention is shown in FIG. 1. The office chair is essentially designed as a conventional office chair with a [0015] pedestal 1, consisting of a star base 2, which is provided with castors 3, and a gas lift 4 or another height-adjustable central column fitted on the star base. A supporting part for a part of the body is fitted on the gas lift 4, said supporting part being in the form of a seat 6 fitted on a bridge piece 5. The chair is further provided with a backrest 7 and armrests 8. Such an office chair, which is generally known as regards the abovementioned parts, usually has several adjustment facilities. The height of the seat 6 is adjustable by means of the gas lift 4. The seat 6 can be tilted by means of the bridge piece 5. Furthermore, the backrest 7 and the armrests 8 are adjustable into various positions. The various adjustment facilities serve to place the respective parts of a chair in the optimum position for the user.
  • The office chair according to the invention has yet a further facility, the purpose of which is to make the user of the chair move more while sitting, for example while working in front of a VDU, in order to prevent physical and psychosomatic complaints as a result of sitting for long periods. This facility is composed of a balancing mechanism fitted between the [0016] gas spring 4 and the bridge piece 5 of the seat 6, in the form of a spring compensation mechanism 10, which is shown in greater detail in FIG. 2. This spring compensation mechanism 10 is designed in such a way that the seat is movable over a certain movement range at least in the vertical direction relative to the nominal height position, which is determined by the height adjustment by means of the gas lift 4, in such a way that within said movement range at substantially the same vertical load (part of the weight of the chair and of the user who is sitting on the chair) the seat can take up various positions of equilibrium.
  • The [0017] spring compensation mechanism 10 comprises at least one rod mechanism, consisting of two parallel rods 11 and 12 placed one above the other, which rods at one end are pivotally connected to the bridge piece 5 by means of pivots 13 and 14, and at the other end are pivotally connected to the gas lift 4 by means of pivots 15 and 16. The pivots 15 and 16 may, if desired, be fitted on an intermediate part (not shown here) fitted on the gas lift 4. The bridge piece 5 and the seat fitted on it are consequently movable in height, parallel to themselves, relative to the gas lift 4. Owing to the construction of the rod mechanism, during a movement in the vertical direction the bridge piece 5 and the seat 6 will also carry out a slight movement in the horizontal direction.
  • The [0018] top rod 11 is extended on the side of the pivot point 15 that is situated opposite the pivot point 13. A cable 18 is attached to the rod 11 near the end 17 of the extended part. Said cable 18 runs downwards over a pulley 19 that is concentric with the pivot point 16, and is fixed to a spring 20, which is fitted around the gas lift 4. The spring 20, in the form of a coil spring, pulls the end 17 of the rod 11 downwards by means of the cable 18.
  • The spring constant of the [0019] spring 20 is adjustable by means of a nut 21, which is fitted inside the spring 20. The nut 21 is fitted on a threaded rod, the pitch of the screw thread corresponding substantially to the pitch of the spring 20 in the released position. Pins 22 that engage between the coils of the spring 20 are fitted on the outside of the nut 21. The nut 21 can be screwed up and down by means of a control knob 23.
  • In order to achieve the desired effect of the invention, the spring constant of the [0020] spring 20 must be adapted to the weight of the user of the chair, in such a way that when the user is sitting on the chair and moves slightly, the seat 6 automatically moves with the user, without a significant force being necessary to achieve this. The user sitting on the chair experiences a “floating” sensation during this movement.
  • The principle of a balancing mechanism in the form of a spring compensation mechanism is known, and is described in, inter alia, EP 0007680 and NL 1009886, the contents of which are referred to here. However, balancing mechanisms such as those described in the abovementioned publications have never been used in the case of a chair in order to give the user sitting on the chair the sensation of “floating”. [0021]
  • The principle and the functioning of the spring compensation mechanism used in the case of the office chair described above will be explained in greater detail with reference to FIG. 3, in which said mechanism is shown diagrammatically. Reference is also made to FIGS. 4[0022] a and 4 b, in which the basic principle of a spring compensation mechanism is shown in two exemplary embodiments.
  • The various distances R, d, [0023] 1 and A are indicated in FIG. 3 and FIGS. 4a and 4 b. The load G is caused by a part of the weight of the chair and of the user sitting on the chair. The height of the action point of the load G on the rod 11 relative to the point of rotation 15 of the rod 11 is indicated by h.
  • The distance between the connection point of the [0024] cable 18 with the end 17 of the rod 11 and the point of contact 24 of the cable 18 with the pulley 19 is 1. The point of contact 24 lies substantially directly below the point of rotation 15 of the rod 11. The distance 1 corresponds to the extension of the spring 20 from the released position. The spring constant of the spring 20 is c.
  • The angle φ is the angle between the [0025] rod 11 and the line between the point of rotation 15 and the point of contact 24.
  • In order to compensate for the load G at every angle φ of the [0026] rod 11, the potential energy Epot of the spring compensation mechanism must remain constant.
  • E pot =E grav +E elas
  • In this formula: [0027] E grav = the potential energy of the load G = G · h = G · d · cos ϕ E elas = potential energy of the spring 20 = 1 2 · c · 1 2 ( surface area below the spring characteristic ) = 1 2 · c ( A 2 + R 2 - 2 A · R · cos ϕ ) = 1 2 · c ( A 2 + R 2 ) - c · A · R · cos ϕ
    Figure US20040195883A1-20041007-M00001
  • If E[0028] pot must be constant for each angle φ, the following must apply:
  • G.d=c.A.R [0029]
  • Since d, A and R are constant, as in the case of the spring compensation mechanism of FIG. 3, for a compensation of the load G at each angle φ the spring constant c must therefore be proportional to the load G. [0030]
  • In the case of the chair according to the invention the magnitude of the range within which various positions of equilibrium can be taken up when the same vertical load is applied to the seat, the so-called “floating range”, is fixed at approximately 30 mm. A shorter range has the result that the user sitting on the chair moves too little. If the movement range is greater, an unstable feeling is produced, and the user who sits down on the chair first has to overcome a certain anxiety before the “floating movement” can be enjoyed. [0031]
  • In order to prevent the movement from coming to an abrupt end at the ends of the movement range, a range with a certain damping is provided at each of the two ends of the movement range. The length of these damping ranges is approximately 7.5 mm. This damping can be produced by means of rubber shock absorbers. [0032]
  • FIG. 5 shows diagrammatically the abovementioned ranges of the [0033] seat 6. The movement of the seat 6 can be compared to the movement of a ball in a channel of the shape indicated in FIG. 5.
  • In the case of the embodiment illustrated in FIGS. 1 and 2 the [0034] rods 11 and 12 are fitted in such a way that relative to the gas spring 4 they are directed towards the front side of the chair. However, it is also possible to fit the rods 11 and 12 in such a way that relative to the gas spring 4 they are directed towards the rear side of the chair.
  • The description discloses a rod mechanism composed of two [0035] rods 11 and 12 placed one above the other.
  • For design reasons, it may be desirable to make the [0036] rods 11 and 12 each in the form of double rods, the partial rods being fitted on either side of the gas lift 4.
  • Instead of a rod mechanism of the type described above, leaf springs could also be used, said leaf springs being provided with reinforcement pieces, in such a way that the parts provided with reinforcement pieces act as rods, and the parts not provided with reinforcement pieces act as pivots. [0037]
  • FIG. 6 shows a different embodiment of a spring compensation mechanism fitted between the [0038] gas spring 4 and the bridge piece 5 of the seat 6. In FIG. 6 parts of the spring compensation mechanism that correspond functionally to parts of the spring compensation mechanism shown in FIG. 2 are indicated by the same reference numerals, but provided with the prefix “1”.
  • The spring compensation mechanism shown in FIG. 6 comprises at least one rod mechanism composed of two [0039] parallel rods 111 and 112, which are placed one above the other and at one end are pivotally connected by means of pivots 113 and 114 to a first intermediate part 128 that is connected to the bridge piece 5, and at the other end are pivotally connected by means of pivots 115 and 116 to a second intermediate part 129 that is fitted on the gas lift 4.
  • The [0040] pivots 114 and 116 are in the form of, for example, ball bearings or roller bearings. The pivots 113 and 115 in FIG. 6 are in the form of rolling links, which have a very low friction. The pivots 113 and 115 could, however, also be in the form of ball bearings or roller bearings. At least some of the pivot points of the rod mechanism and of the connection of the spring are pivot points with a low friction. The friction in the spring compensation mechanism is such that in the main an additional force of a maximum of 25N, in particular a maximum of 10N, is needed to be able to set the supporting part in motion in the movement range.
  • The spring compensation mechanism further comprises a [0041] spring 120, which is active between the second intermediate part 129 mounted on the gas lift 4 and the bridge piece 5 of the seat 6.
  • The [0042] spring 120 is connected on the side of the gas lift 4 to one end of a flexible belt 131, which is fixed at the other end, at the position of a fixing point 132, on the outside of a part 133, which projects towards the side and is immovably connected to the second intermediate part 129, and which is at least partially circular cylindrical in shape. From the fixing point 132 onwards, the flexible belt 131 rests at least partially against the outside of the projecting part 133.
  • On the side of the [0043] bridge piece 5, the spring 120 is fixed, at the position of a fixing point 134, to one end of an arm 135. At the other end, the arm 135 is connected to one end of a flexible belt 136, which at the other end is fixed, at the position of a fixing point 137, on the outside of a part 138, which projects towards the side and is immovably connected to the bridge piece 5, and which is at least partially circular cylindrical in shape. From the fixing point 137 onwards, the flexible belt 136 rests at least partially against the outside of the projecting part 138.
  • As an alternative, instead of the [0044] flexible belts 131 and 136 and the partially circular cylindrical projecting parts 133 and 138, ball bearings or roller bearings could be used for connecting the spring 120 to the second intermediate part 129 and the bridge piece 5 respectively. Other pivoting connections are also conceivable.
  • Near the [0045] fixing point 134, an L-shaped supporting arm 139 is fixed on the end of the arm 135, the end part of which supporting arm rests against a roller element 140, which is fitted at the position of the projecting part 133 and preferably concentrically with the circular cylindrical external surface of said projecting part. Instead of the L-shape, the supporting arm 139 could also be of another shape. The supporting arm 139 could also be fixed on the arm 135 at another point, for example near the projecting part 138.
  • The construction described above is such that the [0046] arm 135 and the supporting arm 139 fixed on it always have the tendency to turn in an anticlockwise direction in FIG. 6, so that the supporting arm always rests against the roller element 140. As an additional locking facility, a stop 141 is further fitted on the second intermediate part 129, which stop prevents the arm 135, and the supporting arm connected to it, from being able to swing back in a clockwise direction.
  • The pulling force of the [0047] spring 120 ensures that the first and second intermediate part 128 and 129 are pulled towards each other. This means that if the pivots 113 and 115 are in the form of rolling links, the rod 111 will remain in place.
  • The spring compensation mechanism shown in FIG. 6 can be adapted to the weight on the seat by setting the spring constant of the [0048] spring 120, in a similar way to that of the spring compensation mechanism shown in FIGS. 1-3. The first intermediate part 128 in that case is immovably connected to the bridge piece 5 of the seat 6.
  • However, the spring compensation mechanism shown in FIG. 6 can also be set in another way. For that purpose, the [0049] bridge piece 5 of the seat is movable in the vertical direction relative to the first intermediate part 128. All this is shown diagrammatically in FIG. 7. In FIG. 7 parts that correspond functionally to parts of the spring compensation mechanism shown in FIG. 6 are indicated by the same reference numerals, but provided with the suffix “a”.
  • When the [0050] bridge piece 5 a is loaded with load G, the bridge piece 5 a will move downwards relative to the first intermediate part 128 a until the counterforce exerted upon the bridge piece by the spring 120 a is equal to the load G. In that situation the bridge piece 5 a is fixed relative to the first intermediate part 128 a. This setting, which can be regarded as a self-setting, amounts to the adjustment of the distance A to the load G in the abovementioned formula G.d=c.A.R (see also FIG. 3 and FIGS. 4a and 4 b). The spring constant C, the distance d and the distance R can now remain constant.
  • The fixing of the [0051] bridge piece 5, 5 a relative to the first intermediate part 128, 128 a can be achieved by means of different locking mechanisms that are known to the person skilled in the art.
  • It is possible to use a different spring compensation mechanism or even a different type of balancing mechanism, instead of the spring compensation mechanism described above. [0052]
  • It is also conceivable for not only the [0053] seat 6 of a chair, but also armrests of a chair to be provided with a balancing mechanism by means of which a “floating effect” is achieved.
  • According to the idea underlying the invention, it is important for the user of a chair or the like, in particular an office chair, to begin moving as easily as possible. The fact is that the more easily the user begins moving the more often he will begin moving. However, in view of the friction that occurs in the spring compensation mechanism, it is not possible to set the seat in motion without some force. [0054]
  • The setting of the spring compensation mechanism (spring constant of the spring or the position of the bridge piece of the seat relative to the first intermediate part of the rod mechanism) could also be achieved electronically. The spring compensation mechanism can be adapted continuously (possibly with a certain time delay) to the weight of the user of the chair. [0055]
  • An office chair according to the invention is described above. The invention is not limited to an office chair, but also extends to other seating elements, for example a simple chair or a stool. [0056]

Claims (14)

1. Seating unit for supporting a body or part of a body, comprising a base part and at least one supporting part for supporting the body or part of the body, said supporting part being situated or being capable of being placed in a set nominal height position relative to said base part, wherein said supporting part is movable at least in a vertical direction over a certain movement range relative to the nominal height position, in such a way that within this movement range said supporting part can take up various positions of equilibrium when there is a certain weight on said supporting part.
2. Seating unit according to claim 1, in which said supporting part is supported by a balancing mechanism.
3. Seating unit according to claim 2, in which said balancing mechanism is a spring compensation mechanism.
4. Seating unit according to claim 3, in which said spring compensation mechanism comprises a rod mechanism, consisting of two parallel rods placed one above the other, which rods at one end are pivotally connected to said base part and at the other end are pivotally connected to said supporting part or to an intermediate part that is to be connected to said supporting part, pivot points of the one rod being situated at the same distance from each other as pivot points of the other rod, and also consisting of a spring acting between said base part and said rod mechanism or between said base part and said supporting part that is connected or is to be connected to said rod mechanism, said spring compensation mechanism being adjustable in such a way that, at a certain weight on said supporting part, said supporting part is always in equilibrium within the movement range.
5. Seating unit according to claim 4, in which said compensation mechanism is adjustable by adjusting a spring constant of said spring.
6. Seating unit according to claim 4, in which said spring compensation mechanism is adjustable by adjusting a position in the vertical direction of at least one of action points of said spring relative to the rod mechanism.
7. Seating unit according to claim 6, in which said spring is connected to said supporting part, said supporting part being movable in the vertical direction relative to an intermediate part of said rod mechanism to which said supporting part can be connected, and said spring compensation mechanism being adjustable by adjusting the position in the vertical direction of said supporting part relative to said intermediate part.
8. Seating unit according to claim 4, in which said spring is connected to said base part by means of a pivot connection and said spring is connected to said supporting part by means of a rigid arm, which rigid arm is connected to an appropriate end of said spring and at the other end is connected by means of a pivot connection to said supporting part, said arm facing away from the end of said spring being connected to said base part, and said arm being connected to a supporting arm whose end part rests against a support provided on said base part.
9. Seating unit according to claim 8, in which said spring is connected to said base part by means of a flexible belt, which is connected to an appropriate end of said spring and a free end part of which is passed over a circular cylindrical external surface of a projecting part immovably fixed to said base part and is connected to the latter at the end, and in which said spring is connected to the supporting part by means of a rigid arm connected to the appropriate end of said spring which, at the other end, is connected to a flexible belt, a free end part of which is passed over a circular cylindrical external surface of a projecting part that is immovably fixed to said supporting part and is connected to the latter at the end.
10. Seating unit according to claim 4, in which at least some of pivot points of said rod mechanism and of the connection of said spring are pivot points with a low friction.
11. Seating unit according to claim 10, in which the friction in said spring compensation mechanism is such that in the main an additional force of a maximum of 25N, in particular a maximum of 10N, is needed to set said supporting part in motion in the movement range.
12. Seating unit according to claim 1, in which said supporting part comprises a seat of said seating unit.
13. Seating unit according to claim 12, in which said seating unit is an office chair and said office chair has a pedestal with a star base and a vertically adjustable central column fitted on said star base, in particular a gas lift, said supporting part being fitted on said central column, in the form of said seat being fitted on a bridge piece, and in which a balancing mechanism for supporting said supporting part is integral with said central column and said bridge piece.
14. Seating unit according to claim 1, in which said supporting part comprises armrests of said seating unit.
US10/479,391 2001-05-30 2002-05-29 Seating unit for supporting a body or part of a body Abandoned US20040195883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/877,034 US20080106133A1 (en) 2001-05-30 2007-10-23 Seating unit for supporting a body or part of a body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL1018178A NL1018178C2 (en) 2001-05-30 2001-05-30 Seating furniture.
NL1018178 2001-05-30
PCT/NL2002/000344 WO2002096240A1 (en) 2001-05-30 2002-05-29 Seating unit for supporting a body or part of a body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/877,034 Continuation-In-Part US20080106133A1 (en) 2001-05-30 2007-10-23 Seating unit for supporting a body or part of a body

Publications (1)

Publication Number Publication Date
US20040195883A1 true US20040195883A1 (en) 2004-10-07

Family

ID=19773470

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/479,391 Abandoned US20040195883A1 (en) 2001-05-30 2002-05-29 Seating unit for supporting a body or part of a body
US11/877,034 Abandoned US20080106133A1 (en) 2001-05-30 2007-10-23 Seating unit for supporting a body or part of a body

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/877,034 Abandoned US20080106133A1 (en) 2001-05-30 2007-10-23 Seating unit for supporting a body or part of a body

Country Status (10)

Country Link
US (2) US20040195883A1 (en)
EP (1) EP1389931B1 (en)
AT (1) ATE355778T1 (en)
CA (1) CA2447605A1 (en)
DE (1) DE60218655T2 (en)
DK (1) DK1389931T3 (en)
ES (1) ES2283568T3 (en)
NL (1) NL1018178C2 (en)
PT (1) PT1389931E (en)
WO (1) WO2002096240A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070032884A1 (en) * 2005-06-17 2007-02-08 Ada Technologies, Inc. Cable lock device for prosthetic and orthotic devices
US20080188952A1 (en) * 2007-02-05 2008-08-07 Ada Technologies, Inc. Pre-positionable prosthetic hand
US20090079238A1 (en) * 2007-09-20 2009-03-26 Claudia Plikat Body support structure
WO2007110732A3 (en) * 2006-03-24 2009-04-16 Miller Herman Inc Piece of furniture
US20090287316A1 (en) * 2008-05-15 2009-11-19 Bradley Delton Veatch Prosthetic split hook terminal device with adjustable pinch force, functional grasping contours and illumination
US20090302655A1 (en) * 2005-04-28 2009-12-10 Imarc S.P.A. Device for Adjusting the Reclining Force in Office Chair Mechanisms
US20100082116A1 (en) * 2008-10-01 2010-04-01 Johnson Alwyn P Anatomically-configured adjustable upper extremity prosthetic device
US20110127390A1 (en) * 2007-08-30 2011-06-02 Brown Garrett W Articulated human arm support
US20120235456A1 (en) * 2011-03-14 2012-09-20 Chih-Yang Huang Chair Having Angle and Tension Adjusting Functions
US20150282621A1 (en) * 2014-04-08 2015-10-08 John Hart Miller Rotating & non-rotating reclining chairs w/tilting mechanisms
US20150366356A1 (en) * 2010-02-01 2015-12-24 Steelcase Inc. Node seat to base mounting assembly
US10624457B2 (en) * 2016-03-14 2020-04-21 Herman Miller, Inc. Chair
CN112515911A (en) * 2019-09-19 2021-03-19 恒林家居股份有限公司 Massage chair
US20220378220A1 (en) * 2021-05-27 2022-12-01 Comfort Office Furniture Co., Ltd Guangdong Electrically controlled chassis and chair
US11612249B2 (en) * 2021-05-27 2023-03-28 Comfort Office Furniture Co., Ltd Guangdong Chair chassis and chair

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1035328C2 (en) * 2008-04-22 2009-10-26 Niels Vrijlandt Sofa e.g. office chair, for supporting body, has undercarriage with spring compensation mechanism, where height adjustable floating part is connected to undercarriage, and wheels provided at ends of feet
US8696534B2 (en) * 2009-06-19 2014-04-15 Sihar Ahmad Karwan Total abs office chair
CN103802692B (en) * 2014-03-07 2016-06-22 吴砺 A kind of auto-folder seat
US10337745B2 (en) 2015-06-08 2019-07-02 Alto-Shaam, Inc. Convection oven

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743230A (en) * 1970-12-14 1973-07-03 Freedman Seating Co Vehicle seat suspension system with height and ride indicator
US4387876A (en) * 1979-05-05 1983-06-14 Advanced Products Beer-Sheva Ltd. Constant force generator mechanism and adjustable seat constructed therewith
US4662681A (en) * 1983-09-07 1987-05-05 Paolo Favaretto Adjustable chair
US4761033A (en) * 1986-05-26 1988-08-02 Drabert Sohne Gmbh & Co. Chair

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR629334A (en) * 1926-02-11 1927-11-08 Chair or other seating system
US2527905A (en) * 1946-09-28 1950-10-31 American Seating Co Vertically adjustable link supported seat
US3233859A (en) * 1964-11-16 1966-02-08 Brubaker Sandra Beoletto Resilient mounting for vehicle operator's seat
GB1423130A (en) * 1971-12-29 1976-01-28 Remploy Ltd Resilient mountings of adjustable length
DE7531129U (en) * 1975-10-02 1976-03-18 Schuckmann, Alfred Von, 5657 Haan WORK SEAT
DE4210098C2 (en) * 1992-03-27 1995-10-19 Josef Gloeckl Active dynamic seat device
NL1009886C2 (en) * 1998-08-18 2000-02-21 Tech Universiteit Delft Tech U Balance mechanism to hold object in required vertical position involves use of parallelogram or hinged arms and two tensioned springs
ATE419766T1 (en) * 2003-05-23 2009-01-15 Manplus Co Ltd CHAIR WITH AUTOMATICALLY ADJUSTABLE BACKREST

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743230A (en) * 1970-12-14 1973-07-03 Freedman Seating Co Vehicle seat suspension system with height and ride indicator
US4387876A (en) * 1979-05-05 1983-06-14 Advanced Products Beer-Sheva Ltd. Constant force generator mechanism and adjustable seat constructed therewith
US4662681A (en) * 1983-09-07 1987-05-05 Paolo Favaretto Adjustable chair
US4761033A (en) * 1986-05-26 1988-08-02 Drabert Sohne Gmbh & Co. Chair

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090302655A1 (en) * 2005-04-28 2009-12-10 Imarc S.P.A. Device for Adjusting the Reclining Force in Office Chair Mechanisms
US7850237B2 (en) * 2005-04-28 2010-12-14 Imarc S.P.A. Device for adjusting the reclining force in office chair mechanisms
US20070032884A1 (en) * 2005-06-17 2007-02-08 Ada Technologies, Inc. Cable lock device for prosthetic and orthotic devices
US8025334B2 (en) 2006-03-24 2011-09-27 Herman Miller, Inc. Piece of furniture
WO2007110732A3 (en) * 2006-03-24 2009-04-16 Miller Herman Inc Piece of furniture
US7857390B2 (en) 2006-03-24 2010-12-28 Herman Miller, Inc. Piece of furniture
US20110067931A1 (en) * 2006-03-24 2011-03-24 Johann Burkhard Schmitz Piece of furniture
US20080188952A1 (en) * 2007-02-05 2008-08-07 Ada Technologies, Inc. Pre-positionable prosthetic hand
US20110127390A1 (en) * 2007-08-30 2011-06-02 Brown Garrett W Articulated human arm support
US9204730B2 (en) 2007-08-30 2015-12-08 Garrett W. Brown Articulated human arm support
US20090079238A1 (en) * 2007-09-20 2009-03-26 Claudia Plikat Body support structure
US7992937B2 (en) 2007-09-20 2011-08-09 Herman Miller, Inc. Body support structure
US20090287316A1 (en) * 2008-05-15 2009-11-19 Bradley Delton Veatch Prosthetic split hook terminal device with adjustable pinch force, functional grasping contours and illumination
US8052761B2 (en) 2008-05-15 2011-11-08 Invisible Hand Enterprises, Llc Prosthetic split hook terminal device with adjustable pinch force, functional grasping contours and illumination
US20100082116A1 (en) * 2008-10-01 2010-04-01 Johnson Alwyn P Anatomically-configured adjustable upper extremity prosthetic device
US8414658B2 (en) 2008-10-01 2013-04-09 Invisible Hand Enterprises, Llc Anatomically-configured adjustable upper extremity prosthetic device
US9962003B2 (en) * 2010-02-01 2018-05-08 Steelcase, Inc. Chair seat to base mounting assembly
US20150366356A1 (en) * 2010-02-01 2015-12-24 Steelcase Inc. Node seat to base mounting assembly
US10631645B2 (en) 2010-02-01 2020-04-28 Steelcase Inc. Chair seat to base mounting assembly
US11432650B1 (en) 2010-02-01 2022-09-06 Steelcase Inc. Chair seat to base mounting assembly
US8556345B2 (en) * 2011-03-14 2013-10-15 Sheng Jia Sheng Co., Ltd. Chair having angle and tension adjusting functions
US20120235456A1 (en) * 2011-03-14 2012-09-20 Chih-Yang Huang Chair Having Angle and Tension Adjusting Functions
US20150282621A1 (en) * 2014-04-08 2015-10-08 John Hart Miller Rotating & non-rotating reclining chairs w/tilting mechanisms
US9839292B2 (en) * 2014-04-08 2017-12-12 John Hart Miller Rotating and non-rotating reclining chairs w/tilting mechanisms
US10624457B2 (en) * 2016-03-14 2020-04-21 Herman Miller, Inc. Chair
CN112515911A (en) * 2019-09-19 2021-03-19 恒林家居股份有限公司 Massage chair
US20220378220A1 (en) * 2021-05-27 2022-12-01 Comfort Office Furniture Co., Ltd Guangdong Electrically controlled chassis and chair
US11607055B2 (en) * 2021-05-27 2023-03-21 Comfort Office Furniture Co., Ltd Guangdong Electrically controlled chassis and chair
US11612249B2 (en) * 2021-05-27 2023-03-28 Comfort Office Furniture Co., Ltd Guangdong Chair chassis and chair

Also Published As

Publication number Publication date
ATE355778T1 (en) 2007-03-15
WO2002096240A1 (en) 2002-12-05
PT1389931E (en) 2007-05-31
EP1389931B1 (en) 2007-03-07
US20080106133A1 (en) 2008-05-08
DK1389931T3 (en) 2007-07-09
CA2447605A1 (en) 2002-12-05
EP1389931A1 (en) 2004-02-25
DE60218655T2 (en) 2007-11-29
ES2283568T3 (en) 2007-11-01
NL1018178C2 (en) 2002-12-03
DE60218655D1 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
US20080106133A1 (en) Seating unit for supporting a body or part of a body
US4533177A (en) Reclining chair
FI104615B (en) Arrangement for armchair with adjustable backrest
US4789203A (en) Chair with movable seat and backrest
EP1328176B1 (en) Armchair with variable position
US20060103221A1 (en) Ergonomic chair
WO2007110737A2 (en) Ergonomic seat
JPS63109818A (en) Chair apparatus
US20020163234A1 (en) Chair
EP2292122B1 (en) Seat with dynamic seat back
CA1281987C (en) Chair seat tilt control
US5370445A (en) Chair control
FI73585C (en) MONTERINGSANORDNING FOER EN STOLSITS.
US4712835A (en) Chair with seal spring mechanism
CA2004002C (en) Chairs
CA2379873C (en) Chair
US11160377B2 (en) Synchronous chair mechanism and chair having same
GB2155320A (en) Invalid chair
WO2013029575A1 (en) Seating device with a tilting seat part
GB2113988A (en) Seat construction
KR100425068B1 (en) Chair mounting
KR200270427Y1 (en) Chair mounting
NL1021906C1 (en) Support device, useful as arm rest during surgery, has height adjustable support part for body part capable of adopting various equilibrium states relative to mounting part
JP2508085Y2 (en) Chair
WO2018139914A1 (en) An adjustable recliner rocker chair

Legal Events

Date Code Title Description
AS Assignment

Owner name: GIO HOLDING B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VRIJLANDT, NIELS;HERDER, JUSTUS LAURENS;REEL/FRAME:015440/0181

Effective date: 20040223

AS Assignment

Owner name: GEROME B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GIO HOLDING B.V.;REEL/FRAME:019689/0628

Effective date: 20061115

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION