US20040185559A1 - Modulation of diacylglycerol acyltransferase 1 expression - Google Patents

Modulation of diacylglycerol acyltransferase 1 expression Download PDF

Info

Publication number
US20040185559A1
US20040185559A1 US10/394,808 US39480803A US2004185559A1 US 20040185559 A1 US20040185559 A1 US 20040185559A1 US 39480803 A US39480803 A US 39480803A US 2004185559 A1 US2004185559 A1 US 2004185559A1
Authority
US
United States
Prior art keywords
diacylglycerol acyltransferase
method
compound
oligonucleotide
rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/394,808
Inventor
Brett Monia
Mark Graham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ionis Pharmaceuticals Inc
Original Assignee
Ionis Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ionis Pharmaceuticals Inc filed Critical Ionis Pharmaceuticals Inc
Priority to US10/394,808 priority Critical patent/US20040185559A1/en
Assigned to ISIS PHARMACEUTICALS INC. reassignment ISIS PHARMACEUTICALS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRAHAM, MARK J., MONIA, BRETT P.
Publication of US20040185559A1 publication Critical patent/US20040185559A1/en
Application status is Abandoned legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/0102Diacylglycerol O-acyltransferase (2.3.1.20)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3222'-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/334Modified C
    • C12N2310/33415-Methylcytosine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/341Gapmers, i.e. of the type ===---===
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications

Abstract

Compounds, compositions and methods are provided for modulating the expression of diacylglycerol acyltransferase 1. The compositions comprise oligonucleotides, targeted to nucleic acid encoding diacylglycerol acyltransferase 1. Methods of using these compounds for modulation of diacylglycerol acyltransferase 1 expression and for diagnosis and treatment of disease associated with expression of diacylglycerol acyltransferase 1 are provided.

Description

    FIELD OF THE INVENTION
  • The present invention provides compositions and methods for modulating the expression of diacylglycerol acyltransferase 1. In particular, this invention relates to compounds, particularly oligonucleotide compounds, which, in preferred embodiments, hybridize with nucleic acid molecules encoding diacylglycerol acyltransferase 1. Such compounds are shown herein to modulate the expression of diacylglycerol acyltransferase 1. [0001]
  • BACKGROUND OF THE INVENTION
  • Triglycerides are one of the major energy storage molecules in eukaryotes. The absorption of triglycerides (also called triacylglycerols) from food is a very efficient process which occurs by a series of steps wherein the dietary triacylglycerols are hydrolyzed in the intestinal lumen and then resynthesized within enterocytes. The resynthesis of triacylglycerols can occur via the monoacylglycerol pathway which commences with monoacylglycerol acyltransferase (MGAT) catalyzing the synthesis of diacylglycerol from monoacylglycerol and fatty actyl-CoA. An alternative synthesis of diacylglycerols is provided by the glycerol-phosphate pathway which describes the coupling of two molecules of fatty acyl-CoA to glycerol-3-phosphate. In either case, diacylglycerol is then acylated with another molecule of fatty acyl-CoA in a reaction catalyzed by one of two diacylglycerol acyltransferase enzymes to form the triglyceride (Farese et al., [0002] Curr. Opin. Lipidol., 2000, 11, 229-234).
  • The reaction catalyzed by diacylglycerol acyltransferase 1 is the final and only committed step in, triglyceride synthesis. As such, diacylglycerol acyltransferase 1 is involved in intestinal fat absorption, lipoprotein assembly, regulating plasma triglyceride concentrations, and fat storage in adipocytes. Although identified in 1960, the genes encoding human and mouse diacylglycerol acyltransferase 1 (also called DGAT1, acyl CoA:diacylglycerol acyltransferase, acyl CoA:cholesterol acyltransferase-related enzyme, ACAT related gene product, and ARGP1) were not cloned until 1998 (Cases et al., [0003] Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 13018-13023; Oelkers et al., J. Biol. Chem., 1998, 273, 26765-26771). Disclosed and claimed in U.S. Pat. No. 6,100,077 is an isolated nucleic acid encoding a human diacylglycerol acyltransferase 1 (Sturley and Oelkers, 2000). Diacylglycerol acyltransferase 1 is a microsomal membrane bound enzyme and has 39% nucleotide identity to the related acyl CoA:cholesterol acyltransferase (Oelkers et al., J. Biol. Chem., 1998, 273, 26765-26771). A splice variant of diacylglycerol acyltransferase 1 has also been cloned that contains a 77 nucleotide insert of unspliced intron with an in-frame stop codon, resulting in a truncated form of diacylglycerol acyltransferase 1 that terminates at Arg-387 deleting 101 residues from the C-terminus containing the putative active site (Cheng et al., Biochem. J., 2001, 359, 707-714).
  • Dysregulation of diacylglycerol acyltransferase 1 may play a role in the development of obesity. Upon differentiation of mouse 3T3-L1 cells into mature adipocytes, a 90 fold increase in diacylglycerol acyltransferase 1 protein levels is observed. However, forced overexpression of diacylglycerol acyltransferase 1 in mature adipocytes results in only a 2 fold increase in diacylglycerol acyltransferase 1 protein levels. This leads to an increase in cellular triglyceride synthesis without a concomitant increase in triglyceride lipolysis, leading to the suggestion that manipulation of the steady state level of diacylglycerol acyltransferase 1 may offer a potential means to treat obesity (Yu et al., [0004] J. Biol. Chem., 2002, 277, 50876-50884).
  • Alterations in diacylglycerol acyltransferase 1 expression may affect human body weight. In a random Turkish population, five polymorphisms in the human diacylglycerol acyltransferase 1 promoter and 5′ non-coding sequence have been identified. One common variant, C79T, revealed reduced promoter activity for the 79T allele and is associated with a lower body mass index, higher plasma cholesterol HDL levels, and lower diastolic blood pressure in Turkish women (Ludwig et al., [0005] Clin. Genet., 2002, 62, 68-73).
  • Diacylglycerol acyltransferase 1 knockout mice exhibit interesting phenotypes which indicate that inhibition of diacylglycerol acyltransferase 1 may offer a strategy for treating obesity and obesity-associated insulin resistance. Mice lacking diacylglycerol acyltransferase 1 are viable and can still synthesize triglycerides through other biological routes. However the mice are lean and resistant to diet-induce obesity (Smith et al., [0006] Nat. Genet., 2000, 25, 87-90), have decreased levels of tissue triglycerides, and increased sensitivity to insulin and leptin (Chen et al., J. Clin. Invest., 2002, 109, 1049-1055).
  • Currently, there are no known therapeutic agents which effectively inhibit the synthesis of diacylglycerol acyltransferase 1 and to date, investigative strategies aimed at modulating diacylglycerol acyltransferase 1 function have involved natural occurring small molecule derivatives of roselipins and xanthohumols isolated from [0007] Gliocladium roseum and Humulus lupulus, respectively (Tabata et al., Phytochemistry, 1997, 46, 683-687; Tomoda et al., J. Antibiot. (Tokyo)., 1999, 52, 689-694).
  • Consequently, there remains a long felt need for additional agents capable of effectively inhibiting diacylglycerol acyltransferase 1 function. [0008]
  • Antisense technology is emerging as an effective means for reducing the expression of specific gene products and may therefore prove to be uniquely useful in a number of therapeutic, diagnostic, and research applications for the modulation of diacylglycerol acyltransferase 1 expression. [0009]
  • The present invention provides compositions and methods for modulating diacylglycerol acyltransferase 1 expression. [0010]
  • SUMMARY OF THE INVENTION
  • The present invention is directed to compounds, especially nucleic acid and nucleic acid-like oligomers, which are targeted to a nucleic acid encoding diacylglycerol acyltransferase 1, and which modulate the expression of diacylglycerol acyltransferase 1. Pharmaceutical and other compositions comprising the compounds of the invention are also provided. Further provided are methods of screening for modulators of diacylglycerol acyltransferase 1 and methods of modulating the expression of diacylglycerol acyltransferase 1 in cells, tissues or animals comprising contacting said cells, tissues or animals with one or more of the compounds or compositions of the invention. Methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition associated with expression of diacylglycerol acyltransferase 1 are also set forth herein. Such methods comprise administering a therapeutically or prophylactically effective amount of one or more of the compounds or compositions of the invention to the person in need of treatment.[0011]
  • DETAILED DESCRIPTION OF THE INVENTION
  • A. Overview of the Invention [0012]
  • The present invention employs compounds, preferably oligonucleotides and similar species for use in modulating the function or effect of nucleic acid molecules encoding diacylglycerol acyltransferase 1. This is accomplished by providing oligonucleotides which specifically hybridize with one or more nucleic acid molecules encoding diacylglycerol acyltransferase 1. As used herein, the terms “target nucleic acid” and “nucleic acid molecule encoding diacylglycerol acyltransferase 1” have been used for convenience to encompass DNA encoding diacylglycerol acyltransferase 1, RNA (including pre-mRNA and mRNA or portions thereof) transcribed from such DNA, and also cDNA derived from such RNA. The hybridization of a compound of this invention with its target nucleic acid is generally referred to as “antisense”. Consequently, the preferred mechanism believed to be included in the practice of some preferred embodiments of the invention is referred to herein as “antisense inhibition.” Such antisense inhibition is typically based upon hydrogen bonding-based hybridization of oligonucleotide strands or segments such that at least one strand or segment is cleaved, degraded, or otherwise rendered inoperable. In this regard, it is presently preferred to target specific nucleic acid molecules and their functions for such antisense inhibition. [0013]
  • The functions of DNA to be interfered with can include replication and transcription. Replication and transcription, for example, can be from an endogenous cellular template, a vector, a plasmid construct or otherwise. The functions of RNA to be interfered with can include functions such as translocation of the RNA to a site of protein translation, translocation of the RNA to sites within the cell which are distant from the site of RNA synthesis, translation of protein from the RNA, splicing of the RNA to yield one or more RNA species, and catalytic activity or complex formation involving the RNA which may be engaged in or facilitated by the RNA. One preferred result of such interference with target nucleic acid function is modulation of the expression of diacylglycerol acyltransferase 1. In the context of the present invention, “modulation” and “modulation of expression” mean either an increase (stimulation) or a decrease (inhibition) in the amount or levels of a nucleic acid molecule encoding the gene, e.g., DNA or RNA. Inhibition is often the preferred form of modulation of expression and mRNA is often a preferred target nucleic acid. [0014]
  • In the context of this invention, “hybridization” means the pairing of complementary strands of oligomeric compounds. In the present invention, the preferred mechanism of pairing involves hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases (nucleobases) of the strands of oligomeric compounds. For example, adenine and thymine are complementary nucleobases which pair through the formation of hydrogen bonds. Hybridization can occur under varying circumstances. [0015]
  • An antisense compound is specifically hybridizable when binding of the compound to the target nucleic acid interferes with the normal function of the target nucleic acid to cause a loss of activity, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target nucleic acid sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and under conditions in which assays are performed in the case of in vitro assays. [0016]
  • In the present invention the phrase “stringent hybridization conditions” or “stringent conditions” refers to conditions under which a compound of the invention will hybridize to its target sequence, but to a minimal number of other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances and in the context of this invention, “stringent conditions” under which oligomeric compounds hybridize to a target sequence are determined by the nature and composition of the oligomeric compounds and the assays in which they are being investigated. [0017]
  • “Complementary,” as used herein, refers to the capacity for precise pairing between two nucleobases of an oligomeric compound. For example, if a nucleobase at a certain position of an oligonucleotide (an oligomeric compound), is capable of hydrogen bonding with a nucleobase at a certain position of a target nucleic acid, said target nucleic acid being a DNA, RNA, or oligonucleotide molecule, then the position of hydrogen bonding between the oligonucleotide and the target nucleic acid is considered to be a complementary position. The oligonucleotide and the further DNA, RNA, or oligonucleotide molecule are complementary to each other when a sufficient number of complementary positions in each molecule are occupied by nucleobases which can hydrogen bond with each other. Thus, “specifically hybridizable” and “complementary” are terms which are used to indicate a sufficient degree of precise pairing or complementarity over a sufficient number of nucleobases such that stable and specific binding occurs between the oligonucleotide and a target nucleic acid. [0018]
  • It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. Moreover, an oligonucleotide may hybridize over one or more segments such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure or hairpin structure). It is preferred that the antisense compounds of the present invention comprise at least 70% sequence complementarity to a target region within the target nucleic acid, more preferably that they comprise 90% sequence complementarity and even more preferably comprise 95% sequence complementarity to the target region within the target nucleic acid sequence to which they are targeted. For example, an antisense compound in which 18 of 20 nucleobases of the antisense compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining noncomplementary nucleobases may be clustered or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. As such, an antisense compound which is 18 nucleobases in length having 4 (four) noncomplementary nucleobases which are flanked by two regions of complete complementarity with the target nucleic acid would have 77.8% overall complementarity with the target nucleic acid and would thus fall within the scope of the present invention. Percent complementarity of an antisense compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., [0019] J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656).
  • B. Compounds of the Invention [0020]
  • According to the present invention, compounds include antisense oligomeric compounds, antisense oligonucleotides, ribozymes, external guide sequence (EGS) oligonucleotides, alternate splicers, primers, probes, and other oligomeric compounds which hybridize to at least a portion of the target nucleic acid. As such, these compounds may be introduced in the form of single-stranded, double-stranded, circular or hairpin oligomeric compounds and may contain structural elements such as internal or terminal bulges or loops. Once introduced to a system, the compounds of the invention may elicit the action of one or more enzymes or structural proteins to effect modification of the target nucleic acid. One non-limiting example of such an enzyme is RNAse H, a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. It is known in the art that single-stranded antisense compounds which are “DNA-like” elicit RNAse H. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide-mediated inhibition of gene expression. Similar roles have been postulated for other ribonucleases such as those in the RNase III and ribonuclease L family of enzymes. [0021]
  • While the preferred form of antisense compound is a single-stranded antisense oligonucleotide, in many species the introduction of double-stranded structures, such as double-stranded RNA (dsRNA) molecules, has been shown to induce potent and specific antisense-mediated reduction of the function of a gene or its associated gene products. This phenomenon occurs in both plants and animals and is believed to have an evolutionary connection to viral defense and transposon silencing. [0022]
  • The first evidence that dsRNA could lead to gene silencing in animals came in 1995 from work in the nematode, [0023] Caenorhabditis elegans (Guo and Kempheus, Cell, 1995, 81, 611-620). Montgomery et al. have shown that the primary interference effects of dsRNA are posttranscriptional (Montgomery et al., Proc. Natl. Acad. Sci. USA, 1998, 95, 15502-15507). The posttranscriptional antisense mechanism defined in Caenorhabditis elegans resulting from exposure to double-stranded RNA (dsRNA) has since been designated RNA interference (RNAi). This term has been generalized to mean antisense-mediated gene silencing involving the introduction of dsRNA leading to the sequence-specific reduction of endogenous targeted mRNA levels (Fire et al., Nature, 1998, 391, 806-811). Recently, it has been shown that it is, in fact, the single-stranded RNA oligomers of antisense polarity of the dsRNAs which are the potent inducers of RNAi (Tijsterman et al., Science, 2002, 295, 694-697).
  • In the context of this invention, the term “oligomeric compound” refers to a polymer or oligomer comprising a plurality of monomeric units. In the context of this invention, the term “oligonucleotide” refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics, chimeras, analogs and homologs thereof. This term includes oligonucleotides composed of naturally occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for a target nucleic acid and increased stability in the presence of nucleases. [0024]
  • While oligonucleotides are a preferred form of the compounds of this invention, the present invention comprehends other families of compounds as well, including but not limited to oligonucleotide analogs and mimetics such as those described herein. [0025]
  • The compounds in accordance with this invention preferably comprise from about 8 to about 80 nucleobases (i.e. from about 8 to about 80 linked nucleosides). One of ordinary skill in the art will appreciate that-the invention embodies compounds of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 nucleobases in length. [0026]
  • In one preferred embodiment, the compounds of the invention are 12 to 50 nucleobases in length. One having ordinary skill in the art will appreciate that this embodies compounds of 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleobases in length. [0027]
  • In another preferred embodiment, the compounds of the invention are 15 to 30 nucleobases in length. One having ordinary skill in the art will appreciate that this embodies compounds of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleobases in length. [0028]
  • Particularly preferred compounds are oligonucleotides from about 12 to about 50 nucleobases, even more preferably those comprising from about 15 to about 30 nucleobases. [0029]
  • Antisense compounds 8-80 nucleobases in length comprising a stretch of at least eight (8) consecutive nucleobases selected from within the illustrative antisense compounds are considered to be suitable antisense compounds as well. [0030]
  • Exemplary preferred antisense compounds include oligonucleotide sequences that comprise at least the 8′ consecutive nucleobases from the 5′-terminus of one of the illustrative preferred antisense compounds (the remaining nucleobases being a consecutive stretch of the same oligonucleotide beginning immediately upstream of the 5′-terminus of the antisense compound which is specifically hybridizable to the target nucleic acid and continuing until the oligonucleotide contains about 8 to about 80 nucleobases). Similarly preferred antisense compounds are represented by oligonucleotide sequences that comprise at least the 8 consecutive nucleobases from the 3′-terminus of one of the illustrative preferred antisense compounds (the remaining nucleobases being a consecutive stretch of the same oligonucleotide beginning immediately downstream of the 3′-terminus of the antisense compound which is specifically hybridizable to the target nucleic acid and continuing until the oligonucleotide contains about 8 to about 80 nucleobases). One having skill in the art armed with the preferred antisense compounds illustrated herein will be able, without undue experimentation, to identify further preferred antisense compounds. [0031]
  • C. Targets of the Invention [0032]
  • “Targeting” an antisense compound to a particular nucleic acid molecule, in the context of this invention, can be a multistep process. The process usually begins with the identification of a target nucleic acid whose function is to be modulated. This target nucleic acid may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, the target nucleic acid encodes diacylglycerol acyltransferase 1. [0033]
  • The targeting process usually also includes determination of at least one target region, segment, or site within the target nucleic acid for the antisense interaction to occur such that the desired effect, e.g., modulation of expression, will result. Within the context of the present invention, the term “region” is defined as a portion of the target nucleic acid having at least one identifiable structure, function, or characteristic. Within regions of target nucleic acids are segments. “Segments” are defined as smaller or sub-portions of regions within a target nucleic acid. “Sites,” as used in the present invention, are defined as positions within a target nucleic acid. [0034]
  • Since, as is known in the art, the translation initiation codon is typically 5′-AUG (in transcribed mRNA molecules; 5′-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the “AUG codon,” the “start codon” or the “AUG start codon”. A minority of genes have a translation initiation codon having the RNA sequence 5′-GUG, 5′-UUG or 5′-CUG, and 5′-AUA, 5′-ACG and 5′-CUG have been shown to function in vivo. Thus, the terms “translation initiation codon” and “start codon” can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). It is also known in the art that eukaryotic and prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, “start codon” and “translation initiation codon” refer to the codon or codons that are used in vivo to initiate translation of an mRNA transcribed from a gene encoding diacylglycerol acyltransferase 1, regardless of the sequence(s) of such codons. It is also known in the art that a translation termination codon (or “stop codon”) of a gene may have one of three sequences, i.e., 5′-UAA, 5′-UAG and 5′-UGA (the corresponding DNA sequences are 5′-TAA, 5′-TAG and 5′-TGA, respectively). [0035]
  • The terms “start codon region” and “translation initiation codon region” refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5′ or 3′) from a translation initiation codon. Similarly, the terms “stop codon region” and “translation termination codon region” refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5′ or 3′) from a translation termination codon. Consequently, the “start codon region” (or “translation initiation codon region”) and the “stop codon region” (or “translation termination codon region”) are all regions which may be-targeted effectively with the antisense compounds of the present invention. [0036]
  • The open reading frame (ORF) or “coding region,” which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Within the context of the present invention, a preferred region is the intragenic region encompassing the translation initiation or termination codon of the open reading frame (ORF) of a gene. [0037]
  • Other target regions include the 5′ untranslated region (5′UTR), known in the art to refer to the portion of an mRNA in the 5′ direction from the translation initiation codon, and thus including nucleotides between the 5′ cap site and the translation initiation codon of an mRNA (or corresponding nucleotides on the gene), and the 3′ untranslated region (3′UTR), known in the art to refer to the portion of an mRNA in the 3′ direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3′ end of an mRNA (or corresponding nucleotides on the gene). The 5′ cap site of an mRNA comprises an N7-methylated guanosine residue joined to the 5′-most residue of the mRNA via a 5′-5′ triphosphate linkage. The 5′ cap region of an mRNA is considered to include the 5′ cap structure itself as well as the first 50 nucleotides adjacent to the cap site. It is also preferred to target the 5′ cap region. [0038]
  • Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as “introns,” which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as “exons” and are spliced together to form a continuous mRNA sequence. Targeting splice sites, i.e., intron-exon junctions or exon-intron junctions, may also be particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also preferred target sites. mRNA transcripts produced via the process of splicing of two (or more) mRNAs from different gene sources are known as “fusion transcripts”. It is also known that introns can be effectively targeted using antisense compounds targeted to, for example, DNA or pre-mRNA. [0039]
  • It is also known in the art that alternative RNA transcripts can be produced from the same genomic region of DNA. These alternative transcripts are generally known as “variants”. More specifically, “pre-mRNA variants” are transcripts produced from the same genomic DNA that differ from other transcripts produced from the same genomic DNA in either their start or stop position and contain both intronic and exonic sequence. [0040]
  • Upon excision of one or more exon or intron regions, or portions thereof during splicing, pre-mRNA variants produce smaller “mRNA variants”. Consequently, mRNA variants are processed pre-mRNA variants and each unique pre-mRNA variant must always produce a unique mRNA variant as a result of splicing. These mRNA variants are also known as “alternative splice variants”. If no splicing of the pre-mRNA variant occurs then the pre-mRNA variant is identical to the mRNA variant. [0041]
  • It is also known in the art that variants can be produced through the use of alternative signals to start or stop transcription and that pre-mRNAs and mRNAs can possess more that one start codon or stop codon. Variants that originate from a pre-mRNA or mRNA that use alternative start codons are known as “alternative start variants” of that pre-mRNA or mRNA. Those transcripts that use an alternative stop codon are known as “alternative stop variants” of that pre-mRNA or mRNA. One specific type of alternative stop variant is the “polyA variant” in which the multiple transcripts produced result from the alternative selection of one of the “polyA stop signals” by the transcription machinery, thereby producing transcripts that terminate at unique polyA sites. Within the context of the invention, the types of variants described herein are also preferred target nucleic acids. [0042]
  • The locations on the target nucleic acid to which the preferred antisense compounds hybridize are hereinbelow referred to as “preferred target segments.” As used herein the term “preferred target segment” is defined as at least an 8-nucleobase portion of a target region to which an active antisense compound is targeted. While not wishing to be bound by theory, it is presently believed that these target segments represent portions of the target nucleic acid which are accessible for hybridization. [0043]
  • While the specific sequences of certain preferred target segments are set forth herein, one of skill in the art will recognize that these serve to illustrate and describe particular embodiments within the scope of the present invention. Additional preferred target segments may be identified by one having ordinary skill. [0044]
  • Target segments 8-80 nucleobases in length comprising a stretch of at least eight (8) consecutive nucleobases selected from within the illustrative preferred target segments are considered to be suitable for targeting as well. [0045]
  • Target segments can include DNA or RNA sequences that comprise at least the 8 consecutive nucleobases from the 5′-terminus of one of the illustrative preferred target segments (the remaining nucleobases being a consecutive stretch of the same DNA or RNA beginning immediately upstream of the 5′-terminus of the target segment and continuing until the DNA or RNA contains about 8 to about 80 nucleobases). Similarly preferred target segments are represented by DNA or RNA sequences that comprise at least the 8 consecutive nucleobases from the 3′-terminus of one of the illustrative preferred target segments (the remaining nucleobases being a consecutive stretch of the same DNA or RNA beginning immediately downstream of the 3′-terminus of the target segment and continuing until the DNA or RNA contains about 8 to about 80 nucleobases). One having skill in the art armed with the preferred target segments illustrated herein will be able, without undue experimentation, to identify further preferred target segments. [0046]
  • Once one or more target regions, segments or sites have been identified, antisense compounds are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect. [0047]
  • D. Screening and Target Validation [0048]
  • In a further embodiment, the “preferred target segments” identified herein may be employed in a screen for additional compounds that modulate the expression of diacylglycerol acyltransferase 1. “Modulators” are those compounds that decrease or increase the expression of a nucleic acid molecule encoding diacylglycerol acyltransferase 1 and which comprise at least an 8-nucleobase portion which is complementary to a preferred target segment. The screening method comprises the steps of contacting a preferred target segment of a nucleic acid molecule encoding diacylglycerol acyltransferase 1 with one or more candidate modulators, and selecting for one or more candidate modulators which decrease or increase the expression of a nucleic acid molecule encoding diacylglycerol acyltransferase 1. Once it is shown that the candidate modulator or modulators are capable of modulating (e.g. either decreasing or increasing) the expression of a nucleic acid molecule encoding diacylglycerol acyltransferase 1, the modulator may then be employed in further investigative studies of the function of diacylglycerol acyltransferase 1, or for use as a research, diagnostic, or therapeutic agent in accordance with the present invention. [0049]
  • The preferred target segments of the present invention may be also be combined with their respective complementary antisense compounds of the present invention to form stabilized double-stranded (duplexed) oligonucleotides. [0050]
  • Such double stranded oligonucleotide moieties have been shown in the art to modulate target expression and regulate translation as well as RNA processsing via an antisense mechanism. Moreover, the double-stranded moieties may be subject to chemical modifications (Fire et al., [0051] Nature, 1998, 391, 806-811; Timmons and Fire, Nature 1998, 395, 854; Timmons et al., Gene, 2001, 263, 103-112; Tabara et al., Science, 1998, 282, 430-431; Montgomery et al., Proc. Natl. Acad. Sci. USA, 1998, 95, 15502-15507; Tuschl et al., Genes Dev., 1999, 13, 3191-3197; Elbashir et al., Nature, 2001, 411, 494-498; Elbashir et al., Genes Dev. 2001, 15, 188-200). For example, such double-stranded moieties have been shown to inhibit the target by the classical hybridization of antisense strand of the duplex to the target, thereby triggering enzymatic degradation of the target (Tijsterman et al., Science, 2002, 295, 694-697).
  • The compounds of the present invention can also be applied in the areas of drug discovery and target validation. The present invention comprehends the use of the compounds and preferred target segments identified herein in drug discovery efforts to elucidate relationships that exist between diacylglycerol acyltransferase 1 and a disease state, phenotype, or condition. These methods include detecting or modulating diacylglycerol acyltransferase 1 comprising contacting a sample, tissue, cell, or organism with the compounds of the present invention, measuring the nucleic acid or protein level of diacylglycerol acyltransferase 1 and/or a related phenotypic or chemical endpoint at some time after treatment, and optionally comparing the measured value to a non-treated sample or sample treated with a further compound of the invention. These methods can also be performed in parallel or in combination with other experiments to determine the function of unknown genes for the process of target validation or to determine the validity of a particular gene product as a target for treatment or prevention of a particular disease, condition, or phenotype. [0052]
  • E. Kits, Research Reagents, Diagnostics, and Therapeutics [0053]
  • The compounds of the present invention can be utilized for diagnostics, therapeutics, prophylaxis and as research reagents and kits. Furthermore, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes or to distinguish between functions of various members of a biological pathway. [0054]
  • For use in kits and diagnostics, the compounds of the present invention, either alone or in combination with other compounds or therapeutics, can be used as tools in differential and/or combinatorial analyses to elucidate expression patterns of a portion or the entire complement of genes expressed within cells and tissues. [0055]
  • As one nonlimiting example, expression patterns within cells or tissues treated with one or more antisense compounds are compared to control cells or tissues not treated with antisense compounds and the patterns produced are analyzed for differential levels of gene expression as they pertain, for example, to disease association, signaling pathway, cellular localization, expression level, size, structure or function of the genes examined. These analyses can be performed on stimulated or unstimulated cells and in the presence or absence of other compounds which affect expression patterns. [0056]
  • Examples of methods of gene expression analysis known in the art include DNA arrays or microarrays (Brazma and Vilo, [0057] FEBS Lett., 2000, 480, 17-24; Celis, et al., FEBS Lett., 2000, 480, 2-16), SAGE (serial analysis of gene expression)(Madden, et al., Drug Discov. Today, 2000, 5, 415-425), READS (restriction enzyme amplification of digested cDNAs) (Prashar and Weissman, Methods Enzymol., 1999, 303, 258-72), TOGA (total gene expression analysis) (Sutcliffe, et al., Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 1976-81), protein arrays and proteomics (Celis, et al., FEBS Lett., 2000, 480, 2-16; Jungblut, et al., Electrophoresis, 1999, 20, 2100-10), expressed sequence tag (EST) sequencing (Celis, et al., FEBS Lett., 2000, 480, 2-16; Larsson, et al., J. Biotechnol., 2000, 80, 143-57), subtractive RNA fingerprinting (SuRF) (Fuchs, et al., Anal. Biochem., 2000, 286, 91-98; Larson, et al., Cytometry, 2000, 41, 203-208), subtractive cloning, differential display (DD) (Jurecic and Belmont, Curr. Opin. Microbiol., 2000, 3, 316-21), comparative genomic hybridization (Carulli, et al., J. Cell Biochem. Suppl., 1998, 31, 286-96), FISH (fluorescent in situ hybridization) techniques (Going and Gusterson, Eur. J. Cancer, 1999, 35, 1895-904) and mass spectrometry methods (To, Comb. Chem. High Throughput Screen, 2000, 3, 235-41).
  • The compounds of the invention are useful for research and diagnostics, because these compounds hybridize to nucleic acids encoding diacylglycerol acyltransferase 1. For example, oligonucleotides that are shown to hybridize with such efficiency and under such conditions as disclosed herein as to be effective diacylglycerol acyltransferase 1 inhibitors will also be effective primers or probes under conditions favoring gene amplification or detection, respectively. These primers and probes are useful in methods requiring the specific detection of nucleic acid molecules encoding diacylglycerol acyltransferase 1 and in the amplification of said nucleic acid molecules for detection or for use in further studies of diacylglycerol acyltransferase 1. Hybridization of the antisense oligonucleotides, particularly the primers and probes, of the invention with a nucleic acid encoding diacylglycerol acyltransferase 1 can be detected by means known in the art. Such means may include conjugation of an enzyme to the oligonucleotide, radiolabelling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of diacylglycerol acyltransferase 1 in a sample may also be prepared. [0058]
  • The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense compounds have been employed as therapeutic moieties in the treatment of disease states in animals, including humans. Antisense oligonucleotide drugs, including ribozymes, have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that antisense compounds can be useful therapeutic modalities that can be configured to be useful in treatment regimes for the treatment of cells, tissues and animals, especially humans. [0059]
  • For therapeutics, an animal, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of diacylglycerol acyltransferase 1 is treated by administering antisense compounds in accordance with this invention. For example, in one non-limiting embodiment, the methods comprise the step of administering to the animal in need of treatment, a therapeutically effective amount of a diacylglycerol acyltransferase 1 inhibitor. The diacylglycerol acyltransferase 1 inhibitors of the present invention effectively inhibit the activity of the diacylglycerol acyltransferase 1 protein or inhibit the expression of the diacylglycerol acyltransferase 1 protein. In one embodiment, the activity or expression of diacylglycerol acyltransferase 1 in an animal is inhibited by about 10%. Preferably, the activity or expression of diacylglycerol acyltransferase 1 in an animal is inhibited by about 30%. More preferably, the activity or expression of diacylglycerol acyltransferase 1 in an animal is inhibited by 50% or more. [0060]
  • For example, the reduction of the expression of diacylglycerol acyltransferase 1 may be measured in serum, adipose tissue, liver or any other body fluid, tissue or organ of the animal. Preferably, the cells contained within said fluids, tissues or organs being analyzed contain a nucleic acid molecule encoding diacylglycerol acyltransferase 1 protein and/or the diacylglycerol acyltransferase 1 protein itself. [0061]
  • The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of a compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the compounds and methods of the invention may also be useful prophylactically. [0062]
  • F. Modifications [0063]
  • As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2′, 3′ or 5′ hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn, the respective ends of this linear polymeric compound can be further joined to form a circular compound, however, linear compounds are generally preferred. In addition, linear compounds may have internal nucleobase complementarity and may therefore fold in a manner as to produce a fully or partially double-stranded compound. Within oligonucleotides, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3′ to 5′ phosphodiester linkage. [0064]
  • Modified Internucleoside Linkages (Backbones) [0065]
  • Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides. [0066]
  • Preferred modified oligonucleotide backbones containing a phosphorus atom therein include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates, 5′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, selenophosphates and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein one or more internucleotide linkages is a 3′ to 3′, 5′ to 5′ or 2′ to 2′ linkage. Preferred oligonucleotides having inverted polarity comprise a single 3′ to 3′ linkage at the 3′-most internucleotide linkage i.e. a single inverted nucleoside residue which may be abasic (the nucleobase is missing or has a hydroxyl group in place thereof). Various salts, mixed salts and free acid forms are also included. [0067]
  • Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,599; 5,565,555; 5,527,899; 5,721,218; 5,672,697 and 5,625,050, certain of which are commonly owned with this application, and each of which is herein incorporated by reference. [0068]
  • Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; riboacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH[0069] 2 component parts.
  • Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; 5,792,608; 5,646,269 and 5,677,439, certain of which are commonly owned with this application, and each of which is herein incorporated by reference. [0070]
  • Modified Sugar and Internucleoside Linkages—Mimetics [0071]
  • In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage (i.e. the backbone), of the nucleotide units are replaced with novel groups. The nucleobase units are maintained for hybridization with an appropriate target nucleic acid. One such compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., [0072] Science, 1991, 254, 1497-1500.
  • Preferred embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular —CH[0073] 2—NH—O—CH2—, —CH2—N(CH3)—O—CH2— [known as a methylene (methylimino) or MMI backbone], —CH2—O—N(CH3)—CH2—, —CH2—N(CH3)—N(CH3)—CH2— and —O—N(CH3)—CH2—CH2— [wherein the native phosphodiester backbone is represented as —O—P—O—CH2—] of the above referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above referenced U.S. Pat. No. 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506.
  • Modified Sugars [0074]
  • Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2′ position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C[0075] 1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Particularly preferred are O[(CH2)nO]mCH3, O(CH2)nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)CH3]2, where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred modification includes 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy group. A further preferred modification includes 2′-dimethylaminooxyethoxy, i.e., a O(CH2)2ON(CH3)2 group, also known as 2′-DMAOE, as described in examples hereinbelow, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethyl-amino-ethoxy-ethyl or 2′-DMAEOE), i.e., 2′-O—CH2—O—CH2—N(CH3)2, also described in examples hereinbelow.
  • Other preferred modifications include 2′-methoxy (2′-O—CH[0076] 3), 2′-aminopropoxy (2′-OCH2CH2CH2NH2), 2′-allyl (2′-CH2—CH═CH2), 2′-O-allyl (2′-O—CH2—CH═CH2) and 2′-fluoro (2′-F). The 2′-modification may be in the arabino (up) position or ribo (down) position. A preferred 2′-arabino modification is 2′-F. Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked oligonucleotides and the 5′ position of 5′ terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; and 5,700,920, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.
  • A further preferred modification of the sugar includes Locked Nucleic Acids (LNAs) in which the 2′-hydroxyl group is linked to the 3′ or 4′ carbon atom of the sugar ring, thereby forming a bicyclic sugar moiety. The linkage is preferably a methylene (—CH[0077] 2—)n group bridging the 2′ oxygen atom and the 4′ carbon atom wherein n is 1 or 2. LNAs and preparation thereof are described in WO 98/39352 and WO 99/14226.
  • Natural and Modified Nucleobases [0078]
  • Oligonucleotides may also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (—C≡C—CH[0079] 3) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further modified nucleobases include tricyclic pyrimidines such as phenoxazine cytidine(1H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)-H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), carbazole cytidine (2H-pyrimido[4,5-b]indol-2-one), pyridoindole cytidine (H-pyrido[3′,2′:4,5]pyrrolo[2,3-d]pyrimidin-2-one). Modified nucleobases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B. ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. and are presently preferred base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications.
  • Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,645,985; 5,830,653; 5,763,588; 6,005,096; and 5,681,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference, and U.S. Pat. No. 5,750,692, which is commonly owned with the instant application and also herein incorporated by reference. [0080]
  • Conjugates [0081]
  • Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. These moieties or conjugates can include conjugate groups covalently bound to functional groups such as primary or secondary hydroxyl groups. Conjugate groups of the invention include intercalators, reporter molecules, polyamines, polyamides, polyethylene glycols, polyethers, groups that enhance the pharmacodynamic properties of oligomers, and groups that enhance the pharmacokinetic properties of oligomers. Typical conjugate groups include cholesterols, lipids, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes. Groups that enhance the pharmacodynamic properties, in the context of this invention, include groups that improve uptake, enhance resistance to degradation, and/or strengthen sequence-specific hybridization with the target nucleic acid. Groups that enhance the pharmacokinetic properties, in the context of this invention, include groups that improve uptake, distribution, metabolism or excretion of the compounds of the present invention. Representative conjugate groups are disclosed in International Patent Application PCT/US92/09196, filed Oct. 23, 1992, and U.S. Pat. No. 6,287,860, the entire disclosure of which are incorporated herein by reference. Conjugate moieties include but are not limited to lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-S-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate, a polyamine or a polyethylene glycol chain, or adamantane acetic acid, a palmityl moiety, or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety. Oligonucleotides of the invention may also be conjugated to active drug substances, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fenbufen, ketoprofen, (S)-(+)-pranoprofen, carprofen, dansylsarcosine, 2,3,5-triiodobenzoic acid, flufenamic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diazepine, indomethicin, a barbiturate, a cephalosporin, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic. Oligonucleotide-drug conjugates and their preparation are described in U.S. patent application Ser. No. 09/334,130 (filed Jun. 15, 1999) which is incorporated herein by reference in its entirety. [0082]
  • Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference. [0083]
  • Chimeric Compounds [0084]
  • It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. [0085]
  • The present invention also includes antisense compounds which are chimeric compounds. “Chimeric” antisense compounds or “chimeras,” in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, increased stability and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNAse H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide-mediated inhibition of gene expression. The cleavage of RNA:RNA hybrids can, in like fashion, be accomplished through the actions of endoribonucleases, such as RNAseL which cleaves both cellular and viral RNA. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art. [0086]
  • Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety. [0087]
  • G. Formulations [0088]
  • The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor-targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption-assisting formulations include, but are not limited to, U.S. Pat. Nos. 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference. [0089]
  • The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal, including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents. [0090]
  • The term “prodrug” indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE [(S-acetyl-2-thioethyl) phosphate] derivatives according to the methods disclosed in WO 93/24510 to Gosselin et al., published Dec. 9, 1993 or in WO 94/26764 and U.S. Pat. No. 5,770,713 to Imbach et al. [0091]
  • The term “pharmaceutically acceptable salts” refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto. For oligonucleotides, preferred examples of pharmaceutically acceptable salts and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. [0092]
  • The present invention also includes pharmaceutical compositions and formulations which include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2′-O-methoxyethyl modification are believed to be particularly useful for oral administration. Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful. [0093]
  • The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product. [0094]
  • The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers. [0095]
  • Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, foams and liposome-containing formulations. The pharmaceutical compositions and formulations of the present invention may comprise one or more penetration enhancers, carriers, excipients or other active or inactive ingredients. [0096]
  • Emulsions are typically heterogenous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter. Emulsions may contain additional components in addition to the dispersed phases, and the active drug which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Microemulsions are included as an embodiment of the present invention. Emulsions and their uses are well known in the art and are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. [0097]
  • Formulations of the present invention include liposomal formulations. As used in the present invention, the term “liposome” means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers. Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior that contains the composition to be delivered. Cationic liposomes are positively charged liposomes which are believed to interact with negatively charged DNA molecules to form a stable complex. Liposomes that are pH-sensitive or negatively-charged are believed to entrap DNA rather than complex with it. Both cationic and noncationic liposomes have been used to deliver DNA to cells. [0098]
  • Liposomes also include “sterically stabilized” liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome comprises one or more glycolipids or is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. Liposomes and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. [0099]
  • The pharmaceutical formulations and compositions of the present invention may also include surfactants. The use of surfactants in drug products, formulations and in emulsions is well known in the art. Surfactants and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. [0100]
  • In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly oligonucleotides. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs. Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants. Penetration enhancers and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. [0101]
  • One of skill in the art will recognize that formulations are routinely designed according to their intended use, i.e. route of administration. [0102]
  • Preferred formulations for topical administration include those in which the oligonucleotides of the invention are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. Preferred lipids and liposomes include neutral (e.g. dioleoylphosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC, distearolyphosphatidyl choline) negative (e.g. dimyristoylphosphatidyl glycerol DMPG) and cationic (e.g. dioleoyltetramethylaminopropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA). [0103]
  • For topical or other administration, oligonucleotides of the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, oligonucleotides may be complexed to lipids, in particular to cationic lipids. Preferred fatty acids and esters, pharmaceutically acceptable salts thereof, and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. Topical formulations are described in detail in U.S. patent application Ser. No. 09/315,298 filed on May 20, 1999, which is incorporated herein by reference in its entirety. [0104]
  • Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. Preferred oral formulations are those in which oligonucleotides of the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators. Preferred surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Preferred bile acids/salts and fatty acids and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. Also preferred are combinations of penetration enhancers, for example, fatty acids/salts in combination with bile acids/salts. A particularly preferred combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. Oligonucleotides of the invention may be delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. Oligonucleotide complexing agents and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. Oral formulations for oligonucleotides and their preparation are described in detail in U.S. application Ser. Nos. 09/108,673 (filed Jul. 1, 1998), 09/315,298 (filed May 20, 1999) and 10/071,822, filed Feb. 8, 2002, each of which is incorporated herein by reference in their entirety. [0105]
  • Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients. [0106]
  • Certain embodiments of the invention provide pharmaceutical compositions containing one or more oligomeric compounds and one or more other chemotherapeutic agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents include but are not limited to cancer chemotherapeutic drugs such as daunorubicin, daunomycin, dactinomycin, doxorubicin, epirubicin, idarubicin, esorubicin, bleomycin, mafosfamide, ifosfamide, cytosine arabinoside, bis-chloroethylnitrosurea, busulfan, mitomycin C, actinomycin D, mithramycin, prednisone, hydroxyprogesterone, testosterone, tamoxifen, dacarbazine, procarbazine, hexamethylmelamine, pentamethylmelamine, mitoxantrone, amsacrine, chlorambucil, methylcyclohexylnitrosurea, nitrogen mustards, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-azacytidine, hydroxyurea, deoxycoformycin, 4-hydroxyperoxycyclophosphoramide, 5-fluorouracil (5-FU), 5-fluorodeoxyuridine (5-FUdR), methotrexate (MTX), colchicine, taxol, vincristine, vinblastine, etoposide (VP-16), trimetrexate, irinotecan, topotecan, gemcitabine, teniposide, cisplatin and diethylstilbestrol (DES). When used with the compounds of the invention, such chemotherapeutic agents may be used individually (e.g., 5-FU and oligonucleotide), sequentially (e.g., 5-FU and oligonucleotide for a period of time followed by MTX and oligonucleotide), or in combination with one or more other such chemotherapeutic agents (e.g., 5-FU, MTX and oligonucleotide, or 5-FU, radiotherapy and oligonucleotide). Anti-inflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. Combinations of antisense compounds and other non-antisense drugs are also within the scope of this invention. Two or more combined compounds may be used together or sequentially. [0107]
  • In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second nucleic acid target. Alternatively, compositions of the invention may contain two or more antisense compounds targeted to different regions of the same nucleic acid target. Numerous examples of antisense compounds are known in the art. Two or more combined compounds may be used together or sequentially. [0108]
  • H. Dosing [0109]
  • The formulation of therapeutic compositions and their subsequent administration (dosing) is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC[0110] 50s found to be effective in in vitro and in vivo animal models. In general, dosage is from 0.01 ug to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 ug to 100 g per kg of body weight, once or more daily, to once every 20 years.
  • While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same. [0111]
  • EXAMPLES Example 1 Synthesis of Nucleoside Phosphoramidites
  • The following compounds, including amidites and their intermediates were prepared as described in U.S. Pat. No. 6,426,220 and published PCT WO 02/36743; 5′-O-Dimethoxytrityl-thymidine intermediate for 5-methyl dC amidite, 5′-O-Dimethoxytrityl-2′-deoxy-5-methylcytidine intermediate for 5-methyl-dC amidite, 5′-O-Dimethoxytrityl-2′-deoxy-N4-benzoyl-5-methylcytidine penultimate intermediate for 5-methyl dC amidite, [5′-O-(4,4′-Dimethoxytriphenylmethyl)-2′-deoxy-N[0112] 4-benzoyl-5-methylcytidin-3′-O-yl]-2-cyanoethyl-N,N-diisopropylphosphoramidite (5-methyl dC amidite), 2′-Fluorodeoxyadenosine, 2′-Fluorodeoxyguanosine, 2′-Fluorouridine, 2′-Fluorodeoxycytidine, 2′-O-(2-Methoxyethyl) modified amidites, 2′-O-(2-methoxyethyl)-5-methyluridine intermediate, 5′-O-DMT-2′-O-(2-methoxyethyl)-5-methyluridine penultimate intermediate, [5′-O-(4,4′-Dimethoxytriphenylmethyl)-2′-O-(2-methoxyethyl)-5-methyluridin-3′-O-yl]-2-cyanoethyl-N,N-diisopropylphosphoramidite (MOE T amidite), 5′-O-Dimethoxytrityl-2′-O-(2-methoxyethyl)-5-methylcytidine intermediate, 5′-O-dimethoxytrityl-2′-O-(2-methoxyethyl)-N4-benzoyl-5-methyl-cytidine penultimate intermediate, [5′-O-(4,4′-Dimethoxytriphenylmethyl)-2′-O-(2-methoxyethyl)-N4-benzoyl-5-methylcytidin-3′-O-yl]-2-cyanoethyl-N,N-diisopropylphosphoramidite (MOE 5-Me-C amidite), [5′-O-(4,4′-Dimethoxytriphenylmethyl)-2′-O-(2-methoxyethyl)-N4-benzoyladenosin-3′-O-yl]-2-cyanoethyl-N,N-diisopropylphosphoramidite (MOE A amdite), [5′-O-(4,4′-Dimethoxytriphenylmethyl)-2′-O-(2-methoxyethyl)-N4-isobutyrylguanosin-3′-O-yl]-2-cyanoethyl-N,N-diisopropylphosphoramidite (MOE G amidite), 2′-O-(Aminooxyethyl) nucleoside amidites and 2′-O-(dimethylaminooxyethyl) nucleoside amidites, 2′-(Dimethylaminooxyethoxy) nucleoside amidites, 5′-O-tert-Butyldiphenylsilyl-O2-2′-anhydro-5-methyluridine, 5′-O-tert-Butyldiphenylsilyl-2′-O-(2-hydroxyethyl)-5-methyluridine, 2′-O-([2-phthalimidoxy)ethyl]-5′-t-butyldiphenylsilyl-5-methyluridine, 5′-O-tert-butyldiphenylsilyl-2′-O-[(2-formadoximinooxy)ethyl]-5-methyluridine, 5′-O-tert-Butyldiphenylsilyl-2′-O-[N,N dimethylaminooxyethyl]-5-methyluridine, 2′-O-(dimethylaminooxyethyl)-5-methyluridine, 5′-O-DMT-2′-O-(dimethylaminooxyethyl)-5-methyluridine, 5′-O-DMT-2′-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine-3′-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite], 2′-(Aminooxyethoxy) nucleoside amidites, N2-isobutyryl-6-O-diphenylcarbamoyl-2′-O-(2-ethylacetyl)-5′-O-(4,4′-dimethoxytrityl)guanosine-3′-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite], 2′-dimethylaminoethoxyethoxy (2′-DMAEOE) nucleoside amidites, 2′-O-[2(2-N,N-dimethylaminoethoxy)ethyl]-5-methyl uridine, 5′-O-dimethoxytrityl-2′-O-[2(2-N,N-dimethylaminoethoxy)-ethyl)]-5-methyl uridine and 5′-O-Dimethoxytrityl-2′-O-[2(2-N,N-dimethylaminoethoxy)-ethyl)]-5-methyl uridine-3′-O-(cyanoethyl-N,N-diisopropyl)phosphoramidite.
  • Example 2 Oligonucleotide and Oligonucleoside Synthesis
  • The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives. [0113]
  • Oligonucleotides: Unsubstituted and substituted phosphodiester (P═O) oligonucleotides are synthesized on an automated DNA synthesizer (Applied Biosystems model 394) using standard phosphoramidite chemistry with oxidation by iodine. [0114]
  • Phosphorothioates (P═S) are synthesized similar to phosphodiester oligonucleotides with the following exceptions: thiation was effected by utilizing a 10% w/v solution of 3,H-1,2-benzodithiole-3-one 1,1-dioxide in acetonitrile for the oxidation of the phosphite linkages. The thiation reaction step time was increased to 180 sec and preceded by the normal capping step. After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55° C. (12-16 hr), the oligonucleotides were recovered by precipitating with >3 volumes of ethanol from a 1 M NH[0115] 4OAc solution. Phosphinate oligonucleotides are prepared as described in U.S. Pat. No. 5,508,270, herein incorporated by reference.
  • Alkyl phosphonate oligonucleotides are prepared as described in U.S. Pat. No. 4,469,863, herein incorporated by reference. [0116]
  • 3′-Deoxy-3′-methylene phosphonate oligonucleotides are prepared as described in U.S. Pat. Nos. 5,610,289 or 5,625,050, herein incorporated by reference. [0117]
  • Phosphoramidite oligonucleotides are prepared as described in U.S. Pat. No. 5,256,775 or U.S. Pat. No. 5,366,878, herein incorporated by reference. [0118]
  • Alkylphosphonothioate oligonucleotides are prepared as described in published PCT applications PCT/US94/00902 and PCT/US93/06976 (published as WO 94/17093 and WO 94/02499, respectively), herein incorporated by reference. [0119]
  • 3′-Deoxy-3′-amino phosphoramidate oligonucleotides are prepared as described in U.S. Pat. No. 5,476,925, herein incorporated by reference. [0120]
  • Phosphotriester oligonucleotides are prepared as described in U.S. Pat. No. 5,023,243, herein incorporated by reference. [0121]
  • Borano phosphate oligonucleotides are prepared as described in U.S. Pat. Nos. 5,130,302 and 5,177,198, both herein incorporated by reference. [0122]
  • Oligonucleosides: Methylenemethylimino linked oligonucleosides, also identified as MMI linked oligonucleosides, methylenedimethylhydrazo linked oligonucleosides, also identified as MDH linked oligonucleosides, and methylenecarbonylamino linked oligonucleosides, also identified as amide-3 linked oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for instance, alternating MMI and P═O or P═S linkages are prepared as described in U.S. Pat. Nos. 5,378,825, 5,386,023, 5,489,677, 5,602,240 and 5,610,289, all of which are herein incorporated by reference. [0123]
  • Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Pat. Nos. 5,264,562 and 5,264,564, herein incorporated by reference. [0124]
  • Ethylene oxide linked oligonucleosides are prepared as described in U.S. Pat. No. 5,223,618, herein incorporated by reference. [0125]
  • Example 3 RNA Synthesis
  • In general, RNA synthesis chemistry is based on the selective incorporation of various protecting groups at strategic intermediary reactions. Although one of ordinary skill in the art will understand the use of protecting groups in organic synthesis, a useful class of protecting groups includes silyl ethers. In particular bulky silyl ethers are used to protect the 5′-hydroxyl in combination with an acid-labile orthoester protecting group on the 2′-hydroxyl. This set of protecting groups is then used with standard solid-phase synthesis technology. It is important to lastly remove the acid labile orthoester protecting group after all other synthetic steps. Moreover, the early use of the silyl protecting groups during synthesis ensures facile removal when desired, without undesired deprotection of 2′ hydroxyl. [0126]
  • Following this procedure for the sequential protection of the 5′-hydroxyl in combination with protection of the 2′-hydroxyl by protecting groups that are differentially removed and are differentially chemically labile, RNA oligonucleotides were synthesized. [0127]
  • RNA oligonucleotides are synthesized in a stepwise fashion. Each nucleotide is added sequentially (3′- to 5′-direction) to a solid support-bound oligonucleotide. The first nucleoside at the 3′-end of the chain is covalently attached to a solid support. The nucleotide precursor, a ribonucleoside phosphoramidite, and activator are added, coupling the second base onto the 5′-end of the first nucleoside. The support is washed and any unreacted 5′-hydroxyl groups are capped with acetic anhydride to yield 5′-acetyl moieties. The linkage is then oxidized to the more stable and ultimately desired P(V) linkage. At the end of the nucleotide addition cycle, the 5′-silyl group is cleaved with fluoride. The cycle is repeated for each subsequent nucleotide. [0128]
  • Following synthesis, the methyl protecting groups on the phosphates are cleaved in 30 minutes utilizing 1 M disodium-2-carbamoyl-2-cyanoethylene-1,1-dithiolate trihydrate (S[0129] 2Na2) in DMF. The deprotection solution is washed from the solid support-bound oligonucleotide using water. The support is then treated with 40% methylamine in water for 10 minutes at 55° C. This releases the RNA oligonucleotides into solution, deprotects the exocyclic amines, and modifies the 2′- groups. The oligonucleotides can be analyzed by anion exchange HPLC at this stage.
  • The 2′-orthoester groups are the last protecting groups to be removed. The ethylene glycol monoacetate orthoester protecting group developed by Dharmacon Research, Inc. (Lafayette, Colo.), is one example of a useful orthoester protecting group which, has the following important properties. It is stable to the conditions of nucleoside phosphoramidite synthesis and oligonucleotide synthesis. However, after oligonucleotide synthesis the oligonucleotide is treated with methylamine which not only cleaves the oligonucleotide from the solid support but also removes the acetyl groups from the orthoesters. The resulting 2-ethylhydroxyl substituents on the orthoester are less electron withdrawing than the acetylated precursor. As a result, the modified orthoester becomes more labile to acid-catalyzed hydrolysis. Specifically, the rate of cleavage is approximately 10 times faster after the acetyl groups are removed. Therefore, this orthoester possesses sufficient stability in order to be compatible with oligonucleotide synthesis and yet, when subsequently modified, permits deprotection to be carried out under relatively mild aqueous conditions compatible with the final RNA oligonucleotide product. [0130]
  • Additionally, methods of RNA synthesis are well known in the art (Scaringe, S. A. Ph.D. Thesis, University of Colorado, 1996; Scaringe, S. A., et al., [0131] J. Am. Chem. Soc., 1998, 120, 11820-11821; Matteucci, M. D. and Caruthers, M. H. J. Am. Chem. Soc., 1981, 103, 3185-3191; Beaucage, S. L. and Caruthers, M. H. Tetrahedron Lett., 1981, 22, 1859-1862; Dahl, B. J., et al., Acta Chem. Scand,. 1990, 44, 639-641; Reddy, M. P., et al., Tetrahedrom Lett., 1994, 25, 4311-4314; Wincott, F. et al., Nucleic Acids Res., 1995, 23, 2677-2684; Griffin, B. E., et al., Tetrahedron, 1967, 23, 2301-2313; Griffin, B. E., et al., Tetrahedron, 1967, 23, 2315-2331).
  • RNA antisense compounds (RNA oligonucleotides) of the present invention can be synthesized by the methods herein or purchased from Dharmacon Research, Inc (Lafayette, Colo.). Once synthesized, complementary RNA antisense compounds can then be annealed by methods known in the art to form double stranded (duplexed) antisense compounds. For example, duplexes can be formed by combining 30 μl of each of the complementary strands of RNA oligonucleotides (50 uM RNA oligonucleotide solution) and 15 μl of 5× annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH pH 7.4, 2 mM magnesium acetate) followed by heating for 1 minute at 90° C., then 1 hour at 37° C. The resulting duplexed antisense compounds can be used in kits, assays, screens, or other methods to investigate the role of a target nucleic acid. [0132]
  • Example 4 Synthesis of Chimeric Oligonucleotides
  • Chimeric oligonucleotides, oligonucleosides or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the “gap” segment of linked nucleosides is positioned between 5′ and 3′ “wing” segments of linked nucleosides and a second “open end” type wherein the “gap” segment is located at either the 3′ or the 5′ terminus of the oligomeric compound. Oligonucleotides of the first type are also known in the art as “gapmers” or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as “hemimers” or “wingmers”. [0133]
  • [2′-O—Me]-[2′-deoxy]-[2′-O—Me] Chimeric Phosphorothioate Oligonucleotides [0134]
  • Chimeric oligonucleotides having 2′-O-alkyl phosphorothioate and 2′-deoxy phosphorothioate oligonucleotide segments are synthesized using an Applied Biosystems automated DNA synthesizer Model 394, as above. Oligonucleotides are synthesized using the automated synthesizer and 2′-deoxy-5′-dimethoxytrityl-3′-O-phosphoramidite for the DNA portion and 5′-dimethoxytrityl-2′-O-methyl-3′-O-phosphoramidite for 5′ and 3′ wings. The standard synthesis cycle is modified by incorporating coupling steps with increased reaction times for the 5′-dimethoxytrityl-2′-O-methyl-3′-O-phosphoramidite. The fully protected oligonucleotide is cleaved from the support and deprotected in concentrated ammonia (NH[0135] 4OH) for 12-16 hr at 55° C. The deprotected oligo is then recovered by an appropriate method (precipitation, column chromatography, volume reduced in vacuo and analyzed spetrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.
  • [2′-O-(2-Methoxyethyl)]-[2′-deoxy]-[2′-O-(Methoxyethyl)] Chimeric Phosphorothioate Oligonucleotides [0136]
  • [2′-O-(2-methoxyethyl)]-[2′-deoxy]-[-2′-O-(methoxyethyl)] chimeric phosphorothioate oligonucleotides were prepared as per the procedure above for the 2′-O-methyl chimeric oligonucleotide, with the substitution of 2′-O-(methoxyethyl) amidites for the 2′-O-methyl amidites. [0137]
  • [2′-O-(2-Methoxyethyl)Phosphodiester]-[2′-deoxy Phosphorothioate]-[2′-O-(2-Methoxyethyl) Phosphodiester] Chimeric Oligonucleotides [0138]
  • [2′-O-(2-methoxyethyl phosphodiester]-[2′-deoxy phosphorothioate]-[2′-O-(methoxyethyl) phosphodiester] chimeric oligonucleotides are prepared as per the above procedure for the 2′-O-methyl chimeric oligonucleotide with the substitution of 2′-O-(methoxyethyl) amidites for the 2′-O-methyl amidites, oxidation with iodine to generate the phosphodiester internucleotide linkages within the wing portions of the chimeric structures and sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) to generate the phosphorothioate internucleotide linkages for the center gap. [0139]
  • Other chimeric oligonucleotides, chimeric oligonucleosides and mixed chimeric oligonucleotides/oligonucleosides are synthesized according to U.S. Pat. No. 5,623,065, herein incorporated by reference. [0140]
  • Example 5 Design and Screening of Duplexed Antisense Compounds Targeting Diacylglycerol Acyltransferase 1
  • In accordance with the present invention, a series of nucleic acid duplexes comprising the antisense compounds of the present invention and their complements can be designed to target diacylglycerol acyltransferase 1. The nucleobase sequence of the antisense strand of the duplex comprises at least a portion of an oligonucleotide in Table 1. The ends of the strands may be modified by the addition of one or more natural or modified nucleobases to form an overhang. The sense strand of the dsRNA is then designed and synthesized as the complement of the antisense strand and may also contain modifications or additions to either terminus. For example, in one embodiment, both strands of the dsRNA duplex would be complementary over the central nucleobases, each having overhangs at one or both termini. [0141]
  • For example, a duplex comprising an antisense strand having the sequence CGAGAGGCGGACGGGACCG and having a two-nucleobase overhang of deoxythymidine(dT) would have the following structure: [0142]
      cgagaggcggacgggaccgTT Antisense Strand
      |||||||||||||||||||
    TTgctctccgcctgccctggc Complement
  • RNA strands of the duplex can be synthesized by methods disclosed herein or purchased from Dharmacon Research Inc., (Lafayette, Colo.). Once synthesized, the complementary strands are annealed. The single strands are aliquoted and diluted to a concentration of 50 uM. Once diluted, 30 uL of each strand is combined with 15 uL of a 5× solution of annealing buffer. The final concentration of said buffer is 100 mM potassium acetate, 30 mM HEPES-KOH pH 7.4, and 2 mM magnesium acetate. The final volume is 75 uL. This solution is incubated for 1 minute at 90° C. and then centrifuged for 15 seconds. The tube is allowed to sit for 1 hour at 37° C. at which time the dsRNA duplexes are used in experimentation. The final concentration of the dsRNA duplex is 20 uM. This solution can be stored frozen (−20° C.) and freeze-thawed up to 5 times. [0143]
  • Once prepared, the duplexed antisense compounds are evaluated for their ability to modulate diacylglycerol acyltransferase 1 expression. [0144]
  • When cells reached 80% confluency, they are treated with duplexed antisense compounds of the invention. For cells grown in 96-well plates, wells are washed once with 200 μL OPTI-MEM-1 reduced-serum medium (Gibco BRL) and then treated with 130 μL of OPTI-MEM-1 containing 12 μg/mL LIPOFECTIN (Gibco BRL) and the desired duplex antisense compound at a final concentration of 200 nM. After 5 hours of treatment, the medium is replaced with fresh medium. Cells are harvested 16 hours after treatment, at which time RNA is isolated and target reduction measured by RT-PCR. [0145]
  • Example 6 Oligonucleotide Isolation
  • After cleavage from the controlled pore glass solid support and deblocking in concentrated ammonium hydroxide at 55° C. for 12-16 hours, the oligonucleotides or oligonucleosides are recovered by precipitation out of 1 M NH[0146] 4OAc with >3 volumes of ethanol. Synthesized oligonucleotides were analyzed by electrospray mass spectroscopy (molecular weight determination) and by capillary gel electrophoresis and judged to be at least 70% full length material. The relative amounts of phosphorothioate and phosphodiester linkages obtained in the synthesis was determined by the ratio of correct molecular weight relative to the −16 amu product (+/−32+/−48). For some studies oligonucleotides were purified by HPLC, as described by Chiang et al., J. Biol. Chem. 1991, 266, 18162-18171. Results obtained with HPLC-purified material were similar to those obtained with non-HPLC purified material.
  • Example 7 Oligonucleotide Synthesis—96 Well Plate Format
  • Oligonucleotides were synthesized via solid phase P(III) phosphoramidite chemistry on an automated synthesizer capable of assembling 96 sequences simultaneously in a 96-well format. Phosphodiester internucleotide linkages were afforded by oxidation with aqueous iodine. Phosphorothioate internucleotide linkages were generated by sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) in anhydrous acetonitrile. Standard base-protected beta-cyanoethyl-diiso-propyl phosphoramidites were purchased from commercial vendors (e.g. PE-Applied Biosystems, Foster City, Calif., or Pharmacia, Piscataway, N.J.). Non-standard nucleosides are synthesized as per standard or patented methods. They are utilized as base protected beta-cyanoethyldiisopropyl phosphoramidites. [0147]
  • Oligonucleotides were cleaved from support and deprotected with concentrated NH[0148] 4OH at elevated temperature (55-60° C.) for 12-16 hours and the released product then dried in vacuo. The dried product was then re-suspended in sterile water to afford a master plate from which all analytical and test plate samples are then diluted utilizing robotic pipettors.
  • Example 8 Oligonucleotide Analysis—96-Well Plate Format
  • The concentration of oligonucleotide in each well was assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products was evaluated by capillary electrophoresis (CE) in either the 96-well format (Beckman P/ACE™ MDQ) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACE™ 5000, ABI 270). Base and backbone composition was confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates were diluted from the master plate using single and multi-channel robotic pipettors. Plates were judged to be acceptable if at least 85% of the compounds on the plate were at least 85% full length. [0149]
  • Example 9 Cell Culture and Oligonucleotide Treatment
  • The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR or Northern blot analysis. The following cell types are provided for illustrative purposes, but other cell types can be routinely used, provided that the target is expressed in the cell type chosen. This can be readily determined by methods routine in the art, for example Northern blot analysis, ribonuclease protection assays, or RT-PCR. [0150]
  • T-24 Cells: [0151]
  • The human transitional cell bladder carcinoma cell line T-24 was obtained from the American Type Culture Collection (ATCC) (Manassas, Va.). T-24 cells were routinely cultured in complete McCoy's 5A basal media (Invitrogen Corporation, Carlsbad, Calif.) supplemented with 10% fetal calf serum (Invitrogen Corporation, Carlsbad, Calif.), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Invitrogen Corporation, Carlsbad, Calif.). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #353872) at a density of 7000 cells/well for use in RT-PCR analysis. [0152]
  • For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide. [0153]
  • A549 Cells: [0154]
  • The human lung carcinoma cell line A549 was obtained from the American Type Culture Collection (ATCC) (Manassas, Va.). A549 cells were routinely cultured in DMEM basal media (Invitrogen Corporation, Carlsbad, Calif.) supplemented with 10% fetal calf serum (Invitrogen Corporation, Carlsbad, Calif.), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Invitrogen Corporation, Carlsbad, Calif.). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. [0155]
  • NHDF Cells: [0156]
  • Human neonatal dermal fibroblast (NHDF) were obtained from the Clonetics Corporation (Walkersville, Md.). NHDFs were routinely maintained in Fibroblast Growth Medium (Clonetics Corporation, Walkersville, Md.) supplemented as recommended by the supplier. Cells were maintained for up to 10 passages as recommended by the supplier. [0157]
  • HEK Cells: [0158]
  • Human embryonic keratinocytes (HEK) were obtained from the Clonetics Corporation (Walkersville, Md.). HEKs were routinely maintained in Keratinocyte Growth Medium (Clonetics Corporation, Walkersville, Md.) formulated as recommended by the supplier. Cells were routinely maintained for up to 10 passages as recommended by the supplier. [0159]
  • HepG2 Cells: [0160]
  • The human hepatoblastoma cell line HepG2 was obtained from the American Type Culture Collection (Manassas, Va.). HepG2 cells were routinely cultured in Eagle's MEM supplemented with 10% fetal calf serum, non-essential amino acids, and 1 mM sodium pyruvate (Gibco/Life Technologies, Gaithersburg, Md.). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis. [0161]
  • For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide. [0162]
  • b.END Cells: [0163]
  • The mouse brain endothelial cell line b.END was obtained from Dr. Werner Risau at the Max Plank Instititute (Bad Nauheim, Germany). b.END cells were routinely cultured in DMEM supplemented with 10% fetal bovine serum (Gibco/Life Technologies, Gaithersburg, Md.). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 24-well plates (Falcon-Primaria #3047) at a density of 40,000 cells/well for use in RT-PCR analysis. [0164]
  • For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide. [0165]
  • Treatment with Antisense Compounds: [0166]
  • When cells reached 65-75% confluency, they were treated with oligonucleotide. For cells grown in 24-well plates, wells were washed once with 400 μL Eagle's DMEM medium and then treated with 100 μL of Eagle's DMEM containing 3.75 μg/mL LIPOFECTIN™ (Invitrogen Corporation, Carlsbad, Calif.) and the desired concentration of oligonucleotide. Cells are treated and data are obtained in triplicate. After 4-7 hours of treatment at 37° C., the medium was replaced with Eagle's DMEM supplemented with 10% fetal bovine serum. Cells were harvested 20-24 hours after oligonucleotide treatment. [0167]
  • The concentration of oligonucleotide used varies from cell line to cell line. To determine the optimal oligonucleotide concentration for a particular cell line, the cells are treated with a positive control oligonucleotide at a range of concentrations. For human cells the positive control oligonucleotide is selected from either ISIS 13920 (TCCGTCATCGCTCCTCAGGG, SEQ ID NO: 1) which is targeted to human H-ras, or ISIS 18078, (GTGCGCGCGAGCCCGAAATC, SEQ ID NO: 2) which is targeted to human Jun-N-terminal kinase-2 (JNK2). Both controls are 2′-O-methoxyethyl gapmers (2′-O-methoxyethyls shown in bold) with a phosphorothioate backbone. For mouse or rat cells the positive control oligonucleotide is ISIS 15770, ATGCATTCTGCCCCCAAGGA, SEQ ID NO: 3, a 2′-O-methoxyethyl gapmer (2′-O-methoxyethyls shown in bold) with a phosphorothioate backbone which is targeted to both mouse and rat c-raf. The concentration of positive control oligonucleotide that results in 80% inhibition of c-H-ras (for ISIS 13920), JNK2 (for ISIS 18078) or c-raf (for ISIS 15770) mRNA is then utilized as the screening concentration for new oligonucleotides in subsequent experiments for that cell line. If 80% inhibition is not achieved, the lowest concentration of positive control oligonucleotide that results in 60% inhibition of c-H-ras, JNK2 or c-raf mRNA is then utilized as the oligonucleotide screening concentration in subsequent experiments for that cell line. If 60% inhibition is not achieved, that particular cell line is deemed as unsuitable for oligonucleotide transfection experiments. The concentrations of antisense oligonucleotides used herein are from 50 nM to 300 nM. [0168]
  • Example 10 Analysis of Oligonucleotide Inhibition of Diacylglycerol Acyltransferase 1 Expression
  • Antisense modulation of diacylglycerol acyltransferase 1 expression can be assayed in a variety of ways known in the art. For example, diacylglycerol acyltransferase 1 mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. The preferred method of RNA analysis of the present invention is the use of total cellular RNA as described in other examples herein. Methods of RNA isolation are well known in the art. Northern blot analysis is also routine in the art. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISM™ 7600, 7700, or 7900 Sequence Detection System, available from PE-Applied Biosystems, Foster City, Calif. and used according to manufacturer's instructions. [0169]
  • Protein levels of diacylglycerol acyltransferase 1 can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), enzyme-linked immunosorbent assay (ELISA) or fluorescence-activated cell sorting (FACS). Antibodies directed to diacylglycerol acyltransferase 1 can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, Mich.), or can be prepared via conventional monoclonal or polyclonal antibody generation methods well known in the art. [0170]
  • Example 11 Design of Phenotypic Assays and in Vivo Studies for the Use of Diacylglycerol Acyltransferase 1 Inhibitors
  • Phenotypic Assays [0171]
  • Once diacylglycerol acyltransferase 1 inhibitors have been identified by the methods disclosed herein, the compounds are further investigated in one or more phenotypic assays, each having measurable endpoints predictive of efficacy in the treatment of a particular disease state or condition. [0172]
  • Phenotypic assays, kits and reagents for their use are well known to those skilled in the art and are herein used to investigate the role and/or association of diacylglycerol acyltransferase 1 in health and disease. Representative phenotypic assays, which can be purchased from any one of several commercial vendors, include those for determining cell viability, cytotoxicity, proliferation or cell survival (Molecular Probes, Eugene, Oreg.; PerkinElmer, Boston, Mass.), protein-based assays including enzymatic assays (Panvera, LLC, Madison, Wis.; BD Biosciences, Franklin Lakes, N.J.; Oncogene Research Products, San Diego, Calif.), cell regulation, signal transduction, inflammation, oxidative processes and apoptosis (Assay Designs Inc., Ann Arbor, Mich.), triglyceride accumulation (Sigma-Aldrich, St. Louis, Mo.), angiogenesis assays, tube formation assays, cytokine and hormone assays and metabolic assays (Chemicon International Inc., Temecula, Calif.; Amersham Biosciences, Piscataway, N.J.). [0173]
  • In one non-limiting example, cells determined to be appropriate for a particular phenotypic assay (i.e., MCF-7 cells selected for breast cancer studies; adipocytes for obesity studies) are treated with diacylglycerol acyltransferase 1 inhibitors identified from the in vitro studies as well as control compounds at optimal concentrations which are determined by the methods described above. At the end of the treatment period, treated and untreated cells are analyzed by one or more methods specific for the assay to determine phenotypic outcomes and endpoints. [0174]
  • Phenotypic endpoints include changes in cell morphology over time or treatment dose as well as changes in levels of cellular components such as proteins, lipids, nucleic acids, hormones, saccharides or metals. Measurements of cellular status which include pH, stage of the cell cycle, intake or excretion of biological indicators by the cell, are also endpoints of interest. [0175]
  • Analysis of the geneotype of the cell (measurement of the expression of one or more of the genes of the cell) after treatment is also used as an indicator of the efficacy or potency of the diacylglycerol acyltransferase 1 inhibitors. Hallmark genes, or those genes suspected to be associated with a specific disease state, condition, or phenotype, are measured in both treated and untreated cells. [0176]
  • In Vivo Studies [0177]
  • The individual subjects of the in vivo studies described herein are warm-blooded vertebrate animals, which includes humans. [0178]
  • The clinical trial is subjected to rigorous controls to ensure that individuals are not unnecessarily put at risk and that they are fully informed about their role in the study. To account for the psychological effects of receiving treatments, volunteers are randomly given placebo or diacylglycerol acyltransferase 1 inhibitor. Furthermore, to prevent the doctors from being biased in treatments, they are not informed as to whether the medication they are administering is a diacylglycerol acyltransferase 1 inhibitor or a placebo. Using this randomization approach, each volunteer has the same chance of being given either the new treatment or the placebo. [0179]
  • Volunteers receive either the diacylglycerol acyltransferase 1 inhibitor or placebo for eight week period with biological parameters associated with the indicated disease state or condition being measured at the beginning (baseline measurements before any treatment), end (after the final treatment), and at regular intervals during the study period. Such measurements include the levels of nucleic acid molecules encoding diacylglycerol acyltransferase 1 or diacylglycerol acyltransferase 1 protein levels in body fluids, tissues or organs compared to pre-treatment levels. Other measurements include, but are not limited to, indices of the disease state or condition being treated, body weight, blood pressure, serum titers of pharmacologic indicators of disease or toxicity as well as ADME (absorption, distribution, metabolism and excretion) measurements. [0180]
  • Information recorded for each patient includes age (years), gender, height (cm), family history of disease state or condition (yes/no), motivation rating (some/moderate/great) and number and type of previous treatment regimens for the indicated disease or condition. [0181]
  • Volunteers taking part in this study are healthy adults (age 18 to 65 years) and roughly an equal number of males and females participate in the study. Volunteers with certain characteristics are equally distributed for placebo and diacylglycerol acyltransferase 1 inhibitor treatment. In general, the volunteers treated with placebo have little or no response to treatment, whereas the volunteers treated with the diacylglycerol acyltransferase 1 inhibitor show positive trends in their disease state or condition index at the conclusion of the study. [0182]
  • Example 12 RNA Isolation
  • Poly(A)+ mRNA Isolation [0183]
  • Poly(A)+ mRNA was isolated according to Miura et al., ([0184] Clin. Chem., 1996, 42, 1758-1764). Other methods for poly(A)+mRNA isolation are routine in the art. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 60 μL lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.5 M NaCl, 0.5% NP-40, 20 mM vanadyl-ribonucleoside complex) was added to each well, the plate was gently agitated and then incubated at room temperature for five minutes. 55 μL of lysate was transferred to Oligo d(T) coated 96-well plates (AGCT Inc., Irvine, Calif.). Plates were incubated for 60 minutes at room temperature, washed 3 times with 200 μL of wash buffer (10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.3 M NaCl). After the final wash, the plate was blotted on paper towels to remove excess wash buffer and then air-dried for 5 minutes. 60 μL of elution buffer (5 mM Tris-HCl pH 7.6), preheated to 70° C., was added to each well, the plate was incubated on a 90° C. hot plate for 5 minutes, and the eluate was then transferred to a fresh 96-well plate.
  • Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions. [0185]
  • Total RNA Isolation [0186]
  • Total RNA was isolated using an RNEASY 96™ kit and buffers purchased from Qiagen Inc. (Valencia, Calif.) following the manufacturer's recommended procedures. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 150 μL Buffer RLT was added to each well and the plate vigorously agitated for 20 seconds. 150 μL of 70% ethanol was then added to each well and the contents mixed by pipetting three times up and down. The samples were then transferred to the RNEASY 96™ well plate attached to a QIAVAC™ manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum was applied for 1 minute. 500 μL of Buffer RW1 was added to each well of the RNEASY 96™ plate and incubated for 15 minutes and the vacuum was again applied for 1 minute. An additional 500 μL of Buffer RW1 was added to each well of the RNEASY 96™ plate and the vacuum was applied for 2 minutes. 1 mL of Buffer RPE was then added to each well of the RNEASY 96™ plate and the vacuum applied for a period of 90 seconds. The Buffer RPE wash was then repeated and the vacuum was applied for an additional 3 minutes. The plate was then removed from the QIAVAC™ manifold and blotted dry on paper towels. The plate was then re-attached to the QIAVAC™ manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA was then eluted by pipetting 140 μL of RNAse free water into each well, incubating 1 minute, and then applying the vacuum for 3 minutes. [0187]
  • The repetitive pipetting and elution steps may be automated using a QIAGEN Bio-Robot 9604 (Qiagen, Inc., Valencia, Calif.). Essentially, after lysing of the cells on the culture plate, the plate is transferred to the robot deck where the pipetting, DNase treatment and elution steps are carried out. [0188]
  • Example 13 Real-time Quantitative PCR Analysis of Diacylglycerol Acyltransferase 1 mRNA Levels
  • Quantitation of diacylglycerol acyltransferase 1 mRNA levels was accomplished by real-time quantitative PCR using the ABI PRISM™ 7600, 7700, or 7900 Sequence Detection System (PE-Applied Biosystems, Foster City, Calif.) according to manufacturer's instructions. This is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye (e.g., FAM or JOE, obtained from either PE-Applied Biosystems, Foster City, Calif., Operon Technologies Inc., Alameda, Calif. or Integrated DNA Technologies Inc., Coralville, Iowa) is attached to the 5′ end of the probe and a quencher dye (e.g., TAMRA, obtained from either PE-Applied Biosystems, Foster City, Calif., Operon Technologies Inc., Alameda, Calif. or Integrated DNA Technologies Inc., Coralville, Iowa) is attached to the 3′ end of the probe. When the probe and dyes are intact, reporter dye emission is quenched by the proximity of the 3′ quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5′-exonuclease activity of Taq polymerase. During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is monitored at regular intervals by laser optics built into the ABI PRISM™ Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples. [0189]
  • Prior to quantitative PCR analysis, primer-probe sets specific to the target gene being measured are evaluated for their ability to be “multiplexed” with a GAPDH amplification reaction. In multiplexing, both the target gene and the internal standard gene GAPDH are amplified concurrently in a single sample. In this analysis, mRNA isolated from untreated cells is serially diluted. Each dilution is amplified in the presence of primer-probe sets specific for GAPDH only, target gene only (“single-plexing”), or both (multiplexing). Following PCR amplification, standard curves of GAPDH and target mRNA signal as a function of dilution are generated from both the single-plexed and multiplexed samples. If both the slope and correlation coefficient of the GAPDH and target signals generated from the multiplexed samples fall within 10% of their corresponding values generated from the single-plexed samples, the primer-probe set specific for that target is deemed multiplexable. Other methods of PCR are also known in the art. [0190]
  • PCR reagents were obtained from Invitrogen Corporation, (Carlsbad, Calif.). RT-PCR reactions were carried out by adding 30 μL PCR cocktail (2.5× PCR buffer minus MgCl[0191] 2, 6.6 mM MgCl2, 375 μM each of DATP, dCTP, dCTP and dGTP, 375 nM each of forward primer and reverse primer, 125 nM of probe, 4 Units RNAse inhibitor, 1.25 Units PLATINUM® Taq, 5 Units MuLV reverse transcriptase, and 2.5× ROX dye) to 96-well plates containing 20 μL total RNA solution (20-200 ng). The RT reaction was carried out by incubation for 30 minutes at 48° C. Following a 10 minute incubation at 95° C. to activate the PLATINUM® Taq, 45 cycles of a two-step PCR protocol were carried out: 95° C. for 15 seconds (denaturation) followed by 60° C. for 1.5 minutes (annealing/extension).
  • Gene target quantities obtained by real time RT-PCR are normalized using either the expression level of GAPDH, a gene whose expression is constant, or by quantifying total RNA using RiboGreen™ (Molecular Probes, Inc. Eugene, Oreg.). GAPDH expression is quantified by real time RT-PCR, by being run simultaneously with the target, multiplexing, or separately. Total RNA is quantified using RiboGreen™ RNA quantification reagent (Molecular Probes, Inc. Eugene, Oreg.). Methods of RNA quantification by RiboGreen™ are taught in Jones, L. J., et al, (Analytical Biochemistry, 1998, 265, 368-374). [0192]
  • In this assay, 180 μL of RiboGreen™ working reagent (RiboGreen™ reagent diluted 1:350 in 10 mM Tris-HCl, 1 mM EDTA, pH 7.5) is pipetted into a 96-well plate containing 20 μL purified, cellular RNA. The plate is read in a CytoFluor 4000 (PE Applied Biosystems) with excitation at 485 nm and emission at 530 nm. [0193]
  • Probes and primers to human diacylglycerol acyltransferase 1 were designed to hybridize to a human diacylglycerol acyltransferase 1 sequence, using published sequence information (GenBank accession number NM[0194] 012079.2, incorporated herein as SEQ ID NO:4). For human diacylglycerol acyltransferase 1 the PCR primers were: forward primer: TCCCCGCATCCGGAA (SEQ ID NO: 5) reverse primer: CTGGGTGAAGAACAGCATCTCA (SEQ ID NO: 6) and the PCR probe was: FAM-CGCTTTCTGCTGCGACGGATCC-TAMRA (SEQ ID NO: 7) where FAM is the fluorescent dye and TAMRA is the quencher dye. For human GAPDH the PCR primers were: forward primer: GAAGGTGAAGGTCGGAGTC(SEQ ID NO:8) reverse primer: GAAGATGGTGATGGGATTTC (SEQ ID NO:9) and the PCR probe was: 5′ JOE-CAAGCTTCCCGTTCTCAGCC- TAMRA 3′ (SEQ ID NO: 10) where JOE is the fluorescent reporter dye and TAMRA is the quencher dye.
  • Probes and primers to mouse diacylglycerol acyltransferase 1 were designed to hybridize to a mouse diacylglycerol acyltransferase 1 sequence, using published sequence information (GenBank accession number AF078752.1, incorporated herein as SEQ ID NO:11). For mouse diacylglycerol acyltransferase 1 the PCR primers were: [0195]
  • forward primer: GTTCCGCCTCTGGGCATT (SEQ ID NO:12) [0196]
  • reverse primer: GAATCGGCCCACAATCCA (SEQ ID NO: 13) and the [0197]
  • PCR probe was: FAM-CAGCCATGATGGCTCAGGTCCCACT-TAMRA (SEQ ID NO: 14) where FAM is the fluorescent reporter dye and TAMRA is the quencher dye. For mouse GAPDH the PCR primers were: [0198]
  • forward primer: GGCAAATTCAACGGCACAGT(SEQ ID NO:15) [0199]
  • reverse primer: GGGTCTCGCTCCTGGAAGAT(SEQ ID NO:16) and the [0200]
  • PCR probe was: 5′ JOE-AAGGCCGAGAATGGGAAGCTTGTCATC- TAMRA 3′ (SEQ ID NO: 17) where JOE is the fluorescent reporter dye and TAMRA is the quencher dye. [0201]
  • Example 14 Northern Blot Analysis of Diacylglycerol Acyltransferase 1 mRNA Levels
  • Eighteen hours after antisense treatment, cell monolayers were washed twice with cold PBS and lysed in 1 mL RNAZOL™ (TEL-TEST “B” Inc., Friendswood, Tex.). Total RNA was prepared following manufacturer's recommended protocols. Twenty micrograms of total RNA was fractionated by electrophoresis through 1.2% agarose gels containing 1.1% formaldehyde using a MOPS buffer system (AMRESCO, Inc. Solon, Ohio). RNA was transferred from the gel to HYBOND™-N+ nylon membranes (Amersham Pharmacia Biotech, Piscataway, N.J.) by overnight capillary transfer using a Northern/Southern Transfer buffer system (TEL-TEST “B” Inc., Friendswood, Tex.). RNA transfer was confirmed by UV visualization. Membranes were fixed by UV cross-linking using a STRATALINKER™ UV Crosslinker 2400 (Stratagene, Inc, La Jolla, Calif.) and then probed using QUICKHYB™ hybridization solution (Stratagene, La Jolla, Calif.) using manufacturer's recommendations for stringent conditions. [0202]
  • To detect human diacylglycerol acyltransferase 1, a human diacylglycerol acyltransferase 1 specific probe was prepared by PCR using the forward primer TCCCCGCATCCGGAA (SEQ ID NO: 5) and the reverse primer CTGGGTGAAGAACAGCATCTCA (SEQ ID NO: 6). To normalize for variations in loading and transfer efficiency membranes were stripped and probed for human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, Calif.). [0203]
  • To detect mouse diacylglycerol acyltransferase 1, a mouse diacylglycerol acyltransferase 1 specific probe was prepared by PCR using the forward primer GTTCCGCCTCTGGGCATT (SEQ ID NO: 12) and the reverse primer GAATCGGCCCACAATCCA (SEQ ID NO: 13). To normalize for variations in loading and transfer efficiency membranes were stripped and probed for mouse glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, Calif.). [0204]
  • Hybridized membranes were visualized and quantitated using a PHOSPHORIMAGER™ and IMAGEQUANT™ Software V3.3 (Molecular Dynamics, Sunnyvale, Calif.). Data was normalized to GAPDH levels in untreated controls. [0205]
  • Example 15 Antisense Inhibition of Human Diacylglycerol Acyltransferase 1 Expression by Chimeric Phosphorothioate Oligonucleotides Having 2′-MOE Wings and a Deoxy Gap
  • In accordance with the present invention, a series of antisense compounds were designed to target different regions of the human diacylglycerol acyltransferase 1 RNA, using published sequences (GenBank accession number NM[0206] 012079.2, incorporated herein as SEQ ID NO: 4). The compounds are shown in Table 1. “Target site” indicates the first (5′-most) nucleotide number on the particular target sequence to which the compound binds. All compounds in Table 1 are chimeric oligonucleotides (“gapmers”) 20 nucleotides in length, composed of a central “gap” region consisting of ten 2′-deoxynucleotides, which is flanked on both sides (5′ and 3′ directions) by five-nucleotide “wings”. The wings are composed of 2′-methoxyethyl (2′-MOE)nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P═S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on human diacylglycerol acyltransferase 1 mRNA levels by quantitative real-time PCR as described in other examples herein. Data are averages from three experiments in which HepG2 cells were treated with the antisense oligonucleotides of the present invention. The positive control for each datapoint is identified in the table by sequence ID number. If present, “N.D.” indicates “no data”.
    TABLE 1
    Inhibition of human diacylglycerol acyltransferase 1 mRNA
    levels by chimeric phosphorothioate oligonucleotides having
    2′-MOE wings and a deoxy gap
    TARGET CONTROL
    SEQ ID TARGET % SEQ ID SEQ ID
    ISIS # REGION NO SITE SEQUENCE INHIB NO NO
    191617 5′ UTR 4 1 gccgcctctctcgtccattc 57 18 1
    191619 5′ UTR 4 21 gagccgctaactaatggacg 37 19 1
    191621 5′ UTR 4 41 acaacggctgcgttgctccg 30 20 1
    191623 5′ UTR 4 71 ccgcccgcgtcaggcccgtc 40 21 1
    191625 5′ UTR 4 91 gcctcaccagcgcgttcaac 20 22 1
    191627 5′ UTR 4 120 ccctgccggccgccgtagcc 24 23 1
    191629 5′ UTR 4 151 ctccgggccctagacaacgg 45 24 1
    191631 5′ UTR 4 181 gttcgtagcgcccgaggcgc 53 25 1
    191633 5′ UTR 4 211 cccggccgcagccaagcgtg 44 26 1
    191635 Start 4 231 gcccatggcctcagcccgca 77 27 1
    Codon
    191637 Coding 4 281 tggctcgagggccgcgaccc 58 28 1
    191639 Coding 4 301 ccgcaggcccgccgccgccg 49 29 1
    191641 Coding 4 321 ccgcacctcttcttccgccg 40 30 1
    191643 Coding 4 401 acgccggcgtctccgtcctt 92 31 1
    191645 Coding 4 421 gctcccagtggccgctgccc 60 32 1
    191647 Coding 4 441 ctgcaggcgatggcacctca 85 33 1
    191649 Coding 4 491 aggatgccacggtagttgct 62 34 1
    191651 Coding 4 511 gcatcaccacacaccagttc 37 35 1
    191653 Coding 4 561 gccatacttgatgaggttct 48 36 1
    191655 Coding 4 651 gacattggccgcaataacca 47 37 1
    191657 Coding 4 681 cttctcaacctggaatgcag 29 38 1
    191659 Coding 4 721 gcagtcccgcctgctccgtc 50 39 1
    191661 Coding 4 741 caggttggctacgtgcagca 31 40 1
    191663 Coding 4 781 ccagtaagaccacagccgct 62 41 1
    191665 Coding 4 831 ggtgtgcgccatcagcgcca 59 42 1
    191667 Coding 4 931 cagcactgctggccttcttc 52 43 1
    191669 Coding 4 1021 tgagctcgtagcacaaggtg 43 44 1
    191671 Coding 4 1121 cactgctggatcagccccac 20 45 1
    191673 Coding 4 1181 atgcgtgagtagtccatgtc 59 46 1
    191675 Coding 4 1231 tgagccagatgaggtgattg 62 47 1
    191677 Coding 4 1281 gagctcagccacggcattca 76 48 1
    191679 Coding 4 1351 tctgccagaagtaggtgaca 30 49 1
    191681 Coding 4 1611 gatgagcgacagccacacag 21 50 1
    191683 Coding 4 1671 ctcatagttgagcacgtagt 73 51 1
    191685 3′ UTR 4 1721 cagtgagaagccaggccctc 68 52 1
    191687 3′ UTR 4 1781 ccatccccagcactcgaggc 68 53 1
    191689 3′ UTR 4 1801 aggatgctgtgcagccaggc 73 54 1
    191691 3′ UTR 4 1851 ggtgcaggacagagccccat 72 55 1
    191693 3′ UTR 4 1881 gtgtctggcctgctgtcgcc 71 56 1
    191695 3′ UTR 4 1901 ctcccagctggcatcagact 76 57 1
  • As shown in Table 1, SEQ ID NOs 18, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 39, 41, 42, 43, 44, 46, 47, 48, 51, 52, 53, 54, 55, 56 and 57 demonstrated at least 43% inhibition of human diacylglycerol acyltransferase 1 expression in this assay and are therefore preferred. More preferred are SEQ ID NOs 31, 33, 27, and 57. The target regions to which these preferred sequences are complementary are herein referred to as “preferred target segments” and are therefore preferred for targeting by compounds of the present invention. These preferred target segments are shown in Table 3. The sequences represent the reverse complement of the preferred antisense compounds shown in Table 1. “Target site” indicates the first (5′-most) nucleotide number on the particular target nucleic acid to which the oligonucleotide binds. Also shown in Table 3 is the species in which each of the preferred target segments was found. [0207]
  • Example 16 Antisense Inhibition of Mouse Diacylglycerol Acyltransferase 1 Expression by Chimeric Phosphorothioate Oligonucleotides Having 2′-MOE Wings and a Deoxy Gap
  • In accordance with the present invention, a second series of antisense compounds were designed to target different regions of the mouse diacylglycerol acyltransferase 1 RNA, using published sequences (GenBank accession number AF078752.1, incorporated herein as SEQ ID NO: 11). The compounds are shown in Table 2. “Target site” indicates the first (5′-most) nucleotide number on the particular target nucleic acid to which the compound binds. All compounds in Table 2 are chimeric oligonucleotides (“gapmers”) 20 nucleotides in length, composed of a central “gap” region consisting of ten 2′-deoxynucleotides, which is flanked on both sides (5′ and 3′ directions) by five-nucleotide “wings”. The wings are composed of 2′-methoxyethyl (2′-MOE)nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P═S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on mouse diacylglycerol acyltransferase 1 mRNA levels by quantitative real-time PCR a described in other examples herein. Data are averages from three experiments in which b.END cells were treated with the antisense oligonucleotides of the present invention. If present, “N.D.” indicates “no data”. [0208]
    TABLE 2
    Inhibition of mouse diacylglycerol acyltransferase 1 mRNA
    levels by chimeric phosphorothioate
    oligonucleotides having
    2′-MOE wings and a deoxy gap
    TARGET
    SEQ ID TARGET % SEQ ID
    ISIS # REGION NO SITE SEQUENCE INHIB NO
    191723 5′ UTR 11 1 ctacttatttccattcatcc 2 58
    191724 5′ UTR 11 21 tatcctaagtatgcctaatt 0 59
    191725 5′ UTR 11 31 gcttgagccctatcctaagt 0 60
    191726 5′ UTR 11 61 ctcgtcgcggcccaatcttc 21 61
    191727 Start 11 81 cccatggcttcggcccgcac 48 62
    Codon
    191729 Coding 11 191 cagccgcgtctcgcacctcg 74 63
    191730 Coding 11 232 cggagccggcgcgtcacccc 63 64
    191731 Coding 11 281 ccacgctggtccgcccgtct 67 65
    191732 Coding 11 301 cagatcccagtagccgtcgc 59 66
    191733 Coding 11 321 tcttgcagacgatggcacct 49 67
    191734 Coding 11 371 tcaggataccacgataattg 48 68
    191735 Coding 11 391 cagcatcaccacacaccaat 52 69
    191736 Coding 11 411 aaccttgcattactcaggat 62 70
    191737 Coding 11 451 atccaccaggatgccatact 29 71
    191738 Coding 11 471 agagacaccacctggatagg 42 72
    191740 Coding 11 601 cagcagccccatctgctctg 63 73
    191741 Coding 11 621 gccaggttaaccacatgtag 58 74
    191742 Coding 11 661 aaccagtaaggccacagctg 16 75
    191743 Coding 11 681 cccactggagtgatagactc 42 76
    191744 Coding 11 711 atggagtatgatgccagagc 53 77
    191745 Coding 11 771 acccttcgctggcggcacca 68 78
    191746 Coding 11 841 tggatagctcacagcttgct 56 79
    191747 Coding 11 861 tctcggtaggtcaggttgtc 32 80
    191748 Coding 11 961 ctcaagaactcgtcgtagca 60 81
    191749 Coding 11 1001 gttggatcagccccacttga 37 82
    191750 Coding 11 1061 gtgaatagtccatatccttg 48 83
    191751 Coding 11 1081 taagagacgctcaatgatcc 18 84
    191752 Coding 11 1161 tctgccacagcattgagaca 50 85
    191753 Coding 11 1201 ccaatctctgtagaactcgc 55 86
    191754 Coding 11 1221 gtgacagactcagcattcca 56 87
    191755 Coding 11 1271 gtctgatgcaccacttgtgc 72 88
    191756 Coding 11 1301 tgccatgtctgagcataggc 70 89
    191757 Coding 11 1331 atactcctgtcctggccacc 65 90
    191759 Coding 11 1471 attgccatagttcccttgga 68 91
    191760 Coding 11 1491 agtgtcacccacacagctgc 66 92
    191761 Coding 11 1511 ccaccggttgcccaatgatg 71 93
    191762 Coding 11 1531 gtggacatacatgagcacag 62 94
    191763 Coding 11 1551 tagttgagcacgtagtagtc 40 95
    191764 Stop 11 1586 ctttggcagtagctcatacc 37 96
    Codon
    191765 3′ UTR 11 1621 tccagaactccaggcccagg 59 97
  • As shown in Table 2, SEQ ID NOs 62, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 77, 78, 79, 81, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94 and 97 demonstrated at least 43% inhibition of mouse diacylglycerol acyltransferase 1 expression in this experiment and are therefore preferred. More preferred are SEQ ID Nos: 63, 88, 91, and 93. The target regions to which these preferred sequences are complementary are herein referred to as “preferred target segments” and are therefore preferred for targeting by compounds of the present invention. These preferred target segments of the mRNA are shown in Table 3 as the appropriate RNA sequence, where thymine (T) has been replaced with uracil (U) to reflect correct representation of an RNA sequence. The sequences represent the reverse complement of the preferred antisense compounds shown in Tables 1 and 2. “Target site” indicates the first (5′-most) nucleotide number on the particular target nucleic acid to which the oligonucleotide binds. Also shown in Table 3 is the species in which each of the preferred target segments was found. [0209]
    TABLE 3
    Sequence and position of preferred target segments identified
    in diacylglycerol acyltransferase 1.
    TARGET
    SITE SEQ ID TARGET REV COMP SEQ ID
    ID NO SITE SEQUENCE OF SEQ ID ACTIVE IN NO
    108088 4 1 gaauggacgagagaggcggc 18 H. sapiens 98
    108094 4 151 ccguugucuagggcccggag 24 H. sapiens 99
    108095 4 181 gcgccucgggcgcuacgaac 25 H. sapiens 100
    108096 4 211 cacgcuuggcugcggccggg 26 H. sapiens 101
    108097 4 231 ugcgggcugaggccaugggc 27 H. sapiens 102
    108098 4 281 gggucqcggcccucgagcca 28 H. sapiens 103
    108099 4 301 cggcggcggcgggccugcgg 29 H. sapiens 104
    108101 4 401 aaggacggagacgccggcgu 31 H. sapiens 105
    108102 4 421 gggcagcggccacugggagc 32 H. sapiens 106
    108103 4 441 ugaggugccaucgccugcag 33 H. sapiens 107
    108104 4 491 agcaacuaccguggcauccu 34 H. sapiens 108
    108106 4 561 agaaccucaucaaguauggc 36 H. sapiens 109
    108107 4 651 ugguuauugcggccaauguc 37 H. sapiens 110
    108109 4 721 gacggagcaggcgggacugc 39 H. sapiens 111
    108111 4 781 agcggcuguggucuuacugg 41 H. sapiens 112
    108112 4 831 uggcgcugauggcgcacacc 42 H. sapiens 113
    108113 4 931 gaagaaggccagcagugcug 43 H. sapiens 114
    108114 4 1021 caccuugugcuacgagcuca 44 H. sapiens 115
    108116 4 1181 gacauggacuacucacgcau 46 H. sapiens 116
    108117 4 1231 caaucaccucaucuggcuca 47 H. sapiens 117
    108118 4 1281 ugaaugccguggcugagcuc 48 H. sapiens 118
    108121 4 1671 acuacgugcucaacuaugag 51 H. sapiens 119
    108122 4 1721 gagggccuggcuucucacug 52 H. sapiens 120
    108123 4 1781 gccucgagugcuggggaugg 53 H. sapiens 121
    108124 4 1801 gccuggcugcacagcauccu 54 H. sapiens 122
    108125 4 1851 auggggcucuguccugcacc 55 H. sapiens 123
    108126 4 1881 ggcgacagcaggccagacac 56 H. sapiens 124
    108127 4 1901 agucugaugccagcugggag 57 H. sapiens 125
    108139 11 81 gugcgggccgaagccauggg 62 M. musculus 126
    108141 11 191 cgaggugcgagacgcggcug 63 M. musculus 127
    108142 11 232 ggggugacgcgccggcuccg 64 M. musculus 128
    108143 11 281 agacgggcggaccagcgugg 65 M. musculus 129
    108144 11 301 gcgacggcuacugggaucug 66 M. musculus 130
    108145 11 321 aggugccaucgucugcaaga 67 M. musculus 131
    108146 11 371 caauuaucgugguauccuga 68 M. musculus 132
    108147 11 391 auugguguguggugaugcug 69 M. musculus 133
    108148 11 411 auccugaguaaugcaagguu 70 M. musculus 134
    108152 11 601 cagagcagauggggcugcug 73 M. musculus 135
    108153 11 621 cuacaugugguuaaccuggc 74 M. musculus 136
    108156 11 711 gcucuggcaucauacuccau 77 M. musculus 137
    108157 11 771 uggugccgccagcgaagggu 78 M. musculus 138
    108158 11 841 agcaagcugugagcuaucca 79 M. musculus 139
    108160 11 961 ugcuacgacgaguucuugag 81 M. musculus 140
    108162 11 1061 caaggauauggacuauucac 83 M. musculus 141
    108164 11 1161 ugucucaaugcuguggcaga 85 M. musculus 142
    108165 11 1201 gcgaguucuacagagauugg 86 M. musculus 143
    108166 11 1221 uggaaugcugagucugucac 87 M. musculus 144
    108167 11 1271 gcacaaguggugcaucagac 88 M. musculus 145
    108168 11 1301 gccuaugcucagacauggca 89 M. musculus 146
    108169 11 1331 gguggccaggacaggaguau 90 M. musculus 147
    108171 11 1471 uccaagggaacuauggcaau 91 M. musculus 148
    108172 11 1491 gcagcugugugggugacacu 92 M. musculus 149
    108173 11 1511 caucauugggcaaccggugg 93 M. musculus 150
    108174 11 1531 cugugcucauguauguccac 94 M. musculus 151
    108177 11 1621 ccugggccuggaguucugga 97 M. musculus 152
  • As these “preferred target segments” have been found by experimentation to be open to, and accessible for, hybridization with the antisense compounds of the present invention, one of skill in the art will recognize or be able to ascertain, using no more than routine experimentation, further embodiments of the invention that encompass other compounds that specifically hybridize to these preferred target segments and consequently inhibit the expression of diacylglycerol acyltransferase 1. [0210]
  • According to the present invention, antisense compounds include antisense oligomeric compounds, antisense oligonucleotides, ribozymes, external guide sequence (EGS) oligonucleotides, alternate splicers, primers, probes, and other short oligomeric compounds which hybridize to at least a portion of the target nucleic acid. [0211]
  • Example 17 Western Blot Analysis of Diacylglycerol Acyltransferase 1 Protein Levels
  • Western blot analysis (immunoblot analysis) is carried out using standard methods. Cells are harvested 16-20 h after oligonucleotide treatment, washed once with PBS, suspended in Laemmli buffer (100 ul/well), boiled for 5 minutes and loaded on a 16% SDS-PAGE gel. Gels are run for 1.5 hours at 150 V, and transferred to membrane for western blotting. Appropriate primary antibody directed to diacylglycerol acyltransferase 1 is used, with a radiolabeled or fluorescently labeled secondary antibody directed against the primary antibody species. Bands are visualized using a PHOSPHORIMAGER™ (Molecular Dynamics, Sunnyvale, Calif.). [0212]
  • Example 18 Antisense Inhibition of Diacylglycerol Acyltransferase 1 Expression—Dose Response in HepG2 Cells
  • In accordance with the present invention, 6 oligonucleotides targeted to diacylglycerol acyltransferase 1, ISIS 191729 (SEQ ID NO: 63), ISIS 191731 (SEQ ID NO: 65), ISIS 191755 (SEQ ID NO: 88), ISIS 191756 (SEQ ID NO: 89), [0213]
  • ISIS 191759 (SEQ ID NO: 91), and ISIS 191761 (SEQ ID NO: 93), were further investigated in a dose response study. [0214]
  • In the dose-response experiment, with mRNA levels as the endpoint, HepG2 cells were treated with ISIS 191729, ISIS 191731, ISIS 191755, ISIS 191756, ISIS 191759, or ISIS 191761 at doses of 1, 5, 10, 25, 50, and 100 nM oligonucleotide. Data were obtained by real-time quantitative PCR as described in other examples herein and are averaged from two experiments with mRNA levels in the treatment groups being normalized to an untreated control group. The data are shown in Table 4. [0215]
    TABLE 4
    Inhibition of diacylglycerol acyltransferase 1 mRNA
    levels by chimeric phosphorothioate oligonucleotides having
    2′-MOE wings and a deoxy gap - Dose Response
    Dose (nM)
    1 5 10 25 50 100
    ISIS NO. % Inhibition
    191729 26 62 78 80 83 83
    191731 27 58 57 58 82 85
    191755 41 59 72 75 83 79
    191756 13 39 59 65 81 75
    191759 26 44 74 80 82 86
    191761 23 63 71 80 85 87
  • From these data, it is evident that all of the oligonucleotides presented in Table 4 are capable of reducing diacylglycerol acyltransferase 1 mRNA levels in a dose-dependent manner. [0216]
  • Example 19 Effects of Antisense Inhibition of Diacylglycerol Acyltransferase 1 (ISIS 191729 and ISIS 191755) on Serum Glucose Levels—In Vivo Studies
  • C57BL/6 ob/ob mice, a strain reported to be susceptible to hyperlipidemia-induced atherosclerotic plaque formation were used in the following studies to evaluate diacylglycerol acyltransferase 1 antisense oligonucleotides as potential agents to lower serum glucose levels. [0217]
  • Male C57BL/6 mice (n=8) receiving a Purina 5015 diet were evaluated over the course of 4 weeks for the effects of ISIS 191729 (SEQ ID No: 63) and ISIS 191755 (SEQ ID NO: 88) on serum glucose levels. Control animals received saline treatment. Mice were dosed intraperitoneally twice a week with 25 mg/kg ISIS 191729, ISIS 191755, or saline for 4 weeks. [0218]
  • Both antisense oligonucleotides were able to reduce serum glucose levels relative to the saline-treated animals. Before any tratment was started (week 0), the measured glucose levels for each group of animals were 357, 368, and 346 mg/dL for the groups which would be treated with saline, ISIS 191729, and ISIS 191755, respectively. After two weeks, serum glucose levels were 300 and 278 mg/dL for ISIS 191729 and ISIS 191755, respectively, compared to 360 mg/dL for saline control. After four weeks of treatment, the serum glucose levels were further reduced to 224 and 188 mg/dL for ISIS 191729 and ISIS 191755, respectively, compared to 313 mg/dL for saline control. [0219]
  • These data indicate that ISIS 191729 and ISIS 191755 are able to significantly reduce serum glucose levels in vivo. ISIS 191755 also caused no change in food intake or body weight, but reduced epididymal fat pad weight by 12%. (See Table 5 for a summary of in vivo data). [0220]
  • Example 20 Effects of Antisense Inhibition of Diacylglycerol Acyltransferase 1 (ISIS 191729 and ISIS 191755) on Diacylglycerol Acyltransferase 1 mRNA Levels in C57BL/6 Mice
  • Male C57BL/6 mice (n=8) receiving a Purina 5015 diet were evaluated after 4 weeks of treatment for the effects of ISIS 191729 (SEQ ID No: 63) and ISIS 191755 (SEQ ID NO: 88) to lower the level of diacylglycerol acyltransferase 1 mRNA levels in white adipose tissue and liver. Control animals received saline treatment. Mice were dosed intraperitoneally twice a week with 25 mg/kg ISIS 191729, ISIS 191755, or saline for 4 weeks. [0221]
  • The diacylglycerol acyltransferase 1 mRNA levels in white adipose tissue of the mice dosed with ISIS 191729 were 29% that of the saline treated mice, and those dosed with ISIS 191755 were 16% that of the saline treated mice. The diacylglycerol acyltransferase 1 mRNA levels in liver of the mice dosed with ISIS 191729 were 8% that of the saline treated mice, and those dosed with ISIS 191755 were 4% that of the saline treated mice. [0222]
  • It has been reported in the art that diacylglycerol acyltransferase 1 knockout mice demonstrate enhanced resistance to diet-induced obesity and this was not coupled with changes in energy expenditure or plasma glucose levels in ob/ob mice due to a compensatory upregulation of diacylglycerol acyltransferase 2 expression in white adipose tissue. The results of studies described herein using antisense compounds to transiently modulate diacylglycerol acyltransferase 1 mRNA levles are in contrast to those seen in the diacylglycerol acyltransferase 1 knockout studies. The results shown herein indicate that antisense oligonucleotides ISIS 191729 and ISIS 191755 are able to reduce diacylglycerol acyltransferase 1 mRNA levels, reduce serum glucose levels, and reduce fat pad weight while not affecting food intake and total body weight. (See Table 5 for a summary of in vivo data). [0223]
    TABLE 5
    Effects of ISIS 191729 or ISIS 191755 treatment on serum
    glucose levels and diacylglycerol acyltransferase 1 mRNA
    levels in C57BL/6 mice.
    Treated with
    Biological Marker ISIS ISIS
    Measured saline 191729 191755
    week
    Glucose 0 357 368 346
    mg/dL 2 360 300 278
    4 313 224 188
    tissue
    mRNA Liver 100  8  4
    % of control White adipose 100  29  16
  • [0224]
  • 1 152 1 20 DNA Artificial Sequence Antisense Oligonucleotide 1 tccgtcatcg ctcctcaggg 20 2 20 DNA Artificial Sequence Antisense Oligonucleotide 2 gtgcgcgcga gcccgaaatc 20 3 20 DNA Artificial Sequence Antisense Oligonucleotide 3 atgcattctg cccccaagga 20 4 1976 DNA H. sapiens CDS (245)...(1711) 4 gaatggacga gagaggcggc cgtccattag ttagcggctc cggagcaacg cagccgttgt 60 ccttgaggcc gacgggcctg acgcgggcgg gttgaacgcg ctggtgaggc ggtcacccgg 120 gctacggcgg ccggcagggg gcagtggcgg ccgttgtcta gggcccggag gtggggccgc 180 gcgcctcggg cgctacgaac ccggcaggcc cacgcttggc tgcggccggg tgcgggctga 240 ggcc atg ggc gac cgc ggc agc tcc cgg cgc cgg agg aca ggg tcg cgg 289 Met Gly Asp Arg Gly Ser Ser Arg Arg Arg Arg Thr Gly Ser Arg 1 5 10 15 ccc tcg agc cac ggc ggc ggc ggg cct gcg gcg gcg gaa gaa gag gtg 337 Pro Ser Ser His Gly Gly Gly Gly Pro Ala Ala Ala Glu Glu Glu Val 20 25 30 cgg gac gcc gct gcg ggc ccc gac gtg gga gcc gcg ggg gac gcg cca 385 Arg Asp Ala Ala Ala Gly Pro Asp Val Gly Ala Ala Gly Asp Ala Pro 35 40 45 gcc ccg gcc ccc aac aag gac gga gac gcc ggc gtg ggc agc ggc cac 433 Ala Pro Ala Pro Asn Lys Asp Gly Asp Ala Gly Val Gly Ser Gly His 50 55 60 tgg gag ctg agg tgc cat cgc ctg cag gat tct tta ttc agc tct gac 481 Trp Glu Leu Arg Cys His Arg Leu Gln Asp Ser Leu Phe Ser Ser Asp 65 70 75 agt ggc ttc agc aac tac cgt ggc atc ctg aac tgg tgt gtg gtg atg 529 Ser Gly Phe Ser Asn Tyr Arg Gly Ile Leu Asn Trp Cys Val Val Met 80 85 90 95 ctg atc ttg agc aat gcc cgg tta ttt ctg gag aac ctc atc aag tat 577 Leu Ile Leu Ser Asn Ala Arg Leu Phe Leu Glu Asn Leu Ile Lys Tyr 100 105 110 ggc atc ctg gtg gac ccc atc cag gtg gtt tct ctg ttc ctg aag gat 625 Gly Ile Leu Val Asp Pro Ile Gln Val Val Ser Leu Phe Leu Lys Asp 115 120 125 ccc cat agc tgg ccc gcc cca tgc ctg gtt att gcg gcc aat gtc ttt 673 Pro His Ser Trp Pro Ala Pro Cys Leu Val Ile Ala Ala Asn Val Phe 130 135 140 gct gtg gct gca ttc cag gtt gag aag cgc ctg gcg gtg ggt gcc ctg 721 Ala Val Ala Ala Phe Gln Val Glu Lys Arg Leu Ala Val Gly Ala Leu 145 150 155 acg gag cag gcg gga ctg ctg ctg cac gta gcc aac ctg gcc acc att 769 Thr Glu Gln Ala Gly Leu Leu Leu His Val Ala Asn Leu Ala Thr Ile 160 165 170 175 ctg tgt ttc cca gcg gct gtg gtc tta ctg gtt gag tct atc act cca 817 Leu Cys Phe Pro Ala Ala Val Val Leu Leu Val Glu Ser Ile Thr Pro 180 185 190 gtg ggc tcc ctg ctg gcg ctg atg gcg cac acc atc ctc ttc ctc aag 865 Val Gly Ser Leu Leu Ala Leu Met Ala His Thr Ile Leu Phe Leu Lys 195 200 205 ctc ttc tcc tac cgc gac gtc aac tca tgg tgc cgc agg gcc agg gcc 913 Leu Phe Ser Tyr Arg Asp Val Asn Ser Trp Cys Arg Arg Ala Arg Ala 210 215 220 aag gct gcc tct gca ggg aag aag gcc agc agt gct gct gcc ccg cac 961 Lys Ala Ala Ser Ala Gly Lys Lys Ala Ser Ser Ala Ala Ala Pro His 225 230 235 acc gtg agc tac ccg gac aat ctg acc tac cgc gat ctc tac tac ttc 1009 Thr Val Ser Tyr Pro Asp Asn Leu Thr Tyr Arg Asp Leu Tyr Tyr Phe 240 245 250 255 ctc ttc gcc ccc acc ttg tgc tac gag ctc aac ttt ccc cgc tct ccc 1057 Leu Phe Ala Pro Thr Leu Cys Tyr Glu Leu Asn Phe Pro Arg Ser Pro 260 265 270 cgc atc cgg aag cgc ttt ctg ctg cga cgg atc ctt gag atg ctg ttc 1105 Arg Ile Arg Lys Arg Phe Leu Leu Arg Arg Ile Leu Glu Met Leu Phe 275 280 285 ttc acc cag ctc cag gtg ggg ctg atc cag cag tgg atg gtc ccc acc 1153 Phe Thr Gln Leu Gln Val Gly Leu Ile Gln Gln Trp Met Val Pro Thr 290 295 300 atc cag aac tcc atg aag ccc ttc aag gac atg gac tac tca cgc atc 1201 Ile Gln Asn Ser Met Lys Pro Phe Lys Asp Met Asp Tyr Ser Arg Ile 305 310 315 atc gag cgc ctc ctg aag ctg gcg gtc ccc aat cac ctc atc tgg ctc 1249 Ile Glu Arg Leu Leu Lys Leu Ala Val Pro Asn His Leu Ile Trp Leu 320 325 330 335 atc ttc ttc tac tgg ctc ttc cac tcc tgc ctg aat gcc gtg gct gag 1297 Ile Phe Phe Tyr Trp Leu Phe His Ser Cys Leu Asn Ala Val Ala Glu 340 345 350 ctc atg cag ttt gga gac cgg gag ttc tac cgg gac tgg tgg aac tcc 1345 Leu Met Gln Phe Gly Asp Arg Glu Phe Tyr Arg Asp Trp Trp Asn Ser 355 360 365 gag tct gtc acc tac ttc tgg cag aac tgg aac atc cct gtg cac aag 1393 Glu Ser Val Thr Tyr Phe Trp Gln Asn Trp Asn Ile Pro Val His Lys 370 375 380 tgg tgc atc aga cac ttc tac aag ccc atg ctt cga cgg ggc agc agc 1441 Trp Cys Ile Arg His Phe Tyr Lys Pro Met Leu Arg Arg Gly Ser Ser 385 390 395 aag tgg atg gcc agg aca ggg gtg ttc ctg gcc tcg gct ttc ttc cac 1489 Lys Trp Met Ala Arg Thr Gly Val Phe Leu Ala Ser Ala Phe Phe His 400 405 410 415 gag tac ctg gtg agc gtc cct ctg cga atg ttc cgc ctc tgg gct ttc 1537 Glu Tyr Leu Val Ser Val Pro Leu Arg Met Phe Arg Leu Trp Ala Phe 420 425 430 acg ggc atg atg gct cag atc cca ctg gcc tgg ttc gtg ggc cgc ttt 1585 Thr Gly Met Met Ala Gln Ile Pro Leu Ala Trp Phe Val Gly Arg Phe 435 440 445 ttc cag ggc aac tat ggc aac gca gct gtg tgg ctg tcg ctc atc atc 1633 Phe Gln Gly Asn Tyr Gly Asn Ala Ala Val Trp Leu Ser Leu Ile Ile 450 455 460 gga cag cca ata gcc gtc ctc atg tac gtc cac gac tac tac gtg ctc 1681 Gly Gln Pro Ile Ala Val Leu Met Tyr Val His Asp Tyr Tyr Val Leu 465 470 475 aac tat gag gcc cca gcg gca gag gcc tga gctgcacctg agggcctggc 1731 Asn Tyr Glu Ala Pro Ala Ala Glu Ala 480 485 ttctcactgc cacctcaaac ccgctgccag agcccacctc tcctcctagg cctcgagtgc 1791 tggggatggg cctggctgca cagcatcctc ctctggtccc agggaggcct ctctgcccta 1851 tggggctctg tcctgcaccc ctcagggatg gcgacagcag gccagacaca gtctgatgcc 1911 agctgggagt cttgctgacc ctgccccggg tccgagggtg tcaataaagt gctgtccagt 1971 gggag 1976 5 15 DNA Artificial Sequence PCR Primer 5 tccccgcatc cggaa 15 6 22 DNA Artificial Sequence PCR Primer 6 ctgggtgaag aacagcatct ca 22 7 22 DNA Artificial Sequence PCR Probe 7 cgctttctgc tgcgacggat cc 22 8 19 DNA Artificial Sequence PCR Primer 8 gaaggtgaag gtcggagtc 19 9 20 DNA Artificial Sequence PCR Primer 9 gaagatggtg atgggatttc 20 10 20 DNA Artificial Sequence PCR Probe 10 caagcttccc gttctcagcc 20 11 1650 DNA M. musculus CDS (96)...(1592) 11 ggatgaatgg aaataagtag aattaggcat acttaggata gggctcaagc cgcggcccgt 60 gaagattggg ccgcgacgag gtgcgggccg aagcc atg ggc gac cgc gga ggc 113 Met Gly Asp Arg Gly Gly 1 5 gcg gga agc tct cgg cgt cgg agg acc ggc tcg cgg gtt tcc gtc cag 161 Ala Gly Ser Ser Arg Arg Arg Arg Thr Gly Ser Arg Val Ser Val Gln 10 15 20 ggt ggt agt ggg ccc aag gta gaa gag gac gag gtg cga gac gcg gct 209 Gly Gly Ser Gly Pro Lys Val Glu Glu Asp Glu Val Arg Asp Ala Ala 25 30 35 gtg agc ccc gac ttg ggc gcc ggg ggt gac gcg ccg gct ccg gct ccg 257 Val Ser Pro Asp Leu Gly Ala Gly Gly Asp Ala Pro Ala Pro Ala Pro 40 45 50 gct cca gcc cat acc cgg gac aaa gac ggg cgg acc agc gtg ggc gac 305 Ala Pro Ala His Thr Arg Asp Lys Asp Gly Arg Thr Ser Val Gly Asp 55 60 65 70 ggc tac tgg gat ctg agg tgc cat cgt ctg caa gat tct ttg ttc agc 353 Gly Tyr Trp Asp Leu Arg Cys His Arg Leu Gln Asp Ser Leu Phe Ser 75 80 85 tca gac agt ggt ttc agc aat tat cgt ggt atc ctg aat tgg tgt gtg 401 Ser Asp Ser Gly Phe Ser Asn Tyr Arg Gly Ile Leu Asn Trp Cys Val 90 95 100 gtg atg ctg atc ctg agt aat gca agg tta ttt tta gag aac ctt atc 449 Val Met Leu Ile Leu Ser Asn Ala Arg Leu Phe Leu Glu Asn Leu Ile 105 110 115 aag tat ggc atc ctg gtg gat cct atc cag gtg gtg tct ctg ttt ttg 497 Lys Tyr Gly Ile Leu Val Asp Pro Ile Gln Val Val Ser Leu Phe Leu 120 125 130 aag gac ccc tac agc tgg cct gcc cca tgc gtg att att gca tcc aat 545 Lys Asp Pro Tyr Ser Trp Pro Ala Pro Cys Val Ile Ile Ala Ser Asn 135 140 145 150 att ttt gtt gtg gct gca ttt cag att gag aag cgc ctg gca gtg ggt 593 Ile Phe Val Val Ala Ala Phe Gln Ile Glu Lys Arg Leu Ala Val Gly 155 160 165 gcc ctg aca gag cag atg ggg ctg ctg cta cat gtg gtt aac ctg gcc 641 Ala Leu Thr Glu Gln Met Gly Leu Leu Leu His Val Val Asn Leu Ala 170 175 180 aca atc att tgc ttc cca gca gct gtg gcc tta ctg gtt gag tct atc 689 Thr Ile Ile Cys Phe Pro Ala Ala Val Ala Leu Leu Val Glu Ser Ile 185 190 195 act cca gtg ggt tcc gtg ttt gct ctg gca tca tac tcc atc atg ttc 737 Thr Pro Val Gly Ser Val Phe Ala Leu Ala Ser Tyr Ser Ile Met Phe 200 205 210 ctc aag ctt tat tcc tac cgg gat gtc aac ctg tgg tgc cgc cag cga 785 Leu Lys Leu Tyr Ser Tyr Arg Asp Val Asn Leu Trp Cys Arg Gln Arg 215 220 225 230 agg gtc aag gcc aaa gct gtc tct aca ggg aag aag gtc agt ggg gct 833 Arg Val Lys Ala Lys Ala Val Ser Thr Gly Lys Lys Val Ser Gly Ala 235 240 245 gct gcc cag caa gct gtg agc tat cca gac aac ctg acc tac cga gat 881 Ala Ala Gln Gln Ala Val Ser Tyr Pro Asp Asn Leu Thr Tyr Arg Asp 250 255 260 ctc tat tac ttc atc ttt gct cct act ttg tgt tat gaa ctc aac ttt 929 Leu Tyr Tyr Phe Ile Phe Ala Pro Thr Leu Cys Tyr Glu Leu Asn Phe 265 270 275 cct cgg tcc ccc cga ata cga aag cgc ttt ctg cta cga cga gtt ctt 977 Pro Arg Ser Pro Arg Ile Arg Lys Arg Phe Leu Leu Arg Arg Val Leu 280 285 290 gag atg ctc ttt ttt acc cag ctt caa gtg ggg ctg atc caa cag tgg 1025 Glu Met Leu Phe Phe Thr Gln Leu Gln Val Gly Leu Ile Gln Gln Trp 295 300 305 310 atg gtc cct act atc cag aac tcc atg aag ccc ttc aag gat atg gac 1073 Met Val Pro Thr Ile Gln Asn Ser Met Lys Pro Phe Lys Asp Met Asp 315 320 325 tat tca cgg atc att gag cgt ctc tta aag ctg gcg gtc ccc aac cat 1121 Tyr Ser Arg Ile Ile Glu Arg Leu Leu Lys Leu Ala Val Pro Asn His 330 335 340 ctg atc tgg ctt atc ttc ttc tat tgg ttt ttc cac tcc tgt ctc aat 1169 Leu Ile Trp Leu Ile Phe Phe Tyr Trp Phe Phe His Ser Cys Leu Asn 345 350 355 gct gtg gca gag ctt ctg cag ttt gga gac cgc gag ttc tac aga gat 1217 Ala Val Ala Glu Leu Leu Gln Phe Gly Asp Arg Glu Phe Tyr Arg Asp 360 365 370 tgg tgg aat gct gag tct gtc acc tac ttt tgg cag aac tgg aat atc 1265 Trp Trp Asn Ala Glu Ser Val Thr Tyr Phe Trp Gln Asn Trp Asn Ile 375 380 385 390 ccc gtg cac aag tgg tgc atc aga cac ttc tac aag cct atg ctc aga 1313 Pro Val His Lys Trp Cys Ile Arg His Phe Tyr Lys Pro Met Leu Arg 395 400 405 cat ggc agc agc aaa tgg gtg gcc agg aca gga gta ttt ttg acc tca 1361 His Gly Ser Ser Lys Trp Val Ala Arg Thr Gly Val Phe Leu Thr Ser 410 415 420 gcc ttc ttc cat gag tac cta gtg agc gtt ccc ctg cgg atg ttc cgc 1409 Ala Phe Phe His Glu Tyr Leu Val Ser Val Pro Leu Arg Met Phe Arg 425 430 435 ctc tgg gca ttc aca gcc atg atg gct cag gtc cca ctg gcc tgg att 1457 Leu Trp Ala Phe Thr Ala Met Met Ala Gln Val Pro Leu Ala Trp Ile 440 445 450 gtg ggc cga ttc ttc caa ggg aac tat ggc aat gca gct gtg tgg gtg 1505 Val Gly Arg Phe Phe Gln Gly Asn Tyr Gly Asn Ala Ala Val Trp Val 455 460 465 470 aca ctc atc att ggg caa ccg gtg gct gtg ctc atg tat gtc cac gac 1553 Thr Leu Ile Ile Gly Gln Pro Val Ala Val Leu Met Tyr Val His Asp 475 480 485 tac tac gtg ctc aac tac gat gcc cca gtg ggg gta tga gctactgcca 1602 Tyr Tyr Val Leu Asn Tyr Asp Ala Pro Val Gly Val 490 495 aaggccagcc ctccctaacc tgggcctgga gttctggagg ggttcctg 1650 12 18 DNA Artificial Sequence PCR Primer 12 gttccgcctc tgggcatt 18 13 18 DNA Artificial Sequence PCR Primer 13 gaatcggccc acaatcca 18 14 25 DNA Artificial Sequence PCR Probe 14 cagccatgat ggctcaggtc ccact 25 15 20 DNA Artificial Sequence PCR Primer 15 ggcaaattca acggcacagt 20 16 20 DNA Artificial Sequence PCR Primer 16 gggtctcgct cctggaagat 20 17 27 DNA Artificial Sequence PCR Probe 17 aaggccgaga atgggaagct tgtcatc 27 18 20 DNA Artificial Sequence Antisense Oligonucleotide 18 gccgcctctc tcgtccattc 20 19 20 DNA Artificial Sequence Antisense Oligonucleotide 19 gagccgctaa ctaatggacg 20 20 20 DNA Artificial Sequence Antisense Oligonucleotide 20 acaacggctg cgttgctccg 20 21 20 DNA Artificial Sequence Antisense Oligonucleotide 21 ccgcccgcgt caggcccgtc 20 22 20 DNA Artificial Sequence Antisense Oligonucleotide 22 gcctcaccag cgcgttcaac 20 23 20 DNA Artificial Sequence Antisense Oligonucleotide 23 ccctgccggc cgccgtagcc 20 24 20 DNA Artificial Sequence Antisense Oligonucleotide 24 ctccgggccc tagacaacgg 20 25 20 DNA Artificial Sequence Antisense Oligonucleotide 25 gttcgtagcg cccgaggcgc 20 26 20 DNA Artificial Sequence Antisense Oligonucleotide 26 cccggccgca gccaagcgtg 20 27 20 DNA Artificial Sequence Antisense Oligonucleotide 27 gcccatggcc tcagcccgca 20 28 20 DNA Artificial Sequence Antisense Oligonucleotide 28 tggctcgagg gccgcgaccc 20 29 20 DNA Artificial Sequence Antisense Oligonucleotide 29 ccgcaggccc gccgccgccg 20 30 20 DNA Artificial Sequence Antisense Oligonucleotide 30 ccgcacctct tcttccgccg 20 31 20 DNA Artificial Sequence Antisense Oligonucleotide 31 acgccggcgt ctccgtcctt 20 32 20 DNA Artificial Sequence Antisense Oligonucleotide 32 gctcccagtg gccgctgccc 20 33 20 DNA Artificial Sequence Antisense Oligonucleotide 33 ctgcaggcga tggcacctca 20 34 20 DNA Artificial Sequence Antisense Oligonucleotide 34 aggatgccac ggtagttgct 20 35 20 DNA Artificial Sequence Antisense Oligonucleotide 35 gcatcaccac acaccagttc 20 36 20 DNA Artificial Sequence Antisense Oligonucleotide 36 gccatacttg atgaggttct 20 37 20 DNA Artificial Sequence Antisense Oligonucleotide 37 gacattggcc gcaataacca 20 38 20 DNA Artificial Sequence Antisense Oligonucleotide 38 cttctcaacc tggaatgcag 20 39 20 DNA Artificial Sequence Antisense Oligonucleotide 39 gcagtcccgc ctgctccgtc 20 40 20 DNA Artificial Sequence Antisense Oligonucleotide 40 caggttggct acgtgcagca 20 41 20 DNA Artificial Sequence Antisense Oligonucleotide 41 ccagtaagac cacagccgct 20 42 20 DNA Artificial Sequence Antisense Oligonucleotide 42 ggtgtgcgcc atcagcgcca 20 43 20 DNA Artificial Sequence Antisense Oligonucleotide 43 cagcactgct ggccttcttc 20 44 20 DNA Artificial Sequence Antisense Oligonucleotide 44 tgagctcgta gcacaaggtg 20 45 20 DNA Artificial Sequence Antisense Oligonucleotide 45 cactgctgga tcagccccac 20 46 20 DNA Artificial Sequence Antisense Oligonucleotide 46 atgcgtgagt agtccatgtc 20 47 20 DNA Artificial Sequence Antisense Oligonucleotide 47 tgagccagat gaggtgattg 20 48 20 DNA Artificial Sequence Antisense Oligonucleotide 48 gagctcagcc acggcattca 20 49 20 DNA Artificial Sequence Antisense Oligonucleotide 49 tctgccagaa gtaggtgaca 20 50 20 DNA Artificial Sequence Antisense Oligonucleotide 50 gatgagcgac agccacacag 20 51 20 DNA Artificial Sequence Antisense Oligonucleotide 51 ctcatagttg agcacgtagt 20 52 20 DNA Artificial Sequence Antisense Oligonucleotide 52 cagtgagaag ccaggccctc 20 53 20 DNA Artificial Sequence Antisense Oligonucleotide 53 ccatccccag cactcgaggc 20 54 20 DNA Artificial Sequence Antisense Oligonucleotide 54 aggatgctgt gcagccaggc 20 55 20 DNA Artificial Sequence Antisense Oligonucleotide 55 ggtgcaggac agagccccat 20 56 20 DNA Artificial Sequence Antisense Oligonucleotide 56 gtgtctggcc tgctgtcgcc 20 57 20 DNA Artificial Sequence Antisense Oligonucleotide 57 ctcccagctg gcatcagact 20 58 20 DNA Artificial Sequence Antisense Oligonucleotide 58 ctacttattt ccattcatcc 20 59 20 DNA Artificial Sequence Antisense Oligonucleotide 59 tatcctaagt atgcctaatt 20 60 20 DNA Artificial Sequence Antisense Oligonucleotide 60 gcttgagccc tatcctaagt 20 61 20 DNA Artificial Sequence Antisense Oligonucleotide 61 ctcgtcgcgg cccaatcttc 20 62 20 DNA Artificial Sequence Antisense Oligonucleotide 62 cccatggctt cggcccgcac 20 63 20 DNA Artificial Sequence Antisense Oligonucleotide 63 cagccgcgtc tcgcacctcg 20 64 20 DNA Artificial Sequence Antisense Oligonucleotide 64 cggagccggc gcgtcacccc 20 65 20 DNA Artificial Sequence Antisense Oligonucleotide 65 ccacgctggt ccgcccgtct 20 66 20 DNA Artificial Sequence Antisense Oligonucleotide 66 cagatcccag tagccgtcgc 20 67 20 DNA Artificial Sequence Antisense Oligonucleotide 67 tcttgcagac gatggcacct 20 68 20 DNA Artificial Sequence Antisense Oligonucleotide 68 tcaggatacc acgataattg 20 69 20 DNA Artificial Sequence Antisense Oligonucleotide 69 cagcatcacc acacaccaat 20 70 20 DNA Artificial Sequence Antisense Oligonucleotide 70 aaccttgcat tactcaggat 20 71 20 DNA Artificial Sequence Antisense Oligonucleotide 71 atccaccagg atgccatact 20 72 20 DNA Artificial Sequence Antisense Oligonucleotide 72 agagacacca cctggatagg 20 73 20 DNA Artificial Sequence Antisense Oligonucleotide 73 cagcagcccc atctgctctg 20 74 20 DNA Artificial Sequence Antisense Oligonucleotide 74 gccaggttaa ccacatgtag 20 75 20 DNA Artificial Sequence Antisense Oligonucleotide 75 aaccagtaag gccacagctg 20 76 20 DNA Artificial Sequence Antisense Oligonucleotide 76 cccactggag tgatagactc 20 77 20 DNA Artificial Sequence Antisense Oligonucleotide 77 atggagtatg atgccagagc 20 78 20 DNA Artificial Sequence Antisense Oligonucleotide 78 acccttcgct ggcggcacca 20 79 20 DNA Artificial Sequence Antisense Oligonucleotide 79 tggatagctc acagcttgct 20 80 20 DNA Artificial Sequence Antisense Oligonucleotide 80 tctcggtagg tcaggttgtc 20 81 20 DNA Artificial Sequence Antisense Oligonucleotide 81 ctcaagaact cgtcgtagca 20 82 20 DNA Artificial Sequence Antisense Oligonucleotide 82 gttggatcag ccccacttga 20 83 20 DNA Artificial Sequence Antisense Oligonucleotide 83 gtgaatagtc catatccttg 20 84 20 DNA Artificial Sequence Antisense Oligonucleotide 84 taagagacgc tcaatgatcc 20 85 20 DNA Artificial Sequence Antisense Oligonucleotide 85 tctgccacag cattgagaca 20 86 20 DNA Artificial Sequence Antisense Oligonucleotide 86 ccaatctctg tagaactcgc 20 87 20 DNA Artificial Sequence Antisense Oligonucleotide 87 gtgacagact cagcattcca 20 88 20 DNA Artificial Sequence Antisense Oligonucleotide 88 gtctgatgca ccacttgtgc 20 89 20 DNA Artificial Sequence Antisense Oligonucleotide 89 tgccatgtct gagcataggc 20 90 20 DNA Artificial Sequence Antisense Oligonucleotide 90 atactcctgt cctggccacc 20 91 20 DNA Artificial Sequence Antisense Oligonucleotide 91 attgccatag ttcccttgga 20 92 20 DNA Artificial Sequence Antisense Oligonucleotide 92 agtgtcaccc acacagctgc 20 93 20 DNA Artificial Sequence Antisense Oligonucleotide 93 ccaccggttg cccaatgatg 20 94 20 DNA Artificial Sequence Antisense Oligonucleotide 94 gtggacatac atgagcacag 20 95 20 DNA Artificial Sequence Antisense Oligonucleotide 95 tagttgagca cgtagtagtc 20 96 20 DNA Artificial Sequence Antisense Oligonucleotide 96 ctttggcagt agctcatacc 20 97 20 DNA Artificial Sequence Antisense Oligonucleotide 97 tccagaactc caggcccagg 20 98 20 RNA H. sapiens 98 gaauggacga gagaggcggc 20 99 20 RNA H. sapiens 99 ccguugucua gggcccggag 20 100 20 RNA H. sapiens 100 gcgccucggg cgcuacgaac 20 101 20 RNA H. sapiens 101 cacgcuuggc ugcggccggg 20 102 20 RNA H. sapiens 102 ugcgggcuga ggccaugggc 20 103 20 RNA H. sapiens 103 gggucgcggc ccucgagcca 20 104 20 RNA H. sapiens 104 cggcggcggc gggccugcgg 20 105 20 RNA H. sapiens 105 aaggacggag acgccggcgu 20 106 20 RNA H. sapiens 106 gggcagcggc cacugggagc 20 107 20 RNA H. sapiens 107 ugaggugcca ucgccugcag 20 108 20 RNA H. sapiens 108 agcaacuacc guggcauccu 20 109 20 RNA H. sapiens 109 agaaccucau caaguauggc 20 110 20 RNA H. sapiens 110 ugguuauugc ggccaauguc 20 111 20 RNA H. sapiens 111 gacggagcag gcgggacugc 20 112 20 RNA H. sapiens 112 agcggcugug gucuuacugg 20 113 20 RNA H. sapiens 113 uggcgcugau ggcgcacacc 20 114 20 RNA H. sapiens 114 gaagaaggcc agcagugcug 20 115 20 RNA H. sapiens 115 caccuugugc uacgagcuca 20 116 20 RNA H. sapiens 116 gacauggacu acucacgcau 20 117 20 RNA H. sapiens 117 caaucaccuc aucuggcuca 20 118 20 RNA H. sapiens 118 ugaaugccgu ggcugagcuc 20 119 20 RNA H. sapiens 119 acuacgugcu caacuaugag 20 120 20 RNA H. sapiens 120 gagggccugg cuucucacug 20 121 20 RNA H. sapiens 121 gccucgagug cuggggaugg 20 122 20 RNA H. sapiens 122 gccuggcugc acagcauccu 20 123 20 RNA H. sapiens 123 auggggcucu guccugcacc 20 124 20 RNA H. sapiens 124 ggcgacagca ggccagacac 20 125 20 RNA H. sapiens 125 agucugaugc cagcugggag 20 126 20 RNA M. musculus 126 gugcgggccg aagccauggg 20 127 20 RNA M. musculus 127 cgaggugcga gacgcggcug 20 128 20 RNA M. musculus 128 ggggugacgc gccggcuccg 20 129 20 RNA M. musculus 129 agacgggcgg accagcgugg 20 130 20 RNA M. musculus 130 gcgacggcua cugggaucug 20 131 20 RNA M. musculus 131 aggugccauc gucugcaaga 20 132 20 RNA M. musculus 132 caauuaucgu gguauccuga 20 133 20 RNA M. musculus 133 auuggugugu ggugaugcug 20 134 20 RNA M. musculus 134 auccugagua augcaagguu 20 135 20 RNA M. musculus 135 cagagcagau ggggcugcug 20 136 20 RNA M. musculus 136 cuacaugugg uuaaccuggc 20 137 20 RNA M. musculus 137 gcucuggcau cauacuccau 20 138 20 RNA M. musculus 138 uggugccgcc agcgaagggu 20 139 20 RNA M. musculus 139 agcaagcugu gagcuaucca 20 140 20 RNA M. musculus 140 ugcuacgacg aguucuugag 20 141 20 RNA M. musculus 141 caaggauaug gacuauucac 20 142 20 RNA M. musculus 142 ugucucaaug cuguggcaga 20 143 20 RNA M. musculus 143 gcgaguucua cagagauugg 20 144 20 RNA M. musculus 144 uggaaugcug agucugucac 20 145 20 RNA M. musculus 145 gcacaagugg ugcaucagac 20 146 20 RNA M. musculus 146 gccuaugcuc agacauggca 20 147 20 RNA M. musculus 147 gguggccagg acaggaguau 20 148 20 RNA M. musculus 148 uccaagggaa cuauggcaau 20 149 20 RNA M. musculus 149 gcagcugugu gggugacacu 20 150 20 RNA M. musculus 150 caucauuggg caaccggugg 20 151 20 RNA M. musculus 151 cugugcucau guauguccac 20 152 20 RNA M. musculus 152 ccugggccug gaguucugga 20

Claims (52)

What is claimed is:
1. A compound 8 to 80 nucleobases in length targeted to a nucleic acid molecule encoding diacylglycerol acyltransferase 1, wherein said compound specifically hybridizes with said nucleic acid molecule encoding diacylglycerol acyltransferase 1 (SEQ ID NO: 4) and inhibits the expression of diacylglycerol acyltransferase 1.
2. The compound of claim 1 comprising 12 to 50 nucleobases in length.
3. The compound of claim 2 comprising 15 to 30 nucleobases in length.
4. The compound of claim 1 comprising an oligonucleotide.
5. The compound of claim 4 comprising an antisense oligonucleotide.
6. The compound of claim 4 comprising a DNA oligonucleotide.
7. The compound of claim 4 comprising an RNA oligonucleotide.
8. The compound of claim 4 comprising a chimeric oligonucleotide.
9. The compound of claim 4 wherein at least a portion of said compound hybridizes with RNA to form an oligonucleotide-RNA duplex.
10. The compound of claim 1 having at least 70% complementarity with a nucleic acid molecule encoding diacylglycerol acyltransferase 1 (SEQ ID NO: 4) said compound specifically hybridizing to and inhibiting the expression of diacylglycerol acyltransferase 1.
11. The compound of claim 1 having at least 80% complementarity with a nucleic acid molecule encoding diacylglycerol acyltransferase 1 (SEQ ID NO: 4) said compound specifically hybridizing to and inhibiting the expression of diacylglycerol acyltransferase 1.
12. The compound of claim 1 having at least 90% complementarity with a nucleic acid molecule encoding diacylglycerol acyltransferase 1 (SEQ ID NO: 4) said compound specifically hybridizing to and inhibiting the expression of diacylglycerol acyltransferase 1.
13. The compound of claim 1 having at least 95% complementarity with a nucleic acid molecule encoding diacylglycerol acyltransferase 1 (SEQ ID NO: 4) said compound specifically hybridizing to and inhibiting the expression of diacylglycerol acyltransferase 1.
14. The compound of claim 1 having at least one modified internucleoside linkage, sugar moiety, or nucleobase.
15. The compound of claim 1 having at least one 2′-O-methoxyethyl sugar moiety.
16. The compound of claim 1 having at least one phosphorothioate internucleoside linkage.
17. The compound of claim 1 having at least one 5-methylcytosine.
18. A method of inhibiting the expression of diacylglycerol acyltransferase 1 in cells or tissues comprising contacting said cells or tissues with the compound of claim 1 so that expression of diacylglycerol acyltransferase 1 is inhibited.
19. A method of screening for a modulator of diacylglycerol acyltransferase 1, the method comprising the steps of:
a. contacting a preferred target segment of a nucleic acid molecule encoding diacylglycerol acyltransferase 1 with one or more candidate modulators of diacylglycerol acyltransferase 1, and
b. identifying one or more modulators of diacylglycerol acyltransferase 1 expression which modulate the expression of diacylglycerol acyltransferase 1.
20. The method of claim 19 wherein the modulator of diacylglycerol acyltransferase 1 expression comprises an oligonucleotide, an antisense oligonucleotide, a DNA oligonucleotide, an RNA oligonucleotide, an RNA oligonucleotide having at least a portion of said RNA oligonucleotide capable of hybridizing with RNA to form an oligonucleotide-RNA duplex, or a chimeric oligonucleotide.
21. A diagnostic method for identifying a disease state comprising identifying the presence of diacylglycerol acyltransferase 1 in a sample using at least one of the primers comprising SEQ ID NOs 5 or 6, or the probe comprising SEQ ID NO: 7.
22. A kit or assay device comprising the compound of claim 1.
23. A method of treating an animal having a disease or condition associated with diacylglycerol acyltransferase 1 comprising administering to said animal a therapeutically or prophylactically effective amount of the compound of claim 1 so that expression of diacylglycerol acyltransferase 1 is inhibited.
24. The method of claim 23 wherein the condition involves abnormal lipid metabolism.
25. The method of claim 23 wherein the condition involves abnormal cholesterol metabolism.
26. The method of claim 23 wherein the condition is atherosclerosis.
27. The method of claim 23 wherein the condition is an abnormal metabolic condition.
28. The method of claim 27 wherein the abnormal metabolic condition is hyperlipidemia.
29. The method of claim 23 wherein the disease is diabetes.
30. The method of claim 29 wherein the diabetes is Type 2 diabetes.
31. The method of claim 23 wherein the condition is obesity.
32. The method of claim 23 wherein the disease is cardiovascular disease.
33. A method of modulating glucose levels in an animal comprising administering to said animal the compound of claim 1.
34. The method of claim 33 wherein the animal is a human.
35. The method of claim 33 wherein the glucose levels are plasma glucose levels.
36. The method of claim 33 wherein the glucose levels are serum glucose levels.
37. The method of claim 33 wherein the animal is a diabetic animal.
38. A method of preventing or delaying the onset of a disease or condition associated with diacylglycerol acyltransferase 1 in an animal comprising administering to said animal a therapeutically or prophylactically effective amount of the compound of claim 1.
39. The method of claim 38 wherein the animal is a human.
40. The method of claim 38 wherein the condition is an abnormal metabolic condition.
41. The method of claim 40 wherein the abnormal metabolic condition is hyperlipidemia.
42. The method of claim 38 wherein the disease is diabetes.
43. The method of claim 42 wherein the diabetes is Type 2 diabetes.
44. The method of claim 38 wherein the condition is obesity.
45. A method of modulating cholesterol levels in an animal comprising administering to said animal the compound of claim 1.
46. The method of claim 45 wherein the animal is a human.
47. The method of claim 45 wherein the cholesterol levels are plasma cholesterol levels.
48. The method of claim 45 wherein the cholesterol levels are serum cholesterol levels.
49. A method of lowering triglyceride levels in an animal comprising administering to said animal the compound of claim 1.
50. The method of claim 49 wherein the animal is a human.
51. The method of claim 49 wherein the triglyceride levels are plasma triglyceride levels.
52. The method of claim 49 wherein the triglyceride levels are serum triglyceride levels.
US10/394,808 2003-03-21 2003-03-21 Modulation of diacylglycerol acyltransferase 1 expression Abandoned US20040185559A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/394,808 US20040185559A1 (en) 2003-03-21 2003-03-21 Modulation of diacylglycerol acyltransferase 1 expression

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US10/394,808 US20040185559A1 (en) 2003-03-21 2003-03-21 Modulation of diacylglycerol acyltransferase 1 expression
US10/803,482 US7414033B2 (en) 2003-03-21 2004-03-18 Modulation of diacylglycerol acyltransferase 1 expression
EP04722144A EP1613728A4 (en) 2003-03-21 2004-03-19 Modulation of diacylglycerol acyltransferase 1 expression
PCT/US2004/006083 WO2004094618A2 (en) 2003-03-21 2004-03-19 Modulation of diacylglycerol acyltransferase 1 expression
EP10177263A EP2281869A3 (en) 2003-03-21 2004-03-19 Modulation of diacylglycerol acyltransferase 1 expression
US12/173,744 US8158597B2 (en) 2003-03-21 2008-07-15 Modulation of diacylglycerol acyltransferase 1 expression
US13/414,614 US20120232125A1 (en) 2003-03-21 2012-03-07 Modulation of diacylglycerol acyltransferase 1 expression

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/803,482 Continuation-In-Part US7414033B2 (en) 2003-03-21 2004-03-18 Modulation of diacylglycerol acyltransferase 1 expression

Publications (1)

Publication Number Publication Date
US20040185559A1 true US20040185559A1 (en) 2004-09-23

Family

ID=32988461

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/394,808 Abandoned US20040185559A1 (en) 2003-03-21 2003-03-21 Modulation of diacylglycerol acyltransferase 1 expression
US10/803,482 Expired - Fee Related US7414033B2 (en) 2003-03-21 2004-03-18 Modulation of diacylglycerol acyltransferase 1 expression
US12/173,744 Active US8158597B2 (en) 2003-03-21 2008-07-15 Modulation of diacylglycerol acyltransferase 1 expression
US13/414,614 Abandoned US20120232125A1 (en) 2003-03-21 2012-03-07 Modulation of diacylglycerol acyltransferase 1 expression

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/803,482 Expired - Fee Related US7414033B2 (en) 2003-03-21 2004-03-18 Modulation of diacylglycerol acyltransferase 1 expression
US12/173,744 Active US8158597B2 (en) 2003-03-21 2008-07-15 Modulation of diacylglycerol acyltransferase 1 expression
US13/414,614 Abandoned US20120232125A1 (en) 2003-03-21 2012-03-07 Modulation of diacylglycerol acyltransferase 1 expression

Country Status (3)

Country Link
US (4) US20040185559A1 (en)
EP (2) EP2281869A3 (en)
WO (1) WO2004094618A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209838A1 (en) * 2003-03-21 2004-10-21 Monia Brett P. Modulation of diacylglycerol acyltransferase 1 expression
US20070123504A1 (en) * 2005-11-28 2007-05-31 Bolin David R Diacylglycerol acyltransferase inhibitors
WO2008019351A3 (en) * 2006-08-04 2008-10-16 Sanjay Bhanot Compositions and their uses directed to diacylglycerol acyltransferase 1
WO2010059602A2 (en) 2008-11-19 2010-05-27 Schering Corporation Inhibitors of diacylglycerol acyltransferase
WO2010039801A3 (en) * 2008-10-02 2010-06-03 The J. David Gladstone Institutes Methods of treating hepatitis c virus infection
WO2010107768A1 (en) 2009-03-18 2010-09-23 Schering Corporation Bicyclic compounds as inhibitors of diacylglycerol acyltransferase
WO2011000107A1 (en) 2009-07-01 2011-01-06 Protiva Biotherapeutics, Inc. Novel lipid formulations for delivery of therapeutic agents to solid tumors
WO2011031628A1 (en) 2009-09-14 2011-03-17 Schering Corporation Inhibitors of diacylglycerol acyltransferase
WO2011123401A1 (en) 2010-03-30 2011-10-06 Novartis Ag Uses of dgat1 inhibitors
WO2013015535A2 (en) 2011-07-27 2013-01-31 한국보건산업진흥원 Novel pyrimidine derivative and pharmaceutical composition including same as an active ingredient
WO2013126803A1 (en) 2012-02-24 2013-08-29 Protiva Biotherapeutics Inc. Trialkyl cationic lipids and methods of use thereof
CN106260979A (en) * 2015-05-20 2017-01-04 钟春明 Dietetic therapy formula for conditioning hyperlipidemia and preparation method thereof

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162616A (en) * 1997-04-16 2000-12-19 Millennium Pharmaceuticals, Inc. Multidrug resistance-associated polypeptide
US7407943B2 (en) * 2001-08-01 2008-08-05 Isis Pharmaceuticals, Inc. Antisense modulation of apolipoprotein B expression
US20030180712A1 (en) * 2002-03-20 2003-09-25 Biostratum Ab Inhibition of the beta3 subunit of L-type Ca2+ channels
USRE44760E1 (en) 2002-11-13 2014-02-11 Genzyme Corporation Antisense modulation of apolipoprotein B-expression
US20060009410A1 (en) * 2002-11-13 2006-01-12 Crooke Rosanne M Effects of apolipoprotein B inhibition on gene expression profiles in animals
US20050287558A1 (en) * 2004-05-05 2005-12-29 Crooke Rosanne M SNPs of apolipoprotein B and modulation of their expression
JP2009516823A (en) * 2005-09-30 2009-04-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents of The University of California SATBl: determinants morphogenesis and tumor metastasis
WO2007134014A2 (en) 2006-05-05 2007-11-22 Isis Pharmaceuticals, Inc. Compounds and methods for modulating expression of gcgr
MX2009001043A (en) 2006-08-08 2009-02-06 Sanofi Aventis Arylaminoaryl-alkyl-substituted imidazolidine-2,4-diones, processes for preparing them, medicaments comprising these compounds, and their use.
WO2008109369A2 (en) * 2007-03-02 2008-09-12 Mdrna, Inc. Nucleic acid compounds for inhibiting tnf gene expression and uses thereof
AU2008230886B9 (en) * 2007-03-24 2014-09-04 Kastle Therapeutics, Llc Administering antisense oligonucleotides complementary to human apolipoprotein B
CA2697551C (en) 2007-09-20 2013-03-12 Irm Llc Piperidine derivatives as modulators of gpr119 activity
AR072707A1 (en) 2008-07-09 2010-09-15 Sanofi Aventis heterocyclic compounds, processes for their preparation, medicaments comprising these compounds and the use thereof
WO2010068601A1 (en) 2008-12-08 2010-06-17 Sanofi-Aventis A crystalline heteroaromatic fluoroglycoside hydrate, processes for making, methods of use and pharmaceutical compositions thereof
US9107933B2 (en) 2009-03-16 2015-08-18 Isis Pharmaceuticals, Inc. Compositions and methods of targeting apolipoprotein B for the reduction of apolipoprotein C-III
WO2011014520A2 (en) 2009-07-29 2011-02-03 Irm Llc Compounds and compositions as modulators of gpr119 activity
MX2012001729A (en) 2009-08-26 2012-06-13 Sanofi Sa Novel crystalline heteroaromatic fluoroglycoside hydrates, pharmaceuticals comprising these compounds and their use.
CN102686579A (en) 2009-10-09 2012-09-19 Irm责任有限公司 Compounds and compositions as modulators of GPR119 activity
US8394858B2 (en) 2009-12-03 2013-03-12 Novartis Ag Cyclohexane derivatives and uses thereof
US8697739B2 (en) 2010-07-29 2014-04-15 Novartis Ag Bicyclic acetyl-CoA carboxylase inhibitors and uses thereof
EP2683699B1 (en) 2011-03-08 2015-06-24 Sanofi Di- and tri-substituted oxathiazine derivates, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
US8871758B2 (en) 2011-03-08 2014-10-28 Sanofi Tetrasubstituted oxathiazine derivatives, method for producing them, their use as medicine and drug containing said derivatives and the use thereof
EP2683698B1 (en) 2011-03-08 2017-10-04 Sanofi Benzyl-oxathiazine derivates substituted with adamantane or noradamantane, medicaments containing said compounds and use thereof
EP2683701B1 (en) 2011-03-08 2014-12-24 Sanofi Oxathiazine derivatives substituted with benzyl or heteromethylene groups, method for their preparation, their usage as medicament, medicament containing same and its use
WO2012120057A1 (en) 2011-03-08 2012-09-13 Sanofi Novel substituted phenyl-oxathiazine derivatives, method for producing them, drugs containing said compounds and the use thereof
EP2683705B1 (en) 2011-03-08 2015-04-22 Sanofi Di- and tri-substituted oxathiazine derivates, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
WO2012120050A1 (en) 2011-03-08 2012-09-13 Sanofi Novel substituted phenyl-oxathiazine derivatives, method for producing them, drugs containing said compounds and the use thereof
US8901114B2 (en) 2011-03-08 2014-12-02 Sanofi Oxathiazine derivatives substituted with carbocycles or heterocycles, method for producing same, drugs containing said compounds, and use thereof
WO2012120053A1 (en) 2011-03-08 2012-09-13 Sanofi Branched oxathiazine derivatives, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
EP2567959B1 (en) 2011-09-12 2014-04-16 Sanofi 6-(4-hydroxy-phenyl)-3-styryl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
WO2014018930A1 (en) * 2012-07-27 2014-01-30 Isis Pharmaceuticals. Inc. Modulation of renin-angiotensin system (ras) related diseases by angiotensinogen
WO2014052619A1 (en) 2012-09-27 2014-04-03 Irm Llc Piperidine derivatives and compositions as modulators of gpr119 activity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100077A (en) * 1998-10-01 2000-08-08 The Trustees Of Columbia University In The City Of New York Isolation of a gene encoding diacylglycerol acyltransferase

Family Cites Families (227)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687808A (en) 1969-08-14 1972-08-29 Univ Leland Stanford Junior Synthetic polynucleotides
US4469863A (en) 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US4534899A (en) 1981-07-20 1985-08-13 Lipid Specialties, Inc. Synthetic phospholipid compounds
US4426330A (en) 1981-07-20 1984-01-17 Lipid Specialties, Inc. Synthetic phospholipid compounds
US5023243A (en) 1981-10-23 1991-06-11 Molecular Biosystems, Inc. Oligonucleotide therapeutic agent and method of making same
US4476301A (en) 1982-04-29 1984-10-09 Centre National De La Recherche Scientifique Oligonucleotides, a process for preparing the same and their application as mediators of the action of interferon
JPH0372639B2 (en) 1982-08-09 1991-11-19 Wakunaga Seiyaku Kk
FR2540122B1 (en) 1983-01-27 1985-11-29 Centre Nat Rech Scient Novel compounds having an oligonucleotide sequence bound to an intercalating agent, their process of synthesis and their application
US4605735A (en) 1983-02-14 1986-08-12 Wakunaga Seiyaku Kabushiki Kaisha Oligonucleotide derivatives
US4948882A (en) 1983-02-22 1990-08-14 Syngene, Inc. Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis
US4824941A (en) 1983-03-10 1989-04-25 Julian Gordon Specific antibody to the native form of 2'5'-oligonucleotides, the method of preparation and the use as reagents in immunoassays or for binding 2'5'-oligonucleotides in biological systems
US4587044A (en) 1983-09-01 1986-05-06 The Johns Hopkins University Linkage of proteins to nucleic acids
US5118800A (en) 1983-12-20 1992-06-02 California Institute Of Technology Oligonucleotides possessing a primary amino group in the terminal nucleotide
US5118802A (en) 1983-12-20 1992-06-02 California Institute Of Technology DNA-reporter conjugates linked via the 2' or 5'-primary amino group of the 5'-terminal nucleoside
US5550111A (en) 1984-07-11 1996-08-27 Temple University-Of The Commonwealth System Of Higher Education Dual action 2',5'-oligoadenylate antiviral derivatives and uses thereof
FR2567892B1 (en) 1984-07-19 1989-02-17 Centre Nat Rech Scient New oligonucleotides, their method of preparing and applications as mediators in the development of the effects of interferons
US5430136A (en) 1984-10-16 1995-07-04 Chiron Corporation Oligonucleotides having selectably cleavable and/or abasic sites
US5258506A (en) 1984-10-16 1993-11-02 Chiron Corporation Photolabile reagents for incorporation into oligonucleotide chains
US5367066A (en) 1984-10-16 1994-11-22 Chiron Corporation Oligonucleotides with selectably cleavable and/or abasic sites
US4828979A (en) 1984-11-08 1989-05-09 Life Technologies, Inc. Nucleotide analogs for nucleic acid labeling and detection
FR2575751B1 (en) 1985-01-08 1987-04-03 Pasteur Institut New nucleoside adenosine derivatives, their preparation and their biological applications
US5166315A (en) 1989-12-20 1992-11-24 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5405938A (en) 1989-12-20 1995-04-11 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5235033A (en) 1985-03-15 1993-08-10 Anti-Gene Development Group Alpha-morpholino ribonucleoside derivatives and polymers thereof
US5185444A (en) 1985-03-15 1993-02-09 Anti-Gene Deveopment Group Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages
US4762779A (en) 1985-06-13 1988-08-09 Amgen Inc. Compositions and methods for functionalizing nucleic acids
US5317098A (en) 1986-03-17 1994-05-31 Hiroaki Shizuya Non-radioisotope tagging of fragments
JPS638396A (en) 1986-06-30 1988-01-14 Wakunaga Pharmaceut Co Ltd Poly-labeled oligonucleotide derivative
DE3788914T2 (en) 1986-09-08 1994-08-25 Ajinomoto Kk Compounds for the cleavage of RNA at a specific position, oligomers, used in the preparation of these compounds and starting materials for the synthesis of these oligomers.
US5264423A (en) 1987-03-25 1993-11-23 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US5276019A (en) 1987-03-25 1994-01-04 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US4904582A (en) 1987-06-11 1990-02-27 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
DE3851889T2 (en) 1987-06-24 1995-04-13 Florey Howard Inst Nucleoside derivatives.
US5585481A (en) 1987-09-21 1996-12-17 Gen-Probe Incorporated Linking reagents for nucleotide probes
US4924624A (en) 1987-10-22 1990-05-15 Temple University-Of The Commonwealth System Of Higher Education 2,',5'-phosphorothioate oligoadenylates and plant antiviral uses thereof
US5188897A (en) 1987-10-22 1993-02-23 Temple University Of The Commonwealth System Of Higher Education Encapsulated 2',5'-phosphorothioate oligoadenylates
US5525465A (en) 1987-10-28 1996-06-11 Howard Florey Institute Of Experimental Physiology And Medicine Oligonucleotide-polyamide conjugates and methods of production and applications of the same
DE3738460A1 (en) 1987-11-12 1989-05-24 Max Planck Gesellschaft modified oligonucleotides
US5403711A (en) 1987-11-30 1995-04-04 University Of Iowa Research Foundation Nucleic acid hybridization and amplification method for detection of specific sequences in which a complementary labeled nucleic acid probe is cleaved
JP3019994B2 (en) 1987-11-30 2000-03-15 ユニバーシティ オブ アイオワ リサーチ ファウンデーション Novel oligodeoxynucleotide, a method of inhibiting method of blocking the expression of a target gene using, and the expression of novel oligodeoxynucleotide and the target genes using it it
US5082830A (en) 1988-02-26 1992-01-21 Enzo Biochem, Inc. End labeled nucleotide probe
EP0406309A4 (en) 1988-03-25 1992-08-19 The University Of Virginia Alumni Patents Foundation Oligonucleotide n-alkylphosphoramidates
US5278302A (en) 1988-05-26 1994-01-11 University Patents, Inc. Polynucleotide phosphorodithioates
US5109124A (en) 1988-06-01 1992-04-28 Biogen, Inc. Nucleic acid probe linked to a label having a terminal cysteine
US5216141A (en) 1988-06-06 1993-06-01 Benner Steven A Oligonucleotide analogs containing sulfur linkages
US5175273A (en) 1988-07-01 1992-12-29 Genentech, Inc. Nucleic acid intercalating agents
US5262536A (en) 1988-09-15 1993-11-16 E. I. Du Pont De Nemours And Company Reagents for the preparation of 5'-tagged oligonucleotides
US5194599A (en) 1988-09-23 1993-03-16 Gilead Sciences, Inc. Hydrogen phosphonodithioate compositions
US5512439A (en) 1988-11-21 1996-04-30 Dynal As Oligonucleotide-linked magnetic particles and uses thereof
US5595726A (en) 1992-01-21 1997-01-21 Pharmacyclics, Inc. Chromophore probe for detection of nucleic acid
US5599923A (en) 1989-03-06 1997-02-04 Board Of Regents, University Of Tx Texaphyrin metal complexes having improved functionalization
US5457183A (en) 1989-03-06 1995-10-10 Board Of Regents, The University Of Texas System Hydroxylated texaphyrins
US5565552A (en) 1992-01-21 1996-10-15 Pharmacyclics, Inc. Method of expanded porphyrin-oligonucleotide conjugate synthesis
US5354844A (en) 1989-03-16 1994-10-11 Boehringer Ingelheim International Gmbh Protein-polycation conjugates
US5108921A (en) 1989-04-03 1992-04-28 Purdue Research Foundation Method for enhanced transmembrane transport of exogenous molecules
US5391723A (en) 1989-05-31 1995-02-21 Neorx Corporation Oligonucleotide conjugates
US5256775A (en) 1989-06-05 1993-10-26 Gilead Sciences, Inc. Exonuclease-resistant oligonucleotides
US4958013A (en) 1989-06-06 1990-09-18 Northwestern University Cholesteryl modified oligonucleotides
US6582908B2 (en) * 1990-12-06 2003-06-24 Affymetrix, Inc. Oligonucleotides
US5227170A (en) 1989-06-22 1993-07-13 Vestar, Inc. Encapsulation process
US5451463A (en) 1989-08-28 1995-09-19 Clontech Laboratories, Inc. Non-nucleoside 1,3-diol reagents for labeling synthetic oligonucleotides
US5134066A (en) 1989-08-29 1992-07-28 Monsanto Company Improved probes using nucleosides containing 3-dezauracil analogs
US5254469A (en) 1989-09-12 1993-10-19 Eastman Kodak Company Oligonucleotide-enzyme conjugate that can be used as a probe in hybridization assays and polymerase chain reaction procedures
US5591722A (en) 1989-09-15 1997-01-07 Southern Research Institute 2'-deoxy-4'-thioribonucleosides and their antiviral activity
US5356633A (en) 1989-10-20 1994-10-18 Liposome Technology, Inc. Method of treatment of inflamed tissues
US5527528A (en) 1989-10-20 1996-06-18 Sequus Pharmaceuticals, Inc. Solid-tumor treatment method
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5399676A (en) 1989-10-23 1995-03-21 Gilead Sciences Oligonucleotides with inverted polarity
US5721218A (en) 1989-10-23 1998-02-24 Gilead Sciences, Inc. Oligonucleotides with inverted polarity
US5264562A (en) 1989-10-24 1993-11-23 Gilead Sciences, Inc. Oligonucleotide analogs with novel linkages
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
CA2071510C (en) 1989-10-24 2004-07-06 Chris A. Buhr 2' modified oligonucleotides
US5292873A (en) 1989-11-29 1994-03-08 The Research Foundation Of State University Of New York Nucleic acids labeled with naphthoquinone probe
US5177198A (en) 1989-11-30 1993-01-05 University Of N.C. At Chapel Hill Process for preparing oligoribonucleoside and oligodeoxyribonucleoside boranophosphates
US5130302A (en) 1989-12-20 1992-07-14 Boron Bilogicals, Inc. Boronated nucleoside, nucleotide and oligonucleotide compounds, compositions and methods for using same
US5469854A (en) 1989-12-22 1995-11-28 Imarx Pharmaceutical Corp. Methods of preparing gas-filled liposomes
US5580575A (en) 1989-12-22 1996-12-03 Imarx Pharmaceutical Corp. Therapeutic drug delivery systems
US5486603A (en) 1990-01-08 1996-01-23 Gilead Sciences, Inc. Oligonucleotide having enhanced binding affinity
US5587470A (en) 1990-01-11 1996-12-24 Isis Pharmaceuticals, Inc. 3-deazapurines
US5670633A (en) 1990-01-11 1997-09-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5459255A (en) 1990-01-11 1995-10-17 Isis Pharmaceuticals, Inc. N-2 substituted purines
US5646265A (en) 1990-01-11 1997-07-08 Isis Pharmceuticals, Inc. Process for the preparation of 2'-O-alkyl purine phosphoramidites
US5681941A (en) 1990-01-11 1997-10-28 Isis Pharmaceuticals, Inc. Substituted purines and oligonucleotide cross-linking
US5578718A (en) 1990-01-11 1996-11-26 Isis Pharmaceuticals, Inc. Thiol-derivatized nucleosides
US5587361A (en) 1991-10-15 1996-12-24 Isis Pharmaceuticals, Inc. Oligonucleotides having phosphorothioate linkages of high chiral purity
US5220007A (en) 1990-02-15 1993-06-15 The Worcester Foundation For Experimental Biology Method of site-specific alteration of RNA and production of encoded polypeptides
US5149797A (en) 1990-02-15 1992-09-22 The Worcester Foundation For Experimental Biology Method of site-specific alteration of rna and production of encoded polypeptides
WO1991013080A1 (en) 1990-02-20 1991-09-05 Gilead Sciences, Inc. Pseudonucleosides and pseudonucleotides and their polymers
US5214136A (en) 1990-02-20 1993-05-25 Gilead Sciences, Inc. Anthraquinone-derivatives oligonucleotides
US5321131A (en) 1990-03-08 1994-06-14 Hybridon, Inc. Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling
US5470967A (en) 1990-04-10 1995-11-28 The Dupont Merck Pharmaceutical Company Oligonucleotide analogs with sulfamate linkages
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
GB9009980D0 (en) 1990-05-03 1990-06-27 Amersham Int Plc Phosphoramidite derivatives,their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides
DE69032425D1 (en) 1990-05-11 1998-07-23 Microprobe Corp Test strips for immersion for nucleic acid hybridization assays and methods for the covalent immobilization of oligonucleotides
US5688941A (en) 1990-07-27 1997-11-18 Isis Pharmaceuticals, Inc. Methods of making conjugated 4' desmethyl nucleoside analog compounds
US5608046A (en) 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
US5618704A (en) 1990-07-27 1997-04-08 Isis Pharmacueticals, Inc. Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling
US5218105A (en) 1990-07-27 1993-06-08 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
BR9106702A (en) 1990-07-27 1993-06-08 Isis Pharmaceuticals Inc Analogous to oligonucleotides and methods for modulating the production of a protein by an organism and to treat an organism
US5541307A (en) 1990-07-27 1996-07-30 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs and solid phase synthesis thereof
US5489677A (en) 1990-07-27 1996-02-06 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
US5602240A (en) 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
US5623070A (en) 1990-07-27 1997-04-22 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5610289A (en) 1990-07-27 1997-03-11 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogues
US5138045A (en) 1990-07-27 1992-08-11 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5378825A (en) 1990-07-27 1995-01-03 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs
US5677437A (en) 1990-07-27 1997-10-14 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5386023A (en) 1990-07-27 1995-01-31 Isis Pharmaceuticals Backbone modified oligonucleotide analogs and preparation thereof through reductive coupling
IL113519A (en) 1990-08-03 1997-11-20 Sterling Winthrop Inc Oligonucleoside sequences of from about 6 to about 200 bases having a three atom internucleoside linkage, their preparation and pharmaceutical compositions for inhibiting gene expression containing said oligonucleosides
US5245022A (en) 1990-08-03 1993-09-14 Sterling Drug, Inc. Exonuclease resistant terminally substituted oligonucleotides
US5223618A (en) 1990-08-13 1993-06-29 Isis Pharmaceuticals, Inc. 4'-desmethyl nucleoside analog compounds
US5623065A (en) 1990-08-13 1997-04-22 Isis Pharmaceuticals, Inc. Gapped 2' modified oligonucleotides
US5177196A (en) 1990-08-16 1993-01-05 Microprobe Corporation Oligo (α-arabinofuranosyl nucleotides) and α-arabinofuranosyl precursors thereof
US5512667A (en) 1990-08-28 1996-04-30 Reed; Michael W. Trifunctional intermediates for preparing 3'-tailed oligonucleotides
US5214134A (en) 1990-09-12 1993-05-25 Sterling Winthrop Inc. Process of linking nucleosides with a siloxane bridge
US5561225A (en) 1990-09-19 1996-10-01 Southern Research Institute Polynucleotide analogs containing sulfonate and sulfonamide internucleoside linkages
JPH06505704A (en) 1990-09-20 1994-06-30
US5432272A (en) 1990-10-09 1995-07-11 Benner; Steven A. Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases
DE69132510T2 (en) 1990-11-08 2001-05-03 Hybridon Inc Connection of multiple reporter groups on synthetic oligonucleotides
US5672697A (en) 1991-02-08 1997-09-30 Gilead Sciences, Inc. Nucleoside 5'-methylene phosphonates
JP3220180B2 (en) 1991-05-23 2001-10-22 三菱化学株式会社 The drug-containing protein-bound liposome
US5714331A (en) 1991-05-24 1998-02-03 Buchardt, Deceased; Ole Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
US5719262A (en) 1993-11-22 1998-02-17 Buchardt, Deceased; Ole Peptide nucleic acids having amino acid side chains
US5371241A (en) 1991-07-19 1994-12-06 Pharmacia P-L Biochemicals Inc. Fluorescein labelled phosphoramidites
US5571799A (en) 1991-08-12 1996-11-05 Basco, Ltd. (2'-5') oligoadenylate analogues useful as inhibitors of host-v5.-graft response
US5521291A (en) 1991-09-30 1996-05-28 Boehringer Ingelheim International, Gmbh Conjugates for introducing nucleic acid into higher eucaryotic cells
NZ244306A (en) 1991-09-30 1995-07-26 Boehringer Ingelheim Int Composition for introducing nucleic acid complexes into eucaryotic cells, complex containing nucleic acid and endosomolytic agent, peptide with endosomolytic domain and nucleic acid binding domain and preparation
ES2103918T3 (en) 1991-10-17 1997-10-01 Ciba Geigy Ag Bicyclic nucleosides, oligonucleotides, process for their preparation and intermediates.
US5594121A (en) 1991-11-07 1997-01-14 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines
DE637965T1 (en) 1991-11-26 1995-12-14 Gilead Sciences Inc Increased formation of triple and double helices of oligomers having modified pyrimidines.
TW393513B (en) 1991-11-26 2000-06-11 Isis Pharmaceuticals Inc Enhanced triple-helix and double-helix formation with oligomers containing modified pyrimidines
US5484908A (en) 1991-11-26 1996-01-16 Gilead Sciences, Inc. Oligonucleotides containing 5-propynyl pyrimidines
US5792608A (en) 1991-12-12 1998-08-11 Gilead Sciences, Inc. Nuclease stable and binding competent oligomers and methods for their use
US5359044A (en) 1991-12-13 1994-10-25 Isis Pharmaceuticals Cyclobutyl oligonucleotide surrogates
US5700922A (en) 1991-12-24 1997-12-23 Isis Pharmaceuticals, Inc. PNA-DNA-PNA chimeric macromolecules
FR2687679B1 (en) 1992-02-05 1994-10-28 Centre Nat Rech Scient Oligothionucleotides.
US5633360A (en) 1992-04-14 1997-05-27 Gilead Sciences, Inc. Oligonucleotide analogs capable of passive cell membrane permeation
FR2692265B1 (en) 1992-05-25 1996-11-08 Centre Nat Rech Scient biologically active compounds of type phosphotriesters.
US5434257A (en) 1992-06-01 1995-07-18 Gilead Sciences, Inc. Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages
EP0577558A3 (en) 1992-07-01 1994-04-20 Ciba Geigy Ag
US5272250A (en) 1992-07-10 1993-12-21 Spielvogel Bernard F Boronated phosphoramidate compounds
US5652355A (en) 1992-07-23 1997-07-29 Worcester Foundation For Experimental Biology Hybrid oligonucleotide phosphorothioates
DE69316369D1 (en) 1992-07-27 1998-02-19 Hybridon Inc Oligonukleotid alkylphosphonothiate
US5583020A (en) 1992-11-24 1996-12-10 Ribozyme Pharmaceuticals, Inc. Permeability enhancers for negatively charged polynucleotides
US5574142A (en) 1992-12-15 1996-11-12 Microprobe Corporation Peptide linkers for improved oligonucleotide delivery
JP3351476B2 (en) 1993-01-22 2002-11-25 三菱化学株式会社 Phospholipid derivative and a liposome containing it
AT138384T (en) 1993-01-25 1996-06-15 Hybridon Inc Olionukleotidalkylphosphonate and - phosphonothioate
US5476925A (en) 1993-02-01 1995-12-19 Northwestern University Oligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups
US5395619A (en) 1993-03-03 1995-03-07 Liposome Technology, Inc. Lipid-polymer conjugates and liposomes
GB9304620D0 (en) 1993-03-06 1993-04-21 Ciba Geigy Ag Compounds
GB9304618D0 (en) 1993-03-06 1993-04-21 Ciba Geigy Ag Chemical compounds
JPH08508492A (en) 1993-03-30 1996-09-10 スターリング ウィンスロップ インコーポレイティド Acyclic nucleoside analogues and oligonucleotide sequences comprising them
DE69407032T2 (en) 1993-03-31 1998-07-02 Sanofi Sa Oligonucleotides having amide linkages employ phosphoesterverkettungen
DE4311944A1 (en) 1993-04-10 1994-10-13 Degussa Coated sodium percarbonate particles, processes for their preparation and to detergents containing detergent and bleaching compositions
US5462854A (en) 1993-04-19 1995-10-31 Beckman Instruments, Inc. Inverse linkage oligonucleotides for chemical and enzymatic processes
US5539082A (en) 1993-04-26 1996-07-23 Nielsen; Peter E. Peptide nucleic acids
FR2705099B1 (en) 1993-05-12 1995-08-04 Centre Nat Rech Scient Oligonucleotide phosphorothioate triesters and method of preparation.
US5534259A (en) 1993-07-08 1996-07-09 Liposome Technology, Inc. Polymer compound and coated particle composition
US5543158A (en) 1993-07-23 1996-08-06 Massachusetts Institute Of Technology Biodegradable injectable nanoparticles
US5417978A (en) 1993-07-29 1995-05-23 Board Of Regents, The University Of Texas System Liposomal antisense methyl phosphonate oligonucleotides and methods for their preparation and use
US5502177A (en) 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US5801154A (en) * 1993-10-18 1998-09-01 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of multidrug resistance-associated protein
US5457187A (en) 1993-12-08 1995-10-10 Board Of Regents University Of Nebraska Oligonucleotides containing 5-fluorouracil
KR100386337B1 (en) 1993-12-09 2004-03-24 토마스 제퍼슨 대학교 Compounds and a method for the specific mutation-sites in eukaryotic cells
US5446137B1 (en) 1993-12-09 1998-10-06 Behringwerke Ag Oligonucleotides containing 4'-substituted nucleotides
US5595756A (en) 1993-12-22 1997-01-21 Inex Pharmaceuticals Corporation Liposomal compositions for enhanced retention of bioactive agents
US5519134A (en) 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US5596091A (en) 1994-03-18 1997-01-21 The Regents Of The University Of California Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides
US5627053A (en) 1994-03-29 1997-05-06 Ribozyme Pharmaceuticals, Inc. 2'deoxy-2'-alkylnucleotide containing nucleic acid
US5625050A (en) 1994-03-31 1997-04-29 Amgen Inc. Modified oligonucleotides and intermediates useful in nucleic acid therapeutics
US5646269A (en) 1994-04-28 1997-07-08 Gilead Sciences, Inc. Method for oligonucleotide analog synthesis
US5525711A (en) 1994-05-18 1996-06-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Pteridine nucleotide analogs as fluorescent DNA probes
US5543152A (en) 1994-06-20 1996-08-06 Inex Pharmaceuticals Corporation Sphingosomes for enhanced drug delivery
US5597696A (en) 1994-07-18 1997-01-28 Becton Dickinson And Company Covalent cyanine dye oligonucleotide conjugates
US5580731A (en) 1994-08-25 1996-12-03 Chiron Corporation N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith
US5597909A (en) 1994-08-25 1997-01-28 Chiron Corporation Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use
US5591721A (en) 1994-10-25 1997-01-07 Hybridon, Inc. Method of down-regulating gene expression
US5512295A (en) 1994-11-10 1996-04-30 The Board Of Trustees Of The Leland Stanford Junior University Synthetic liposomes for enhanced uptake and delivery
US5792747A (en) 1995-01-24 1998-08-11 The Administrators Of The Tulane Educational Fund Highly potent agonists of growth hormone releasing hormone
US5708160A (en) * 1995-04-26 1998-01-13 The National Research Council HSP-60 genomic locus and primers for species identification
US5652356A (en) 1995-08-17 1997-07-29 Hybridon, Inc. Inverted chimeric and hybrid oligonucleotides
JP3756313B2 (en) 1997-03-07 2006-03-15 武 今西 New bicyclo nucleosides and oligonucleotide analogues
DE69834038D1 (en) 1997-07-01 2006-05-18 Isis Pharmaceutical Inc Compositions and methods of administration of oligonucleotides via the esophagus
WO1999014226A2 (en) 1997-09-12 1999-03-25 Exiqon A/S Bi- and tri-cyclic nucleoside, nucleotide and oligonucleotide analogues
US20030228597A1 (en) * 1998-04-13 2003-12-11 Cowsert Lex M. Identification of genetic targets for modulation by oligonucleotides and generation of oligonucleotides for gene modulation
US20030154504A1 (en) * 1998-06-24 2003-08-14 Farese Robert V. Methods and compositions for modulating carbohydrate metabolism
DE69939426D1 (en) 1998-06-24 2008-10-09 David Gladstone Inst Diacylglycerol acyltransferase-o
US20030167483A1 (en) * 1998-06-24 2003-09-04 Farese Robert V. Diacylglycerol O-acyltransferase
US6344548B1 (en) 1998-06-24 2002-02-05 The Regents Of The University Of California Diacylglycerol o-acyltransferase
US20030100480A1 (en) 1998-06-24 2003-05-29 Smith Steven J. Methods and compositions for modulating sebaceous glands
AT442435T (en) 1998-07-02 2009-09-15 Calgene Llc Diacylglycerol acyltransferase proteins
US7135617B2 (en) 1998-07-02 2006-11-14 Calgene Llc Diacylglycerol acyl transferase proteins
AU2883700A (en) 1999-06-23 2001-01-09 Genentech Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
EP1156812A4 (en) 1999-02-23 2004-09-29 Isis Pharmaceuticals Inc Multiparticulate formulation
AU6802801A (en) 2000-03-01 2001-09-24 Genentech Inc Secreted and transmembrane polypeptides and nucleic acids encoding the same
US5998148A (en) * 1999-04-08 1999-12-07 Isis Pharmaceuticals Inc. Antisense modulation of microtubule-associated protein 4 expression
US6287860B1 (en) 2000-01-20 2001-09-11 Isis Pharmaceuticals, Inc. Antisense inhibition of MEKK2 expression
AU5135101A (en) 2000-04-05 2001-10-23 Incyte Genomics Inc Genes expressed in foam cell differentiation
US6444427B1 (en) 2000-07-11 2002-09-03 The Regents Of The University Of California Polymorphisms in a diacylglycerol acyltransferase gene, and methods of use thereof
WO2002008260A2 (en) 2000-07-26 2002-01-31 Stanford University Bstp-ecg1 protein and related reagents and methods of use thereof
US6426220B1 (en) 2000-10-30 2002-07-30 Isis Pharmaceuticals, Inc. Antisense modulation of calreticulin expression
AT352627T (en) 2000-10-31 2007-02-15 Michel Alphonse Julien Georges Marker-assisted selection of rindvieh for improved milk production using the diacylglycerol acyltransferase gene DGAT1
MXPA01012317A (en) 2000-12-28 2002-07-22 Warner Lambert Co Diacylglycerol acyltransferase (dgat) assay.
US6440738B1 (en) 2001-02-08 2002-08-27 Isis Pharmaceuticals, Inc. Antisense modulation of casein kinase 2-beta expression
US20030161831A1 (en) 2001-02-23 2003-08-28 Sylvaine Cases Mono-and diacylglycerol acyltransferases and methods of use thereof
US7045326B2 (en) 2001-02-23 2006-05-16 The Regents Of The University Of California Mono- and diacylglycerol acyltransferases and methods of use thereof
US20020119138A1 (en) 2001-02-26 2002-08-29 Sylvaine Cases Diacylglycerol o-acyltransferase 2alpha (DGAT2alpha)
JP2002284741A (en) 2001-03-23 2002-10-03 Kitasato Inst:The Roselipin derivative
US6835556B2 (en) 2001-04-12 2004-12-28 Pharmacia Ab Protein cluster V
US7091323B2 (en) 2001-04-24 2006-08-15 Bayer Corporation Human TIMP-1 antibodies
US6867039B2 (en) * 2001-05-25 2005-03-15 Isis Pharmaceuticals, Inc. Antisense modulation of dual specific phosphatase 5 expression
WO2003004630A2 (en) 2001-07-06 2003-01-16 Arbeitsgemeinschaft Deutscher Rinderzüchter E.V. (Adr) Method for determining the genetic predisposition of a mammal for its milk fat content and/or for its intramuscular fat content
EP1308459A3 (en) 2001-11-05 2003-07-09 Research Association for Biotechnology Full-length cDNA sequences
WO2003050504A2 (en) 2001-12-10 2003-06-19 Millennium Pharmaceuticals, Inc. Methods and compositions to treat cardiovascular disease usin g 1419, 58765 and 2201
CA2470308C (en) 2001-12-17 2013-03-26 Karlene H. Butler Phospholipid:diacylglycerol acyltransferases
EP1455815A4 (en) 2001-12-19 2006-11-02 Millennium Pharm Inc Human diacylglycerol acyltransferase 2 (dgat2)family members and uses therefor
EP1496838B1 (en) 2002-03-12 2010-11-03 Merck Sharp & Dohme Corp. Substituted amides
US7105526B2 (en) 2002-06-28 2006-09-12 Banyu Pharmaceuticals Co., Ltd. Benzimidazole derivatives
WO2004011671A2 (en) 2002-07-31 2004-02-05 Monsanto Technology, Llc Diacylglycerol acyltransferase nucleic acid sequences and associated products
EP2314691A3 (en) * 2002-11-14 2012-01-18 Dharmacon, Inc. Fuctional and hyperfunctional siRNA
US7250496B2 (en) * 2002-11-14 2007-07-31 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory genes and uses thereof
US20040122033A1 (en) 2002-12-10 2004-06-24 Nargund Ravi P. Combination therapy for the treatment of obesity
US20040185559A1 (en) 2003-03-21 2004-09-23 Isis Pharmaceuticals Inc. Modulation of diacylglycerol acyltransferase 1 expression
BRPI0519058A2 (en) * 2004-12-14 2008-12-23 Astrazeneca Ab compound or a pra-drug pharmaceutically acceptable salt thereof, methods for producing a inibiÇço of DGAT1 activity, and to treat diabetes mellitus and / or obesity in a warm-blooded animal, using a compound composiÇço pharmaceutical, and process for preparing a compound
DE202005008426U1 (en) 2005-05-31 2005-09-15 Ricon Sieb Und Foerdertechnik Conveyor unit has conveyor belts provided with recesses on inner facing sides for fitting of side edges of conveying apron, whereby conveying apron is connected via edges to conveyor belts in region of recesses
US9209196B2 (en) 2011-11-30 2015-12-08 Sharp Kabushiki Kaisha Memory circuit, method of driving the same, nonvolatile storage device using the same, and liquid crystal display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100077A (en) * 1998-10-01 2000-08-08 The Trustees Of Columbia University In The City Of New York Isolation of a gene encoding diacylglycerol acyltransferase

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209838A1 (en) * 2003-03-21 2004-10-21 Monia Brett P. Modulation of diacylglycerol acyltransferase 1 expression
WO2004094618A3 (en) * 2003-03-21 2006-06-22 Mark J Graham Modulation of diacylglycerol acyltransferase 1 expression
US7414033B2 (en) 2003-03-21 2008-08-19 Isis Pharmaceuticals, Inc. Modulation of diacylglycerol acyltransferase 1 expression
US8158597B2 (en) 2003-03-21 2012-04-17 Isis Pharmaceuticals, Inc. Modulation of diacylglycerol acyltransferase 1 expression
US20070123504A1 (en) * 2005-11-28 2007-05-31 Bolin David R Diacylglycerol acyltransferase inhibitors
US7714126B2 (en) 2005-11-28 2010-05-11 Via Pharmaceuticals, Inc. Diacylglycerol acyltransferase inhibitors
WO2008019351A3 (en) * 2006-08-04 2008-10-16 Sanjay Bhanot Compositions and their uses directed to diacylglycerol acyltransferase 1
US20090054359A1 (en) * 2006-08-04 2009-02-26 Xing-Xian Yu Compositions and their uses directed to diacylglycerol acyltransferase 1
US8003620B2 (en) 2006-08-04 2011-08-23 Isis Pharmaceuticals, Inc. Compositions and their uses directed to diacylglycerol acyltransferase 1
US8455456B2 (en) 2006-08-04 2013-06-04 Isis Pharmaceuticals, Inc. Compositions and their uses directed to diacylglycerol acyltransferase 1
WO2010039801A3 (en) * 2008-10-02 2010-06-03 The J. David Gladstone Institutes Methods of treating hepatitis c virus infection
WO2010059602A2 (en) 2008-11-19 2010-05-27 Schering Corporation Inhibitors of diacylglycerol acyltransferase
WO2010107765A1 (en) 2009-03-18 2010-09-23 Schering Corporation Bicyclic compounds as inhibitors of diacylglycerol acyltransferase
WO2010107768A1 (en) 2009-03-18 2010-09-23 Schering Corporation Bicyclic compounds as inhibitors of diacylglycerol acyltransferase
US8637507B2 (en) 2009-03-18 2014-01-28 Merck Sharp & Dohme Corp. Bicyclic compounds as inhibitors of diacylglycerol acyltransferase
WO2011000107A1 (en) 2009-07-01 2011-01-06 Protiva Biotherapeutics, Inc. Novel lipid formulations for delivery of therapeutic agents to solid tumors
WO2011031628A1 (en) 2009-09-14 2011-03-17 Schering Corporation Inhibitors of diacylglycerol acyltransferase
WO2011123401A1 (en) 2010-03-30 2011-10-06 Novartis Ag Uses of dgat1 inhibitors
WO2013015535A2 (en) 2011-07-27 2013-01-31 한국보건산업진흥원 Novel pyrimidine derivative and pharmaceutical composition including same as an active ingredient
WO2013126803A1 (en) 2012-02-24 2013-08-29 Protiva Biotherapeutics Inc. Trialkyl cationic lipids and methods of use thereof
EP3473611A1 (en) 2012-02-24 2019-04-24 Arbutus Biopharma Corporation Trialkyl cationic lipids and methods of use thereof
CN106260979A (en) * 2015-05-20 2017-01-04 钟春明 Dietetic therapy formula for conditioning hyperlipidemia and preparation method thereof

Also Published As

Publication number Publication date
EP2281869A2 (en) 2011-02-09
US20040209838A1 (en) 2004-10-21
WO2004094618A2 (en) 2004-11-04
WO2004094618A3 (en) 2006-06-22
US8158597B2 (en) 2012-04-17
US20090105177A1 (en) 2009-04-23
EP1613728A4 (en) 2007-07-25
EP1613728A2 (en) 2006-01-11
EP2281869A3 (en) 2012-03-21
US20120232125A1 (en) 2012-09-13
US7414033B2 (en) 2008-08-19

Similar Documents

Publication Publication Date Title
US7601700B2 (en) Modulation of eIF4E expression
US7098192B2 (en) Antisense oligonucleotide modulation of STAT3 expression
JP5420334B2 (en) Regulation of diacylglycerol acyltransferase 2 expression
CA2522560C (en) Antisense modulation of apolipoprotein c-iii expression
US20050019915A1 (en) Antisense modulation of superoxide dismutase 1, soluble expression
US8258105B2 (en) Antisense oligonucleotides optimized for kidney targeting
US7229976B2 (en) Modulation of forkhead box O1A expression
JP4887140B2 (en) Regulation of C-reactive protein expression
US7745609B2 (en) Antisense modulation of CD40 expression
US20050107328A1 (en) Antisense modulation of polo-like kinase expression
US20030224512A1 (en) Antisense modulation of beta-site APP-cleaving enzyme expression
ES2652018T3 (en) Modulation of receptor expression of growth hormone and IGF-I
US7217572B2 (en) Modulation of HIF1α and HIF2α expression
WO2004005460A2 (en) Antisense modulation of hmg-coa reductase expression
US8673632B2 (en) Modulation of apolipoprotein (a) expression
US8067386B2 (en) Modulation of eIF4E-BP2 expression
EP2327709B1 (en) Modulation of glucagon receptor expression
US9476051B2 (en) Antisense modulation of superoxide dismutase 1, soluble expression
US7199107B2 (en) Antisense modulation of kinesin-like 1 expression
WO2004063329A2 (en) Modulation of pten expression via oligomeric compounds
EP1660682B1 (en) ANTISENSE MODULATION OF p38 MITOGEN ACTIVATED PROTEIN KINASE EXPRESSION
US7414033B2 (en) Modulation of diacylglycerol acyltransferase 1 expression
US8101743B2 (en) Modulation of transthyretin expression
US20040101857A1 (en) Modulation of cytokine-inducible kinase expression
US20040014049A1 (en) Antisense modulation of protein kinase C-iota expression

Legal Events

Date Code Title Description
AS Assignment

Owner name: ISIS PHARMACEUTICALS INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MONIA, BRETT P.;GRAHAM, MARK J.;REEL/FRAME:013909/0126;SIGNING DATES FROM 20030319 TO 20030321

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION