US20040181056A1 - Process for preparing cephalosporanic acid derivatives using a-ketoacid derivatives - Google Patents

Process for preparing cephalosporanic acid derivatives using a-ketoacid derivatives Download PDF

Info

Publication number
US20040181056A1
US20040181056A1 US10/804,079 US80407904A US2004181056A1 US 20040181056 A1 US20040181056 A1 US 20040181056A1 US 80407904 A US80407904 A US 80407904A US 2004181056 A1 US2004181056 A1 US 2004181056A1
Authority
US
United States
Prior art keywords
formula
compound
cephalosporin
thiolated
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/804,079
Inventor
Alvaro Sanchez-Ferrer
Jose Lopez-Mas
Francisco Garcia-Carmona
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bioferma Murcia SA
Original Assignee
Bioferma Murcia SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioferma Murcia SA filed Critical Bioferma Murcia SA
Priority to US10/804,079 priority Critical patent/US20040181056A1/en
Publication of US20040181056A1 publication Critical patent/US20040181056A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P35/00Preparation of compounds having a 5-thia-1-azabicyclo [4.2.0] octane ring system, e.g. cephalosporin
    • C12P35/06Cephalosporin C; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring

Definitions

  • the invention relates to a process for preparing 3-cephalosporin C derivatives which are used in the preparation of ⁇ -lactam antibiotics.
  • the invention relates to an enzymatic process for the preparation of 3-thiolated derivatives of 3-acetoxy-methyl-7-amino-ceph-3-em-carboxylic acid (3-thiolated-7-ACA) using ⁇ -ketoacid intermediates.
  • the ⁇ -ketoacids or ⁇ -oxoacids are important biopharmaceutical compounds.
  • Oxoacids of essential amino acids are gaining importance as nutraceuticals (Pszcola, D E, Food Technol. 52, 30, 1998) as well as therapeutic agents for treating nitrogen accumulation disorders (Schaefer et al., Kidney Int. Suppl. 27, S136, 1989; Buto et al, Biotechnol. Bioeng. 44, 1288, 1994).
  • the transformation can be carried out by a D-amino acid transaminase from Bacillus licheniformis ATCC 9945, which converts cephalosporin C with ⁇ -ketoacids into ⁇ -ketoadipyl-7-ACA and the corresponding D- ⁇ -amino acid, as described in DE 3447023 (Hoechst).
  • This conversion is a transamination, the amino group of cephalosporin C being converted non-oxidatively into the keto group, without the release of hydrogen peroxide.
  • there is a low level of activity of this enzyme as described in EP 0315786.
  • the first stage consists of using a D-amino acid oxidase (E.C. 1.4.3.3, hereinbelow indicated as DAAO) from different sources ( Trigonopsis variabilis , GB 1,272,769 ; Rhodotorula gracilis , EP 0,517,200; or Fusarium solari M-0718, EP 0,364,275).
  • DAAO D-amino acid oxidase
  • DAAO oxidises the lateral D-5-amido-carboxypentanoyl chain of cephalosporin C in the presence of molecular oxygen, to produce 7 ⁇ -(5-carboxy-5-oxopent-amido)-ceph-3-em-carboxylic acid (or ⁇ -ketoadipyl-7-aminocephalo-sporanic acid, hereinbelow indicated as ⁇ -ketoadipyl-7-ACA) and hydrogen peroxide, which chemically decarboxylate the ⁇ -ketoadipyl-7-ACA to 7 ⁇ -(4-carboxy butanamido)-ceph-3-em-4-carboxylic acid (or glutaryl-7-aminocephalo-sporanic acid, hereinbelow indicated as GL-7-ACA).
  • a specific acylase for GL-7-ACA, glutaryl-7-ACA acylase (E.C. 3.5.1.3), is used, for example that of a Pseudomonas type microorganism (U.S. Pat. No. 3,960,662, EP 0496993) over expressed in E. coli , which deacylates the GL-7-ACA into 7-amino-ceph-3-em-4-carboxylic acid (or 7-amino cephalosporanic acid, hereinbelow indicated as 7-ACA).
  • This procedure can be defined as an enzymatic-chemical-enzymatic (ECE) process, since the isolated GL-7-ACA comes from a bioconversion of solubilised cephalosporin C, then GL-7-ACA is reacted with the heterocyclic thiols and finally the 3-heterocyclic thio-derivative is enzymated with GL-7-ACA acylase.
  • ECE enzymatic-chemical-enzymatic
  • R is a heterocyclic group comprising at least a nitrogen atom.
  • the compound of formula III is enzymatically converted into a compound of formula IV by an immobilised enzyme system.
  • the enzyme system comprises co-immobilised D-Amino acid oxidase and catalase.
  • the enzymatic conversion is carried out in the presence of molecular oxygen, at a pressure of 1 to 5 bar absolute, a pH of from 6.5 to 8.0 and at a temperature of from 15 to 30° C. for a period of from 30 mins to 180 mins.
  • the process comprises the step of separating the enzyme system from the reaction mixture, preferably by filtration.
  • the process includes the step of purifying the compound of formula IV.
  • the compound is purified using an adsorption column.
  • the enzymes are co-immobilised using a suitable cross-linker agent in a suitable solid support.
  • the enzymes may be in the form of crystals of a size suitable for use as a biocatalyst.
  • the enzymatic processes are carried out while maintaining the enzyme in dispersion in an aqueous substrate solution.
  • the or each enzymatic process is carried out in a column.
  • the process includes the step of recovering the enzyme for reuse.
  • the compound of formula IV is used without purification in a continuous process for obtaining any useful derivative.
  • R group in compounds of formula III and IV is a heterocyclic group comprising at least one nitrogen atom and optionally a sulphur or oxygen atom.
  • R is a heterocyclic group selected from any one or more of the group comprising thienyl, diazolyl, tetrazolyl, thiazolyl, triazinyl, oxazolyl, oxadiazolyl, pyridyl, pirimidinyl, benzo thiazolyl, benzimidazolyl, benzoxazolyl, or any derivative thereof, preferably 5-methyl-1,3,4-thiadiazol-2-yl, 1-methyl-1H-tetrazol-5-yl or 1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl.
  • the invention provides a 3-thiolated- ⁇ -ketoadipyl-7-aminocephalosporanic acid derivative of formula IV whenever prepared by a process of the invention.
  • the invention provides a compound of the Formula:—
  • R is 1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl.
  • the invention provides a compound of the Formula:—
  • R is 1-methyl-1H-tetrazol-5-yl.
  • the invention also provides use of a compound of formula IV as an intermediate in a process for preparing cephalosporin C antibiotics.
  • the invention further provides a process for preparing cephalosporanic acid derivatives of the invention comprising the step of:
  • R is a heterocyclic group comprising at least one nitrogen atom and R 1 and R 2 are both hydrogen atoms or one of them is a hydrogen atom and the other is an acyl donor.
  • the compound of formula IV is enzymatically converted to form a compound of formula I using Glutaryl-7-ACA acylase, most preferably the enzymation takes place at a temperature of approximately 20° C. and at a pH of between 6.5 and 8.0.
  • the enzyme is immobilised using a suitable cross-linker agent in a suitable solid support.
  • the enzyme is in the form of crystals of a size suitable for use as a biocatalyst.
  • the enzymation is carried out while maintaining the enzyme in dispersion in an aqueous substrate solution.
  • the enzymatic process is carried out in a column.
  • the process includes the step of recovering the enzyme for reuse.
  • the invention also provides use of a compound of formula I as an intermediate in a process for preparing cephalosporin C derivatives.
  • the invention further provides a process for preparing 3-thiolated cephalosporanic acid derivatives comprising the steps of;—
  • R is a heterocyclic group comprising at least one nitrogen atom and R 1 and R 2 are both hydrogen atoms or one of them is a hydrogen atom and the other is an acyl donor.
  • the compound of formula III is enzymatically converted into a compound of formula I in one step by an immobilised enzyme system.
  • the enzyme system comprises a combination of co-immobilised D-amino acid oxidase/catalase in the presence of immobilised Glutaryl-7-ACA acylase.
  • the enzymation takes place at a temperature of approximately 20° C. and at a pH of between 6.5 and 8.0.
  • the enzymes are co-immobilised using a suitable cross-linker agent in a suitable solid support.
  • the enzymes are in the form of crystals of a size suitable for use as a biocatalyst.
  • the enzymatic processes are carried out while maintaining the enzyme in dispersion in an aqueous substrate solution.
  • the or each enzymatic process is carried out in a column.
  • the process includes the step of recovering the enzyme for reuse.
  • the compound of formula III is used without purification in a continuous process for obtaining any useful derivative.
  • the invention also provides a process for preparing cephalosporanic acid derivatives comprising the steps of:—
  • R is a heterocyclic group comprising at least one nitrogen atom
  • the excess thiol is removed by adsorption on an anion exchange resin.
  • the anion exchange resin is a microporous resin having a cross-linked acrylic copolymer structure.
  • the anion exchange resin comprises an 8% cross-linking containing functional thialkyl benzyl ammonium group.
  • the resin may be in the chloride, hydroxy, phosphate or acetate cycle.
  • the excess thiol is removed by crystallisation.
  • crystallisation is carried out at an acidic pH.
  • the excess thiol is removed by crystallisation followed by adsorption on an anion exchange resin.
  • the cephalosporin C is in an aqueous medium. Most preferably the cephalosporin C is in the form of a concentrated cephalosporin C solution.
  • the reaction is carried out at a pH of between 5.5 and 8.0, at a temperature of from 60° C. to 80° C., for a period of from 1 to 8 hours. Most preferably the reaction is carried out at a pH of approximately 6.0 and at a temperature of approximately 65° C.
  • the thiol compound is present in an amount of between 1 and 5 mol/mol of cephalosporin C.
  • R is a heterocyclic group comprising at least one nitrogen atom and optionally a sulphur or oxygen atom.
  • R is a heterocyclic group selected from any one or more of thienyl, diazolyl, thiazolyl, tetrazolyl, thiadiazolyl, triazinyl, oxazolyl, oxadiazolyl, pyridyl, pirimidinyl, benzothiazolyl, benzimidazolyl, benzoxazolyl, or any derivative thereof, preferably 5-methyl-1,3,4-thiadiazol-2-yl, 1-methyl-tetrazol-5-yl or 1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl.
  • the invention provides a compound of formula III
  • R is a heterocyclic group comprising at least one nitrogen atom
  • the invention provides a compound of the formula:—
  • R is 5-methyl-1,3,4-thiadiazol-2-yl.
  • the invention further provides a compound of the formula:—
  • R is 1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl.
  • the invention also provides use of a compound of formula III as an intermediate in a process for preparing cephalosporin C derivatives.
  • One embodiment of the invention provides a process for preparing cephalosporanic acid derivatives comprising the steps of:—
  • R is a heterocyclic group comprising at least a nitrogen atom.
  • the process additionally comprises the step of:
  • R is a heterocyclic group comprising at least one nitrogen atom and R 1 and R 2 are both hydrogen atoms or one of them is a hydrogen atom and the other is an acyl donor.
  • Another embodiment of the invention provides a process for preparing cephalosporanic acid derivatives comprising the step of:
  • R is a heterocyclic group comprising at least one nitrogen atom and R 1 and R 2 are both hydrogen atoms or one of them is a hydrogen atom and the other is an acyl donor.
  • a compound of formula IV is enzymatically converted to form a compound of formula I with Glutaryl-7-ACA acylase.
  • the invention provides a process for the preparation of cephalosporin C antibiotics and derivatives thereof comprising forming a compound of formula III, IV and I as hereinbefore defined and subsequent enzymation of the compound.
  • the antibiotic may be any one or more of cefazolin, cefazedone, cefoperazone, cefamandol, cefatriazine, cefotiam and ceftriaxone.
  • the present invention relates to an improved and more efficient process for preparing compounds of formula I from cephalosporin C.
  • R is a heterocyclic group comprising at least one nitrogen atom and R 1 and R 2 are both hydrogen atoms or one of them is a hydrogen atom and the other is an acyl donor.
  • the process involves the formation of new stable ⁇ -ketoadipyl-7-ACA derivative intermediates.
  • the process may be carried out in a single one pot reaction without the formation of intermediates.
  • cephalosporin C are prepared from cephalosporin C.
  • the cephalosporin C solution may be in a purified or crude form.
  • the cephalosporin C is in the form of any non-toxic salt of cephalosporin C.
  • the reaction of nucleophilic substitution in the 3′ position is carried out in an aqueous medium, dissolving the heterocyclic thiol and any non-toxic cephalosporin C salt in water by addition of a basic compound which form a water soluble salt, such as alkali metal hydroxide, ammonium hydroxide or preferably alkali metal carbonate or bicarbonate.
  • a basic compound which form a water soluble salt such as alkali metal hydroxide, ammonium hydroxide or preferably alkali metal carbonate or bicarbonate.
  • any commercially available salt of cephalosporin C and of the heterocyclic thiols can be used in the process of this invention without changing the fundamentals of the process.
  • both reactants are mixed together in the same reactor, before or after heating the solution to a temperature from about 65° C. to 80° C. at a pH value of between 5.5 and 7.0.
  • the temperature and pH are maintained preferably at approximately 65° C. and 6.0 respectively, for a period of time of approximately 1 hour to 4 hours.
  • the heterocyclic thiol/cephalosporin C molar ratio is an important variable in the yield of the reaction and has to be optimised for each heterocyclic thiol used.
  • Molar ratios are between 1.0 and 4.0, preferably at a molar ratio of approximately 4.
  • the reaction mixture is cooled to a temperature from about 2° C. to about 10° C., with or without acidification at a pH of from pH 3.0 to 5.5, preferably approximately 5.2, with strong mineral acids, such as hydrogen halides or oxy acids.
  • This acidification step gives in some cases, crystallisation of the heterocyclic thiol, with the concomitant possibility of reuse for a new reaction.
  • Such a microporous resin offers certain advantages. They are less fragile, require less care in handling and possess higher loading capacities. As they have no discrete pores solute ions diffuse through the particle to interact with exchange sites. The total exchange capacity of the mentioned resin is in the order of 1.4 meq/mL.
  • the column is typically regenerated with a 1.5 N solution of a strong mineral acid, such as hydrogen halide containing variable amounts of an organic solvent, preferably 10-20% acetonitrile.
  • a strong mineral acid such as hydrogen halide containing variable amounts of an organic solvent, preferably 10-20% acetonitrile.
  • concentration of the thiol in the eluate is higher than 0.2 mg/ml, a strong regeneration using 3 N HCl and 40% acetonitrile may be carried out. Alternatively regeneration with 1.5M HCl and 1.0 N NaOH is also possible.
  • the thiol is concentrated and reused.
  • the column is rinsed with deionised water to remove excess regenerant before the next cycle.
  • the first bed volume of the rinse should be performed at the flow rate used for regeneration. The remainder is run at the adsorption flow rate.
  • R is a heterocyclic group comprising at least a nitrogen atom with or without a sulphur or oxygen.
  • a further industrial advantage of the invention is the easy transfer of the chemical solution comprising a compound of formula III, after chromatography in a strong anionic exchange resin (Amberlite® IRA-400, manufactured by Rohm and Haas) to an enzymatic reactor containing the co-immobilised enzymes. This enables the process to be conducted continuously with a single liquid stream from cephalosporin C to compound IV.
  • a strong anionic exchange resin Amberlite® IRA-400, manufactured by Rohm and Haas
  • the enzymatic stage may be carried out in different ways:
  • [0116] 2 The same as 1) including soluble catalase. Under these conditions, the level of compound IV reaches 70 to 75% of total ⁇ -lactams in solution with less than 10% of 3-thiolated glutaryl-7-ACA (T′X′G). However the immobilised enzyme and catalase are poisoned within a few cycles by the presence of high levels of heterocyclic thiol ( ⁇ 1 mg/mL).
  • D-AAO in this invention is obtained from Trigonopsis variabilis CBS 4091 obtained from the Spanish collection of microorganisms (CECT, Valencia, Spain). This yeast is grown under the conditions to induce D-AAO (Kubicek et al, J. Appl. Biochem. 7; 104, 1985) and the enzyme was purified by ammonium sulfate fractionation between 30%-55% as described by Szwjcer et al ( Biotechnol. Lett. 7, 1, 1985). Amino acid oxidases may also be sourced from Rodotorula gracilis . Catalase from Micrococcus lisodeikticus is obtained from a commercial source (Fluka, Madrid, Spain), but it may also be sourced from Aspergillas niger.
  • Eupergit two classes are commercialised (Röhm Pharma) C and C250L, the latter type is particularly suitable for binding high molecular weight enzymes, since its contents in oxirane groups are at least 0.36% compared with the 0.93% in Eupergit C.
  • This C250L type show outstanding properties when employed in industrial biocatalytic processes.
  • the morphology of the carrier i.e., its narrow particle size distribution (200 ⁇ m) and high mechanical stability accounts for their good properties in stirred-tank reactors. It is not mechanically destroyed in stirred systems and filtration at the end of the reaction cycle is quick and very easy to perform. Changes in the pH and ionic strength have no effect on swelling of the matrix.
  • this Eupergit C250L has never been used to immobilise D-amino acid oxidase and catalase.
  • the ratio catalase units/D-AAO units This ratio is normally bigger than 100, but for efficient hydrogen peroxide removal the ratio is preferably about 1500.
  • One unit of D-AAO is defined as the amount of enzyme that consumes a ⁇ mol of O 2 per minute using cephalosporin C as substrate at pH 8.0 and 25° C.
  • One unit of catalase is defined as the amount of enzyme that decomposes 1 ⁇ mol of hydrogen peroxide per minute at pH 7.0 and 25° C.
  • the enzymatic conversion of the compound III into compound IV is carried out in an aqueous solution of compound III containing from about 0.0016 to 0.004 moles and with less than 0.2 mg/ml of the heterocyclic thiol.
  • This solution is obtained after passing the solution comprising 3-thiolated cephalosporin C (compound III) and remaining heterocyclic thiol used in the nucleophilic displacement of 3 acetoxy group of cephalosporin C through a column of a strong anion exchanger, such as Amberlite® IRA-400 (Rohm and Hass).
  • the pH of the eluate is adjusted to pH about 6.5 to 8.0, preferably to pH 6.75, due to the instability of cephalosporanic compounds at basic pH values.
  • the solution comprising compound III as described above is fed into a bioreactor, containing wet Eupergit C250L with co-immobilised D-AAO/catalase, usually D-AAO from 20-40 U/g, and catalase, usually from 10-30 kU/g.
  • the reaction temperature can be fixed from 15° C. to 35° C., and is normally fixed at 20° C.
  • the molecular oxygen, needed for the oxidative deamination, is blown into solution by a bottom diffuser at a flow rate from 0.01 to 1 volume/volume of solution/minute, preferably at 0.1 vvm under a suitable mechanical stirring of about 400 rpm.
  • This bioreactor design is preferred versus a percolation column containing the immobilised enzymes to avoid the diffusional problems of the molecular oxygen, which reduce the yield of compound IV.
  • the pH is titrated to pH 6.75 by dosing a concentrated organic or inorganic base, preferably 3 M ammonia, by means of an autotitrator.
  • the conversion is controlled by HPLC and when the conversion of compound III is greater than 97%, the reaction is stopped and the solution filtered off.
  • the time required for such conversion is of the order 0.5 to 3 hours, depending on the operating conditions, but usually approximately 1 hour.
  • Isolation of compound IV when required, is carried out by decreasing the pH of the above solution to a pH of about 4.5 to 6.0, preferably 5.0 with the same base used during the enzymatic reaction, and loading into a column packed with the adsorptive resin Amberlite XAD-2.
  • the elution of compound IV is carried out with water at a flow rate of 2-3 bed volumes per hour. Fractions containing the compound IV with a HPLC purity higher than 90-95% are pooled and lyophilised.
  • the process of the invention for preparing compounds of formula I from cephalosporin C may also be carried out in a single one pot reaction.
  • filtrate from an anion exchange column comprising compounds of formula III is enzymatically converted into compounds of formula I by an immobilised enzyme system comprising D-AAO and catalase in the presence of glutaryl-7-ACA acylase.
  • Compounds of formula I have been prepared in this way with a HPLC of approximately 95%. The process is easy and efficient to carry out.
  • 3-thiolated-7-ACA derivatives are easily and economically prepared. These compounds may by subsequent enzymation with penicillin G acylase for example, be used for the preparation of semisynthetic ⁇ -lactam antibiotics.
  • the ⁇ -lactam antibiotics may include any one or more of cefazolin, cefazedone, cefoperazone, cefamandol, cefatriazine, cefotiam and ceftriaxone.
  • Examples 1 to 5 illustrates the preparation of 3-thiolated-7-ACA derivatives of formula III from cephalosporin C.
  • Examples 6 to 8 illustrate the enzymatic process for the preparation of a 3-thiolated ⁇ -ketoadipyl-7-ACA derivatives of formula IV from 3-thiolated cephalosporin C derivatives of formula III.
  • Examples 9 to 11 illustrate the enzymatic process for the preparation of 3-thiolated-7-ACA derivatives (TXA) of formula I from 3-thiolated derivatives of formula III via the formation of stable ⁇ -ketoadipyl-7-ACA derivatives of formula IV.
  • Examples 12 to 14 illustrate the enzymatic process for the preparation of 3-thiolated-7-ACA derivatives of formula I from 3-thiolated derivatives of formula III in a single step (one pot).
  • the reaction mixture was then cooled to about 4° C., where the crystallisation of the excess of MMTD begins.
  • the pH was acidified with stirring (150 rpm) to a pH 5.2 with 37% hydrochloride acid and left under slow stirring (50 rpm) for 60 minutes for the completion of crystallisation.
  • the precipitated MMTD was filtered and dried at 35° C. under vacuum. 23 g of recovered MMTD was obtained (purity 99% by HPLC) with a recovery yield of about 95%.
  • the remaining MMTD was 0.0009 moles ( ⁇ 0.2 mg/ml), which is less than 6% of the remaining MMTD after its crystallisation by decreasing the pH. With this low level of MMTD ( ⁇ 1% of the original MMTD after chemical reaction), enzymation of TDC is possible.
  • the column is regenerated with 1 L of 1.5 M HCl containing 10% acetonitrile and rinsed free of the excess regeneration by washing with 2 litres of deionised water.
  • the resin can be subjected to a strong regeneration using 1 litre of 3 M HCl with 40% acetonitrile.
  • regeneration with 1.5 M HCl and 1.0 N NaOH is also possible.
  • TDC solution at pH 5.0, it was loaded onto a Amberlite XAD-2 adsorption column and the column was washed with water. After washing, the resin was eluted with water, and 25 ml portions were pooled. A fraction containing 98.5% TDC by HPLC was lyophylised and subjected to analysis:
  • TDC derivative was prepared as described in Example 1 and the filtrate containing it was loaded onto different types of resins.
  • TDG glutaryl-7-ACA derivative
  • 7-ACA derivative (7-TDA) were prepared as in Example 1 using glutaryl-7-ACA and 7-ACA as starting material.
  • the following data was obtained from the filtrate of the Amberlite IRA-400.
  • Compound in TDG or TDA Resin the elute eluted (%) MMTD eluted (%) Amberlite IRA- TDG 23.7 3.0 400 TDA* 7.3 1.4
  • TDG and TDA appear to remain bound to the Amberlite IRA-400 as well as the MMTD.
  • the reaction mixture was cooled at about 4° C., but crystallisation of the excess of MMTZ did not start, even when the pH was decreased.
  • the solution containing 0.04 moles of the TZC derivative from MMTZ and 0.19 moles of MMTZ was adjusted to pH 7.25 with 3 M ammonia and loaded onto an Amberlite IRA-400 column in chloride cycle (bed volume equal to 150 ml) covered with deionised water at flow rate 20 ml/min. After the first pass through the column the remaining MMTZ was higher than 13% of the initial (0.032 moles).
  • the column was washed with deionised water (ca 90 ml) until 97% recovery of loaded TZC with a 87% purity by HPLC.
  • the pH of the effluent was about 5.4 and was neutralised to pH 7.0 with 3 M ammonia.
  • the remaining MMTZ concentration was 0.0013 moles, which is less than 1% of the original MMTZ after chemical reaction. With this low level of MMTZ, enzymation of the derivative is possible without poisoning the enzyme.
  • the reaction mixture was cooled at approximately 4° C., but crystallisation of the excess of TTZ does not start, even when the pH was decreased.
  • the solution containing the 0.036 moles of TTC and 0.19 moles of TTZ was adjusted to pH 7.25 with 3 M ammonia and loaded onto an Amberlite IRA-400 column in chloride cycle (bed volume equal to 209 ml) covered with deionised water at flow rate 20 ml/min. After the first column the remaining TTZ was 0.015 moles.
  • the column was washed with deionised water (ca 120 ml) until 60% recovery of loaded TTC with a 90% purity by HPLC.
  • the pH of the effluent was about 5.4 and was neutralised to pH 7.0 with 3 M ammonia.
  • the remaining TTZ concentration was 0.00096 moles, which is less than 1% of the original TTZ after chemical reaction. With this level of TTZ, enzymation of the derivative is possible without poisoning the enzyme.
  • the TDC solution was fed into a 0.125 litre stirred glass vessel with 30.76 g of wet Eupergit C250L with a co-immobilised D-amino acid oxidase/catalase system (11.77 U of DAAO/g and 15 kU of catalase/g).
  • the conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure.
  • the pH was titrated to pH 6.75 with 3 M ammonia by an autotitrator.
  • the conversion was controlled by HPLC in a reverse phase column Nucleosil 120 3-C18 125 ⁇ 8 ⁇ 4 mm.
  • the mobile phase was 20 mM acetate ammonium pH 5.5 containing 4% acetonitrile at 1 ml/min with a 260 nm detection.
  • the TDC appeared at 7.0 minutes, the TDK at 8.5 min and the 3-thiolated glutaryl-7-ACA intermediate (TDG) at 11.5 min.
  • Amberlite® IRA-400 containing 0.0039 moles of 7-(5′-amidoadipamido)-3-[(1-methyl-1H-tetrazol-5-yl)-thiomethyl]-cephalosporanic acid (TZC) with 90.1% purity (HPLC) and less than 0.2 mg/ml of 5-mercapto-1-methyltetrazole (MMTZ) was adjusted to pH 6.75 with 3 M ammonia.
  • the TZC solution was fed into a 0.125 litre stirred glass vessel with 30.76 g of wet Eupergit C250L with a coimmobilised D-amino acid oxidase/catalase system (11.77 U of DAAO/g and 15 kU of catalase/g).
  • the conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure.
  • the pH was titrated to pH 6.75 with 3 M ammonia by an autotitrator.
  • the conversion was controlled by HPLC on a reverse phase column Nucleosil 120 3-C18 125 ⁇ 8 ⁇ 4 mm.
  • the mobile phase was 20 mM ammonium acetate pH 5.5 containing 4% acetonitrile at 1 ml/min with a 260 nm detection.
  • the TZC appeared at 3.0 minutes, the TZK at 3.6 mm and the 3-thiolated glutaryl-7-ACA intermediate (TZG) at 4.6 min.
  • the TTC solution was fed into a 0.125 litre stirred glass vessel with 30.76 g of wet Eupergit C250L with a co-immobilised D-amino acid oxidase/catalase system (11.77 U of DAAO/g and 15 kU of catalase/g).
  • the conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure.
  • the pH was titrated to pH 6.75 with 3 M ammonia by an autotitrator.
  • the conversion was controlled by HPLC in a column Eclipse® XDB-C8 5 ⁇ m 4.6 ⁇ 150 mm.
  • the mobile phase was 35% methanol in 10 mM TBHS (tetrabutylammonium hydrogen sulfate) and 15 mM potassium dihydrogen phosphate at 1 ml/min with 260 nm.
  • the TTC appeared at 2.6 minutes, the 3-thiolated glutaryl-7-ACA intermediate (TTG) at 5.5 min and the TTK at 6.6 min.
  • the resulting solution was adjusted to pH 5.0 with 3 M ammonia and passed through a column packed with 40 g of the adsorptive resin Amberlite XAD-2 (68.7 ml of bed volume). Elution was carried out with water at a flow rate of 200 ml/h (about 3 bed volumes per hour). Fractions of 25 ml containing the TTK with a purity ⁇ 90% (HPLC) were pooled and then lyophilised to obtain the target product as solid to further analyse it: After the elution process, the adsorbent surface is reactivated by applying 2 bed volumes of regeneration solution (25% methanol in water at 3 bed volumes per hour). Before the column can be used again, this solution is removed from the column. After equilibration with water in excess (about 15 bed volumes), the column is ready for re-use.
  • Amberlite® IRA-400 containing 0.0011 moles of 7 ⁇ -(5-amino-5-carboxypentamido)-3-[(5-methyl-1,3,4-thiadiazole-2-yl)-thiomethyl] cephalosporanic acid (here below indicated as TDC) with 94.01% purity (HPLC) and less than 0.2 mg/ml of 2-mercapto-5-methyl-1,3,4-
  • TDC solution was fed into a 0.125 litre stirred glass vessel with 16 g of wet Eupergit C250L with a co-immobilised D-amino acid oxidase/catalase system (25 U of DAAO/g and 30 kU of catalase/g).
  • the conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure.
  • the pH was titrated to pH 6.75 with 3 M ammonia by an autotitrator.
  • the conversion was controlled by HPLC in a reverse phase column Eclipse XDB-C8 150 mm ⁇ 4.6 mm ID ⁇ 5 ⁇ m; the mobile phase was 10 mM tetrabutylammonium hydrogen sulfate, 15 mM potassium dihydrogen phosphate, pH 6.5 containing 35% methanol at 1 ml/min with a 260 nm detection.
  • the TDC appeared at 3.0 min, the TDK at 10.9 min and the TDG at 8.1 min, respectively.
  • the TDK solution was fed into a 0.125 litre stirred glass vessel with 23 g of wet Glutaryl-7-ACA Acylase (87 U/g). The conversion was performed at 20° C., 400 rpm at 1 bar absolute pressure. The pH was titrated to pH 7.25 with 3 M ammonia by an autotitrator.
  • Amberlite® IRA-400 containing 0.00195 moles of 7 ⁇ -(5-amino-5-carboxypentamido)-3-[(1-methyl-1H-tetrazol-5-yl)-thiomethyl] cephalosporanic acid (TZC) with 91.74% purity (HPLC) and less than 0.2 mg/ml of 5-mercapto-1-methyltetrazole (MMTZ) was adjusted to pH 6.75 with 3 M ammonia.
  • the TZC solution was fed into a 0.125 litre stirred glass vessel with 16 g of wet Eupergit C250L with a coimmobilised D-amino acid oxidase/catalase system (25 U of DAAO/g and 30 kU of catalase/g).
  • the conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure.
  • the pH was titrated to pH 6.75 with 3 M ammonia by an autotitrator.
  • the conversion was controlled by HPLC in a reverse phase column Eclipse XDB-C8 150 mm ⁇ 4.6 mm ID ⁇ 5 ⁇ m; the mobile phase was 10 mM tetrabutylammonium hydrogen sulfate, 15 mM potassium dihydrogen phosphate, pH 6.5 containing 35% methanol at 1 ml/min with a 260 nm detection.
  • the TZC appeared at 2.1 minutes, the TZK at 5.0 min and the TZG at 4.3 min, respectively.
  • the TZK solution was fed into a 0.125 litre stirred glass vessel with 23 g of wet Glutaryl-7-ACA Acylase (87 U/g). The conversion was performed at 20° C., 400 rpm at 1 bar absolute pressure. The pH was titrated to pH 7.25 with 3 M ammonia by an autotitrator.
  • the TTC solution was fed into a 0.125 litre stirred glass vessel with 16 g of wet Eupergit C250L with a coimmobilized D-amino acid oxidase/catalase system (25 U of DAAO/g and 30 kU of catalase/g).
  • the conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure.
  • the pH was titrated to pH 6.75 with 3 M ammonia by an autotitrator.
  • the conversion was controlled by HPLC in a reverse phase column Eclipse XDB-C8 150 mm ⁇ 4.6 mm ID ⁇ 5 ⁇ m; the mobile phase was 10 mM tetrabutylammonium hydrogen sulfate, 15 mM potassium dihydrogen phosphate, pH 6.5 containing 35% methanol at 1 ml/min with a 260 nm detection.
  • the TTC appeared at 2.4 minutes, the TTK at 6.1 min and the TTG at 5.5 min, respectively.
  • TTK solution was fed into a 0.125 litre stirred glass vessel with 23 g of wet Glutaryl-7-ACA Acylase (87 U/g). The conversion was performed at 20° C., 400 rpm at 1 bar absolute pressure. The pH was titrated to pH 7.25 with 3 M ammonia by an autotitrator.
  • Amberlite® IRA-400 containing 0.0011 moles of 7 ⁇ -(5-amino-5-carboxypentamido)-3-[(5-methyl-1,3,4-thiadiazole-2-yl)-thiomethyl] cephalosporanic acid (hereinbelow indicated as TDC) with 95.41% purity (HPLC) and less than 0.2 mg/ml of 2-mercapto-5-methyl-1,3,
  • the TDC solution was fed into a 0.125 litre stirred glass vessel with 16 g of wet Eupergit C250L with a co-immobilised D-amino acid oxidase/catalase system (25 U of DAAO/g and 30 kU of catalase/g) and 23 g of wet Glutaryl-7-ACA Acylase (87 U/g).
  • the conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure.
  • the pH was titrated to pH 7.25 with 3 M ammonia by an autotitrator.
  • the conversion was controlled by HPLC in a reverse phase column Eclipse XDB-C8 150 mm ⁇ 4.6 mm ID ⁇ 5 ⁇ ; the mobile phase was 10 mM tetrabutylammonium hydrogen sulfate, 15 mM potassium dihydrogen phosphate, pH 6.5 containing 35% methanol at 1 ml/min with a 260 nm detection.
  • the TDC appeared at 3.0 min, the TDK at 10.9 min, the TDG at 8.1 min and the TDA at 4.1 min, respectively.
  • the TZC solution was fed into a 0.125 litre stirred glass vessel with 16 g of wet Eupergit C250L with a co-immobilised D-amino acid oxidase/catalase system (25 U of DAAO/g and 30 kU of catalase/g) and 23 g of wet Glutaryl-7-ACA Acylase (87 U/g).
  • the conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure.
  • the pH was titrated to pH 7.25 with 3 M ammonia by an autotitrator.
  • the conversion was controlled by HPLC in a reverse phase column Eclipse XDB-C8 150 mm ⁇ 4.6 mm ID ⁇ 5 ⁇ ; the mobile phase was 10 mM tetrabutylammonium hydrogen sulfate, 15 mM potassium dihydrogen phosphate, pH 6.5 containing 35% methanol at 1 ml/min with a 260 nm detection.
  • the TZC appeared at 2.1 minutes, the TZK at 5.0 min, the TZG at 4.3 min, and the TZA at 2.5 min, respectively.
  • Amberlite D IRA-400 containing 0.0016 moles of 7 ⁇ -(5-amino-5-carboxypentamido)-3-[(1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3
  • the TTC solution was fed into a 0.125 litre stirred glass vessel with 16 g of wet Eupergit C250L with a co-immobilised D-amino acid oxidase/catalase system (25 U of DAAO/g and 30 kU of catalase/g) and 23 g of wet Glutaryl-7-ACA Acylase (87 U/g).
  • the conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure.
  • the pH was titrated to pH 7.25 with 3 M ammonia by an autotitrator.
  • the conversion was controlled by HPLC in a reverse phase column Eclipse XDB-C8 150 mm ⁇ 4.6 mm ID ⁇ 5 ⁇ ; the mobile phase was 10 mM tetrabutylammonium hydrogen sulfate, 15 mM potassium dihydrogen phosphate, pH 6.5 containing 35% methanol at 1 ml/min with a 260 nm detection.
  • the TTC appeared at 2.4 minutes, the TTK at 6.1 min, the TTG at 5.5 min and the TTA at 2.9, respectively.
  • the reaction solution contained TTA with a HPLC purity of 88.69%.

Abstract

A process for preparing cephalosporanic acid derivatives comprises the steps of enzymatically converting a 3-thiolated cephalosporin C compound of formula III:—
Figure US20040181056A1-20040916-C00001
into a 3-thiolated-α-ketoadipyl-7-aminocephalosporanic acid derivative of formula IV:
Figure US20040181056A1-20040916-C00002
wherein R is a heterocyclic group comprising at least a nitrogen atom.
Compounds of formula IV are used in the preparation of cephalosporin C antibiotics and derivatives thereof.

Description

  • The invention relates to a process for preparing 3-cephalosporin C derivatives which are used in the preparation of β-lactam antibiotics. In particular the invention relates to an enzymatic process for the preparation of 3-thiolated derivatives of 3-acetoxy-methyl-7-amino-ceph-3-em-carboxylic acid (3-thiolated-7-ACA) using α-ketoacid intermediates. The α-ketoacids or α-oxoacids are important biopharmaceutical compounds. [0001]
  • Oxoacids of essential amino acids are gaining importance as nutraceuticals (Pszcola, D E, [0002] Food Technol. 52, 30, 1998) as well as therapeutic agents for treating nitrogen accumulation disorders (Schaefer et al., Kidney Int. Suppl. 27, S136, 1989; Buto et al, Biotechnol. Bioeng. 44, 1288, 1994). Another important application is the production of 7-amino cephalosporanic acid (Savidge, T A; In Biotechnology of Industrial Antibiotics, p 171, Marcel Dekker, New York, 1984) from cephalosporin C (3-acetoxymethyl-7β-(D-5-amino-5-carboxypentanamido)ceph-3-em-4-carboxylic acid). The transformation can be carried out by a D-amino acid transaminase from Bacillus licheniformis ATCC 9945, which converts cephalosporin C with α-ketoacids into α-ketoadipyl-7-ACA and the corresponding D-α-amino acid, as described in DE 3447023 (Hoechst). This conversion is a transamination, the amino group of cephalosporin C being converted non-oxidatively into the keto group, without the release of hydrogen peroxide. However there is a low level of activity of this enzyme, as described in EP 0315786.
  • Chemical methods for the preparation of 3-thiolated-7-ACA cephalosporanic acid derivatives are known (U.S. Pat. No. 3,367,933; BE 718,824), however they have disadvantages such as low temperature reaction conditions, the use of costly and toxic solvents or reagents and chemical instability of intermediates which makes the processes difficult on an industrial scale. [0003]
  • To overcome the drawbacks of the chemical route to 7-ACA, alternative enzymatic cleavage of cephalosporin C has been described. Direct one-step removal of the lateral 7′-aminoadipic side-chain of cephalosporin C is possible by using specific cephalosporin acylases (FR 2,241,557; U.S. Pat. No. 4,774,179; EP 283,248; WO 9512680; WO 9616174). These processes, however, are often not reproducible and are characterised by low yields and lengthy reaction times as described in U.S. Pat. No. 5,296,358. No industrial application of this technology (single-step conversion of cephalosporin C to 7-ACA) has been reported at this time (Parmar et al, Crit. Rev. Biotechnol. 18, 1, 1998). [0004]
  • On the other hand, processes that transform the cephalosporin C into 7-ACA by means of two enzymatic steps are important from an industrial point of view. The first stage consists of using a D-amino acid oxidase (E.C. 1.4.3.3, hereinbelow indicated as DAAO) from different sources ([0005] Trigonopsis variabilis, GB 1,272,769; Rhodotorula gracilis, EP 0,517,200; or Fusarium solari M-0718, EP 0,364,275). DAAO oxidises the lateral D-5-amido-carboxypentanoyl chain of cephalosporin C in the presence of molecular oxygen, to produce 7β-(5-carboxy-5-oxopent-amido)-ceph-3-em-carboxylic acid (or α-ketoadipyl-7-aminocephalo-sporanic acid, hereinbelow indicated as α-ketoadipyl-7-ACA) and hydrogen peroxide, which chemically decarboxylate the α-ketoadipyl-7-ACA to 7β-(4-carboxy butanamido)-ceph-3-em-4-carboxylic acid (or glutaryl-7-aminocephalo-sporanic acid, hereinbelow indicated as GL-7-ACA).
  • In a second stage, a specific acylase for GL-7-ACA, glutaryl-7-ACA acylase (E.C. 3.5.1.3), is used, for example that of a Pseudomonas type microorganism (U.S. Pat. No. 3,960,662, EP 0496993) over expressed in [0006] E. coli, which deacylates the GL-7-ACA into 7-amino-ceph-3-em-4-carboxylic acid (or 7-amino cephalosporanic acid, hereinbelow indicated as 7-ACA).
  • This two-step enzymatic process for obtaining 7-ACA has been used on an industrial scale (Conlon et al. Biotechnol. Bioeng. 46, 510, 1995). [0007]
  • Yet another advance in enzymatic processes, is disclosed in EP 0846695, in which solid glutaryl-7-ACA is reacted with a heterocyclic group that contains at least a nitrogen with or without a sulphur or oxygen atom to produce a 3-modified glutaryl-7-ACA. These 3-derivatives are enzymatically transformed to their corresponding 3-heterocyclic thiomethyl-7-ACA derivatives. [0008]
  • This procedure can be defined as an enzymatic-chemical-enzymatic (ECE) process, since the isolated GL-7-ACA comes from a bioconversion of solubilised cephalosporin C, then GL-7-ACA is reacted with the heterocyclic thiols and finally the 3-heterocyclic thio-derivative is enzymated with GL-7-ACA acylase. The problem with this method is the need to isolate GL-7-ACA, which given its high water solubility, is technically difficult and expensive, as described in WO 9535020. [0009]
  • An additional problem is that the enzyme can only be reused a few times due to the “poisoning” of the biocatalyst by the residual heterocyclic thiols. This poisoning effect is well documented with one of the thiols used, 5-methyl-1,3,4-thiadiazole-2-thiol (MMTD) (Won et al, App. Biochem. Biotech. 69, 1, 1998). [0010]
  • The oxidative deamination of the D-adipamido side chain of cephalosporin C under aerobic conditions into α-ketoadipyl-7-ACA has been described using D-amino acid oxidase (D-AAO) from cell-free extracts (GB 1,272,769, Glaxo) or in toluene-activated (permeabilised) cells (GB 1,385,685) of the yeast [0011] Trigonopsis variabilis or Rhodotorula glutinis (EP 0517200). In this reaction, molecular oxygen acts as the electron acceptor and is converted to hydrogen peroxide, which chemically reacts with the α-ketoadipyl-7-ACA producing its decarboxylation into glutaryl-7-ACA. In the presence of large quantities of the catalase produced for the above yeasts, the hydrogen peroxide is cleaved to water and molecular oxygen, rendering a mixture of α-ketoadipyl-7-ACA and glutaryl-7-ACA. The α-ketoadipyl-7-ACA is quite unstable (GB 1,385,685) and rapidly decomposes to unknown products and hence reduces the yield of glutaryl-7-ACA from 90 to 95% to 60 to 70%, depending on the yeast and strain (Parmar et al, Crit. Rev. Biotechnol. 18, 1, 1998; Rietharst, W. and Riechert, A, Chimia 53, 600, 1999). As a result no industrial application has been described.
  • There is therefore a need for an efficient and improved process for the preparation of 3-thiolated-7-ACA cephalosporanic acid derivatives on an industrial scale. In addition the isolation of stable α-ketoacid derivatives which are important biopharmaceutical compounds would be beneficial. [0012]
  • STATEMENTS OF INVENTION
  • According to the invention there is provided a process for preparing cephalosporanic acid derivatives comprising the steps of:—[0013]
  • enzymatically converting a 3-thiolated cephalosporin C compound of formula III:— [0014]
    Figure US20040181056A1-20040916-C00003
  • into a 3-thiolated-α-ketoadipyl-7-aminocephalosporanic acid derivative of formula IV: [0015]
    Figure US20040181056A1-20040916-C00004
  • wherein R is a heterocyclic group comprising at least a nitrogen atom. [0016]
  • Preferably the compound of formula III is enzymatically converted into a compound of formula IV by an immobilised enzyme system. Most preferably the enzyme system comprises co-immobilised D-Amino acid oxidase and catalase. [0017]
  • Preferably the enzymatic conversion is carried out in the presence of molecular oxygen, at a pressure of 1 to 5 bar absolute, a pH of from 6.5 to 8.0 and at a temperature of from 15 to 30° C. for a period of from 30 mins to 180 mins. [0018]
  • Preferably the process comprises the step of separating the enzyme system from the reaction mixture, preferably by filtration. [0019]
  • In one embodiment of the invention the process includes the step of purifying the compound of formula IV. [0020]
  • Most preferably the compound is purified using an adsorption column. Preferably the enzymes are co-immobilised using a suitable cross-linker agent in a suitable solid support. The enzymes may be in the form of crystals of a size suitable for use as a biocatalyst. [0021]
  • Preferably the enzymatic processes are carried out while maintaining the enzyme in dispersion in an aqueous substrate solution. Preferably the or each enzymatic process is carried out in a column. Most preferably the process includes the step of recovering the enzyme for reuse. [0022]
  • In one embodiment of the invention the compound of formula IV is used without purification in a continuous process for obtaining any useful derivative. [0023]
  • Preferably the R group in compounds of formula III and IV is a heterocyclic group comprising at least one nitrogen atom and optionally a sulphur or oxygen atom. [0024]
  • Most preferably R is a heterocyclic group selected from any one or more of the group comprising thienyl, diazolyl, tetrazolyl, thiazolyl, triazinyl, oxazolyl, oxadiazolyl, pyridyl, pirimidinyl, benzo thiazolyl, benzimidazolyl, benzoxazolyl, or any derivative thereof, preferably 5-methyl-1,3,4-thiadiazol-2-yl, 1-methyl-1H-tetrazol-5-yl or 1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl. [0025]
  • The invention provides a 3-thiolated-α-ketoadipyl-7-aminocephalosporanic acid derivative of formula IV whenever prepared by a process of the invention. [0026]
  • The invention provides a compound of the Formula:— [0027]
    Figure US20040181056A1-20040916-C00005
  • wherein in formula IV, R is 1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl. [0028]
  • The invention provides a compound of the Formula:— [0029]
    Figure US20040181056A1-20040916-C00006
  • wherein in formula IV, R is 1-methyl-1H-tetrazol-5-yl. [0030]
  • The invention also provides use of a compound of formula IV as an intermediate in a process for preparing cephalosporin C antibiotics. [0031]
  • The invention also provides use of an intermediate compound of the formula:— [0032]
    Figure US20040181056A1-20040916-C00007
  • in a process for preparing cephalosporin C antibiotics wherein in formula IV R is 5-methyl-1,3,4-thiadiazol-2-yl. [0033]
  • The invention further provides a process for preparing cephalosporanic acid derivatives of the invention comprising the step of: [0034]
  • enzymatically converting a compound of formula IV to form a compound of formula I [0035]
    Figure US20040181056A1-20040916-C00008
  • wherein R is a heterocyclic group comprising at least one nitrogen atom and R[0036] 1 and R2 are both hydrogen atoms or one of them is a hydrogen atom and the other is an acyl donor.
  • Preferably the compound of formula IV is enzymatically converted to form a compound of formula I using Glutaryl-7-ACA acylase, most preferably the enzymation takes place at a temperature of approximately 20° C. and at a pH of between 6.5 and 8.0. Preferably the enzyme is immobilised using a suitable cross-linker agent in a suitable solid support. [0037]
  • Preferably the enzyme is in the form of crystals of a size suitable for use as a biocatalyst. [0038]
  • In one embodiment of the invention the enzymation is carried out while maintaining the enzyme in dispersion in an aqueous substrate solution. Preferably the enzymatic process is carried out in a column. Most preferably the process includes the step of recovering the enzyme for reuse. [0039]
  • The invention also provides use of a compound of formula I as an intermediate in a process for preparing cephalosporin C derivatives. [0040]
  • The invention further provides a process for preparing 3-thiolated cephalosporanic acid derivatives comprising the steps of;—[0041]
  • enzymatically converting a compound of formula III [0042]
    Figure US20040181056A1-20040916-C00009
  • into a 3-thiolated-α-ketoadipyl-7-aminocephalosporanic acid derivative of formula IV: [0043]
    Figure US20040181056A1-20040916-C00010
  • and enzymatically converting a compound of formula IV to form a 3-thiolated 7-ACA compound of formula I [0044]
    Figure US20040181056A1-20040916-C00011
  • wherein R is a heterocyclic group comprising at least one nitrogen atom and R[0045] 1 and R2 are both hydrogen atoms or one of them is a hydrogen atom and the other is an acyl donor.
  • In one embodiment of the invention the compound of formula III is enzymatically converted into a compound of formula I in one step by an immobilised enzyme system. Most preferably the enzyme system comprises a combination of co-immobilised D-amino acid oxidase/catalase in the presence of immobilised Glutaryl-7-ACA acylase. Preferably the enzymation takes place at a temperature of approximately 20° C. and at a pH of between 6.5 and 8.0. Most preferably the enzymes are co-immobilised using a suitable cross-linker agent in a suitable solid support. [0046]
  • Preferably the enzymes are in the form of crystals of a size suitable for use as a biocatalyst. [0047]
  • Most preferably the enzymatic processes are carried out while maintaining the enzyme in dispersion in an aqueous substrate solution. [0048]
  • Preferably the or each enzymatic process is carried out in a column. Most preferably the process includes the step of recovering the enzyme for reuse. [0049]
  • In one embodiment of the invention the compound of formula III is used without purification in a continuous process for obtaining any useful derivative. [0050]
  • The invention also provides a process for preparing cephalosporanic acid derivatives comprising the steps of:—[0051]
  • reacting cephalosporin C with a thiol compound of the general formula II [0052]
  • R—SH  II
  • wherein R is a heterocyclic group comprising at least one nitrogen atom, [0053]
  • to form a 3-thiolated cephalosporin compound of formula III [0054]
    Figure US20040181056A1-20040916-C00012
  • wherein R is as defined above, [0055]
  • and, after formation of the compound of formula III removing excess thiol of formula II. [0056]
  • In one embodiment of the invention the excess thiol is removed by adsorption on an anion exchange resin. Preferably the anion exchange resin is a microporous resin having a cross-linked acrylic copolymer structure. Most preferably the anion exchange resin comprises an 8% cross-linking containing functional thialkyl benzyl ammonium group. The resin may be in the chloride, hydroxy, phosphate or acetate cycle. [0057]
  • In another embodiment of the invention the excess thiol is removed by crystallisation. Preferably crystallisation is carried out at an acidic pH. [0058]
  • In a further embodiment of the invention the excess thiol is removed by crystallisation followed by adsorption on an anion exchange resin. [0059]
  • Preferably the cephalosporin C is in an aqueous medium. Most preferably the cephalosporin C is in the form of a concentrated cephalosporin C solution. [0060]
  • Preferably the reaction is carried out at a pH of between 5.5 and 8.0, at a temperature of from 60° C. to 80° C., for a period of from 1 to 8 hours. Most preferably the reaction is carried out at a pH of approximately 6.0 and at a temperature of approximately 65° C. [0061]
  • In one embodiment of the invention the thiol compound is present in an amount of between 1 and 5 mol/mol of cephalosporin C. [0062]
  • Preferably R is a heterocyclic group comprising at least one nitrogen atom and optionally a sulphur or oxygen atom. Most preferably R is a heterocyclic group selected from any one or more of thienyl, diazolyl, thiazolyl, tetrazolyl, thiadiazolyl, triazinyl, oxazolyl, oxadiazolyl, pyridyl, pirimidinyl, benzothiazolyl, benzimidazolyl, benzoxazolyl, or any derivative thereof, preferably 5-methyl-1,3,4-thiadiazol-2-yl, 1-methyl-tetrazol-5-yl or 1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl. [0063]
  • The invention provides a compound of formula III [0064]
    Figure US20040181056A1-20040916-C00013
  • wherein R is a heterocyclic group comprising at least one nitrogen atom, [0065]
  • The invention provides a compound of the formula:— [0066]
    Figure US20040181056A1-20040916-C00014
  • wherein in formula III R is 5-methyl-1,3,4-thiadiazol-2-yl. [0067]
  • The invention further provides a compound of the formula:— [0068]
    Figure US20040181056A1-20040916-C00015
  • wherein in formula III R is 1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl. [0069]
  • The invention also provides use of a compound of formula III as an intermediate in a process for preparing cephalosporin C derivatives. [0070]
  • One embodiment of the invention provides a process for preparing cephalosporanic acid derivatives comprising the steps of:—[0071]
  • enzymatically converting a 3-thiolated cephalosporin C compound of formula III obtained by a process as described above:— [0072]
    Figure US20040181056A1-20040916-C00016
  • into a 3-thiolated-α-ketoadipyl-7-aminocephalosporanic acid derivative of formula IV: [0073]
    Figure US20040181056A1-20040916-C00017
  • wherein R is a heterocyclic group comprising at least a nitrogen atom. [0074]
  • In one embodiment of the invention the process additionally comprises the step of: [0075]
  • enzymatically converting a 3-thiolated α-ketoadipyl 7-ACA compound of formula IV [0076]
    Figure US20040181056A1-20040916-C00018
  • to form a 3-thiolated 7-ACA compound of formula I [0077]
    Figure US20040181056A1-20040916-C00019
  • wherein R is a heterocyclic group comprising at least one nitrogen atom and R[0078] 1 and R2 are both hydrogen atoms or one of them is a hydrogen atom and the other is an acyl donor.
  • Another embodiment of the invention provides a process for preparing cephalosporanic acid derivatives comprising the step of: [0079]
  • enzymatically converting a compound of formula IV [0080]
    Figure US20040181056A1-20040916-C00020
  • to form a compound of formula I [0081]
    Figure US20040181056A1-20040916-C00021
  • wherein R is a heterocyclic group comprising at least one nitrogen atom and R[0082] 1 and R2 are both hydrogen atoms or one of them is a hydrogen atom and the other is an acyl donor.
  • Preferably a compound of formula IV is enzymatically converted to form a compound of formula I with Glutaryl-7-ACA acylase. [0083]
  • Most preferably compounds of formula I, III and IV are in a solid form or in the form of a non-toxic salt thereof. [0084]
  • The invention provides a process for the preparation of cephalosporin C antibiotics and derivatives thereof comprising forming a compound of formula III, IV and I as hereinbefore defined and subsequent enzymation of the compound. [0085]
  • The antibiotic may be any one or more of cefazolin, cefazedone, cefoperazone, cefamandol, cefatriazine, cefotiam and ceftriaxone.[0086]
  • DETAILED DESCRIPTION
  • We have found that 3-thiolated cephalosporanic C derivatives may be enzymated into α-ketoacid derivatives in the presence of a co-immobilised D-amino acid oxidase/catalase system. These α-ketoacid derivatives have been shown to be stable when isolated. A new improved process to obtain 3-thiolated-7-ACA derivatives, both in one step or in two consecutive enzymatic steps is thereby provided. [0087]
  • The present invention relates to an improved and more efficient process for preparing compounds of formula I from cephalosporin C. [0088]
    Figure US20040181056A1-20040916-C00022
  • wherein R is a heterocyclic group comprising at least one nitrogen atom and R[0089] 1 and R2 are both hydrogen atoms or one of them is a hydrogen atom and the other is an acyl donor.
  • The process involves the formation of new stable α-ketoadipyl-7-ACA derivative intermediates. Alternatively the process may be carried out in a single one pot reaction without the formation of intermediates. [0090]
  • It was surprisingly found that the 3-thiolated derivative of cephalosporin C were very good substrates for the enzymatic reaction by D-amino acid oxidase in the presence of catalase. [0091]
  • 3-thiolated-cephalosporin C derivatives of formula III [0092]
    Figure US20040181056A1-20040916-C00023
  • are prepared from cephalosporin C. The cephalosporin C solution may be in a purified or crude form. The cephalosporin C is in the form of any non-toxic salt of cephalosporin C. [0093]
  • The reaction of nucleophilic substitution in the 3′ position is carried out in an aqueous medium, dissolving the heterocyclic thiol and any non-toxic cephalosporin C salt in water by addition of a basic compound which form a water soluble salt, such as alkali metal hydroxide, ammonium hydroxide or preferably alkali metal carbonate or bicarbonate. In general, in addition to salts produced as described above, any commercially available salt of cephalosporin C and of the heterocyclic thiols can be used in the process of this invention without changing the fundamentals of the process. [0094]
  • After dissolving the heterocyclic thiol and the cephalosporin C, in separate reaction vessels or jointly, both reactants are mixed together in the same reactor, before or after heating the solution to a temperature from about 65° C. to 80° C. at a pH value of between 5.5 and 7.0. [0095]
  • Once the reaction starts, the temperature and pH are maintained preferably at approximately 65° C. and 6.0 respectively, for a period of time of approximately 1 hour to 4 hours. [0096]
  • The heterocyclic thiol/cephalosporin C molar ratio is an important variable in the yield of the reaction and has to be optimised for each heterocyclic thiol used. Molar ratios are between 1.0 and 4.0, preferably at a molar ratio of approximately 4. [0097]
  • It was found that at these molar ratios the cephalosporin C remains quite stable with low β-lactam ring degradation, compared to a cephalosporin C solution without the thiol, which is completely degraded within 40 min at 80° C. [0098]
  • Once the cephalosporin C level is below 2% of the initial amount, the reaction mixture is cooled to a temperature from about 2° C. to about 10° C., with or without acidification at a pH of from pH 3.0 to 5.5, preferably approximately 5.2, with strong mineral acids, such as hydrogen halides or oxy acids. [0099]
  • This acidification step gives in some cases, crystallisation of the heterocyclic thiol, with the concomitant possibility of reuse for a new reaction. [0100]
  • After formation of the compound of formula III excess thiol groups are selectively removed which allows cephalosporin C derivatives of formula III to be prepared at very high purity levels and with very low levels (<0.2 mg/ml) of heterocyclic thiols present. A highly selective removal procedure with the strong anion exchanger Amberlite IRA-400 (manufactured by Rohm and Haas) is utilised. This process has several advantages. It allows compounds of Formula III to be used as a substrate without the poisoning of the enzymes in the next process step. As a result the enzymes may be used repeatedly. In addition the process does not require the use of toxic reagents or the need to isolate intermediates thereby providing a continuous process. [0101]
  • Different resins and types of chromatography may be used on an industrial scale. [0102]
  • Several resins were tested grouped in four classes of resins based on adsorption, hydrophilic-hydrophobic interaction, cation exchange, and anion exchange. All resins tested based on adsorption (Amberlite XAD-761, Amberlite 7HP, Amberlite 16 HP and Amberlite XAD-4) gave similar results, the eluate containing from 22% to 38% of the heterocyclic thiol. The hydrophobic-hydrophilic interaction resin Sephadex LH-20 did not retain any thiol (<5%). A similar situation was found with the cation exchangers Amberlite® IRC-50, IR-120 and IR-200. However, anion exchangers were found to have the best binding capacity for heterocyclic thiols ranging from 57-60% in the case of a weak anion exchanger (Amberlite IRA-93). [0103]
  • It was found that a strong microporous (gel-type I) anion (base) exchange resin Amberlite IRA-400 having an 8% cross linking containing function trialkyl benzyl ammonium groups gave the highest binding of heterocyclic thiols (from 92-98%) and low binding of the 3′-position heterocyclic thiomethyl cephalosporin C derivative (from 2-15%, less than 15% for the first cycle and less than 5% for the following cycles). [0104]
  • Such a microporous resin offers certain advantages. They are less fragile, require less care in handling and possess higher loading capacities. As they have no discrete pores solute ions diffuse through the particle to interact with exchange sites. The total exchange capacity of the mentioned resin is in the order of 1.4 meq/mL. [0105]
  • It was surprisingly found that Amberlite IRA-400 has less binding capacity for 3′-heterocyclic thiomethyl derivatives of cephalosporin C than for the same derivatives of glutaryl-7-ACA and 7-ACA. In fact the 3′-heterocyclic thiomethyl derivative of glutaryl-7-ACA produced with MMTD binds at a level of 76.3% to the column. The same result is found with 3′-heterocyclic thiomethyl derivative of 7-ACA, with MMTD, which binds at a level of 92.7% to the column. This unexpected behaviour of Amberlite IRA-400 with these three related β-lactam compounds appears to result from the presence of an ionisable amino group in the 5 position of the side chain of cephalosporin C compared with glutaryl-7-ACA and 7-ACA. [0106]
  • The removal of heterocyclic thiols by the process of the invention is particularly advantageous on an industrial scale as the eluate of the column can be used for enzymation without isolation of the modified cephalosporin C and represents a new concept in the field of cephalosporin intermediates wherein the impurities are bound to the column and the β-lactam derivative is simply eluted by water. [0107]
  • Once the β-lactam derivative is eluted (less than 5% remains bound), the column is typically regenerated with a 1.5 N solution of a strong mineral acid, such as hydrogen halide containing variable amounts of an organic solvent, preferably 10-20% acetonitrile. When the concentration of the thiol in the eluate is higher than 0.2 mg/ml, a strong regeneration using 3 N HCl and 40% acetonitrile may be carried out. Alternatively regeneration with 1.5M HCl and 1.0 N NaOH is also possible. [0108]
  • After elution of the heterocyclic thiol, the thiol is concentrated and reused. The column is rinsed with deionised water to remove excess regenerant before the next cycle. The first bed volume of the rinse should be performed at the flow rate used for regeneration. The remainder is run at the adsorption flow rate. [0109]
  • Compounds of formula III are enzymatically converted into new stable α-ketoadipyl-7-ACA derivatives of formula IV by an immobilised enzyme system. [0110]
    Figure US20040181056A1-20040916-C00024
  • wherein R is a heterocyclic group comprising at least a nitrogen atom with or without a sulphur or oxygen. [0111]
  • The use of co-immobilised enzymes (D-AAO and catalase) on the same solid support allows a better hydrogen peroxide removal than with separate supports. The biocatalyst with both enzymes is easily recoverable from the reaction medium and reusable a large number of times. This is a necessary and indispensable factor for an industrial process. [0112]
  • A further industrial advantage of the invention is the easy transfer of the chemical solution comprising a compound of formula III, after chromatography in a strong anionic exchange resin (Amberlite® IRA-400, manufactured by Rohm and Haas) to an enzymatic reactor containing the co-immobilised enzymes. This enables the process to be conducted continuously with a single liquid stream from cephalosporin C to compound IV. [0113]
  • The enzymatic stage may be carried out in different ways: [0114]
  • 1) Chemical reaction without removal of the excess of the heterocyclic thiol and oxidative deamination with immobilised D-AAO. Under these conditions, compound IV is accumulated to about 35 to 40% of total β-lactams, which is higher than the 5 to 10% accumulation of α-ketoadipyl-7-ACA produced when unmodified cephalosporin C is used. Thus indicating the stability of the compound IV. [0115]
  • 2) The same as 1) including soluble catalase. Under these conditions, the level of compound IV reaches 70 to 75% of total β-lactams in solution with less than 10% of 3-thiolated glutaryl-7-ACA (T′X′G). However the immobilised enzyme and catalase are poisoned within a few cycles by the presence of high levels of heterocyclic thiol (□1 mg/mL). [0116]
  • 3) Chemical reaction with removal of the excess of the heterocyclic thiol by ion exchange chromatography and co-immobilisation of D-AAO and catalase on the same solid support. Under these conditions, compound IV is accumulated from about 80% to 90% of total β-lactams, depending on the pH used. At pH values of approximately 6.5, compound IV is more stable reaching 90% accumulation but the D-AAO is less active (more biocatalyst is needed). At pH values near 7.25, the enzyme is more active but compound IV is less stable, obtaining a 80% accumulation. The preferred pH is pH 6.75, which provides the lowest loss in D-AAO activity with good stability of compound IV. [0117]
  • From the above it is clear that approach 3) is advantageous versus the others but several parameters have to be taken into account to produce a good biocatalyst with the two enzymes (D-AAO and catalase) co-immobilised: [0118]
  • a) The source of both enzymes. D-AAO in this invention is obtained from [0119] Trigonopsis variabilis CBS 4091 obtained from the Spanish collection of microorganisms (CECT, Valencia, Spain). This yeast is grown under the conditions to induce D-AAO (Kubicek et al, J. Appl. Biochem. 7; 104, 1985) and the enzyme was purified by ammonium sulfate fractionation between 30%-55% as described by Szwjcer et al (Biotechnol. Lett. 7, 1, 1985). Amino acid oxidases may also be sourced from Rodotorula gracilis. Catalase from Micrococcus lisodeikticus is obtained from a commercial source (Fluka, Madrid, Spain), but it may also be sourced from Aspergillas niger.
  • b) The solid support used. Several carriers are available to immobilise enzymes. The most popular are: Amberlite® IRA 900 (strongly basic polystyrene resin with a quaternary amine function), Duolite® A365 (weakly basic polystyrene resin with primary functional groups), Duolite® A568 (moderately basic poly-condensed phenolformaldehyde resin), BrCN[0120] activated Sepharose®, vinyl Sepharose® and Eupergit C® (based on a polyacrylic structure and in particular with oxirane terminal groups). Among Eupergit, two classes are commercialised (Röhm Pharma) C and C250L, the latter type is particularly suitable for binding high molecular weight enzymes, since its contents in oxirane groups are at least 0.36% compared with the 0.93% in Eupergit C. This C250L type show outstanding properties when employed in industrial biocatalytic processes. The morphology of the carrier, i.e., its narrow particle size distribution (200 μm) and high mechanical stability accounts for their good properties in stirred-tank reactors. It is not mechanically destroyed in stirred systems and filtration at the end of the reaction cycle is quick and very easy to perform. Changes in the pH and ionic strength have no effect on swelling of the matrix. In addition, this Eupergit C250L has never been used to immobilise D-amino acid oxidase and catalase.
  • c) The ratio catalase units/D-AAO units. This ratio is normally bigger than 100, but for efficient hydrogen peroxide removal the ratio is preferably about 1500. One unit of D-AAO is defined as the amount of enzyme that consumes a μmol of O[0121] 2 per minute using cephalosporin C as substrate at pH 8.0 and 25° C. One unit of catalase is defined as the amount of enzyme that decomposes 1 μmol of hydrogen peroxide per minute at pH 7.0 and 25° C.
  • d) The procedure of co-immobilisation. Several immobilisation protocols can be used. The one chosen in this invention is a modification of the method described by Cramer and Steckham (Tetrahedron, 45, 14645, 1997) for the co-immobilisation of L-α-glycerolphosphate oxidase with catalase. Typically 100 mg of Eupergit® C250L are suspended in 1.5 ml of coupling buffer (1.0 M potassium phosphate buffer pH 8.0) in an Erlenmeyer flask. Then 1040 U of D-AAO and 10-20 kU of catalase (Fluka, cat# 60634) are added slowly. The mixture is incubated for 16 h with gentle shaking. After the immobilisation procedure, the beads are separated by a glass frit and washed for several times using a 100 mM potassium phosphate buffer pH 7.0 at 4° C. [0122]
  • Once the co-immobilisation is carried out, the enzymatic conversion of the compound III into compound IV is carried out in an aqueous solution of compound III containing from about 0.0016 to 0.004 moles and with less than 0.2 mg/ml of the heterocyclic thiol. This solution is obtained after passing the solution comprising 3-thiolated cephalosporin C (compound III) and remaining heterocyclic thiol used in the nucleophilic displacement of 3 acetoxy group of cephalosporin C through a column of a strong anion exchanger, such as Amberlite® IRA-400 (Rohm and Hass). The pH of the eluate is adjusted to pH about 6.5 to 8.0, preferably to pH 6.75, due to the instability of cephalosporanic compounds at basic pH values. [0123]
  • The solution comprising compound III as described above is fed into a bioreactor, containing wet Eupergit C250L with co-immobilised D-AAO/catalase, usually D-AAO from 20-40 U/g, and catalase, usually from 10-30 kU/g. The reaction temperature can be fixed from 15° C. to 35° C., and is normally fixed at 20° C. [0124]
  • The molecular oxygen, needed for the oxidative deamination, is blown into solution by a bottom diffuser at a flow rate from 0.01 to 1 volume/volume of solution/minute, preferably at 0.1 vvm under a suitable mechanical stirring of about 400 rpm. This bioreactor design is preferred versus a percolation column containing the immobilised enzymes to avoid the diffusional problems of the molecular oxygen, which reduce the yield of compound IV. The pH is titrated to pH 6.75 by dosing a concentrated organic or inorganic base, preferably 3 M ammonia, by means of an autotitrator. [0125]
  • The conversion is controlled by HPLC and when the conversion of compound III is greater than 97%, the reaction is stopped and the solution filtered off. The time required for such conversion is of the order 0.5 to 3 hours, depending on the operating conditions, but usually approximately 1 hour. [0126]
  • Isolation of compound IV, when required, is carried out by decreasing the pH of the above solution to a pH of about 4.5 to 6.0, preferably 5.0 with the same base used during the enzymatic reaction, and loading into a column packed with the adsorptive resin Amberlite XAD-2. The elution of compound IV is carried out with water at a flow rate of 2-3 bed volumes per hour. Fractions containing the compound IV with a HPLC purity higher than 90-95% are pooled and lyophilised. [0127]
  • Compounds of formula IV are subsequently converted into compounds of formula I by enzymation with glutaryl-7-ACA acylase. [0128]
  • The process of the invention for preparing compounds of formula I from cephalosporin C may also be carried out in a single one pot reaction. In this case filtrate from an anion exchange column comprising compounds of formula III is enzymatically converted into compounds of formula I by an immobilised enzyme system comprising D-AAO and catalase in the presence of glutaryl-7-ACA acylase. Compounds of formula I have been prepared in this way with a HPLC of approximately 95%. The process is easy and efficient to carry out. [0129]
  • Using both processes (one-pot or two-steps) of the invention, 3-thiolated-7-ACA derivatives are easily and economically prepared. These compounds may by subsequent enzymation with penicillin G acylase for example, be used for the preparation of semisynthetic β-lactam antibiotics. The β-lactam antibiotics may include any one or more of cefazolin, cefazedone, cefoperazone, cefamandol, cefatriazine, cefotiam and ceftriaxone. [0130]
  • The following examples are meant to illustrate the invention without limitation as to its generality. [0131]
  • Examples 1 to 5 illustrates the preparation of 3-thiolated-7-ACA derivatives of formula III from cephalosporin C. [0132]
  • Examples 6 to 8 illustrate the enzymatic process for the preparation of a 3-thiolated α-ketoadipyl-7-ACA derivatives of formula IV from 3-thiolated cephalosporin C derivatives of formula III. [0133]
  • Examples 9 to 11 illustrate the enzymatic process for the preparation of 3-thiolated-7-ACA derivatives (TXA) of formula I from 3-thiolated derivatives of formula III via the formation of stable α-ketoadipyl-7-ACA derivatives of formula IV. [0134]
  • Examples 12 to 14 illustrate the enzymatic process for the preparation of 3-thiolated-7-ACA derivatives of formula I from 3-thiolated derivatives of formula III in a single step (one pot). [0135]
  • EXAMPLE 1 Preparation of 7-β-(5-amino-5-carboxypentanamido)-3-(5-methyl-1,3,4-thiadiazole-2-yl thiomethyl)-3-cephem-4-carboxylic acid (TDC)
  • To a glass-lined reactor containing 600 mL of deionised water, 31.73 g (0.24 moles) of 2-mercapto-5-methyl-1,3,4-thiadiazole (MMTD) were added and the reactor was heated with stirring to a temperature of about 65° C. The pH of the mixture was adjusted to pH of about 6.0 by the addition of about 10 g of sodium carbonate. [0136]
  • In a separate glass-lined flask, a solution of concentrated sodium cephalosporin C (98% purity by HPLC) was prepared by dissolving 33.23 g of sodium cephalosporin C (75% free acid, 0.06 moles) in 200 ml of water. When the MMTD was dissolved, the concentrated cephalosporin C solution was added and the mixture was stirred at approximately 65° C. for 240 minutes, controlling the reaction kinetic until the level of cephalosporin C was below 2%. The following reaction kinetics were found: [0137]
    Cephalosporin C
    Time (min) (moles) TDC (moles) MMTD (moles)
    0 0.06 0.00 0.24
    120 0.01 0.039 0.20
    240 0.0012 0.042 0.195
  • The reaction mixture was then cooled to about 4° C., where the crystallisation of the excess of MMTD begins. The pH was acidified with stirring (150 rpm) to a pH 5.2 with 37% hydrochloride acid and left under slow stirring (50 rpm) for 60 minutes for the completion of crystallisation. [0138]
  • The precipitated MMTD was filtered and dried at 35° C. under vacuum. 23 g of recovered MMTD was obtained (purity 99% by HPLC) with a recovery yield of about 95%. [0139]
  • The filtrate (825 ml) containing 0.042 moles of the TDC and MMTD 0.016 moles was adjusted to pH 7.25 with 3 M ammonia and loaded onto an Amberlite IRA-400 column in chloride cycle (bed volume equal to 180 ml) covered with deionised water at flow rate 20 ml/min. Once loaded, the column was washed with deionised water (ca 100 ml) until 97% recovery of loaded TDC with a 94% purity by HPLC. The pH of the effluent was about 5.4 and was neutralised to 7.0 with 3 M ammonia. The remaining MMTD was 0.0009 moles (<0.2 mg/ml), which is less than 6% of the remaining MMTD after its crystallisation by decreasing the pH. With this low level of MMTD (<1% of the original MMTD after chemical reaction), enzymation of TDC is possible. [0140]
  • Typically the column is regenerated with 1 L of 1.5 M HCl containing 10% acetonitrile and rinsed free of the excess regeneration by washing with 2 litres of deionised water. When required (MMTD>0.2 mg/ml) the resin can be subjected to a strong regeneration using 1 litre of 3 M HCl with 40% acetonitrile. Alternatively, regeneration with 1.5 M HCl and 1.0 N NaOH is also possible. [0141]
  • To further characterise the TDC solution at pH 5.0, it was loaded onto a Amberlite XAD-2 adsorption column and the column was washed with water. After washing, the resin was eluted with water, and 25 ml portions were pooled. A fraction containing 98.5% TDC by HPLC was lyophylised and subjected to analysis: [0142]
  • Elemental Analysis for the product C[0143] 17H20N5O6S3. 2H2O (TDC), calculated C, 37.42; H, 4.43; N, 12.84; S, 17.63; found 37.27; H, 4.3; N, 13.11; S, 17.51.
  • [0144] 1H-NMR (DMSO/DCl) (δ ppm): 1.57 (m, 2H, —CH2—); 1.63 (m, 2H, —CH2—); 2.18 (m, 2H, —CH2—); 2.64 (s, 3H, CH3); 3.55, 373 (J=18 Hz, 2H, —CH2—); 3.83 (t, 1H, —CH—); 4.18-4.46 (d, J=13 Hz, 2H, —CH2—); 5.02 (d, J=3 Hz, 1H, C-6); 5.6 (d, J=3 Hz, 1H, C-7).
  • EXAMPLE 2 Comparative Example: Preparation of 7-β-(5-amino-5-carboxypentanamido)-3-(5-methyl-1,3,4-thiadiazole-2-ylthiomethyl)-3-cephem-4-carboxylic acid on Different Columns
  • The TDC derivative was prepared as described in Example 1 and the filtrate containing it was loaded onto different types of resins. [0145]
  • The following data was obtained after washing with 100 ml of water in the first cycle of column usage: [0146]
    Eluted TDC Eluted
    Resin Type (%) MMTD (%)
    Amberlite IRA-400 Strong anion 86 2
    exchanger
    Diaion SA10A Strong anion 67 15
    exchanger
    Amberlite IRA93 Weak anion exchanger 87 45
    Amberlite IRC-50 Weak cation 93 92
    exchanger
    Amberlite IRC-200 Strong cation 73 98
    exchanger
    Amberlite XAD-761 Adsorption 86 22
    Amberlite XAD-7 Adsorption 77 23
    HP
    Amberlite XAD-16 Adsorption 75 35
    HP
    Amberlite XAD-4 Adsorption 68 25
    Amberlite Adsorption 78 38
    XAD-1180
    Sephadex LH-20 Hydrophobic 98.5 95
    hydrophilic
  • Amberlite IRA-400 gave the best results. A high elution of TDC was observed with low elution of MMTD. Using other anion exchange columns higher amounts of MMTD were also eluted. The other anion exchangers showed a high dual binding of thiol and TDC. [0147]
  • EXAMPLE 3 Specificity of TDC for Amberlite IRA-400
  • The glutaryl-7-ACA derivative (TDG) and 7-ACA derivative (7-TDA) were prepared as in Example 1 using glutaryl-7-ACA and 7-ACA as starting material. The following data was obtained from the filtrate of the Amberlite IRA-400. [0148]
    Compound in TDG or TDA
    Resin the elute eluted (%) MMTD eluted (%)
    Amberlite IRA- TDG 23.7 3.0
    400 TDA* 7.3 1.4
  • In contrast to TDC, both TDG and TDA appear to remain bound to the Amberlite IRA-400 as well as the MMTD. [0149]
  • EXAMPLE 4 Preparation of 7-β-(5-amino-5-carboxypentanamido)-3-[(1-methyl-1H-tetrazol-5-yl)-thiomethyl]-cephalosporanic acid (TZC)
  • To a glass-lined reactor containing 600 mL of deionised water 28.16 g (0.24 moles) of 5-mercapto-1-methyltetrazole (MMTZ) were added and the reactor was heated with stirring to a temperature of about 70° C. The pH of the mixture was adjusted to a pH of about 5.7-5.8 by the addition of about 12 g of sodium carbonate. [0150]
  • In a separate glass-lined flask, a solution of concentrated sodium cephalosporin C was prepared by dissolving 33.23 g of sodium cephalosporin C (75% free acid, 0.06 moles purity 98% by HPLC) in 200 ml of water. When the MMTZ was dissolved, the concentrated cephalosporin C solution was added and the mixture was stirred at about 70° C. for 120 minutes, controlling the reaction kinetic until the level of cephalosporin C was below 3%. [0151]
    Cephalosporin C
    Time (min) (moles) TZC (moles) MMTZ (moles)
    0 0.06 0 0.24
    120 0.0017 0.040 0.19
  • The reaction mixture was cooled at about 4° C., but crystallisation of the excess of MMTZ did not start, even when the pH was decreased. The solution containing 0.04 moles of the TZC derivative from MMTZ and 0.19 moles of MMTZ was adjusted to pH 7.25 with 3 M ammonia and loaded onto an Amberlite IRA-400 column in chloride cycle (bed volume equal to 150 ml) covered with deionised water at flow rate 20 ml/min. After the first pass through the column the remaining MMTZ was higher than 13% of the initial (0.032 moles). [0152]
  • For this reason, the eluate was loaded onto another Amberlite IRA-400 (bed volume equal to 60 ml) column under the same conditions as described above to decrease the level of MMTZ. [0153]
  • Once loaded, the column was washed with deionised water (ca 90 ml) until 97% recovery of loaded TZC with a 87% purity by HPLC. The pH of the effluent was about 5.4 and was neutralised to pH 7.0 with 3 M ammonia. The remaining MMTZ concentration was 0.0013 moles, which is less than 1% of the original MMTZ after chemical reaction. With this low level of MMTZ, enzymation of the derivative is possible without poisoning the enzyme. [0154]
  • The columns were regenerated with 1 L of 1.5 M HCl containing 10% acetonitrile and rinsed free of the excess regeneration by washing with 2 litres of deionised water. Alternatively, regeneration with 1.5 M HCl and 1.0 N NaOH is also possible. [0155]
  • EXAMPLE 5 Preparation of 7-β-(5-amino-5-carboxypentanamido)-3-[(1,2,5,6-terahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl)-thiomethyl]-15 cephalosporanic acid (TTC)
  • To a glass-lined reactor containing 600 ml of deionised water 37.96 g (0.24 moles) of 2,5-dihydro-3-mercapto-2-methyl-5,6-dioxo-1,2,4-triazine (here below indicated as TTZ) were added and the reactor was heated with stirring to a temperature of approximately 75° C. The pH of the mixture was adjusted to pH of approximately 6.7 by the addition of approximately 12 g of sodium carbonate. [0156]
  • In a separate glass-lined flask, a solution of concentrated sodium cephalosporin C was prepared by dissolving 33.23 g of sodium cephalosporin C (75% free acid, 0.06 moles, purity 98% by HPLC) in 200 ml of water. When the TTZ was dissolved, the concentrated cephalosporin C solution was added and the mixture was stirred at approximately 75° C. for 75 minutes, controlling the reaction kinetic until the level of cephalosporin C was below 2%. [0157]
    Cephalosporin C
    Time (min) (moles) TTC (moles) TTZ (moles)
    0 0.06 0 0.24
    75 0.0011 0.036 0.19
  • The reaction mixture was cooled at approximately 4° C., but crystallisation of the excess of TTZ does not start, even when the pH was decreased. The solution containing the 0.036 moles of TTC and 0.19 moles of TTZ was adjusted to pH 7.25 with 3 M ammonia and loaded onto an Amberlite IRA-400 column in chloride cycle (bed volume equal to 209 ml) covered with deionised water at flow rate 20 ml/min. After the first column the remaining TTZ was 0.015 moles. [0158]
  • For this reason, the eluate was loaded onto another Amberlite IRA-400 column (with the same bed volume) under the same conditions as described above to decrease the level of TTZ. [0159]
  • Once loaded, the column was washed with deionised water (ca 120 ml) until 60% recovery of loaded TTC with a 90% purity by HPLC. The pH of the effluent was about 5.4 and was neutralised to pH 7.0 with 3 M ammonia. The remaining TTZ concentration was 0.00096 moles, which is less than 1% of the original TTZ after chemical reaction. With this level of TTZ, enzymation of the derivative is possible without poisoning the enzyme. [0160]
  • The columns were regenerated with 1 L of 1.5 M HCl containing 10% acetonitrile and rinsed free of the excess regeneration by washing with 2 litres of deionised water. Alternatively, regeneration with 1.5 M HCl and 1.0 N NaOH is also possible. [0161]
  • EXAMPLE 6 Preparation of 7β-(5-carboxy-5-oxopentamide)-3-[(5-methyl-1,3,4-thiadiazole-2-yl)-thiomethyl] cephalosporanic acid (TDK)
  • A filtrate (80 ml) from the strong anion exchanger Amberlite® IRA-400 containing 0.0035 moles of 7β-(5-amino-5-carboxypentamido)-3-[(5-methyl-1,3,4-thiadiazole-2-yl)-thiomethyl] cephalosporanic acid (TDC) with 94.3% purity (HPLC) and less than 0.2 mg/mL of 2-mercapto-5-methyl-1,3,4-thiadiazole (MMTD) was adjusted to pH 6.75 with 3 M ammonia. [0162]
  • The TDC solution was fed into a 0.125 litre stirred glass vessel with 30.76 g of wet Eupergit C250L with a co-immobilised D-amino acid oxidase/catalase system (11.77 U of DAAO/g and 15 kU of catalase/g). [0163]
  • The conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure. The pH was titrated to pH 6.75 with 3 M ammonia by an autotitrator. [0164]
  • The conversion was controlled by HPLC in a reverse phase column Nucleosil 120 3-C18 125×8×4 mm. The mobile phase was 20 mM acetate ammonium pH 5.5 containing 4% acetonitrile at 1 ml/min with a 260 nm detection. The TDC appeared at 7.0 minutes, the TDK at 8.5 min and the 3-thiolated glutaryl-7-ACA intermediate (TDG) at 11.5 min. [0165]
  • Representative samples of the reaction mixture except for the enzyme were taken and the results obtained are given as percentage of total. β-lactams in the following table: [0166]
    TDC TDK TDG side products
    Time (min.) [%] [%] [%] [%]
    0 94.3 0.0 0.0 5.7
    15 68.3 25.9 0.0 5.8
    60 2.6 89.9 0.9 6.6
  • When the % of remaining TDC was less than 3%, the reaction was stopped and the reaction solution was filtered off. [0167]
  • To isolate TDK, the resulting solution was adjusted to pH 5.0 with 3 M ammonia and passed through a column packed with 40 g of the adsorptive resin Amberlite XAD-2 (68.7 ml of bed volume). Elution was carried out with water at a flow rate of 200 ml/h (about 3 bed volumes per hour). Fractions of 25 ml containing TDK with a purity ≧95% (HPLC) were pooled and lyophilised to obtain the target product as a solid to further analyse it. After the elution process, the adsorbent surface is reactivated by applying 2 bed volumes of regeneration solution (25% methanol in water at 3 bed volumes per hour). Before the column can be used again, this solution is removed from the column. After equilibration with water in excess (about 15 bed volumes), the column is ready for re-use. [0168]
  • [0169] 1H-NMR (DMSO) (δ ppm): 1.66 (m, 2H, —CH2—); 2.16 (t, 2H, —CH2—); 2.50 (t, 2H, —CH2—); 2.65 (s, 3H, —CH3—); 3.34-3.58 (J=17.4 Hz, 2H, —CH2—); 4.31-4.48 (J=12.1 Hz, 2H, —CH2—); 4.94 (J=5.1 Hz, 1H, C-6); 5.5 (d,d, J=5.1 Hz, J=8.4 Hz, 1H, C-7).
  • EXAMPLE 7 Preparation of 7β-(5carboxy-5-oxopentanamide)-3-[(1-methyl-1H-tetrazol-5-yl)-thiomethyl]-cephalosporanic acid (TZK)
  • A filtrate (100 ml) from the strong anion exchanger Amberlite® IRA-400 containing 0.0039 moles of 7-(5′-amidoadipamido)-3-[(1-methyl-1H-tetrazol-5-yl)-thiomethyl]-cephalosporanic acid (TZC) with 90.1% purity (HPLC) and less than 0.2 mg/ml of 5-mercapto-1-methyltetrazole (MMTZ) was adjusted to pH 6.75 with 3 M ammonia. [0170]
  • The TZC solution was fed into a 0.125 litre stirred glass vessel with 30.76 g of wet Eupergit C250L with a coimmobilised D-amino acid oxidase/catalase system (11.77 U of DAAO/g and 15 kU of catalase/g). [0171]
  • The conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure. The pH was titrated to pH 6.75 with 3 M ammonia by an autotitrator. [0172]
  • The conversion was controlled by HPLC on a reverse phase column Nucleosil 120 3-C18 125×8×4 mm. The mobile phase was 20 mM ammonium acetate pH 5.5 containing 4% acetonitrile at 1 ml/min with a 260 nm detection. The TZC appeared at 3.0 minutes, the TZK at 3.6 mm and the 3-thiolated glutaryl-7-ACA intermediate (TZG) at 4.6 min. [0173]
  • Representative samples of the reaction mixture except for the enzyme were taken and the results obtained are given as percentage of total β-lactams in the following table: [0174]
    TZC TZK TZG Side products
    Time (min.) [%] [%] [%] [%]
    0 90.1 0.0 0.0 9.9
    15 31.3 57.8 0.8 10.1
    45 0.4 87.3 1.6 10.7
  • When the % of remaining TZC was less than 3%, the reaction was stopped and the reaction solution was filtered off. [0175]
  • To isolate the TZK, the resulting solution was adjusted to pH 5.0 with 3 M ammonia and passed through a column packed with 40 g of the adsorptive resin Amberlite XAD-2 (68.7 ml of bed volume). Elution was carried out with water at a flow rate of 200 ml/h (about 3 bed volumes per hour). Fractions of 25 ml containing the TZK with a purity ≧93% (HPLC) were pooled and then lyophilised to obtain the target product as a solid to further analyse it. After the elution process, the adsorbent surface is reactivated applying 2 bed volumes of regeneration solution (25% methanol in water at 3 bed volumes per hour). Before the column can be used again, this solution is removed from the column. After equilibration with water in excess (about 15 bed volumes), the column is ready for re-use. [0176]
  • [0177] 1H-NMR (DMSO) (δ ppm): 1.61 (m, 2H, —CH2—); 2.12 (t, 2H, —CH2—); 2.45 (t, 2H, —CH2—); 3.33-3.56 (J=17.4 Hz, 2H, —CH2—); 3.86 (s, 3H, —CH3—); 4.18-4.35 (J=12.6 Hz, 2H, —CH2—); 4.88 (d, J=4.8 Hz, 1H, C-6); 5.46 (d,d, J=4.8 Hz, J=8.2 Hz, 1H, C-7).
  • EXAMPLE 8 Preparation of 7β-(5carboxy-5-oxopentanamide)-3-[(1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl)-thiomethyl]-cephalosporanic acid (TTK)
  • A filtrate (50 ml) from the strong anion exchanger Amberlite® IRA-400 containing 0.0016 moles of 7β-(5-amino5-carboxypentamido)-3-[(1,2,5,6-terahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl)-thiomethyl]-cephalosporanic acid (TTC) with 89.86% purity (HPLC) and less than 0.2 mg/ml of 2,5-dihydro-3-mercapto-2-methyl-5,6-dioxo-1,2,4-triazine (TTZ) was adjusted to pH 6.75 with 3 M ammonia. [0178]
  • The TTC solution was fed into a 0.125 litre stirred glass vessel with 30.76 g of wet Eupergit C250L with a co-immobilised D-amino acid oxidase/catalase system (11.77 U of DAAO/g and 15 kU of catalase/g). [0179]
  • The conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure. The pH was titrated to pH 6.75 with 3 M ammonia by an autotitrator. [0180]
  • The conversion was controlled by HPLC in a column Eclipse® XDB-C8 5 μm 4.6×150 mm. The mobile phase was 35% methanol in 10 mM TBHS (tetrabutylammonium hydrogen sulfate) and 15 mM potassium dihydrogen phosphate at 1 ml/min with 260 nm. The TTC appeared at 2.6 minutes, the 3-thiolated glutaryl-7-ACA intermediate (TTG) at 5.5 min and the TTK at 6.6 min. [0181]
  • Representative samples of the reaction mixture except for the enzyme were taken and the results obtained are given as percentage of total β-lactams in the following table: [0182]
    TTC TTK TTG Side products
    Time (min) [%] [%] [%] [%]
    0 89.86 0.00 0.00 10.14
    30 17.26 71.37 0.89 10.48
    60 0.55 86.52 1.88 11.05
  • When the % of remaining TTC was less than 3%, the reaction was stopped and the reaction solution was filtered off. [0183]
  • To isolate the TTK, the resulting solution was adjusted to pH 5.0 with 3 M ammonia and passed through a column packed with 40 g of the adsorptive resin Amberlite XAD-2 (68.7 ml of bed volume). Elution was carried out with water at a flow rate of 200 ml/h (about 3 bed volumes per hour). Fractions of 25 ml containing the TTK with a purity ≧90% (HPLC) were pooled and then lyophilised to obtain the target product as solid to further analyse it: After the elution process, the adsorbent surface is reactivated by applying 2 bed volumes of regeneration solution (25% methanol in water at 3 bed volumes per hour). Before the column can be used again, this solution is removed from the column. After equilibration with water in excess (about 15 bed volumes), the column is ready for re-use. [0184]
  • [0185] 1H-NMR (D2O) (δ ppm): 1.89 (m, 2H, —CH2—); 2.38 (t, 2H, —CH2—); 2.81 (t, 2H, —CH2—); 3.45-3.72 (J=17.7 Hz, 2H, —CH2—); 3.65 (s, 3H, —CH3—); 4.054.34 (J=13.2 Hz, 2H, —CH2—); 5.10 (d, J=4.7 Hz, 1H, C-6); 5.62 (d, J=4.7 Hz, 1H, C-7).
  • EXAMPLE 9 Synthesis of 7-amino-3-[(5-methyl-1,3,4-thiadiazol-2-yl)-thiomethyl]-cephalosporanic acid (TDA)
  • A filtrate (50 ml) from the strong anion exchanger Amberlite® IRA-400 containing 0.0011 moles of 7β-(5-amino-5-carboxypentamido)-3-[(5-methyl-1,3,4-thiadiazole-2-yl)-thiomethyl] cephalosporanic acid (here below indicated as TDC) with 94.01% purity (HPLC) and less than 0.2 mg/ml of 2-mercapto-5-methyl-1,3,4-thiadiazole (MMTD) was adjusted to pH 6.75 with 3 M ammonia. [0186]
  • The TDC solution was fed into a 0.125 litre stirred glass vessel with 16 g of wet Eupergit C250L with a co-immobilised D-amino acid oxidase/catalase system (25 U of DAAO/g and 30 kU of catalase/g). [0187]
  • The conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure. The pH was titrated to pH 6.75 with 3 M ammonia by an autotitrator. [0188]
  • The conversion was controlled by HPLC in a reverse phase column Eclipse XDB-C8 150 mm×4.6 mm ID×5 μm; the mobile phase was 10 mM tetrabutylammonium hydrogen sulfate, 15 mM potassium dihydrogen phosphate, pH 6.5 containing 35% methanol at 1 ml/min with a 260 nm detection. The TDC appeared at 3.0 min, the TDK at 10.9 min and the TDG at 8.1 min, respectively. [0189]
  • Representative samples of the reaction mixture except for the enzyme were taken and the result obtained are reported as percentage of total β-lactams in the following table: [0190]
    Time (min) % TDC % TDK % TDG % Side Products
    0 94.57 0.00 0.00 9.43
    15 53.86 36.19 1.66 8.29
    60 0.00 88.27 5.48 6.25
  • When the % of remaining TDC was smaller than 3%, the reaction was stopped and the reaction solution, containing TDK with a HPLC purity of 88.27%, was filtered off, and adjusted to pH 7.25 with 3 M ammonia. [0191]
  • The TDK solution was fed into a 0.125 litre stirred glass vessel with 23 g of wet Glutaryl-7-ACA Acylase (87 U/g). The conversion was performed at 20° C., 400 rpm at 1 bar absolute pressure. The pH was titrated to pH 7.25 with 3 M ammonia by an autotitrator. [0192]
  • The conversion was controlled by HPLC under the above-mentioned conditions. The TDA appeared at 4.1 minutes. Representative samples of the reaction mixture except for the enzyme were taken and the result obtained are reported as percentage of total β-lactams in the following table: [0193]
    Time (min) % TDK % TDG % TDA % Side Products
    0 88.27 5.48 0.0 6.25
    30 11.82 3.50 73.76 10.92
    60 2.6 0.0 88.59 8.81
  • When the % of remaining TDK was smaller than 3%, the reaction was stopped. The reaction solution contained TDA with a HPLC purity of 88.59%. [0194]
  • EXAMPLE 10 Synthesis of 7-amino-3-[(1-methyl-1H-tetrazol-5-yl)-thiomethyl]-cephalosporanic acid (TZA)
  • A filtrate (50 mL) from the strong anion exchanger Amberlite® IRA-400 containing 0.00195 moles of 7β-(5-amino-5-carboxypentamido)-3-[(1-methyl-1H-tetrazol-5-yl)-thiomethyl] cephalosporanic acid (TZC) with 91.74% purity (HPLC) and less than 0.2 mg/ml of 5-mercapto-1-methyltetrazole (MMTZ) was adjusted to pH 6.75 with 3 M ammonia. [0195]
  • The TZC solution was fed into a 0.125 litre stirred glass vessel with 16 g of wet Eupergit C250L with a coimmobilised D-amino acid oxidase/catalase system (25 U of DAAO/g and 30 kU of catalase/g). [0196]
  • The conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure. The pH was titrated to pH 6.75 with 3 M ammonia by an autotitrator. [0197]
  • The conversion was controlled by HPLC in a reverse phase column Eclipse XDB-C8 150 mm×4.6 mm ID×5 μm; the mobile phase was 10 mM tetrabutylammonium hydrogen sulfate, 15 mM potassium dihydrogen phosphate, pH 6.5 containing 35% methanol at 1 ml/min with a 260 nm detection. The TZC appeared at 2.1 minutes, the TZK at 5.0 min and the TZG at 4.3 min, respectively. [0198]
  • Representative samples of the reaction mixture except for the enzyme were taken and the result obtained are reported as percentage of total β-lactams in the following table: [0199]
    Time (min) % TZC % TZK % TZG % Side products
    0 91.74 0.00 0.00 8.26
    15 26.23 58.78 5.13 9.86
    45 0.59 82.42 5.34 11.65
  • When the % of remaining TZC was smaller than 3%, the reaction was stopped and the reaction solution, containing TZK with a HPLC purity of 82.42%, was filtered off, and adjusted to pH 7.25 with 3 M ammonia. [0200]
  • The TZK solution was fed into a 0.125 litre stirred glass vessel with 23 g of wet Glutaryl-7-ACA Acylase (87 U/g). The conversion was performed at 20° C., 400 rpm at 1 bar absolute pressure. The pH was titrated to pH 7.25 with 3 M ammonia by an autotitrator. [0201]
  • The conversion was controlled by HPLC under the above-mentioned conditions. The TZA appeared at 2.5 min. Representative samples of the reaction mixture except for the enzyme were taken and the result obtained are reported as percentage of total β-lactams in the following table: [0202]
    Time (min) % TZK % TZG % TZA % Side products
    0 82.42 5.34 0.00 12.24
    15 41.52 5.05 39.26 14.17
    150 12.98 3.63 67.02 16.37
    300 2.60 0.62 80.77 16.01
  • When the % of remaining TZK was smaller than 3%, the reaction was stopped. The reaction solution contained TZA with a HPLC purity of 80.77 [0203]
  • EXAMPLE 11 Synthesis of 7-amino-3-[(1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl)-thiomethyl]-cephalosporanic acid (TTA)
  • A filtrate (50 mL) from the strong anion exchanger Amberlite® IRA-400 containing 0.0014 moles of 7β-(5-amino-5-carboxypentamido)-3-[(1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl)-thiomethyl]cephalosporanic acid (hereinbelow indicated as TTC) with 92.2% purity (HPLC) and less than 0.2 mg/ml of 2,5-dihydro-3-mercapto-2-methyl-5,6-dioxo-1,2,4-triazine (TTZ) was adjusted to pH 6.75 with 3 M ammonia. [0204]
  • The TTC solution was fed into a 0.125 litre stirred glass vessel with 16 g of wet Eupergit C250L with a coimmobilized D-amino acid oxidase/catalase system (25 U of DAAO/g and 30 kU of catalase/g). [0205]
  • The conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure. The pH was titrated to pH 6.75 with 3 M ammonia by an autotitrator. [0206]
  • The conversion was controlled by HPLC in a reverse phase column Eclipse XDB-C8 150 mm×4.6 mm ID×5 μm; the mobile phase was 10 mM tetrabutylammonium hydrogen sulfate, 15 mM potassium dihydrogen phosphate, pH 6.5 containing 35% methanol at 1 ml/min with a 260 nm detection. The TTC appeared at 2.4 minutes, the TTK at 6.1 min and the TTG at 5.5 min, respectively. [0207]
  • Representative samples of the reaction mixture except for the enzyme were taken and the result obtained are reported as percentage of total β-lactams in the following table: [0208]
    Time (min) % TTC % TTK % TTG % Side products
    0 92.29 0.00 0.00 7.71
    15 32.10 60.97 0.10 6.83
    60 1.22 90.00 0.12 8.66
  • When the % of remaining TTC was smaller than 3%, the reaction was stopped and the reaction solution, containing TTK with a HPLC purity of 90.0%, was filtered off, and adjusted to pH 7.25 with 3 M ammonia. [0209]
  • The TTK solution was fed into a 0.125 litre stirred glass vessel with 23 g of wet Glutaryl-7-ACA Acylase (87 U/g). The conversion was performed at 20° C., 400 rpm at 1 bar absolute pressure. The pH was titrated to pH 7.25 with 3 M ammonia by an autotitrator. [0210]
  • The conversion was controlled by HPLC under the above-mentioned conditions. The TTA appeared at 2.9 min. Representative samples of the reaction mixture except for the enzyme were taken and the result obtained are reported as percentage of total β-lactams in the following table: [0211]
    Time (min) % TTK % TTG % TTA % Side products
    0 90.00 0.12 0.00 9.88
    15 24.12 0.00 62.94 12.94
    60 1.23 0.00 78.40 20.37
  • When the % of remaining TTK was smaller than 3%, the reaction was stopped. The reaction solution contained TTA with a HPLC purity of 78.40 [0212]
  • EXAMPLE 12 Synthesis of 7-amino-3-[(5-methyl-1,3,4-thiadiazol-2-yl)-thiomethyl]-cephalosporanic acid (TDA) in a Single Step
  • A filtrate (50 ml) from the strong anion exchanger Amberlite® IRA-400 containing 0.0011 moles of 7β-(5-amino-5-carboxypentamido)-3-[(5-methyl-1,3,4-thiadiazole-2-yl)-thiomethyl] cephalosporanic acid (hereinbelow indicated as TDC) with 95.41% purity (HPLC) and less than 0.2 mg/ml of 2-mercapto-5-methyl-1,3,4-thiadiazole (MMTD) was adjusted to pH 7.25 with 3 M ammonia. [0213]
  • The TDC solution was fed into a 0.125 litre stirred glass vessel with 16 g of wet Eupergit C250L with a co-immobilised D-amino acid oxidase/catalase system (25 U of DAAO/g and 30 kU of catalase/g) and 23 g of wet Glutaryl-7-ACA Acylase (87 U/g). [0214]
  • The conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure. The pH was titrated to pH 7.25 with 3 M ammonia by an autotitrator. [0215]
  • The conversion was controlled by HPLC in a reverse phase column Eclipse XDB-C8 150 mm×4.6 mm ID×5μ; the mobile phase was 10 mM tetrabutylammonium hydrogen sulfate, 15 mM potassium dihydrogen phosphate, pH 6.5 containing 35% methanol at 1 ml/min with a 260 nm detection. The TDC appeared at 3.0 min, the TDK at 10.9 min, the TDG at 8.1 min and the TDA at 4.1 min, respectively. [0216]
  • Representative samples of the reaction mixture except for the enzyme were taken and the result obtained are reported as percentage of total β-lactams in the following table: [0217]
    Time (min) % TDC % TDK % TDG % TDA % Side Products
     0 95.42 0.00 0.00 0.00 4.58
    15 28.50 27.11 3.43 36.51 4.45
    60 13.27 11.87 0.00 70.17 4.69
    150  0.00 0.00 0.00 95.13 4.87
  • When the % of remaining TDK was smaller than 3%, the reaction was stopped. The reaction solution contained TDA with a HPLC purity of 95.13 [0218]
  • EXAMPLE 13 Synthesis of 7-amino-3-[(1-methyl-1H-tetrazol-5-yl)-thiomethyl]-cephalosporanic acid (TZA) in a Single Step
  • A filtrate (50 ml) from the strong anion exchanger Amberlite® IRA-400 containing 0.00195 moles of 7β-(5-amino-5-carboxypentamido)-3-[(1-methyl-1H-tetrazol-5-yl)-thiomethyl] cephalosporanic acid (hereinbelow indicated as TZC) with 93.55% purity (HPLC) and less than 0.2 mg/ml of 5-mercapto-1-methyltetrazole (MMTZ) was adjusted to pH 7.25 with 3 M ammonia. [0219]
  • The TZC solution was fed into a 0.125 litre stirred glass vessel with 16 g of wet Eupergit C250L with a co-immobilised D-amino acid oxidase/catalase system (25 U of DAAO/g and 30 kU of catalase/g) and 23 g of wet Glutaryl-7-ACA Acylase (87 U/g). [0220]
  • The conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure. The pH was titrated to pH 7.25 with 3 M ammonia by an autotitrator. [0221]
  • The conversion was controlled by HPLC in a reverse phase column Eclipse XDB-C8 150 mm×4.6 mm ID×5μ; the mobile phase was 10 mM tetrabutylammonium hydrogen sulfate, 15 mM potassium dihydrogen phosphate, pH 6.5 containing 35% methanol at 1 ml/min with a 260 nm detection. The TZC appeared at 2.1 minutes, the TZK at 5.0 min, the TZG at 4.3 min, and the TZA at 2.5 min, respectively. [0222]
  • Representative samples of the reaction mixture except for the enzyme were taken and the result obtained are reported as percentage of total β-lactams in the following table: [0223]
    Time (min) % TZC % TZK % TZG % TZA % Side products
     0 93.55 0.00 0.00 0.00 6.45
    30 11.46 53.00 4.78 19.39 11.37
    90 0.00 40.20 7.32 36.56 15.92
    180  0.00 25.69 5.75 50.43 18.13
    370  0.00 2.84 0.42 78.17 18.57
  • When the % of remaining TZK was smaller than 3%, the reaction was stopped. The reaction solution contained TZA with a HPLC purity of 78.17 [0224]
  • EXAMPLE 14 Synthesis of 7-amino-3-[(1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl)-thiomethyl]-cephalosporanic acid (TTA) in a single Step
  • A filtrate (50 ml) from the strong anion exchanger Amberlite (D IRA-400 containing 0.0016 moles of 7β-(5-amino-5-carboxypentamido)-3-[(1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl)-thiomethyl]cephalosporanic acid (hereinbelow indicated as TTC) with 91.1% purity (HPLC) and less than 0.2 mg/ml of 2,5-dihydro-3-mercapto-2-methyl-5,6-dioxo-1,2,4-triazine (TTZ) was adjusted to pH 7.25 with 3 M ammonia. [0225]
  • The TTC solution was fed into a 0.125 litre stirred glass vessel with 16 g of wet Eupergit C250L with a co-immobilised D-amino acid oxidase/catalase system (25 U of DAAO/g and 30 kU of catalase/g) and 23 g of wet Glutaryl-7-ACA Acylase (87 U/g). [0226]
  • The conversion was performed at 20° C., 400 rpm and with an oxygen flow through a bottom diffuser of 0.1 vol/vol/min at 1 bar absolute pressure. The pH was titrated to pH 7.25 with 3 M ammonia by an autotitrator. [0227]
  • The conversion was controlled by HPLC in a reverse phase column Eclipse XDB-C8 150 mm×4.6 mm ID×5μ; the mobile phase was 10 mM tetrabutylammonium hydrogen sulfate, 15 mM potassium dihydrogen phosphate, pH 6.5 containing 35% methanol at 1 ml/min with a 260 nm detection. The TTC appeared at 2.4 minutes, the TTK at 6.1 min, the TTG at 5.5 min and the TTA at 2.9, respectively. [0228]
  • Representative samples of the reaction mixture except for the enzyme were taken and the result obtained are reported as percentage of total β-lactams in the following table: [0229]
    Time (min) % TTC % TTK % TTG % TTA % Side products
     0 91.11 0.00 0.00 0.00 8.89
    15 41.53 15.87 0.00 36.27 6.33
    60 0.00 6.79 0.00 80.38 12.83
    120  0.00 0.00 0.00 88.69 11.31
  • When the % of remaining TTK was smaller than 3%, the reaction was stopped. The reaction solution contained TTA with a HPLC purity of 88.69%. [0230]
  • The invention is not limited to the embodiments hereinbefore described which may be varied in detail. [0231]

Claims (62)

1. A process for preparing cephalosporanic acid derivatives comprising the steps of:—
enzymatically converting a 3-thiolated cephalosporin C compound of formula III:—
Figure US20040181056A1-20040916-C00025
into a 3-thiolated-α-ketoadipyl-7-aminocephalosporanic acid derivative of formula IV:
Figure US20040181056A1-20040916-C00026
wherein R is a heterocyclic group comprising at least a nitrogen atom.
2. A process as claimed in claim 1 wherein the compound of formula III is enzymatically converted into a compound of formula IV by an immobilised enzyme system.
3. A process as claimed in claim 2 wherein the enzyme system comprises co-immobilised D-Amino acid oxidase and catalase.
4. A process as claimed in claim 3 wherein the enzymatic conversion is carried out in the presence of molecular oxygen, at a pressure of 1 to 5 bar absolute, a pH of from 6.5 to 8.0 and at a temperature of from 15 to 30° C. for a period of from 30 mins to 180 mins.
5. A process as claimed in claim 1 comprising the step of separating the enzyme system from the reaction mixture, preferably by filtration.
6. A process as claimed in claim 1 including the step of purifying the compound of formula IV.
7. A process as claimed in claim 6 wherein the compound is purified using an adsorption column.
8. A process as claimed in claim 1 wherein the enzymes are co-immobilised using a suitable cross-linker agent in a suitable solid support.
9. A process as claimed in claim 8 wherein the enzymes are in the form of crystals of a size suitable for use as a biocatalyst.
10. A process as claimed in claim 1 wherein the enzymatic processes are carried out while maintaining the enzyme in dispersion in an aqueous substrate solution.
11. A process as claimed in claim 1 wherein the or each enzymatic process is carried out in a column.
12. A process as claimed in claim 1 including the step of recovering the enzyme for reuse.
13. A process as claimed in claim 1 wherein the compound of formula IV is used without purification in a continuous process for obtaining any useful derivative.
14. A process as claimed in claim 1 wherein R is a heterocyclic group comprising at least one nitrogen atom and optionally a sulphur or oxygen atom.
15. A process as claimed in claim 14 wherein R is a heterocyclic group selected from any one or more of the group comprising thienyl, diazolyl, tetrazolyl, thiazolyl, triazinyl, oxazolyl, oxadiazolyl, pyridyl, pirimidinyl, benzo thiazolyl, benzimidazolyl, benzoxazolyl, or any derivative thereof, preferably 5-methyl-1,3,4-thiadiazol-2-yl, 1-methyl-1H-tetrazol-5-yl or 1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl.
16. A 3-thiolated-α-ketoadipyl-7-aminocephalosporanic acid derivative of formula IV whenever prepared by a process as claimed in claim 1.
17. A compound of the Formula:—
Figure US20040181056A1-20040916-C00027
wherein in formula IV, R is 1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl.
18. A compound of the Formula:—
Figure US20040181056A1-20040916-C00028
wherein in formula IV, R is 1-methyl-1H-tetrazol-5-yl.
19. Use of a compound of formula IV as defined in claim 1 as an intermediate in a process for preparing cephalosporin C antibiotics.
20. Use of an intermediate compound of the formula:—
Figure US20040181056A1-20040916-C00029
in a process for preparing cephalosporin C antibiotics wherein in formula IV R is 5-methyl-1,3,4-thiadiazol-2-yl.
21. A process for preparing cephalosporanic acid derivatives as claimed in claim 1 comprising the step of:
enzymatically converting a compound of formula IV to form a compound of formula I
Figure US20040181056A1-20040916-C00030
wherein R is a heterocyclic group comprising at least one nitrogen atom and R1 and R2 are both hydrogen atoms or one of them is a hydrogen atom and the other is an acyl donor.
22. A process as claimed in claim 21 wherein a compound of formula IV is enzymatically converted to form a compound of formula I using Glutaryl-7-ACA acylase.
23. A process as claimed in claim 21 wherein the enzymation takes place at a temperature of approximately 20° C. and at a pH of between 6.5 and 8.0.
24. A process as claimed in claim 21 wherein the enzyme is immobilised using a suitable cross-linker agent in a suitable solid support.
25. A process as claimed in claim 24 wherein the enzyme is in the form of crystals of a size suitable for use as a biocatalyst.
26. A process as claimed in claim 21 wherein enzymation is carried out while maintaining the enzyme in dispersion in an aqueous substrate solution.
27. A process as claimed in claim 21 wherein the enzymatic process is carried out in a column.
28. A process as claimed in claim 21 including the step of recovering the enzyme for reuse.
29. Use of a compound of formula I as defined in claim 21 as an intermediate in a process for preparing cephalosporin C derivatives.
30. A process for preparing 3-thiolated cephalosporanic acid derivatives comprising the steps of;—
enzymatically converting a compound of formula III
Figure US20040181056A1-20040916-C00031
into a 3-thiolated-α-ketoadipyl-7-aminocephalosporanic acid derivative of formula IV:
Figure US20040181056A1-20040916-C00032
and enzymatically converting a compound of formula IV to form a 3-thiolated 7-ACA compound of formula I
Figure US20040181056A1-20040916-C00033
wherein R is a heterocyclic group comprising at least one nitrogen atom and R1 and R2 are both hydrogen atoms or one of them is a hydrogen atom and the other is an acyl donor.
31. A process as claimed in claim 30 wherein the compound of formula III is enzymatically converted into a compound of formula I in one step by an immobilised enzyme system.
32. A process as claimed in claim 31 wherein the enzyme system comprises a combination of co-immobilised D-amino acid oxidase/catalase in the presence of immobilised Glutaryl-7-ACA acylase.
33. A process as claimed in claim 30 wherein the enzymation takes place at a temperature of approximately 20° C. and at a pH of between 6.5 and 8.0.
34. A process as claimed in claim 30 wherein the enzymes are co-immobilised using a suitable cross-linker agent in a suitable solid support.
35. A process as claimed in claim 34 wherein the enzymes are in the form of crystals of a size suitable for use as a biocatalyst.
36. A process as claimed in claim 30 wherein the enzymatic processes are carried out while maintaining the enzyme in dispersion in an aqueous substrate solution.
37. A process as claimed in claim 30 wherein the or each enzymatic process is carried out in a column.
38. A process as claimed in claim 30 including the step of recovering the enzyme for reuse.
39. A process as claimed in claim 30 wherein the compound of formula III is used without purification in a continuous process for obtaining any useful derivative.
40. A process for preparing cephalosporanic acid derivatives comprising the steps of:—
reacting cephalosporin C with a thiol compound of the general formula II
R—SH II
wherein R is a heterocyclic group comprising at least one nitrogen atom,
to form a 3-thiolated cephalosporin Compound of formula III
Figure US20040181056A1-20040916-C00034
wherein R is as defined above,
and, after formation of the compound of formula III removing excess thiol of formula II.
41. A process as claimed in claim 40 wherein the excess thiol is removed by adsorption on an anion exchange resin.
42. A process as claimed in claim 41 wherein the anion exchange resin is a microporous resin having a cross-linked acrylic copolymer structure.
43. A process as claimed in claim 42 wherein the anion exchange resin comprises an 8% cross-linking containing functional thialkyl benzyl ammonium group.
44. A process as claimed in claim 41 wherein the resin is in the chloride, hydroxy, phosphate or acetate cycle.
45. A process as claimed in claim 40 wherein the excess thiol is removed by crystallisation.
46. A process as claimed in claim 45 wherein crystallisation is carried out at an acidic pH.
47. A process as claimed in claim 40 wherein the excess thiol is removed by crystallisation followed by adsorption on an anion exchange resin.
48. A process as claimed in claim 40 wherein the cephalosporin C is in an aqueous medium.
49. A process as claimed in claim 40 wherein the cephalosporin C is in the form of a concentrated cephalosporin C solution.
50. A process as claimed in claim 40 wherein the reaction is carried out at a pH of between 5.5 and 8.0, at a temperature of from 60° C. to 80° C., for a period of from 1 to 8 hours.
51. A process as claimed in claim 40 wherein the reaction is carried out at a pH of approximately 6.0 and at a temperature of approximately 65° C.
52. A process as claimed in claim 40 wherein the thiol compound is present in an amount of between 1 and 5 mol/mol of cephalosporin C.
53. A process as claimed in claim 40 wherein R is a heterocyclic group comprising at least one nitrogen atom and optionally a sulphur or oxygen atom.
54. A process as claimed in claim 40 wherein R is a heterocyclic group selected from any one or more of thienyl, diazolyl, thiazolyl, tetrazolyl, thiadiazolyl, triazinyl, oxazolyl, oxadiazolyl, pyridyl, pirimidinyl, benzothiazolyl, benzimidazolyl, benzoxazolyl, or any derivative thereof, preferably 5-methyl-1,3,4-thiadiazol-2-yl, 1-methyl-tetrazol-5-yl or 1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl.
55. A compound of formula III
Figure US20040181056A1-20040916-C00035
wherein R is a heterocyclic group comprising at least one nitrogen atom,
obtained by a process as claimed in any of claims 40 to 54.
56. A compound of the Formula:—
Figure US20040181056A1-20040916-C00036
wherein in formula III R is 5-methyl-1,3,4-thiadiazol-2-yl.
57. A compound of the Formula:—
Figure US20040181056A1-20040916-C00037
wherein in formula III R is 1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl.
58. Use of a compound of formula III as defined in claim 55 as an intermediate in a process for preparing cephalosporin C derivatives.
59. A process for preparing cephalosporanic acid derivatives comprising the steps of:—
enzymatically converting a 3-thiolated cephalosporin C compound of formula III obtained by a process as claimed in any of claims 40 to 54:—
Figure US20040181056A1-20040916-C00038
into a 3-thiolated-α-ketoadipyl-7-aminocephalosporanic acid derivative of formula IV:
Figure US20040181056A1-20040916-C00039
wherein R is a heterocyclic group comprising at least a nitrogen atom.
60. A process as claimed in claim 59 comprising the step of:
enzymatically converting a 3-thiolated α-ketoadipyl 7-ACA compound of formula IV
Figure US20040181056A1-20040916-C00040
to form a 3-thiolated 7-ACA compound of formula I
Figure US20040181056A1-20040916-C00041
wherein R is a heterocyclic group comprising at least one nitrogen atom and R1 and R2 are both hydrogen atoms or one of them is a hydrogen atom and the other is an acyl donor.
61. A process for preparing cephalosporanic acid dervatives comprising the step of:
enzymatically converting a compound of formula IV
Figure US20040181056A1-20040916-C00042
to form a compound of formula I
Figure US20040181056A1-20040916-C00043
wherein R is a heterocyclic group comprising at least one nitrogen atom and R1 and R2 are both hydrogen atoms or one of them is a hydrogen atom and the other is an acyl donor.
62. A process as claimed in claim 61 wherein a compound of formula IV is enzymatically converted to form a compound of formula I with Glutaryl-7-ACA acylase.
US10/804,079 2001-04-19 2004-03-19 Process for preparing cephalosporanic acid derivatives using a-ketoacid derivatives Abandoned US20040181056A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/804,079 US20040181056A1 (en) 2001-04-19 2004-03-19 Process for preparing cephalosporanic acid derivatives using a-ketoacid derivatives

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
EPEP01201426.2 2001-04-19
EP01201426 2001-04-19
EPEP01201718.2 2001-05-09
EPEP01201699.4 2001-05-09
EP01201699 2001-05-09
EP01201718 2001-05-09
IEIE2001/1024 2001-11-30
IE20011025 2001-11-30
IEIE2001/1025 2001-11-30
IE20011024 2001-11-30
US10/125,458 US6730497B2 (en) 2001-04-19 2002-04-19 Process for preparing cephalosporanic acid derivatives using β-ketoacid derivatives
US10/804,079 US20040181056A1 (en) 2001-04-19 2004-03-19 Process for preparing cephalosporanic acid derivatives using a-ketoacid derivatives

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/125,458 Division US6730497B2 (en) 2001-04-19 2002-04-19 Process for preparing cephalosporanic acid derivatives using β-ketoacid derivatives

Publications (1)

Publication Number Publication Date
US20040181056A1 true US20040181056A1 (en) 2004-09-16

Family

ID=27513105

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/125,458 Expired - Fee Related US6730497B2 (en) 2001-04-19 2002-04-19 Process for preparing cephalosporanic acid derivatives using β-ketoacid derivatives
US10/125,554 Expired - Fee Related US6642020B2 (en) 2001-04-19 2002-04-19 Process for preparing cephalosporin derivatives
US10/669,379 Abandoned US20040067549A1 (en) 2001-04-19 2003-09-25 Process for preparing cephalosporin derivatives
US10/803,874 Abandoned US20040175783A1 (en) 2001-04-19 2004-03-19 Process for preparing cephalosporanic acid derivatives using alpha-ketoacid derivatives
US10/804,079 Abandoned US20040181056A1 (en) 2001-04-19 2004-03-19 Process for preparing cephalosporanic acid derivatives using a-ketoacid derivatives

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US10/125,458 Expired - Fee Related US6730497B2 (en) 2001-04-19 2002-04-19 Process for preparing cephalosporanic acid derivatives using β-ketoacid derivatives
US10/125,554 Expired - Fee Related US6642020B2 (en) 2001-04-19 2002-04-19 Process for preparing cephalosporin derivatives
US10/669,379 Abandoned US20040067549A1 (en) 2001-04-19 2003-09-25 Process for preparing cephalosporin derivatives
US10/803,874 Abandoned US20040175783A1 (en) 2001-04-19 2004-03-19 Process for preparing cephalosporanic acid derivatives using alpha-ketoacid derivatives

Country Status (7)

Country Link
US (5) US6730497B2 (en)
EP (2) EP1379531A2 (en)
JP (2) JP2004537985A (en)
KR (2) KR20040014498A (en)
CN (2) CN1531598A (en)
AU (2) AU2002310863A1 (en)
WO (2) WO2002086143A2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1531598A (en) * 2001-04-19 2004-09-22 ��ŷ�����¶����ǹɷ����޹�˾ Enzymatic process for preparing cephalosporanic acid derivatives
EP1416054B1 (en) * 2002-10-31 2005-08-17 Bioferma Murcia, S.A. Simple enzymatic process for preparing cefazolin
KR100650207B1 (en) 2005-07-29 2006-11-27 종근당바이오 주식회사 Glutaryl 7-amino-3-vinyl-cephalosporanic acid derivatives and process for preparing it
ES2729707T3 (en) 2011-06-23 2019-11-05 Centrient Pharmaceuticals Netherlands B V Process of preparation of 3'-thiosubstituted cephalosporins using a penicillin G acylase
EP2723881A2 (en) 2011-06-23 2014-04-30 DSM Sinochem Pharmaceuticals Netherlands B.V. Novel crystalline cefoperazone intermediate
CN102605033B (en) * 2012-01-17 2013-11-27 湖南福来格生物技术有限公司 Method for preparing cefazolin intermediate TDA
CN102627659A (en) * 2012-04-17 2012-08-08 黑龙江豪运精细化工有限公司 Preparation method of cefoperazone intermediate 7-TMCA
CN102633813A (en) * 2012-04-17 2012-08-15 黑龙江豪运精细化工有限公司 Preparation method of cefazolin sodium intermediate TDA (tolylenediamine)
CN102659818B (en) * 2012-04-19 2014-02-19 海南合瑞制药股份有限公司 Hydrochloric acid cefotiam crystalline compound, preparation method thereof and medicine combination containing compound
CN102993214B (en) * 2012-12-07 2015-01-28 西北大学 Method for decoloring cephalosporin
CN104230958A (en) * 2014-08-22 2014-12-24 赵明亮 Method for preparing cefazedone
CN106317079B (en) * 2016-08-19 2018-08-21 上海上药新亚药业有限公司 A kind of solid-phase synthesis of Ceftriaxone Sodium
CN107964558B (en) * 2017-11-07 2021-09-03 河北九派制药股份有限公司 Preparation method of cefotiam hydrochloride impurity destetrazolium cefotiam
CN113929704A (en) * 2021-11-24 2022-01-14 焦作丽珠合成制药有限公司 Method for preparing 7-ACT by using aqueous phase method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278531A (en) * 1961-05-16 1966-10-11 Glaxo Lab Ltd Novel nucleophile derivatives of cephalosporin c and allied compounds and their process of manufacture
US3367933A (en) * 1962-03-28 1968-02-06 Glaxo Lab Ltd Process for the production of 7-aminocephalosporanic acid
US3872115A (en) * 1971-05-31 1975-03-18 Takeda Chemical Industries Ltd Cephalosporins
US3960662A (en) * 1974-01-23 1976-06-01 Toyo Jozo Kabushiki Kaisha Process for the production of 7-amino-cephem compounds
US4745061A (en) * 1984-12-22 1988-05-17 Hoechst Aktiengesellschaft Novel d-aminoacid transaminase and its use
US4774179A (en) * 1984-07-10 1988-09-27 Asahi Kasei Kogyo Kabushiki Kaisha Process for preparing a 7-aminocephalosporanic acid compound
US5296358A (en) * 1991-06-03 1994-03-22 Ministero Dell'universita' E Della Ricerca Scientifica E Tecnologica Process for the enzymatic preparation of cephalosporanic derivatives using a D-amino acid oxidase from Rhodotorula glutinis NCIMB 40412
US6395507B1 (en) * 1999-05-28 2002-05-28 Aventis Pharma Deutschland Gmbh Process for delaying the deactivation of glutaryl amidase during catalysis with a thiol
US6642020B2 (en) * 2001-04-19 2003-11-04 Bioferma Murcia S.A. Process for preparing cephalosporin derivatives

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK128611B (en) * 1961-05-16 1974-06-04 Glaxo Lab Ltd Process for the preparation of derivatives of cephalosporin C or salts thereof.
GB1101422A (en) 1963-10-04 1968-01-31 Glaxo Lab Ltd 7-aminocephalosporanic acid derivatives
GB1104937A (en) 1964-05-28 1968-03-06 Glaxo Lab Ltd Improvements in or relating to the acylation of 7-aminocephalosporanic acid and derivatives thereof
NL150798B (en) 1967-08-07 1976-09-15 Koninklijke Gist Spiritus PROCESS FOR THE PREPARATION OF 7-AMINOCEPHALOSORANIC ACID AND ITS DERIVATIVES.
CH527215A (en) 1967-04-15 1972-08-31 Fujisawa Pharmaceutical Co Process for the preparation of 3,7-disubstituted cephalosporin derivatives
GB1279402A (en) 1968-06-14 1972-06-28 Glaxo Lab Ltd Improvements in or relating to cephalosporin derivatives
US3954748A (en) * 1968-07-29 1976-05-04 Societe D'etudes Scientifiques Et Industrielles De L'ile-De-France 3-Alkoxy-thianapthene-2-carboxamides
GB1272769A (en) 1968-08-02 1972-05-03 Glaxo Lab Ltd Improvements in or relating to cephalosporin derivatives
DE1953861C2 (en) * 1969-10-25 1982-12-23 Fujisawa Pharmaceutical Co., Ltd., Osaka 7-tetrazolylacetamido-3-thiomethyl-3-cephem-4-carboxylic acids
GB1295841A (en) 1969-10-27 1972-11-08
BE759570A (en) * 1969-11-28 1971-05-27 Ciba Geigy 7-CYANACETYLAMINO-CEPHALOSPORANIC ACID DERIVATIVES AND PROCESS FOR THEIR PREPARATION
JPS4948559B1 (en) 1970-11-10 1974-12-21
GB1385685A (en) * 1971-04-21 1975-02-26 Glaxo Lab Ltd Cephalosporin derivatives
IE36346B1 (en) * 1971-05-11 1976-10-13 R & L Molecular Research Ltd Antibacterial agents and a process for the preparation thereof
BE786905A (en) * 1971-07-29 1973-01-29 Takeda Chemical Industries Ltd CEPHALOSPORINS
BE787635A (en) 1971-08-20 1973-02-19 Takeda Chemical Industries Ltd CEPHALOSPORINS
ZA728331B (en) 1971-12-23 1974-06-26 Lilly Co Eli Preparation of 3-alkylthiomethyl cephalosporins
JPS55395B2 (en) * 1971-12-28 1980-01-08
US3968226A (en) * 1972-06-14 1976-07-06 Smithkline Corporation 3-Heterocyclic thiomethylcephalosporins as antibacterial agents
CA1015745A (en) * 1972-06-27 1977-08-16 Fujisawa Pharmaceutical Co. 3-substituted-methyl-3-cephem-4-carboxylic acid derivatives and preparation thereof
US3998816A (en) * 1973-04-16 1976-12-21 Meiji Seika Kaisha, Ltd. 7-[5-N-(n-Butoxyethoxy carbonyl and 2-chloroethoxy carbonyl)-amino] cephalosporins C
FR2241557A1 (en) 1973-08-22 1975-03-21 Aries Robert 7-Amino-desacetoxy cephalosporanic acid prepn - from cephalosporin C, using an amido hydrolase enzyme
CA1037467A (en) * 1973-09-04 1978-08-29 Takayuki Naito 7-(.alpha.-(2-AMINOMETHYL-1-CYCLOHEXENYL AND 1,4-CYCLOHEXADIENYL)-ACETAMIDO)-3-HETEROCYCLICTHIOMETHYL-3-CEPHEM-4-CARBOXYLIC ACIDS AND DERIVATIVES THEREOF
US4379924A (en) * 1973-12-25 1983-04-12 Takeda Chemical Industries, Ltd. Cephalosporin derivatives
CH609989A5 (en) * 1974-06-21 1979-03-30 Hoffmann La Roche Process for the preparation of acyl derivatives
GB1457238A (en) * 1974-05-28 1976-12-01 Sangyo Kagaku Kenkyu Kyokai Cephalosporin derivatives
JPS5111782A (en) * 1974-07-16 1976-01-30 Takeda Chemical Industries Ltd 77 aminosefuemujudotaino seizoho
US3954745A (en) 1974-09-12 1976-05-04 Eli Lilly And Company Process for preparing cefazolin
JPS5188694A (en) * 1975-02-03 1976-08-03 77 * 44 karubokishibutanamido * 33 sefuemu 44 karubonsanjudotaino seiho
US3979383A (en) 1975-03-07 1976-09-07 Eli Lilly And Company Purification process for 7-aminocephalosporins
NO770703L (en) * 1976-03-03 1977-09-06 Sumitomo Chemical Co PROCEDURE FOR THE PREPARATION OF CEPHALOSPORINE
JPS5829079B2 (en) * 1976-04-20 1983-06-20 藤沢薬品工業株式会社 Separation and purification method of cephalosporin compounds
DE2626026A1 (en) * 1976-06-10 1977-12-22 Merck Patent Gmbh PROCESS FOR MANUFACTURING CEPHEM DERIVATIVES
AU510280B2 (en) * 1976-08-30 1980-06-19 Bristol-Myers Company Antibacterial cephalosporin agents
GB1565941A (en) 1977-02-08 1980-04-23 Toyama Chemical Co Ltd Process for producing 7-(substituted)amino-3-substituted thiomethyl cephem carboxylic acids
GB1566515A (en) 1977-04-26 1980-04-30 Proter Spa Intermediate products for the preparation of antibiotics from cephalosporin c
US4115645A (en) 1977-05-10 1978-09-19 Eli Lilly And Company Decolorizing process for 7-amino-3-(((2-methyl-1,3,4-thiadiazol-5-yl)thio)methyl)-3-cephem-4-carboxylic acid
GB1565053A (en) 1977-08-12 1980-04-16 Proter Spa Intermediate product for the preparation of cefazolin antibiotic
JPS55139327A (en) 1979-04-17 1980-10-31 Jgc Corp Preparation of high purity para-xylene
JPS5685298A (en) * 1979-12-14 1981-07-11 Asahi Chem Ind Co Ltd Preparation of 7-aminocephem compound
JPS56164194A (en) 1980-05-20 1981-12-17 Taisho Pharmaceut Co Ltd Cephalosporin derivative
JPS59170095A (en) 1983-03-15 1984-09-26 Toho Iyaku Kenkyusho:Kk Production of cephalosporin
EP0167651B1 (en) 1983-05-09 1989-09-13 Antibioticos, S.A. Process for producing 3-cephem-4-carboxylic acid derivatives substituted in 3-position
JPS62107798A (en) * 1985-11-05 1987-05-19 Asahi Chem Ind Co Ltd Production of cephalosporin derivative
US4981789A (en) 1987-03-18 1991-01-01 Merck & Co., Inc. One-step enzymatic conversion of cephalosporin C and derivatives to 7-aminocephalosporanic acid and derivatives
NL8702449A (en) 1987-10-14 1987-12-01 Stamicarbon PROCESS FOR THE PREPARATION OF A D-ALFA-AMINOIC ACID FROM THE COMPATIBLE ALFA-KETOIC ACID.
ES2075056T3 (en) 1988-10-13 1995-10-01 Fujisawa Pharmaceutical Co OXIDASE OF D-AMINO ACIDS.
DE69019967T2 (en) * 1989-04-04 1996-02-22 Biopure Corp ENZYMATIC METHOD FOR PRODUCING 7-AMINOCEPHALOSPORANIC ACID.
JPH02270883A (en) 1989-04-12 1990-11-05 Yamanouchi Pharmaceut Co Ltd Novel cephalosporin compound
US5104800A (en) * 1989-06-27 1992-04-14 Merck & Co., Inc. One-step cephalosporin c amidase enzyme
KR0171897B1 (en) * 1989-12-27 1999-02-01 후지사와 도모끼찌로 Process for producing 7-aminocephem compound or salts thereof
IT1252308B (en) * 1990-12-21 1995-06-08 Antibioticos Spa ENZYMATIC PROCEDURE FOR THE PRODUCTION OF 7- AMINOCEPHALOSPORANIC ACID AND DERIVATIVES
TW198064B (en) 1990-12-24 1993-01-11 Hoechst Ag
GB9115287D0 (en) 1991-07-15 1991-08-28 Antibioticos Spa Process for the preparation of cephalosporins intermediates
CA2100987C (en) * 1992-07-27 1999-06-15 Kaoru Furuya A transformant capable of producing d-amino acid oxidase
TW400384B (en) 1993-11-01 2000-08-01 Fujisawa Pharmaceutical Co A new cephalosporin C acylase
DE4342770A1 (en) 1993-12-15 1995-07-06 Boehringer Mannheim Gmbh Carrier-fixed enzymes
EP0720611A1 (en) 1994-07-22 1996-07-10 Antibioticos S.P.A. Glutaryl 7-aca derivatives and processes for obtaining them
GB9423212D0 (en) 1994-11-17 1995-01-04 Glaxo Group Ltd Industrial enzymes
IT1286520B1 (en) * 1996-12-03 1998-07-15 Antibioticos Spa PROCEDURE FOR THE PREPARATION OF INTERMEDIATES USEFUL IN THE SYNTHESIS OF CEPHALOSPORIN
ES2165276B1 (en) * 1999-06-18 2003-03-01 Antibioticos Sau BIOTECHNOLOGICAL PROCEDURE FOR THE PRODUCTION OF OSPORANIC 7-AMINOCEPHAL ACID (7-ADCA) AND PARTICULARLY INTERMEDIATE SYNTHESIS COMPOUNDS PENICILLIN N AND DEACETOXYCHEFALOSPORINE C (DAOC)

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278531A (en) * 1961-05-16 1966-10-11 Glaxo Lab Ltd Novel nucleophile derivatives of cephalosporin c and allied compounds and their process of manufacture
US3367933A (en) * 1962-03-28 1968-02-06 Glaxo Lab Ltd Process for the production of 7-aminocephalosporanic acid
US3872115A (en) * 1971-05-31 1975-03-18 Takeda Chemical Industries Ltd Cephalosporins
US3960662A (en) * 1974-01-23 1976-06-01 Toyo Jozo Kabushiki Kaisha Process for the production of 7-amino-cephem compounds
US4774179A (en) * 1984-07-10 1988-09-27 Asahi Kasei Kogyo Kabushiki Kaisha Process for preparing a 7-aminocephalosporanic acid compound
US4745061A (en) * 1984-12-22 1988-05-17 Hoechst Aktiengesellschaft Novel d-aminoacid transaminase and its use
US5296358A (en) * 1991-06-03 1994-03-22 Ministero Dell'universita' E Della Ricerca Scientifica E Tecnologica Process for the enzymatic preparation of cephalosporanic derivatives using a D-amino acid oxidase from Rhodotorula glutinis NCIMB 40412
US6395507B1 (en) * 1999-05-28 2002-05-28 Aventis Pharma Deutschland Gmbh Process for delaying the deactivation of glutaryl amidase during catalysis with a thiol
US6649369B2 (en) * 1999-05-28 2003-11-18 Aventis Pharma Deutschland Gmbh Process for delaying the deactivation of glutaryl amidase during enzyme catalysis
US6642020B2 (en) * 2001-04-19 2003-11-04 Bioferma Murcia S.A. Process for preparing cephalosporin derivatives
US6730497B2 (en) * 2001-04-19 2004-05-04 Bioferma Murcia S.A. Process for preparing cephalosporanic acid derivatives using β-ketoacid derivatives
US20040175783A1 (en) * 2001-04-19 2004-09-09 Bioferma Murcia S.A. Process for preparing cephalosporanic acid derivatives using alpha-ketoacid derivatives

Also Published As

Publication number Publication date
EP1379531A2 (en) 2004-01-14
CN1531598A (en) 2004-09-22
WO2002085914A2 (en) 2002-10-31
US20030104515A1 (en) 2003-06-05
JP2004538265A (en) 2004-12-24
AU2002310863A1 (en) 2002-11-05
US6730497B2 (en) 2004-05-04
WO2002086143A2 (en) 2002-10-31
AU2002316862A1 (en) 2002-11-05
CN1531539A (en) 2004-09-22
US20040175783A1 (en) 2004-09-09
US6642020B2 (en) 2003-11-04
KR20040014499A (en) 2004-02-14
JP2004537985A (en) 2004-12-24
WO2002086143A3 (en) 2003-01-09
EP1381690A2 (en) 2004-01-21
WO2002085914A3 (en) 2003-02-06
US20030073156A1 (en) 2003-04-17
KR20040014498A (en) 2004-02-14
US20040067549A1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US6730497B2 (en) Process for preparing cephalosporanic acid derivatives using β-ketoacid derivatives
WO1994029321A1 (en) Novel cephem compounds
EP2935205B1 (en) An enzymatic route for the preparation of chiral gamma-aryl-beta-aminobutyric acid derivatives
EP1416054B1 (en) Simple enzymatic process for preparing cefazolin
JP2002509933A (en) A new method for fermentative production of cephalosporins
US4145539A (en) Process for isolation and purification of cephalosporin compound
AU3712593A (en) Improved process for preparing cephalosporins
JPH088877B2 (en) Process for producing deacetyl-7-aminocephalosporanic acid
EP2723882B1 (en) Process for preparing 3&#39;-thiosubstituted cephalosporins employing a penicillin g acylase
US3824238A (en) Method for the purification of 7-amino-desacetoxycephalosporanic acid
BE1009070A3 (en) PROCESS FOR THE EXTRACTION OF A beta-lactam drug.
EP2723881A2 (en) Novel crystalline cefoperazone intermediate
JPH0124795B2 (en)
MXPA00009357A (en) Novel process for the fermentative production of cephalosporin
JPS59206390A (en) Manufacture of cephalosporin 3-substituted compound

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE