JPH0124795B2 - - Google Patents

Info

Publication number
JPH0124795B2
JPH0124795B2 JP54139878A JP13987879A JPH0124795B2 JP H0124795 B2 JPH0124795 B2 JP H0124795B2 JP 54139878 A JP54139878 A JP 54139878A JP 13987879 A JP13987879 A JP 13987879A JP H0124795 B2 JPH0124795 B2 JP H0124795B2
Authority
JP
Japan
Prior art keywords
compound
concentration
adsorption
elution
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54139878A
Other languages
Japanese (ja)
Other versions
JPS5665894A (en
Inventor
Yoshihiro Murai
Shuji Yamamoto
Katsuaki Tsuzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13987879A priority Critical patent/JPS5665894A/en
Publication of JPS5665894A publication Critical patent/JPS5665894A/en
Publication of JPH0124795B2 publication Critical patent/JPH0124795B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cephalosporin Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、下記式()で示される7−アミノ
セフアロスポラン酸誘導体(以後、化合物()
と称す)の精製法に関するものである。 化合物()は、7位にD−α−アミノアジピ
リル基を有するセフアロスポリン化合物から、D
−アミノ酸酸化酵素を用いる方法(特公昭50−
7158号、特開昭51−44695号、特開昭52−128295
号)、もしくはアルデヒド誘導体と反応させる方
法(特開昭51−86490号、特開昭52−7986号)を
使つて導かれる。 上記化合物()は、コマモナス属またはシユ
ードモナス属に属する細菌の産生する酵素を作用
させ、7位のグルタリル基を失わせて、セフアロ
スポリン系抗生物質の重要な母核である7−アミ
ノセフアロスポラン酸化合物を生成させることが
でき、有用な中間物質である(特開昭50−101584
号)。 化合物()を製造する上記方法においては、
反応後の液中、化合物()は未反応の出発物
質、種々の試薬や、反応副生物、さらに構造未知
の着色物質を含む種々の不純物と共存している。 従来、化合物()は酢酸エチルによる有機溶
媒抽出、水転溶の反復により採取精製されてい
た。この溶媒抽出法は、PH1.0付近の強酸性下で
長時間数次繰返す必要があつたが、操作中、溶媒
−水の境界にエマルジヨンを形成し、分離操作が
困難であること、および上記条件は、化合物
()のPH不安定領域にあり、長時間操作は失活
を大きくすること等により、高い回収率をのぞむ
ことができなかつた。 また、化合物()を製造する反応出発物質で
あるセフアロスポリン化合物が培養から持ち込ん
だり、反応中に副生する理化学性近似の夾雑物
も、化合物()と挙動を同じくすることが多
く、それら夾雑物との分離が不完全であつた。 さらに精製採取された化合物()を含む溶液
は、どうしても被処理液に比べ含有濃度が低くな
り、濃縮のためには加熱下減圧するという通常の
方法が必要となり、これによつて一層回収率を低
下せしめることを避けられなかつた。 工業的見地からも、これら有機溶媒の使用は高
価であり、かつ危険が大きいという問題を有して
いた。 本発明者らは、上述の問題点を克服するため鋭
意研究を重ねた結果、非極性の大網目状高分子合
成吸着樹脂を用いて化合物()を選択吸着さ
せ、溶出剤で溶出させることにより、種々の反応
用試薬類ならびに反応副生物等の夾雑不純物が短
時間で効果的に分離され、かつ化合物()の溶
出活性画分が、高い回収率で、かつ樹脂吸着前の
液に比べ高濃度で得られることを見出し本発明を
完成するに至つた。 すなわち、本発明は、化合物()を含有する
水溶液からスチレン−ジビニルベンゼンの架橋重
合体またはアクリル酸エステルの架橋重合体から
なる非極性大網目状高分子合成吸着樹脂を用い
て、PHが2.0〜3.0の条件下で化合物()を選択
吸着させ、この吸着樹脂に吸着した化合物()
を、PHが7.0〜13.0の溶出剤を用いて溶出するこ
とを特徴とする化合物()の精製法である。 さらに具体的には、化合物()を含有する水
溶液、特に反応水溶液の如く、夾雑物を多量に溶
存する水溶液と、1000Å以下の最多頻度孔径と、
100〜800m2/gの比表面積、0.6〜1.2cm3/gの細
孔容積を有する非極性大網目状高分子合成吸着樹
脂とをPH2.0〜3.0で接触、吸着させ、PH7.0〜13.0
の塩基性緩衝溶液もしくは水酸化アルカリまたは
親水性有機溶媒もしくはその水溶液により溶出
し、化合物()を単独にかつ樹脂に吸着させる
前よりも高濃度で含有する活性溶出画分を集める
ことができる精製方法である。 以下、本発明について詳述する。 本発明で使用される非極性大網目状高分子合成
吸着樹脂としては、スチレン−ジビニルベンゼン
の架橋重合体として、ダイヤイオンHP−10、同
HP−20、同HP−21、同HP−30、同HP−40、
同HP−50(登録商標:三菱化成工業株式会社
製)、アンバーライトXAD−1、同XAD−2、
同XAD−4(登録商標:ロームアンドハース社
製)が挙げられ、アクリル酸エステルの架橋重合
体として、アンバーライトXAD−7、同XAD−
8(登録商標:ロームアンドハース社製)が挙げ
られる。 これらの樹脂はいずれも50〜1000Åの広い孔径
分布を有し、100〜800m2/gの大きな比表面積と
0.6〜1.2m3/gの細孔容積を有している。吸着容
量に大きな影響を有すると考えられる上記樹脂物
性の種々の組合わせにより、個別的な樹脂銘柄が
特定され得る。孔径は、被吸着物質が樹脂の吸着
表面まで移動することができるに十分かどうかに
影響し、同じ多孔度の樹脂ならば比表面積が大き
いほど吸着容量は大きくなる。しかし、孔径と比
表面積の間には反比例の関係があり、孔経が小さ
くなるほど表面積は大きくなる。それらの点から
化合物()の吸着については、最多頻度孔径が
250Å〜460Åで、比表面積が700〜720m2/g、細
孔容積が0.6〜1.2cm3/gの範囲にあるダイヤイオ
ンHP−20、同HP−21および同HP−40が、その
吸着容量が大であるという点において好ましいと
言える。 なお、化合物()の類縁化合物であるセフア
ロスポリンCにおいて、非極性の合成吸着樹脂を
用いて精製する方法が知られているが(米国特許
第3725400号、特開昭51−32791号)、これら合成
吸着樹脂への吸着現象は、未解明の部分が多く、
ある物質が、与えられた合成吸着剤によく吸着さ
れるかどうかを正確に予知することはできない。 本発明における化合物()の場合は、非極性
高分子合成吸着剤が非常に大きな吸着容量を有
し、そのため、1回の吸・脱着操作でセフアロス
ポリンCには見られない濃縮効果を得ることがで
きる。 化合物()含有水溶液を樹脂と接触させ、化
合物()を吸着させる方法としては、バツチ法
によつてもカラム法によつてもよい。吸着・溶出
は、化合物()の極性変動を利用して行なわ
れ、水溶液中ではPHを操作することで行なわれて
いる。 これら非極性大網目状高分子合成吸着樹脂の細
孔表面は疎水性であり、疎水性度の大きいほど、
よりよく吸着する傾向があるため、吸着容量を増
加させるためには、吸着時のPHを化合物()の
カルボキシル基の解離を抑える低い側へ移行させ
るのが効果的である。化合物()のPH安定性を
考え合わせると、吸着時は吸着容量を非常に大き
くすることのできるPH2.0〜3.0が好ましい。ま
た、吸着時の温度は、0℃〜40℃の範囲で実施可
能であるが、化合物()の熱安定性と吸着容量
増加のためには、より低温側が好ましい。 化合物()の3−アセトキシメチル−7β−
(4−カルボキシブタンアミド)3−セフエム−
4−カルボン酸について、表1に示したように、
化合物()の樹脂への吸着は、Freundlichの等
温吸着式q=KC 1/n(式中、qは吸着容量、
Cは吸着原液濃度、K、nは実験により定まる定
数を表わす。)にしたがい、吸着原液濃度の上昇
につれて、樹脂単位量あたりの吸着容量が増大す
るため、総量としての吸着物質の増加も、必ずし
も樹脂必要量の増加に結びつかないことを見出し
た。 本発明におけるこの効果は、本発明によりもた
らされる大きな利点の一つであり、後述する濃縮
効果にも大きく貢献している。
The present invention relates to a 7-aminocephalosporanic acid derivative represented by the following formula () (hereinafter, compound ()).
The present invention relates to a purification method for Compound () is derived from a cephalosporin compound having a D-α-aminoadipyryl group at the 7th position.
-Method using amino acid oxidase (Special Publication Act 1977-
No. 7158, JP-A-51-44695, JP-A-52-128295
(No. 86490/1986, 7986/1986) or a method of reacting with aldehyde derivatives (Japanese Patent Application Laid-open Nos. 51-86490 and 1982-7986). The above compound () is produced by using an enzyme produced by a bacterium belonging to the genus Comamonas or Pseudomonas to remove the glutaryl group at the 7-position, thereby producing 7-aminocephalosporanic acid, which is an important core of cephalosporin antibiotics. It is a useful intermediate substance that can produce compounds (Japanese Patent Application Laid-Open No. 101584-1984)
issue). In the above method for producing compound (),
In the solution after the reaction, the compound () coexists with unreacted starting materials, various reagents, reaction by-products, and various impurities including colored substances of unknown structure. Conventionally, compound () has been collected and purified by repeated organic solvent extraction with ethyl acetate and water dissolution. This solvent extraction method had to be repeated several times for a long time under strong acidity around pH 1.0, but during the operation, an emulsion was formed at the boundary between the solvent and water, making the separation operation difficult, and the The conditions were in the PH unstable region of compound (), and long-term operation increased deactivation, making it impossible to expect a high recovery rate. In addition, physical and chemical contaminants that are brought in from the culture of the cephalosporin compound, which is the reaction starting material for producing compound (), and that are produced as by-products during the reaction, often behave in the same way as compound (), and these impurities The separation was incomplete. Furthermore, the solution containing the purified and collected compound () will inevitably have a lower concentration than the liquid to be treated, and the usual method of heating and reducing pressure will be necessary for concentration, which will further improve the recovery rate. A decline was inevitable. From an industrial standpoint, the use of these organic solvents has been problematic in that it is expensive and highly dangerous. As a result of extensive research in order to overcome the above-mentioned problems, the present inventors have determined that the compound () can be selectively adsorbed using a non-polar large-mesh polymer synthetic adsorption resin and eluted with an eluent. , various reaction reagents and contaminant impurities such as reaction by-products are effectively separated in a short time, and the elution active fraction of the compound () is high in recovery rate and is higher than that in the liquid before resin adsorption. They found that it can be obtained at a high concentration and completed the present invention. That is, the present invention uses a nonpolar large-mesh polymer synthetic adsorption resin made of a cross-linked polymer of styrene-divinylbenzene or a cross-linked polymer of acrylic ester from an aqueous solution containing the compound (), and the pH is 2.0 to 2.0. Compound () was selectively adsorbed under the conditions of 3.0, and the compound () adsorbed on this adsorption resin
This is a method for purifying compound (2), which is characterized by elution using an eluent having a pH of 7.0 to 13.0. More specifically, an aqueous solution containing a compound (), especially an aqueous solution in which a large amount of impurities are dissolved, such as a reaction aqueous solution, and a most frequent pore size of 1000 Å or less,
Contact and adsorption with a non-polar large network polymer synthetic adsorption resin having a specific surface area of 100 to 800 m 2 /g and a pore volume of 0.6 to 1.2 cm 3 /g at a pH of 2.0 to 3.0, and a pH of 7.0 to 3.0. 13.0
A purification process that can be eluted with a basic buffer solution or an alkali hydroxide or a hydrophilic organic solvent or an aqueous solution thereof, and collect an active eluate fraction containing the compound () alone and at a higher concentration than before adsorption to the resin. It's a method. The present invention will be explained in detail below. The non-polar large network polymer synthetic adsorption resin used in the present invention includes Diaion HP-10, a crosslinked polymer of styrene-divinylbenzene,
HP-20, HP-21, HP-30, HP-40,
HP-50 (registered trademark: manufactured by Mitsubishi Chemical Industries, Ltd.), Amberlite XAD-1, Amberlite XAD-2,
Amberlite XAD-4 (registered trademark: manufactured by Rohm and Haas) is mentioned, and examples of crosslinked polymers of acrylic acid ester include Amberlite XAD-7 and Amberlite XAD-4 (registered trademark: manufactured by Rohm and Haas).
8 (registered trademark: manufactured by Rohm and Haas). All of these resins have a wide pore size distribution of 50 to 1000 Å, and a large specific surface area of 100 to 800 m 2 /g.
It has a pore volume of 0.6-1.2 m 3 /g. Individual resin brands can be identified by various combinations of the above-mentioned resin physical properties that are considered to have a large influence on adsorption capacity. The pore size affects whether or not the adsorbed substance is sufficiently able to migrate to the adsorption surface of the resin, and for resins with the same porosity, the larger the specific surface area, the larger the adsorption capacity. However, there is an inversely proportional relationship between pore diameter and specific surface area, and the smaller the pore diameter, the larger the surface area. From these points, regarding the adsorption of compounds (), the most frequent pore size is
Diaion HP-20, HP-21 and HP-40, which have a specific surface area of 250 Å to 460 Å, a specific surface area of 700 to 720 m 2 /g, and a pore volume of 0.6 to 1.2 cm 3 /g, have a high adsorption capacity. This can be said to be preferable in that it is large. Incidentally, for cephalosporin C, which is a related compound of compound (), a method of purifying it using a non-polar synthetic adsorption resin is known (U.S. Pat. No. 3,725,400, JP-A-51-32791); There are many aspects of the adsorption phenomenon to adsorption resins that are not yet understood.
It is not possible to predict with precision whether a given substance will be well adsorbed on a given synthetic adsorbent. In the case of compound () in the present invention, the non-polar polymer synthetic adsorbent has a very large adsorption capacity, and therefore it is possible to obtain a concentration effect that cannot be seen with cephalosporin C with a single adsorption/desorption operation. can. The method for bringing the aqueous solution containing the compound () into contact with the resin and adsorbing the compound () may be a batch method or a column method. Adsorption and elution are performed using the polarity fluctuation of the compound (), and in an aqueous solution, it is performed by manipulating the pH. The pore surfaces of these non-polar large network polymer synthetic adsorption resins are hydrophobic, and the higher the degree of hydrophobicity, the more
Since it tends to adsorb better, in order to increase the adsorption capacity, it is effective to shift the pH during adsorption to a lower side that suppresses the dissociation of the carboxyl group of the compound (). Considering the pH stability of the compound (2), a pH of 2.0 to 3.0 is preferable since it can greatly increase the adsorption capacity during adsorption. Moreover, the temperature during adsorption can be carried out in the range of 0° C. to 40° C., but a lower temperature side is preferable in order to increase the thermal stability of the compound () and the adsorption capacity. 3-acetoxymethyl-7β- of compound ()
(4-carboxybutanamide)3-cephem-
Regarding 4-carboxylic acid, as shown in Table 1,
The adsorption of compound () onto the resin is determined by Freundlich's isothermal adsorption formula q=KC 1/n (where q is the adsorption capacity,
C represents the adsorption stock concentration, and K and n represent constants determined by experiment. ), it was found that as the adsorption stock solution concentration increases, the adsorption capacity per unit amount of resin increases, so an increase in the total amount of adsorbed substances does not necessarily lead to an increase in the required amount of resin. This effect of the present invention is one of the major advantages brought about by the present invention, and greatly contributes to the concentration effect described below.

【表】 溶出は、塩基性緩衝溶液、水酸化アルカリ、メ
タノール、アセトン、n−プロパノール等の親水
性有機溶媒およびその水溶液で行なうことができ
るが、化合物()と夾雑不純物との分離、精製
度および適正な溶出パターン取得のためには、塩
基性側に強い緩衝作用をもち、カラム内のPH変動
を迅速におこし得る塩類水溶液がより好ましいと
言える。これら塩類としては、塩化アンモニウ
ム、リン酸水素ナトリウム、炭酸水素ナトリウ
ム、ホウ酸ナトリウム等がある。使用する塩類水
溶液濃度は、各種塩類の溶解度に依存する場合が
多いが、概して濃度の高い方が溶出をシヤープに
行なうことができる。しかしながら、目的物と不
純物との完全な分離のためには、適正な濃度が存
在し、夾雑物の種類等により、各塩毎に別個に決
定されるべきものである。これら塩類の水溶液
を、アンモニア水もしくは水酸化ナトリウム等水
酸化アルカリ水溶液でPH7.0〜13.0の範囲に調整
する。化合物()は、PH13.0以上ではその特徴
的な骨格であるβ−ラクタムの分解が大きいた
め、そのPH安定性を考慮する必要があり、高回収
率を得るためには、溶出時のPH領域としてPH8.0
〜9.0が好ましいと言える。吸着が、疎水性度の
増加により吸着容量を増加せしめたのとは逆に、
溶出の際は、親水性度を高めてやることによる樹
脂との親和力の低下を利用するため、溶出剤とし
ては、吸着−溶出系内で急激なPH変動を起し得る
緩衝液が最も好ましく、その緩衝作用の帯が、よ
り塩基性側に傾いているものが望ましい。その意
味からも、適正な塩濃度の決定は、高回収率を適
正な溶出パターンの下で得るために必要なことゝ
なる。溶出剤の種類、濃度の選択によつて、化合
物()相互間の分離もまた可能である。 本発明の精製法のもつ濃縮効果は、樹脂の吸着
容量と、化合物()の活性溶出画分の取得量に
より変動する。効果的に不純物との分離を果せる
適正な溶出パターンの下では、化合物()濃度
が1000μg/ml以上の活性溶出画分を集めること
により、高回収率で化合物()を取得すること
ができ、こうして集められた活性溶出画分の濃度
は、その吸着原液濃度に対し、2〜5倍の間に濃
縮される。また、1000μg/ml以下の濃度しか有
しない画分については、次バツチの吸着、溶出操
作において、溶出剤として循環再使用することに
より、有効に回収することができる。 本発明の精製法は、溶媒抽出等の従来に比べ、
より純度の高い化合物()を高回収率、高濃度
で得ることができる。つまり、溶媒抽出法におい
ては、溶媒層に移行せしめた化合物()の濃縮
法として、減圧下、加熱するという化合物()
の安定性の面から非常に苛酷な条件をとらなけれ
ばならず、分離、精製をした化合物()の一部
が濃縮過程で分解し、純度、回収率を下げること
が多かつた。しかし、本発明においては、安定性
の面からも非常に好条件である低温側で、吸着−
溶出するため、カラムに通液するという簡易な操
作のみにより、短時間で容易に高い分離性、精製
度をもつて、有効な濃縮効果を得ることができ
る。 さらに工業的見地から見れば、本発明の方法
は、消防法に定められた危険物の使用をごく僅か
な量に抑えるか、あるいは全く使用しないことも
可能であることから、安全にかつ安価に操作を実
施することができ、非常に有利である。 次に実施例を挙げ、本発明をさらに詳しく説明
するが、本発明は、これらの実施例により限定さ
れるものではない。 実施例 1 セフアロスポリウム・アクレモニウムの発酵液
をPH3.0に調整後、過により除菌し、残渣を洗
滌する。洗液と液を合わせて、セフアロスポリ
ンC濃度が16563μg/mlの液を得た。 この液1を硫酸銅、ピリジンの存在下で、グ
リオキシル酸と0℃、60分間反応させた後、過酸
化水素水の添加により反応を完結させた(特開昭
51−86490号、特開昭52−7986号)。 その反応液をPH2.0に調整し、その後、不溶物
を別除去した。得られた液は1927mlであり、
含有されている3−アセトキシメチル−7β−(4
−カルボキシブタンアミド)3−セフエム−4−
カルボン酸(以下化合物Aと略す)の濃度は
7232μg/mlであつた。 半径35mmのカラムに層高が117mmになるように、
最多頻度孔径460Å、比表面積718.0m2/g、細孔
容積1.077cm3/gの非極性大網目状高分子合成吸
着樹脂(ダイヤイオンHP−20)を充填し、PH2.0
の酸性水を用いて、充分樹脂を前洗滌しておく。 この用意されたカラムに上記液全量をSV=1.0
で通液した。その後、PH2.0の酸性水2.0CVを通
液し、カラム内を洗滌した。次いでPH8.5の
0.25Mリン酸緩衝液で溶出を行なつた。反応使用
薬剤は、吸着通液時および酸性水洗滌の段階で殆
んどが排液中に通過する。溶出開始後1.2CVまで
に反応副生物が分離し、1.2CVから2.1CVまでに
吸着させた化合物Aの91.3%を回収することがで
きた。メインフラクシヨンとして取得された活性
画分(以下本流と略す)のPHは6.0であり、化合
物Aの濃度は31448μg/mlであつた。これは吸
着原液に対し約4.3倍濃縮されたといえる。一方、
着色物質の本流への移行は29.3%であり、70.7%
が除去された。 実施例 2 実施例1と全く同様に最多頻度孔径460Å、比
表面積718.0m2/g、細孔容積1.077cm3/gの非極
性大網目状高分子合成吸着樹脂(ダイヤイオン
HP−20)に吸着させた化合物Aを、0.25Mリン
酸緩衝液(PH8.5)の代りに、0.2Mホウ酸緩衝液
(PH9.5)を用いて溶出を実施した。1.3CV〜
2.3CVまでに化合物Aの91.6%が精製度高く回収
された。本流中の化合物A濃度は28376μg/ml
であり、濃縮率は3.9倍であつた。 実施例 3 実施例1、2と全く同様に最多頻度孔径460Å、
比表面積718.0m2/g、細孔容積1.077cm3/gの非
極性大網目状高分子合成吸着樹脂(ダイヤイオン
HP−20)に吸着させた化合物Aを、70%メタノ
ール水溶液で溶出した。0.9CV〜2.4字CVまでに
化合物Aの96.4%が回収された。本流中の化合物
A濃度は19908μg/mlであり、濃縮率は2.8倍で
あつた。着色物質の除去率は50.9%であつた。 実施例 4 実施例1で得たセフアロスポリンC16563μg/
ml含有液を濃縮し、24574μg/ml含有の液を
得た。この液を実施例1と同様の反応にかけ、セ
フアロスポリンCを化合物Aに変換した。次い
で、反応終了液のPHを2.0に調整し、不溶性不純
物を別し、化合物A9919μg/ml含有の液を
2080ml得た。 半径35mmのカラムに層高153mmになるように、
PH2.0の酸性水でスラリー化した合成吸着樹脂
(ダイヤイオンHP−20)を充填し、上記液全量
をSV=1.0で通液し、樹脂に化合物Aを吸着させ
た。続いて、PH20の酸性水でカラム内を充分に洗
滌して、変換反応薬剤を流去せしめた後、0.25M
リン酸緩衝液(PH8.5)で溶出させた。溶出開始
後、1.3CV〜2.2CVまでの間に化合物Aの93.2%
が回収され、溶液濃度は36244μg/mlであつた。
本流の吸着原液に対する濃縮率は、約3.7倍であ
つた。 実施例 5 実施例1と全く同様にして調製した液を、半径
35mmのカラムに層高146mmで充填した最多頻度孔
径250Å、比表面積704.7m2/g、細孔容積0.687
cm3/gの合成吸着樹脂(ダイヤイオンHP−40)
に吸着させた。2.0CVのPH2.0酸性水でカラム内
を洗滌後、PH8.5の0.2Mリン酸緩衝液で溶出した
ところ、溶出開始後1.3CV〜2.5CVまでに88.7%
の化合物Aが精製度高く回収された。本流中の化
合物A濃度は18331μg/mlであり、吸着原液に
対する濃縮比は2.5倍であつた。 実施例 6 純度95%の7−アミノセフアロスポラン酸53g
を3.37の純水に、炭酸水素ナトリウムでPHを
7.0に調製しながら溶解した。この水溶液に無水
グルタル酸を90g添加し、室温で撹拌しながら
4.0NNaOHを用いてPHを7.0に維持した。反応中
にPH降下の見られなくなつた段階で、7NH2SO4
を用いてPHを2.0に調整すると、化合物A濃度が
19271μg/mlの反応液が3.5得られた。平均孔
径が90Å、比表面積450m2/g、細孔容積1.144
cm3/gの合成吸着剤(アンバーライトXAD−7)
を1250ml、H/D≒3.0となるようにカラムに充
填し、100%メタノールで洗滌した後、PH2.0の酸
性水で充分洗滌した。この用意された樹脂に、上
記反応液の全量を通液した後、PH2.0の酸性水で
カラム内を充分洗滌し、続いて0.2Mリン酸緩衝
液で溶出を実施すると、溶出開始後0.9CV〜
2.1CVまでに、化合物Aの94.3%が回収された。
本流の化合物A濃度は42403μg/mlであり、吸
着原液に対して2.2倍濃縮されていた。 実施例 7 セフアロスポリウム・アクレモニウムの発酵液
から吸引過により菌体を除去したセフアロスポ
リンC濃度が12700μg/mlの液5.5m3を、実施
例1に示した方法で反応を行ない、反応終了液を
PH2.0に調整した後、再び吸引過により不溶性
不純物を別除去した。得られた液は9.4m3
あり、化合物A濃度は6037μg/mlであつた。 PH2.0酸性水で充分洗滌した合成吸着樹脂(ダ
イヤイオンHP−20)2.3m3に、SV=1.0で全量を
通液し、化合物Aを吸着させた後、PH2.0酸性水
1.0CVで充分水洗し、続いて0.2Mリン酸緩衝液
で溶出した。化合物Aは、全量の90.4%が1.2CV
〜2.4CVまでの間に回収され、本流の濃度は
18834μg/mlであつた。また、それ以降4.0CVま
でに後流として全体の7.6%が回収され、その化
合物A濃度は1106μg/mlであつた。 同様の操作を新たなセフアロスポリンC含有除
菌液において実施し、合成吸着樹脂(ダイヤイ
オンHP−20)からの溶出分画開始時に、上述の
後流を循環溶出剤として使用したところ、この2
回目の化合物A本流移行率は96.4%を示し、前回
溶出の後流に含まれていた化合物Aが、2回目の
本流に加算され、有効に回収されることがわかつ
た。このように連続バツチ式の樹脂操作により、
後流へ移行する低濃度の化合物Aもほとんど回収
が可能であつた。
[Table] Elution can be performed with a hydrophilic organic solvent such as a basic buffer solution, alkali hydroxide, methanol, acetone, n-propanol, etc., and its aqueous solution, but the separation of the compound () from contaminant impurities and the degree of purification In order to obtain an appropriate elution pattern, it is more preferable to use an aqueous salt solution that has a strong buffering effect on the basic side and can rapidly cause pH fluctuations within the column. These salts include ammonium chloride, sodium hydrogen phosphate, sodium hydrogen carbonate, sodium borate, and the like. The concentration of the aqueous salt solution used often depends on the solubility of the various salts, but generally the higher the concentration, the sharper the elution. However, in order to completely separate the target substance from impurities, an appropriate concentration must be determined for each salt, depending on the type of impurities, etc. The aqueous solution of these salts is adjusted to a pH range of 7.0 to 13.0 with ammonia water or an alkali hydroxide aqueous solution such as sodium hydroxide. Since the β-lactam, which is the characteristic skeleton of compound (), decomposes significantly at pH 13.0 or higher, it is necessary to consider its pH stability, and in order to obtain a high recovery rate, the pH at the time of elution must be PH8.0 as area
~9.0 can be said to be preferable. On the contrary, adsorption increased the adsorption capacity due to the increase in hydrophobicity.
During elution, in order to take advantage of the decrease in affinity with the resin due to increased hydrophilicity, the most preferable eluent is a buffer that can cause rapid pH fluctuations within the adsorption-elution system. It is desirable that the band of buffering action be more inclined toward the basic side. In this sense, determining an appropriate salt concentration is necessary to obtain a high recovery rate under an appropriate elution pattern. It is also possible to separate compounds () from each other by selecting the type and concentration of the eluent. The concentration effect of the purification method of the present invention varies depending on the adsorption capacity of the resin and the amount of the active elution fraction of the compound () obtained. Under an appropriate elution pattern that can effectively separate impurities, compound () can be obtained with a high recovery rate by collecting active elution fractions with a compound () concentration of 1000 μg/ml or more. The concentration of the active elution fraction collected in this way is concentrated between 2 and 5 times the concentration of the adsorption stock solution. Furthermore, fractions having a concentration of less than 1000 μg/ml can be effectively recovered by being recycled and reused as an eluent in the next batch of adsorption and elution operations. Compared to conventional methods such as solvent extraction, the purification method of the present invention has the following advantages:
A more pure compound () can be obtained with high recovery rate and high concentration. In other words, in the solvent extraction method, the compound () transferred to the solvent layer is concentrated by heating it under reduced pressure.
Extremely harsh conditions had to be used in terms of stability, and a portion of the separated and purified compound () often decomposed during the concentration process, lowering the purity and recovery rate. However, in the present invention, adsorption-
By simply passing liquid through the column for elution, an effective concentration effect can be easily achieved with high separation and purification in a short period of time. Furthermore, from an industrial standpoint, the method of the present invention can reduce the use of hazardous substances stipulated by the Fire Service Act to a very small amount, or even not use them at all, so it is safe and inexpensive. operation can be carried out and is very advantageous. EXAMPLES Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 After adjusting the fermentation liquid of Cephalosporium acremonium to pH 3.0, it is sterilized by filtration and the residue is washed. The washing solution and the solution were combined to obtain a solution with a cephalosporin C concentration of 16,563 μg/ml. This solution 1 was reacted with glyoxylic acid in the presence of copper sulfate and pyridine at 0°C for 60 minutes, and the reaction was completed by adding aqueous hydrogen peroxide.
No. 51-86490, Japanese Patent Publication No. 52-7986). The reaction solution was adjusted to pH 2.0, and then insoluble matter was separately removed. The obtained liquid was 1927ml,
Contains 3-acetoxymethyl-7β-(4
-carboxybutanamide)3-cephem-4-
The concentration of carboxylic acid (hereinafter abbreviated as compound A) is
It was 7232μg/ml. So that the bed height is 117 mm in a column with a radius of 35 mm,
Filled with a non-polar large-mesh polymer synthetic adsorption resin (Diaion HP-20) with a most frequent pore diameter of 460 Å, a specific surface area of 718.0 m 2 /g, and a pore volume of 1.077 cm 3 /g, and a pH of 2.0.
Thoroughly pre-wash the resin with acidic water. Pour the entire amount of the above liquid into this prepared column at SV = 1.0
The liquid was passed through. Thereafter, 2.0 CV of acidic water with a pH of 2.0 was passed through the column to wash the inside of the column. Then PH8.5
Elution was performed with 0.25M phosphate buffer. Most of the chemicals used in the reaction pass through the waste liquid during adsorption and acidic water washing. Reaction by-products were separated by 1.2CV after the start of elution, and 91.3% of the adsorbed compound A could be recovered from 1.2CV to 2.1CV. The active fraction obtained as the main fraction (hereinafter referred to as main stream) had a pH of 6.0 and a concentration of Compound A of 31448 μg/ml. This can be said to be about 4.3 times more concentrated than the adsorption stock solution. on the other hand,
Transfer of colored substances to the mainstream is 29.3% and 70.7%
has been removed. Example 2 In exactly the same manner as in Example 1, a non-polar large - mesh polymer synthetic adsorption resin (Diaion
Compound A adsorbed onto HP-20) was eluted using 0.2M borate buffer (PH9.5) instead of 0.25M phosphate buffer (PH8.5). 1.3CV〜
By 2.3 CV, 91.6% of Compound A was recovered with a high degree of purity. Compound A concentration in the main stream is 28376μg/ml
The concentration rate was 3.9 times. Example 3 As in Examples 1 and 2, the most frequent pore diameter was 460 Å,
Non-polar large mesh polymer synthetic adsorption resin (Diaion) with specific surface area 718.0m 2 /g and pore volume 1.077cm 3 /g
Compound A adsorbed on HP-20) was eluted with a 70% methanol aqueous solution. 96.4% of compound A was recovered from 0.9 CV to 2.4 character CV. The concentration of Compound A in the main stream was 19908 μg/ml, and the concentration rate was 2.8 times. The removal rate of colored substances was 50.9%. Example 4 Cephalosporin C16563μg obtained in Example 1
The solution containing 24574 μg/ml was obtained by concentrating the solution containing 24574 μg/ml. This solution was subjected to the same reaction as in Example 1 to convert cephalosporin C to compound A. Next, the pH of the reaction-completed solution was adjusted to 2.0, insoluble impurities were separated, and the solution containing 9919 μg/ml of compound A was added.
Obtained 2080ml. So that the bed height is 153 mm in a column with a radius of 35 mm.
A synthetic adsorption resin (Diaion HP-20) slurried with acidic water of pH 2.0 was filled, and the entire amount of the above liquid was passed through at SV=1.0 to adsorb compound A onto the resin. Next, the inside of the column was thoroughly washed with acidic water of PH20 to wash away the conversion reaction agent, and then 0.25M
Elution was performed with phosphate buffer (PH8.5). 93.2% of compound A between 1.3CV and 2.2CV after the start of elution
was recovered, and the solution concentration was 36244 μg/ml.
The concentration ratio relative to the main adsorption stock solution was approximately 3.7 times. Example 5 A solution prepared in exactly the same manner as in Example 1 was
Packed in a 35 mm column with a bed height of 146 mm, the most frequent pore diameter is 250 Å, specific surface area is 704.7 m 2 /g, and pore volume is 0.687.
cm 3 /g synthetic adsorption resin (Diaion HP-40)
was adsorbed to. After washing the inside of the column with 2.0CV PH2.0 acidic water, it was eluted with 0.2M phosphate buffer solution of PH8.5, and the concentration was 88.7% from 1.3CV to 2.5CV after the start of elution.
Compound A was recovered with a high degree of purity. The concentration of Compound A in the main stream was 18331 μg/ml, and the concentration ratio to the adsorption stock solution was 2.5 times. Example 6 53 g of 7-aminocephalosporanic acid with a purity of 95%
to 3.37 in pure water, adjust the pH to 3.37 with sodium bicarbonate.
It was dissolved while adjusting to 7.0. Add 90g of glutaric anhydride to this aqueous solution, and while stirring at room temperature.
PH was maintained at 7.0 using 4.0N NaOH. At the stage when no PH drop was observed during the reaction, 7NH 2 SO 4
When the pH is adjusted to 2.0 using
3.5 reaction solutions with a concentration of 19271 μg/ml were obtained. Average pore diameter is 90 Å, specific surface area 450 m 2 /g, pore volume 1.144
cm 3 /g synthetic adsorbent (Amberlite XAD-7)
A column was filled with 1250 ml of the solution so that H/D≈3.0, and the column was washed with 100% methanol, and then thoroughly washed with acidic water having a pH of 2.0. After passing the entire amount of the above reaction solution through the prepared resin, the inside of the column was thoroughly washed with acidic water of PH2.0, and then elution was performed with 0.2M phosphate buffer. CV~
By 2.1 CV, 94.3% of Compound A was recovered.
The concentration of Compound A in the main stream was 42,403 μg/ml, which was 2.2 times more concentrated than the adsorption stock solution. Example 7 5.5 m 3 of a solution with a cephalosporin C concentration of 12,700 μg/ml, obtained by removing bacterial cells from the fermentation solution of Cephalosporium acremonium by suction, was reacted in the method shown in Example 1, and the reaction was completed. liquid
After adjusting the pH to 2.0, insoluble impurities were removed by suction again. The volume of the resulting solution was 9.4 m3 , and the compound A concentration was 6037 μg/ml. Pour the entire amount of liquid at SV = 1.0 through 2.3 m 3 of synthetic adsorption resin (Diaion HP-20) that has been thoroughly washed with PH2.0 acidic water, adsorb compound A, and then add PH2.0 acidic water.
It was thoroughly washed with water at 1.0 CV, and then eluted with 0.2 M phosphate buffer. 90.4% of the total amount of compound A is 1.2CV
It was recovered between ~2.4CV and the concentration of the main stream was
It was 18834μg/ml. In addition, 7.6% of the total amount was recovered as a downstream up to 4.0 CV, and the concentration of compound A was 1106 μg/ml. A similar operation was carried out with a new cephalosporin C-containing disinfectant solution, and the above-mentioned wake was used as a circulating eluent at the start of elution fractionation from a synthetic adsorption resin (Diaion HP-20).
The transfer rate of Compound A into the main stream in the second elution was 96.4%, indicating that Compound A contained in the wake of the previous elution was added to the main stream in the second elution and was effectively recovered. In this way, by continuous batch type resin operation,
It was also possible to recover most of the low concentration Compound A that migrated to the downstream stream.

Claims (1)

【特許請求の範囲】 1 式() で示される7−アミノセフアロスポラン酸誘導体
を含有する水溶液から、スチレン−ジビニルベン
ゼンの架橋重合体またはアクリル酸エステルの架
橋重合体からなる非極性大網目状高分子合成吸着
樹脂を用いて、PHが2.0〜3.0の条件下で式()
で示される7−アミノセフアロスポラン酸誘導体
を選択吸着させ、この吸着樹脂に吸着した式
()で示される7−アミノセフアロスポラン酸
誘導体を、PHが7.0〜13.0の溶出剤を用いて溶出
することを特徴とする7−アミノセフアロスポラ
ン酸誘導体の精製法。 2 非極性大網目状高分子合成吸着樹脂の最多頻
度孔径が50Å〜1000Å、比表面積が100〜800m2
g、細孔容積が0.6〜1.2cm3/gである特許請求の
範囲第1項記載の方法。 3 非極性大網目状高分子合成吸着樹脂の最多頻
度孔径が250Å〜460Å、比表面積が700〜720m2
g、細孔容積が0.6〜1.2cm3/gである特許請求の
範囲第2項記載の方法。 4 溶出剤がPH8.0〜9.0の塩基性緩衝溶液である
特許請求の範囲第1項記載の方法。 5 溶出液において、7−アミノセフアロスポラ
ン酸誘導体の濃度が1000μg/ml以上の画分を集
める特許請求の範囲第1項記載の方法。
[Claims] 1 Formula () From an aqueous solution containing a 7-aminocephalosporanic acid derivative represented by Expression () under the condition that is between 2.0 and 3.0
The 7-aminocephalosporanic acid derivative represented by the formula () is selectively adsorbed, and the 7-aminocephalosporanic acid derivative represented by the formula () adsorbed on this adsorption resin is eluted using an eluent with a pH of 7.0 to 13.0. A method for purifying a 7-aminocephalosporanic acid derivative, the method comprising: 2 The most frequent pore diameter of non-polar large network polymer synthetic adsorption resin is 50 Å to 1000 Å, and the specific surface area is 100 to 800 m 2 /
The method according to claim 1, wherein the pore volume is 0.6 to 1.2 cm 3 /g. 3 The most frequent pore diameter of non-polar large network polymer synthetic adsorption resin is 250 Å to 460 Å, and the specific surface area is 700 to 720 m 2 /
3. The method according to claim 2, wherein the pore volume is 0.6 to 1.2 cm 3 /g. 4. The method according to claim 1, wherein the eluent is a basic buffer solution with a pH of 8.0 to 9.0. 5. The method according to claim 1, wherein a fraction having a concentration of 7-aminocephalosporanic acid derivative of 1000 μg/ml or more is collected in the eluate.
JP13987879A 1979-10-31 1979-10-31 Purification of 7-aminocephalosporanic acid derivative Granted JPS5665894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13987879A JPS5665894A (en) 1979-10-31 1979-10-31 Purification of 7-aminocephalosporanic acid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13987879A JPS5665894A (en) 1979-10-31 1979-10-31 Purification of 7-aminocephalosporanic acid derivative

Publications (2)

Publication Number Publication Date
JPS5665894A JPS5665894A (en) 1981-06-03
JPH0124795B2 true JPH0124795B2 (en) 1989-05-15

Family

ID=15255665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13987879A Granted JPS5665894A (en) 1979-10-31 1979-10-31 Purification of 7-aminocephalosporanic acid derivative

Country Status (1)

Country Link
JP (1) JPS5665894A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157091A (en) * 2013-02-15 2014-08-28 Central Research Institute Of Electric Power Industry Device and method for measuring age of groundwater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106996A (en) * 1974-01-23 1975-08-22
JPS5276486A (en) * 1975-12-18 1977-06-27 Meiji Seika Kaisha Ltd Purification of cephalosporin c
JPS52128294A (en) * 1976-04-20 1977-10-27 Fujisawa Pharmaceut Co Ltd Separation and purification of cephalosporins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106996A (en) * 1974-01-23 1975-08-22
JPS5276486A (en) * 1975-12-18 1977-06-27 Meiji Seika Kaisha Ltd Purification of cephalosporin c
JPS52128294A (en) * 1976-04-20 1977-10-27 Fujisawa Pharmaceut Co Ltd Separation and purification of cephalosporins

Also Published As

Publication number Publication date
JPS5665894A (en) 1981-06-03

Similar Documents

Publication Publication Date Title
US4615806A (en) Removal of iodide compounds from non-aqueous organic media
US2541420A (en) Purification of streptomycin by carboxylic acid type ion exchange resins
US4769474A (en) Process for purifying tryptophane
JPH07116230B2 (en) Recovery method of glycopeptide antibiotics
PL81295B1 (en)
US4259447A (en) Process for the production of urokinase in pure condition
US6730497B2 (en) Process for preparing cephalosporanic acid derivatives using β-ketoacid derivatives
KR890001010B1 (en) Process for the recovery and purification of ceftazidine
JPH0124795B2 (en)
US4028355A (en) Cephalosporin purification process
US4145539A (en) Process for isolation and purification of cephalosporin compound
USH328H (en) Purification of cephalosporins
JP2002509933A (en) A new method for fermentative production of cephalosporins
US3941657A (en) Purification of d-aminoacid oxidase
JPH04112866A (en) Method for purifying prostaglandin
US2643210A (en) Vitamin b12-active substance elution from montmorillonite absorbent
JPH0564627B2 (en)
KR910003112A (en) Method for obtaining, separating and purifying epidermin
JPH02178288A (en) Purification of 3-hydroxymethyl-7-aminocephem carboxylic acid
KR800001596B1 (en) Recovery method of cephalosporin c using multiion exchange column
JPH0559917B2 (en)
US4128546A (en) Process for the purification of FR-1923 substance
JPH04112797A (en) Production of isomaltooligosaccharide
JPS6052753B2 (en) Purification method of 7-aminocephem compound
JPS5817594B2 (en) Cephalosporin C