US20040155013A1 - Method and apparatus for polishing a substrate - Google Patents

Method and apparatus for polishing a substrate Download PDF

Info

Publication number
US20040155013A1
US20040155013A1 US10/774,489 US77448904A US2004155013A1 US 20040155013 A1 US20040155013 A1 US 20040155013A1 US 77448904 A US77448904 A US 77448904A US 2004155013 A1 US2004155013 A1 US 2004155013A1
Authority
US
United States
Prior art keywords
cleaning
substrate
polishing
units
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/774,489
Inventor
Hiroshi Sotozaki
Koji Ato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/774,489 priority Critical patent/US20040155013A1/en
Publication of US20040155013A1 publication Critical patent/US20040155013A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • B24B37/345Feeding, loading or unloading work specially adapted to lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B51/00Arrangements for automatic control of a series of individual steps in grinding a workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67046Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly scrubbing means, e.g. brushes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67219Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one polishing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing

Definitions

  • the present invention relates to a method and apparatus for polishing a substrate, and more particularly to a method and apparatus for polishing a substrate such as a semiconductor wafer, a glass substrate, or a liquid crystal display to a flat mirror finish, and then cleaning a polished substrate that requires a high degree of cleanliness.
  • circuit interconnections on semiconductor substrates become finer and the distances between those circuit interconnections have become smaller.
  • One of the processes available for forming such circuit interconnections is photolithography. Though the photolithographic process can form interconnections that are at most 0.5 ⁇ m wide, it requires that surfaces on which pattern images are to be focused by a stepper be as flat as possible because the depth of focus of the optical system is relatively small.
  • a conventional polishing apparatus comprises a polishing section 10 , a load and unload section 22 , two transfer robots 24 a and 24 b , a cleaning section 26 having three cleaning units 26 a , 26 b and 26 c , and a reversing device 28 as necessary.
  • the transfer robots 24 a and 24 b may be a mobile type robot which moves along rails shown in FIG. 10, or a stationary type robot having robot hands at forward ends of articulated arms shown in FIG. 11.
  • the polishing section 10 comprises a turntable 12 having a polishing cloth 11 thereon, a top ring 13 for supporting a semiconductor wafer (substrate) W and pressing the semiconductor substrate W against the turntable 12 , and a nozzle 14 for supplying an abrasive liquid onto the polishing cloth 11 .
  • a transfer device 38 is disposed adjacent to the turntable 12 (FIGS. 10 and 11). The adjacent two sections are partitioned by a partition wall to prevent cross-contamination. Specifically, in order to prevent dirty atmosphere in the polishing section 10 from being scattered into a chamber in which a cleaning process and a subsequent process are performed, air conditioning and pressure regulation in each of the chambers are performed.
  • the semiconductor substrate W is transported from the load and unload section 22 to the transfer device 38 by the transfer robots 24 a and 24 b and transferred to the top ring 13 by the transfer device 38 .
  • the semiconductor substrate W is held by the lower surface of the top ring 13 and pressed against the polishing cloth 11 providing a polishing surface on the turntable 12 .
  • the abrasive liquid Q is supplied from the nozzle 14 onto the polishing cloth 11 and retained on the polishing cloth 11 .
  • the top ring 13 exerts a certain pressure on the turntable 12 , and the surface of the semiconductor substrate W held against the polishing cloth 11 is therefore polished in the presence of the abrasive liquid Q between the surface of the semiconductor substrate W and the polishing surface on the polishing cloth 11 by a combination of chemical polishing and mechanical polishing while the top ring 13 and the turntable 12 are rotated.
  • the abrasive liquid Q contains abrasive particles having a certain diameter suspended in an alkali solution.
  • the primary cleaning unit 26 a in the cleaning section 26 has a plurality of vertical spindles 30 arranged at spaced intervals for supporting the outer circumferential edge of the semiconductor substrate W by holding grooves formed at the upper end portions of the spindles 30 and rotating the semiconductor substrate in a horizontal plane at a relatively low rotational speed, and a pair of cleaning members comprising a roller type or a pencil type sponge which can be brought into contact with the semiconductor substrate W or out of contact with the semiconductor substrate W.
  • the primary cleaning unit 26 a is a low rotational speed type cleaning unit.
  • the secondary and tertiary cleaning units 26 b and 26 c each have a rotating table 36 comprising a rotating shaft 32 and a plurality of arms 34 which extend radially outwardly from the rotating shaft 32 and hold the outer circumferential edge of the semiconductor substrate W.
  • the secondary and tertiary cleaning units 26 b and 26 c are high rotational speed type cleaning units.
  • a nozzle for supplying a cleaning liquid to the surface of the semiconductor substrate W, a cover for preventing the cleaning liquid from being scattered around, and a ventilating equipment for creating a down draft (descending air current) to prevent mist from being scattered around.
  • scrubbing cleaning is performed by allowing the cleaning members to scrub the upper and lower surfaces of the semiconductor substrate W while supplying a cleaning liquid.
  • the first cleaning liquid having substantially the same pH as the abrasive liquid used in the polishing process is used to prevent particles from being aggregated due to so-called pH shock.
  • pH shock is defined as a rapid change of a pH.
  • the first cleaning liquid having substantially the same pH as the abrasive liquid is used in the scrubbing cleaning process.
  • aqueous ammonia is used as the first cleaning liquid, and after the particles are removed from the surfaces of the semiconductor substrate W, the surfaces of the semiconductor substrate are shifted from alkali to neutrality by supplying a neutral cleaning liquid such as pure water thereto. Thereafter, the semiconductor substrate W is transferred to the secondary cleaning unit 26 b.
  • the secondary cleaning unit 26 b in order to remove metal ions attached to the semiconductor substrate W, an acid chemical is normally supplied to the surfaces of the semiconductor substrate W from the nozzle to cause etching (chemical cleaning) of the surfaces of the semiconductor substrate, and then a neutral cleaning liquid such as pure water is supplied to cause the surfaces of the semiconductor substrate to be returned to neutrality. Thereafter, the semiconductor substrate W is transferred to the tertiary cleaning unit 26 c having a drying function. In the tertiary cleaning unit 26 c , pure water is supplied to perform a final cleaning of the semiconductor substrate W, and then the semiconductor substrate W is rotated at a high rotational speed while blowing a clean inert gas against the surfaces of the semiconductor substrate, thereby drying the semiconductor substrate W. After the semiconductor substrate W is cleaned and dried, the semiconductor substrate W is returned to the load and unload section 22 by a clean hand of the transfer robot 24 a or 24 b.
  • a neutral cleaning liquid such as pure water
  • polishing apparatus since etching cleaning is conducted by a dedicated cleaning unit, i.e., the cleaning processes are conducted by the three cleaning units 26 a , 26 b and 26 c , the polishing apparatus becomes large, requires a large installation space, and needs a long processing time for the cleaning processes.
  • the semiconductor substrate W is transported as shown by arrows ⁇ circle over ( 1 ) ⁇ to ⁇ circle over ( 9 ) ⁇ in FIG. 11, and hence the transportation route is extremely complicated. Specifically, the semiconductor substrate is transported from the load and unload section 22 to the reversing device 28 as shown by the arrow ⁇ circle over ( 1 ) ⁇ , transported to the transfer device 38 as shown by the arrow ⁇ circle over ( 2 ) ⁇ , and then moved above the turntable 12 as shown by the arrow ⁇ circle over ( 3 ) ⁇ .
  • the polished semiconductor substrate W is moved to the transfer device 38 as shown by the arrow ⁇ circle over ( 4 ) ⁇ , transported to the primary cleaning unit 26 a as shown by the arrow ⁇ circle over ( 5 ) ⁇ , and then transported to the reversing device 28 as shown by the arrow ⁇ circle over ( 6 ) ⁇ . Thereafter, the semiconductor substrate W is transported to the secondary cleaning unit 26 b as shown by the arrow ⁇ circle over ( 7 ) ⁇ , and then transferred to the tertiary cleaning unit 26 c as shown by the arrow ⁇ circle over ( 8 ) ⁇ . Finally, the semiconductor substrate W is returned to the load and unload section 22 as shown by the arrow ⁇ circle over ( 9 ) ⁇ .
  • the cleaning section 26 In order to simplify the structure of the cleaning section 26 , it is conceivable to conduct the primary cleaning process for removing particles and the secondary cleaning process for etching by the same cleaning unit. However, in this case, alkali chemicals and acid chemicals are employed as the respective cleaning liquids in the same cleaning unit, and hence the lining of a drainage system is deteriorated, salt is deposited, and waste water treatment is complicated. Alternatively, it is conceivable to conduct etching and drying of the semiconductor substrate in the secondary cleaning unit 26 b . However, in this case, the semiconductor substrate W is dried in the atmosphere in which mist of the etching liquid remains, and hence the semiconductor substrate is contaminated in the final cleaning process.
  • the present invention is directed to provide a method and apparatus for polishing substrates with an optimum structure.
  • a polishing apparatus for polishing and then cleaning a substrate, the apparatus comprising: a polishing section having at least one polishing unit for performing primary polishing and secondary polishing of the substrate by pressing the substrate against a polishing surface; a cleaning section for cleaning the substrate which has been polished to remove particles attached to the substrate by scrubbing cleaning, and removing metal ions from the substrate by supplying an etching liquid.
  • the substrate is polished at a polishing efficiency lower than the primary polishing in such a manner that the polishing pressure and/or the polishing rate are smaller than those of the primary polishing.
  • polishing efficiency lower than the primary polishing in such a manner that the polishing pressure and/or the polishing rate are smaller than those of the primary polishing.
  • the cleaning liquid or the etching liquid may be supplied to the front and backside surfaces of the substrate.
  • the drying process may be performed by a drying unit different from the cleaning unit or the same cleaning unit. If the drying process is performed by the same cleaning unit, then it is desirable to perform the drying process in a clean atmosphere.
  • a cleaning liquid a high performance water including ionic water, ozone water, and hydrogen water may be used.
  • primary polishing and secondary polishing are conducted in the same polishing unit. This constitution allows the polishing apparatus to be simplified and to reduce an installation space thereof.
  • the polishing section comprises at least two polishing units for performing primary polishing and secondary polishing, respectively. This constitution allows the processes to be simplified and contributes to improving throughput of the substrates.
  • the polishing section comprises at least two polishing units for the primary polishing process and the secondary polishing process
  • the cleaning section comprises at least two cleaning units for performing different cleaning processes. This constitution allows two-stage cleaning or three-stage cleaning, and a plurality of cleaning processes can be performed by the single apparatus.
  • two-stage cleaning and three-stage cleaning can be selectively performed. If the abrasive liquid and the polishing cloth are replaced in the polishing unit, then an optimum apparatus which is suitable for both the process which uses the abrasive liquid containing siliceous material and the process which uses the abrasive liquid containing alumina material may be constructed. Further, even if the scrubbing process becomes unnecessary due to progress in the polishing technology with use of the abrasive liquid containing alumina material and the cleaning technology after polishing, the present invention offers an optimum structure.
  • a polishing method for polishing and then cleaning a substrate comprising: polishing the substrate primarily by pressing the substrate against a polishing surface; polishing the substrate secondarily at a polishing rate lower than the primary polishing; cleaning the substrate which has been polished to remove particles attached to the substrate by scrubbing cleaning, and removing metal ions from the substrate by supplying an etching liquid; and drying the substrate after removing the metal ions therefrom.
  • the etching liquid comprises acid aqueous solution containing hydrofluoric acid.
  • a cleaning apparatus for cleaning a substrate which has been polished comprises: at least two primary cleaning units having the same cleaning function, each for primarily cleaning the substrate which has been polished; and a common secondary cleaning unit for secondarily cleaning the substrate which has been cleaned by the primary cleaning units.
  • a cleaning apparatus for cleaning a substrate which has been polished comprises: at least three cleaning units for cleaning the substrate which has been polished; and a transfer robot for transferring the substrate between at least two of the cleaning units; wherein the substrate is cleaned by selective cleaning processes conducted by any two or three cleaning units selected from the at least three cleaning units.
  • any two or three cleaning units are selected from at least three cleaning units to conduct selective cleaning processes of the substrates.
  • the selective cleaning processes include two-stage cleaning of the substrate or three-stage cleaning of the substrate.
  • a polishing apparatus for polishing and then cleaning a substrate comprises: a plurality of polishing units for polishing the substrate; and a plurality of cleaning units for cleaning the substrate which has been polished; wherein the substrates are processed by different processes through a plurality of polishing-cleaning routes, each including at least one selected from the polishing units and at least one selected from the cleaning units.
  • At least one selected from a plurality of polishing units and at least one selected from a plurality of cleaning units can be combined to construct a polishing-cleaning route, and the number of polishing-cleaning routes can be freely selected by setting the number of polishing units and cleaning units appropriately, and hence a plurality of different processes can be selectively conducted on the substrates.
  • FIG. 1 is a plan view of a polishing apparatus according to a first embodiment of the present invention
  • FIG. 2 is a perspective view showing the whole structure of the polishing apparatus and a transportation route of a semiconductor substrate according to the first embodiment to the present invention
  • FIG. 3A is a perspective view of a primary cleaning unit in the polishing apparatus according to the first embodiment of the present invention.
  • FIG. 3B is a perspective view showing the operation of the primary cleaning unit
  • FIGS. 4A, 4B and 4 C are schematic views showing cleaning processes in the primary cleaning unit
  • FIG. 5A is a perspective view of a secondary cleaning unit in the polishing apparatus according to the first embodiment of the present invention.
  • FIG. 5B is a perspective view showing the operation of the second cleaning unit
  • FIG. 6 is a plan view of a polishing apparatus according to a second embodiment of the present invention.
  • FIG. 7 is a plan view of a polishing apparatus according to a third embodiment of the present invention.
  • FIG. 8 is a plan view of a polishing apparatus according to a fourth embodiment of the present invention.
  • FIG. 9 is a plan view of a polishing apparatus according to a fifth embodiment of the present invention.
  • FIG. 10 is a plan view of a conventional polishing apparatus
  • FIG. 11 is a perspective view showing the whole structure of the conventional polishing apparatus shown in FIG. 10 and the transportation route of the semiconductor substrate;
  • FIG. 12 is a cross-sectional view showing the structure of the polishing section in the conventional polishing apparatus.
  • FIGS. 1 through 5B show a polishing apparatus according to a first embodiment of the present invention.
  • the polishing apparatus comprises a polishing section 10 having one polishing unit, and a cleaning section 26 having two transfer robots 24 a and 24 b and two cleaning units 26 a and 26 b .
  • the polishing section 10 and the transfer robots 24 a and 24 b have the same structure as the conventional ones.
  • the polishing cloth 11 on the turntable 12 constitutes a polishing surface.
  • the polishing section 10 and the cleaning units 24 a and 24 b are partitioned by respective partition walls, and are evacuated independently to prevent respective atmospheres from being mixed.
  • the primary cleaning unit 26 a in the cleaning section 26 includes six vertical spindles 30 that are arranged at spaced intervals along a circle for supporting the outer circumferential edge of a semiconductor substrate W and rotating the semiconductor substrate W in a horizontal plane at a relatively low rotational speed, and a pair of roller type cleaning members 40 made of sponge, PVA or the like and extending horizontally diametrically above and below the semiconductor substrate W.
  • the vertical spindles 30 are movable horizontally toward and away from the semiconductor substrate W.
  • the cleaning members 40 can be brought in contact with the semiconductor substrate W or out of contact with the semiconductor substrate W.
  • the primary cleaning unit 26 a is a roll and low rotational speed type cleaning unit.
  • nozzles 50 a , 50 b , 50 c and 50 d for supplying an etching liquid and pure water to the upper and lower surfaces of the semiconductor substrate W.
  • the secondary cleaning unit 26 b comprises a rotating table 36 for rotating the semiconductor substrate W at a high rotational speed of 1,500 to 5,000 rpm, and a swing arm 44 having a nozzle 42 for supplying a cleaning liquid to which ultrasonic vibration is applied to the upper surface of the semiconductor substrate W.
  • the secondary cleaning unit 26 b is a megasonic and high rotational speed type cleaning unit.
  • the secondary cleaning unit 26 b may include a nozzle 46 for supplying an inert gas to the surface of the semiconductor substrate W or a heater for speeding up drying of the semiconductor substrate W to improve process performance and shorten tact time.
  • the secondary cleaning unit 26 b may include a nozzle for supplying a cleaning liquid to the lower surface of the semiconductor substrate W.
  • a nozzle for supplying a cleaning liquid to the lower surface of the semiconductor substrate W.
  • noncontact type cleaning is performed by supplying the cleaning liquid to which ultrasonic vibration is applied by an ultrasonic vibration generating device (not shown) from the nozzle 42 to the semiconductor substrate W
  • a pencil type cleaning member made of sponge or the like may replace the nozzle 42 or may be added in addition to the nozzle 42 to perform contact type cleaning.
  • the semiconductor substrate W is transported from the load and unload section 22 to the polishing section 10 via the reversing device 28 and the transfer device 38 by the transfer robots 24 a and 24 b as shown by the arrows ⁇ circle over ( 1 ) ⁇ , ⁇ circle over ( 2 ) ⁇ , and ⁇ circle over ( 3 ) ⁇ .
  • the semiconductor substrate W is held by the lower surface of the top ring 13 and pressed against the polishing cloth 11 on the turntable 12 .
  • the normal abrasive liquid is used to polish the semiconductor substrate W. This polishing process is referred to as “normal polishing” or “main polishing”.
  • a water polishing process is conducted in the polishing section 10 .
  • the polishing rate in the water polishing process is preferably 100 ⁇ (angstrom)/minute or below, and microscratches on the polished surface of the semiconductor substrate W formed in the normal polishing are removed or reduced, and the ground-off particles and the abrasive particles remaining on the polished surface are removed.
  • finish polishing process is so-called “finish polishing process”.
  • This finish polishing process may be performed using a polishing liquid containing abrasive particles smaller than the abrasive particles used in the normal polishing process, or chemicals instead of the water polishing process, or between the normal polishing process and the water polishing process.
  • finish polishing may be conducted by a discrete turntable.
  • the abrasive liquid containing the abrasive particles remains on the polishing cloth 11 immediately after the normal polishing process, it is necessary to supply a certain amount of pure water to the polishing cloth 11 to remove the abrasive liquid therefrom.
  • a large amount of pure water is rapidly supplied to the polishing cloth 11 to dilute the abrasive liquid, then the pH of the abrasive liquid remaining on the polished surface of the semiconductor substrate and the polishing cloth 111 is rapidly changed to cause the abrasive particles to be aggregated due to pH shock. Therefore, it is desirable that a small amount of pure water is first supplied, and the supply of pure water is gradually increased.
  • the particles aggregated on the polished surface of the semiconductor substrate will be removed in the finish polishing process described below, and thus a serious problem does not arise.
  • the particles attached to the semiconductor substrate W are mostly removed to allow the semiconductor substrate W to have an enhanced degree of cleanliness.
  • the semiconductor substrate W is transported to the primary cleaning unit 26 a via the transfer device 38 as shown by the arrows ⁇ circle over ( 4 ) ⁇ and ⁇ circle over ( 5 ) ⁇ by the transfer robot 24 a .
  • the semiconductor substrate W is held by the spindles 30 in the primary cleaning unit 26 a .
  • the semiconductor substrate W may be rotated at a low rotational speed of several 10 rpm to 300 rpm by the spindles 30 .
  • scrubbing cleaning of the upper and lower surfaces of the semiconductor substrate W is performed by rotating the cleaning members 40 about their own axes while supplying pure water from the nozzles to the surfaces of the semiconductor substrate W.
  • etching liquid is supplied to the upper and lower surfaces of the semiconductor substrate W from the nozzles while the rotational speed of the semiconductor substrate W is being changed as necessary.
  • metal ions remaining on the semiconductor substrate W are removed by etching (chemical cleaning) of the surfaces of the semiconductor substrate W.
  • pure water is supplied from the pure water nozzles, and the etching liquid is removed by replacing the etching liquid with pure water while the rotational speed of the semiconductor substrate W is being changed as necessary.
  • the semiconductor substrate W is transported to the reversing device 28 , reversed to direct the polished surface upwardly, and then transported to the secondary cleaning unit 26 b by the transfer robots 24 a and 24 b as shown by the arrows ⁇ circle over ( 6 ) ⁇ and ⁇ circle over ( 7 ) ⁇ in FIG. 2.
  • the transfer robots 24 a and 24 b as shown by the arrows ⁇ circle over ( 6 ) ⁇ and ⁇ circle over ( 7 ) ⁇ in FIG. 2.
  • the swing arm 44 is swung over the entire surface of the semiconductor substrate W while pure water to which ultrasonic vibration is applied is supplied from the nozzle 42 provided at the forward end of the swing arm 44 to the upper surface of the semiconductor substrate W so as to allow the supplied pure water to pass through the center of the semiconductor substrate W, thereby removing particles from the semiconductor substrate W. Thereafter, the supply of pure water is stopped, the swing arm 44 is moved to the standby position, and then the semiconductor substrate W is rotated at a high rotational speed of 150 to 5,000 rpm to dry the semiconductor substrate W while supplying an inert gas as necessary.
  • the semiconductor substrate W which has been dried is returned to a wafer cassette 22 a or 22 b placed on the load and unload section 22 by the transfer robot 24 b as shown by the arrow ⁇ circle over ( 8 ) ⁇ in FIG. 2.
  • the number of the cleaning units in the cleaning section 26 is reduced from three units to two units, and the number of times of transporting the semiconductor substrate W is also reduced from nine as shown in FIG. 11 to eight as shown in FIG. 2.
  • the total processing time is greatly shortened.
  • the transportation route of the semiconductor substrate W is simplified, the chance of interference of the transfer robots 24 a and 24 b with each other is decreased, and control of the transfer robots 24 a and 24 b is facilitated.
  • the structure of the cleaning units 26 a and 26 b is not limited to the above-mentioned structure, and, for example, the cleaning member 40 may comprise a brush or a felt-like fiber, or the cleaning liquid may be a cleaning liquid to which cavitation is applied, or minute particles of ice.
  • the number of the cleaning units 26 a and 26 b is set to an optimum number in consideration of tact time in the respective cleaning units.
  • FIG. 6 shows a polishing apparatus according to a second embodiment of the present invention.
  • two polishing units 10 a and 10 b having the same structure as the polishing unit in FIG. 1 are provided in the polishing section 10 , and one transfer robot 24 a which moves along rails is provided.
  • the two polishing units 10 a and 10 b are disposed symmetrically with respect to the moving path of the transfer robot 24 a .
  • primary cleaning units 26 a 1 and 26 a 2 which have the same cleaning function and the same structure are provided so as to correspond to the respective polishing units 10 a and 10 b , and one secondary cleaning unit 26 b is provided.
  • Other structure of the polishing apparatus shown in FIG. 6 is substantially the same as that of the polishing apparatus shown in FIG. 1.
  • a parallel processing in which the semiconductor substrates W are polished by the polishing units 10 a and 10 b in parallel and a serial processing in which one semiconductor substrate W is polished sequentially by the polishing units 10 a and 10 b can be performed.
  • the normal polishing and the water polishing are conducted in the polishing units 10 a and 10 b , respectively, with a certain time lag, to thereby perform efficient transfer of the semiconductor substrates W by the transfer robot 24 a .
  • the operating efficiency in the transfer robots and the cleaning section is not high in the polishing apparatus of FIG. 1, but the operating efficiency in the transfer robot 24 a and the cleaning section 26 is high in the polishing apparatus of FIG. 6, because there are provided the two polishing units 10 a and 10 b .
  • the throughput per unit area of floor occupied by the overall polishing apparatus can be improved.
  • the primary cleaning units 26 a 1 and 26 a 2 are provided so as to correspond to the respective polishing units 10 a and 10 b , operational delay in the cleaning section 26 can be prevented.
  • the normal polishing of the semiconductor substrate W is performed in the polishing unit 10 a , and then the polished semiconductor substrate W is transferred to the polishing unit 10 b in which the water polishing is performed. If the problem of contamination of the semiconductor substrate does not arise, then the normal polishing of the semiconductor substrate W is conducted in the polishing unit 10 a , and then the polished semiconductor substrate W is transferred to the polishing unit 10 b by the transfer robot 24 a . If the problem of contamination of the semiconductor substrate arises, then the normal polishing of the semiconductor substrate W is conducted in the polishing unit 110 a , the polished semiconductor substrate W is transferred to the primary cleaning unit 26 a , by the transfer robot 24 a , in which it is cleaned.
  • the cleaned semiconductor substrate W is transferred to the polishing unit 10 b in which the finish polishing of the semiconductor substrate W is conducted. Further, in the primary cleaning unit 26 a 1 , the semiconductor substrate W may be cleaned using chemicals suitable for the slurry (abrasive liquid) used in the polishing unit 10 a.
  • two primary cleaning units 26 a 1 and 26 a 2 and one secondary cleaning unit 26 b are provided. This is because the primary cleaning process takes more time than the secondary cleaning process.
  • two primary cleaning units 26 a 1 and 26 a 2 are provided to improve efficiency, each for the polishing unit 10 a and the polishing unit 10 b , while the secondary cleaning unit 26 b which needs a processing time shorter than the primary cleaning process is used in common for the substrates which are cleaned in both the primary cleaning units 26 a 1 and 26 a 2 .
  • FIG. 7 shows a polishing apparatus according to a third embodiment of the present invention.
  • the polishing section 10 has two polishing units 10 a and 10 b having the same structure as the polishing unit of FIG. 1.
  • the polishing units 10 a and 10 b are symmetrically disposed in the same manner as the polishing apparatus of FIG. 6.
  • primary cleaning units 26 a 1 and 26 a 2 having the same structure
  • secondary cleaning units 26 b 1 and 26 b 2 having the same structure
  • reversing devices 28 a 1 and 28 a 2 are symmetrically disposed so as to correspond to the polishing units 10 a and 10 b , respectively.
  • parallel processing and serial processing can be conducted.
  • the semiconductor substrates W taken out from one wafer cassette are alternately delivered to the respective polishing units 10 a and 10 b .
  • This parallel processing allows the processing time of one wafer cassette to be halved.
  • the wafer cassette 22 a is assigned exclusively to the first substrate processing line A
  • another wafer cassette 22 b is assigned exclusively to the second substrate processing line B.
  • the semiconductor substrates W to be polished may be the same ones or different ones.
  • four wafer cassettes may be placed on the load and unload section 22 to thereby conduct continuous processing of the semiconductor substrates.
  • the first substrate processing line A and the second substrate processing line B may have their own processing units or devices, and hence two kinds of different processes can be performed in parallel in the polishing apparatus. Further, it is conceivable to incorporate a cleaning device using ultrasonic vibration in the second cleaning unit 26 b 1 and to incorporate a cleaning device using cavitation in the secondary cleaning unit 26 b 2 . This structure allows the polishing apparatus to have versatile functions performed by two polishing apparatuses shown in FIG. 1.
  • each of the cleaning units including the primary cleaning units 26 a 1 and 26 a 2 , the secondary cleaning units 26 b 1 and 26 b 2 may be modulized, and may be separable from the polishing apparatus and replaceable. According to this structure, even after the polishing apparatus is installed, the polishing apparatus can comply with various required processes. Further, in the event of failure in the cleaning unit, or in case of maintenance of the cleaning unit, the down time of the polishing apparatus can be shortened to raise the operation rate thereof.
  • FIG. 8 shows a polishing apparatus according to a fourth embodiment of the present invention.
  • the polishing section 10 comprises two polishing units 10 a and 10 b having the same structure as the polishing unit of FIG. 1, and the polishing units 10 a and 10 b are disposed symmetrically.
  • the cleaning section 26 there are provided primary cleaning units 26 a 1 and 26 a 2 which have same cleaning function and same structure, a secondary cleaning unit 26 b and a tertiary cleaning unit 26 c .
  • reversing devices 28 a 1 and 28 a 2 are symmetrically provided so as to correspond to the polishing units 10 a and 10 b , respectively.
  • the secondary cleaning unit 26 b comprises a nozzle 42 for supplying a cleaning liquid to which ultrasonic vibration is applied to the semiconductor substrate W, and a cleaning member such as a pencil type sponge for scrubbing the semiconductor substrate W by bringing the cleaning member into contact with the semiconductor substrate W. That is, the secondary cleaning unit 26 b is a pencil and megasonic and mechanical chuck type cleaning unit having a drying function.
  • the tertiary cleaning unit 26 c having a drying function comprises a cleaning member such as a pencil type sponge, and is a pencil and mechanical chuck type cleaning unit.
  • three-stage cleaning in addition to two-stage cleaning, three-stage cleaning can be performed, and hence a plurality of cleaning methods can be conducted in the single polishing apparatus.
  • two-stage cleaning in which the primary cleaning process conducted by the primary cleaning unit 26 a 1 , the secondary cleaning process conducted by the tertiary cleaning unit 26 c , and the spin-drying process are performed sequentially, and three-stage cleaning in which the primary cleaning process conducted by the primary cleaning unit 26 a 1 , the secondary cleaning process conducted by the secondary cleaning unit 26 b , the tertiary cleaning process conducted by the tertiary cleaning unit 26 c , and the spin-drying process are performed sequentially can be conducted.
  • two-stage cleaning in which the primary cleaning process conducted by the primary cleaning unit 26 a 2 , the secondary cleaning process conducted by the secondary cleaning unit 26 b or the tertiary cleaning unit 26 c , and the spin-drying process are performed sequentially, and three-stage cleaning in which the primary cleaning process conducted by the primary cleaning unit 26 a 2 , the secondary cleaning process conducted by the secondary cleaning unit 26 b , the tertiary cleaning process conducted by the tertiary cleaning unit 26 c , and the spin-drying process are performed sequentially can be conducted.
  • polishing processes ⁇ circle over ( 1 ) ⁇ to ⁇ circle over ( 5 ) ⁇ can be conducted. That is, one semiconductor substrate is processed in the following route.
  • the cleaning process can be selected to achieve optimum characteristics of the polished surface of the semiconductor substrate and also high throughput.
  • four cleaning units which perform three different kinds of cleaning processes are used to perform two-stage cleaning or three-stage cleaning.
  • four cleaning units which perform four kinds of different cleaning processes, or more cleaning units may be used to perform four-stage cleaning.
  • a plurality of cleaning units which perform different cleaning processes may be modularized, and may be separable from the polishing apparatus and replaceable to thereby comply with various processes.
  • FIG. 9 shows a polishing apparatus according to a fifth embodiment of the present invention.
  • a small-sized finish polishing unit 10 c which performs water polishing is provided in the polishing section 10 .
  • the finish polishing unit 10 c has a finish polishing table 12 c having a diameter slightly larger than the semiconductor substrate W to be polished.
  • the finish polishing table 12 c does not rotate about its own axis, but performs a circulatory translational motion in a horizontal plane. This circulatory translational motion is referred to as “orbital motion” or “scroll motion”.
  • This circulatory translational motion is achieved by a structure in which a driving end provided eccentrically at an upper end of a driving shaft of a motor is accommodated in a recess formed in a lower surface of the finish polishing table through a bearing, and the rotation of the finish polishing table about its own axis is mechanically restrained. Further, since the water polishing time is shorter than the normal polishing time, in addition to the polishing unit shown in FIG. 9, a polishing unit which performs a second normal polishing may be provided to thereby achieve further high throughput.
  • polishing cloth a material softer than the normal polishing cloth is preferably used.
  • the polishing cloth which are commercially available are nonwoven fabric cloth made of polyester, and Politex, Suba 800 and IC-1000 manufactured by Rodel Products Corporation, and Surfin xxx-5 and Surfin 000 manufactured by Fujimi Inc.
  • the polishing cloth sold under the tradenames Suba 800, Surfin xxx-5, and Surfin 000 is made of nonwoven fabric composed of fibers bound together by urethane resin, and the polishing cloth sold under the tradename IC-1000 is made of.
  • Examples of a wiping cloth which are commercially available are Miracle Series (tradename) sold by Toray Industries, Inc., and Minimax (tradename) sold by Kanebo, Ltd. These wiping cloth have a number of fibers, having a diameter of 1 to 2 ⁇ m, of 15,500-31,000/cm 2 (a hundred thousand to two hundred thousand per in 2 ) in a high density manner, and have a large number of contacting points contacting the object to be wiped, and thus have an excellent ability for wiping fine particles. Since the wiping cloth is a thin cloth, it is desirable that the wiping cloth is attached to the polishing table through a cushioning member such as a sponge or a rubber so as not to damage the semiconductor substrate during finish polishing.
  • a cushioning member such as a sponge or a rubber
  • the polishing pressure is 0-200 g/cm 2
  • the relative speed between the polishing table and the semiconductor substrate is 0.07-0.6 m/sec
  • the processing time is 10-120 second.
  • the polishing apparatus offers throughput higher than that of the polishing apparatus of FIG. 1, and occupies an installation floor area smaller than that of the polishing apparatus of FIG. 6. Further, since the finish polishing unit 10 c for exclusively performing water polishing is provided, the polishing apparatus has an excellent finish processing capability in which there will be few scratches and few particles on the polished surface of the semiconductor substrate.
  • the cloth for finish polishing (water polishing) attached to the finish polishing table 12 c may be applied to the polishing unit 10 b which is used for water polishing in serial processing in FIG. 6.
  • the present invention is not limited to those embodiments.
  • diluted hydrofluoric acid or an acid aqueous solution containing HCl may be used as an etching liquid in the primary cleaning unit.
  • the processing time can be shortened and the cost of the polishing apparatus can be reduced, compared with the conventional apparatus. Further, since the number of times of transporting the semiconductor substrate is reduced, the processes are simplified and the chance of contamination of the semiconductor substrate is reduced. Therefore, the processing time is shortened and a semiconductor substrate having a high degree of cleanliness may be obtained by a small-sized apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

A substrate such as a semiconductor wafer, a glass substrate, or a liquid crystal display is polished to a flat mirror finish, and then is cleaned to a high degree of cleanliness. A polishing section having at least one polishing unit performs primary polishing and secondary polishing of the substrate by pressing the substrate against a polishing surface. A cleaning section cleans the substrate which has been polished to remove particles attached to the substrate by a scrubbing cleaning. Metal ions are removed from the substrate by supplying an etching liquid.

Description

  • This is application is a continuation of Ser. No. 10/283,154, filed Oct. 30, 2002, which is a divisional of Ser. No. 09/434,482, filed Nov. 5, 1999, and now U.S. Pat. No. 6,494,985.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to a method and apparatus for polishing a substrate, and more particularly to a method and apparatus for polishing a substrate such as a semiconductor wafer, a glass substrate, or a liquid crystal display to a flat mirror finish, and then cleaning a polished substrate that requires a high degree of cleanliness. [0003]
  • 2. Description of the Related Art [0004]
  • As semiconductor devices have become more highly integrated in recently years, circuit interconnections on semiconductor substrates become finer and the distances between those circuit interconnections have become smaller. One of the processes available for forming such circuit interconnections is photolithography. Though the photolithographic process can form interconnections that are at most 0.5 μm wide, it requires that surfaces on which pattern images are to be focused by a stepper be as flat as possible because the depth of focus of the optical system is relatively small. [0005]
  • Further, if a particle greater than the distance between interconnections exists on a semiconductor substrate, then the particle will short-circuit interconnections on the semiconductor substrate. Therefore, any undesirable particles on the semiconductor substrate have to be sufficiently smaller than the distance between interconnections on the semiconductor substrate. [0006]
  • Therefore, in processing the semiconductor substrate, it is important to planarize the semiconductor substrate and clean the semiconductor substrate to a high degree of cleanliness. Such a requirement holds true for the processing of other substrates including a glass substrate to be used as a mask, a liquid crystal panel, and so on. [0007]
  • In order to achieve planarization of the semiconductor substrate, it has heretofore been customary to use a polishing apparatus, the process of which is called chemical-mechanical polishing (CMP). As shown in FIGS. 10 and 11, a conventional polishing apparatus comprises a [0008] polishing section 10, a load and unload section 22, two transfer robots 24 a and 24 b, a cleaning section 26 having three cleaning units 26 a, 26 b and 26 c, and a reversing device 28 as necessary. The transfer robots 24 a and 24 b may be a mobile type robot which moves along rails shown in FIG. 10, or a stationary type robot having robot hands at forward ends of articulated arms shown in FIG. 11.
  • As shown in FIG. 12, the [0009] polishing section 10 comprises a turntable 12 having a polishing cloth 11 thereon, a top ring 13 for supporting a semiconductor wafer (substrate) W and pressing the semiconductor substrate W against the turntable 12, and a nozzle 14 for supplying an abrasive liquid onto the polishing cloth 11. A transfer device 38 is disposed adjacent to the turntable 12 (FIGS. 10 and 11). The adjacent two sections are partitioned by a partition wall to prevent cross-contamination. Specifically, in order to prevent dirty atmosphere in the polishing section 10 from being scattered into a chamber in which a cleaning process and a subsequent process are performed, air conditioning and pressure regulation in each of the chambers are performed.
  • In the polishing apparatus having the above structure, the semiconductor substrate W is transported from the load and [0010] unload section 22 to the transfer device 38 by the transfer robots 24 a and 24 b and transferred to the top ring 13 by the transfer device 38. In the polishing section 10, the semiconductor substrate W is held by the lower surface of the top ring 13 and pressed against the polishing cloth 11 providing a polishing surface on the turntable 12. The abrasive liquid Q is supplied from the nozzle 14 onto the polishing cloth 11 and retained on the polishing cloth 11. During operation, the top ring 13 exerts a certain pressure on the turntable 12, and the surface of the semiconductor substrate W held against the polishing cloth 11 is therefore polished in the presence of the abrasive liquid Q between the surface of the semiconductor substrate W and the polishing surface on the polishing cloth 11 by a combination of chemical polishing and mechanical polishing while the top ring 13 and the turntable 12 are rotated. In case of polishing an insulating layer made of an oxide film (SiO2) on the silicon substrate, the abrasive liquid Q contains abrasive particles having a certain diameter suspended in an alkali solution. The semiconductor substrate W which has been polished is transported to the cleaning section 26 in which the semiconductor substrate W is cleaned and dried, and then returned to the load and unload section 22.
  • The [0011] primary cleaning unit 26 a in the cleaning section 26 has a plurality of vertical spindles 30 arranged at spaced intervals for supporting the outer circumferential edge of the semiconductor substrate W by holding grooves formed at the upper end portions of the spindles 30 and rotating the semiconductor substrate in a horizontal plane at a relatively low rotational speed, and a pair of cleaning members comprising a roller type or a pencil type sponge which can be brought into contact with the semiconductor substrate W or out of contact with the semiconductor substrate W. The primary cleaning unit 26 a is a low rotational speed type cleaning unit. The secondary and tertiary cleaning units 26 b and 26 c each have a rotating table 36 comprising a rotating shaft 32 and a plurality of arms 34 which extend radially outwardly from the rotating shaft 32 and hold the outer circumferential edge of the semiconductor substrate W. The secondary and tertiary cleaning units 26 b and 26 c are high rotational speed type cleaning units. In each of the primary, secondary and tertiary cleaning units 26 a, 26 b and 26 c, there is provided a nozzle for supplying a cleaning liquid to the surface of the semiconductor substrate W, a cover for preventing the cleaning liquid from being scattered around, and a ventilating equipment for creating a down draft (descending air current) to prevent mist from being scattered around.
  • The cleaning processes for cleaning the semiconductor substrate which has been polished are carried out in the following manner: [0012]
  • In the [0013] primary cleaning unit 26 a, while the semiconductor substrate W is held and rotated by the spindles 30, scrubbing cleaning is performed by allowing the cleaning members to scrub the upper and lower surfaces of the semiconductor substrate W while supplying a cleaning liquid. In this scrubbing cleaning process, the first cleaning liquid having substantially the same pH as the abrasive liquid used in the polishing process is used to prevent particles from being aggregated due to so-called pH shock. To be more specific, if the abrasive liquid is rapidly diluted with pure water to lower the pH of the abrasive liquid, then the abrasive particles become unstable, to thus aggregate secondary particles to form larger aggregates. In this specification, pH shock is defined as a rapid change of a pH. Therefore, in order to prevent pH shock from occurring, the first cleaning liquid having substantially the same pH as the abrasive liquid is used in the scrubbing cleaning process. For example, in case of polishing a SiO2 layer, aqueous ammonia is used as the first cleaning liquid, and after the particles are removed from the surfaces of the semiconductor substrate W, the surfaces of the semiconductor substrate are shifted from alkali to neutrality by supplying a neutral cleaning liquid such as pure water thereto. Thereafter, the semiconductor substrate W is transferred to the secondary cleaning unit 26 b.
  • In the [0014] secondary cleaning unit 26 b, in order to remove metal ions attached to the semiconductor substrate W, an acid chemical is normally supplied to the surfaces of the semiconductor substrate W from the nozzle to cause etching (chemical cleaning) of the surfaces of the semiconductor substrate, and then a neutral cleaning liquid such as pure water is supplied to cause the surfaces of the semiconductor substrate to be returned to neutrality. Thereafter, the semiconductor substrate W is transferred to the tertiary cleaning unit 26 c having a drying function. In the tertiary cleaning unit 26 c, pure water is supplied to perform a final cleaning of the semiconductor substrate W, and then the semiconductor substrate W is rotated at a high rotational speed while blowing a clean inert gas against the surfaces of the semiconductor substrate, thereby drying the semiconductor substrate W. After the semiconductor substrate W is cleaned and dried, the semiconductor substrate W is returned to the load and unload section 22 by a clean hand of the transfer robot 24 a or 24 b.
  • In the above-mentioned polishing apparatus, since etching cleaning is conducted by a dedicated cleaning unit, i.e., the cleaning processes are conducted by the three [0015] cleaning units 26 a, 26 b and 26 c, the polishing apparatus becomes large, requires a large installation space, and needs a long processing time for the cleaning processes.
  • Further, the semiconductor substrate W is transported as shown by arrows {circle over ([0016] 1)} to {circle over (9)} in FIG. 11, and hence the transportation route is extremely complicated. Specifically, the semiconductor substrate is transported from the load and unload section 22 to the reversing device 28 as shown by the arrow {circle over (1)}, transported to the transfer device 38 as shown by the arrow {circle over (2)}, and then moved above the turntable 12 as shown by the arrow {circle over (3)}. Thereafter, the polished semiconductor substrate W is moved to the transfer device 38 as shown by the arrow {circle over (4)}, transported to the primary cleaning unit 26 a as shown by the arrow {circle over (5)}, and then transported to the reversing device 28 as shown by the arrow {circle over (6)}. Thereafter, the semiconductor substrate W is transported to the secondary cleaning unit 26 b as shown by the arrow {circle over (7)}, and then transferred to the tertiary cleaning unit 26 c as shown by the arrow {circle over (8)}. Finally, the semiconductor substrate W is returned to the load and unload section 22 as shown by the arrow {circle over (9)}.
  • As is apparent from the above, since the transportation route is extremely complicated, the two [0017] transfer robots 24 a and 24 b which perform the transportation of the semiconductor substrate W are required to be controlled, while preventing the transfer robots 24 a and 24 b from interfering with each other. Thus, an overall system in the polishing apparatus is more complicated, and tends to retard the processing time of the semiconductor substrate. Further, as the number of times in transporting the semiconductor substrate by the robot hands increases, the chance of contamination of the semiconductor substrate increases.
  • In order to simplify the structure of the [0018] cleaning section 26, it is conceivable to conduct the primary cleaning process for removing particles and the secondary cleaning process for etching by the same cleaning unit. However, in this case, alkali chemicals and acid chemicals are employed as the respective cleaning liquids in the same cleaning unit, and hence the lining of a drainage system is deteriorated, salt is deposited, and waste water treatment is complicated. Alternatively, it is conceivable to conduct etching and drying of the semiconductor substrate in the secondary cleaning unit 26 b. However, in this case, the semiconductor substrate W is dried in the atmosphere in which mist of the etching liquid remains, and hence the semiconductor substrate is contaminated in the final cleaning process.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide a method and apparatus for polishing a substrate which can reduce the scale of the polishing apparatus, shorten the processing time of the substrate, and produce a substrate having a high degree of cleanliness by performing cleaning processes with a simplified structure. [0019]
  • As the technology for manufacturing semiconductor devices progresses, the characteristics of layers (films) deposited on the semiconductor wafer also progresses. In the case where a semiconductor wafer having a newly developed layer (film) thereon is polished and then cleaned, the multistage cleaning of not less than three-stages is usually conducted at an early stage where the newly developed layer starts to be used in the semiconductor device manufacturing process. However, as the cleaning process progresses, the number of cleaning stages is gradually reduced. Therefore, as the process technology for manufacturing semiconductor devices progresses, the requirement for the apparatus for manufacturing the semiconductor devices changes, and hence an optimum structure of the apparatus must be maintained to meet the progress of the process technology. Therefore, the present invention is directed to provide a method and apparatus for polishing substrates with an optimum structure. [0020]
  • According to one aspect of the present invention, there is provided a polishing apparatus for polishing and then cleaning a substrate, the apparatus comprising: a polishing section having at least one polishing unit for performing primary polishing and secondary polishing of the substrate by pressing the substrate against a polishing surface; a cleaning section for cleaning the substrate which has been polished to remove particles attached to the substrate by scrubbing cleaning, and removing metal ions from the substrate by supplying an etching liquid. [0021]
  • In the secondary polishing, pure water is used as a polishing liquid, and the substrate is polished at a polishing efficiency lower than the primary polishing in such a manner that the polishing pressure and/or the polishing rate are smaller than those of the primary polishing. Thus, microscratches formed on the polished surface of the substrate in the primary polishing are removed or reduced, and ground-off particles and abrasive particles on the polished surface are removed. [0022]
  • For example, in case of using abrasive liquid containing siliceous material, in secondary polishing, particles on the substrate are efficiently removed by polishing the substrate under the final polishing condition. Thus, the substrate having a trace of particles thereon is transported to the cleaning section, and hence a process for removing particles by alkali can be eliminated, different from the conventional method. In the cleaning section, etching of the surface of the substrate which is a kind of chemical cleaning using acid can be conducted, and then the substrate is cleaned and dried by a cleaning and drying process. In this manner, cleaning and drying of the substrate can be performed by two cleaning units and two processes, and thus the processing time is shortened and the number of apparatuses or units can be reduced, compared with the conventional apparatus and method. Further, the number of times of transporting the substrate is reduced, and hence the processes can be reduced and the chance of contamination of the substrate can be reduced. [0023]
  • It is desirable that final polishing is performed at a polishing rate of 5 Å (angstrom)/minute or below. The cleaning liquid or the etching liquid may be supplied to the front and backside surfaces of the substrate. The drying process may be performed by a drying unit different from the cleaning unit or the same cleaning unit. If the drying process is performed by the same cleaning unit, then it is desirable to perform the drying process in a clean atmosphere. As a cleaning liquid, a high performance water including ionic water, ozone water, and hydrogen water may be used. [0024]
  • In a preferred embodiment, primary polishing and secondary polishing are conducted in the same polishing unit. This constitution allows the polishing apparatus to be simplified and to reduce an installation space thereof. [0025]
  • In a preferred embodiment, the polishing section comprises at least two polishing units for performing primary polishing and secondary polishing, respectively. This constitution allows the processes to be simplified and contributes to improving throughput of the substrates. [0026]
  • In a preferred embodiment, the polishing section comprises at least two polishing units for the primary polishing process and the secondary polishing process, and the cleaning section comprises at least two cleaning units for performing different cleaning processes. This constitution allows two-stage cleaning or three-stage cleaning, and a plurality of cleaning processes can be performed by the single apparatus. [0027]
  • For example, in case of using an abrasive liquid containing alumina material, removal of particles in the secondary polishing process cannot be sufficiently performed. In performing the etching process after secondary polishing, scrubbing cleaning is carried out with alkali before the etching process to remove particles sufficiently. In this case, three-stage cleaning should be performed. [0028]
  • According to the polishing apparatus of the present invention, two-stage cleaning and three-stage cleaning can be selectively performed. If the abrasive liquid and the polishing cloth are replaced in the polishing unit, then an optimum apparatus which is suitable for both the process which uses the abrasive liquid containing siliceous material and the process which uses the abrasive liquid containing alumina material may be constructed. Further, even if the scrubbing process becomes unnecessary due to progress in the polishing technology with use of the abrasive liquid containing alumina material and the cleaning technology after polishing, the present invention offers an optimum structure. [0029]
  • According to another aspect of the present invention, there is also provided a polishing method for polishing and then cleaning a substrate, the method comprising: polishing the substrate primarily by pressing the substrate against a polishing surface; polishing the substrate secondarily at a polishing rate lower than the primary polishing; cleaning the substrate which has been polished to remove particles attached to the substrate by scrubbing cleaning, and removing metal ions from the substrate by supplying an etching liquid; and drying the substrate after removing the metal ions therefrom. [0030]
  • In a preferred embodiment, the etching liquid comprises acid aqueous solution containing hydrofluoric acid. [0031]
  • According to another aspect of the present invention, a cleaning apparatus for cleaning a substrate which has been polished comprises: at least two primary cleaning units having the same cleaning function, each for primarily cleaning the substrate which has been polished; and a common secondary cleaning unit for secondarily cleaning the substrate which has been cleaned by the primary cleaning units. [0032]
  • With the above arrangement, primary cleaning of the substrates is conducted in parallel in the primary cleaning units simultaneously or with a certain time lag, and then secondary cleaning of the substrates which have been primarily cleaned is conducted in a common secondary cleaning unit. This arrangement is desirable for such a case where primary cleaning requires a time longer than secondary cleaning. [0033]
  • According to another aspect of the present invention, a cleaning apparatus for cleaning a substrate which has been polished comprises: at least three cleaning units for cleaning the substrate which has been polished; and a transfer robot for transferring the substrate between at least two of the cleaning units; wherein the substrate is cleaned by selective cleaning processes conducted by any two or three cleaning units selected from the at least three cleaning units. [0034]
  • With the above arrangement, any two or three cleaning units are selected from at least three cleaning units to conduct selective cleaning processes of the substrates. The selective cleaning processes include two-stage cleaning of the substrate or three-stage cleaning of the substrate. [0035]
  • According to another aspect of the present invention, a polishing apparatus for polishing and then cleaning a substrate comprises: a plurality of polishing units for polishing the substrate; and a plurality of cleaning units for cleaning the substrate which has been polished; wherein the substrates are processed by different processes through a plurality of polishing-cleaning routes, each including at least one selected from the polishing units and at least one selected from the cleaning units. [0036]
  • With the above arrangement, at least one selected from a plurality of polishing units and at least one selected from a plurality of cleaning units can be combined to construct a polishing-cleaning route, and the number of polishing-cleaning routes can be freely selected by setting the number of polishing units and cleaning units appropriately, and hence a plurality of different processes can be selectively conducted on the substrates. [0037]
  • The above and other objects, features, and advantages of the present invention will become apparent from the following description when taken in conjunction with the accompanying drawings which illustrate preferred embodiments of the present invention by way of example.[0038]
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a plan view of a polishing apparatus according to a first embodiment of the present invention; [0039]
  • FIG. 2 is a perspective view showing the whole structure of the polishing apparatus and a transportation route of a semiconductor substrate according to the first embodiment to the present invention; [0040]
  • FIG. 3A is a perspective view of a primary cleaning unit in the polishing apparatus according to the first embodiment of the present invention; [0041]
  • FIG. 3B is a perspective view showing the operation of the primary cleaning unit; [0042]
  • FIGS. 4A, 4B and [0043] 4C are schematic views showing cleaning processes in the primary cleaning unit;
  • FIG. 5A is a perspective view of a secondary cleaning unit in the polishing apparatus according to the first embodiment of the present invention; [0044]
  • FIG. 5B is a perspective view showing the operation of the second cleaning unit; [0045]
  • FIG. 6 is a plan view of a polishing apparatus according to a second embodiment of the present invention; [0046]
  • FIG. 7 is a plan view of a polishing apparatus according to a third embodiment of the present invention; [0047]
  • FIG. 8 is a plan view of a polishing apparatus according to a fourth embodiment of the present invention; [0048]
  • FIG. 9 is a plan view of a polishing apparatus according to a fifth embodiment of the present invention; [0049]
  • FIG. 10 is a plan view of a conventional polishing apparatus; [0050]
  • FIG. 11 is a perspective view showing the whole structure of the conventional polishing apparatus shown in FIG. 10 and the transportation route of the semiconductor substrate; and [0051]
  • FIG. 12 is a cross-sectional view showing the structure of the polishing section in the conventional polishing apparatus.[0052]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A polishing apparatus according to the present invention will be described with reference to drawings. [0053]
  • FIGS. 1 through 5B show a polishing apparatus according to a first embodiment of the present invention. As shown in FIG. 1, the polishing apparatus comprises a polishing [0054] section 10 having one polishing unit, and a cleaning section 26 having two transfer robots 24 a and 24 b and two cleaning units 26 a and 26 b. The polishing section 10 and the transfer robots 24 a and 24 b have the same structure as the conventional ones. The polishing cloth 11 on the turntable 12 constitutes a polishing surface. The polishing section 10 and the cleaning units 24 a and 24 b are partitioned by respective partition walls, and are evacuated independently to prevent respective atmospheres from being mixed.
  • As shown in FIGS. 3A and 3B, the [0055] primary cleaning unit 26 a in the cleaning section 26 includes six vertical spindles 30 that are arranged at spaced intervals along a circle for supporting the outer circumferential edge of a semiconductor substrate W and rotating the semiconductor substrate W in a horizontal plane at a relatively low rotational speed, and a pair of roller type cleaning members 40 made of sponge, PVA or the like and extending horizontally diametrically above and below the semiconductor substrate W. The vertical spindles 30 are movable horizontally toward and away from the semiconductor substrate W. The cleaning members 40 can be brought in contact with the semiconductor substrate W or out of contact with the semiconductor substrate W. The primary cleaning unit 26 a is a roll and low rotational speed type cleaning unit. In the primary cleaning unit 26 a, there are provided nozzles 50 a, 50 b, 50 c and 50 d for supplying an etching liquid and pure water to the upper and lower surfaces of the semiconductor substrate W.
  • As shown in FIGS. 5A and 5B, the [0056] secondary cleaning unit 26 b comprises a rotating table 36 for rotating the semiconductor substrate W at a high rotational speed of 1,500 to 5,000 rpm, and a swing arm 44 having a nozzle 42 for supplying a cleaning liquid to which ultrasonic vibration is applied to the upper surface of the semiconductor substrate W. The secondary cleaning unit 26 b is a megasonic and high rotational speed type cleaning unit. The secondary cleaning unit 26 b may include a nozzle 46 for supplying an inert gas to the surface of the semiconductor substrate W or a heater for speeding up drying of the semiconductor substrate W to improve process performance and shorten tact time. Further, the secondary cleaning unit 26 b may include a nozzle for supplying a cleaning liquid to the lower surface of the semiconductor substrate W. In this embodiment, although noncontact type cleaning is performed by supplying the cleaning liquid to which ultrasonic vibration is applied by an ultrasonic vibration generating device (not shown) from the nozzle 42 to the semiconductor substrate W, a pencil type cleaning member made of sponge or the like may replace the nozzle 42 or may be added in addition to the nozzle 42 to perform contact type cleaning.
  • Next, the operation of the polishing apparatus having the above structure will be described with reference to FIG. 2. [0057]
  • The semiconductor substrate W is transported from the load and unload [0058] section 22 to the polishing section 10 via the reversing device 28 and the transfer device 38 by the transfer robots 24 a and 24 b as shown by the arrows {circle over (1)}, {circle over (2)}, and {circle over (3)}. In the polishing section 10, the semiconductor substrate W is held by the lower surface of the top ring 13 and pressed against the polishing cloth 11 on the turntable 12. At this time, the normal abrasive liquid is used to polish the semiconductor substrate W. This polishing process is referred to as “normal polishing” or “main polishing”. Thereafter, a water polishing process is conducted in the polishing section 10. In this water polishing process, pure water is used as a polishing liquid and the semiconductor substrate is polished under a polishing pressure and/or a polishing rate which are smaller than those of normal polishing. In case of polishing a SiO2 layer on the semiconductor substrate, the polishing rate in the water polishing process is preferably 100Å (angstrom)/minute or below, and microscratches on the polished surface of the semiconductor substrate W formed in the normal polishing are removed or reduced, and the ground-off particles and the abrasive particles remaining on the polished surface are removed. Thus, the water polishing process is so-called “finish polishing process”. This finish polishing process may be performed using a polishing liquid containing abrasive particles smaller than the abrasive particles used in the normal polishing process, or chemicals instead of the water polishing process, or between the normal polishing process and the water polishing process. However, although the finish polishing process is performed on the same turntable as the normal polishing process in this embodiment, finish polishing may be conducted by a discrete turntable.
  • Since the abrasive liquid containing the abrasive particles remains on the polishing [0059] cloth 11 immediately after the normal polishing process, it is necessary to supply a certain amount of pure water to the polishing cloth 11 to remove the abrasive liquid therefrom. In this case, if a large amount of pure water is rapidly supplied to the polishing cloth 11 to dilute the abrasive liquid, then the pH of the abrasive liquid remaining on the polished surface of the semiconductor substrate and the polishing cloth 111 is rapidly changed to cause the abrasive particles to be aggregated due to pH shock. Therefore, it is desirable that a small amount of pure water is first supplied, and the supply of pure water is gradually increased. Incidentally, in the present invention, the particles aggregated on the polished surface of the semiconductor substrate will be removed in the finish polishing process described below, and thus a serious problem does not arise.
  • After normal polishing and water polishing are applied to the semiconductor substrate W in the [0060] polishing section 10, the particles attached to the semiconductor substrate W are mostly removed to allow the semiconductor substrate W to have an enhanced degree of cleanliness. Thereafter, the semiconductor substrate W is transported to the primary cleaning unit 26 a via the transfer device 38 as shown by the arrows {circle over (4)} and {circle over (5)} by the transfer robot 24 a. As shown in the FIG. 3A, in the primary cleaning unit 26 a, the semiconductor substrate W is held by the spindles 30. The semiconductor substrate W may be rotated at a low rotational speed of several 10 rpm to 300 rpm by the spindles 30. In the primary cleaning unit 26 a, as shown in FIGS. 3B and 4A, scrubbing cleaning of the upper and lower surfaces of the semiconductor substrate W is performed by rotating the cleaning members 40 about their own axes while supplying pure water from the nozzles to the surfaces of the semiconductor substrate W.
  • Next, as shown in FIG. 4B, after the [0061] cleaning members 40 are moved away from the semiconductor substrate W, etching liquid is supplied to the upper and lower surfaces of the semiconductor substrate W from the nozzles while the rotational speed of the semiconductor substrate W is being changed as necessary. Thus, metal ions remaining on the semiconductor substrate W are removed by etching (chemical cleaning) of the surfaces of the semiconductor substrate W. Thereafter, as shown in FIG. 4C, pure water is supplied from the pure water nozzles, and the etching liquid is removed by replacing the etching liquid with pure water while the rotational speed of the semiconductor substrate W is being changed as necessary. After completing replacement of the etching liquid with pure water, the semiconductor substrate W is transported to the reversing device 28, reversed to direct the polished surface upwardly, and then transported to the secondary cleaning unit 26 b by the transfer robots 24 a and 24 b as shown by the arrows {circle over (6)} and {circle over (7)} in FIG. 2. In the secondary cleaning unit 26 b, as shown in FIGS. 5A and 5B, while the semiconductor substrate W is rotated at a low rotational speed of 100 to 500 rpm, the swing arm 44 is swung over the entire surface of the semiconductor substrate W while pure water to which ultrasonic vibration is applied is supplied from the nozzle 42 provided at the forward end of the swing arm 44 to the upper surface of the semiconductor substrate W so as to allow the supplied pure water to pass through the center of the semiconductor substrate W, thereby removing particles from the semiconductor substrate W. Thereafter, the supply of pure water is stopped, the swing arm 44 is moved to the standby position, and then the semiconductor substrate W is rotated at a high rotational speed of 150 to 5,000 rpm to dry the semiconductor substrate W while supplying an inert gas as necessary. The semiconductor substrate W which has been dried is returned to a wafer cassette 22 a or 22 b placed on the load and unload section 22 by the transfer robot 24 b as shown by the arrow {circle over (8)} in FIG. 2.
  • In the above polishing and cleaning processes, the number of the cleaning units in the [0062] cleaning section 26 is reduced from three units to two units, and the number of times of transporting the semiconductor substrate W is also reduced from nine as shown in FIG. 11 to eight as shown in FIG. 2. Thus, the total processing time is greatly shortened. Further, since the transportation route of the semiconductor substrate W is simplified, the chance of interference of the transfer robots 24 a and 24 b with each other is decreased, and control of the transfer robots 24 a and 24 b is facilitated.
  • The structure of the [0063] cleaning units 26 a and 26 b is not limited to the above-mentioned structure, and, for example, the cleaning member 40 may comprise a brush or a felt-like fiber, or the cleaning liquid may be a cleaning liquid to which cavitation is applied, or minute particles of ice. The number of the cleaning units 26 a and 26 b is set to an optimum number in consideration of tact time in the respective cleaning units.
  • FIG. 6 shows a polishing apparatus according to a second embodiment of the present invention. As shown in FIG. 6, two polishing [0064] units 10 a and 10 b having the same structure as the polishing unit in FIG. 1 are provided in the polishing section 10, and one transfer robot 24 a which moves along rails is provided. The two polishing units 10 a and 10 b are disposed symmetrically with respect to the moving path of the transfer robot 24 a. In the cleaning section 26, primary cleaning units 26 a 1 and 26 a 2 which have the same cleaning function and the same structure are provided so as to correspond to the respective polishing units 10 a and 10 b, and one secondary cleaning unit 26 b is provided. Other structure of the polishing apparatus shown in FIG. 6 is substantially the same as that of the polishing apparatus shown in FIG. 1.
  • According to this embodiment, a parallel processing in which the semiconductor substrates W are polished by the polishing [0065] units 10 a and 10 b in parallel and a serial processing in which one semiconductor substrate W is polished sequentially by the polishing units 10 a and 10 b can be performed.
  • In parallel processing, the normal polishing and the water polishing are conducted in the polishing [0066] units 10 a and 10 b, respectively, with a certain time lag, to thereby perform efficient transfer of the semiconductor substrates W by the transfer robot 24 a. The operating efficiency in the transfer robots and the cleaning section is not high in the polishing apparatus of FIG. 1, but the operating efficiency in the transfer robot 24 a and the cleaning section 26 is high in the polishing apparatus of FIG. 6, because there are provided the two polishing units 10 a and 10 b. Thus, the throughput per unit area of floor occupied by the overall polishing apparatus can be improved. Further, since the primary cleaning units 26 a 1 and 26 a 2 are provided so as to correspond to the respective polishing units 10 a and 10 b, operational delay in the cleaning section 26 can be prevented.
  • In serial processing, the normal polishing of the semiconductor substrate W is performed in the polishing [0067] unit 10 a, and then the polished semiconductor substrate W is transferred to the polishing unit 10 b in which the water polishing is performed. If the problem of contamination of the semiconductor substrate does not arise, then the normal polishing of the semiconductor substrate W is conducted in the polishing unit 10 a, and then the polished semiconductor substrate W is transferred to the polishing unit 10 b by the transfer robot 24 a. If the problem of contamination of the semiconductor substrate arises, then the normal polishing of the semiconductor substrate W is conducted in the polishing unit 110 a, the polished semiconductor substrate W is transferred to the primary cleaning unit 26 a, by the transfer robot 24 a, in which it is cleaned. Thereafter, the cleaned semiconductor substrate W is transferred to the polishing unit 10 b in which the finish polishing of the semiconductor substrate W is conducted. Further, in the primary cleaning unit 26 a 1, the semiconductor substrate W may be cleaned using chemicals suitable for the slurry (abrasive liquid) used in the polishing unit 10 a.
  • In this second embodiment, two [0068] primary cleaning units 26 a 1 and 26 a 2 and one secondary cleaning unit 26 b are provided. This is because the primary cleaning process takes more time than the secondary cleaning process. Thus, two primary cleaning units 26 a 1 and 26 a 2 are provided to improve efficiency, each for the polishing unit 10 a and the polishing unit 10 b, while the secondary cleaning unit 26 b which needs a processing time shorter than the primary cleaning process is used in common for the substrates which are cleaned in both the primary cleaning units 26 a 1 and 26 a 2.
  • In the polishing apparatus of FIG. 1 or the above parallel processing, since the normal polishing and the water polishing are performed on the [0069] same turntable 12, the abrasive liquid and pure water on the polishing cloth 11 attached to the turntable 12 are replaced each time, and hence the loss of the processing time is caused and the consumption of the abrasive liquid or pure water is increased. However, in this serial processing, the normal polishing and the water polishing are performed on the turntables 12 a and 12 b, respectively, and hence the above problems can be avoided.
  • FIG. 7 shows a polishing apparatus according to a third embodiment of the present invention. [0070]
  • In the polishing apparatus of FIG. 7, the polishing [0071] section 10 has two polishing units 10 a and 10 b having the same structure as the polishing unit of FIG. 1. The polishing units 10 a and 10 b are symmetrically disposed in the same manner as the polishing apparatus of FIG. 6. In the cleaning section 26, primary cleaning units 26 a 1 and 26 a 2 having the same structure, secondary cleaning units 26 b 1 and 26 b 2 having the same structure, and reversing devices 28 a 1 and 28 a 2 are symmetrically disposed so as to correspond to the polishing units 10 a and 10 b, respectively. In the polishing apparatus of this embodiment also, parallel processing and serial processing can be conducted. In parallel processing, a first substrate processing line A in which the polishing process conducted by the polishing unit 10 a, the primary cleaning process conducted by the primary cleaning unit 26 a 1, and the secondary cleaning process conducted by the secondary cleaning unit 26 b 1 are sequentially performed, and a second substrate processing line B in which the polishing process conducted by the polishing unit 10 b, the primary cleaning process conducted by the primary cleaning unit 26 a 2 and the secondary cleaning process conducted by the secondary cleaning unit 26 b 2 are sequentially performed can be constructed. Therefore, parallel processing can be independently conducted without causing the two transfer lines of the semiconductor substrates W to intersect.
  • According to this embodiment, in addition to the above parallel processing, two parallel processing operations can be conducted. In the first parallel processing, the semiconductor substrates W taken out from one wafer cassette are alternately delivered to the [0072] respective polishing units 10 a and 10 b. This parallel processing allows the processing time of one wafer cassette to be halved. In the second parallel processing, the wafer cassette 22 a is assigned exclusively to the first substrate processing line A, and another wafer cassette 22 b is assigned exclusively to the second substrate processing line B. In this case, the semiconductor substrates W to be polished may be the same ones or different ones. Further, four wafer cassettes may be placed on the load and unload section 22 to thereby conduct continuous processing of the semiconductor substrates.
  • In the case where parallel processing is conducted using the first substrate processing line A and the second substrate processing line B in parallel, the first substrate processing line A and the second substrate processing line B may have their own processing units or devices, and hence two kinds of different processes can be performed in parallel in the polishing apparatus. Further, it is conceivable to incorporate a cleaning device using ultrasonic vibration in the [0073] second cleaning unit 26 b 1 and to incorporate a cleaning device using cavitation in the secondary cleaning unit 26 b 2. This structure allows the polishing apparatus to have versatile functions performed by two polishing apparatuses shown in FIG. 1.
  • Further, each of the cleaning units including the [0074] primary cleaning units 26 a 1 and 26 a 2, the secondary cleaning units 26 b 1 and 26 b 2 may be modulized, and may be separable from the polishing apparatus and replaceable. According to this structure, even after the polishing apparatus is installed, the polishing apparatus can comply with various required processes. Further, in the event of failure in the cleaning unit, or in case of maintenance of the cleaning unit, the down time of the polishing apparatus can be shortened to raise the operation rate thereof.
  • FIG. 8 shows a polishing apparatus according to a fourth embodiment of the present invention. As in the polishing apparatus of FIG. 7, the polishing [0075] section 10 comprises two polishing units 10 a and 10 b having the same structure as the polishing unit of FIG. 1, and the polishing units 10 a and 10 b are disposed symmetrically. In the cleaning section 26, there are provided primary cleaning units 26 a 1 and 26 a 2 which have same cleaning function and same structure, a secondary cleaning unit 26 b and a tertiary cleaning unit 26 c. Further, reversing devices 28 a 1 and 28 a 2 are symmetrically provided so as to correspond to the polishing units 10 a and 10 b, respectively.
  • The [0076] secondary cleaning unit 26 b comprises a nozzle 42 for supplying a cleaning liquid to which ultrasonic vibration is applied to the semiconductor substrate W, and a cleaning member such as a pencil type sponge for scrubbing the semiconductor substrate W by bringing the cleaning member into contact with the semiconductor substrate W. That is, the secondary cleaning unit 26 b is a pencil and megasonic and mechanical chuck type cleaning unit having a drying function. The tertiary cleaning unit 26 c having a drying function comprises a cleaning member such as a pencil type sponge, and is a pencil and mechanical chuck type cleaning unit.
  • According to this embodiment, in addition to two-stage cleaning, three-stage cleaning can be performed, and hence a plurality of cleaning methods can be conducted in the single polishing apparatus. To be more specific, with regard to the semiconductor substrate W which has been polished in the polishing [0077] unit 10 a, two-stage cleaning in which the primary cleaning process conducted by the primary cleaning unit 26 a 1, the secondary cleaning process conducted by the tertiary cleaning unit 26 c, and the spin-drying process are performed sequentially, and three-stage cleaning in which the primary cleaning process conducted by the primary cleaning unit 26 a 1, the secondary cleaning process conducted by the secondary cleaning unit 26 b, the tertiary cleaning process conducted by the tertiary cleaning unit 26 c, and the spin-drying process are performed sequentially can be conducted. On the other hand, with regard to the semiconductor substrate W which has been polished in the polishing unit 10 b, two-stage cleaning in which the primary cleaning process conducted by the primary cleaning unit 26 a 2, the secondary cleaning process conducted by the secondary cleaning unit 26 b or the tertiary cleaning unit 26 c, and the spin-drying process are performed sequentially, and three-stage cleaning in which the primary cleaning process conducted by the primary cleaning unit 26 a 2, the secondary cleaning process conducted by the secondary cleaning unit 26 b, the tertiary cleaning process conducted by the tertiary cleaning unit 26 c, and the spin-drying process are performed sequentially can be conducted.
  • Further, the following polishing processes {circle over ([0078] 1)} to {circle over (5)} can be conducted. That is, one semiconductor substrate is processed in the following route.
  • {circle over ([0079] 1)} the primary cleaning unit 26 a 1 or the primary cleaning unit 26 a 2 (either one which is not used currently is used),→the secondary cleaning unit 26 b→the tertiary cleaning unit 26 c (three-stage cleaning)
  • {circle over ([0080] 2)} the primary cleaning unit 26 a 1→the tertiary cleaning unit 26 c→the primary cleaning unit 26 a 2→the secondary cleaning unit 26 b
  • {circle over ([0081] 3)} the primary cleaning unit 26 a 1→the primary cleaning unit 26 a 2→the secondary cleaning unit 26 b→the tertiary cleaning unit 26 c
  • {circle over ([0082] 4)} two-stage polishing (for example, the polishing unit 10 a→the polishing unit 10 b)→the primary cleaning unit 26 a 1→the tertiary cleaning unit 26 c or the primary cleaning unit 26 a 2→the secondary cleaning unit 26 b (in this case, the cleaning route in which high throughput is obtained is selected)
  • {circle over ([0083] 5)} the primary polishing in the polishing unit 10 a→the primary cleaning unit 26 a 1→the secondary cleaning in the polishing unit 10 b→the primary cleaning unit 26 a 2→the secondary cleaning unit 26 b→the tertiary cleaning unit 26 c (three-stage cleaning)
  • As described above, depending on the polishing time, cleaning time, or the kind of the semiconductor substrate, the cleaning process can be selected to achieve optimum characteristics of the polished surface of the semiconductor substrate and also high throughput. [0084]
  • According to this embodiment, four cleaning units which perform three different kinds of cleaning processes are used to perform two-stage cleaning or three-stage cleaning. However, four cleaning units which perform four kinds of different cleaning processes, or more cleaning units may be used to perform four-stage cleaning. In those cases, a plurality of cleaning units which perform different cleaning processes may be modularized, and may be separable from the polishing apparatus and replaceable to thereby comply with various processes. [0085]
  • FIG. 9 shows a polishing apparatus according to a fifth embodiment of the present invention. In the [0086] polishing section 10, in addition to the polishing unit 10 a which performs normal polishing, a small-sized finish polishing unit 10 c which performs water polishing is provided. The finish polishing unit 10 c has a finish polishing table 12 c having a diameter slightly larger than the semiconductor substrate W to be polished. The finish polishing table 12 c does not rotate about its own axis, but performs a circulatory translational motion in a horizontal plane. This circulatory translational motion is referred to as “orbital motion” or “scroll motion”. This circulatory translational motion is achieved by a structure in which a driving end provided eccentrically at an upper end of a driving shaft of a motor is accommodated in a recess formed in a lower surface of the finish polishing table through a bearing, and the rotation of the finish polishing table about its own axis is mechanically restrained. Further, since the water polishing time is shorter than the normal polishing time, in addition to the polishing unit shown in FIG. 9, a polishing unit which performs a second normal polishing may be provided to thereby achieve further high throughput.
  • For the finish polishing table [0087] 12 c, a material softer than the normal polishing cloth is preferably used. Examples of the polishing cloth which are commercially available are nonwoven fabric cloth made of polyester, and Politex, Suba 800 and IC-1000 manufactured by Rodel Products Corporation, and Surfin xxx-5 and Surfin 000 manufactured by Fujimi Inc. The polishing cloth sold under the tradenames Suba 800, Surfin xxx-5, and Surfin 000 is made of nonwoven fabric composed of fibers bound together by urethane resin, and the polishing cloth sold under the tradename IC-1000 is made of.
  • Examples of a wiping cloth which are commercially available are Miracle Series (tradename) sold by Toray Industries, Inc., and Minimax (tradename) sold by Kanebo, Ltd. These wiping cloth have a number of fibers, having a diameter of 1 to 2 μm, of 15,500-31,000/cm[0088] 2 (a hundred thousand to two hundred thousand per in2) in a high density manner, and have a large number of contacting points contacting the object to be wiped, and thus have an excellent ability for wiping fine particles. Since the wiping cloth is a thin cloth, it is desirable that the wiping cloth is attached to the polishing table through a cushioning member such as a sponge or a rubber so as not to damage the semiconductor substrate during finish polishing.
  • As a condition of water polishing process in the polishing table [0089] 12 c, the polishing pressure is 0-200 g/cm2, the relative speed between the polishing table and the semiconductor substrate is 0.07-0.6 m/sec, and the processing time is 10-120 second.
  • According to this embodiment, the polishing apparatus offers throughput higher than that of the polishing apparatus of FIG. 1, and occupies an installation floor area smaller than that of the polishing apparatus of FIG. 6. Further, since the [0090] finish polishing unit 10 c for exclusively performing water polishing is provided, the polishing apparatus has an excellent finish processing capability in which there will be few scratches and few particles on the polished surface of the semiconductor substrate. The cloth for finish polishing (water polishing) attached to the finish polishing table 12 c may be applied to the polishing unit 10 b which is used for water polishing in serial processing in FIG. 6.
  • Although the method and apparatus for polishing a SiO[0091] 2 layer on the semiconductor substrate W has been described in the above embodiments, the present invention is not limited to those embodiments. For example, when polishing a metal layer such as a CU layer, diluted hydrofluoric acid or an acid aqueous solution containing HCl may be used as an etching liquid in the primary cleaning unit.
  • As is apparent from the above description, according to the present invention, since the semiconductor substrates W are cleaned and dried by the two cleaning units, the processing time can be shortened and the cost of the polishing apparatus can be reduced, compared with the conventional apparatus. Further, since the number of times of transporting the semiconductor substrate is reduced, the processes are simplified and the chance of contamination of the semiconductor substrate is reduced. Therefore, the processing time is shortened and a semiconductor substrate having a high degree of cleanliness may be obtained by a small-sized apparatus. [0092]
  • Although certain preferred embodiments of the present invention have been shown and described in detail, it should be understood that various changes and modifications may be made therein without departing from the scope of the appended claims. [0093]

Claims (21)

What is claimed is:
1. A method of polishing and then cleaning a substrate, comprising:
polishing a substrate by pressing said substrate against a polishing surface; then
primarily cleaning said substrate in at least one of two first cleaning units; and then
secondarily cleaning said substrate in a common second cleaning unit, wherein said common second cleaning unit is constructed and arranged to receive a substrate from each of said two first cleaning units.
2. The method according to claim 1, wherein
primarily cleaning said substrate comprises primarily cleaning said substrate in each of said two first cleaning units.
3. The method according to claim 2, wherein
primarily cleaning said substrate in each of said two first cleaning units comprises cleaning said substrate in each of said two first cleaning units by subjecting said substrate to the same cleaning function in said each of said two first cleaning units.
4. The method according to claim 2, further comprising:
drying said substrate after secondarily cleaning said substrate.
5. The method according to claim 2, wherein
primarily cleaning said substrate comprises supplying an etching liquid to said substrate, or
secondarily cleaning said substrate comprises supplying an etching liquid to said substrate.
6. The method according to claim 2, wherein
primarily cleaning said substrate in each of said two first cleaning units comprises primarily cleaning said substrate in each of said two first cleaning units for a time period that is greater than a time period for which said substrate is secondarily cleaned in said common second cleaning unit.
7. The method according to claim 2, wherein
primarily cleaning said substrate comprises using ionic water, ozone water, or hydrogenated water as a cleaning liquid, or
secondarily cleaning said substrate comprises using ionic water, ozone water, or hydrogenated water as a cleaning liquid.
8. The method according to claim 2, wherein
primarily cleaning said substrate in each of said two first cleaning units comprises primarily cleaning said substrate in each of two first cleaning units that are arranged parallel to one another.
9. The method according to claim 1, further comprising:
polishing another substrate by pressing said another substrate against a polishing surface; then
primarily cleaning said another substrate in a first of said two first cleaning units; and then
secondarily cleaning said another substrate in said common second cleaning unit, wherein
primarily cleaning said substrate in at least one of said two first cleaning units comprises primarily cleaning said substrate in a second of said two first cleaning units.
10. The method according to claim 9, wherein
primarily cleaning said substrate in said second of said two first cleaning units comprises cleaning said substrate in said second of said two first cleaning units by subjecting said substrate to a first cleaning function, and
primarily cleaning said another substrate in said first of said two first cleaning units comprises cleaning said another substrate in said first of said two first cleaning units by subjecting said another substrate to a second cleaning function that is the same as said first cleaning function.
11. The method according to claim 9, further comprising:
drying said substrate and said another substrate after secondarily cleaning said substrate and said another substrate.
12. The method according to claim 9, wherein
primarily cleaning said substrate and said another substrate comprises supplying an etching liquid to said substrate and said another substrate, or
secondarily cleaning said substrate and said another substrate comprises supplying an etching liquid to said substrate and said another substrate.
13. The method according to claim 9, wherein
primarily cleaning said substrate in said second of said two first cleaning units comprises primarily cleaning said substrate in said second of said two first cleaning units for a time period that is greater than a time period for which said substrate is secondarily cleaned in said common second cleaning unit, and
primarily cleaning said another substrate in said first of said two first cleaning units comprises primarily cleaning said another substrate in said first of said two first cleaning units for a time period that is greater than a time period for which said another substrate is secondarily cleaned in said common second cleaning unit.
14. The method according to claim 9, wherein
primarily cleaning said substrate and said another substrate comprises using ionic water, ozone water, or hydrogenated water as a cleaning liquid, or
secondarily cleaning said substrate and said another substrate comprises using ionic water, ozone water, or hydrogenated water as a cleaning liquid.
15. The method according to claim 9, wherein
primarily cleaning said substrate and primarily cleaning said another substrate comprises primarily cleaning said substrate in parallel with primarily cleaning said another substrate.
16. The method according to claim 1, wherein
primarily cleaning said substrate in at least one of said two first cleaning units comprises cleaning said substrate in said at least one of said two first cleaning units by subjecting said substrate to a cleaning function that is the same as a cleaning function to be performed in the other of said two first cleaning units.
17. The method according to claim 1, further comprising:
drying said substrate after secondarily cleaning said substrate.
18. The method according to claim 1, wherein
primarily cleaning said substrate comprises supplying an etching liquid to said substrate, or
secondarily cleaning said substrate comprises supplying an etching liquid to said substrate.
19. The method according to claim 1, wherein
primarily cleaning said substrate in at least one of said two first cleaning units comprises primarily cleaning said substrate in said at least one of said two first cleaning units for a time period that is greater than a time period for which said substrate is secondarily cleaned in said common second cleaning unit.
20. The method according to claim 1, wherein
primarily cleaning said substrate comprises using ionic water, ozone water, or hydrogenated water as a cleaning liquid, or
secondarily cleaning said substrate comprises using ionic water, ozone water, or hydrogenated water as a cleaning liquid.
21. The method according to claim 1, wherein
primarily cleaning said substrate in at least one of said two first cleaning units comprises primarily cleaning said substrate in at least one of two first cleaning units that are arranged parallel to one another.
US10/774,489 1998-11-06 2004-02-10 Method and apparatus for polishing a substrate Abandoned US20040155013A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/774,489 US20040155013A1 (en) 1998-11-06 2004-02-10 Method and apparatus for polishing a substrate

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP31652298 1998-11-06
JP10-316522 1998-11-06
JP11-138705 1999-05-19
JP13870599 1999-05-19
JP23677699A JP3979750B2 (en) 1998-11-06 1999-08-24 Substrate polishing equipment
JP11-236776 1999-08-24
US09/434,482 US6494985B1 (en) 1998-11-06 1999-11-05 Method and apparatus for polishing a substrate
US10/283,154 US20030051812A1 (en) 1998-11-06 2002-10-30 Method and apparatus for polishing a substrate
US10/774,489 US20040155013A1 (en) 1998-11-06 2004-02-10 Method and apparatus for polishing a substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/283,154 Continuation US20030051812A1 (en) 1998-11-06 2002-10-30 Method and apparatus for polishing a substrate

Publications (1)

Publication Number Publication Date
US20040155013A1 true US20040155013A1 (en) 2004-08-12

Family

ID=27317724

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/434,482 Expired - Lifetime US6494985B1 (en) 1998-11-06 1999-11-05 Method and apparatus for polishing a substrate
US10/283,154 Abandoned US20030051812A1 (en) 1998-11-06 2002-10-30 Method and apparatus for polishing a substrate
US10/774,489 Abandoned US20040155013A1 (en) 1998-11-06 2004-02-10 Method and apparatus for polishing a substrate

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/434,482 Expired - Lifetime US6494985B1 (en) 1998-11-06 1999-11-05 Method and apparatus for polishing a substrate
US10/283,154 Abandoned US20030051812A1 (en) 1998-11-06 2002-10-30 Method and apparatus for polishing a substrate

Country Status (6)

Country Link
US (3) US6494985B1 (en)
EP (2) EP0999012B1 (en)
JP (1) JP3979750B2 (en)
KR (1) KR100632412B1 (en)
DE (1) DE69927111T2 (en)
TW (1) TW445537B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070004211A1 (en) * 2003-03-24 2007-01-04 Samsung Electronics Co., Ltd. Methods of fabricating a semiconductor substrate for reducing wafer warpage
US20090137123A1 (en) * 2006-08-24 2009-05-28 Fujimi Incorporated Polishing Composition and Polishing Method
CN102773787A (en) * 2011-05-12 2012-11-14 南亚科技股份有限公司 Chemical mechanical polishing system
CN102773789A (en) * 2011-05-13 2012-11-14 南亚科技股份有限公司 CMP apparatus and method
CN102773786A (en) * 2011-05-11 2012-11-14 南亚科技股份有限公司 Chemical mechanical polishing system

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3979750B2 (en) * 1998-11-06 2007-09-19 株式会社荏原製作所 Substrate polishing equipment
US6526995B1 (en) 1999-06-29 2003-03-04 Intersil Americas Inc. Brushless multipass silicon wafer cleaning process for post chemical mechanical polishing using immersion
KR20010021299A (en) 1999-08-14 2001-03-15 조셉 제이. 스위니 Backside etching in a scrubber
JP2001326201A (en) * 2000-05-16 2001-11-22 Ebara Corp Polishing device
US20020023715A1 (en) * 2000-05-26 2002-02-28 Norio Kimura Substrate polishing apparatus and substrate polishing mehod
US7172497B2 (en) 2001-01-05 2007-02-06 Asm Nutool, Inc. Fabrication of semiconductor interconnect structures
US6953392B2 (en) * 2001-01-05 2005-10-11 Asm Nutool, Inc. Integrated system for processing semiconductor wafers
US7204743B2 (en) * 2001-02-27 2007-04-17 Novellus Systems, Inc. Integrated circuit interconnect fabrication systems
US20040259348A1 (en) * 2001-02-27 2004-12-23 Basol Bulent M. Method of reducing post-CMP defectivity
TWI222154B (en) * 2001-02-27 2004-10-11 Asm Nutool Inc Integrated system for processing semiconductor wafers
JP2003021818A (en) * 2001-07-05 2003-01-24 Toshiba Corp Method for manufacturing flat panel display element
US20030022498A1 (en) * 2001-07-27 2003-01-30 Jeong In Kwon CMP system and method for efficiently processing semiconductor wafers
KR20040018558A (en) * 2001-08-13 2004-03-03 가부시키 가이샤 에바라 세이사꾸쇼 Semiconductor device and production method therefor, and plating solution
US6638145B2 (en) * 2001-08-31 2003-10-28 Koninklijke Philips Electronics N.V. Constant pH polish and scrub
JP2003077871A (en) * 2001-09-04 2003-03-14 Komatsu Machinery Corp Planar grinding system of semiconductor wafer and working method therefor
JP4101609B2 (en) * 2001-12-07 2008-06-18 大日本スクリーン製造株式会社 Substrate processing method
US6863595B1 (en) * 2001-12-19 2005-03-08 Cypress Semiconductor Corp. Methods for polishing a semiconductor topography
US7077916B2 (en) * 2002-03-11 2006-07-18 Matsushita Electric Industrial Co., Ltd. Substrate cleaning method and cleaning apparatus
JP2003318151A (en) * 2002-04-19 2003-11-07 Nec Electronics Corp Method of manufacturing semiconductor device
DE10229000A1 (en) * 2002-06-28 2004-01-29 Advanced Micro Devices, Inc., Sunnyvale Device and method for reducing the oxidation of polished metal surfaces in a chemical mechanical polishing process
JP4698144B2 (en) * 2003-07-31 2011-06-08 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
US20050106359A1 (en) * 2003-11-13 2005-05-19 Honeywell International Inc. Method of processing substrate
US20060077817A1 (en) * 2004-09-13 2006-04-13 Seo Kang S Method and apparatus for reproducing data from recording medium using local storage
US7993485B2 (en) * 2005-12-09 2011-08-09 Applied Materials, Inc. Methods and apparatus for processing a substrate
US20070131653A1 (en) * 2005-12-09 2007-06-14 Ettinger Gary C Methods and apparatus for processing a substrate
KR100744222B1 (en) * 2005-12-27 2007-07-30 동부일렉트로닉스 주식회사 Chemical-mechanical polishing system
US8205625B2 (en) * 2006-11-28 2012-06-26 Ebara Corporation Apparatus and method for surface treatment of substrate, and substrate processing apparatus and method
JP5258082B2 (en) * 2007-07-12 2013-08-07 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
US7670438B2 (en) * 2007-10-03 2010-03-02 United Microelectronics Corp. Method of removing particles from wafer
CN101419903B (en) * 2007-10-24 2010-06-23 联华电子股份有限公司 Method for removing granules on wafer
JP5306644B2 (en) * 2007-12-29 2013-10-02 Hoya株式会社 Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of reflecting mask blank, and manufacturing method of reflecting mask
KR101958874B1 (en) 2008-06-04 2019-03-15 가부시키가이샤 에바라 세이사꾸쇼 Substrate processing apparatus, substrate processing method, substrate holding mechanism, and substrate holding method
US9190096B2 (en) * 2008-10-17 2015-11-17 Hoya Corporation Method for producing glass substrate and method for producing magnetic recording medium
US20130061876A1 (en) * 2011-09-14 2013-03-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Device Surface Clean
KR102559647B1 (en) * 2016-08-12 2023-07-25 삼성디스플레이 주식회사 Substrate polishing system and substrate polishing method
JP7368137B2 (en) * 2019-08-06 2023-10-24 株式会社ディスコ Wafer processing method
US11555250B2 (en) 2020-04-29 2023-01-17 Applied Materials, Inc. Organic contamination free surface machining

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923567A (en) * 1974-08-09 1975-12-02 Silicon Materials Inc Method of reclaiming a semiconductor wafer
US4141180A (en) * 1977-09-21 1979-02-27 Kayex Corporation Polishing apparatus
US5429070A (en) * 1989-06-13 1995-07-04 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5616063A (en) * 1993-09-21 1997-04-01 Kabushiki Kaisya Toshiba Polishing apparatus
US5655954A (en) * 1994-11-29 1997-08-12 Toshiba Kikai Kabushiki Kaisha Polishing apparatus
US5725414A (en) * 1996-12-30 1998-03-10 Intel Corporation Apparatus for cleaning the side-edge and top-edge of a semiconductor wafer
US5827110A (en) * 1994-12-28 1998-10-27 Kabushiki Kaisha Toshiba Polishing facility
US5830045A (en) * 1995-08-21 1998-11-03 Ebara Corporation Polishing apparatus
US5928389A (en) * 1996-10-21 1999-07-27 Applied Materials, Inc. Method and apparatus for priority based scheduling of wafer processing within a multiple chamber semiconductor wafer processing tool
US5989107A (en) * 1996-05-16 1999-11-23 Ebara Corporation Method for polishing workpieces and apparatus therefor
US5996594A (en) * 1994-11-30 1999-12-07 Texas Instruments Incorporated Post-chemical mechanical planarization clean-up process using post-polish scrubbing
US6036582A (en) * 1997-06-06 2000-03-14 Ebara Corporation Polishing apparatus
US6050884A (en) * 1996-02-28 2000-04-18 Ebara Corporation Polishing apparatus
US6110024A (en) * 1996-09-04 2000-08-29 Ebara Corporation Polishing apparatus
US6116986A (en) * 1996-11-14 2000-09-12 Ebara Corporation Drainage structure in polishing plant and method of polishing using structure
US6125861A (en) * 1998-02-09 2000-10-03 Speedfam-Ipec Corporation Post-CMP wet-HF cleaning station
US6132564A (en) * 1997-11-17 2000-10-17 Tokyo Electron Limited In-situ pre-metallization clean and metallization of semiconductor wafers
US6148463A (en) * 1997-05-19 2000-11-21 Ebara Corporation Cleaning apparatus
US6227950B1 (en) * 1999-03-08 2001-05-08 Speedfam-Ipec Corporation Dual purpose handoff station for workpiece polishing machine
US6270582B1 (en) * 1997-12-15 2001-08-07 Applied Materials, Inc Single wafer load lock chamber for pre-processing and post-processing wafers in a vacuum processing system
US6332926B1 (en) * 1999-08-11 2001-12-25 General Electric Company Apparatus and method for selectively coating internal and external surfaces of an airfoil
US6454909B1 (en) * 1999-07-07 2002-09-24 Tokyo Electron Limited Method and apparatus for forming a film on an object to be processed
US6494985B1 (en) * 1998-11-06 2002-12-17 Ebara Corporation Method and apparatus for polishing a substrate
US6918814B2 (en) * 1997-11-21 2005-07-19 Ebara Corporation Polishing apparatus
US6989228B2 (en) * 1989-02-27 2006-01-24 Hitachi, Ltd Method and apparatus for processing samples

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3326642B2 (en) * 1993-11-09 2002-09-24 ソニー株式会社 Substrate post-polishing treatment method and polishing apparatus used therefor
JP3644706B2 (en) * 1994-11-29 2005-05-11 東芝機械株式会社 Polishing device
JP2850803B2 (en) * 1995-08-01 1999-01-27 信越半導体株式会社 Wafer polishing method
US5738574A (en) * 1995-10-27 1998-04-14 Applied Materials, Inc. Continuous processing system for chemical mechanical polishing
KR100496916B1 (en) * 1996-05-16 2005-09-30 가부시키가이샤 에바라 세이사꾸쇼 Polishing method and apparatus of workpiece
JPH10125641A (en) 1996-10-23 1998-05-15 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus and substrate treatment method

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923567A (en) * 1974-08-09 1975-12-02 Silicon Materials Inc Method of reclaiming a semiconductor wafer
US4141180A (en) * 1977-09-21 1979-02-27 Kayex Corporation Polishing apparatus
US6989228B2 (en) * 1989-02-27 2006-01-24 Hitachi, Ltd Method and apparatus for processing samples
US5429070A (en) * 1989-06-13 1995-07-04 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5616063A (en) * 1993-09-21 1997-04-01 Kabushiki Kaisya Toshiba Polishing apparatus
US5655954A (en) * 1994-11-29 1997-08-12 Toshiba Kikai Kabushiki Kaisha Polishing apparatus
US5996594A (en) * 1994-11-30 1999-12-07 Texas Instruments Incorporated Post-chemical mechanical planarization clean-up process using post-polish scrubbing
US5827110A (en) * 1994-12-28 1998-10-27 Kabushiki Kaisha Toshiba Polishing facility
US5830045A (en) * 1995-08-21 1998-11-03 Ebara Corporation Polishing apparatus
US6283822B1 (en) * 1995-08-21 2001-09-04 Ebara Corporation Polishing apparatus
US6050884A (en) * 1996-02-28 2000-04-18 Ebara Corporation Polishing apparatus
US5989107A (en) * 1996-05-16 1999-11-23 Ebara Corporation Method for polishing workpieces and apparatus therefor
US6110024A (en) * 1996-09-04 2000-08-29 Ebara Corporation Polishing apparatus
US6074443A (en) * 1996-10-21 2000-06-13 Applied Materials, Inc. Method and apparatus for scheduling wafer processing within a multiple chamber semiconductor wafer processing tool having a multiple blade robot
US5928389A (en) * 1996-10-21 1999-07-27 Applied Materials, Inc. Method and apparatus for priority based scheduling of wafer processing within a multiple chamber semiconductor wafer processing tool
US6116986A (en) * 1996-11-14 2000-09-12 Ebara Corporation Drainage structure in polishing plant and method of polishing using structure
US5725414A (en) * 1996-12-30 1998-03-10 Intel Corporation Apparatus for cleaning the side-edge and top-edge of a semiconductor wafer
US6148463A (en) * 1997-05-19 2000-11-21 Ebara Corporation Cleaning apparatus
US6036582A (en) * 1997-06-06 2000-03-14 Ebara Corporation Polishing apparatus
US6132564A (en) * 1997-11-17 2000-10-17 Tokyo Electron Limited In-situ pre-metallization clean and metallization of semiconductor wafers
US6918814B2 (en) * 1997-11-21 2005-07-19 Ebara Corporation Polishing apparatus
US6270582B1 (en) * 1997-12-15 2001-08-07 Applied Materials, Inc Single wafer load lock chamber for pre-processing and post-processing wafers in a vacuum processing system
US6125861A (en) * 1998-02-09 2000-10-03 Speedfam-Ipec Corporation Post-CMP wet-HF cleaning station
US6494985B1 (en) * 1998-11-06 2002-12-17 Ebara Corporation Method and apparatus for polishing a substrate
US6227950B1 (en) * 1999-03-08 2001-05-08 Speedfam-Ipec Corporation Dual purpose handoff station for workpiece polishing machine
US6454909B1 (en) * 1999-07-07 2002-09-24 Tokyo Electron Limited Method and apparatus for forming a film on an object to be processed
US6332926B1 (en) * 1999-08-11 2001-12-25 General Electric Company Apparatus and method for selectively coating internal and external surfaces of an airfoil

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070004211A1 (en) * 2003-03-24 2007-01-04 Samsung Electronics Co., Ltd. Methods of fabricating a semiconductor substrate for reducing wafer warpage
US7498213B2 (en) * 2003-03-24 2009-03-03 Samsung Electronics Co., Ltd. Methods of fabricating a semiconductor substrate for reducing wafer warpage
US20090137123A1 (en) * 2006-08-24 2009-05-28 Fujimi Incorporated Polishing Composition and Polishing Method
US8721909B2 (en) 2006-08-24 2014-05-13 Fujimi Incorporated Polishing composition and polishing method
CN102773786A (en) * 2011-05-11 2012-11-14 南亚科技股份有限公司 Chemical mechanical polishing system
US8739806B2 (en) 2011-05-11 2014-06-03 Nanya Technology Corp. Chemical mechanical polishing system
CN102773787A (en) * 2011-05-12 2012-11-14 南亚科技股份有限公司 Chemical mechanical polishing system
US20120289133A1 (en) * 2011-05-12 2012-11-15 Li-Chung Liu Chemical mechanical polishing system
US8662963B2 (en) * 2011-05-12 2014-03-04 Nanya Technology Corp. Chemical mechanical polishing system
CN102773789A (en) * 2011-05-13 2012-11-14 南亚科技股份有限公司 CMP apparatus and method

Also Published As

Publication number Publication date
JP2001035821A (en) 2001-02-09
DE69927111D1 (en) 2005-10-13
TW445537B (en) 2001-07-11
US6494985B1 (en) 2002-12-17
DE69927111T2 (en) 2006-06-29
EP1600258A1 (en) 2005-11-30
EP0999012A3 (en) 2003-01-29
KR100632412B1 (en) 2006-10-09
JP3979750B2 (en) 2007-09-19
EP0999012B1 (en) 2005-09-07
EP0999012A2 (en) 2000-05-10
KR20000035257A (en) 2000-06-26
US20030051812A1 (en) 2003-03-20

Similar Documents

Publication Publication Date Title
US6494985B1 (en) Method and apparatus for polishing a substrate
US6325698B1 (en) Cleaning method and polishing apparatus employing such cleaning method
US6942541B2 (en) Polishing apparatus
JPH08279483A (en) Method and equipment for removing particulate contamination thing from semiconductor wafer
US6560809B1 (en) Substrate cleaning apparatus
JP3560051B2 (en) Substrate polishing method and apparatus
US6817923B2 (en) Chemical mechanical processing system with mobile load cup
US6827633B2 (en) Polishing method
US20240082885A1 (en) Substrate cleaning device and method of cleaning substrate
US20080035181A1 (en) Cleaning apparatus
JP2000176386A (en) Substrate cleaning apparatus
US6221773B1 (en) Method for working semiconductor wafer
JP4283068B2 (en) Method for initializing cleaning member of substrate cleaning apparatus, substrate cleaning apparatus, substrate polishing and cleaning system
US20210210353A1 (en) Method of processing substrate having polysilicon layer and system thereof
US20030186553A1 (en) Process and device for cleaning a semiconductor wafer
JP2001345293A (en) Method and apparatus for chemical mechanical polishing
JP2003251555A (en) Polishing method
JPH11156712A (en) Polishing device
US20040198052A1 (en) Apparatus for manufacturing semiconductor device
US6676496B2 (en) Apparatus for processing semiconductor wafers
JP2004209644A (en) Substrate polishing method and device
JP2019042923A (en) Polishing device and processing method
JPH10335275A (en) Wafer surface cleaning method and integrated wafer polishing and cleaning apparatus
JP2005045035A (en) Method of cleaning substrate, method of grinding and cleaning substrate, substrate cleaning device, and substrate grinding and cleaning system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION