US20040121098A1 - Metallocene-produced polyethylene for glossy plastic containers - Google Patents
Metallocene-produced polyethylene for glossy plastic containers Download PDFInfo
- Publication number
- US20040121098A1 US20040121098A1 US10/333,175 US33317503A US2004121098A1 US 20040121098 A1 US20040121098 A1 US 20040121098A1 US 33317503 A US33317503 A US 33317503A US 2004121098 A1 US2004121098 A1 US 2004121098A1
- Authority
- US
- United States
- Prior art keywords
- polyethylene
- produced
- metallocene
- bottles
- plastic containers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- -1 polyethylene Polymers 0.000 title claims abstract description 24
- 239000004698 Polyethylene Substances 0.000 title claims abstract description 23
- 229920003023 plastic Polymers 0.000 title claims abstract description 23
- 239000004033 plastic Substances 0.000 title claims abstract description 23
- 229920000573 polyethylene Polymers 0.000 title claims abstract description 23
- 239000000155 melt Substances 0.000 claims abstract description 7
- 239000010410 layer Substances 0.000 claims description 23
- 238000009826 distribution Methods 0.000 claims description 11
- 229920013716 polyethylene resin Polymers 0.000 claims description 10
- 238000004806 packaging method and process Methods 0.000 claims description 7
- 238000000071 blow moulding Methods 0.000 claims description 6
- 239000002356 single layer Substances 0.000 claims description 3
- 239000002537 cosmetic Substances 0.000 claims description 2
- 239000008267 milk Substances 0.000 claims description 2
- 210000004080 milk Anatomy 0.000 claims description 2
- 235000013336 milk Nutrition 0.000 claims description 2
- 239000011347 resin Substances 0.000 description 27
- 229920005989 resin Polymers 0.000 description 27
- 238000000034 method Methods 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 12
- 229920001903 high density polyethylene Polymers 0.000 description 11
- 239000004700 high-density polyethylene Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 239000012968 metallocene catalyst Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- 229910052681 coesite Inorganic materials 0.000 description 6
- 229910052906 cristobalite Inorganic materials 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 229910052682 stishovite Inorganic materials 0.000 description 6
- 229910052905 tridymite Inorganic materials 0.000 description 6
- 150000001336 alkenes Chemical class 0.000 description 4
- 235000012438 extruded product Nutrition 0.000 description 4
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 4
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 3
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 0 *C(*)CC Chemical compound *C(*)CC 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- 239000009566 Mao-to Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- DLQZGRLCYQJIDQ-UHFFFAOYSA-L [Cl-].[Cl-].C=C.C12=CC=CCC2CCC1[Zr+2]C1C2=CC=CCC2CC1 Chemical compound [Cl-].[Cl-].C=C.C12=CC=CCC2CCC1[Zr+2]C1C2=CC=CCC2CC1 DLQZGRLCYQJIDQ-UHFFFAOYSA-L 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000002902 bimodal effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 230000006353 environmental stress Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 239000001282 iso-butane Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920001179 medium density polyethylene Polymers 0.000 description 2
- 239000004701 medium-density polyethylene Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000006748 scratching Methods 0.000 description 2
- 230000002393 scratching effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- AQZWEFBJYQSQEH-UHFFFAOYSA-N 2-methyloxaluminane Chemical compound C[Al]1CCCCO1 AQZWEFBJYQSQEH-UHFFFAOYSA-N 0.000 description 1
- 108010053481 Antifreeze Proteins Proteins 0.000 description 1
- CPNALZXLUFBDPN-UHFFFAOYSA-N C=C.C1=CC2=CC=CC=C2C1[Zr]C1C2=CC=CC=C2C=C1 Chemical compound C=C.C1=CC2=CC=CC=C2C1[Zr]C1C2=CC=CC=C2C=C1 CPNALZXLUFBDPN-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Natural products P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QSZGOMRHQRFORD-UHFFFAOYSA-L [Cl-].[Cl-].C=C.C1=CC2=CC=CC=C2C1[Zr+2]C1C2=CC=CC=C2C=C1 Chemical compound [Cl-].[Cl-].C=C.C1=CC2=CC=CC=C2C1[Zr+2]C1C2=CC=CC=C2C=C1 QSZGOMRHQRFORD-UHFFFAOYSA-L 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000010101 extrusion blow moulding Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/327—Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/406—Bright, glossy, shiny surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/04—Polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/40—Closed containers
- B32B2439/60—Bottles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
Definitions
- This invention is related to plastic containers having a glossy outer surface and in particular to the production high gloss bottles, jars, etc. formed of polyethylene.
- High gloss high density polyethylene has been used: it is characterised by a very narrow molecular weight distribution that is typically inferior to 8.
- the molecular weight distribution can be completely defined by means of a curve obtained by gel permeation chromatography.
- the molecular weight distribution is more simply defined by a parameter, known as the dispersion index D, which is the ratio between the average molecular weight by weight (Mw) and the average molecular weight by number (Mn).
- the dispersion index constitutes a measure of the width of the molecular weight distribution. It is known that a resin of narrow molecular weight distribution will produce plastic containers of very high gloss but simultaneously, that such resin will be very difficult to process and will be characterised by very poor mechanical properties. It has also been observed that said resins have poor mechanical properties, particularly, a very low environmental stress crack resistance (Modern Plastic International, August 1993, p. 45).
- HDPE high density polyethylene
- polyamide polyamide
- high gloss plastic containers comprise an internal layer including a polyolefin and an external layer including a styrenic component containing from 40 to 85 wt % of styrene, based on the weight of the external layer.
- An aim of the present invention is to produce plastic containers that offer simultaneously the desired glossy appearance, a good resistance to scratching and very low swell.
- the present invention provides single layer or multi-layer plastic containers, for which the external layer consists essentially of a metallocene-produced polyethylene having a density of from 0.930 to 0.966 g/cm 3 and a melt index MI2 of from 0.5 to 2.5 g/10min.
- the density of the polyethylene is measured at 23 ° C. using the procedures of ASTM D 1505.
- the melt index MI2 is measured using the procedures of ASTM D 1238 at 190° C. using a load of 2.16 kg.
- the high load melt index HLMI is measured using the procedures of ASTM D 1238 at 190 ° C. using a load of 21.6 kg.
- the external layer is prepared with a metallocene-produced polyethylene resin
- the inner layer(s) is(are) prepared with any one of the known catalysts, such as a chromium or a Ziegler-Natta or a metallocene catalyst, said metallocene catalyst being either the same as or different from the metallocene catalyst used to prepare the external layer.
- a number of different catalyst systems have been disclosed for the manufacture of polyethylene, in particular medium-density polyethylene (MDPE) and high-density polyethylene (HDPE) suitable for blow moulding. It is known in the art that the physical properties, in particular the mechanical properties, of a polyethylene product vary depending on what catalytic system was employed to make the polyethylene. This is because different catalyst systems tend to yield different molecular weight distributions in the polyethylene produced
- EP-A-0,291,824, EP-A-0,591,968 and U.S. Pat. No. 5,310,834 each disclose mixed catalyst compositions, incorporating chromium-based catalysts, for the polymerisation of polyethylene.
- the HDPE can be produced using a conventional Ziegler-Natta catalyst or a supported Ziegler-Natta catalyst comprising metallocene sites such as described in EP-A-0,585,512.
- the HDPE can further be polymerised with a metallocene catalyst capable of producing a mono- or bi- or multimodal distribution, either in a two step process such as described for example in EP-A-0,881,237, or as a dual or multiple site catalyst in a single reactor such as described for example in EP-A-0,619,325.
- a metallocene catalyst capable of producing a mono- or bi- or multimodal distribution, either in a two step process such as described for example in EP-A-0,881,237, or as a dual or multiple site catalyst in a single reactor such as described for example in EP-A-0,619,325.
- Any metallocene catalyst known in the art can be used in the present invention. It is represented by the general formula:
- Cp is a cyclopentadienyl ring
- M is a group 4 b , 5 b or 6 b transition metal
- R is a hydrocarbyl group or hydrocarboxy having from 1 to 20 carbon atoms
- X is a halogen
- (C 5 R′ k ) is a cyclopentadienyl or substituted cyclopentadienyl
- each R′ is the same or different and is hydrogen or a hydrocarbyl radical such as alkyl, alkenyl, aryl, alkylaryl, or arylalkyl radical containing from 1 to 20 carbon atoms or two carbon atoms are joined together to form a C 4 -C 6 ring
- R′′ is a C 1 -C 4 alkylene radical, a dialkyl germanium or silicon or siloxane, or a alkyl phosphine or amine radical bridging two (C 5 R′ k ) rings
- Q is a hydrocarbyl radical such as aryl, alkyl, alkenyl, alkylaryl, or aryl alkyl radical having from 1-20 carbon atoms, hydrocarboxy radical having 1-20 carbon atoms or halogen and can be the same or different from each other
- Q′ is
- metallocenes used in the present invention one can cite among others ethylene bis-(tetrahydroindenyl) zirconium dichloride and ethylene bis-(indenyl) zirconium dichloride as disclosed for example in WO 96/35729.
- the metallocene may be supported according to any method known in the art.
- the support used in the present invention can be any organic or inorganic solids, particularly porous supports such as talc, inorganic oxides, and resinous support material such as polyolefin.
- the support material is an inorganic oxide in its finely divided form.
- An active site must be created by adding a cocatalyst having an ionising action.
- alumoxane is used as cocatalyst during the polymerization procedure, and any alumoxane known in the art is suitable.
- the preferred alumoxanes comprise oligomeric linear and/or cyclic alkyl alumoxanes represented by the formula:
- n is 1-40, preferably 10-20, m is 3-40, preferably 3-20 and R is a C 1 -C 8 alkyl group and preferably methyl.
- Methylalumoxane is preferably used.
- AIR x When alumoxane is not used as a cocatalyst, one or more aluminiumalkyl represented by the formula AIR x are used wherein each R is the same or different and is selected from halides or from alkoxy or alkyl groups having from 1 to 12 carbon atoms and x is from 1 to 3.
- Especially suitable aluminiumalkyl are trialkylaluminium, the most preferred being triisobutylaluminium (TIBAL).
- the metallocene catalyst utilised to produce a polyethylene can be used in gas, solution or slurry polymerisation.
- the polymerization process is conducted under slurry phase polymerization conditions.
- the polymerisation temperature ranges from 20 to 125° C., preferably from 60 to 95° C. and the pressure ranges from 0.1 to 5.6 Mpa, preferably from 2 to 4 Mpa, for a time ranging from 10 minutes to 4 hours, preferably from 1 and 2.5 hours).
- the polymerization reaction be run in a diluent at a temperature at which the polymer remains as a suspended solid in the diluent.
- a continuous loop reactor is preferably used for conducting the polymerisation.
- the average molecular weight is controlled by adding hydrogen during polymerisation.
- the relative amounts of hydrogen and olefin introduced into the polymerisation reactor are from 0.001 to 15 mole percent hydrogen and from 99.999 to 85 mole percent olefin based on total hydrogen and olefin present, preferably from 0.2 to 3 mole percent hydrogen and from 99.8 to 97 mole percent olefin.
- the density of the polyethylene is regulated by the amount of comonomer injected into the reactor; examples of comonomer which can be used include 1-olefins butene, hexene, octene, 4-methyl-pentene, and the like, the most preferred being hexene.
- the densities of the polyethylenes required for preparing the plastic containers of the present invention range from 0.930 g/cm 3 to 0.966 g/cm 3 .
- the melt index of polyethylene is regulated by the amount of hydrogen injected into the reactor.
- the melt indexes useful in the present invention range from 0.5 g/10′ to 2.5 g/10′.
- the polyethylene resin used in the present invention can be prepared with either a single site metallocene catalyst or with a multiple site metallocene catalyst and it has therefore either a monomodal or a bimodal molecular weight distribution.
- the molecular weight distribution is of from 2 to 20, preferably, of from 2 to 7 and more preferably of from 2 to 5.
- polyethylene resins produced in accordance with the above-described processes have physical properties making them particularly suitable for use as blow moulding grade polyethylenes.
- the polyethylene resins of the present invention are used preferably for producing containers of a capacity ranging from 0.005 to 5 l. They are more preferably used for producing food packaging, particularly milk bottles and juice bottles, cosmetic packaging and household packaging such as detergent packaging.
- the blow moulding machine incorporating a coextrusion die for extruding a parison to be blow moulded, can be any one of the machines generally used for blow moulding. The following have been used for processing the polyethylene:
- a Battenfeld Fisher VK1-4 available from Battenfeld this is a continuous extrusion or co-extrusion blow moulding machine with up to 6 extruders for the production of polyethylene bottles of 0.5 litre capacity, the bottles being either single layer or multi-layer with up to 6 layers;
- the plastic containers of the present invention are characterised by a very high gloss, as measured using the ASTM D 2457-90 test, a low haze as measured by ASTM D 1003-92, a very low swell and a outstanding resistance to drop.
- the swell is measured with the Gottfert 2002 capillary rheometer: it measures the diameter of the extruded product for different shear velocities.
- the capillary selection corresponds to a die having an effective length of 10 mm, a diameter of 2 mm and an aperture of 180 °.
- the temperature is 210 ° C.
- Shear velocities range from 7 to 725 sec ⁇ 1 , selected in decreasing order in order to reduce the time spent in the cylinder; 7 velocities are usually tested.
- the extruded product has a length of about 7cm, it is cut, after the pressure has been stabilised and the next velocity is selected.
- the extruded product (sample) is allowed to cool down in a rectilinear position.
- the diameter of the extruded product is then measured with an accuracy of 0.01 mm using a vernier, at 2.5 cm (d 2.5 ) and at 5 cm (d 5 ) from one end of the sample, making at each position d 2.5 and d 5 two measurements separated by an angle of 90 °.
- the swell G is determined as
- the swell value is measured for each of the selected shear velocities and a graph representing the swell as a function of shear velocity can be obtained.
- the drop resistance test is performed on one-litre bottles prepared in accordance with the present invention.
- the drop resistance is measured using the following procedure:
- the bottles had a fairly homogeneous thickness
- the empty bottles were stored at room temperature for about 20 hrs;
- the bottles were then filled with fluid, closed and brought to the desired conditioning as follows: 1) room temperature, water, 24+ ⁇ 3 hrs;
- a test run on a sample of 20 bottles included the following steps:
- H F H o +[ ⁇ H ( A/N ⁇ 0.5)]
- H o is the minimum height
- ⁇ H is the step distance
- A is given by the product (i*n i ) wherein n i represents the number of ruptures at each height considering only the last 7 ruptures and i is an integer 0,1,2, . . . indicating the number of steps above the minimum height H o ,
- N is the total number of ruptures.
- the typical weight of the container can be reduced by as much as 50% if so desired.
- the external layer is a metallocene-produced polyethylene and the internal layer is a polyethylene produced by any conventional method.
- the external layer represents from 5 to 14%, preferably about 10%, of the total wall thickness.
- the transformation temperatures are higher than on the VK1-4 machine, they range from 170 to 190 ° C.
- the polyethylene resin was obtained by continuous polymerisation in a loop slurry reactor with a supported and ionised metallocene catalyst prepared in two steps by first reacting SiO 2 with MAO to produce SiO 2 .MAO and then reacting 94 wt % of the SiO 2 .MAO produced in the first step with 6 wt % of ethylene bis-(tetrahydroindenyl) zirconium dichloride.
- the dry catalyst was slurried in isobutane and pre-contacted with triisobutylaluminium (TIBAI, 10 wt % in hexane) before injection in the reactor.
- TIBAI triisobutylaluminium
- the polyethylene resin was obtained by continuous polymerisation in a loop slurry reactor with a supported and ionised metallocene catalyst prepared in two steps by first reacting SiO 2 with MAO to produce SiO 2 .MAO and then reacting 96 wt % of the SiO 2 .MAO produced in the first step with 4 wt % of ethylene bis-(indenyl) zirconium.
- the dry catalyst was slurried in isobutane and pre-contacted with triisobutylaluminium (TiBAI, 10 wt % in hexane) before injection in the reactor. The reaction was conducted in a 70 l capacity loop reactor during ?
- RPM 1 is the number of rotations per minute.
- Nb*/min is the number of bottles produced per minute
- FIG. 1 displays the bottle's weight for the five resins tested.
- FIG. 2 represents the swell in % as a function of shear rate.
- FIG. 3 represents the production rate for the five resins tested.
- FIG. 4 represents the gloss in % for resins R4 and R1 when used as external layer or as internal layer.
- FIGURES show unambiguously the improved qualities of swell and gloss of the plastic containers obtained with metallocene-produced polyethylene.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
- Laminated Bodies (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/285,261 US20120068385A1 (en) | 2000-03-30 | 2011-10-31 | Metallocene-Produced Polyethylene For Glossy Plastic Containers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00201154.2 | 2000-03-30 | ||
EP00201154A EP1138702A1 (de) | 2000-03-30 | 2000-03-30 | Mit Metallocenkatalysatoren hergestelltes Polyethylen für glänzende Plastikbehälter |
PCT/EP2001/003525 WO2001072856A1 (en) | 2000-03-30 | 2001-03-28 | Metallocene-produced polyethylene for glossy plastic containers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2001/003525 A-371-Of-International WO2001072856A1 (en) | 2000-03-30 | 2001-03-28 | Metallocene-produced polyethylene for glossy plastic containers |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/285,261 Continuation US20120068385A1 (en) | 2000-03-30 | 2011-10-31 | Metallocene-Produced Polyethylene For Glossy Plastic Containers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040121098A1 true US20040121098A1 (en) | 2004-06-24 |
Family
ID=8171275
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/333,175 Abandoned US20040121098A1 (en) | 2000-03-30 | 2001-03-28 | Metallocene-produced polyethylene for glossy plastic containers |
US13/285,261 Abandoned US20120068385A1 (en) | 2000-03-30 | 2011-10-31 | Metallocene-Produced Polyethylene For Glossy Plastic Containers |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/285,261 Abandoned US20120068385A1 (en) | 2000-03-30 | 2011-10-31 | Metallocene-Produced Polyethylene For Glossy Plastic Containers |
Country Status (7)
Country | Link |
---|---|
US (2) | US20040121098A1 (de) |
EP (3) | EP1138702A1 (de) |
AT (2) | ATE319752T1 (de) |
AU (1) | AU2001254749A1 (de) |
DE (1) | DE60117774T2 (de) |
ES (1) | ES2259027T3 (de) |
WO (1) | WO2001072856A1 (de) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050255264A1 (en) * | 2002-04-26 | 2005-11-17 | Eric Maziers | Rotomoulded articles prepared with polyethylene |
US20060051538A1 (en) * | 2001-10-02 | 2006-03-09 | Eric Maziers | High escr glossy plastic containers |
US20070042149A1 (en) * | 2005-08-16 | 2007-02-22 | S.C. Johnson & Son, Inc. | Bottles made from metallocene polypropylene for delivery of fragrances |
US20070129518A1 (en) * | 2002-04-26 | 2007-06-07 | Eric Maziers | High dimension stability and high processability polyethylene in injection molding |
US20080287618A1 (en) * | 2004-11-19 | 2008-11-20 | Total Petrochemicals Research Feluy | Solid State Properties Of Polyethylene Prepared With Tetrahydroindenyl-Based Catalyst System |
US20090081397A1 (en) * | 2007-09-26 | 2009-03-26 | Carvell Lee A | System and method for creating high gloss plastic items via the use of styrenic copolymers as a coextruded layer |
US9827705B2 (en) | 2015-04-16 | 2017-11-28 | The Procter & Gamble Company | High gloss high density polyethylene containers |
WO2023192846A1 (en) | 2022-03-31 | 2023-10-05 | Exxonmobil Chemical Patents Inc. | Linear low density polyethylenes, polymerizations thereof, and films thereof |
WO2024044423A1 (en) | 2022-08-22 | 2024-02-29 | Exxonmobil Chemical Patents, Inc. | Polyethylene compositions and films made therefrom |
WO2024054736A1 (en) | 2022-09-07 | 2024-03-14 | Exxonmobil Chemical Patents Inc. | Polyethylenes and articles thereof |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1287969A1 (de) * | 2001-08-24 | 2003-03-05 | Atofina Research S.A. | Spritzblasgeformter Behälter aus metallocen-Polyethylen |
US20040043165A1 (en) * | 2002-08-27 | 2004-03-04 | Van Hulle Keith Eugene | Lidding components for containers |
EP1674523A1 (de) * | 2004-12-22 | 2006-06-28 | Total Petrochemicals Research Feluy | Kappen und Verschlüsse |
US7592395B2 (en) | 2006-08-01 | 2009-09-22 | Exxonmobil Chemical Patents Inc. | Multimodal polyethylene for use in single piece beverage bottle caps and closures |
EP2075125A1 (de) * | 2007-12-19 | 2009-07-01 | Total Petrochemicals Research Feluy | Korona-behandelte Polyethylen-Folien |
US8797540B2 (en) * | 2010-09-08 | 2014-08-05 | The Board Of Trustees Of The Leland Stanford Junior University | Slow-light fiber Bragg grating sensor |
US20130059140A1 (en) * | 2011-09-02 | 2013-03-07 | Chevron Phillips Chemical Company Lp | Multilayer Polymer Films Having Improved Barrier Properties |
US9018329B2 (en) | 2011-09-02 | 2015-04-28 | Chevron Phillips Chemical Company Lp | Polymer compositions having improved barrier properties |
US9284391B2 (en) | 2011-09-02 | 2016-03-15 | Chevron Phillips Chemical Company Lp | Polymer compositions having improved barrier properties |
BR112017005188A2 (pt) | 2014-10-03 | 2017-12-12 | Exxonmobil Chemical Patents Inc | polímeros de polietileno, filmes fabricados a partir dos mesmos e métodos para fabricar os mesmos |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5989725A (en) * | 1997-01-16 | 1999-11-23 | Tenneco Packaging | Clear high molecular weight film |
US6042906A (en) * | 1996-08-12 | 2000-03-28 | Toyo Seikan Kaisha, Ltd. | Flavor-retaining plastic multi-layer container |
US6255426B1 (en) * | 1997-04-01 | 2001-07-03 | Exxon Chemical Patents, Inc. | Easy processing linear low density polyethylene |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK0619325T3 (da) | 1993-04-07 | 2001-12-03 | Atofina Res | Katalysator og fremgangsmåde til fremstilling af polyalkener |
GB9402430D0 (en) * | 1994-02-08 | 1994-03-30 | Du Pont Canada | Multilayer ethylene copolymer film |
US5629253A (en) * | 1994-04-26 | 1997-05-13 | Exxon Chemical Patents, Inc. | Polymerization catalyst systems, their production and use |
US6419966B1 (en) * | 1994-12-22 | 2002-07-16 | Exxonmobil Chemical Patents Inc. | Polyethylene articles with improved resistance to water vapor transmission |
JP3570809B2 (ja) * | 1995-05-02 | 2004-09-29 | 三井化学株式会社 | ポリエチレンの製造方法 |
UA47394C2 (uk) * | 1995-05-16 | 2002-07-15 | Юнівейшн Текнолоджіз, Ллс | Етиленовий полімер, який має підвищену придатність до обробки та вирiб, що містить етиленовий полімер |
US5882750A (en) * | 1995-07-03 | 1999-03-16 | Mobil Oil Corporation | Single reactor bimodal HMW-HDPE film resin with improved bubble stability |
EP0756931B2 (de) * | 1995-07-31 | 2011-06-22 | Kureha Corporation | Mehrschichtfolie |
JPH0958648A (ja) * | 1995-08-16 | 1997-03-04 | Toyo Seikan Kaisha Ltd | プラスチックボトル及びその製法 |
AU5713998A (en) * | 1997-01-29 | 1998-08-18 | Tetra Laval Holdings & Finance Sa | Transparent high barrier multilayer structure |
EP0881237A1 (de) | 1997-05-26 | 1998-12-02 | Fina Research S.A. | Verfahren zur Herstellung von bimodalen Polyolefinen mit Metallocenkatalysatoren in zwei Reaktionszonen |
US6416833B1 (en) * | 1997-08-22 | 2002-07-09 | Dupont Canada Inc. | Interpolymer film pouch |
DE69821643D1 (de) * | 1997-11-26 | 2004-03-18 | Cryovac Inc | Heissschrumpffähige thermoplastische mehrschichtfolie |
JP2000129045A (ja) * | 1998-10-27 | 2000-05-09 | Asahi Chem Ind Co Ltd | ポリエチレン製クリーン容器 |
JP2000129044A (ja) * | 1998-10-27 | 2000-05-09 | Asahi Chem Ind Co Ltd | 高純度薬品用ポリエチレン容器 |
WO2000040625A1 (en) * | 1999-01-08 | 2000-07-13 | The Board Of Trustees Of The Leland Stanford Junior University | Ethylene copolymers with narrow composition distribution and high melting temperatures, and methods of production thereof |
-
2000
- 2000-03-30 EP EP00201154A patent/EP1138702A1/de not_active Withdrawn
-
2001
- 2001-03-28 EP EP05105335A patent/EP1593696B1/de not_active Expired - Lifetime
- 2001-03-28 AU AU2001254749A patent/AU2001254749A1/en not_active Abandoned
- 2001-03-28 DE DE60117774T patent/DE60117774T2/de not_active Expired - Lifetime
- 2001-03-28 WO PCT/EP2001/003525 patent/WO2001072856A1/en active IP Right Grant
- 2001-03-28 US US10/333,175 patent/US20040121098A1/en not_active Abandoned
- 2001-03-28 ES ES01927822T patent/ES2259027T3/es not_active Expired - Lifetime
- 2001-03-28 AT AT01927822T patent/ATE319752T1/de not_active IP Right Cessation
- 2001-03-28 EP EP01927822A patent/EP1268576B1/de not_active Expired - Lifetime
- 2001-03-28 AT AT05105335T patent/ATE520722T1/de not_active IP Right Cessation
-
2011
- 2011-10-31 US US13/285,261 patent/US20120068385A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6042906A (en) * | 1996-08-12 | 2000-03-28 | Toyo Seikan Kaisha, Ltd. | Flavor-retaining plastic multi-layer container |
US5989725A (en) * | 1997-01-16 | 1999-11-23 | Tenneco Packaging | Clear high molecular weight film |
US6255426B1 (en) * | 1997-04-01 | 2001-07-03 | Exxon Chemical Patents, Inc. | Easy processing linear low density polyethylene |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7514130B2 (en) | 2001-10-02 | 2009-04-07 | Fina Technology, Inc. | High ESCR glossy plastic containers |
US20060051538A1 (en) * | 2001-10-02 | 2006-03-09 | Eric Maziers | High escr glossy plastic containers |
US20050255264A1 (en) * | 2002-04-26 | 2005-11-17 | Eric Maziers | Rotomoulded articles prepared with polyethylene |
US20070129518A1 (en) * | 2002-04-26 | 2007-06-07 | Eric Maziers | High dimension stability and high processability polyethylene in injection molding |
US8420194B2 (en) * | 2002-04-26 | 2013-04-16 | Total Petrochemicals Research Feluy | Rotomoulded articles prepared with polyethylene |
US20120128908A1 (en) * | 2002-04-26 | 2012-05-24 | Total Petrochemical Research Feluy | Rotomoulded Articles Prepared With Polyethylene |
US8822611B2 (en) * | 2004-11-19 | 2014-09-02 | Total Research & Technology Feluy | Solid state properties of polyethylene prepared with tetrahydroindenyl-based catalyst system |
US20110059278A1 (en) * | 2004-11-19 | 2011-03-10 | Total Petrochemicals Research Feluy | Solid state properties of polyethylene prepared with tetrahydroindenyl-based catalyst system |
US20080287618A1 (en) * | 2004-11-19 | 2008-11-20 | Total Petrochemicals Research Feluy | Solid State Properties Of Polyethylene Prepared With Tetrahydroindenyl-Based Catalyst System |
US7416766B2 (en) | 2005-08-16 | 2008-08-26 | S.C. Johnson & Son, Inc. | Bottles made from metallocene polypropylene for delivery of fragrances |
US20070042149A1 (en) * | 2005-08-16 | 2007-02-22 | S.C. Johnson & Son, Inc. | Bottles made from metallocene polypropylene for delivery of fragrances |
US20090081397A1 (en) * | 2007-09-26 | 2009-03-26 | Carvell Lee A | System and method for creating high gloss plastic items via the use of styrenic copolymers as a coextruded layer |
US8263198B2 (en) | 2007-09-26 | 2012-09-11 | Chevron Phillips Chemical Company Lp | System and method for creating high gloss plastic items via the use of styrenic copolymers as a coextruded layer |
US9289955B2 (en) * | 2007-09-26 | 2016-03-22 | Chevron Phillips Chemical Company Lp | System and method for creating high gloss plastic items via the use of styrenic copolymers as a coextruded layer |
US9827705B2 (en) | 2015-04-16 | 2017-11-28 | The Procter & Gamble Company | High gloss high density polyethylene containers |
WO2023192846A1 (en) | 2022-03-31 | 2023-10-05 | Exxonmobil Chemical Patents Inc. | Linear low density polyethylenes, polymerizations thereof, and films thereof |
WO2024044423A1 (en) | 2022-08-22 | 2024-02-29 | Exxonmobil Chemical Patents, Inc. | Polyethylene compositions and films made therefrom |
WO2024054736A1 (en) | 2022-09-07 | 2024-03-14 | Exxonmobil Chemical Patents Inc. | Polyethylenes and articles thereof |
Also Published As
Publication number | Publication date |
---|---|
US20120068385A1 (en) | 2012-03-22 |
EP1593696A2 (de) | 2005-11-09 |
ATE520722T1 (de) | 2011-09-15 |
WO2001072856A1 (en) | 2001-10-04 |
EP1593696B1 (de) | 2011-08-17 |
ES2259027T3 (es) | 2006-09-16 |
AU2001254749A1 (en) | 2001-10-08 |
ATE319752T1 (de) | 2006-03-15 |
EP1138702A1 (de) | 2001-10-04 |
EP1593696A3 (de) | 2006-01-04 |
EP1268576A1 (de) | 2003-01-02 |
DE60117774T2 (de) | 2006-11-16 |
EP1268576B1 (de) | 2006-03-08 |
DE60117774D1 (de) | 2006-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120068385A1 (en) | Metallocene-Produced Polyethylene For Glossy Plastic Containers | |
US7807096B2 (en) | Injection blow molded single layer metallocene polyethylene container | |
US7250474B2 (en) | Physical blends of polyethylenes | |
CN1957003B (zh) | 铬基聚合催化剂,其制备方法以及用其制备的聚合物 | |
US7514130B2 (en) | High ESCR glossy plastic containers | |
JP2008544042A (ja) | 吹込成形用途のためのescr強化バイモーダルhdpe | |
WO2007018720A1 (en) | Polyethylene compositions for injection molding | |
CN102321203B (zh) | 铬基聚合催化剂,其制备方法以及用其制备的聚合物 | |
US7514504B2 (en) | Polyethylene blends with good contact transparency | |
EP1730230B1 (de) | Polyethylenblends mit guter kontakttransparenz | |
AU6584200A (en) | Container production process | |
EP2130860A1 (de) | Polymer | |
EP1805224B1 (de) | Katalysatorkomponente mit drei oder mehr verbrückten bisindenylmetallocenkomponenten | |
US20090136699A1 (en) | Glossy Tubes and Pipes | |
EP3651959B1 (de) | Spritzgegossene artikel mit metallocenkatalysiertem polyethylenharz | |
EP1273436A1 (de) | Glänzende Schläuche und Röhren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ATOFINA RESEARCH, BELGIUM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAZIERS, ERIC;REEL/FRAME:014611/0422 Effective date: 20030610 |
|
AS | Assignment |
Owner name: TOTAL PETROCHEMICALS RESEARCH FELUY, BELGIUM Free format text: CHANGE OF NAME;ASSIGNOR:ATOFINA RESEARCH;REEL/FRAME:016470/0203 Effective date: 20041001 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |