US20040061437A1 - Organic electroluminescent display device - Google Patents

Organic electroluminescent display device Download PDF

Info

Publication number
US20040061437A1
US20040061437A1 US10/662,298 US66229803A US2004061437A1 US 20040061437 A1 US20040061437 A1 US 20040061437A1 US 66229803 A US66229803 A US 66229803A US 2004061437 A1 US2004061437 A1 US 2004061437A1
Authority
US
United States
Prior art keywords
layer
organic
moisture
inorganic insulating
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/662,298
Inventor
Masakuni Ikagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Assigned to KABUSHIKI KAISHA TOSHIBA reassignment KABUSHIKI KAISHA TOSHIBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IKAGAWA, MASAKUNI
Publication of US20040061437A1 publication Critical patent/US20040061437A1/en
Priority to US11/375,045 priority Critical patent/US7226333B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present invention relates to an organic electroluminescent display device (organic EL display device) and, more particularly, to an organic EL display device having an improved organic EL element encapsulating structure.
  • An organic EL element incorporated into an organic EL display device generally has a transparent anode formed on an array substrate, a lattice-like bank formed on this anode to define a plurality of pixel regions, hole transporting layers formed on the anode exposed to these pixel regions, light emitting layers formed on these hole transporting layers so as to be lower than the upper surface of the bank, and made of an organic compound, and a cathode formed on the bank including these light emitting layers.
  • Examples of known techniques are a technique by which an organic EL element is covered and encapsulated with a moisture-resistant layer which is a laminated film obtained by stacking silicon oxide on a polyethyleneterephthalate film, and a technique by which an organic EL element is covered and encapsulated with an organic insulating layer containing silicon oxide or silicon nitride.
  • Jpn. Pat. Appln. KOKAI Publication No. 2002-056971 describes a method in which a glass, plastic, or metal encapsulating can is filled with a gas such as nitrogen containing barium oxide having a moisture absorbing effect, or with an inert liquid having little influence on an organic EL element, thereby forming an encapsulating layer.
  • a gas such as nitrogen containing barium oxide having a moisture absorbing effect
  • an inert liquid having little influence on an organic EL element
  • an organic EL display device comprising:
  • an organic EL element formed on the array substrate and having a transparent anode, a hole transporting layer, a light emitting layer, and a cathode;
  • an epoxy resin layer so formed as to cover the organic EL element and containing 1 wt % or less of water;
  • an organic EL display device comprising:
  • an organic EL element formed on the array substrate and having a transparent anode, a hole transporting layer, a light emitting layer, and a cathode;
  • an inorganic insulating layer so formed as to cover an outer circumferential surface of the organic EL element
  • an organic resin layer so formed as to cover at least the organic EL element which is covered with the inorganic insulating layer;
  • an organic EL display device comprising:
  • an organic EL element formed on the array substrate and having a transparent anode, a hole transporting layer, a light emitting layer, and a cathode,
  • a first inorganic insulating layer so formed as to cover at least an outer circumferential surface of the organic EL element
  • a second inorganic insulating layer formed on at least the first inorganic insulating layer so as to cover a surrounding surface of the moisture absorbing layer
  • an organic resin layer so formed as to cover at least the organic EL element which is covered with the first and second inorganic insulating layers;
  • FIG. 1 is a sectional view showing an organic EL display device according to the first embodiment of the present invention
  • FIG. 2 is a sectional view showing an organic EL display device according to the second embodiment of the present invention.
  • FIG. 3 is a sectional view showing an organic EL display device according to the third embodiment of the present invention.
  • FIG. 1 is a sectional view showing an organic EL display device according to a first embodiment of the present invention.
  • An organic EL element 2 is formed on an array substrate 1 . Details of the organic EL element 2 are not shown in FIG. 1.
  • the organic EL element 2 has a structure including a transparent anode formed on the array substrate 1 , a lattice-like bank formed on this anode to define a plurality of pixel regions, hole transporting layers formed on the anode exposed to these pixel regions, light emitting layers formed on these hole transporting layers so as to be lower than the upper surface of the bank, and made of an organic compound, and a cathode formed on the bank including these light emitting layers.
  • An epoxy resin layer 3 is formed on the array substrate 1 including the organic EL element 2 .
  • the epoxy resin layer 3 contains 1 wt % or less of water.
  • a moisture-resistant layer 4 is formed on the epoxy resin layer 3 .
  • the water content in the epoxy resin layer exceeds 1 wt %, this may lead to degradation of the light emitting layers forming the organic EL element, corrosion of the cathode, or the like.
  • the water content in the epoxy resin layer is more preferably 0.5 wt % or less.
  • the epoxy resin layer preferably has a thickness of 1 to 100 ⁇ m, and more preferably, 1 to 30 ⁇ m, which is larger than that of the organic EL element.
  • Examples of the moisture-resistant layer are: a laminated film in which one or more layers of at least one inorganic oxide selected from silicon oxide and aluminum oxide are stacked on a base film made of plastic such as polyethyleneterephthalate (PET); a laminated film having a three-layered structure in which a base film made of plastic such as PET is further stacked on the inorganic oxide layer of the laminated film described above; a laminated film in which one or more layers of at least one inorganic nitride selected from silicon nitride and aluminum nitride are stacked on the base film described above; a laminated film having a three-layered structure in which a base film made of plastic such as PET is further stacked on the inorganic nitride layer of the laminated film described above; a laminated film in which a metal such as aluminum, copper, nickel, or stainless steel is deposited on the base film described above; a laminated film having a three-layered structure in which a base film made of plastic such as PET
  • This moisture-resistant layer preferably has a thickness of 50 to 200 ⁇ m.
  • the above organic EL display device is manufactured by, e.g., the following methods.
  • this array substrate including the organic EL element is coated with an epoxy resin solution whose water content is reduced to 1 wt % or less by dehydration in advance, thereby forming an epoxy resin solution layer having a desired thickness.
  • a moisture-resistant layer is pushed against this epoxy resin solution layer.
  • the epoxy resin solution layer is then thermoset to adhere the moisture-resistant layer via the epoxy resin layer, thereby manufacturing the organic EL display device.
  • the epoxy resin layer 3 containing 1 wt % or less of water is formed on the array substrate 1 including the organic EL element 2 . That is, the epoxy resin layer 3 is so formed as to cover the organic EL element 2 . This prevents water from penetrating into the organic EL element 2 from the outside or from the epoxy resin layer 3 itself. As a consequence, it is possible to prevent degradation of the light emitting layers forming the organic EL element 2 , corrosion of the cathode, and the like.
  • the moisture-resistant layer 4 such as a laminated film in which silicon oxide is stacked on a base film made of plastic is formed on the epoxy resin layer. This makes it possible to prevent external water from penetrating into the organic EL element 2 in the longitudinal direction.
  • the members which intercept external water are the epoxy resin layer 3 and moisture-resistant layer 4 , and both the members can be made thin (e.g., the thickness of the epoxy resin layer 3 is 1 to 100 ⁇ m, and more preferably, 1 to 30 ⁇ m, which is larger than that of the organic EL element 2 , and the thickness of the moisture-resistant layer 4 is 50 to 200 ⁇ m). Therefore, a thin-film organic EL display device suitable as a display member of a portable telephone can be realized.
  • FIG. 2 is a sectional view showing an organic EL display device according to a second embodiment of the present invention.
  • the same reference numerals as in FIG. 1 of the first embodiment denote the same parts in FIG. 2, and a detailed explanation thereof will be omitted.
  • An organic EL element 2 having the same structure as in the first embodiment is formed on an array substrate 1 .
  • An inorganic insulating layer 5 is formed on the array substrate 1 including the organic EL element 2 .
  • An organic resin layer 6 is formed on the inorganic insulating layer 5 so as to have a flat surface.
  • a moisture-resistant layer 4 is formed on the organic resin layer 6 .
  • the inorganic insulating layer is a layer of at least one inorganic oxide selected from silicon oxide and aluminum oxide, or a layer of at least one inorganic nitride selected from silicon nitride and aluminum nitride.
  • This inorganic insulating layer preferably has a thickness of 0.1 to 5 ⁇ m, and more preferably, 0.1 to 3 ⁇ m.
  • the organic resin layer also functions as an adhesive of the moisture-resistant layer, and is made of, e.g., an epoxy-based or acryl-based thermoset resin, or an ultraviolet-curing resin.
  • the water content in this organic resin layer is preferably 1 wt % or less, and more preferably, 0.5 wt % or less.
  • the thickness of that portion of the organic resin layer, which corresponds to the array substrate except for the organic EL element is preferably 1 to 100 ⁇ m, and more preferably, 1 to 30 ⁇ m, which is larger than that of the organic EL element.
  • the same laminated film or metal foil as described in the first embodiment can be used.
  • This moisture-resistant layer preferably has a thickness of 50 to 200 ⁇ m.
  • the above organic EL display device is manufactured by the following methods.
  • a moisture-resistant layer is coated with an organic resin solution to form an organic resin solution layer having a desired thickness.
  • an organic EL element is formed on an array substrate, and an inorganic insulating layer is formed on this array substrate including the organic EL element by CVD method or sputtering method.
  • the moisture-resistant layer having the organic resin solution layer is pushed against the inorganic insulating layer such that the organic resin solution layer is in contact with the inorganic insulating layer.
  • the organic resin solution layer is then thermoset to adhere the moisture-resistant layer via the organic resin layer, thereby manufacturing the organic EL display device.
  • an inorganic insulating layer is formed on this array substrate including the organic EL element by CVD method or sputtering method. Subsequently, the inorganic insulating layer is coated with an organic resin solution to form an organic resin solution layer having a desired thickness. A moisture-resistant layer is pushed against this organic resin solution layer, and the organic resin solution layer is thermoset to adhere the moisture-resistant layer via the organic resin layer, thereby manufacturing the organic EL display device.
  • the inorganic insulating layer 5 such as a silicon oxide layer is formed on the array substrate 1 including the organic EL element 2 . That is, the inorganic insulating layer 5 is so formed as to cover the organic EL element 2 , and the moisture-resistant layer 4 is formed on the inorganic insulating layer 5 via the organic resin layer 6 .
  • the moisture-resistant layer 4 prevents external water from penetrating into the organic EL element 2 in the longitudinal direction.
  • the inorganic insulating layer 5 around the organic EL element 2 more reliably prevents water penetration. This makes it possible to prevent degradation of the light emitting layers forming the organic EL element 2 , corrosion of the cathode, and the like. Consequently, it is possible to obtain an organic EL display device which improves reliability and durability by suppressing degradation of an organic EL element for long time periods by intercepting external water penetration.
  • the members which intercept external water are the inorganic insulating layer 5 , organic resin layer 6 , and moisture-resistant layer 4 , and all these members can be made thin (e.g., the thickness of the inorganic insulating layer 5 is 0.1 to 5 ⁇ m, and more preferably, 0.1 to 3 ⁇ m, the thickness of the thick portion of the organic resin layer 6 is 1 to 100 ⁇ m, and more preferably, 1 to 30 ⁇ m, and the thickness of the moisture-resistant layer 4 is 50 to 200 ⁇ m). Therefore, a thin-film organic EL display device suitable as a display member of a portable telephone can be realized.
  • FIG. 3 is a sectional view showing an organic EL display device according to a third embodiment of the present invention.
  • the same reference numerals as in FIGS. 1 and 2 of the first and second embodiments denote the same parts in FIG. 3, and a detailed explanation thereof will be omitted.
  • An organic EL element 2 having the same structure as in the first embodiment is formed on an array substrate 1 .
  • a first inorganic insulating layer 7 is formed on the array substrate 1 including the organic EL element 2 .
  • a moisture absorbing layer 8 is formed on that portion of the first inorganic insulating layer 7 , which corresponds to the organic EL element 2 .
  • a second inorganic insulating layer 9 is formed on the first inorganic insulating layer 7 including the moisture absorbing layer 8 .
  • An organic resin layer 6 is formed on the second inorganic insulating layer 9 so as to have a flat surface.
  • a moisture-resistant layer 4 is formed on the organic resin layer 6 .
  • each of the first and second inorganic insulating layers is a layer of at least one inorganic oxide selected from silicon oxide and aluminum oxide, or a layer of at least one inorganic nitride selected from silicon nitride and aluminum nitride.
  • the first and second inorganic insulating layers can be made of the same material or different materials.
  • Each of the first and second inorganic insulating layers preferably has a thickness of 0.1 to 5 ⁇ m, and more preferably, 0.1 to 3 ⁇ m.
  • the moisture absorbing layer is at least one layer selected from calcium, barium, oxides of calcium and barium, silica gel, and polyvinyl alcohol.
  • This moisture absorbing layer preferably has a thickness of 0.01 to 0.5 ⁇ m.
  • the organic resin layer can be the same as that in the second embodiment.
  • the water content in this organic resin layer is preferably 1 wt % or less, and more preferably, 0.5 wt % or less.
  • the thickness of that portion of the organic resin layer, which corresponds to the array substrate except for the organic EL element is favorably 1 to 100 ⁇ m, and more preferably, 1 to 30 ⁇ m, which is larger than that of the organic EL element.
  • the same laminated film or metal foil as described in the first embodiment can be used.
  • This moisture-resistant layer preferably has a thickness of 50 to 200 ⁇ m.
  • the above organic EL display device is manufactured by the following method.
  • a moisture-resistant layer is coated with an organic resin solution to form an organic resin solution layer having a desired thickness.
  • an organic EL element is formed on an array substrate, and a first inorganic insulating layer is formed on this array substrate including the organic EL element by CVD method or sputtering method.
  • a moisture absorbing layer is formed by sputtering on that portion of the first inorganic insulating layer which corresponds to the organic EL element
  • a second inorganic insulating layer is formed on the first inorganic insulating layer including the moisture absorbing layer by CVD method or sputtering method.
  • the moisture-resistant layer having the organic resin solution layer is pushed against the second inorganic insulating layer such that the organic resin solution layer is in contact with the inorganic insulating layer.
  • the organic resin solution layer is then thermoset to adhere the moisture-resistant layer via the organic resin layer, thereby manufacturing the organic EL display device.
  • a first inorganic insulating layer is formed on this array substrate including the organic EL element by CVD method or sputtering method. Subsequently, a moisture absorbing layer is formed on that portion of the first inorganic insulating layer, which corresponds to the organic EL element, and a second inorganic insulating layer is formed on the first inorganic insulating layer including the moisture absorbing layer.
  • the second inorganic insulating layer is then coated with an organic resin solution to form an organic resin solution layer having a desired thickness. A moisture-resistant layer is pushed against this organic resin solution layer, and the organic resin solution layer is thermoset to adhere the moisture-resistant layer via the organic resin layer, thereby manufacturing the organic EL display device.
  • the first inorganic insulating layer 7 such as a silicon oxide layer is formed on the array substrate 1 including the organic EL element 2 . That is, the first inorganic insulating layer 7 is so formed as to cover the organic EL element 2 , and the moisture absorbing layer 8 is formed on that portion of the first inorganic insulating layer 7 , which corresponds to the organic EL element 2 .
  • the second inorganic insulating layer 9 is formed on the first inorganic insulating layer 7 including the moisture absorbing layer 8 , and the moisture-resistant layer 4 is formed on the second inorganic insulating layer 9 via the organic resin layer 6 .
  • the moisture-resistant layer 4 prevents external water from penetrating into the organic EL element 2 in the longitudinal direction.
  • the first and second inorganic insulating layers 7 and 9 around the organic EL element 2 prevent penetration of external water into the organic EL element 2 .
  • the moisture absorbing layer 8 interposed between those portions of the first and second inorganic insulating layers 7 and 9 which correspond to the organic EL element 2 adsorbs and holds the water penetrates into the organic EL element 2 in the longitudinal direction, thereby preventing water penetration into the organic EL element 2 .
  • the members which intercept external water are the first and second inorganic insulating layers 7 and 9 , moisture absorbing layer 8 , organic resin layer 6 , and moisture-resistant layer 4 , and all these members can be made thin (e.g., the thickness of each of the first and second inorganic insulating layers 7 and 9 is 0.1 to 5 ⁇ m, and more preferably, 0.1 to 3 ⁇ m, the thickness of the moisture absorbing layer 8 is 0.01 to 0.5 ⁇ m, the thickness of the thick portion of the organic resin layer 6 is 1 to 100 ⁇ m, and more preferably, 1 to 30 ⁇ m, and the thickness of the moisture-resistant layer 4 is 50 to 200 ⁇ m). Therefore, a thin-film organic EL display device suitable as a display member of a portable telephone can be realized.
  • the water content of an epoxy resin solution was reduced to 0.5 wt % by dehydration.
  • One surface of a moisture-resistant layer having a three-layered structure in which a 3 ⁇ m thick silicon oxide layer was interposed between two PET films was coated with the epoxy resin solution to form a 30 ⁇ m thick epoxy resin solution layer.
  • An organic EL display device was manufactured following the same procedure as in Example 1 except that an epoxy resin solution not dehydrated and containing 2 wt % of water was used.
  • each of the obtained organic EL display devices of Example 1 and Comparative Example 1 was left to stand in a high ambient temperature of 60° C. and high ambient humidity of 90% RH for 500 hrs. After that, each organic EL display device was caused to emit light by applying a predetermined voltage between the anode and cathode of the organic EL element, and the light emission state was visually checked.
  • one surface of a moisture-resistant layer having a three-layered structure in which a 10 ⁇ m thick silicon oxide layer was interposed between two PET films was coated with an epoxy resin solution to form a 30- ⁇ m thick epoxy resin solution layer.
  • Example 2 The obtained organic EL display device of Example 2 was left to stand in a high ambient temperature of 60° C. and high ambient humidity of 90% RH for 500 hrs the same as Example 1. After that, the organic EL display device was caused to emit light by applying a predetermined voltage between the anode and cathode of the organic EL element, and the light emission state was visually checked. As a consequence, no non-light-emitting region called a dark spot was formed.
  • one surface of a moisture-resistant layer having a three-layered structure in which a 3 ⁇ m thick silicon oxide layer was interposed between two PET films was coated with an epoxy resin solution to form a 10 ⁇ m thick epoxy resin solution layer.
  • a 3 ⁇ m thick organic EL element was formed on an array substrate, and a 0.1 ⁇ m thick silicon oxide layer (first inorganic insulating layer) was formed on this array substrate including the organic EL element by CVD method.
  • a 0.1 ⁇ m thick moisture absorbing layer made of calcium oxide was formed by sputtering on that portion of the first inorganic insulating layer, which corresponded to the organic EL element.
  • a 0.1 ⁇ m thick silicon oxide layer (second inorganic insulating layer) was formed on the first inorganic insulating layer including the moisture absorbing layer by CVD method.
  • the moisture-resistant layer having the epoxy resin solution layer was pushed against the second inorganic insulating layer such that the epoxy resin solution layer was in contact with the second inorganic insulting layer. Then, the epoxy resin solution layer was thermoset at 80° C. to adhere the moisture-resistant layer via the epoxy resin layer, thereby manufacturing an organic EL display device having the structure shown in FIG. 3.
  • the obtained organic EL display device of Example 3 was left to stand in a high ambient temperature of 60° C. and high ambient humidity of 90% RH for 500 hrs the same as Example 1. After that, the organic EL display device was caused to emit light by applying a predetermined voltage between the anode and cathode of the organic EL element, and the light emission state was visually checked. As a consequence, no non-light-emitting region called a dark spot was formed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

An organic electroluminescent display device includes an array substrate, an organic EL element formed on the array substrate and having a transparent anode, a hole transporting layer, a light emitting layer, and a cathode, an epoxy resin layer so formed as to cover the organic EL element and containing 1 wt % or less of water, and a moisture-resistant layer formed on the epoxy resin layer.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2002-284454, filed Sep. 27, 2002, the entire contents of which are incorporated herein by reference. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to an organic electroluminescent display device (organic EL display device) and, more particularly, to an organic EL display device having an improved organic EL element encapsulating structure. [0003]
  • 2. Description of the Related Art [0004]
  • An organic EL element incorporated into an organic EL display device generally has a transparent anode formed on an array substrate, a lattice-like bank formed on this anode to define a plurality of pixel regions, hole transporting layers formed on the anode exposed to these pixel regions, light emitting layers formed on these hole transporting layers so as to be lower than the upper surface of the bank, and made of an organic compound, and a cathode formed on the bank including these light emitting layers. [0005]
  • When this organic EL element is left to stand in the atmosphere, the atmospheric water and oxygen degrade the light emitting layers and cathode, and this degrades the performance of the element. More specifically, a non-light-emitting region called a dark spot is formed, and this dark spot expands with time. [0006]
  • To prevent this, organic EL display devices having various encapsulating structures for protecting the organic EL element from the outside have been researched and developed. [0007]
  • Examples of known techniques are a technique by which an organic EL element is covered and encapsulated with a moisture-resistant layer which is a laminated film obtained by stacking silicon oxide on a polyethyleneterephthalate film, and a technique by which an organic EL element is covered and encapsulated with an organic insulating layer containing silicon oxide or silicon nitride. [0008]
  • Unfortunately, when the moisture-resistant layer made of a laminated film is used, it is difficult to effectively prevent organic EL element degradation caused by water. [0009]
  • Also, when an organic EL element is encapsulated only with the inorganic insulating layer, the productivity lowers or the wear resistance lowers in order to increase the thickness. [0010]
  • Jpn. Pat. Appln. KOKAI Publication No. 2002-056971 describes a method in which a glass, plastic, or metal encapsulating can is filled with a gas such as nitrogen containing barium oxide having a moisture absorbing effect, or with an inert liquid having little influence on an organic EL element, thereby forming an encapsulating layer. However, these encapsulating structures have problems that heat generated when the organic EL display device is driven cannot be well dissipated, i.e., the heat dissipation properties degrade, and the thickness of the organic EL display device itself increases. [0011]
  • It is an object of the present invention to provide an organic EL display device which improves the reliability and durability by suppressing deterioration of an organic EL element for long time periods by stopping external water penetration. [0012]
  • BRIEF SUMMARY OF THE INVENTION
  • According to an aspect of the present invention, there is provided an organic EL display device comprising: [0013]
  • an array substrate; [0014]
  • an organic EL element formed on the array substrate and having a transparent anode, a hole transporting layer, a light emitting layer, and a cathode; [0015]
  • an epoxy resin layer so formed as to cover the organic EL element and containing 1 wt % or less of water; and [0016]
  • a moisture-resistant layer formed on the epoxy resin layer. [0017]
  • According to another aspect of the present invention, there is provided an organic EL display device comprising: [0018]
  • an array substrate; [0019]
  • an organic EL element formed on the array substrate and having a transparent anode, a hole transporting layer, a light emitting layer, and a cathode; [0020]
  • an inorganic insulating layer so formed as to cover an outer circumferential surface of the organic EL element; [0021]
  • an organic resin layer so formed as to cover at least the organic EL element which is covered with the inorganic insulating layer; and [0022]
  • a moisture-resistant layer formed on the organic resin layer. [0023]
  • According to still another aspect of the present invention, there is provided an organic EL display device comprising: [0024]
  • an array substrate; [0025]
  • an organic EL element formed on the array substrate and having a transparent anode, a hole transporting layer, a light emitting layer, and a cathode, [0026]
  • a first inorganic insulating layer so formed as to cover at least an outer circumferential surface of the organic EL element; [0027]
  • a moisture absorbing layer formed on the first inorganic insulating layer so as to oppose the organic EL element; [0028]
  • a second inorganic insulating layer formed on at least the first inorganic insulating layer so as to cover a surrounding surface of the moisture absorbing layer; [0029]
  • an organic resin layer so formed as to cover at least the organic EL element which is covered with the first and second inorganic insulating layers; and [0030]
  • a moisture-resistant layer formed on the organic resin layer.[0031]
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
  • FIG. 1 is a sectional view showing an organic EL display device according to the first embodiment of the present invention; [0032]
  • FIG. 2 is a sectional view showing an organic EL display device according to the second embodiment of the present invention; and [0033]
  • FIG. 3 is a sectional view showing an organic EL display device according to the third embodiment of the present invention.[0034]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Embodiments of the present invention will be described in detail below with reference to the accompanying drawing. [0035]
  • (First Embodiment) [0036]
  • FIG. 1 is a sectional view showing an organic EL display device according to a first embodiment of the present invention. [0037]
  • An [0038] organic EL element 2 is formed on an array substrate 1. Details of the organic EL element 2 are not shown in FIG. 1. For example, the organic EL element 2 has a structure including a transparent anode formed on the array substrate 1, a lattice-like bank formed on this anode to define a plurality of pixel regions, hole transporting layers formed on the anode exposed to these pixel regions, light emitting layers formed on these hole transporting layers so as to be lower than the upper surface of the bank, and made of an organic compound, and a cathode formed on the bank including these light emitting layers. An epoxy resin layer 3 is formed on the array substrate 1 including the organic EL element 2. The epoxy resin layer 3 contains 1 wt % or less of water. A moisture-resistant layer 4 is formed on the epoxy resin layer 3.
  • If the water content in the epoxy resin layer exceeds 1 wt %, this may lead to degradation of the light emitting layers forming the organic EL element, corrosion of the cathode, or the like. The water content in the epoxy resin layer is more preferably 0.5 wt % or less. [0039]
  • The epoxy resin layer preferably has a thickness of 1 to 100 μm, and more preferably, 1 to 30 μm, which is larger than that of the organic EL element. [0040]
  • Examples of the moisture-resistant layer are: a laminated film in which one or more layers of at least one inorganic oxide selected from silicon oxide and aluminum oxide are stacked on a base film made of plastic such as polyethyleneterephthalate (PET); a laminated film having a three-layered structure in which a base film made of plastic such as PET is further stacked on the inorganic oxide layer of the laminated film described above; a laminated film in which one or more layers of at least one inorganic nitride selected from silicon nitride and aluminum nitride are stacked on the base film described above; a laminated film having a three-layered structure in which a base film made of plastic such as PET is further stacked on the inorganic nitride layer of the laminated film described above; a laminated film in which a metal such as aluminum, copper, nickel, or stainless steel is deposited on the base film described above; a laminated film having a three-layered structure in which a base film made of plastic such as PET is further stacked on the metal layer of the laminated film described above; and a metal foil made of aluminum, copper, nickel, or stainless steel. [0041]
  • This moisture-resistant layer preferably has a thickness of 50 to 200 μm. [0042]
  • The above organic EL display device is manufactured by, e.g., the following methods. [0043]
  • 1) One surface of a moisture-resistant layer is coated with an epoxy resin solution whose water content is reduced to 1 wt % or less by dehydration in advance, thereby forming an epoxy resin solution layer having a desired thickness. Subsequently, an organic EL element is formed on an array substrate, and the moisture-resistant layer having the epoxy resin solution layer is pushed against this array substrate including the organic EL element such that the epoxy resin solution layer is in contact with the array substrate. The epoxy resin solution layer is then thermoset to adhere the moisture-resistant layer via the epoxy resin layer, thereby manufacturing the organic EL display device. [0044]
  • 2) After an organic EL element is formed on an array substrate, this array substrate including the organic EL element is coated with an epoxy resin solution whose water content is reduced to 1 wt % or less by dehydration in advance, thereby forming an epoxy resin solution layer having a desired thickness. A moisture-resistant layer is pushed against this epoxy resin solution layer. The epoxy resin solution layer is then thermoset to adhere the moisture-resistant layer via the epoxy resin layer, thereby manufacturing the organic EL display device. [0045]
  • In the first embodiment of the present invention as described above, the [0046] epoxy resin layer 3 containing 1 wt % or less of water is formed on the array substrate 1 including the organic EL element 2. That is, the epoxy resin layer 3 is so formed as to cover the organic EL element 2. This prevents water from penetrating into the organic EL element 2 from the outside or from the epoxy resin layer 3 itself. As a consequence, it is possible to prevent degradation of the light emitting layers forming the organic EL element 2, corrosion of the cathode, and the like.
  • Also, the moisture-[0047] resistant layer 4 such as a laminated film in which silicon oxide is stacked on a base film made of plastic is formed on the epoxy resin layer. This makes it possible to prevent external water from penetrating into the organic EL element 2 in the longitudinal direction.
  • Accordingly, it is possible to obtain an organic EL display device which improves the reliability and durability by suppressing degradation of an organic EL element for long time periods by intercepting external water penetration. [0048]
  • In addition, since the layered structure which intercepts external water can prevent the formation of an air layer, an organic EL display device having good heat dissipation properties can be realized. [0049]
  • Furthermore, the members which intercept external water are the [0050] epoxy resin layer 3 and moisture-resistant layer 4, and both the members can be made thin (e.g., the thickness of the epoxy resin layer 3 is 1 to 100 μm, and more preferably, 1 to 30 μm, which is larger than that of the organic EL element 2, and the thickness of the moisture-resistant layer 4 is 50 to 200 μm). Therefore, a thin-film organic EL display device suitable as a display member of a portable telephone can be realized.
  • (Second Embodiment) [0051]
  • FIG. 2 is a sectional view showing an organic EL display device according to a second embodiment of the present invention. The same reference numerals as in FIG. 1 of the first embodiment denote the same parts in FIG. 2, and a detailed explanation thereof will be omitted. [0052]
  • An [0053] organic EL element 2 having the same structure as in the first embodiment is formed on an array substrate 1. An inorganic insulating layer 5 is formed on the array substrate 1 including the organic EL element 2. An organic resin layer 6 is formed on the inorganic insulating layer 5 so as to have a flat surface. A moisture-resistant layer 4 is formed on the organic resin layer 6.
  • For example, the inorganic insulating layer is a layer of at least one inorganic oxide selected from silicon oxide and aluminum oxide, or a layer of at least one inorganic nitride selected from silicon nitride and aluminum nitride. [0054]
  • This inorganic insulating layer preferably has a thickness of 0.1 to 5 μm, and more preferably, 0.1 to 3 μm. [0055]
  • The organic resin layer also functions as an adhesive of the moisture-resistant layer, and is made of, e.g., an epoxy-based or acryl-based thermoset resin, or an ultraviolet-curing resin. The water content in this organic resin layer is preferably 1 wt % or less, and more preferably, 0.5 wt % or less. [0056]
  • The thickness of that portion of the organic resin layer, which corresponds to the array substrate except for the organic EL element is preferably 1 to 100 μm, and more preferably, 1 to 30 μm, which is larger than that of the organic EL element. [0057]
  • As the moisture-resistant layer, the same laminated film or metal foil as described in the first embodiment can be used. [0058]
  • This moisture-resistant layer preferably has a thickness of 50 to 200 μm. [0059]
  • For example, the above organic EL display device is manufactured by the following methods. [0060]
  • 1) One surface of a moisture-resistant layer is coated with an organic resin solution to form an organic resin solution layer having a desired thickness. Subsequently, an organic EL element is formed on an array substrate, and an inorganic insulating layer is formed on this array substrate including the organic EL element by CVD method or sputtering method. The moisture-resistant layer having the organic resin solution layer is pushed against the inorganic insulating layer such that the organic resin solution layer is in contact with the inorganic insulating layer. The organic resin solution layer is then thermoset to adhere the moisture-resistant layer via the organic resin layer, thereby manufacturing the organic EL display device. [0061]
  • 2) After an organic EL element is formed on an array substrate, an inorganic insulating layer is formed on this array substrate including the organic EL element by CVD method or sputtering method. Subsequently, the inorganic insulating layer is coated with an organic resin solution to form an organic resin solution layer having a desired thickness. A moisture-resistant layer is pushed against this organic resin solution layer, and the organic resin solution layer is thermoset to adhere the moisture-resistant layer via the organic resin layer, thereby manufacturing the organic EL display device. [0062]
  • In the second embodiment of the present invention as described above, the inorganic insulating [0063] layer 5 such as a silicon oxide layer is formed on the array substrate 1 including the organic EL element 2. That is, the inorganic insulating layer 5 is so formed as to cover the organic EL element 2, and the moisture-resistant layer 4 is formed on the inorganic insulating layer 5 via the organic resin layer 6. The moisture-resistant layer 4 prevents external water from penetrating into the organic EL element 2 in the longitudinal direction. In addition, the inorganic insulating layer 5 around the organic EL element 2 more reliably prevents water penetration. This makes it possible to prevent degradation of the light emitting layers forming the organic EL element 2, corrosion of the cathode, and the like. Consequently, it is possible to obtain an organic EL display device which improves reliability and durability by suppressing degradation of an organic EL element for long time periods by intercepting external water penetration.
  • In addition, since the layered structure which intercepts external water can prevent the formation of an air layer, an organic EL display device having good heat dissipation properties can be realized. [0064]
  • Furthermore, the members which intercept external water are the inorganic insulating [0065] layer 5, organic resin layer 6, and moisture-resistant layer 4, and all these members can be made thin (e.g., the thickness of the inorganic insulating layer 5 is 0.1 to 5 μm, and more preferably, 0.1 to 3 μm, the thickness of the thick portion of the organic resin layer 6 is 1 to 100 μm, and more preferably, 1 to 30 μm, and the thickness of the moisture-resistant layer 4 is 50 to 200 μm). Therefore, a thin-film organic EL display device suitable as a display member of a portable telephone can be realized.
  • Note that if the water content in the organic resin layer is 1 wt % or less, penetration of external water into the [0066] organic EL element 2 can be prevented more effectively.
  • (Third Embodiment) [0067]
  • FIG. 3 is a sectional view showing an organic EL display device according to a third embodiment of the present invention. The same reference numerals as in FIGS. 1 and 2 of the first and second embodiments denote the same parts in FIG. 3, and a detailed explanation thereof will be omitted. [0068]
  • An [0069] organic EL element 2 having the same structure as in the first embodiment is formed on an array substrate 1. A first inorganic insulating layer 7 is formed on the array substrate 1 including the organic EL element 2. A moisture absorbing layer 8 is formed on that portion of the first inorganic insulating layer 7, which corresponds to the organic EL element 2. A second inorganic insulating layer 9 is formed on the first inorganic insulating layer 7 including the moisture absorbing layer 8. An organic resin layer 6 is formed on the second inorganic insulating layer 9 so as to have a flat surface. A moisture-resistant layer 4 is formed on the organic resin layer 6.
  • For example, each of the first and second inorganic insulating layers is a layer of at least one inorganic oxide selected from silicon oxide and aluminum oxide, or a layer of at least one inorganic nitride selected from silicon nitride and aluminum nitride. The first and second inorganic insulating layers can be made of the same material or different materials. [0070]
  • Each of the first and second inorganic insulating layers preferably has a thickness of 0.1 to 5 μm, and more preferably, 0.1 to 3 μm. [0071]
  • The moisture absorbing layer is at least one layer selected from calcium, barium, oxides of calcium and barium, silica gel, and polyvinyl alcohol. [0072]
  • This moisture absorbing layer preferably has a thickness of 0.01 to 0.5 μm. [0073]
  • The organic resin layer can be the same as that in the second embodiment. The water content in this organic resin layer is preferably 1 wt % or less, and more preferably, 0.5 wt % or less. [0074]
  • The thickness of that portion of the organic resin layer, which corresponds to the array substrate except for the organic EL element is favorably 1 to 100 μm, and more preferably, 1 to 30 μm, which is larger than that of the organic EL element. [0075]
  • As the moisture-resistant layer, the same laminated film or metal foil as described in the first embodiment can be used. [0076]
  • This moisture-resistant layer preferably has a thickness of 50 to 200 μm. [0077]
  • For example, the above organic EL display device is manufactured by the following method. [0078]
  • 1) One surface of a moisture-resistant layer is coated with an organic resin solution to form an organic resin solution layer having a desired thickness. Subsequently, an organic EL element is formed on an array substrate, and a first inorganic insulating layer is formed on this array substrate including the organic EL element by CVD method or sputtering method. After a moisture absorbing layer is formed by sputtering on that portion of the first inorganic insulating layer which corresponds to the organic EL element, a second inorganic insulating layer is formed on the first inorganic insulating layer including the moisture absorbing layer by CVD method or sputtering method. The moisture-resistant layer having the organic resin solution layer is pushed against the second inorganic insulating layer such that the organic resin solution layer is in contact with the inorganic insulating layer. The organic resin solution layer is then thermoset to adhere the moisture-resistant layer via the organic resin layer, thereby manufacturing the organic EL display device. [0079]
  • 2) After an organic EL element is formed on an array substrate, a first inorganic insulating layer is formed on this array substrate including the organic EL element by CVD method or sputtering method. Subsequently, a moisture absorbing layer is formed on that portion of the first inorganic insulating layer, which corresponds to the organic EL element, and a second inorganic insulating layer is formed on the first inorganic insulating layer including the moisture absorbing layer. The second inorganic insulating layer is then coated with an organic resin solution to form an organic resin solution layer having a desired thickness. A moisture-resistant layer is pushed against this organic resin solution layer, and the organic resin solution layer is thermoset to adhere the moisture-resistant layer via the organic resin layer, thereby manufacturing the organic EL display device. [0080]
  • In the third embodiment of the present invention as described above, the first inorganic insulating layer [0081] 7 such as a silicon oxide layer is formed on the array substrate 1 including the organic EL element 2. That is, the first inorganic insulating layer 7 is so formed as to cover the organic EL element 2, and the moisture absorbing layer 8 is formed on that portion of the first inorganic insulating layer 7, which corresponds to the organic EL element 2. The second inorganic insulating layer 9 is formed on the first inorganic insulating layer 7 including the moisture absorbing layer 8, and the moisture-resistant layer 4 is formed on the second inorganic insulating layer 9 via the organic resin layer 6. With this structure, the moisture-resistant layer 4 prevents external water from penetrating into the organic EL element 2 in the longitudinal direction. In addition, the first and second inorganic insulating layers 7 and 9 around the organic EL element 2 prevent penetration of external water into the organic EL element 2. Furthermore, the moisture absorbing layer 8 interposed between those portions of the first and second inorganic insulating layers 7 and 9 which correspond to the organic EL element 2 adsorbs and holds the water penetrates into the organic EL element 2 in the longitudinal direction, thereby preventing water penetration into the organic EL element 2. As a consequence, it is possible to prevent degradation of the light emitting layers forming the organic EL element 2, corrosion of the cathode, and the like.
  • Accordingly, it is possible to obtain an organic EL display device which improves reliability and durability by suppressing degradation of an organic EL element for long time periods by intercepting external water penetration. [0082]
  • In addition, since the layered structure which intercepts external water can prevent the formation of an air layer, an organic EL display device having good heat dissipation properties can be realized. [0083]
  • Furthermore, the members which intercept external water are the first and second inorganic insulating [0084] layers 7 and 9, moisture absorbing layer 8, organic resin layer 6, and moisture-resistant layer 4, and all these members can be made thin (e.g., the thickness of each of the first and second inorganic insulating layers 7 and 9 is 0.1 to 5 μm, and more preferably, 0.1 to 3 μm, the thickness of the moisture absorbing layer 8 is 0.01 to 0.5 μm, the thickness of the thick portion of the organic resin layer 6 is 1 to 100 μm, and more preferably, 1 to 30 μm, and the thickness of the moisture-resistant layer 4 is 50 to 200 μm). Therefore, a thin-film organic EL display device suitable as a display member of a portable telephone can be realized.
  • Note that if the water content in the organic resin layer is 1 wt % or less, penetration of external water into the [0085] organic EL element 2 can be prevented more effectively.
  • EXAMPLES
  • The present invention will be described in more detail below by way of its examples. [0086]
  • Example 1
  • The water content of an epoxy resin solution was reduced to 0.5 wt % by dehydration. One surface of a moisture-resistant layer having a three-layered structure in which a 3 μm thick silicon oxide layer was interposed between two PET films was coated with the epoxy resin solution to form a 30 μm thick epoxy resin solution layer. [0087]
  • Subsequently, a 3 μm thick organic EL element was formed on an array substrate, and the moisture-resistant layer having the epoxy resin solution layer was pushed against this array substrate including the organic EL element such that the epoxy resin solution layer was in contact with the array substrate. After that, the epoxy resin solution layer was thermoset at 80° C. to adhere the moisture-resistant layer via the epoxy resin layer, thereby manufacturing an organic EL display device having the structure shown in FIG. 1. [0088]
  • Comparative Example 1
  • An organic EL display device was manufactured following the same procedure as in Example 1 except that an epoxy resin solution not dehydrated and containing 2 wt % of water was used. [0089]
  • Each of the obtained organic EL display devices of Example 1 and Comparative Example 1 was left to stand in a high ambient temperature of 60° C. and high ambient humidity of 90% RH for 500 hrs. After that, each organic EL display device was caused to emit light by applying a predetermined voltage between the anode and cathode of the organic EL element, and the light emission state was visually checked. [0090]
  • Consequently, no non-light-emitting region called a dark spot was formed in the organic EL display device of Example 1. In contrast, in the organic EL display device of Comparative Example 1, dark spots began to form in the initial stages. After this organic EL display device was left to stand for 500 hrs, dark spots were formed in about 10% of the area. [0091]
  • Example 2
  • First, one surface of a moisture-resistant layer having a three-layered structure in which a 10 μm thick silicon oxide layer was interposed between two PET films was coated with an epoxy resin solution to form a 30-μm thick epoxy resin solution layer. [0092]
  • Subsequently, a 3 μm thick organic EL element was formed on an array substrate, and a 0.1 μm thick silicon oxide layer (inorganic insulating layer) was formed on this array substrate including the organic EL element by CVD method. The moisture-resistant layer having the epoxy resin solution layer was then pushed against the inorganic insulating layer such that the epoxy resin solution layer was in contact with the inorganic insulting layer. After that, the epoxy resin solution layer was thermoset at 80° C. to adhere the moisture-resistant layer via the epoxy resin layer, thereby manufacturing an organic EL display device having the structure shown in FIG. 2. [0093]
  • The obtained organic EL display device of Example 2 was left to stand in a high ambient temperature of 60° C. and high ambient humidity of 90% RH for 500 hrs the same as Example 1. After that, the organic EL display device was caused to emit light by applying a predetermined voltage between the anode and cathode of the organic EL element, and the light emission state was visually checked. As a consequence, no non-light-emitting region called a dark spot was formed. [0094]
  • Example 3
  • First, one surface of a moisture-resistant layer having a three-layered structure in which a 3 μm thick silicon oxide layer was interposed between two PET films was coated with an epoxy resin solution to form a 10 μm thick epoxy resin solution layer. [0095]
  • Subsequently, a 3 μm thick organic EL element was formed on an array substrate, and a 0.1 μm thick silicon oxide layer (first inorganic insulating layer) was formed on this array substrate including the organic EL element by CVD method. A 0.1 μm thick moisture absorbing layer made of calcium oxide was formed by sputtering on that portion of the first inorganic insulating layer, which corresponded to the organic EL element. After that, a 0.1 μm thick silicon oxide layer (second inorganic insulating layer) was formed on the first inorganic insulating layer including the moisture absorbing layer by CVD method. The moisture-resistant layer having the epoxy resin solution layer was pushed against the second inorganic insulating layer such that the epoxy resin solution layer was in contact with the second inorganic insulting layer. Then, the epoxy resin solution layer was thermoset at 80° C. to adhere the moisture-resistant layer via the epoxy resin layer, thereby manufacturing an organic EL display device having the structure shown in FIG. 3. [0096]
  • The obtained organic EL display device of Example 3 was left to stand in a high ambient temperature of 60° C. and high ambient humidity of 90% RH for 500 hrs the same as Example 1. After that, the organic EL display device was caused to emit light by applying a predetermined voltage between the anode and cathode of the organic EL element, and the light emission state was visually checked. As a consequence, no non-light-emitting region called a dark spot was formed. [0097]
  • Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents. [0098]

Claims (18)

What is claimed is:
1. An organic electroluminescent display device comprising:
an array substrate;
an organic electroluminescent element formed on the array substrate and having a transparent anode, a hole transporting layer, a light emitting layer, and a cathode;
an epoxy resin layer so formed as to cover the organic electroluminescent element and containing not more than 1 wt % of water; and
a moisture-resistant layer formed on the epoxy resin layer.
2. A device according to claim 1, wherein the moisture-resistant layer is a laminated film in which not less than one layer of at least one inorganic oxide selected from the group consisting of silicon oxide and aluminum oxide, or at least one inorganic nitride selected from the group consisting of silicon nitride and aluminum nitride, is stacked on a base film made of plastic, a laminated film formed by depositing a metal on a base film made of plastic, or a metal foil.
3. A device according to claim 2, wherein the moisture-resistant layer has a three-layered structure in which a silicon oxide layer is interposed between two base films.
4. A device according to claim 1, wherein the moisture-resistant film has a thickness of 50 to 200 μm.
5. An organic electroluminescent display device comprising:
an array substrate;
an organic electroluminescent element formed on the array substrate and having a transparent anode, a hole transporting layer, a light emitting layer, and a cathode;
an inorganic insulating layer so formed as to cover an outer circumferential surface of the organic electroluminescent element;
an organic resin layer so formed as to cover at least the organic electroluminescent element which is covered with the inorganic insulating layer; and
a moisture-resistant layer formed on the organic resin layer.
6. A device according to claim 5, wherein the inorganic insulating layer is a layer of at least one inorganic oxide selected from the group consisting of silicon oxide and aluminum oxide, or a layer of a least one inorganic nitride selected from the group consisting of silicon nitride and aluminum nitride.
7. A device according to claim 5, wherein the inorganic insulating layer has a thickness of 0.1 to 5 μm.
8. A device according to claim 5, wherein the moisture-resistant layer is a laminated film in which not less than one layer of at least one inorganic oxide selected from the group consisting of silicon oxide and aluminum oxide, or at least one inorganic nitride selected from the group consisting of silicon nitride and aluminum nitride, is stacked on a base film made of plastic, a laminated film formed by depositing a metal on a base film made of plastic, or a metal foil.
9. A device according to claim 8, wherein the moisture-resistant layer has a three-layered structure in which a silicon oxide layer is interposed between two base films.
10. A device according to claim 5, wherein the moisture-resistant film has a thickness of 50 to 200 μm.
11. An organic electroluminescent display device comprising:
an array substrate;
an organic electroluminescent element formed on the array substrate and having a transparent anode, a hole transporting layer, a light emitting layer, and a cathode;
a first inorganic insulating layer so formed as to cover at least an outer circumferential surface of the organic electroluminescent element;
a moisture absorbing layer formed on the first inorganic insulating layer so as to oppose the organic electroluminescent element;
a second inorganic insulating layer formed on at least the first inorganic insulating layer so as to cover a surrounding surface of the moisture absorbing layer;
an organic resin layer so formed as to cover at least the organic electroluminescent element which is covered with the first and second inorganic insulating layers; and
a moisture-resistant layer formed on the organic resin layer.
12. A device according to claim 11, wherein each of the first and second inorganic insulating layers is a layer of at least one inorganic oxide selected from the group consisting of silicon oxide and aluminum oxide, or a layer of at least one inorganic nitride selected from the group consisting of silicon nitride and aluminum nitride.
13. A device according to claim 11, where each of the first and second inorganic insulating layers has a thickness of 0.1 to 5 μm.
14. A device according to claim 11, wherein the moisture absorbing layer is at least one layer selected from the group consisting of calcium, barium, oxides of calcium and barium, silica gel, and polyvinyl alcohol.
15. A device according to claim 11, wherein the moisture absorbing layer has a thickness of 0.01 to 0.5 μm.
16. A device according to claim 11, wherein the moisture-resistant layer is a laminated film in which not less than one layer of at least one inorganic oxide selected from the group consisting of silicon oxide and aluminum oxide, or at least one inorganic nitride selected from the group consisting of silicon nitride and aluminum nitride, is stacked on a base film made of plastic, a laminated film formed by depositing a metal on a base film made of plastic, or a metal foil.
17. A device according to claim 16, wherein the moisture-resistant layer has a three-layered structure in which a silicon oxide layer is interposed between two base films.
18. A device according to claim 11, wherein the moisture-resistant film has a thickness of 50 to 200 μm.
US10/662,298 2002-09-27 2003-09-16 Organic electroluminescent display device Abandoned US20040061437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/375,045 US7226333B2 (en) 2002-09-27 2006-03-15 Method of manufacturing an organic electroluminescent display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002284454A JP2004119317A (en) 2002-09-27 2002-09-27 Organic electroluminescent display device
JP2002-284454 2002-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/375,045 Continuation US7226333B2 (en) 2002-09-27 2006-03-15 Method of manufacturing an organic electroluminescent display device

Publications (1)

Publication Number Publication Date
US20040061437A1 true US20040061437A1 (en) 2004-04-01

Family

ID=32025300

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/662,298 Abandoned US20040061437A1 (en) 2002-09-27 2003-09-16 Organic electroluminescent display device
US11/375,045 Expired - Fee Related US7226333B2 (en) 2002-09-27 2006-03-15 Method of manufacturing an organic electroluminescent display device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/375,045 Expired - Fee Related US7226333B2 (en) 2002-09-27 2006-03-15 Method of manufacturing an organic electroluminescent display device

Country Status (4)

Country Link
US (2) US20040061437A1 (en)
JP (1) JP2004119317A (en)
KR (2) KR100757562B1 (en)
TW (1) TWI227652B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060033429A1 (en) * 2004-08-12 2006-02-16 Hiroshi Fujimura Display device
US7038303B2 (en) 2003-03-28 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20060132034A1 (en) * 2004-12-20 2006-06-22 Yoon-Hyeung Cho Organic light emitting device and method of manufacturing the same
US20060207649A1 (en) * 2005-03-18 2006-09-21 Fuji Photo Film Co., Ltd. Organic electroluminescent device
US20070212525A1 (en) * 2006-03-13 2007-09-13 Samsung Electronics Co., Ltd Display device and manufacturing method thereof
WO2008003166A1 (en) * 2006-07-05 2008-01-10 Ifire Ip Corporation Sealed thick film dielectric electroluminescent display
CN100399151C (en) * 2006-01-23 2008-07-02 友达光电股份有限公司 Display panel structure with shield structure
US20100227422A1 (en) * 2007-07-31 2010-09-09 Sumitomo Chemical Company, Limited Method for manufacturing organic electroluminescence device
US20130221841A1 (en) * 2009-05-26 2013-08-29 Sony Corporation Display, method for producing display, and electronic apparatus
US20150189717A1 (en) * 2013-12-27 2015-07-02 Japan Display Inc. Display device
EP2782418A4 (en) * 2011-11-14 2015-11-04 Konica Minolta Inc Organic electroluminescent element and planar light-emitting unit
CN111799316A (en) * 2017-06-27 2020-10-20 堺显示器制品株式会社 Method for manufacturing organic EL device
US20220139795A1 (en) * 2019-09-20 2022-05-05 Murata Manufacturing Co., Ltd. Semiconductor device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821092B2 (en) * 2004-05-24 2011-11-24 日本ゼオン株式会社 Light emitting element
JP4780275B2 (en) * 2004-09-06 2011-09-28 株式会社スリーボンド Organic EL element sealing material
JP2008004290A (en) * 2006-06-20 2008-01-10 Nippon Hoso Kyokai <Nhk> Organic el display device and manufacturing method of organic el display device
JP4861206B2 (en) * 2007-01-26 2012-01-25 パナソニック電工株式会社 ORGANIC ELECTROLUMINESCENT LIGHT EMITTING DEVICE AND ORGANIC ELECTROLUMINESCENT LIGHTING DEVICE
KR20090089010A (en) * 2008-02-18 2009-08-21 삼성전자주식회사 Organic light emitting display device and method for manufacturing the same
KR101465478B1 (en) * 2008-02-18 2014-11-26 삼성디스플레이 주식회사 Organic light emitting display device and method for manufacturing the same
KR101574125B1 (en) 2008-07-16 2015-12-04 삼성디스플레이 주식회사 Organic light emitting device and manufacturing method thereof
KR20120039753A (en) * 2009-08-05 2012-04-25 아지노모토 가부시키가이샤 Film
KR101125637B1 (en) 2009-12-18 2012-03-27 삼성모바일디스플레이주식회사 Organic light emitting diode device
KR102100631B1 (en) * 2013-12-26 2020-04-14 엘지디스플레이 주식회사 Organic light emitting diode display and manufacturing method of the same
KR102497472B1 (en) 2016-07-29 2023-02-08 삼성전자주식회사 Electronic device including waterproof structure
JP2017204488A (en) * 2017-08-23 2017-11-16 株式会社カネカ Organic EL device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3020692B2 (en) 1990-10-17 2000-03-15 三菱化学株式会社 Heat resistant moisture proof film
JPH0515387U (en) 1991-08-08 1993-02-26 日亜化学工業株式会社 EL element
JPH05335083A (en) 1992-05-30 1993-12-17 Nichia Chem Ind Ltd Manufacture of electroluminescent element
US5652067A (en) * 1992-09-10 1997-07-29 Toppan Printing Co., Ltd. Organic electroluminescent device
JPH06223967A (en) * 1993-01-22 1994-08-12 Nippon Seiki Co Ltd Dispersion type el element
JP3551475B2 (en) 1994-06-25 2004-08-04 凸版印刷株式会社 Thin-film EL device
JPH1160911A (en) 1997-08-26 1999-03-05 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device
JP4616947B2 (en) 1998-08-26 2011-01-19 長春人造樹脂廠股▲分▼有限公司 Method for producing epoxy resin and epoxy resin obtained by the method
JP2000164348A (en) 1998-11-20 2000-06-16 Toshiba Corp El panel
JP2000208250A (en) 1999-01-08 2000-07-28 Kawaguchiko Seimitsu Co Ltd Electroluminescence
JP3817081B2 (en) 1999-01-29 2006-08-30 パイオニア株式会社 Manufacturing method of organic EL element
JP2001357973A (en) 2000-06-15 2001-12-26 Sony Corp Display device
JP2002056971A (en) 2000-08-11 2002-02-22 Nippon Zeon Co Ltd Sealing film for organic electroluminescent element, organic electroluminescent element using the same, and manufacturing method of the same
KR100404859B1 (en) * 2001-06-13 2003-11-07 주식회사 엘리아테크 A thin organic EL panel and its passivation method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017455B2 (en) 2003-03-28 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7038303B2 (en) 2003-03-28 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20060160357A1 (en) * 2003-03-28 2006-07-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8642406B2 (en) 2003-03-28 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20060033429A1 (en) * 2004-08-12 2006-02-16 Hiroshi Fujimura Display device
US8421349B2 (en) 2004-08-12 2013-04-16 Sony Corporation Display device with improved moisture prevention
US8080936B2 (en) * 2004-08-12 2011-12-20 Sony Corporation Display device with improved moisture prevention
US20060132034A1 (en) * 2004-12-20 2006-06-22 Yoon-Hyeung Cho Organic light emitting device and method of manufacturing the same
US20060207649A1 (en) * 2005-03-18 2006-09-21 Fuji Photo Film Co., Ltd. Organic electroluminescent device
US7956528B2 (en) 2005-03-18 2011-06-07 Fujifilm Corporation Organic electroluminescent device comprising ceramic sheet and graphite sheet
CN100399151C (en) * 2006-01-23 2008-07-02 友达光电股份有限公司 Display panel structure with shield structure
US8927091B2 (en) * 2006-03-13 2015-01-06 Samsung Display Co., Ltd. Display device and manufacturing method thereof
US20070212525A1 (en) * 2006-03-13 2007-09-13 Samsung Electronics Co., Ltd Display device and manufacturing method thereof
US20080124541A1 (en) * 2006-07-05 2008-05-29 Ifire Ip Corporation Sealed thick film dielectric electroluminescent display
WO2008003166A1 (en) * 2006-07-05 2008-01-10 Ifire Ip Corporation Sealed thick film dielectric electroluminescent display
US8159128B2 (en) * 2006-07-05 2012-04-17 Ifire Ip Corporation Sealed thick film dielectric electroluminescent display
US20100227422A1 (en) * 2007-07-31 2010-09-09 Sumitomo Chemical Company, Limited Method for manufacturing organic electroluminescence device
US8278126B2 (en) * 2007-07-31 2012-10-02 Sumitomo Chemical Company, Limited Method for manufacturing organic electroluminescence device
US20130221841A1 (en) * 2009-05-26 2013-08-29 Sony Corporation Display, method for producing display, and electronic apparatus
US9024524B2 (en) * 2009-05-26 2015-05-05 Sony Corporation Display, method for producing display, and electronic apparatus
US9236583B2 (en) 2011-11-14 2016-01-12 Konica Minolta, Inc. Organic electroluminescent element and planar light-emitting unit
EP2782418A4 (en) * 2011-11-14 2015-11-04 Konica Minolta Inc Organic electroluminescent element and planar light-emitting unit
US20150189717A1 (en) * 2013-12-27 2015-07-02 Japan Display Inc. Display device
US9525154B2 (en) * 2013-12-27 2016-12-20 Japan Display Inc. Display device
CN111799316A (en) * 2017-06-27 2020-10-20 堺显示器制品株式会社 Method for manufacturing organic EL device
US20220139795A1 (en) * 2019-09-20 2022-05-05 Murata Manufacturing Co., Ltd. Semiconductor device
US12107025B2 (en) * 2019-09-20 2024-10-01 Murata Manufacturing Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
TWI227652B (en) 2005-02-01
TW200408305A (en) 2004-05-16
KR20070030250A (en) 2007-03-15
US20060159840A1 (en) 2006-07-20
JP2004119317A (en) 2004-04-15
KR20040027433A (en) 2004-04-01
KR100757562B1 (en) 2007-09-10
US7226333B2 (en) 2007-06-05

Similar Documents

Publication Publication Date Title
US7226333B2 (en) Method of manufacturing an organic electroluminescent display device
US7256543B2 (en) Encapsulation structure of organic electroluminescence device
EP0777281B1 (en) Passivation of electroluminescent organic devices
US6537688B2 (en) Adhesive sealed organic optoelectronic structures
US20190029085A1 (en) Flexible organic light-emitting display apparatus and method of manufacturing the same
US8638032B2 (en) Organic optoelectronic device coated with a multilayer encapsulation structure and a method for encapsulating said device
US8624247B2 (en) Organic light emitting diode display and manufacturing method thereof
US20050269943A1 (en) Protected organic electronic devices and methods for making the same
US20050023974A1 (en) Protected organic electronic devices and methods for making the same
JP2007317646A (en) Organic el element and organic electronic element
JPH09161967A (en) Passivation of organic device
US20110127570A1 (en) Organic light emitting diode display
US20070071883A1 (en) Method of fabricating organic light emitting display device with passivation structure
JP2007220593A (en) Organic el display device
US11411201B2 (en) Flexible organic light emitting diode display panel including soft metal doped inorganic layers
US20040056269A1 (en) Passivation structure
US8786180B2 (en) Display device
WO2019153414A1 (en) Packaging structure for flexible display device and manufacturing method
JP2004087253A (en) Organic electron device
US6977391B2 (en) Transport balancing diffusion layer for rate limited scavenging systems
US7030557B2 (en) Display device with passivation structure
CN111048686A (en) Display device and packaging method adopting same
KR100462469B1 (en) Encapsulation thin films having bonding-type organic-inorganic complex film and organic electroluminescent devices including the same
CN111048558A (en) Display device and packaging method using same
CN112542557A (en) Display panel, preparation method thereof and display device

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IKAGAWA, MASAKUNI;REEL/FRAME:014508/0079

Effective date: 20030908

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION