US20040011088A1 - Cut and abrasion resistant fibrous structure - Google Patents
Cut and abrasion resistant fibrous structure Download PDFInfo
- Publication number
- US20040011088A1 US20040011088A1 US10/198,614 US19861402A US2004011088A1 US 20040011088 A1 US20040011088 A1 US 20040011088A1 US 19861402 A US19861402 A US 19861402A US 2004011088 A1 US2004011088 A1 US 2004011088A1
- Authority
- US
- United States
- Prior art keywords
- strand
- strands
- cut
- aramid
- fibrous structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005299 abrasion Methods 0.000 title claims abstract description 48
- 229920003235 aromatic polyamide Polymers 0.000 claims abstract description 47
- 229920001778 nylon Polymers 0.000 claims abstract description 32
- 239000004677 Nylon Substances 0.000 claims abstract description 30
- 239000002131 composite material Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 230000001681 protective effect Effects 0.000 claims abstract description 11
- 238000009940 knitting Methods 0.000 claims description 18
- 238000009941 weaving Methods 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 3
- 239000004760 aramid Substances 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 6
- 239000000835 fiber Substances 0.000 description 19
- 238000012360 testing method Methods 0.000 description 17
- -1 unidirectionals Substances 0.000 description 10
- 229920002302 Nylon 6,6 Polymers 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000004744 fabric Substances 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 5
- 239000002657 fibrous material Substances 0.000 description 5
- 239000004753 textile Substances 0.000 description 5
- 239000004953 Aliphatic polyamide Substances 0.000 description 4
- 229920003231 aliphatic polyamide Polymers 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 229920001468 Cordura Polymers 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229920000305 Nylon 6,10 Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 125000004958 1,4-naphthylene group Chemical group 0.000 description 1
- 125000004959 2,6-naphthylene group Chemical group [H]C1=C([H])C2=C([H])C([*:1])=C([H])C([H])=C2C([H])=C1[*:2] 0.000 description 1
- YCGKJPVUGMBDDS-UHFFFAOYSA-N 3-(6-azabicyclo[3.1.1]hepta-1(7),2,4-triene-6-carbonyl)benzamide Chemical compound NC(=O)C1=CC=CC(C(=O)N2C=3C=C2C=CC=3)=C1 YCGKJPVUGMBDDS-UHFFFAOYSA-N 0.000 description 1
- WRDNCFQZLUCIRH-UHFFFAOYSA-N 4-(7-azabicyclo[2.2.1]hepta-1,3,5-triene-7-carbonyl)benzamide Chemical compound C1=CC(C(=O)N)=CC=C1C(=O)N1C2=CC=C1C=C2 WRDNCFQZLUCIRH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 229920001007 Nylon 4 Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 125000005337 azoxy group Chemical group [N+]([O-])(=N*)* 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical group 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 125000004427 diamine group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- FJQXCDYVZAHXNS-UHFFFAOYSA-N methadone hydrochloride Chemical compound Cl.C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 FJQXCDYVZAHXNS-UHFFFAOYSA-N 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- RAHZWNYVWXNFOC-UHFFFAOYSA-N sulfur dioxide Inorganic materials O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 125000004001 thioalkyl group Chemical group 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B1/00—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B1/14—Other fabrics or articles characterised primarily by the use of particular thread materials
- D04B1/16—Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D19/00—Gloves
- A41D19/015—Protective gloves
- A41D19/01505—Protective gloves resistant to mechanical aggressions, e.g. cutting. piercing
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D31/00—Materials specially adapted for outerwear
- A41D31/04—Materials specially adapted for outerwear characterised by special function or use
- A41D31/24—Resistant to mechanical stress, e.g. pierce-proof
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/4334—Polyamides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/02—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/02—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
- D10B2331/021—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/06—Load-responsive characteristics
- D10B2401/063—Load-responsive characteristics high strength
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2501/00—Wearing apparel
- D10B2501/04—Outerwear; Protective garments
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2501/00—Wearing apparel
- D10B2501/04—Outerwear; Protective garments
- D10B2501/041—Gloves
Definitions
- the present invention relates to a high abrasion resistant fibrous structure comprising a specific construction of a non composite p-aramid strand and a nylon strand.
- This structure can be used to manufacture protective clothing having a high cut resistance and a high abrasion resistance.
- Aramids and more specifically para-aramids are a relatively new class of materials, which finds application in the domain of mechanical and thermal protection. High cut protection performance can be obtained from textile assemblies made of the para-aramid fibers. Therefore, para-aramid fibers are often used in the manufacture of protective clothing for industrial workers, firemen, sportsmen, military and police officers.
- the abrasion performance may be tailored by the selection of the type of fiber components, the fiber properties, the textile structures, the fabric mass per unit area, the number of fibers per unit volume or the relaxation allowance of the fiber components within the fiber bundle.
- the addition of abrasion resistance materials in a given structure containing cut resistance components generally provides higher abrasion performance at the expense of the cut resistance.
- U.S. Pat. No. 5,319,950 discloses a reinforcing component which is a composite yarn made of a nylon twisted yarn helically wrapped by another nylon twisted yarn, this reinforcing component being knitted in a plaited relationship with a body yarn.
- the manufacture of such a yarn is complex and necessitates several steps.
- the reinforced fabric thus obtained is still not satisfactory as regards cut resistance.
- One aspect of the invention is a fibrous structure comprising at least one non composite para-aramid strand and at least one nylon strand maintained in a parallel relationship to each other, the non composite para-aramid strand being present in the structure in an amount ranging from about 20% to about 99.9% by weight, relative to the weight of the structure.
- Another aspect of the invention is a process to manufacture the structure above comprising the step of processing a non composite para-aramid strand and a nylon strand in a parallel relationship to each other.
- Another aspect of the invention is a process for providing a fibrous structure having high cut and abrasion resistance, comprising:
- a further aspect of the invention is a high cut and abrasion resistant protective clothing, in particular gloves, aprons or sleeves, made of the fibrous structure above.
- the fibrous structure of the invention has a high resistance to abrasion. It also has a very high resistance to cutting. With the structure of the invention, it is possible to manufacture high cut and abrasion resistant protective clothing like working gloves. The gloves made of the fibrous structure of the invention are comfortable and, by wearing them, the user does not lose the natural dexterity of his hands.
- the fibrous structure of the invention also finds use in the ballistic area: it has a very good puncture resistance.
- the manufacturing process of the fibrous structure is very simple and direct and does not require any previous treatment or arrangement of the strand.
- the manufacturing process can therefore be completed in a minimum number of steps, allowing for a rapid, easy and cost effective realization of any fibrous structure.
- Fibrous structure includes two or three-dimensional structures comprising fibrous material.
- this structure includes knitted fabrics, woven fabrics, unidirectionals, nonwovens, and/or combinations thereof.
- combinations is meant that structures of different nature and/or construction may be assembled together, either in the same plane or not, as a multilayer structure for instance, by any assembling means like sewing, gluing, stitching and the like.
- nonwovens is meant fibrous materials combined to a binding matrix of polyethylene, polypropylene, polyamides, phenols, epoxy resins, polyester or mixtures thereof.
- Fibrous material includes endless fibers such as filaments, short fibrous structures, short cut fibers, microfibers, multifilaments, cords, yarns, fibers, pulps.
- the fibers may be made into yarns of short fibrous structures which are spun into staple fibers, into yarns of endless fibers or into stretchbroken yarns which can be described as intermediate yarns between staple and continuous yarns.
- “Strand”, as used herein, means an ordered assemblage of fibrous material having a high ratio of length to diameter, preferably having a length at least 1000 times its diameter.
- the strand may be round, flat or may have another cross-sectional shape or it may be a hollow fiber.
- “non composite strand”, is meant a single simple strand by opposition to assembled strands like cotwisted strands, cotextured strands, intermingled strands, core-spun strands and combinations thereof.
- the structure of the invention comprises at least one non composite para-aramid strand.
- Aramids are polymers that are partially, preponderantly or exclusively composed of aromatic rings, which are connected through carbamide bridges or optionally, in addition, also through other bridging structures.
- the structure of such aramids may be elucidated by the following general formula of repeating units:
- A1 and A2 are the same or different and signify aromatic and/or polyaromatic and/or heteroaromatic rings, that may also be substituted.
- A1 and A2 may independently from each other be selected from 1,4-phenylene, 1,3-phenylene, 1,2-phenylene, 4,4′-biphenylene, 2,6-naphthylene, 1,5-naphthylene, 1,4-naphthylene, phenoxyphenyl-4,4′-diyelen, phenoxyphenyl-3,4′-diylen, 2,5-pyridylene and 2,6-quinolylene which may or may not be substituted by one or more substituents which may comprise halogen, C1-C4-alkyl, phenyl, carboalkoxyl, C1-C4-alkoxyl, acyloxy, nitro, dialkylamino, thioalkyl, carboxyl and sulfony
- These aramids are generally prepared by polymerization of diacid chloride, or the corresponding diacid, and diamine.
- Examples of aramids are poly-m-phenylene-isophthalamide and poly-p-phenylene-terephthalamide.
- X represents O, S, SO2, NR, N2, CR2, CO.
- R represents H, C1-C4-alkyl and Ar1 and Ar2 which may be same or different are selected from 1,2-phenylene, 1,3-phenylene and 1,4-phenylene and in which at least one hydrogen atom may be substituted with halogen and/or C1-C4-alkyl.
- Additives may be used with the aramid and, in fact, it has been found that up to as much as 10% by weight, of other polymeric materials may be blended with the aramid or that copolymers may be used having as much as 10% of other diamine substituted for the diamine of the aramid or as much as 10% of other diacid chloride substituted for the diacid chloride of the aramid.
- the non composite para-aramid strand of the invention preferably has an elongation equal to or less than 5%, measured according to ASTM D885-98.
- the para-aramid strands have a modulus of about 10 to about 2500 g/den, preferably of about 1000 to about 2500 g/den, and a tenacity of about 3 to about 50 g/den, preferably of about 3 to about 38 g/den. The modulus and the tenacity are measured according to the ASTM D 885-98 method.
- the structure of the invention may comprise several para-aramid strands. In such a case, these strands are independent from each other.
- the para-aramid strands are present in the structure of the invention in an amount ranging from about 20 to about 99.9%, preferably from about 30% to about 70% by weight, relative to the total weight of the structure.
- the strands are generally spun from an anisotropic spin dope using an air gap spinning process such as is well-known and is described in U.S. Pat. Nos. 3,767,756 or 4,340,559.
- the structure of the invention also comprises at least one nylon strand.
- nylon is meant a strand made from aliphatic polyamide polymers. Suitable nylons in the present invention include polyhexamethylene adipamide (nylon 66), polycaprolactam (nylon 6), polybutyrolactam (nylon 4), poly(9-aminononanoic acid) (nylon 9), polyenantholactam (nylon 7), polycapryllactam (nylon 8) and polyhexamethylene sebacamide (nylon 6,10).
- Preferred nylon is polyhexamethylene adipamide (nylon 66).
- the nylon strand is a textured strand.
- textured strand is meant a strand which has undergone a treatment, like air-injection for instance, in order to intermingle the originally parallel filaments constituting the strand.
- Preferred nylon strands of the invention have an elongation equal to or less than 18%, and a tenacity equal to or less than 10 gpd. The elongation and the tenacity are measured according to ASTM D885-98.
- Nylon strands are generally spun by extrusion of a melt of the polymer through a capillary into a gaseous congealing medium. Such processes are well-known.
- Suitable nylon strands of the invention include the product sold under the tradename “Cordura®” by E. I. du Pont de Nemours and Company, Delaware.
- the structure of the invention may comprise several nylon strands.
- the non composite para-aramid strand and the nylon strand are maintained in a parallel relationship to each other in the structure of the invention.
- Parallel means that the angle between one strand along the entirety of its running length and any other strand along the entirety of its running length is about zero. All the strands remain independent and separate from each other. They are not intimately blended, they are not cotwisted, they are not intermingled, not commingled, not interlaced, not intermixed nor textured. One does not wrap any other one, they do not form a core-spun fiber nor a sheath core.
- the non composite para-aramid strand is present in an amount ranging from about 30% to about 70% by weight and the nylon strand is present in an amount ranging from about 30% to about 70% by weight, relative to the weight of the structure.
- the structure of the invention may comprise additional man-made or natural strands.
- additional strands include polyethylene strands, polyester strands, acrylic strands, acetate strands, meta-aramid strands, glass strands, steel strands, ceramic strands, polytetrafluoroethylene strands, cellulosic strands, cofton strands, silk strands, wool strands and mixtures thereof.
- additional strands may be present in an amount ranging from about 0.25 weight % to about 25 weight %, relative to the total weight of the structure, as long as their presence in the structure of the invention does not negatively impact the specific high abrasion and cut resistance of the structure of the invention. These additional strands are also maintained in a parallel relationship to any other strand present in the structure.
- the structure of the invention shows a very good cut resistance.
- the structure of the invention shows a combined normalized index CTPCPI.N, measured as described below, equal or greater than 80 g/mm, more preferably equal or greater than 90 g/mm.
- the structure of the invention also shows a very good abrasion resistance.
- the structure shows an abrasion resistance, measured according to EN 388 method, equal or greater than 1000 cycles, more preferably equal or greater than 3000 cycles.
- the structure shows both a combined normalized index CTPCPI.N, measured as described below, equal or greater than 80 and an abrasion resistance, measured according to EN 388, equal or greater than 1000 cycles.
- the structure of the invention preferably shows a medium weight ranging from about 200 g/m 2 to about 1500 g/m 2 , preferably ranging from about 300 g/m 2 to about 800 g/m 2 , measured according to EN 388 method.
- the structure of the invention is prepared according to any classical textile process allowing for parallel alignment of the strands making the structure: knitting, weaving, unidirectionally laying down, combining the strands with a binding matrix to form a nonwoven.
- the strands are fed directly to the knitting machine or the weaving machine without any prior assembly of any sort.
- the order in which the strands are fed into the needles of the knitting machine remains the same during the whole knitting process.
- Preferred process for making the structure of the invention is the knitting process.
- the structure of the invention may be used in the manufacture of gloves, aprons, sleeves and any protective clothing requiring a high cut resistance and a high abrasion resistance.
- the apparatus was the Martindale wear and abrasion tester, designed to give a controlled amount of abrasion between the fabric surface and the selected abradant at relatively low contact pressure of (9+/ ⁇ 0.2) kPa in continuously changing directions.
- the circular samples were abraded against a standard abrasive glass paper (grade F2 grit 100 quality 117).
- the test is conducted at (23+/ ⁇ 2) ° C. and (50+/ ⁇ 5) % relative humidity.
- the cut resistance was measured according to the “Standard test Method for Measuring Cut Resistance of Materials Used in protective Clothing”, ASTM Standard F 1790-97.
- the blades were stainless steel cutter blades with a sharp edge of 70 mm, which were calibrated using a load of 4 N on a neoprene sheet of about (1.57+/ ⁇ 10%) mm and a hardness of (50+/ ⁇ 5) shore A. This was performed at the beginning and at the end of the test. A new blade was used for each measurement, i.e. each load.
- the sample was a rectangular piece of textile of 50 ⁇ 100 millimeters placed at a react of 45 degrees.
- the mandrel was a rounded electroconductive bar with a radius of 38 millimeters and the sample was mounted onto it using double-face tapes.
- the cutting edge was drawn across the textile on the mandrel at a right angle with the longitudinal axis of the mandrel. Cut through was recorded when the cutting edge makes electrical contact with the mandrel.
- the normalized forces were reported as the cut resistance forces, respectively NL1 and NL2 expressed in grams for a cut length of 25.4 mm and 10 mm.
- the test is conducted at (23+/ ⁇ 2)° C. and (50+/ ⁇ 5) % relative humidity.
- CTPCPI [ NL1 25.4 + NL2 10 ] / 2 ⁇ [ grams mm ]
- the synthetic fiber staples were produced from short para-aramid fibers of 38 mm length as per the state of the art spinning process used for the production of para-aramid staple yarns.
- the para-aramid short fibers were obtained by cuffing continuous filament para-aramid yarns made of 1000 filaments of 1.5 dpf (1.6dtex) each.
- the synthetic fiber staples were produced from short aliphatic polyamide nylon 66 fibers of 38 mm length as per the state of the art spinning process used for the production of aliphatic polyamide staple yarns.
- the aliphatic polyamide short fibers were obtained by cutting continuous filament yarns made filaments of 1.9 dtex each.
- Examples 1 and 2 are comparative Examples.
- Example 3 is an example according to the invention. In order for the results to be comparative, all three examples were realized for a relatively constant value of the total dtex (which is representative of the linear density of a fiber) and a relatively constant value of the mass per surface area.
- the abrasion resistance measured was 900 cycles.
- the forces measured in the cut resistance test were 821 g for a cut length of 25.4 mm and 1666 g for a cut distance of 10 mm.
- the combined CTPCPI.N normalized index was given by the following calculation [(821/25.4+1666/10)/2] ⁇ 800/800 and equaled 99 g/mm.
- CTPCPI.N of example 2 reveals an approximate 40% inferior cut resistance compared to example 1. On the other side the abrasion resistance of example 2 is three times superior to the one of example 1.
- Each sample had therefore a total dtex of 3622 (three times 714 dtex plus four times 370 dtex).
- Each sample comprised 50.1% by weight, of non composite para-aramid strand relative to the weight of the sample, and 40.1% by weight, of nylon strand, relative to the weight of the sample.
- the abrasion resistance measured was 6000 cycles.
- the forces measured in the cut resistance test were 1170 g for a cut length of 25.4 mm and 1400 g for a cut distance of 10 mm.
- the combined CTPCPI.N normalized index was given by the following calculation [(1170/25.4+1400/10)/2] ⁇ 800/843 and equaled 88 g/mm.
- CTPCPI.N of Example 3 reveals an approximate equal cut resistance compared to Example 1.
- the abrasion resistance of Example 3 is six times superior to the one of Example 1 and surprisingly two times superior to the one of Example 2.
- Example 1 Example 2
- Example 3 comparative (comparative) (comparative) (invention)
- Total dtex 3570 3700 3622 w % of p-aramid strands 100 0 59 Mass per square 800 826 843 area (g/m 2 )
- CTPCPI.N in g/mm 99 59 88
- Abrasion resistance 900 3000 6000 in cycles
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Professional, Industrial, Or Sporting Protective Garments (AREA)
- Woven Fabrics (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Gloves (AREA)
- Knitting Of Fabric (AREA)
- Nonwoven Fabrics (AREA)
Priority Applications (10)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/198,614 US20040011088A1 (en) | 2002-07-18 | 2002-07-18 | Cut and abrasion resistant fibrous structure |
| EP03765592A EP1534886A1 (en) | 2002-07-18 | 2003-07-15 | Cut and abrasion resistant fibrous structure |
| BR0312748-6A BR0312748A (pt) | 2002-07-18 | 2003-07-15 | Estrutura fibrosa, seu processo de fabricação, roupa protetora, luvas, manga, avental e processo de fornecimento de estrutura fibrosa |
| KR1020057000819A KR20050025614A (ko) | 2002-07-18 | 2003-07-15 | 내절단성 및 내마모성의 섬유성 구조물 |
| CNA038171309A CN1668798A (zh) | 2002-07-18 | 2003-07-15 | 抗切割、耐磨纤维构造 |
| JP2004523435A JP2005533198A (ja) | 2002-07-18 | 2003-07-15 | 耐切断性および耐摩耗性の繊維構造体 |
| MXPA05000589A MXPA05000589A (es) | 2002-07-18 | 2003-07-15 | Estructura fibrosa resistente al corte y abrasion. |
| PCT/US2003/022126 WO2004009893A1 (en) | 2002-07-18 | 2003-07-15 | Cut and abrasion resistant fibrous structure |
| CA002492819A CA2492819A1 (en) | 2002-07-18 | 2003-07-15 | Cut and abrasion resistant fibrous structure |
| AU2003249277A AU2003249277A1 (en) | 2002-07-18 | 2003-07-15 | Cut and abrasion resistant fibrous structure |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/198,614 US20040011088A1 (en) | 2002-07-18 | 2002-07-18 | Cut and abrasion resistant fibrous structure |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20040011088A1 true US20040011088A1 (en) | 2004-01-22 |
Family
ID=30443149
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/198,614 Abandoned US20040011088A1 (en) | 2002-07-18 | 2002-07-18 | Cut and abrasion resistant fibrous structure |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US20040011088A1 (enExample) |
| EP (1) | EP1534886A1 (enExample) |
| JP (1) | JP2005533198A (enExample) |
| KR (1) | KR20050025614A (enExample) |
| CN (1) | CN1668798A (enExample) |
| AU (1) | AU2003249277A1 (enExample) |
| BR (1) | BR0312748A (enExample) |
| CA (1) | CA2492819A1 (enExample) |
| MX (1) | MXPA05000589A (enExample) |
| WO (1) | WO2004009893A1 (enExample) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2417253A (en) * | 2004-08-19 | 2006-02-22 | Dale Techniche Ltd | Cut-resistant knitted fabric |
| US20070105468A1 (en) * | 2002-08-26 | 2007-05-10 | Chiou Minshon J | Penetration resistant life protection articles |
| US20080085411A1 (en) * | 2006-10-10 | 2008-04-10 | Larry John Prickett | Multidenier fiber cut resistant fabrics and articles and processes for making same |
| US20080286513A1 (en) * | 2007-05-15 | 2008-11-20 | Invista North America S A R L | Knit fabrics and socks made therefrom incorporating high tensile nylon staple |
| WO2011131932A1 (en) * | 2010-04-19 | 2011-10-27 | Mir Concepts Limited | Garment and use thereof |
| US20120079639A1 (en) * | 2010-10-01 | 2012-04-05 | Hughes Griffith W | Cut resistant garment |
| EP2606757B1 (de) * | 2011-12-02 | 2017-01-04 | Rökona-Textilwerk GmbH Wirkerei - Ausrüstung | Schnittschutzlage für eine Schnittschutztextilie, Schnittschutztextilie und diese aufweisende Arbeitsschutzbekleidung |
| US20170058106A1 (en) * | 2006-04-24 | 2017-03-02 | Imerys Minerals Limited | Barrier compositions |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106418816A (zh) * | 2016-08-31 | 2017-02-22 | 佛山市特纶纤维科技有限公司 | 一种防护手套的制备方法 |
Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4143197A (en) * | 1977-05-11 | 1979-03-06 | J. P. Stevens & Co., Inc. | Aramid yarn fabrics and method of dimensional stabilization of same by heat setting |
| US4918912A (en) * | 1989-05-19 | 1990-04-24 | E. I. Du Pont De Nemours And Company | Cut and abrasion resistant spun yarns and fabrics |
| US5319950A (en) * | 1993-02-22 | 1994-06-14 | Kayser-Roth Corporation | Abrasion resistant reinforced fabric |
| US5321960A (en) * | 1993-01-28 | 1994-06-21 | Kayser-Roth Corporation | Abrasion resistant reinforced fabric |
| US5395643A (en) * | 1991-09-18 | 1995-03-07 | International Business Machines Corporation | Method of and apparatus for depositing solder on a printed circuit board |
| US5763043A (en) * | 1990-07-05 | 1998-06-09 | Bay Mills Limited | Open grid fabric for reinforcing wall systems, wall segment product and methods of making same |
| US5845476A (en) * | 1997-06-04 | 1998-12-08 | Kolmes; Nathaniel H. | Composite yarn with fiberglass core |
| US5888609A (en) * | 1990-12-18 | 1999-03-30 | Valtion Teknillinen Tutkimuskeskus | Planar porous composite structure and method for its manufacture |
| US5918319A (en) * | 1996-07-22 | 1999-07-06 | Baxter; Hal Thomas | Protective garment incorporating an abrasion-resistant fabric |
| US5965643A (en) * | 1995-05-03 | 1999-10-12 | Ciba Specialty Chemicals Corporation | Synergistic stabilizer mixture |
| US5965223A (en) * | 1996-10-11 | 1999-10-12 | World Fibers, Inc. | Layered composite high performance fabric |
| US6044493A (en) * | 1997-08-27 | 2000-04-04 | Rubotech, Inc. | Stretchable protective garments and method for making same |
| US6263629B1 (en) * | 1998-08-04 | 2001-07-24 | Clark Schwebel Tech-Fab Company | Structural reinforcement member and method of utilizing the same to reinforce a product |
| US6455449B1 (en) * | 1999-09-03 | 2002-09-24 | Bradford Industries, Inc. | Coated multi-denier mixed fabrics for use in inflatable vehicle restraint systems |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5395683A (en) * | 1993-03-26 | 1995-03-07 | Alliedsignal Inc. | Protective pad |
| JP2000080506A (ja) * | 1998-06-26 | 2000-03-21 | Atom Kk | メリヤス補強手袋 |
| DE29901430U1 (de) * | 1999-01-28 | 1999-05-06 | Friedrich Seiz GmbH, 72555 Metzingen | Stichhemmende Textilware |
-
2002
- 2002-07-18 US US10/198,614 patent/US20040011088A1/en not_active Abandoned
-
2003
- 2003-07-15 BR BR0312748-6A patent/BR0312748A/pt not_active Application Discontinuation
- 2003-07-15 MX MXPA05000589A patent/MXPA05000589A/es unknown
- 2003-07-15 JP JP2004523435A patent/JP2005533198A/ja active Pending
- 2003-07-15 WO PCT/US2003/022126 patent/WO2004009893A1/en not_active Ceased
- 2003-07-15 CA CA002492819A patent/CA2492819A1/en not_active Abandoned
- 2003-07-15 AU AU2003249277A patent/AU2003249277A1/en not_active Abandoned
- 2003-07-15 KR KR1020057000819A patent/KR20050025614A/ko not_active Withdrawn
- 2003-07-15 CN CNA038171309A patent/CN1668798A/zh active Pending
- 2003-07-15 EP EP03765592A patent/EP1534886A1/en not_active Withdrawn
Patent Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4143197A (en) * | 1977-05-11 | 1979-03-06 | J. P. Stevens & Co., Inc. | Aramid yarn fabrics and method of dimensional stabilization of same by heat setting |
| US4918912A (en) * | 1989-05-19 | 1990-04-24 | E. I. Du Pont De Nemours And Company | Cut and abrasion resistant spun yarns and fabrics |
| US5763043A (en) * | 1990-07-05 | 1998-06-09 | Bay Mills Limited | Open grid fabric for reinforcing wall systems, wall segment product and methods of making same |
| US5888609A (en) * | 1990-12-18 | 1999-03-30 | Valtion Teknillinen Tutkimuskeskus | Planar porous composite structure and method for its manufacture |
| US5395643A (en) * | 1991-09-18 | 1995-03-07 | International Business Machines Corporation | Method of and apparatus for depositing solder on a printed circuit board |
| US5321960A (en) * | 1993-01-28 | 1994-06-21 | Kayser-Roth Corporation | Abrasion resistant reinforced fabric |
| US5319950A (en) * | 1993-02-22 | 1994-06-14 | Kayser-Roth Corporation | Abrasion resistant reinforced fabric |
| US5965643A (en) * | 1995-05-03 | 1999-10-12 | Ciba Specialty Chemicals Corporation | Synergistic stabilizer mixture |
| US5918319A (en) * | 1996-07-22 | 1999-07-06 | Baxter; Hal Thomas | Protective garment incorporating an abrasion-resistant fabric |
| US5965223A (en) * | 1996-10-11 | 1999-10-12 | World Fibers, Inc. | Layered composite high performance fabric |
| US5845476A (en) * | 1997-06-04 | 1998-12-08 | Kolmes; Nathaniel H. | Composite yarn with fiberglass core |
| US6044493A (en) * | 1997-08-27 | 2000-04-04 | Rubotech, Inc. | Stretchable protective garments and method for making same |
| US6263629B1 (en) * | 1998-08-04 | 2001-07-24 | Clark Schwebel Tech-Fab Company | Structural reinforcement member and method of utilizing the same to reinforce a product |
| US6455449B1 (en) * | 1999-09-03 | 2002-09-24 | Bradford Industries, Inc. | Coated multi-denier mixed fabrics for use in inflatable vehicle restraint systems |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070105468A1 (en) * | 2002-08-26 | 2007-05-10 | Chiou Minshon J | Penetration resistant life protection articles |
| US7241709B2 (en) * | 2002-08-26 | 2007-07-10 | E. I Du Pont De Nemours And Company | Penetration resistant life protection articles |
| GB2417253A (en) * | 2004-08-19 | 2006-02-22 | Dale Techniche Ltd | Cut-resistant knitted fabric |
| US20060048496A1 (en) * | 2004-08-19 | 2006-03-09 | Dale Techniche Ltd | Cut-resistant knitted fabric |
| GB2417253B (en) * | 2004-08-19 | 2009-05-20 | Dale Techniche Ltd | Cut-resistant knitted fabric |
| US20170058106A1 (en) * | 2006-04-24 | 2017-03-02 | Imerys Minerals Limited | Barrier compositions |
| US20080085411A1 (en) * | 2006-10-10 | 2008-04-10 | Larry John Prickett | Multidenier fiber cut resistant fabrics and articles and processes for making same |
| US20080286513A1 (en) * | 2007-05-15 | 2008-11-20 | Invista North America S A R L | Knit fabrics and socks made therefrom incorporating high tensile nylon staple |
| WO2011131932A1 (en) * | 2010-04-19 | 2011-10-27 | Mir Concepts Limited | Garment and use thereof |
| US20120079639A1 (en) * | 2010-10-01 | 2012-04-05 | Hughes Griffith W | Cut resistant garment |
| US8978162B2 (en) * | 2010-10-01 | 2015-03-17 | Banom, Inc. | Cut resistant garment |
| EP2606757B1 (de) * | 2011-12-02 | 2017-01-04 | Rökona-Textilwerk GmbH Wirkerei - Ausrüstung | Schnittschutzlage für eine Schnittschutztextilie, Schnittschutztextilie und diese aufweisende Arbeitsschutzbekleidung |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2003249277A1 (en) | 2004-02-09 |
| WO2004009893A1 (en) | 2004-01-29 |
| EP1534886A1 (en) | 2005-06-01 |
| KR20050025614A (ko) | 2005-03-14 |
| CA2492819A1 (en) | 2004-01-29 |
| JP2005533198A (ja) | 2005-11-04 |
| BR0312748A (pt) | 2005-04-26 |
| CN1668798A (zh) | 2005-09-14 |
| MXPA05000589A (es) | 2005-04-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20040011087A1 (en) | Cut and abrasion resistant fibrous structure comprising an elastic nylon | |
| JP4786857B2 (ja) | 着心地のよい、耐切断性−耐摩耗性繊維組成物 | |
| AU2001275348B2 (en) | Cut resistant fabric | |
| KR101394876B1 (ko) | 상이한 데니어의 아라미드 섬유들을 포함하는 내절단성 천 및 이로부터의 용품의 제조 방법 | |
| AU2001275348A1 (en) | Cut resistant fabric | |
| JP4537711B2 (ja) | 高性能繊維を含有する物品のリサイクル方法 | |
| US20040011088A1 (en) | Cut and abrasion resistant fibrous structure | |
| KR101445408B1 (ko) | 다중데니어 섬유 내절단성 천 및 용품과 이의 제조 방법 | |
| EP0874929B1 (en) | Cut resistant yarn and fabric |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REBOUILLAT, SERGE;BERNAT, VERONIQUE;REEL/FRAME:013388/0502 Effective date: 20020918 Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARBONELL, JOAN LLIVINA;MAROTO, ANTONIO MANUEL JIMINEZ;REEL/FRAME:013388/0500 Effective date: 20030113 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |