US20040011088A1 - Cut and abrasion resistant fibrous structure - Google Patents

Cut and abrasion resistant fibrous structure Download PDF

Info

Publication number
US20040011088A1
US20040011088A1 US10/198,614 US19861402A US2004011088A1 US 20040011088 A1 US20040011088 A1 US 20040011088A1 US 19861402 A US19861402 A US 19861402A US 2004011088 A1 US2004011088 A1 US 2004011088A1
Authority
US
United States
Prior art keywords
strand
strands
cut
aramid
fibrous structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/198,614
Inventor
Serge Rebouillat
Antonio Maroto
Joan Carbonell
Veronique Bernat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/198,614 priority Critical patent/US20040011088A1/en
Assigned to E. I. DU PONT DE NEMOURS AND COMPANY reassignment E. I. DU PONT DE NEMOURS AND COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERNAT, VERONIQUE, REBOUILLAT, SERGE
Assigned to E. I. DU PONT DE NEMOURS AND COMPANY reassignment E. I. DU PONT DE NEMOURS AND COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARBONELL, JOAN LLIVINA, MAROTO, ANTONIO MANUEL JIMINEZ
Priority to CNA038171309A priority patent/CN1668798A/en
Priority to BR0312748-6A priority patent/BR0312748A/en
Priority to EP03765592A priority patent/EP1534886A1/en
Priority to CA002492819A priority patent/CA2492819A1/en
Priority to MXPA05000589A priority patent/MXPA05000589A/en
Priority to AU2003249277A priority patent/AU2003249277A1/en
Priority to KR1020057000819A priority patent/KR20050025614A/en
Priority to PCT/US2003/022126 priority patent/WO2004009893A1/en
Priority to JP2004523435A priority patent/JP2005533198A/en
Publication of US20040011088A1 publication Critical patent/US20040011088A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/015Protective gloves
    • A41D19/01505Protective gloves resistant to mechanical aggressions, e.g. cutting. piercing
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/24Resistant to mechanical stress, e.g. pierce-proof
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • D10B2501/041Gloves

Definitions

  • the present invention relates to a high abrasion resistant fibrous structure comprising a specific construction of a non composite p-aramid strand and a nylon strand.
  • This structure can be used to manufacture protective clothing having a high cut resistance and a high abrasion resistance.
  • Aramids and more specifically para-aramids are a relatively new class of materials, which finds application in the domain of mechanical and thermal protection. High cut protection performance can be obtained from textile assemblies made of the para-aramid fibers. Therefore, para-aramid fibers are often used in the manufacture of protective clothing for industrial workers, firemen, sportsmen, military and police officers.
  • the abrasion performance may be tailored by the selection of the type of fiber components, the fiber properties, the textile structures, the fabric mass per unit area, the number of fibers per unit volume or the relaxation allowance of the fiber components within the fiber bundle.
  • the addition of abrasion resistance materials in a given structure containing cut resistance components generally provides higher abrasion performance at the expense of the cut resistance.
  • U.S. Pat. No. 5,319,950 discloses a reinforcing component which is a composite yarn made of a nylon twisted yarn helically wrapped by another nylon twisted yarn, this reinforcing component being knitted in a plaited relationship with a body yarn.
  • the manufacture of such a yarn is complex and necessitates several steps.
  • the reinforced fabric thus obtained is still not satisfactory as regards cut resistance.
  • One aspect of the invention is a fibrous structure comprising at least one non composite para-aramid strand and at least one nylon strand maintained in a parallel relationship to each other, the non composite para-aramid strand being present in the structure in an amount ranging from about 20% to about 99.9% by weight, relative to the weight of the structure.
  • Another aspect of the invention is a process to manufacture the structure above comprising the step of processing a non composite para-aramid strand and a nylon strand in a parallel relationship to each other.
  • Another aspect of the invention is a process for providing a fibrous structure having high cut and abrasion resistance, comprising:
  • a further aspect of the invention is a high cut and abrasion resistant protective clothing, in particular gloves, aprons or sleeves, made of the fibrous structure above.
  • the fibrous structure of the invention has a high resistance to abrasion. It also has a very high resistance to cutting. With the structure of the invention, it is possible to manufacture high cut and abrasion resistant protective clothing like working gloves. The gloves made of the fibrous structure of the invention are comfortable and, by wearing them, the user does not lose the natural dexterity of his hands.
  • the fibrous structure of the invention also finds use in the ballistic area: it has a very good puncture resistance.
  • the manufacturing process of the fibrous structure is very simple and direct and does not require any previous treatment or arrangement of the strand.
  • the manufacturing process can therefore be completed in a minimum number of steps, allowing for a rapid, easy and cost effective realization of any fibrous structure.
  • Fibrous structure includes two or three-dimensional structures comprising fibrous material.
  • this structure includes knitted fabrics, woven fabrics, unidirectionals, nonwovens, and/or combinations thereof.
  • combinations is meant that structures of different nature and/or construction may be assembled together, either in the same plane or not, as a multilayer structure for instance, by any assembling means like sewing, gluing, stitching and the like.
  • nonwovens is meant fibrous materials combined to a binding matrix of polyethylene, polypropylene, polyamides, phenols, epoxy resins, polyester or mixtures thereof.
  • Fibrous material includes endless fibers such as filaments, short fibrous structures, short cut fibers, microfibers, multifilaments, cords, yarns, fibers, pulps.
  • the fibers may be made into yarns of short fibrous structures which are spun into staple fibers, into yarns of endless fibers or into stretchbroken yarns which can be described as intermediate yarns between staple and continuous yarns.
  • “Strand”, as used herein, means an ordered assemblage of fibrous material having a high ratio of length to diameter, preferably having a length at least 1000 times its diameter.
  • the strand may be round, flat or may have another cross-sectional shape or it may be a hollow fiber.
  • “non composite strand”, is meant a single simple strand by opposition to assembled strands like cotwisted strands, cotextured strands, intermingled strands, core-spun strands and combinations thereof.
  • the structure of the invention comprises at least one non composite para-aramid strand.
  • Aramids are polymers that are partially, preponderantly or exclusively composed of aromatic rings, which are connected through carbamide bridges or optionally, in addition, also through other bridging structures.
  • the structure of such aramids may be elucidated by the following general formula of repeating units:
  • A1 and A2 are the same or different and signify aromatic and/or polyaromatic and/or heteroaromatic rings, that may also be substituted.
  • A1 and A2 may independently from each other be selected from 1,4-phenylene, 1,3-phenylene, 1,2-phenylene, 4,4′-biphenylene, 2,6-naphthylene, 1,5-naphthylene, 1,4-naphthylene, phenoxyphenyl-4,4′-diyelen, phenoxyphenyl-3,4′-diylen, 2,5-pyridylene and 2,6-quinolylene which may or may not be substituted by one or more substituents which may comprise halogen, C1-C4-alkyl, phenyl, carboalkoxyl, C1-C4-alkoxyl, acyloxy, nitro, dialkylamino, thioalkyl, carboxyl and sulfony
  • These aramids are generally prepared by polymerization of diacid chloride, or the corresponding diacid, and diamine.
  • Examples of aramids are poly-m-phenylene-isophthalamide and poly-p-phenylene-terephthalamide.
  • X represents O, S, SO2, NR, N2, CR2, CO.
  • R represents H, C1-C4-alkyl and Ar1 and Ar2 which may be same or different are selected from 1,2-phenylene, 1,3-phenylene and 1,4-phenylene and in which at least one hydrogen atom may be substituted with halogen and/or C1-C4-alkyl.
  • Additives may be used with the aramid and, in fact, it has been found that up to as much as 10% by weight, of other polymeric materials may be blended with the aramid or that copolymers may be used having as much as 10% of other diamine substituted for the diamine of the aramid or as much as 10% of other diacid chloride substituted for the diacid chloride of the aramid.
  • the non composite para-aramid strand of the invention preferably has an elongation equal to or less than 5%, measured according to ASTM D885-98.
  • the para-aramid strands have a modulus of about 10 to about 2500 g/den, preferably of about 1000 to about 2500 g/den, and a tenacity of about 3 to about 50 g/den, preferably of about 3 to about 38 g/den. The modulus and the tenacity are measured according to the ASTM D 885-98 method.
  • the structure of the invention may comprise several para-aramid strands. In such a case, these strands are independent from each other.
  • the para-aramid strands are present in the structure of the invention in an amount ranging from about 20 to about 99.9%, preferably from about 30% to about 70% by weight, relative to the total weight of the structure.
  • the strands are generally spun from an anisotropic spin dope using an air gap spinning process such as is well-known and is described in U.S. Pat. Nos. 3,767,756 or 4,340,559.
  • the structure of the invention also comprises at least one nylon strand.
  • nylon is meant a strand made from aliphatic polyamide polymers. Suitable nylons in the present invention include polyhexamethylene adipamide (nylon 66), polycaprolactam (nylon 6), polybutyrolactam (nylon 4), poly(9-aminononanoic acid) (nylon 9), polyenantholactam (nylon 7), polycapryllactam (nylon 8) and polyhexamethylene sebacamide (nylon 6,10).
  • Preferred nylon is polyhexamethylene adipamide (nylon 66).
  • the nylon strand is a textured strand.
  • textured strand is meant a strand which has undergone a treatment, like air-injection for instance, in order to intermingle the originally parallel filaments constituting the strand.
  • Preferred nylon strands of the invention have an elongation equal to or less than 18%, and a tenacity equal to or less than 10 gpd. The elongation and the tenacity are measured according to ASTM D885-98.
  • Nylon strands are generally spun by extrusion of a melt of the polymer through a capillary into a gaseous congealing medium. Such processes are well-known.
  • Suitable nylon strands of the invention include the product sold under the tradename “Cordura®” by E. I. du Pont de Nemours and Company, Delaware.
  • the structure of the invention may comprise several nylon strands.
  • the non composite para-aramid strand and the nylon strand are maintained in a parallel relationship to each other in the structure of the invention.
  • Parallel means that the angle between one strand along the entirety of its running length and any other strand along the entirety of its running length is about zero. All the strands remain independent and separate from each other. They are not intimately blended, they are not cotwisted, they are not intermingled, not commingled, not interlaced, not intermixed nor textured. One does not wrap any other one, they do not form a core-spun fiber nor a sheath core.
  • the non composite para-aramid strand is present in an amount ranging from about 30% to about 70% by weight and the nylon strand is present in an amount ranging from about 30% to about 70% by weight, relative to the weight of the structure.
  • the structure of the invention may comprise additional man-made or natural strands.
  • additional strands include polyethylene strands, polyester strands, acrylic strands, acetate strands, meta-aramid strands, glass strands, steel strands, ceramic strands, polytetrafluoroethylene strands, cellulosic strands, cofton strands, silk strands, wool strands and mixtures thereof.
  • additional strands may be present in an amount ranging from about 0.25 weight % to about 25 weight %, relative to the total weight of the structure, as long as their presence in the structure of the invention does not negatively impact the specific high abrasion and cut resistance of the structure of the invention. These additional strands are also maintained in a parallel relationship to any other strand present in the structure.
  • the structure of the invention shows a very good cut resistance.
  • the structure of the invention shows a combined normalized index CTPCPI.N, measured as described below, equal or greater than 80 g/mm, more preferably equal or greater than 90 g/mm.
  • the structure of the invention also shows a very good abrasion resistance.
  • the structure shows an abrasion resistance, measured according to EN 388 method, equal or greater than 1000 cycles, more preferably equal or greater than 3000 cycles.
  • the structure shows both a combined normalized index CTPCPI.N, measured as described below, equal or greater than 80 and an abrasion resistance, measured according to EN 388, equal or greater than 1000 cycles.
  • the structure of the invention preferably shows a medium weight ranging from about 200 g/m 2 to about 1500 g/m 2 , preferably ranging from about 300 g/m 2 to about 800 g/m 2 , measured according to EN 388 method.
  • the structure of the invention is prepared according to any classical textile process allowing for parallel alignment of the strands making the structure: knitting, weaving, unidirectionally laying down, combining the strands with a binding matrix to form a nonwoven.
  • the strands are fed directly to the knitting machine or the weaving machine without any prior assembly of any sort.
  • the order in which the strands are fed into the needles of the knitting machine remains the same during the whole knitting process.
  • Preferred process for making the structure of the invention is the knitting process.
  • the structure of the invention may be used in the manufacture of gloves, aprons, sleeves and any protective clothing requiring a high cut resistance and a high abrasion resistance.
  • the apparatus was the Martindale wear and abrasion tester, designed to give a controlled amount of abrasion between the fabric surface and the selected abradant at relatively low contact pressure of (9+/ ⁇ 0.2) kPa in continuously changing directions.
  • the circular samples were abraded against a standard abrasive glass paper (grade F2 grit 100 quality 117).
  • the test is conducted at (23+/ ⁇ 2) ° C. and (50+/ ⁇ 5) % relative humidity.
  • the cut resistance was measured according to the “Standard test Method for Measuring Cut Resistance of Materials Used in protective Clothing”, ASTM Standard F 1790-97.
  • the blades were stainless steel cutter blades with a sharp edge of 70 mm, which were calibrated using a load of 4 N on a neoprene sheet of about (1.57+/ ⁇ 10%) mm and a hardness of (50+/ ⁇ 5) shore A. This was performed at the beginning and at the end of the test. A new blade was used for each measurement, i.e. each load.
  • the sample was a rectangular piece of textile of 50 ⁇ 100 millimeters placed at a react of 45 degrees.
  • the mandrel was a rounded electroconductive bar with a radius of 38 millimeters and the sample was mounted onto it using double-face tapes.
  • the cutting edge was drawn across the textile on the mandrel at a right angle with the longitudinal axis of the mandrel. Cut through was recorded when the cutting edge makes electrical contact with the mandrel.
  • the normalized forces were reported as the cut resistance forces, respectively NL1 and NL2 expressed in grams for a cut length of 25.4 mm and 10 mm.
  • the test is conducted at (23+/ ⁇ 2)° C. and (50+/ ⁇ 5) % relative humidity.
  • CTPCPI [ NL1 25.4 + NL2 10 ] / 2 ⁇ [ grams mm ]
  • the synthetic fiber staples were produced from short para-aramid fibers of 38 mm length as per the state of the art spinning process used for the production of para-aramid staple yarns.
  • the para-aramid short fibers were obtained by cuffing continuous filament para-aramid yarns made of 1000 filaments of 1.5 dpf (1.6dtex) each.
  • the synthetic fiber staples were produced from short aliphatic polyamide nylon 66 fibers of 38 mm length as per the state of the art spinning process used for the production of aliphatic polyamide staple yarns.
  • the aliphatic polyamide short fibers were obtained by cutting continuous filament yarns made filaments of 1.9 dtex each.
  • Examples 1 and 2 are comparative Examples.
  • Example 3 is an example according to the invention. In order for the results to be comparative, all three examples were realized for a relatively constant value of the total dtex (which is representative of the linear density of a fiber) and a relatively constant value of the mass per surface area.
  • the abrasion resistance measured was 900 cycles.
  • the forces measured in the cut resistance test were 821 g for a cut length of 25.4 mm and 1666 g for a cut distance of 10 mm.
  • the combined CTPCPI.N normalized index was given by the following calculation [(821/25.4+1666/10)/2] ⁇ 800/800 and equaled 99 g/mm.
  • CTPCPI.N of example 2 reveals an approximate 40% inferior cut resistance compared to example 1. On the other side the abrasion resistance of example 2 is three times superior to the one of example 1.
  • Each sample had therefore a total dtex of 3622 (three times 714 dtex plus four times 370 dtex).
  • Each sample comprised 50.1% by weight, of non composite para-aramid strand relative to the weight of the sample, and 40.1% by weight, of nylon strand, relative to the weight of the sample.
  • the abrasion resistance measured was 6000 cycles.
  • the forces measured in the cut resistance test were 1170 g for a cut length of 25.4 mm and 1400 g for a cut distance of 10 mm.
  • the combined CTPCPI.N normalized index was given by the following calculation [(1170/25.4+1400/10)/2] ⁇ 800/843 and equaled 88 g/mm.
  • CTPCPI.N of Example 3 reveals an approximate equal cut resistance compared to Example 1.
  • the abrasion resistance of Example 3 is six times superior to the one of Example 1 and surprisingly two times superior to the one of Example 2.
  • Example 1 Example 2
  • Example 3 comparative (comparative) (comparative) (invention)
  • Total dtex 3570 3700 3622 w % of p-aramid strands 100 0 59 Mass per square 800 826 843 area (g/m 2 )
  • CTPCPI.N in g/mm 99 59 88
  • Abrasion resistance 900 3000 6000 in cycles

Abstract

The invention relates to a fibrous structure comprising at least one non composite p-aramid strand and at least one nylon strand maintained in a parallel relationship to each other, the non composite para-aramid strand being present in the material in an amount ranging from about 20% to 99.9% by weight, relative to the weight of the structure. The invention also relates to a process to manufacture such structure and to high cut and abrasion resistant protective clothing made of this structure like gloves, aprons and sleeves.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a high abrasion resistant fibrous structure comprising a specific construction of a non composite p-aramid strand and a nylon strand. This structure can be used to manufacture protective clothing having a high cut resistance and a high abrasion resistance. [0002]
  • 2. Description of the Related Art [0003]
  • Aramids and more specifically para-aramids are a relatively new class of materials, which finds application in the domain of mechanical and thermal protection. High cut protection performance can be obtained from textile assemblies made of the para-aramid fibers. Therefore, para-aramid fibers are often used in the manufacture of protective clothing for industrial workers, firemen, sportsmen, military and police officers. [0004]
  • One drawback of para-aramid fibers is that they tend to suffer from a relatively low abrasion resistance due to their fibrillation tendency. The risk associated with this modest abrasion resistance is the reduction of the cut performance of the protective clothing with time under service. In this area of protection against wear and friction and therefore low abrasion, nylons are superior but they do not offer a sufficient cut performance. [0005]
  • There is still a need to provide a material having both a high and durable cut performance and a very high abrasion resistance. [0006]
  • There are many factors that influence the abrasion resistance of a fabric. The abrasion performance may be tailored by the selection of the type of fiber components, the fiber properties, the textile structures, the fabric mass per unit area, the number of fibers per unit volume or the relaxation allowance of the fiber components within the fiber bundle. Often, the addition of abrasion resistance materials in a given structure containing cut resistance components generally provides higher abrasion performance at the expense of the cut resistance. [0007]
  • U.S. Pat. No. 5,319,950 discloses a reinforcing component which is a composite yarn made of a nylon twisted yarn helically wrapped by another nylon twisted yarn, this reinforcing component being knitted in a plaited relationship with a body yarn. The manufacture of such a yarn is complex and necessitates several steps. Moreover, the reinforced fabric thus obtained is still not satisfactory as regards cut resistance. [0008]
  • Now, it has been found that by combining specific fiber ingredients in a specific construction style, it was possible to realize rapidly, directly and easily very high cut resistant and high abrasion resistant fibrous material. In particular, it is possible to reach the same cut resistance level with a higher level of abrasion resistance than if the same fiber ingredients are either taken separately or combined in a different construction style. [0009]
  • SUMMARY OF THE INVENTION
  • One aspect of the invention is a fibrous structure comprising at least one non composite para-aramid strand and at least one nylon strand maintained in a parallel relationship to each other, the non composite para-aramid strand being present in the structure in an amount ranging from about 20% to about 99.9% by weight, relative to the weight of the structure. [0010]
  • Another aspect of the invention is a process to manufacture the structure above comprising the step of processing a non composite para-aramid strand and a nylon strand in a parallel relationship to each other. [0011]
  • Another aspect of the invention is a process for providing a fibrous structure having high cut and abrasion resistance, comprising: [0012]
  • a) providing strands of at least one non composite para-aramid strand and at least one nylon strand, [0013]
  • b) feeding the strands into a knitting or weaving machine without prior assembly, and [0014]
  • c) knitting or weaving a fibrous structure without changing the order in which the strands are fed into the machine, the strands being maintained in a parallel relationship to each other during the whole knitting or weaving process. [0015]
  • A further aspect of the invention is a high cut and abrasion resistant protective clothing, in particular gloves, aprons or sleeves, made of the fibrous structure above. [0016]
  • The fibrous structure of the invention has a high resistance to abrasion. It also has a very high resistance to cutting. With the structure of the invention, it is possible to manufacture high cut and abrasion resistant protective clothing like working gloves. The gloves made of the fibrous structure of the invention are comfortable and, by wearing them, the user does not lose the natural dexterity of his hands. [0017]
  • The fibrous structure of the invention also finds use in the ballistic area: it has a very good puncture resistance. [0018]
  • Moreover, since the para-aramid strand of the invention is a non composite one, the manufacturing process of the fibrous structure is very simple and direct and does not require any previous treatment or arrangement of the strand. The manufacturing process can therefore be completed in a minimum number of steps, allowing for a rapid, easy and cost effective realization of any fibrous structure. [0019]
  • DETAILED DESCRIPTION
  • “Fibrous structure”, as used herein, includes two or three-dimensional structures comprising fibrous material. Preferably, this structure includes knitted fabrics, woven fabrics, unidirectionals, nonwovens, and/or combinations thereof. By “combinations”, is meant that structures of different nature and/or construction may be assembled together, either in the same plane or not, as a multilayer structure for instance, by any assembling means like sewing, gluing, stitching and the like. By “nonwovens” is meant fibrous materials combined to a binding matrix of polyethylene, polypropylene, polyamides, phenols, epoxy resins, polyester or mixtures thereof. [0020]
  • “Fibrous material”, as used herein, includes endless fibers such as filaments, short fibrous structures, short cut fibers, microfibers, multifilaments, cords, yarns, fibers, pulps. The fibers may be made into yarns of short fibrous structures which are spun into staple fibers, into yarns of endless fibers or into stretchbroken yarns which can be described as intermediate yarns between staple and continuous yarns. [0021]
  • “Strand”, as used herein, means an ordered assemblage of fibrous material having a high ratio of length to diameter, preferably having a length at least 1000 times its diameter. The strand may be round, flat or may have another cross-sectional shape or it may be a hollow fiber. By “non composite strand”, is meant a single simple strand by opposition to assembled strands like cotwisted strands, cotextured strands, intermingled strands, core-spun strands and combinations thereof. [0022]
  • The structure of the invention comprises at least one non composite para-aramid strand. [0023]
  • Aramids are polymers that are partially, preponderantly or exclusively composed of aromatic rings, which are connected through carbamide bridges or optionally, in addition, also through other bridging structures. The structure of such aramids may be elucidated by the following general formula of repeating units: [0024]
  • (—NH—Al—NH—CO—A2—CO)n
  • wherein A1 and A2 are the same or different and signify aromatic and/or polyaromatic and/or heteroaromatic rings, that may also be substituted. Typically A1 and A2 may independently from each other be selected from 1,4-phenylene, 1,3-phenylene, 1,2-phenylene, 4,4′-biphenylene, 2,6-naphthylene, 1,5-naphthylene, 1,4-naphthylene, phenoxyphenyl-4,4′-diyelen, phenoxyphenyl-3,4′-diylen, 2,5-pyridylene and 2,6-quinolylene which may or may not be substituted by one or more substituents which may comprise halogen, C1-C4-alkyl, phenyl, carboalkoxyl, C1-C4-alkoxyl, acyloxy, nitro, dialkylamino, thioalkyl, carboxyl and sulfonyl. The —CONH—group may also be replaced by a carbonyl-hydrazide (—CONHNH—) group, azo-or azoxygroup. [0025]
  • These aramids are generally prepared by polymerization of diacid chloride, or the corresponding diacid, and diamine. [0026]
  • Examples of aramids are poly-m-phenylene-isophthalamide and poly-p-phenylene-terephthalamide. [0027]
  • Additional suitable aromatic polyamides are of the following structure: [0028]
  • (—NH—Ar—X—Ar2—NH—CO—Ar1—X—Ar2—CO—)n
  • in which X represents O, S, SO2, NR, N2, CR2, CO. [0029]
  • R represents H, C1-C4-alkyl and Ar1 and Ar2 which may be same or different are selected from 1,2-phenylene, 1,3-phenylene and 1,4-phenylene and in which at least one hydrogen atom may be substituted with halogen and/or C1-C4-alkyl. [0030]
  • Further useful polyamides are disclosed in U.S. Pat. No. 4,670,343 wherein the aramid is a copolyamide in which preferably at least 80% by mole of the total A1 and A2 are 1,4-phenylene and phenoxyphenyl-3,4′-diylene which may or may not be substituted and the content of phenoxyphenyl-3,4′-diylene is 10% to 40% by mole. [0031]
  • Additives may be used with the aramid and, in fact, it has been found that up to as much as 10% by weight, of other polymeric materials may be blended with the aramid or that copolymers may be used having as much as 10% of other diamine substituted for the diamine of the aramid or as much as 10% of other diacid chloride substituted for the diacid chloride of the aramid. [0032]
  • The non composite para-aramid strand of the invention preferably has an elongation equal to or less than 5%, measured according to ASTM D885-98. Preferably, the para-aramid strands have a modulus of about 10 to about 2500 g/den, preferably of about 1000 to about 2500 g/den, and a tenacity of about 3 to about 50 g/den, preferably of about 3 to about 38 g/den. The modulus and the tenacity are measured according to the ASTM D 885-98 method. [0033]
  • The structure of the invention may comprise several para-aramid strands. In such a case, these strands are independent from each other. The para-aramid strands are present in the structure of the invention in an amount ranging from about 20 to about 99.9%, preferably from about 30% to about 70% by weight, relative to the total weight of the structure. [0034]
  • The strands are generally spun from an anisotropic spin dope using an air gap spinning process such as is well-known and is described in U.S. Pat. Nos. 3,767,756 or 4,340,559. [0035]
  • The structure of the invention also comprises at least one nylon strand. By “nylon” is meant a strand made from aliphatic polyamide polymers. Suitable nylons in the present invention include polyhexamethylene adipamide (nylon 66), polycaprolactam (nylon 6), polybutyrolactam (nylon 4), poly(9-aminononanoic acid) (nylon 9), polyenantholactam (nylon 7), polycapryllactam (nylon 8) and polyhexamethylene sebacamide (nylon 6,10). Preferred nylon is polyhexamethylene adipamide (nylon 66). [0036]
  • In a preferred embodiment of the invention, the nylon strand is a textured strand. By “textured strand” is meant a strand which has undergone a treatment, like air-injection for instance, in order to intermingle the originally parallel filaments constituting the strand. [0037]
  • Preferred nylon strands of the invention have an elongation equal to or less than 18%, and a tenacity equal to or less than 10 gpd. The elongation and the tenacity are measured according to ASTM D885-98. [0038]
  • Nylon strands are generally spun by extrusion of a melt of the polymer through a capillary into a gaseous congealing medium. Such processes are well-known. [0039]
  • Suitable nylon strands of the invention include the product sold under the tradename “Cordura®” by E. I. du Pont de Nemours and Company, Delaware. [0040]
  • The structure of the invention may comprise several nylon strands. [0041]
  • The non composite para-aramid strand and the nylon strand are maintained in a parallel relationship to each other in the structure of the invention. “Parallel”, as used herein, means that the angle between one strand along the entirety of its running length and any other strand along the entirety of its running length is about zero. All the strands remain independent and separate from each other. They are not intimately blended, they are not cotwisted, they are not intermingled, not commingled, not interlaced, not intermixed nor textured. One does not wrap any other one, they do not form a core-spun fiber nor a sheath core. [0042]
  • In a preferred embodiment of the fibrous structure of the invention, the non composite para-aramid strand is present in an amount ranging from about 30% to about 70% by weight and the nylon strand is present in an amount ranging from about 30% to about 70% by weight, relative to the weight of the structure. [0043]
  • In addition to the non composite para-aramid strands and the nylon strands described above, the structure of the invention may comprise additional man-made or natural strands. These additional strands include polyethylene strands, polyester strands, acrylic strands, acetate strands, meta-aramid strands, glass strands, steel strands, ceramic strands, polytetrafluoroethylene strands, cellulosic strands, cofton strands, silk strands, wool strands and mixtures thereof. These additional strands may be present in an amount ranging from about 0.25 weight % to about 25 weight %, relative to the total weight of the structure, as long as their presence in the structure of the invention does not negatively impact the specific high abrasion and cut resistance of the structure of the invention. These additional strands are also maintained in a parallel relationship to any other strand present in the structure. [0044]
  • The structure of the invention shows a very good cut resistance. In a preferred embodiment of the invention, the structure of the invention shows a combined normalized index CTPCPI.N, measured as described below, equal or greater than 80 g/mm, more preferably equal or greater than 90 g/mm. The structure of the invention also shows a very good abrasion resistance. In a preferred embodiment of the invention, the structure shows an abrasion resistance, measured according to EN 388 method, equal or greater than 1000 cycles, more preferably equal or greater than 3000 cycles. In a more preferred embodiment of the invention, the structure shows both a combined normalized index CTPCPI.N, measured as described below, equal or greater than 80 and an abrasion resistance, measured according to EN 388, equal or greater than 1000 cycles. [0045]
  • The structure of the invention preferably shows a medium weight ranging from about 200 g/m[0046] 2 to about 1500 g/m2, preferably ranging from about 300 g/m2 to about 800 g/m2, measured according to EN 388 method.
  • The structure of the invention is prepared according to any classical textile process allowing for parallel alignment of the strands making the structure: knitting, weaving, unidirectionally laying down, combining the strands with a binding matrix to form a nonwoven. For instance, in the knitting or weaving process, the strands are fed directly to the knitting machine or the weaving machine without any prior assembly of any sort. For instance, in the knitting process, the order in which the strands are fed into the needles of the knitting machine remains the same during the whole knitting process. Preferred process for making the structure of the invention is the knitting process. [0047]
  • The structure of the invention may be used in the manufacture of gloves, aprons, sleeves and any protective clothing requiring a high cut resistance and a high abrasion resistance. [0048]
  • The invention will be explained in more detail with reference to the following examples. [0049]
  • Test Methods and Examples Description [0050]
  • Abrasion Resistance [0051]
  • In the following examples, the abrasion resistance of the samples was measured according to the Standard European Method EN388, July 1994, section untitled “Protective Gloves against Mechanical Risks”, subsection 6 “Abrasion resistance”. [0052]
  • The apparatus was the Martindale wear and abrasion tester, designed to give a controlled amount of abrasion between the fabric surface and the selected abradant at relatively low contact pressure of (9+/−0.2) kPa in continuously changing directions. The circular samples were abraded against a standard abrasive glass paper (grade F2 grit 100 quality 117). [0053]
  • The abrasion was continued and the samples were examined at suitable intervals without removing them from their holder. The rub-through situation was characterized by broken threads and the average values of cycle to reach this breakdown was registered and averaged for 6 samples. [0054]
  • The test is conducted at (23+/−2) ° C. and (50+/−5) % relative humidity. [0055]
  • The greater is the number of cycles needed to reach the breakdown, the higher is the resistance to abrasion of the sample. [0056]
  • Cut Resistance [0057]
  • In the following examples, the cut resistance was measured according to the “Standard test Method for Measuring Cut Resistance of Materials Used in protective Clothing”, ASTM Standard F 1790-97. [0058]
  • In performance of the test, a cutting edge, under a specified force, was drawn one time across a sample mounted on a cylindrical mandrel. At several different forces, the distance drawn from initial contact to cut through was recorded and a graph was constructed of force as a function of distance to cut through. From the graph, the forces (in grams) were determined to cut through at a distance of 25.4 millimeters, and 10 millimeters, and were normalized to validate the consistency of the blades. These normalized forces are hereinafter respectively referred to as NL1 (for the 25.4 mm distance) and NL2 (for the 10 mm distance). The blades were stainless steel cutter blades with a sharp edge of 70 mm, which were calibrated using a load of 4 N on a neoprene sheet of about (1.57+/−10%) mm and a hardness of (50+/−5) shore A. This was performed at the beginning and at the end of the test. A new blade was used for each measurement, i.e. each load. The sample was a rectangular piece of textile of 50×100 millimeters placed at a biais of 45 degrees. The mandrel was a rounded electroconductive bar with a radius of 38 millimeters and the sample was mounted onto it using double-face tapes. The cutting edge was drawn across the textile on the mandrel at a right angle with the longitudinal axis of the mandrel. Cut through was recorded when the cutting edge makes electrical contact with the mandrel. The normalized forces were reported as the cut resistance forces, respectively NL1 and NL2 expressed in grams for a cut length of 25.4 mm and 10 mm. [0059]
  • The test is conducted at (23+/−2)° C. and (50+/−5) % relative humidity. [0060]
  • The 25.4 millimeters cut can be classified as a tear-like-cut and the 10 millimeters cut can be classified as a puncture-like-cut. These two belong to different regions of the cut-length-cut-force relationship, which is a non-linear curve. It was therefore convenient to define a combined index, which has the merit to compound the two behaviors. This index is hereafter referred to as the Combined Tear Puncture Cut Performance Index, CTPCPI. It was computed as per the following equation: [0061] CTPCPI = [ NL1 25.4 + NL2 10 ] / 2 [ grams mm ]
    Figure US20040011088A1-20040122-M00001
  • This index was further normalized for a constant weight of fabric composition, hereafter selected at 800 grams per square meters. This mass per square area is a realistic value with regard to the protective clothing applications such as gloves for industrial usage. [0062] CTPCPI N = { [ NL 1 25.4 + NL 2 10 ] / 2 } × ( 800 ) ( mass per surface area of the sample ) [ grams mm ]
    Figure US20040011088A1-20040122-M00002
  • This combined normalized index is given in grams per millimeter of cut length. The higher this index is, the higher is the cut resistance of the sample. [0063]
  • For each example, 12 samples were tested. The result is the average of the results of the 12 tests. [0064]
  • Ingredients [0065]
  • Non composite para-aramid strand A: staple para-aramid yarn of linear density 714dtex, equivalent Nm=28/2 (with dtex=10000/Nm) commercially available from E. I. du Pont de Nemours and Company under the tradename Kevlar® staple aramid fiber, Type 970. The synthetic fiber staples were produced from short para-aramid fibers of 38 mm length as per the state of the art spinning process used for the production of para-aramid staple yarns. The para-aramid short fibers were obtained by cuffing continuous filament para-aramid yarns made of 1000 filaments of 1.5 dpf (1.6dtex) each. [0066]
  • Nylon strand B: staple yarns of nylon 66 of linear density 370 dtex, equivalent Nm=55/2 (with dtex=10000/Nm), commercially available by E. I. du Pont de Nemours and Company under the trade designation Cordura® Type 200. The synthetic fiber staples were produced from short aliphatic polyamide nylon 66 fibers of 38 mm length as per the state of the art spinning process used for the production of aliphatic polyamide staple yarns. The aliphatic polyamide short fibers were obtained by cutting continuous filament yarns made filaments of 1.9 dtex each.[0067]
  • EXAMPLES
  • Examples 1 and 2 are comparative Examples. Example 3 is an example according to the invention. In order for the results to be comparative, all three examples were realized for a relatively constant value of the total dtex (which is representative of the linear density of a fiber) and a relatively constant value of the mass per surface area. [0068]
  • Example 1 Comparative
  • Five independent non composite para-aramid strands A were fed to a circular knitting machine (Fiber Analysis Knitter from Lawson-Hamphill) without prior assembling of any sort. A sleeve of sufficient length was knitted to obtain a uniform and reproducible pattern of a mass per surface area close to 800 g/m[0069] 2.
  • The samples were cut to the adequate dimensions and shapes, circular for the abrasion testing and rectangular for the cut performance measurement, to perform 6 abrasion tests and 12 cut tests. [0070]
  • Each sample had therefore a total dtex of 3570 (five times 714 dtex). [0071]
  • The abrasion resistance measured was 900 cycles. [0072]
  • The forces measured in the cut resistance test were 821 g for a cut length of 25.4 mm and 1666 g for a cut distance of 10 mm. The combined CTPCPI.N normalized index was given by the following calculation [(821/25.4+1666/10)/2]×800/800 and equaled 99 g/mm. [0073]
  • Example 2 Comparative
  • Ten independent nylon strands B were fed to the same circular knitting machine as the one used in Example 1 without prior assembling of any sort. A sleeve of sufficient length was knitted to obtain a uniform and reproducible pattern of a mass per surface area close to 826 g/m[0074] 2.
  • The samples were cut to the adequate dimensions and shapes, circular for the abrasion testing and rectangular for the cut performance measurement, to perform 6 abrasion tests and 12 cut tests. [0075]
  • Each sample had therefore a total dtex of 3700 (ten times 370 dtex). [0076]
  • The abrasion resistance measured was 3000 cycles. [0077]
  • The forces measured in the cut resistance test were 759 g for a cut length of 25.4 mm and 923 g for a cut distance of 10 mm. The combined CTPCPI.N normalized index was given by the following calculation [(759/25.4+923/10)/2]×800/826 and equaled 59 g/mm. [0078]
  • CTPCPI.N of example 2 reveals an approximate 40% inferior cut resistance compared to example 1. On the other side the abrasion resistance of example 2 is three times superior to the one of example 1. [0079]
  • Example 3 Invention
  • Three independent non composite para-aramid strands A and four independent nylon strands B were fed to the same circular knitting machine as the one used in Example 1 without prior assembling of any sort. A sleeve of sufficient length was knitted to obtain a uniform and reproducible pattern of a mass per surface area close to 843 g/m[0080] 2.
  • The samples were cut to the adequate dimensions and shapes, circular for the abrasion testing and rectangular for the cut performance measurement, to perform 6 abrasion tests and 12 cut tests. [0081]
  • Each sample had therefore a total dtex of 3622 (three times 714 dtex plus four times 370 dtex). Each sample comprised 50.1% by weight, of non composite para-aramid strand relative to the weight of the sample, and 40.1% by weight, of nylon strand, relative to the weight of the sample. [0082]
  • The abrasion resistance measured was 6000 cycles. [0083]
  • The forces measured in the cut resistance test were 1170 g for a cut length of 25.4 mm and 1400 g for a cut distance of 10 mm. The combined CTPCPI.N normalized index was given by the following calculation [(1170/25.4+1400/10)/2]×800/843 and equaled 88 g/mm. [0084]
  • CTPCPI.N of Example 3 reveals an approximate equal cut resistance compared to Example 1. On the other side, the abrasion resistance of Example 3 is six times superior to the one of Example 1 and surprisingly two times superior to the one of Example 2. [0085]
  • The following table summarizes the results obtained in Examples 1 to 3. [0086]
    TABLE I
    Example 1 Example 2 Example 3
    (comparative) (comparative) (invention)
    Total dtex 3570 3700 3622
    w % of p-aramid strands 100 0 59
    Mass per square 800 826 843
    area (g/m2)
    CTPCPI.N in g/mm 99 59 88
    Abrasion resistance 900 3000 6000
    in cycles

Claims (12)

1. Fibrous structure comprising at least one non composite para-aramid strand and at least one nylon strand maintained in a parallel relationship to each other, the non composite para-aramid strand being present in the structure in an amount ranging from about 20% to 99.9% by weight, relative to the weight of the structure.
2. Structure of claim 1, wherein the non composite para-aramid strand is present in an amount ranging from about 30% to about 70% by weight, and the nylon strand is present in an amount ranging from about 30% to about 70% by weight, relative to the weight of the structure.
3. Structure of claim 1, wherein the nylon strand is a textured strand.
4. Process to manufacture the fibrous structure of claim 1, comprising the step of processing a non composite para-aramid strand and nylon strand in a parallel relationship to each other.
5. Process of claim 4, wherein the processing includes knitting, weaving, unidirectionally laying down or combining the strands with a binding matrix to form a nonwoven.
6. Process of claim 5, wherein processing is knitting.
7. High cut and abrasion resistant protective clothing made of the fibrous structure of claim 1.
8. High cut and abrasion resistant gloves made of the fibrous structure of claim 1.
9. High cut and abrasion resistant sleeve made of the fibrous structure of claim 1.
10. High cut and abrasion resistant apron made of the fibrous structure of claim 1.
11. Process for providing a fibrous structure having high cut and abrasion resistance, comprising:
a) providing strands of at least one non composite para-aramid strand and at least one nylon strand,
b) feeding the strands into a knitting or weaving machine without prior assembly,
c) knitting or weaving a fibrous structure without changing the order in which the strands are fed into the machine, the strands being maintained in a parallel relationship to each other during the whole knitting or weaving process.
12. Structure of claim 1, showing a combined normalized index CTPCPI.N, equal or greater than 80 g/mm and an abrasion resistance, measured according to EN 388, equal or greater than 1000 cycles.
US10/198,614 2002-07-18 2002-07-18 Cut and abrasion resistant fibrous structure Abandoned US20040011088A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US10/198,614 US20040011088A1 (en) 2002-07-18 2002-07-18 Cut and abrasion resistant fibrous structure
JP2004523435A JP2005533198A (en) 2002-07-18 2003-07-15 Cut and wear resistant fiber structure
PCT/US2003/022126 WO2004009893A1 (en) 2002-07-18 2003-07-15 Cut and abrasion resistant fibrous structure
EP03765592A EP1534886A1 (en) 2002-07-18 2003-07-15 Cut and abrasion resistant fibrous structure
BR0312748-6A BR0312748A (en) 2002-07-18 2003-07-15 Fibrous structure, its manufacturing process, protective clothing, gloves, sleeve, apron and fibrous structure supply process
CNA038171309A CN1668798A (en) 2002-07-18 2003-07-15 Cut and abrasion resistant fibrous structure
CA002492819A CA2492819A1 (en) 2002-07-18 2003-07-15 Cut and abrasion resistant fibrous structure
MXPA05000589A MXPA05000589A (en) 2002-07-18 2003-07-15 Cut and abrasion resistant fibrous structure.
AU2003249277A AU2003249277A1 (en) 2002-07-18 2003-07-15 Cut and abrasion resistant fibrous structure
KR1020057000819A KR20050025614A (en) 2002-07-18 2003-07-15 Cut and abrasion resistant fibrous structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/198,614 US20040011088A1 (en) 2002-07-18 2002-07-18 Cut and abrasion resistant fibrous structure

Publications (1)

Publication Number Publication Date
US20040011088A1 true US20040011088A1 (en) 2004-01-22

Family

ID=30443149

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/198,614 Abandoned US20040011088A1 (en) 2002-07-18 2002-07-18 Cut and abrasion resistant fibrous structure

Country Status (10)

Country Link
US (1) US20040011088A1 (en)
EP (1) EP1534886A1 (en)
JP (1) JP2005533198A (en)
KR (1) KR20050025614A (en)
CN (1) CN1668798A (en)
AU (1) AU2003249277A1 (en)
BR (1) BR0312748A (en)
CA (1) CA2492819A1 (en)
MX (1) MXPA05000589A (en)
WO (1) WO2004009893A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2417253A (en) * 2004-08-19 2006-02-22 Dale Techniche Ltd Cut-resistant knitted fabric
US20070105468A1 (en) * 2002-08-26 2007-05-10 Chiou Minshon J Penetration resistant life protection articles
US20080085411A1 (en) * 2006-10-10 2008-04-10 Larry John Prickett Multidenier fiber cut resistant fabrics and articles and processes for making same
US20080286513A1 (en) * 2007-05-15 2008-11-20 Invista North America S A R L Knit fabrics and socks made therefrom incorporating high tensile nylon staple
WO2011131932A1 (en) * 2010-04-19 2011-10-27 Mir Concepts Limited Garment and use thereof
US20120079639A1 (en) * 2010-10-01 2012-04-05 Hughes Griffith W Cut resistant garment
EP2606757B1 (en) * 2011-12-02 2017-01-04 Rökona-Textilwerk GmbH Wirkerei - Ausrüstung Cut protection lining for a cut protection textile, cut protection textile and personal protective equipment comprising the same
US20170058106A1 (en) * 2006-04-24 2017-03-02 Imerys Minerals Limited Barrier compositions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106418816A (en) * 2016-08-31 2017-02-22 佛山市特纶纤维科技有限公司 Preparation method of protective gloves

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143197A (en) * 1977-05-11 1979-03-06 J. P. Stevens & Co., Inc. Aramid yarn fabrics and method of dimensional stabilization of same by heat setting
US4918912A (en) * 1989-05-19 1990-04-24 E. I. Du Pont De Nemours And Company Cut and abrasion resistant spun yarns and fabrics
US5319950A (en) * 1993-02-22 1994-06-14 Kayser-Roth Corporation Abrasion resistant reinforced fabric
US5321960A (en) * 1993-01-28 1994-06-21 Kayser-Roth Corporation Abrasion resistant reinforced fabric
US5395643A (en) * 1991-09-18 1995-03-07 International Business Machines Corporation Method of and apparatus for depositing solder on a printed circuit board
US5763043A (en) * 1990-07-05 1998-06-09 Bay Mills Limited Open grid fabric for reinforcing wall systems, wall segment product and methods of making same
US5845476A (en) * 1997-06-04 1998-12-08 Kolmes; Nathaniel H. Composite yarn with fiberglass core
US5888609A (en) * 1990-12-18 1999-03-30 Valtion Teknillinen Tutkimuskeskus Planar porous composite structure and method for its manufacture
US5918319A (en) * 1996-07-22 1999-07-06 Baxter; Hal Thomas Protective garment incorporating an abrasion-resistant fabric
US5965643A (en) * 1995-05-03 1999-10-12 Ciba Specialty Chemicals Corporation Synergistic stabilizer mixture
US5965223A (en) * 1996-10-11 1999-10-12 World Fibers, Inc. Layered composite high performance fabric
US6044493A (en) * 1997-08-27 2000-04-04 Rubotech, Inc. Stretchable protective garments and method for making same
US6263629B1 (en) * 1998-08-04 2001-07-24 Clark Schwebel Tech-Fab Company Structural reinforcement member and method of utilizing the same to reinforce a product
US6455449B1 (en) * 1999-09-03 2002-09-24 Bradford Industries, Inc. Coated multi-denier mixed fabrics for use in inflatable vehicle restraint systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395683A (en) * 1993-03-26 1995-03-07 Alliedsignal Inc. Protective pad
JP2000080506A (en) * 1998-06-26 2000-03-21 Atom Kk Knitted reinforced gloves
DE29901430U1 (en) * 1999-01-28 1999-05-06 Friedrich Seiz Gmbh Stab-resistant textile goods

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143197A (en) * 1977-05-11 1979-03-06 J. P. Stevens & Co., Inc. Aramid yarn fabrics and method of dimensional stabilization of same by heat setting
US4918912A (en) * 1989-05-19 1990-04-24 E. I. Du Pont De Nemours And Company Cut and abrasion resistant spun yarns and fabrics
US5763043A (en) * 1990-07-05 1998-06-09 Bay Mills Limited Open grid fabric for reinforcing wall systems, wall segment product and methods of making same
US5888609A (en) * 1990-12-18 1999-03-30 Valtion Teknillinen Tutkimuskeskus Planar porous composite structure and method for its manufacture
US5395643A (en) * 1991-09-18 1995-03-07 International Business Machines Corporation Method of and apparatus for depositing solder on a printed circuit board
US5321960A (en) * 1993-01-28 1994-06-21 Kayser-Roth Corporation Abrasion resistant reinforced fabric
US5319950A (en) * 1993-02-22 1994-06-14 Kayser-Roth Corporation Abrasion resistant reinforced fabric
US5965643A (en) * 1995-05-03 1999-10-12 Ciba Specialty Chemicals Corporation Synergistic stabilizer mixture
US5918319A (en) * 1996-07-22 1999-07-06 Baxter; Hal Thomas Protective garment incorporating an abrasion-resistant fabric
US5965223A (en) * 1996-10-11 1999-10-12 World Fibers, Inc. Layered composite high performance fabric
US5845476A (en) * 1997-06-04 1998-12-08 Kolmes; Nathaniel H. Composite yarn with fiberglass core
US6044493A (en) * 1997-08-27 2000-04-04 Rubotech, Inc. Stretchable protective garments and method for making same
US6263629B1 (en) * 1998-08-04 2001-07-24 Clark Schwebel Tech-Fab Company Structural reinforcement member and method of utilizing the same to reinforce a product
US6455449B1 (en) * 1999-09-03 2002-09-24 Bradford Industries, Inc. Coated multi-denier mixed fabrics for use in inflatable vehicle restraint systems

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070105468A1 (en) * 2002-08-26 2007-05-10 Chiou Minshon J Penetration resistant life protection articles
US7241709B2 (en) * 2002-08-26 2007-07-10 E. I Du Pont De Nemours And Company Penetration resistant life protection articles
GB2417253A (en) * 2004-08-19 2006-02-22 Dale Techniche Ltd Cut-resistant knitted fabric
US20060048496A1 (en) * 2004-08-19 2006-03-09 Dale Techniche Ltd Cut-resistant knitted fabric
GB2417253B (en) * 2004-08-19 2009-05-20 Dale Techniche Ltd Cut-resistant knitted fabric
US20170058106A1 (en) * 2006-04-24 2017-03-02 Imerys Minerals Limited Barrier compositions
US20080085411A1 (en) * 2006-10-10 2008-04-10 Larry John Prickett Multidenier fiber cut resistant fabrics and articles and processes for making same
US20080286513A1 (en) * 2007-05-15 2008-11-20 Invista North America S A R L Knit fabrics and socks made therefrom incorporating high tensile nylon staple
WO2011131932A1 (en) * 2010-04-19 2011-10-27 Mir Concepts Limited Garment and use thereof
US20120079639A1 (en) * 2010-10-01 2012-04-05 Hughes Griffith W Cut resistant garment
US8978162B2 (en) * 2010-10-01 2015-03-17 Banom, Inc. Cut resistant garment
EP2606757B1 (en) * 2011-12-02 2017-01-04 Rökona-Textilwerk GmbH Wirkerei - Ausrüstung Cut protection lining for a cut protection textile, cut protection textile and personal protective equipment comprising the same

Also Published As

Publication number Publication date
MXPA05000589A (en) 2005-04-19
WO2004009893A1 (en) 2004-01-29
BR0312748A (en) 2005-04-26
AU2003249277A1 (en) 2004-02-09
JP2005533198A (en) 2005-11-04
KR20050025614A (en) 2005-03-14
EP1534886A1 (en) 2005-06-01
CN1668798A (en) 2005-09-14
CA2492819A1 (en) 2004-01-29

Similar Documents

Publication Publication Date Title
US20040011087A1 (en) Cut and abrasion resistant fibrous structure comprising an elastic nylon
JP4653929B2 (en) Cut-resistant cloth
JP4786857B2 (en) Comfortable, cut-resistant and abrasion-resistant fiber composition
KR101394876B1 (en) Cut resistant fabric comprising aramid fibers of different denier and method for making articles therefrom
AU2001275348A1 (en) Cut resistant fabric
JP4537711B2 (en) Method for recycling articles containing high-performance fibers
US20040011088A1 (en) Cut and abrasion resistant fibrous structure
US7767599B2 (en) Multidenier fiber cut resistant fabrics and articles
EP0874929B1 (en) Cut resistant yarn and fabric

Legal Events

Date Code Title Description
AS Assignment

Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REBOUILLAT, SERGE;BERNAT, VERONIQUE;REEL/FRAME:013388/0502

Effective date: 20020918

Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARBONELL, JOAN LLIVINA;MAROTO, ANTONIO MANUEL JIMINEZ;REEL/FRAME:013388/0500

Effective date: 20030113

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION