US20030224578A1 - Selective deposition of a barrier layer on a dielectric material - Google Patents
Selective deposition of a barrier layer on a dielectric material Download PDFInfo
- Publication number
- US20030224578A1 US20030224578A1 US10/319,788 US31978802A US2003224578A1 US 20030224578 A1 US20030224578 A1 US 20030224578A1 US 31978802 A US31978802 A US 31978802A US 2003224578 A1 US2003224578 A1 US 2003224578A1
- Authority
- US
- United States
- Prior art keywords
- tantalum
- containing precursor
- sccm
- reducing gas
- barrier layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008021 deposition Effects 0.000 title claims abstract description 103
- 230000004888 barrier function Effects 0.000 title claims abstract description 74
- 239000003989 dielectric material Substances 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 144
- 230000008569 process Effects 0.000 claims abstract description 88
- 239000002243 precursor Substances 0.000 claims abstract description 72
- 239000003870 refractory metal Substances 0.000 claims abstract description 57
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 238000005137 deposition process Methods 0.000 claims abstract description 19
- 238000010926 purge Methods 0.000 claims abstract description 18
- 239000007789 gas Substances 0.000 claims description 85
- 229910052715 tantalum Inorganic materials 0.000 claims description 48
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical group [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 48
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 39
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 33
- 239000012159 carrier gas Substances 0.000 claims description 28
- -1 t-butylamino Chemical group 0.000 claims description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 18
- 229910021529 ammonia Inorganic materials 0.000 claims description 13
- 229910000069 nitrogen hydride Inorganic materials 0.000 claims description 13
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 9
- 239000007983 Tris buffer Substances 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 8
- 239000003708 ampul Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 claims description 3
- GKCPCPKXFGQXGS-UHFFFAOYSA-N ditert-butyldiazene Chemical compound CC(C)(C)N=NC(C)(C)C GKCPCPKXFGQXGS-UHFFFAOYSA-N 0.000 claims description 3
- UCSVJZQSZZAKLD-UHFFFAOYSA-N ethyl azide Chemical compound CCN=[N+]=[N-] UCSVJZQSZZAKLD-UHFFFAOYSA-N 0.000 claims description 3
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 claims description 3
- HKOOXMFOFWEVGF-UHFFFAOYSA-N phenylhydrazine Chemical compound NNC1=CC=CC=C1 HKOOXMFOFWEVGF-UHFFFAOYSA-N 0.000 claims description 3
- 229940067157 phenylhydrazine Drugs 0.000 claims description 3
- MUQNAPSBHXFMHT-UHFFFAOYSA-N tert-butylhydrazine Chemical compound CC(C)(C)NN MUQNAPSBHXFMHT-UHFFFAOYSA-N 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 description 96
- 239000010410 layer Substances 0.000 description 74
- 239000000463 material Substances 0.000 description 25
- 239000010949 copper Substances 0.000 description 22
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 18
- 229910052802 copper Inorganic materials 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 229910052814 silicon oxide Inorganic materials 0.000 description 13
- 239000011810 insulating material Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 229940104869 fluorosilicate Drugs 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- IVHJCRXBQPGLOV-UHFFFAOYSA-N azanylidynetungsten Chemical compound [W]#N IVHJCRXBQPGLOV-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
- H01L21/28562—Selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
- H01L21/76844—Bottomless liners
Definitions
- Embodiments of the present invention relate generally to a method of barrier layer formation.
- Integrated circuits have evolved into complex devices that can include millions of components (e.g., transistors, capacitors and resistors) on a single chip.
- components e.g., transistors, capacitors and resistors
- the evolution of chip designs continually requires faster circuitry and greater circuit densities.
- the demand for greater circuit densities necessitates a reduction in the dimensions of the integrated circuit components.
- the materials used to fabricate such components contribute to the electrical performance thereof.
- low resistivity metal interconnects e.g., aluminum (Al) and copper (Cu)
- Al aluminum
- Cu copper
- the metal interconnects 2 are typically electrically isolated from each other by a bulk insulating material 4 .
- a bulk insulating material 4 When the distance between adjacent metal interconnects 2 and/or the thickness of the bulk insulating material 4 has sub-micron dimensions, capacitive coupling occurs between such interconnects 2 . Capacitive coupling between adjacent metal interconnects 2 may cause cross-talk and/or resistance-capacitance (RC) delay, which degrades the overall performance of the integrated circuit.
- RC resistance-capacitance
- low dielectric constant bulk insulating materials 4 e.g., dielectric constants less than about 3.5
- low dielectric constant bulk insulating materials 4 include silicon dioxide (SiO 2 ), silicate glass and organosilicate glass, among others.
- a barrier layer 6 often separates the metal interconnects 2 from the bulk insulating material 4 .
- the barrier layer 6 minimizes the diffusion of the metal from the metal interconnects 2 into the bulk insulating material 4 . Diffusion of the metal from the metal interconnects 2 into the bulk insulating material 4 is undesirable because such diffusion can affect the electrical performance of the integrated circuit (e.g., cross-talk and/or RC delay) or render it inoperable.
- barrier materials include refractory metals such as titanium (Ti), tantalum (Ta) and tungsten (W), among others and refractory metal nitrides such as titanium nitride (TiN), tantalum.nitride (TaN) and tungsten nitride (WN), among others.
- Barrier materials are typically deposited using physical vapor deposition (PVD) techniques and/or chemical vapor deposition (CVD) techniques. Such techniques deposit the barrier material on all surfaces of the interconnect structure including the metal interconnect 2 and the insulating material 4 . However, when the dimensions of the interconnect structures are sub-quarter micron, deposition of barrier material on the metal interconnects 2 tends to increase the resistivity of the interconnect structure which may degrade the electrical properties of the device.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- a method to selectively deposit a barrier layer on dielectric material that surrounds one or more metal interconnects on a substrate is described.
- the barrier layer may comprise a refractory metal nitride such as, for example, tantalum nitride (TaN).
- TaN tantalum nitride
- the barrier layer is selectively deposited on the metal film using a cyclical deposition process including a predetermined number of deposition cycles followed by a purge step.
- each deposition cycle comprises alternately adsorbing a refractory metal-containing precursor and a reducing gas on the dielectric material formed on the substrate in a process chamber.
- the refractory metal-containing precursor and the reducing gas react to form the barrier layer on the dielectric material.
- the process chamber is purged of both the refractory metal-containing precursor and the reducing gas. This deposition sequence of performing a predetermined number of deposition cycles followed by a process chamber purge may be repeated until a desired barrier layer thickness is achieved.
- the predetermined number of deposition cycles is selected to take advantage of differences in the number of deposition cycles needed to start depositing the barrier material on different types of material layers.
- the predetermined number of deposition cycles is advantageously selected to start deposition of the barrier material on the dielectric material but be less than the number of deposition cycles needed to start deposition of such barrier material on the metal interconnects.
- barrier material is only deposited on the dielectric material without being deposited on any metal interconnects.
- the selective deposition of the barrier layer is compatible with integrated circuit fabrication processes.
- the barrier layer is used in a damascene structure.
- a preferred process sequence includes providing a substrate with one or more dielectric material layers thereon having vias defined therethrough to metal features.
- a barrier layer is selectively deposited on the dielectric material using a cyclic deposition process in which a predetermined number of deposition cycles, each comprising alternately adsorbing a refractory metal-containing precursor and a reducing gas on the dielectric material, is followed by a process chamber purge step.
- the cyclical deposition process is repeated until a desired thickness for the barrier layer is achieved.
- the damascene structure is completed by filling the vias with a conductive material.
- FIG. 1 is a cross-sectional view of a metal interconnect structure including a barrier layer formed on both metal interconnects and bulk insulating material;
- FIG. 2 depicts a schematic cross-sectional view of a process chamber that can be used to perform a cyclical deposition process as described herein;
- FIG. 3 illustrates a process sequence incorporating selective deposition of a barrier layer on a dielectric material using a cyclical deposition process according to one embodiment described herein;
- FIG. 4 illustrates a process sequence incorporating selective deposition of a barrier layer on a dielectric material using a cyclical deposition process according to an alternate embodiment described herein;
- FIG. 5A is a graph showing the number of deposition cycles needed to start forming a tantalum nitride layer on dielectric material as compared to the number of deposition cycles needed to start forming a tantalum nitride layer on copper;
- FIG. 5B is a graph showing the number of deposition cycles needed to start forming a tantalum nitride layer on both silicon oxide and copper at a temperature of about 200° C.;
- FIG. 5C is a graph showing the number of deposition cycles needed to start forming a tantalum nitride layer on silicon oxide as a function of the process chamber pressure.
- FIGS. 6 A- 6 C depict cross-sectional views of a substrate at different stages of an interconnect fabrication process.
- FIG. 2 depicts a schematic cross-sectional view of a process chamber 36 that can be used to perform a cyclical deposition process in accordance with embodiments described herein.
- the process chamber 36 generally houses a wafer support pedestal 148 , which is used to support a substrate (not shown).
- the wafer support pedestal 148 is movable in a vertical direction inside the process chamber 36 using a displacement mechanism 148 a.
- the substrate can be heated to some desired temperature prior to or during deposition.
- the wafer support pedestal 148 may be heated using an embedded heater element 152 a .
- the wafer support pedestal 148 may be resistively heated by applying an electric current from an AC power supply 152 to the heater element 152 a .
- the substrate (not shown) is, in turn, heated by the pedestal 148 .
- the wafer support pedestal 148 may be heated using radiant heaters, such as, for example, lamps (not shown).
- a temperature sensor 150 a such as a thermocouple, is also embedded in the wafer support pedestal 148 to monitor the temperature of the pedestal 148 in a conventional manner. The measured temperature is used in a feedback loop to control the AC power supply 152 for heating element 152 a , such that the substrate temperature can be maintained or controlled at a desired temperature which is suitable for a particular process application.
- a vacuum pump 118 is used to evacuate the process chamber 36 and to maintain the pressure inside the process chamber 36 .
- a gas manifold 134 through which process gases are introduced into the process chamber 36 , is located above the wafer support pedestal 148 .
- the gas manifold 134 is connected to a gas panel 111 , which controls and supplies various process gases to the process chamber 36 .
- gas manifold 134 Proper control and regulation of the gas flows to the gas manifold 134 are performed by mass flow controllers (not shown) and a microprocessor controller 154 .
- the gas manifold 134 allows process gases to be introduced and uniformly distributed in the process chamber 36 . Additionally, the gas manifold 134 may optionally be heated to prevent condensation of any reactive gases within the manifold.
- the gas manifold 134 includes a plurality of electronic control valves (not shown).
- the electronic control valves as used herein refer to any control valve capable of providing rapid and precise gas flow to the process chamber 36 with valve open and close cycles of less than about 1-2 seconds, and more preferably less than about 0.1 second.
- the microprocessor controller 154 may be one of any form of general purpose computer processor (CPU) 171 that can be used in an industrial setting for controlling various chambers and sub-processors.
- the computer may use any suitable memory 172 , such a random access memory, read only memory, floppy disk drive, hard disk, or any other form of digital storage, local or remote.
- Various support circuits 173 may be coupled to the CPU for supporting the processor in a conventional manner.
- Software routines as required may be stored in the memory or executed by a second CPU that is remotely located.
- the software routines are executed to initiate process recipes or sequences.
- the software routines when executed, transform the general purpose computer into a specific process computer that controls the chamber operation so that a chamber process is performed.
- software routines may be used to precisely control the activation of the electronic control valves for the execution of process sequences according to the present invention.
- the software routines may be performed in hardware, as an application specific integrated circuit or other type of hardware implementation, or combination of software or hardware.
- a method to selectively deposit a barrier layer on a dielectric layer formed on a substrate is described.
- the barrier layer may comprise a refractory metal nitride, such as, for example, tantalum nitride (TaN), among others.
- the barrier layer is selectively deposited on the dielectric layer using a cyclical deposition process including a predetermined number of deposition cycles followed by a purge step.
- each deposition cycle comprises alternately adsorbing a refractory metal-containing precursor and a reducing gas on the dielectric layer formed on the substrate in a process chamber.
- the refractory metal-containing precursor and the reducing gas react to form the barrier layer on the metal film.
- the process chamber is purged of both the refractory metal-containing precursor and the reducing gas. This deposition sequence of performing a predetermined number of deposition cycles followed by a process chamber purge may be repeated until a desired barrier layer thickness is achieved.
- the predetermined number of deposition cycles is selected to take advantage of differences in the number of deposition cycles needed to start depositing the barrier material on different types of material layers.
- the predetermined number of deposition cycles is advantageously selected to start deposition of the barrier material on the dielectric layer, but be less than the number of deposition cycles needed to start deposition of such barrier material on metal films adjacent thereto.
- FIG. 3 illustrates a process sequence 200 according to the present invention detailing the various steps used for the selective deposition of a barrier layer on a dielectric layer utilizing a constant carrier gas flow. These steps may be performed in a process chamber similar to that described above with reference to FIG. 2.
- a substrate is introduced into a process chamber.
- the substrate may be, for example, a silicon substrate having thereon one or more copper features surrounded by a dielectric material layer.
- the process chamber conditions such as, for example, the temperature and pressure are adjusted to enhance the selective deposition of the barrier material on the dielectric material layer and impede deposition of the barrier material on the metal film.
- a carrier gas stream is established within the process chamber, as indicated in step 204 .
- Carrier gases may be selected so as to also act as a purge gas for removal of volatile reactants and/or by-products from the process chamber.
- Carrier gases such as, for example, helium (He), argon (Ar), nitrogen (N 2 ) and hydrogen (H 2 ), as well as combinations thereof, among others, may be used.
- a pulse of the refractory metal-containing precursor is added to the carrier gas stream.
- the term pulse as used herein refers to a dose of material injected into the process chamber or into the carrier gas stream.
- the pulse may comprise one injection of the refractory metal-containing precursor or several short, sequential injections.
- the pulse of the refractory metal-containing precursor lasts for a predetermined time interval.
- suitable tantalum-containing precursors may include, for example, pentakis(dimethylamido) tantalum (PDMAT), pentakis(diethylamido) tantalum (PDEAT), pentakis(ethylmethylamido) tantalum (PEMAT), t-butylamino tris(methylethylamido) tantalum (TBTMET), t-butylamino tris(dimethylamido) tantalum (TBTDMT), bis(cyclopentadienyl) tantalum trihydride, bis(methylcyclopentadienyl) tantalum trihydride and t-butylamino tris(diethylamido) tantalum (TBTDET), among others.
- PDMAT pentakis(dimethylamido) tantalum
- PDEAT pentakis(diethylamido) tantalum
- PEMAT pentakis(ethylmethylamido) tantalum
- the time interval for the pulse of the refractory metal-containing precursor is variable depending on a number of factors such as, for example, the volume capacity of the process chamber employed, the vacuum system coupled thereto and the volatility/reactivity of the reactants used.
- the process conditions are advantageously selected so that at least a monolayer of the refractory metal-containing precursor may be adsorbed on the dielectric layer, without adsorption of the refractory metal-containing precursor on adjacent metal films. Thereafter, excess refractory metal-containing precursor remaining in the process chamber may be removed therefrom by the constant carrier gas stream in combination with the vacuum system.
- step 208 after excess refractory metal-containing precursor has been sufficiently removed from the process chamber by the carrier gas stream to prevent co-reaction or particle formation with a subsequently provided process gas, a pulse of a reducing gas is added to the carrier gas stream.
- suitable reducing gases include, for example, ammonia (NH 3 ), hydrazine (N 2 H 4 ), methyl hydrazine (CH 3 N 2 H 3 ), dimethyl hydrazine (C 2 H 6 N 2 H 2 ), t-butyl hydrazine (C 4 H 9 N 2 H 3 ), phenyl hydrazine (C 6 H 5 N 2 H 3 ), 2,2′-azoisobutane ((CH 3 ) 6 C 2 N 2 ) and ethylazide (C 2 H 5 N 3 ), among others.
- ammonia NH 3
- hydrazine N 2 H 4
- methyl hydrazine CH 3 N 2 H 3
- dimethyl hydrazine C 2 H 6 N 2 H 2
- t-butyl hydrazine C 4 H 9 N 2 H 3
- phenyl hydrazine C 6 H 5 N 2 H 3
- 2,2′-azoisobutane ((CH
- the pulse of the reducing gas also lasts for a predetermined time interval.
- the time interval for the pulse of the reducing gas should be long enough to provide a sufficient amount of the reducing gas for reaction with the refractory metal-containing precursor that is already adsorbed on the dielectric layer. Thereafter, excess reducing gas is flushed from the process chamber by the carrier gas stream in combination with the vacuum system.
- Steps 204 through 208 comprise one embodiment of a deposition cycle for the barrier layer.
- a constant flow of the carrier gas is provided to the process chamber modulated by alternating periods of pulsing and non-pulsing where the periods of pulsing alternate between the refractory metal-containing precursor and the reducing gas along with the carrier gas stream, while the periods of non-pulsing include only the carrier gas stream.
- the time interval for each of the pulses of the refractory metal-containing precursor and the reducing gas may have the same duration. That is, the duration of the pulse of the refractory metal-containing precursor may be identical to the duration of the pulse of the reducing gas.
- a time interval (T 1 ) for the pulse of the refractory metal-containing precursor is equal to a time interval (T 2 ) for the pulse of the reducing gas.
- the time interval for each of the pulses of the refractory metal-containing precursor and the reducing gas may have different durations. That is, the duration of the pulse of the refractory metal-containing precursor may be shorted or longer than the duration of the pulse of the reducing gas.
- the time interval (T 1 ) for the pulse of the refractory metal-containing precursor is different than the time interval (T 2 ) for the pulse of the reducing gas.
- the periods of non-pulsing between each of the pulses of the refractory metal-containing precursor and the reducing gas may have the same duration. That is, the duration of the period of non-pulsing between each pulse of the refractory metal-containing precursor and each pulse of the reducing gas may be identical.
- a time interval (T 3 ) of non-pulsing between the pulse of the refractory metal-containing precursor and the pulse of the reducing gas is equal to a time interval (T 4 ) of non-pulsing between the pulse of the reducing gas and the pulse of the refractory metal-containing precursor.
- the periods of non-pulsing between each of the pulses of the refractory metal-containing precursor and the reducing gas may have different durations. That is, the duration of the period of non-pulsing between each pulse of the refractory metal-containing precursor and each pulse of the reducing gas may be shorter or longer than the duration of the period of non-pulsing between each pulse of the reducing gas and each pulse of the refractory metal-containing precursor.
- a time interval (T 3 ) of non-pulsing between the pulse of the refractory metal-containing precursor and the pulse of the reducing gas is different from a time interval (T 4 ) of non-pulsing between the pulse of the reducing gas and the pulse of the refractory metal-containing precursor.
- time intervals for each pulse of the refractory metal-containing precursor, the reducing gas and the periods of non-pulsing therebetween for each deposition cycle may have the same duration.
- a time interval (T 1 ) for the pulse of the refractory metal-containing precursor may have the same duration as the time interval (T 1 ) for the pulse of the refractory metal-containing precursor in subsequent deposition cycles (C 2 . . . C N ).
- each pulse of the reducing gas as well as the periods of non-pulsing between the pulses of the refractory metal-containing precursor and the reducing gas in the first deposition cycle (C 1 ) may have the same duration as each pulse of the reducing gas and the periods of non-pulsing between the pulses of the refractory metal-containing precursor and the reducing gas in subsequent deposition cycles (C 2 . . . C N ), respectively.
- the time interval for at least one pulse of the refractory metal-containing precursor, the reducing gas and the periods of non-pulsing therebetween for one or more of the deposition cycles of the barrier layer deposition process may have different durations.
- the time interval (T 1 ) for the pulse of the refractory metal-containing precursor may be longer or shorter than the time interval (T 1 ) for the pulse of the refractory metal-containing precursor in subsequent deposition cycles (C 2 . . . C N ).
- the duration of one or more pulse of the reducing gas or the periods of non-pulsing between the pulses of the refractory metal-containing precursor and the reducing gas in deposition cycle (C 1) may be longer or shorter than the duration of corresponding pulses of the reducing gas or the periods of non-pulsing between the pulses of the refractory metal-containing precursor and the reducing gas in subsequent deposition cycles (C 2 . . . C N ), respectively.
- step 210 after each deposition cycle (steps 204 through 208 ), the total number of deposition cycles performed is determined. If a predetermined number of deposition cycles have not been performed, steps 204 through 208 are repeated until such predetermined number of deposition cycles have been completed. However, if a predetermined number of deposition cycles have been completed, the process chamber is purged of both the refractory metal-containing precursor and the reducing gas, as indicated by step 212 . The process chamber may be purged using the carrier gas stream. After the process chamber is purged, additional predetermined numbers of deposition cycles (steps 203 through 208 ) may be performed until a desired thickness for the barrier layer is achieved as indicated by step 214 , or ended as indicated by step 216 .
- the predetermined number of deposition cycles is selected to start depositing barrier material on the dielectric layer within the first few deposition cycles, but be less than the number of deposition cycles needed to start depositing such barrier material on the adjacent metal film. Limiting the number of deposition cycles to a predetermined number that is less than the number needed to start deposition of the barrier material on the adjacent metal film and than purging the process chamber, permits selective deposition of the barrier material only on the dielectric layer.
- a barrier layer deposition sequence 300 includes introducing a substrate into the process chamber (step 302 ), providing a pulse of a carrier gas to the process chamber (step 304 ), providing a pulse of a refractory metal-containing precursor to the process chamber (step 306 ), providing a pulse of a carrier gas to the process chamber (step 308 ), providing a pulse of a reducing gas to the process chamber (step 310 ), and repeating steps 304 through 310 until a predetermined number of deposition cycles are performed (step 312 ).
- the process chamber is purged of both the refractory metal-containing precursor and the reducing gas (step 314 ).
- additional predetermined numbers of deposition cycles may be performed until a desired thickness for the barrier layer is achieved (step 316 ), or ended (step 318 ).
- the time intervals for each of the pulses of the refractory metal-containing precursor, the reducing gas and the carrier gas may have the same or different durations as discussed above with respect to FIG. 3.
- corresponding time intervals for one or more pulses of the refractory metal-containing precursor, the reducing gas and the carrier gas in one or more of the deposition cycles of the barrier layer deposition process may have different durations.
- the barrier layer deposition cycle is depicted as beginning with a pulse of the refractory metal-containing precursor followed by a pulse of the reducing gas.
- the barrier layer deposition cycle may start with a pulse of the reducing gas followed by a pulse of the refractory metal-containing precursor.
- a pulse may comprise one injection of a gas or several short, sequential injections.
- One exemplary deposition cycle for selectively forming a tantalum nitride barrier layer on silicon oxide dielectric material that is adjacent to copper features comprises sequentially providing pulses of pentakis(ethylmethylamido) tantalum (PEMAT) and pulses of ammonia (NH 3 ) to a process chamber similar to that described above with reference to FIG. 2.
- PEMAT pentakis(ethylmethylamido) tantalum
- NH 3 ammonia
- argon may be provided to an appropriate flow control valve, for example an electronic flow control valve, at a flow rate of between about 100 sccm (standard cubic centimeters per second) to about 1000 sccm, preferably at about 500 sccm, and thereafter pulsed for about 5 seconds to about 25 seconds, preferably for about 15 seconds.
- the pentakis(ethylmethylamido) tantalum may be provided to an appropriate flow control valve, for example an electronic flow control valve, by flowing hydrogen (H 2 ) at a flow rate of between 30 sccm to about 1500 sccm, preferably at about 100 sccm through an ampoule containing liquid PEMAT at a temperature of about 50° C. to about 95° C., and thereafter pulsed for about 5 seconds to about 50 seconds, preferably for about 15 seconds.
- Argon is than provided at a flow rate of between about 100 sccm to about 1000 sccm, preferably at about 500 sccm, and thereafter pulsed for about 5 seconds to about 25 seconds, preferably for about 15 seconds.
- the ammonia (NH 3 ) may be provided to an appropriate flow control valve, for example an electronic flow control valve, at a flow rate of between about 150 sccm to about 700 sccm, preferably for about 250 sccm, and thereafter pulsed for about 3 seconds to about 45 seconds, preferably for about 5 seconds.
- the substrate may be maintained at a temperature between about 150° C. to about 350° C., preferably at about 200° C., at a chamber pressure of up to about 40 torr, preferably at about 0.5 torr.
- the process chamber is purged by providing a flow of the carrier gas thereto.
- Gases such as for example, argon (Ar), helium (He), nitrogen (N 2 ) and hydrogen (H 2 ), among others may be used.
- the process chamber may be purged by providing a flow of gas at about 100 sccm to about 1000 sccm, preferably at about 500 sccm, for a duration of up to about 2 minutes, preferably for about 1 minute.
- FIG. 5A is a plot illustrating the number of deposition cycles needed to start forming a tantalum nitride layer on dielectric oxides as compared to the number of deposition cycles needed to start forming a tantalum nitride layer on copper.
- Each deposition cycle was performed at a substrate temperature of about 225° C., a deposition chamber pressure of about 0.5 torr, a pentakis(ethylmethylamido) tantalum flow of about 100 sccm with hydrogen (H 2 ) that is pulsed for about 15 seconds, an ammonia (NH 3 ) flow of 250 sccm that is pulsed for about 5 seconds and an argon (Ar) flow of about 500 sccm that is pulsed for about 15 seconds between each pulse of the pentakis(ethylmethylamido) tantalum (PEMAT) and each pulse of the ammonia (NH 3 ).
- PEMAT pentakis(ethylmethylamido) tantalum
- the tantalum nitride (TaN) starts to deposit on the silicon oxide during a first deposition cycle, as indicated by line 400 .
- the tantalum nitride (TaN) starts to deposit on the fluorosilicate glass (FSG) during a fifth deposition cycle, as indicated by line 405 .
- FSG fluorosilicate glass
- the tantalum nitride starts to deposit on the copper during the fourteenth deposition cycle, as indicated by line 410 .
- TaN tantalum nitride
- FSG fluorosilicate glass
- the number of deposition cycles needed to start forming a tantalum nitride (TaN) layer on material layers may vary as a function of the substrate temperature.
- a tantalum nitride (TaN) layer was formed on both silicon oxide and copper at a substrate temperature of 200° C.
- Each deposition cycle was performed at a deposition chamber pressure of about 0.5 torr, a pentakis(ethylmethylamido) tantalum flow of about 100 sccm with hydrogen (H 2 ) that is pulsed for about 15 seconds, an ammonia (NH 3 ) flow of 250 sccm that is pulsed for about 5 seconds and an argon (Ar) flow of about 500 sccm that is pulsed for about 15 seconds between each pulse of the pentakis(ethylmethylamido) tantalum (PEMAT) and each pulse of the ammonia (NH 3 ).
- FIG. 5B about five deposition cycles were needed to start forming a tantalum nitride (TaN) layer on silicon oxide at a substrate temperature of about 200° C., as indicated by line 415 , as compared to one deposition cycle when the substrate temperature is about 225° C., as indicated by line 400 (FIG. 5A).
- about forty deposition cycles were needed to start forming a tantalum nitride (TaN) layer on copper at a substrate temperature of about 200° C., as indicated by line 420 , as compared to fourteen deposition cycles when the substrate temperature is about 225° C., as indicated by line 410 (FIG. 5A).
- the number of deposition cycles needed to start forming a tantalum nitride (TaN) layer on silicon oxide may vary as a function of the process chamber pressure.
- a tantalum nitride (TaN) layer was formed on silicon oxide at a process chamber pressures of 0.5 torr, 1 torr, 2 torr and 6 torr.
- Each deposition cycle was performed at a substrate temperature of about 210° C., a pentakis(ethylmethylamido) tantalum flow of about 100 sccm with hydrogen (H 2 ) that is pulsed for about 15 seconds, an ammonia (NH 3 ) flow of 250 sccm that is pulsed for about 5 seconds and an argon (Ar) flow of about 500 sccm that is pulsed for about 15 seconds between each pulse of the pentakis(ethylmethylamido) tantalum (PEMAT) and each pulse of the ammonia (NH 3 ).
- tantalum nitride (TaN) layer on silicon oxide at process chamber pressures of 0.5 torr, 1 torr and 2 torr, as indicated by line 440 , line 435 and line 430 , respectively.
- about two deposition cycles were needed to start forming a tantalum nitride (TaN) layer on silicon oxide at a process chamber pressure of 6 torr, as indicated by line 425 .
- FIGS. 6 A- 6 C illustrate schematic cross-sectional views of a substrate 500 at different stages of an integrated circuit fabrication sequence incorporating a tantalum nitride barrier layer formed on dielectric material.
- substrate 500 may correspond to a silicon substrate, or other material layer that has been formed on the substrate 500 .
- FIG. 6A illustrates a cross-sectional view of a substrate 500 having conductive leads 501 formed thereon surrounded by a dielectric material 502 .
- the conductive leads 501 may be metal (e.g., aluminum (Al) or copper (Cu)).
- the dielectric material 502 may be an oxide (e.g., silicon oxide).
- FIG. 6A illustrates one embodiment in which the substrate 500 is silicon having copper leads 501 formed thereon.
- the copper leads 501 have a thickness of about 5,000 ⁇ to about 2 microns depending on the size of the structure to be fabricated.
- a dielectric material 502 surrounds the copper leads 501 .
- the dielectric material 502 may be a low dielectric constant silicon oxide layer.
- the dielectric material 502 may have a thickness of up to about 5 microns.
- Vias 503 are defined in the dielectric material 502 to the copper leads 501 .
- the vias are defined in the dielectric material 502 using conventional lithography and etching techniques.
- a tantalum nitride barrier layer 505 is selectively formed on the dielectric material 502 comprising the sidewalls of the vias 503 .
- the tantalum nitride barrier layer 505 may be formed according to the process parameters described above with respect to FIGS. 3 - 4 .
- the thickness of the tantalum nitride barrier layer 505 should be about 50 ⁇ to about 500 ⁇ .
- the vias 503 are filled with a conductive material 506 such as aluminum (Al), copper (Cu), tungsten (W), or combinations thereof.
- a conductive material 506 such as aluminum (Al), copper (Cu), tungsten (W), or combinations thereof.
- copper (Cu) is used to fill the vias 503 due to its low resistivity (resistivity of about 1.7 ⁇ /cm).
- the conductive material 506 may be deposited using chemical vapor deposition (CVD) techniques, physical vapor deposition techniques (PVD) techniques, electroplating techniques, or combinations thereof.
- Formation of the tantalum nitride barrier layer 505 on the dielectric material 502 comprising the sidewalls of the vias 503 advantageously prevents metal migration into such dielectric material when the vias 503 are subsequently filled with the conductive material 506 .
- selective deposition of the barrier layer 505 only on the sidewalls of the vias 503 minimizes any increase to the overall resistivity of the interconnect structure which would otherwise occur had the barrier material 505 also been deposited on the copper leads 501 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
A method to selectively deposit a barrier layer on dielectric material that surrounds one or more metal interconnects on a substrate is disclosed. The barrier layer is selectively deposited on the metal film using a cyclical deposition process including a predetermined number of deposition cycles followed by a purge step. Each deposition cycle comprises alternately adsorbing a refractory metal-containing precursor and a reducing gas on the dielectric material formed on the substrate in a process chamber.
Description
- This application claims benefit of U.S. provisional patent application Serial No. 60/342,307, filed on Dec. 21, 2001, which is incorporated by reference in its entirety.
- 1. Field of the Invention
- Embodiments of the present invention relate generally to a method of barrier layer formation.
- 2. Description of the Related Art
- Integrated circuits have evolved into complex devices that can include millions of components (e.g., transistors, capacitors and resistors) on a single chip. The evolution of chip designs continually requires faster circuitry and greater circuit densities. The demand for greater circuit densities necessitates a reduction in the dimensions of the integrated circuit components.
- As the dimensions of the integrated circuit components are reduced (e.g., sub-micron dimensions), the materials used to fabricate such components contribute to the electrical performance thereof. For example, low resistivity metal interconnects (e.g., aluminum (Al) and copper (Cu)) provide conductive paths between the components on integrated circuits.
- Referring to FIG. 1, the
metal interconnects 2 are typically electrically isolated from each other by abulk insulating material 4. When the distance betweenadjacent metal interconnects 2 and/or the thickness of thebulk insulating material 4 has sub-micron dimensions, capacitive coupling occurs betweensuch interconnects 2. Capacitive coupling betweenadjacent metal interconnects 2 may cause cross-talk and/or resistance-capacitance (RC) delay, which degrades the overall performance of the integrated circuit. - In order to minimize capacitive coupling between adjacent metal interconnects, low dielectric constant bulk insulating materials4 (e.g., dielectric constants less than about 3.5) are used. Examples of low dielectric constant bulk insulating materials include silicon dioxide (SiO2), silicate glass and organosilicate glass, among others.
- In addition, a
barrier layer 6 often separates themetal interconnects 2 from thebulk insulating material 4. Thebarrier layer 6 minimizes the diffusion of the metal from themetal interconnects 2 into thebulk insulating material 4. Diffusion of the metal from themetal interconnects 2 into thebulk insulating material 4 is undesirable because such diffusion can affect the electrical performance of the integrated circuit (e.g., cross-talk and/or RC delay) or render it inoperable. Examples of barrier materials include refractory metals such as titanium (Ti), tantalum (Ta) and tungsten (W), among others and refractory metal nitrides such as titanium nitride (TiN), tantalum.nitride (TaN) and tungsten nitride (WN), among others. - Barrier materials are typically deposited using physical vapor deposition (PVD) techniques and/or chemical vapor deposition (CVD) techniques. Such techniques deposit the barrier material on all surfaces of the interconnect structure including the
metal interconnect 2 and theinsulating material 4. However, when the dimensions of the interconnect structures are sub-quarter micron, deposition of barrier material on themetal interconnects 2 tends to increase the resistivity of the interconnect structure which may degrade the electrical properties of the device. - Thus, a need exists for a method to selectively deposit a barrier layer on a dielectric material.
- A method to selectively deposit a barrier layer on dielectric material that surrounds one or more metal interconnects on a substrate is described. The barrier layer may comprise a refractory metal nitride such as, for example, tantalum nitride (TaN). The barrier layer is selectively deposited on the metal film using a cyclical deposition process including a predetermined number of deposition cycles followed by a purge step.
- In the cyclical deposition process, each deposition cycle comprises alternately adsorbing a refractory metal-containing precursor and a reducing gas on the dielectric material formed on the substrate in a process chamber. The refractory metal-containing precursor and the reducing gas react to form the barrier layer on the dielectric material. After a predetermined number of deposition cycles are completed, the process chamber is purged of both the refractory metal-containing precursor and the reducing gas. This deposition sequence of performing a predetermined number of deposition cycles followed by a process chamber purge may be repeated until a desired barrier layer thickness is achieved.
- The predetermined number of deposition cycles is selected to take advantage of differences in the number of deposition cycles needed to start depositing the barrier material on different types of material layers. Thus, the predetermined number of deposition cycles is advantageously selected to start deposition of the barrier material on the dielectric material but be less than the number of deposition cycles needed to start deposition of such barrier material on the metal interconnects. As such, barrier material is only deposited on the dielectric material without being deposited on any metal interconnects.
- The selective deposition of the barrier layer is compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, the barrier layer is used in a damascene structure. For such an embodiment, a preferred process sequence includes providing a substrate with one or more dielectric material layers thereon having vias defined therethrough to metal features. A barrier layer is selectively deposited on the dielectric material using a cyclic deposition process in which a predetermined number of deposition cycles, each comprising alternately adsorbing a refractory metal-containing precursor and a reducing gas on the dielectric material, is followed by a process chamber purge step. The cyclical deposition process is repeated until a desired thickness for the barrier layer is achieved. After the barrier layer is selectively deposited on the dielectric material, the damascene structure is completed by filling the vias with a conductive material.
- So that the manner in which the above recited features of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.
- It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
- FIG. 1 is a cross-sectional view of a metal interconnect structure including a barrier layer formed on both metal interconnects and bulk insulating material;
- FIG. 2 depicts a schematic cross-sectional view of a process chamber that can be used to perform a cyclical deposition process as described herein;
- FIG. 3 illustrates a process sequence incorporating selective deposition of a barrier layer on a dielectric material using a cyclical deposition process according to one embodiment described herein;
- FIG. 4 illustrates a process sequence incorporating selective deposition of a barrier layer on a dielectric material using a cyclical deposition process according to an alternate embodiment described herein;
- FIG. 5A is a graph showing the number of deposition cycles needed to start forming a tantalum nitride layer on dielectric material as compared to the number of deposition cycles needed to start forming a tantalum nitride layer on copper;
- FIG. 5B is a graph showing the number of deposition cycles needed to start forming a tantalum nitride layer on both silicon oxide and copper at a temperature of about 200° C.;
- FIG. 5C is a graph showing the number of deposition cycles needed to start forming a tantalum nitride layer on silicon oxide as a function of the process chamber pressure; and
- FIGS.6A-6C depict cross-sectional views of a substrate at different stages of an interconnect fabrication process.
- FIG. 2 depicts a schematic cross-sectional view of a
process chamber 36 that can be used to perform a cyclical deposition process in accordance with embodiments described herein. Theprocess chamber 36 generally houses awafer support pedestal 148, which is used to support a substrate (not shown). Thewafer support pedestal 148 is movable in a vertical direction inside theprocess chamber 36 using adisplacement mechanism 148 a. - Depending on the specific process, the substrate can be heated to some desired temperature prior to or during deposition. For example, the
wafer support pedestal 148 may be heated using an embeddedheater element 152 a. Thewafer support pedestal 148 may be resistively heated by applying an electric current from anAC power supply 152 to theheater element 152 a. The substrate (not shown) is, in turn, heated by thepedestal 148. Alternatively, thewafer support pedestal 148 may be heated using radiant heaters, such as, for example, lamps (not shown). - A
temperature sensor 150 a, such as a thermocouple, is also embedded in thewafer support pedestal 148 to monitor the temperature of thepedestal 148 in a conventional manner. The measured temperature is used in a feedback loop to control theAC power supply 152 forheating element 152 a, such that the substrate temperature can be maintained or controlled at a desired temperature which is suitable for a particular process application. - A
vacuum pump 118 is used to evacuate theprocess chamber 36 and to maintain the pressure inside theprocess chamber 36. Agas manifold 134, through which process gases are introduced into theprocess chamber 36, is located above thewafer support pedestal 148. Thegas manifold 134 is connected to agas panel 111, which controls and supplies various process gases to theprocess chamber 36. - Proper control and regulation of the gas flows to the
gas manifold 134 are performed by mass flow controllers (not shown) and amicroprocessor controller 154. Thegas manifold 134 allows process gases to be introduced and uniformly distributed in theprocess chamber 36. Additionally, thegas manifold 134 may optionally be heated to prevent condensation of any reactive gases within the manifold. - The
gas manifold 134 includes a plurality of electronic control valves (not shown). The electronic control valves as used herein refer to any control valve capable of providing rapid and precise gas flow to theprocess chamber 36 with valve open and close cycles of less than about 1-2 seconds, and more preferably less than about 0.1 second. - The
microprocessor controller 154 may be one of any form of general purpose computer processor (CPU) 171 that can be used in an industrial setting for controlling various chambers and sub-processors. The computer may use anysuitable memory 172, such a random access memory, read only memory, floppy disk drive, hard disk, or any other form of digital storage, local or remote.Various support circuits 173 may be coupled to the CPU for supporting the processor in a conventional manner. Software routines as required may be stored in the memory or executed by a second CPU that is remotely located. - The software routines are executed to initiate process recipes or sequences. The software routines, when executed, transform the general purpose computer into a specific process computer that controls the chamber operation so that a chamber process is performed. For example, software routines may be used to precisely control the activation of the electronic control valves for the execution of process sequences according to the present invention. Alternatively, the software routines may be performed in hardware, as an application specific integrated circuit or other type of hardware implementation, or combination of software or hardware.
- Selective Barrier Layer Deposition on a Dielectric Layer
- A method to selectively deposit a barrier layer on a dielectric layer formed on a substrate is described. The barrier layer may comprise a refractory metal nitride, such as, for example, tantalum nitride (TaN), among others. The barrier layer is selectively deposited on the dielectric layer using a cyclical deposition process including a predetermined number of deposition cycles followed by a purge step.
- In the cyclical deposition process, each deposition cycle comprises alternately adsorbing a refractory metal-containing precursor and a reducing gas on the dielectric layer formed on the substrate in a process chamber. The refractory metal-containing precursor and the reducing gas react to form the barrier layer on the metal film. After a predetermined number of deposition cycles are completed, the process chamber is purged of both the refractory metal-containing precursor and the reducing gas. This deposition sequence of performing a predetermined number of deposition cycles followed by a process chamber purge may be repeated until a desired barrier layer thickness is achieved.
- The predetermined number of deposition cycles is selected to take advantage of differences in the number of deposition cycles needed to start depositing the barrier material on different types of material layers. Thus, the predetermined number of deposition cycles is advantageously selected to start deposition of the barrier material on the dielectric layer, but be less than the number of deposition cycles needed to start deposition of such barrier material on metal films adjacent thereto.
- FIG. 3 illustrates a
process sequence 200 according to the present invention detailing the various steps used for the selective deposition of a barrier layer on a dielectric layer utilizing a constant carrier gas flow. These steps may be performed in a process chamber similar to that described above with reference to FIG. 2. As indicated instep 202, a substrate is introduced into a process chamber. The substrate may be, for example, a silicon substrate having thereon one or more copper features surrounded by a dielectric material layer. The process chamber conditions such as, for example, the temperature and pressure are adjusted to enhance the selective deposition of the barrier material on the dielectric material layer and impede deposition of the barrier material on the metal film. - In one embodiment where a constant carrier gas flow is desired, a carrier gas stream is established within the process chamber, as indicated in
step 204. Carrier gases may be selected so as to also act as a purge gas for removal of volatile reactants and/or by-products from the process chamber. Carrier gases such as, for example, helium (He), argon (Ar), nitrogen (N2) and hydrogen (H2), as well as combinations thereof, among others, may be used. - Referring to step206, after the carrier gas stream is established within the process chamber, a pulse of the refractory metal-containing precursor is added to the carrier gas stream. The term pulse as used herein refers to a dose of material injected into the process chamber or into the carrier gas stream. The pulse may comprise one injection of the refractory metal-containing precursor or several short, sequential injections. The pulse of the refractory metal-containing precursor lasts for a predetermined time interval. When the barrier layer comprises tantalum nitride (TaN), suitable tantalum-containing precursors may include, for example, pentakis(dimethylamido) tantalum (PDMAT), pentakis(diethylamido) tantalum (PDEAT), pentakis(ethylmethylamido) tantalum (PEMAT), t-butylamino tris(methylethylamido) tantalum (TBTMET), t-butylamino tris(dimethylamido) tantalum (TBTDMT), bis(cyclopentadienyl) tantalum trihydride, bis(methylcyclopentadienyl) tantalum trihydride and t-butylamino tris(diethylamido) tantalum (TBTDET), among others.
- The time interval for the pulse of the refractory metal-containing precursor is variable depending on a number of factors such as, for example, the volume capacity of the process chamber employed, the vacuum system coupled thereto and the volatility/reactivity of the reactants used. In general, the process conditions are advantageously selected so that at least a monolayer of the refractory metal-containing precursor may be adsorbed on the dielectric layer, without adsorption of the refractory metal-containing precursor on adjacent metal films. Thereafter, excess refractory metal-containing precursor remaining in the process chamber may be removed therefrom by the constant carrier gas stream in combination with the vacuum system.
- In
step 208, after excess refractory metal-containing precursor has been sufficiently removed from the process chamber by the carrier gas stream to prevent co-reaction or particle formation with a subsequently provided process gas, a pulse of a reducing gas is added to the carrier gas stream. When the barrier layer comprises tantalum nitride (TaN) suitable reducing gases include, for example, ammonia (NH3), hydrazine (N2H4), methyl hydrazine (CH3N2H3), dimethyl hydrazine (C2H6N2H2), t-butyl hydrazine (C4H9N2H3), phenyl hydrazine (C6H5N2H3), 2,2′-azoisobutane ((CH3)6C2N2) and ethylazide (C2H5N3), among others. - The pulse of the reducing gas also lasts for a predetermined time interval. In general, the time interval for the pulse of the reducing gas should be long enough to provide a sufficient amount of the reducing gas for reaction with the refractory metal-containing precursor that is already adsorbed on the dielectric layer. Thereafter, excess reducing gas is flushed from the process chamber by the carrier gas stream in combination with the vacuum system.
-
Steps 204 through 208 comprise one embodiment of a deposition cycle for the barrier layer. For such an embodiment, a constant flow of the carrier gas is provided to the process chamber modulated by alternating periods of pulsing and non-pulsing where the periods of pulsing alternate between the refractory metal-containing precursor and the reducing gas along with the carrier gas stream, while the periods of non-pulsing include only the carrier gas stream. - The time interval for each of the pulses of the refractory metal-containing precursor and the reducing gas may have the same duration. That is, the duration of the pulse of the refractory metal-containing precursor may be identical to the duration of the pulse of the reducing gas. For such an embodiment, a time interval (T1) for the pulse of the refractory metal-containing precursor is equal to a time interval (T2) for the pulse of the reducing gas.
- Alternatively, the time interval for each of the pulses of the refractory metal-containing precursor and the reducing gas may have different durations. That is, the duration of the pulse of the refractory metal-containing precursor may be shorted or longer than the duration of the pulse of the reducing gas. For such an embodiment, the time interval (T1) for the pulse of the refractory metal-containing precursor is different than the time interval (T2) for the pulse of the reducing gas.
- In addition, the periods of non-pulsing between each of the pulses of the refractory metal-containing precursor and the reducing gas may have the same duration. That is, the duration of the period of non-pulsing between each pulse of the refractory metal-containing precursor and each pulse of the reducing gas may be identical. For such an embodiment, a time interval (T3) of non-pulsing between the pulse of the refractory metal-containing precursor and the pulse of the reducing gas is equal to a time interval (T4) of non-pulsing between the pulse of the reducing gas and the pulse of the refractory metal-containing precursor. During the time periods of non-pulsing only the constant carrier gas stream is provided to the process chamber.
- Alternatively, the periods of non-pulsing between each of the pulses of the refractory metal-containing precursor and the reducing gas may have different durations. That is, the duration of the period of non-pulsing between each pulse of the refractory metal-containing precursor and each pulse of the reducing gas may be shorter or longer than the duration of the period of non-pulsing between each pulse of the reducing gas and each pulse of the refractory metal-containing precursor. For such, an embodiment, a time interval (T3) of non-pulsing between the pulse of the refractory metal-containing precursor and the pulse of the reducing gas is different from a time interval (T4) of non-pulsing between the pulse of the reducing gas and the pulse of the refractory metal-containing precursor. During the periods of non-pulsing only the constant carrier gas stream is provided to the process chamber.
- Additionally, the time intervals for each pulse of the refractory metal-containing precursor, the reducing gas and the periods of non-pulsing therebetween for each deposition cycle may have the same duration. For example, in a first deposition cycle (C1), a time interval (T1) for the pulse of the refractory metal-containing precursor may have the same duration as the time interval (T1) for the pulse of the refractory metal-containing precursor in subsequent deposition cycles (C2 . . . CN). Similarly, the duration of each pulse of the reducing gas as well as the periods of non-pulsing between the pulses of the refractory metal-containing precursor and the reducing gas in the first deposition cycle (C1) may have the same duration as each pulse of the reducing gas and the periods of non-pulsing between the pulses of the refractory metal-containing precursor and the reducing gas in subsequent deposition cycles (C2 . . . CN), respectively.
- Alternatively, the time interval for at least one pulse of the refractory metal-containing precursor, the reducing gas and the periods of non-pulsing therebetween for one or more of the deposition cycles of the barrier layer deposition process may have different durations. For example, in a first deposition cycle (C1), the time interval (T1) for the pulse of the refractory metal-containing precursor may be longer or shorter than the time interval (T1) for the pulse of the refractory metal-containing precursor in subsequent deposition cycles (C2 . . . CN). Similarly, the duration of one or more pulse of the reducing gas or the periods of non-pulsing between the pulses of the refractory metal-containing precursor and the reducing gas in deposition cycle (C1) may be longer or shorter than the duration of corresponding pulses of the reducing gas or the periods of non-pulsing between the pulses of the refractory metal-containing precursor and the reducing gas in subsequent deposition cycles (C2 . . . CN), respectively.
- Referring to step210, after each deposition cycle (
steps 204 through 208), the total number of deposition cycles performed is determined. If a predetermined number of deposition cycles have not been performed,steps 204 through 208 are repeated until such predetermined number of deposition cycles have been completed. However, if a predetermined number of deposition cycles have been completed, the process chamber is purged of both the refractory metal-containing precursor and the reducing gas, as indicated bystep 212. The process chamber may be purged using the carrier gas stream. After the process chamber is purged, additional predetermined numbers of deposition cycles (steps 203 through 208) may be performed until a desired thickness for the barrier layer is achieved as indicated bystep 214, or ended as indicated bystep 216. - For a particular barrier material, the predetermined number of deposition cycles is selected to start depositing barrier material on the dielectric layer within the first few deposition cycles, but be less than the number of deposition cycles needed to start depositing such barrier material on the adjacent metal film. Limiting the number of deposition cycles to a predetermined number that is less than the number needed to start deposition of the barrier material on the adjacent metal film and than purging the process chamber, permits selective deposition of the barrier material only on the dielectric layer.
- In an alternate process sequence described with respect to FIG. 4, the barrier layer deposition cycle may comprise separate pulses for each of the refractory metal-containing precursor, the reducing gas and the carrier gas. For such an embodiment, a barrier
layer deposition sequence 300 includes introducing a substrate into the process chamber (step 302), providing a pulse of a carrier gas to the process chamber (step 304), providing a pulse of a refractory metal-containing precursor to the process chamber (step 306), providing a pulse of a carrier gas to the process chamber (step 308), providing a pulse of a reducing gas to the process chamber (step 310), and repeatingsteps 304 through 310 until a predetermined number of deposition cycles are performed (step 312). When a predetermined number of deposition cycles have been completed, the process chamber is purged of both the refractory metal-containing precursor and the reducing gas (step 314). After the process chamber is purged, additional predetermined numbers of deposition cycles (steps 304 through 310) may be performed until a desired thickness for the barrier layer is achieved (step 316), or ended (step 318). - The time intervals for each of the pulses of the refractory metal-containing precursor, the reducing gas and the carrier gas may have the same or different durations as discussed above with respect to FIG. 3. Alternatively, corresponding time intervals for one or more pulses of the refractory metal-containing precursor, the reducing gas and the carrier gas in one or more of the deposition cycles of the barrier layer deposition process may have different durations.
- In FIGS.3-4, the barrier layer deposition cycle is depicted as beginning with a pulse of the refractory metal-containing precursor followed by a pulse of the reducing gas. Alternatively, the barrier layer deposition cycle may start with a pulse of the reducing gas followed by a pulse of the refractory metal-containing precursor. In addition, a pulse may comprise one injection of a gas or several short, sequential injections.
- One exemplary deposition cycle for selectively forming a tantalum nitride barrier layer on silicon oxide dielectric material that is adjacent to copper features comprises sequentially providing pulses of pentakis(ethylmethylamido) tantalum (PEMAT) and pulses of ammonia (NH3) to a process chamber similar to that described above with reference to FIG. 2. For such a deposition cycle, argon may be provided to an appropriate flow control valve, for example an electronic flow control valve, at a flow rate of between about 100 sccm (standard cubic centimeters per second) to about 1000 sccm, preferably at about 500 sccm, and thereafter pulsed for about 5 seconds to about 25 seconds, preferably for about 15 seconds. The pentakis(ethylmethylamido) tantalum (PEMAT) may be provided to an appropriate flow control valve, for example an electronic flow control valve, by flowing hydrogen (H2) at a flow rate of between 30 sccm to about 1500 sccm, preferably at about 100 sccm through an ampoule containing liquid PEMAT at a temperature of about 50° C. to about 95° C., and thereafter pulsed for about 5 seconds to about 50 seconds, preferably for about 15 seconds. Argon is than provided at a flow rate of between about 100 sccm to about 1000 sccm, preferably at about 500 sccm, and thereafter pulsed for about 5 seconds to about 25 seconds, preferably for about 15 seconds. The ammonia (NH3) may be provided to an appropriate flow control valve, for example an electronic flow control valve, at a flow rate of between about 150 sccm to about 700 sccm, preferably for about 250 sccm, and thereafter pulsed for about 3 seconds to about 45 seconds, preferably for about 5 seconds. The substrate may be maintained at a temperature between about 150° C. to about 350° C., preferably at about 200° C., at a chamber pressure of up to about 40 torr, preferably at about 0.5 torr.
- After a predetermined number of deposition cycles are performed, the process chamber is purged by providing a flow of the carrier gas thereto. Gases such as for example, argon (Ar), helium (He), nitrogen (N2) and hydrogen (H2), among others may be used. The process chamber may be purged by providing a flow of gas at about 100 sccm to about 1000 sccm, preferably at about 500 sccm, for a duration of up to about 2 minutes, preferably for about 1 minute.
- FIG. 5A is a plot illustrating the number of deposition cycles needed to start forming a tantalum nitride layer on dielectric oxides as compared to the number of deposition cycles needed to start forming a tantalum nitride layer on copper. Each deposition cycle was performed at a substrate temperature of about 225° C., a deposition chamber pressure of about 0.5 torr, a pentakis(ethylmethylamido) tantalum flow of about 100 sccm with hydrogen (H2) that is pulsed for about 15 seconds, an ammonia (NH3) flow of 250 sccm that is pulsed for about 5 seconds and an argon (Ar) flow of about 500 sccm that is pulsed for about 15 seconds between each pulse of the pentakis(ethylmethylamido) tantalum (PEMAT) and each pulse of the ammonia (NH3).
- Referring to FIG. 5A, the tantalum nitride (TaN) starts to deposit on the silicon oxide during a first deposition cycle, as indicated by
line 400. The tantalum nitride (TaN) starts to deposit on the fluorosilicate glass (FSG) during a fifth deposition cycle, as indicated byline 405. However, the tantalum nitride starts to deposit on the copper during the fourteenth deposition cycle, as indicated byline 410. As such, for the process conditions recited above with respect to FIG. 5A, selective deposition of tantalum nitride (TaN) on either silicon oxide or fluorosilicate glass (FSG) without deposition on the copper, necessitates that the process chamber be purged each time thirteen deposition cycles have been completed. - The number of deposition cycles needed to start forming a tantalum nitride (TaN) layer on material layers may vary as a function of the substrate temperature. For example, a tantalum nitride (TaN) layer was formed on both silicon oxide and copper at a substrate temperature of 200° C. Each deposition cycle was performed at a deposition chamber pressure of about 0.5 torr, a pentakis(ethylmethylamido) tantalum flow of about 100 sccm with hydrogen (H2) that is pulsed for about 15 seconds, an ammonia (NH3) flow of 250 sccm that is pulsed for about 5 seconds and an argon (Ar) flow of about 500 sccm that is pulsed for about 15 seconds between each pulse of the pentakis(ethylmethylamido) tantalum (PEMAT) and each pulse of the ammonia (NH3).
- Referring to FIG. 5B, about five deposition cycles were needed to start forming a tantalum nitride (TaN) layer on silicon oxide at a substrate temperature of about 200° C., as indicated by
line 415, as compared to one deposition cycle when the substrate temperature is about 225° C., as indicated by line 400 (FIG. 5A). In contrast, about forty deposition cycles were needed to start forming a tantalum nitride (TaN) layer on copper at a substrate temperature of about 200° C., as indicated byline 420, as compared to fourteen deposition cycles when the substrate temperature is about 225° C., as indicated by line 410 (FIG. 5A). - The number of deposition cycles needed to start forming a tantalum nitride (TaN) layer on silicon oxide may vary as a function of the process chamber pressure. For example, a tantalum nitride (TaN) layer was formed on silicon oxide at a process chamber pressures of 0.5 torr, 1 torr, 2 torr and 6 torr. Each deposition cycle was performed at a substrate temperature of about 210° C., a pentakis(ethylmethylamido) tantalum flow of about 100 sccm with hydrogen (H2) that is pulsed for about 15 seconds, an ammonia (NH3) flow of 250 sccm that is pulsed for about 5 seconds and an argon (Ar) flow of about 500 sccm that is pulsed for about 15 seconds between each pulse of the pentakis(ethylmethylamido) tantalum (PEMAT) and each pulse of the ammonia (NH3).
- Referring to FIG. 5C, about eight deposition cycles were needed to start forming a tantalum nitride (TaN) layer on silicon oxide at process chamber pressures of 0.5 torr, 1 torr and 2 torr, as indicated by
line 440,line 435 andline 430, respectively. In contrast, about two deposition cycles were needed to start forming a tantalum nitride (TaN) layer on silicon oxide at a process chamber pressure of 6 torr, as indicated byline 425. - Integrated Circuit Fabrication Process
- FIGS.6A-6C illustrate schematic cross-sectional views of a
substrate 500 at different stages of an integrated circuit fabrication sequence incorporating a tantalum nitride barrier layer formed on dielectric material. Depending on the specific stage of processing,substrate 500 may correspond to a silicon substrate, or other material layer that has been formed on thesubstrate 500. FIG. 6A, for example, illustrates a cross-sectional view of asubstrate 500 having conductive leads 501 formed thereon surrounded by adielectric material 502. The conductive leads 501 may be metal (e.g., aluminum (Al) or copper (Cu)). Thedielectric material 502 may be an oxide (e.g., silicon oxide). - FIG. 6A illustrates one embodiment in which the
substrate 500 is silicon having copper leads 501 formed thereon. The copper leads 501 have a thickness of about 5,000 Å to about 2 microns depending on the size of the structure to be fabricated. Adielectric material 502 surrounds the copper leads 501. Thedielectric material 502 may be a low dielectric constant silicon oxide layer. Thedielectric material 502 may have a thickness of up to about 5 microns. -
Vias 503 are defined in thedielectric material 502 to the copper leads 501. The vias are defined in thedielectric material 502 using conventional lithography and etching techniques. - Referring to FIG. 6B, a tantalum
nitride barrier layer 505 is selectively formed on thedielectric material 502 comprising the sidewalls of thevias 503. The tantalumnitride barrier layer 505 may be formed according to the process parameters described above with respect to FIGS. 3-4. The thickness of the tantalumnitride barrier layer 505 should be about 50 Å to about 500 Å. - Thereafter, referring to FIG. 6C, the
vias 503 are filled with aconductive material 506 such as aluminum (Al), copper (Cu), tungsten (W), or combinations thereof. Preferably, copper (Cu) is used to fill thevias 503 due to its low resistivity (resistivity of about 1.7 μΩ/cm). Theconductive material 506 may be deposited using chemical vapor deposition (CVD) techniques, physical vapor deposition techniques (PVD) techniques, electroplating techniques, or combinations thereof. - Formation of the tantalum
nitride barrier layer 505 on thedielectric material 502 comprising the sidewalls of thevias 503 advantageously prevents metal migration into such dielectric material when thevias 503 are subsequently filled with theconductive material 506. In addition, selective deposition of thebarrier layer 505 only on the sidewalls of thevias 503 minimizes any increase to the overall resistivity of the interconnect structure which would otherwise occur had thebarrier material 505 also been deposited on the copper leads 501. - While the foregoing is directed to the preferred embodiment of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Claims (43)
1. A method of selectively forming a barrier layer on a dielectric material, comprising:
providing a substrate having exposed metal features surrounded by a dielectric material to a process environment;
forming a barrier layer on the dielectric material using a cyclical deposition process wherein the cyclical deposition process includes a predetermined number of deposition cycles followed by a purge step, and wherein each deposition cycle comprises alternately providing a refractory metal-containing precursor and a reducing gas to the process environment; and
repeating the cyclical deposition process until a desired thickness for the barrier layer is formed.
2. The method of claim 1 wherein the predetermined number of deposition cycles is selected to start forming the barrier layer on the dielectric material but be less than the number of deposition cycles needed to start forming the barrier layer on the exposed metal features.
3. The method of claim 1 wherein the refractory metal-containing precursor is a tantalum-containing precursor.
4. The method of claim 3 wherein the tantalum-containing precursor is selected from the group consisting of pentakis(dimethylamido) tantalum (PDMAT), pentakis(diethylamido) tantalum (PDEAT), pentakis(ethylmethylamido) tantalum (PEMAT), t-butylamino tris(methylethylamido) tantalum (TBTMET), t-butylamino tris(dimethylamido) tantalum (TBTDMT), bis(cyclopentadienyl) tantalum trihydride, bis(methylcyclopentadienyl) tantalum trihydride and t-butylamino tris(diethylamido) tantalum (TBTDET).
5. The method of claim 4 wherein the tantalum-containing precursor is pentakis(ethylmethylamido) tantalum (PEMAT).
6. The method of claim 3 wherein the tantalum-containing precursor is provided by flowing a carrier gas at about 30 sccm (standard cubic centimeters per minute) to about 1500 sccm through an ampoule having the tantalum-containing precursor therein.
7. The method of claim 6 wherein the tantalum-containing precursor is provided by flowing a carrier gas at about 100 sccm through an ampoule having the tantalum-containing precursor therein.
8. The method of claim 3 wherein the tantalum-containing precursor is provided for a duration of about 5 seconds to about 50 seconds.
9. The method of claim 8 wherein the tungsten-containing precursor is provided for a duration of about 15 seconds.
10. The method of claim 1 wherein the reducing gas is selected from the group consisting of ammonia (NH3), hydrazine (N2H4), methyl hydrazine (CH3N2H3), dimethyl hydrazine (C2H6N2H2), t-butyl hydrazine (C4H9N2H3), phenyl hydrazine (C6H5N2H3), 2,2′-azoisobutane ((CH3)6C2N2) and ethylazide (C2H5N3).
11. The method of claim 10 wherein the reducing gas is ammonia (NH3).
12. The method of claim 1 wherein the reducing gas is provided at about 150 sccm (standard cubic centimeters per minute) to about 700 sccm.
13. The method of claim 12 wherein the reducing gas is provided at about 250 sccm.
14. The method of claim 1 wherein the reducing gas is provided for a duration of about 3 seconds to about 45 seconds.
15. The method of claim 14 wherein the reducing gas is provided for a duration of about 5 seconds.
16. The method of claim 1 wherein the purge step comprises providing a purge gas to the process environment.
17. The method of claim 16 wherein the purge gas is selected from the group consisting of helium (He), argon (Ar), nitrogen (N2), hydrogen (H2), and combinations thereof.
18. The method of claim 16 wherein the purge gas is provided at about 100 sccm to about 1000 sccm.
19. The method of claim 1 wherein the process environment comprises a temperature of about 150° C. to about 350° C.
20. The method of claim 19 wherein the process environment comprises a temperature of about 200° C.
21. The method of claim 1 wherein the process environment comprises a pressure of up to about 100 torr.
22. The method of claim 21 wherein the process environment comprises a pressure of about 0.5 torr.
23. A method of selectively forming a tantalum nitride barrier layer on a dielectric material, comprising:
providing a substrate having exposed metal features surrounded by a dielectric material to a process environment;
forming a tantalum nitride barrier layer on the dielectric material using a cyclical deposition process wherein the cyclical deposition process includes a predetermined number of deposition cycles followed by a purge step, and wherein each deposition cycle comprises alternately providing a tantalum-containing precursor and a reducing gas to the process environment; and
repeating the cyclical deposition process until a desired thickness for the tantalum nitride barrier layer is formed.
24. The method of claim 23 wherein the predetermined number of deposition cycles is selected to start forming the tantalum nitride barrier layer on the dielectric material but be less than the number of deposition cycles needed to start forming the tantalum nitride barrier layer on the exposed metal features.
25. The method of claim 23 wherein the tantalum-containing precursor is selected from the group consisting of pentakis(dimethylamido) tantalum (PDMAT), pentakis(diethylamido) tantalum (PDEAT), pentakis(ethylmethylamido) tantalum (PEMAT), t-butylamino tris(methylethylamido) tantalum (TBTMET), t-butylamino tris(dimethylamido) tantalum (TBTDMT), bis(cyclopentadienyl) tantalum trihydride, bis(methylcyclopentadienyl) tantalum trihydride and t-butylamino tris(diethylamido) tantalum (TBTDET).
26. The method of claim 25 wherein the tantalum-containing precursor is pentakis(ethylmethylamido) tantalum (PEMAT).
27. The method of claim 23 wherein the tantalum-containing precursor is provided by flowing a carrier gas at about 30 sccm (standard cubic centimeters per minute) to about 1500 sccm through an ampoule having the tantalum-containing precursor therein.
28. The method of claim 27 wherein the tantalum-containing precursor is provided by flowing a carrier gas at about 100 sccm through an ampoule having the tantalum-containing precursor therein.
29. The method of claim 23 wherein the tantalum-containing precursor is provided for a duration of about 5 seconds to about 50 seconds.
30. The method of claim 29 wherein the tantalum-containing precursor is provided for a duration of about 15 seconds.
31. The method of claim 23 wherein the reducing gas is selected from the group consisting of ammonia (NH3), hydrazine (N2H4), methyl hydrazine (CH3N2H3), dimethyl hydrazine (C2H6N2H2), t-butyl hydrazine (C4H9N2H3), phenyl hydrazine (C6H5N2H3), 2,2′-azoisobutane ((CH3)6C2N2) and ethylazide (C2H5N3).
32. The method of claim 31 wherein the reducing gas is ammonia (NH3).
33. The method of claim 23 wherein the reducing gas is provided at about 150 sccm (standard cubic centimeters per minute) to about 700 sccm.
34. The method of claim 33 wherein the reducing gas is provided at about 250 sccm.
35. The method of claim 23 wherein the reducing gas is provided for a duration of about 3 seconds to about 45 seconds.
36. The method of claim 35 wherein the reducing gas is provided for a duration of about 5 seconds.
37. The method of claim 23 wherein the purge step comprises providing a purge gas to the process environment.
38. The method of claim 37 wherein the purge gas is selected from the group consisting of helium (He), argon (Ar), nitrogen (N2), hydrogen (H2), and combinations thereof.
39. The method of claim 37 wherein the purge gas is provided at about 100 sccm to about 1000 sccm.
40. The method of claim 23 wherein the process environment comprises a temperature of about 150° C. to about 350° C.
41. The method of claim 40 wherein the process environment comprises a temperature of about 200° C.
42. The method of claim 23 wherein the process environment comprises a pressure of up to about 100 torr.
43. The method of claim 42 wherein the process environment comprises a pressure of about 0.5 torr.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/319,788 US6939801B2 (en) | 2001-12-21 | 2002-12-13 | Selective deposition of a barrier layer on a dielectric material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US34230701P | 2001-12-21 | 2001-12-21 | |
US10/319,788 US6939801B2 (en) | 2001-12-21 | 2002-12-13 | Selective deposition of a barrier layer on a dielectric material |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030224578A1 true US20030224578A1 (en) | 2003-12-04 |
US6939801B2 US6939801B2 (en) | 2005-09-06 |
Family
ID=23341249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/319,788 Expired - Fee Related US6939801B2 (en) | 2001-12-21 | 2002-12-13 | Selective deposition of a barrier layer on a dielectric material |
Country Status (6)
Country | Link |
---|---|
US (1) | US6939801B2 (en) |
EP (1) | EP1459369A2 (en) |
JP (1) | JP2005531918A (en) |
KR (1) | KR20040068969A (en) |
CN (1) | CN1319134C (en) |
WO (1) | WO2003056619A2 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6831004B2 (en) | 2000-06-27 | 2004-12-14 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
WO2005093127A2 (en) | 2004-03-27 | 2005-10-06 | Aixtron Ag | Method for the deposition in particular of metal oxides by non-continuous precursor injection |
US20070218688A1 (en) * | 2000-06-28 | 2007-09-20 | Ming Xi | Method for depositing tungsten-containing layers by vapor deposition techniques |
US7670945B2 (en) | 1998-10-01 | 2010-03-02 | Applied Materials, Inc. | In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application |
US7674715B2 (en) | 2000-06-28 | 2010-03-09 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
US7678298B2 (en) | 2007-09-25 | 2010-03-16 | Applied Materials, Inc. | Tantalum carbide nitride materials by vapor deposition processes |
US7678194B2 (en) | 2002-07-17 | 2010-03-16 | Applied Materials, Inc. | Method for providing gas to a processing chamber |
US7682946B2 (en) | 2005-11-04 | 2010-03-23 | Applied Materials, Inc. | Apparatus and process for plasma-enhanced atomic layer deposition |
US7691742B2 (en) | 2004-07-20 | 2010-04-06 | Applied Materials, Inc. | Atomic layer deposition of tantalum-containing materials using the tantalum precursor TAIMATA |
US7732325B2 (en) | 2002-01-26 | 2010-06-08 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
US7745333B2 (en) | 2000-06-28 | 2010-06-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
US7745329B2 (en) | 2002-02-26 | 2010-06-29 | Applied Materials, Inc. | Tungsten nitride atomic layer deposition processes |
US7780785B2 (en) | 2001-10-26 | 2010-08-24 | Applied Materials, Inc. | Gas delivery apparatus for atomic layer deposition |
US7780788B2 (en) | 2001-10-26 | 2010-08-24 | Applied Materials, Inc. | Gas delivery apparatus for atomic layer deposition |
US7794544B2 (en) | 2004-05-12 | 2010-09-14 | Applied Materials, Inc. | Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system |
US7798096B2 (en) | 2006-05-05 | 2010-09-21 | Applied Materials, Inc. | Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool |
US7824743B2 (en) | 2007-09-28 | 2010-11-02 | Applied Materials, Inc. | Deposition processes for titanium nitride barrier and aluminum |
US7867896B2 (en) | 2002-03-04 | 2011-01-11 | Applied Materials, Inc. | Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor |
US7867914B2 (en) | 2002-04-16 | 2011-01-11 | Applied Materials, Inc. | System and method for forming an integrated barrier layer |
US7892602B2 (en) | 2001-12-07 | 2011-02-22 | Applied Materials, Inc. | Cyclical deposition of refractory metal silicon nitride |
US8110489B2 (en) | 2001-07-25 | 2012-02-07 | Applied Materials, Inc. | Process for forming cobalt-containing materials |
US8146896B2 (en) | 2008-10-31 | 2012-04-03 | Applied Materials, Inc. | Chemical precursor ampoule for vapor deposition processes |
US8187970B2 (en) | 2001-07-25 | 2012-05-29 | Applied Materials, Inc. | Process for forming cobalt and cobalt silicide materials in tungsten contact applications |
US8323754B2 (en) | 2004-05-21 | 2012-12-04 | Applied Materials, Inc. | Stabilization of high-k dielectric materials |
US8491967B2 (en) | 2008-09-08 | 2013-07-23 | Applied Materials, Inc. | In-situ chamber treatment and deposition process |
US9051641B2 (en) | 2001-07-25 | 2015-06-09 | Applied Materials, Inc. | Cobalt deposition on barrier surfaces |
US9418890B2 (en) | 2008-09-08 | 2016-08-16 | Applied Materials, Inc. | Method for tuning a deposition rate during an atomic layer deposition process |
US9685371B2 (en) | 2013-09-27 | 2017-06-20 | Applied Materials, Inc. | Method of enabling seamless cobalt gap-fill |
US10276393B2 (en) | 2015-01-26 | 2019-04-30 | Kokusai Electric Corporation | Method of manufacturing semiconductor device |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007523994A (en) | 2003-06-18 | 2007-08-23 | アプライド マテリアルズ インコーポレイテッド | Atomic layer deposition of barrier materials |
KR20050091488A (en) * | 2004-03-12 | 2005-09-15 | 주식회사 유피케미칼 | The precursor compounds for the metal and ceramic film, and the method of synthesis |
US7775508B2 (en) | 2006-10-31 | 2010-08-17 | Applied Materials, Inc. | Ampoule for liquid draw and vapor draw with a continuous level sensor |
US7585762B2 (en) | 2007-09-25 | 2009-09-08 | Applied Materials, Inc. | Vapor deposition processes for tantalum carbide nitride materials |
US20100119734A1 (en) * | 2008-11-07 | 2010-05-13 | Applied Materials, Inc. | Laminar flow in a precursor source canister |
US9330939B2 (en) | 2012-03-28 | 2016-05-03 | Applied Materials, Inc. | Method of enabling seamless cobalt gap-fill |
WO2016071531A1 (en) * | 2014-11-07 | 2016-05-12 | T-Touch International S.À.R.L. | Selective dielectric coating |
US10002789B2 (en) | 2016-03-24 | 2018-06-19 | International Business Machines Corporation | High performance middle of line interconnects |
US10242866B2 (en) * | 2017-03-08 | 2019-03-26 | Lam Research Corporation | Selective deposition of silicon nitride on silicon oxide using catalytic control |
US10622214B2 (en) | 2017-05-25 | 2020-04-14 | Applied Materials, Inc. | Tungsten defluorination by high pressure treatment |
US10276411B2 (en) | 2017-08-18 | 2019-04-30 | Applied Materials, Inc. | High pressure and high temperature anneal chamber |
CN111095513B (en) | 2017-08-18 | 2023-10-31 | 应用材料公司 | High-pressure high-temperature annealing chamber |
CN117936417A (en) | 2017-11-11 | 2024-04-26 | 微材料有限责任公司 | Gas delivery system for high pressure processing chamber |
WO2019099255A2 (en) | 2017-11-17 | 2019-05-23 | Applied Materials, Inc. | Condenser system for high pressure processing system |
WO2019173006A1 (en) | 2018-03-09 | 2019-09-12 | Applied Materials, Inc. | High pressure annealing process for metal containing materials |
SG11202008268RA (en) | 2018-03-19 | 2020-10-29 | Applied Materials Inc | Methods for depositing coatings on aerospace components |
WO2019209401A1 (en) | 2018-04-27 | 2019-10-31 | Applied Materials, Inc. | Protection of components from corrosion |
US10950429B2 (en) | 2018-05-08 | 2021-03-16 | Applied Materials, Inc. | Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom |
CN110610897B (en) * | 2018-06-15 | 2022-02-22 | 北京北方华创微电子装备有限公司 | Manufacturing process of diffusion barrier layer in copper interconnection structure and copper interconnection structure |
US10748783B2 (en) | 2018-07-25 | 2020-08-18 | Applied Materials, Inc. | Gas delivery module |
US11009339B2 (en) | 2018-08-23 | 2021-05-18 | Applied Materials, Inc. | Measurement of thickness of thermal barrier coatings using 3D imaging and surface subtraction methods for objects with complex geometries |
US11114382B2 (en) | 2018-10-19 | 2021-09-07 | International Business Machines Corporation | Middle-of-line interconnect having low metal-to-metal interface resistance |
US10636705B1 (en) | 2018-11-29 | 2020-04-28 | Applied Materials, Inc. | High pressure annealing of metal gate structures |
WO2020117462A1 (en) | 2018-12-07 | 2020-06-11 | Applied Materials, Inc. | Semiconductor processing system |
US10903111B2 (en) | 2019-03-20 | 2021-01-26 | International Business Machines Corporation | Semiconductor device with linerless contacts |
EP3959356A4 (en) | 2019-04-26 | 2023-01-18 | Applied Materials, Inc. | Methods of protecting aerospace components against corrosion and oxidation |
US11794382B2 (en) | 2019-05-16 | 2023-10-24 | Applied Materials, Inc. | Methods for depositing anti-coking protective coatings on aerospace components |
US11697879B2 (en) | 2019-06-14 | 2023-07-11 | Applied Materials, Inc. | Methods for depositing sacrificial coatings on aerospace components |
US11466364B2 (en) | 2019-09-06 | 2022-10-11 | Applied Materials, Inc. | Methods for forming protective coatings containing crystallized aluminum oxide |
US11901222B2 (en) | 2020-02-17 | 2024-02-13 | Applied Materials, Inc. | Multi-step process for flowable gap-fill film |
US11519066B2 (en) | 2020-05-21 | 2022-12-06 | Applied Materials, Inc. | Nitride protective coatings on aerospace components and methods for making the same |
WO2022005696A1 (en) | 2020-07-03 | 2022-01-06 | Applied Materials, Inc. | Methods for refurbishing aerospace components |
Citations (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4389973A (en) * | 1980-03-18 | 1983-06-28 | Oy Lohja Ab | Apparatus for performing growth of compound thin films |
US4413022A (en) * | 1979-02-28 | 1983-11-01 | Canon Kabushiki Kaisha | Method for performing growth of compound thin films |
US5916365A (en) * | 1996-08-16 | 1999-06-29 | Sherman; Arthur | Sequential chemical vapor deposition |
US5923056A (en) * | 1996-10-10 | 1999-07-13 | Lucent Technologies Inc. | Electronic components with doped metal oxide dielectric materials and a process for making electronic components with doped metal oxide dielectric materials |
US6015917A (en) * | 1998-01-23 | 2000-01-18 | Advanced Technology Materials, Inc. | Tantalum amide precursors for deposition of tantalum nitride on a substrate |
US6084302A (en) * | 1995-12-26 | 2000-07-04 | Micron Technologies, Inc. | Barrier layer cladding around copper interconnect lines |
US6124158A (en) * | 1999-06-08 | 2000-09-26 | Lucent Technologies Inc. | Method of reducing carbon contamination of a thin dielectric film by using gaseous organic precursors, inert gas, and ozone to react with carbon contaminants |
US6144060A (en) * | 1997-07-31 | 2000-11-07 | Samsung Electronics Co., Ltd. | Integrated circuit devices having buffer layers therein which contain metal oxide stabilized by heat treatment under low temperature |
US6174809B1 (en) * | 1997-12-31 | 2001-01-16 | Samsung Electronics, Co., Ltd. | Method for forming metal layer using atomic layer deposition |
US6197683B1 (en) * | 1997-09-29 | 2001-03-06 | Samsung Electronics Co., Ltd. | Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact of semiconductor device using the same |
US6200893B1 (en) * | 1999-03-11 | 2001-03-13 | Genus, Inc | Radical-assisted sequential CVD |
US6203613B1 (en) * | 1999-10-19 | 2001-03-20 | International Business Machines Corporation | Atomic layer deposition with nitrate containing precursors |
US6207487B1 (en) * | 1998-10-13 | 2001-03-27 | Samsung Electronics Co., Ltd. | Method for forming dielectric film of capacitor having different thicknesses partly |
US20010000866A1 (en) * | 1999-03-11 | 2001-05-10 | Ofer Sneh | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition |
US20010009695A1 (en) * | 2000-01-18 | 2001-07-26 | Saanila Ville Antero | Process for growing metalloid thin films |
US6270572B1 (en) * | 1998-08-07 | 2001-08-07 | Samsung Electronics Co., Ltd. | Method for manufacturing thin film using atomic layer deposition |
US6284646B1 (en) * | 1997-08-19 | 2001-09-04 | Samsung Electronics Co., Ltd | Methods of forming smooth conductive layers for integrated circuit devices |
US6287965B1 (en) * | 1997-07-28 | 2001-09-11 | Samsung Electronics Co, Ltd. | Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor |
US20010024387A1 (en) * | 1999-12-03 | 2001-09-27 | Ivo Raaijmakers | Conformal thin films over textured capacitor electrodes |
US20010025979A1 (en) * | 1999-12-22 | 2001-10-04 | Min-Soo Kim | Semiconductor device incorporated therein high K capacitor dielectric and method for the manufacture thereof |
US20010028924A1 (en) * | 1996-08-16 | 2001-10-11 | Arthur Sherman | Sequential chemical vapor deposition |
US20010034123A1 (en) * | 2000-04-20 | 2001-10-25 | In-Sang Jeon | Method of manufacturing a barrier metal layer using atomic layer deposition |
US20010041250A1 (en) * | 2000-03-07 | 2001-11-15 | Werkhoven Christian J. | Graded thin films |
US20010054769A1 (en) * | 2000-05-15 | 2001-12-27 | Ivo Raaijmakers | Protective layers prior to alternating layer deposition |
US20010054730A1 (en) * | 2000-06-07 | 2001-12-27 | Samsung Electronics Co., Ltd. | Metal-insulator-metal capacitor and manufacturing method thereof |
US20020000598A1 (en) * | 1999-12-08 | 2002-01-03 | Sang-Bom Kang | Semiconductor devices having metal layers as barrier layers on upper or lower electrodes of capacitors |
US20020007790A1 (en) * | 2000-07-22 | 2002-01-24 | Park Young-Hoon | Atomic layer deposition (ALD) thin film deposition equipment having cleaning apparatus and cleaning method |
US6348376B2 (en) * | 1997-09-29 | 2002-02-19 | Samsung Electronics Co., Ltd. | Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact and capacitor of semiconductor device using the same |
US20020020869A1 (en) * | 1999-12-22 | 2002-02-21 | Ki-Seon Park | Semiconductor device incorporated therein high K capacitor dielectric and method for the manufacture thereof |
US20020021544A1 (en) * | 2000-08-11 | 2002-02-21 | Hag-Ju Cho | Integrated circuit devices having dielectric regions protected with multi-layer insulation structures and methods of fabricating same |
US6358829B2 (en) * | 1998-09-17 | 2002-03-19 | Samsung Electronics Company., Ltd. | Semiconductor device fabrication method using an interface control layer to improve a metal interconnection layer |
US6372598B2 (en) * | 1998-06-16 | 2002-04-16 | Samsung Electronics Co., Ltd. | Method of forming selective metal layer and method of forming capacitor and filling contact hole using the same |
US20020048635A1 (en) * | 1998-10-16 | 2002-04-25 | Kim Yeong-Kwan | Method for manufacturing thin film |
US20020052097A1 (en) * | 2000-06-24 | 2002-05-02 | Park Young-Hoon | Apparatus and method for depositing thin film on wafer using atomic layer deposition |
US6391785B1 (en) * | 1999-08-24 | 2002-05-21 | Interuniversitair Microelektronica Centrum (Imec) | Method for bottomless deposition of barrier layers in integrated circuit metallization schemes |
US20020068458A1 (en) * | 2000-12-06 | 2002-06-06 | Chiang Tony P. | Method for integrated in-situ cleaning and susequent atomic layer deposition within a single processing chamber |
US20020076508A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Varying conductance out of a process region to control gas flux in an ALD reactor |
US20020076507A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Process sequence for atomic layer deposition |
US20020076837A1 (en) * | 2000-11-30 | 2002-06-20 | Juha Hujanen | Thin films for magnetic device |
US20020073924A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Gas introduction system for a reactor |
US20020076481A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Chamber pressure state-based control for a reactor |
US6416822B1 (en) * | 2000-12-06 | 2002-07-09 | Angstrom Systems, Inc. | Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) |
US6416577B1 (en) * | 1997-12-09 | 2002-07-09 | Asm Microchemistry Ltd. | Method for coating inner surfaces of equipment |
US20020098627A1 (en) * | 2000-11-24 | 2002-07-25 | Pomarede Christophe F. | Surface preparation prior to deposition |
US6428859B1 (en) * | 2000-12-06 | 2002-08-06 | Angstron Systems, Inc. | Sequential method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) |
US20020104481A1 (en) * | 2000-12-06 | 2002-08-08 | Chiang Tony P. | System and method for modulated ion-induced atomic layer deposition (MII-ALD) |
US20020106536A1 (en) * | 2001-02-02 | 2002-08-08 | Jongho Lee | Dielectric layer for semiconductor device and method of manufacturing the same |
US20020144657A1 (en) * | 2001-04-05 | 2002-10-10 | Chiang Tony P. | ALD reactor employing electrostatic chuck |
US20020144655A1 (en) * | 2001-04-05 | 2002-10-10 | Chiang Tony P. | Gas valve system for a reactor |
US6468924B2 (en) * | 2000-12-06 | 2002-10-22 | Samsung Electronics Co., Ltd. | Methods of forming thin films by atomic layer deposition |
US6475276B1 (en) * | 1999-10-15 | 2002-11-05 | Asm Microchemistry Oy | Production of elemental thin films using a boron-containing reducing agent |
US20020162506A1 (en) * | 2000-11-29 | 2002-11-07 | Ofer Sneh | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition |
US20020164423A1 (en) * | 2001-03-19 | 2002-11-07 | Chiang Tony P. | Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) |
US20020177282A1 (en) * | 2001-05-23 | 2002-11-28 | Samsung Electronics Co., Ltd. | Method of forming semiconductor device having a GAA type transistor |
US20020182320A1 (en) * | 2001-03-16 | 2002-12-05 | Markku Leskela | Method for preparing metal nitride thin films |
US20020197402A1 (en) * | 2000-12-06 | 2002-12-26 | Chiang Tony P. | System for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) |
US20030013320A1 (en) * | 2001-05-31 | 2003-01-16 | Samsung Electronics Co., Ltd. | Method of forming a thin film using atomic layer deposition |
US6511539B1 (en) * | 1999-09-08 | 2003-01-28 | Asm America, Inc. | Apparatus and method for growth of a thin film |
US20030042630A1 (en) * | 2001-09-05 | 2003-03-06 | Babcoke Jason E. | Bubbler for gas delivery |
US20030049942A1 (en) * | 2001-08-31 | 2003-03-13 | Suvi Haukka | Low temperature gate stack |
US20030072975A1 (en) * | 2001-10-02 | 2003-04-17 | Shero Eric J. | Incorporation of nitrogen into high k dielectric film |
US20030082296A1 (en) * | 2001-09-14 | 2003-05-01 | Kai Elers | Metal nitride deposition by ALD with reduction pulse |
US20030124262A1 (en) * | 2001-10-26 | 2003-07-03 | Ling Chen | Integration of ALD tantalum nitride and alpha-phase tantalum for copper metallization application |
US6632279B1 (en) * | 1999-10-14 | 2003-10-14 | Asm Microchemistry, Oy | Method for growing thin oxide films |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI117944B (en) | 1999-10-15 | 2007-04-30 | Asm Int | A method for growing transition metal nitride thin films |
FI118158B (en) | 1999-10-15 | 2007-07-31 | Asm Int | Process for modifying the starting chemical in an ALD process |
SG59964A1 (en) * | 1989-09-26 | 1999-02-22 | Canon Kk | Process for forming deposited film and process for preparing semiconductor device |
JPH09260492A (en) * | 1996-03-25 | 1997-10-03 | Toshiba Corp | Manufacture of semiconductor device |
US6218288B1 (en) * | 1998-05-11 | 2001-04-17 | Micron Technology, Inc. | Multiple step methods for forming conformal layers |
NL1009327C2 (en) | 1998-06-05 | 1999-12-10 | Asm Int | Method and device for transferring wafers. |
KR20000022003A (en) | 1998-09-10 | 2000-04-25 | 이경수 | Method for forming three-components compound comprising metal and silicon |
KR20010017820A (en) | 1999-08-14 | 2001-03-05 | 윤종용 | Semiconductor device and manufacturing method thereof |
DE10049257B4 (en) | 1999-10-06 | 2015-05-13 | Samsung Electronics Co., Ltd. | Process for thin film production by means of atomic layer deposition |
US6902763B1 (en) | 1999-10-15 | 2005-06-07 | Asm International N.V. | Method for depositing nanolaminate thin films on sensitive surfaces |
KR100737901B1 (en) | 1999-10-15 | 2007-07-10 | 에이에스엠 인터내셔널 엔.브이. | Method for depositing nanolaminate thin films on sensitive surfaces |
DE60028394T2 (en) | 1999-10-15 | 2007-03-29 | Asm International N.V. | CONFORMAL COATING LAYERS FOR DAMASCUM METALLIZATION |
KR20010047128A (en) | 1999-11-18 | 2001-06-15 | 이경수 | Method of vaporizing a liquid source and apparatus used therefor |
-
2002
- 2002-12-13 US US10/319,788 patent/US6939801B2/en not_active Expired - Fee Related
- 2002-12-17 WO PCT/US2002/040179 patent/WO2003056619A2/en not_active Application Discontinuation
- 2002-12-17 JP JP2003557038A patent/JP2005531918A/en active Pending
- 2002-12-17 EP EP02792404A patent/EP1459369A2/en not_active Withdrawn
- 2002-12-17 CN CNB028281985A patent/CN1319134C/en not_active Expired - Fee Related
- 2002-12-17 KR KR10-2004-7009891A patent/KR20040068969A/en not_active Application Discontinuation
Patent Citations (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6482262B1 (en) * | 1959-10-10 | 2002-11-19 | Asm Microchemistry Oy | Deposition of transition metal carbides |
US4413022A (en) * | 1979-02-28 | 1983-11-01 | Canon Kabushiki Kaisha | Method for performing growth of compound thin films |
US4389973A (en) * | 1980-03-18 | 1983-06-28 | Oy Lohja Ab | Apparatus for performing growth of compound thin films |
US6084302A (en) * | 1995-12-26 | 2000-07-04 | Micron Technologies, Inc. | Barrier layer cladding around copper interconnect lines |
US5916365A (en) * | 1996-08-16 | 1999-06-29 | Sherman; Arthur | Sequential chemical vapor deposition |
US20020031618A1 (en) * | 1996-08-16 | 2002-03-14 | Arthur Sherman | Sequential chemical vapor deposition |
US6342277B1 (en) * | 1996-08-16 | 2002-01-29 | Licensee For Microelectronics: Asm America, Inc. | Sequential chemical vapor deposition |
US20010028924A1 (en) * | 1996-08-16 | 2001-10-11 | Arthur Sherman | Sequential chemical vapor deposition |
US5923056A (en) * | 1996-10-10 | 1999-07-13 | Lucent Technologies Inc. | Electronic components with doped metal oxide dielectric materials and a process for making electronic components with doped metal oxide dielectric materials |
US6287965B1 (en) * | 1997-07-28 | 2001-09-11 | Samsung Electronics Co, Ltd. | Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor |
US6144060A (en) * | 1997-07-31 | 2000-11-07 | Samsung Electronics Co., Ltd. | Integrated circuit devices having buffer layers therein which contain metal oxide stabilized by heat treatment under low temperature |
US6284646B1 (en) * | 1997-08-19 | 2001-09-04 | Samsung Electronics Co., Ltd | Methods of forming smooth conductive layers for integrated circuit devices |
US6197683B1 (en) * | 1997-09-29 | 2001-03-06 | Samsung Electronics Co., Ltd. | Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact of semiconductor device using the same |
US6348376B2 (en) * | 1997-09-29 | 2002-02-19 | Samsung Electronics Co., Ltd. | Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact and capacitor of semiconductor device using the same |
US6416577B1 (en) * | 1997-12-09 | 2002-07-09 | Asm Microchemistry Ltd. | Method for coating inner surfaces of equipment |
US6174809B1 (en) * | 1997-12-31 | 2001-01-16 | Samsung Electronics, Co., Ltd. | Method for forming metal layer using atomic layer deposition |
US6379748B1 (en) * | 1998-01-23 | 2002-04-30 | Advanced Technology Materials, Inc. | Tantalum amide precursors for deposition of tantalum nitride on a substrate |
US6015917A (en) * | 1998-01-23 | 2000-01-18 | Advanced Technology Materials, Inc. | Tantalum amide precursors for deposition of tantalum nitride on a substrate |
US6372598B2 (en) * | 1998-06-16 | 2002-04-16 | Samsung Electronics Co., Ltd. | Method of forming selective metal layer and method of forming capacitor and filling contact hole using the same |
US6270572B1 (en) * | 1998-08-07 | 2001-08-07 | Samsung Electronics Co., Ltd. | Method for manufacturing thin film using atomic layer deposition |
US6358829B2 (en) * | 1998-09-17 | 2002-03-19 | Samsung Electronics Company., Ltd. | Semiconductor device fabrication method using an interface control layer to improve a metal interconnection layer |
US6207487B1 (en) * | 1998-10-13 | 2001-03-27 | Samsung Electronics Co., Ltd. | Method for forming dielectric film of capacitor having different thicknesses partly |
US20020048635A1 (en) * | 1998-10-16 | 2002-04-25 | Kim Yeong-Kwan | Method for manufacturing thin film |
US6200893B1 (en) * | 1999-03-11 | 2001-03-13 | Genus, Inc | Radical-assisted sequential CVD |
US6451119B2 (en) * | 1999-03-11 | 2002-09-17 | Genus, Inc. | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition |
US20010002280A1 (en) * | 1999-03-11 | 2001-05-31 | Ofer Sneh | Radical-assisted sequential CVD |
US6475910B1 (en) * | 1999-03-11 | 2002-11-05 | Genus, Inc. | Radical-assisted sequential CVD |
US20010000866A1 (en) * | 1999-03-11 | 2001-05-10 | Ofer Sneh | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition |
US6451695B2 (en) * | 1999-03-11 | 2002-09-17 | Genus, Inc. | Radical-assisted sequential CVD |
US6305314B1 (en) * | 1999-03-11 | 2001-10-23 | Genvs, Inc. | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition |
US6124158A (en) * | 1999-06-08 | 2000-09-26 | Lucent Technologies Inc. | Method of reducing carbon contamination of a thin dielectric film by using gaseous organic precursors, inert gas, and ozone to react with carbon contaminants |
US6391785B1 (en) * | 1999-08-24 | 2002-05-21 | Interuniversitair Microelektronica Centrum (Imec) | Method for bottomless deposition of barrier layers in integrated circuit metallization schemes |
US20020155722A1 (en) * | 1999-08-24 | 2002-10-24 | Alessandra Satta | Method for bottomless deposition of barrier layers in integrated circuit metallization schemes |
US6511539B1 (en) * | 1999-09-08 | 2003-01-28 | Asm America, Inc. | Apparatus and method for growth of a thin film |
US6632279B1 (en) * | 1999-10-14 | 2003-10-14 | Asm Microchemistry, Oy | Method for growing thin oxide films |
US20020187256A1 (en) * | 1999-10-15 | 2002-12-12 | Kai-Erik Elers | Method of producing elemental thin films |
US20030031807A1 (en) * | 1999-10-15 | 2003-02-13 | Kai-Erik Elers | Deposition of transition metal carbides |
US6475276B1 (en) * | 1999-10-15 | 2002-11-05 | Asm Microchemistry Oy | Production of elemental thin films using a boron-containing reducing agent |
US6203613B1 (en) * | 1999-10-19 | 2001-03-20 | International Business Machines Corporation | Atomic layer deposition with nitrate containing precursors |
US20010024387A1 (en) * | 1999-12-03 | 2001-09-27 | Ivo Raaijmakers | Conformal thin films over textured capacitor electrodes |
US20020000598A1 (en) * | 1999-12-08 | 2002-01-03 | Sang-Bom Kang | Semiconductor devices having metal layers as barrier layers on upper or lower electrodes of capacitors |
US20020020869A1 (en) * | 1999-12-22 | 2002-02-21 | Ki-Seon Park | Semiconductor device incorporated therein high K capacitor dielectric and method for the manufacture thereof |
US20010025979A1 (en) * | 1999-12-22 | 2001-10-04 | Min-Soo Kim | Semiconductor device incorporated therein high K capacitor dielectric and method for the manufacture thereof |
US20010009695A1 (en) * | 2000-01-18 | 2001-07-26 | Saanila Ville Antero | Process for growing metalloid thin films |
US20010041250A1 (en) * | 2000-03-07 | 2001-11-15 | Werkhoven Christian J. | Graded thin films |
US20010034123A1 (en) * | 2000-04-20 | 2001-10-25 | In-Sang Jeon | Method of manufacturing a barrier metal layer using atomic layer deposition |
US6399491B2 (en) * | 2000-04-20 | 2002-06-04 | Samsung Electronics Co., Ltd. | Method of manufacturing a barrier metal layer using atomic layer deposition |
US20010054769A1 (en) * | 2000-05-15 | 2001-12-27 | Ivo Raaijmakers | Protective layers prior to alternating layer deposition |
US6482733B2 (en) * | 2000-05-15 | 2002-11-19 | Asm Microchemistry Oy | Protective layers prior to alternating layer deposition |
US20010054730A1 (en) * | 2000-06-07 | 2001-12-27 | Samsung Electronics Co., Ltd. | Metal-insulator-metal capacitor and manufacturing method thereof |
US20020052097A1 (en) * | 2000-06-24 | 2002-05-02 | Park Young-Hoon | Apparatus and method for depositing thin film on wafer using atomic layer deposition |
US20020094689A1 (en) * | 2000-06-24 | 2002-07-18 | Park Young-Hoon | Apparatus and method for depositing thin film on wafer using atomic layer deposition |
US20020007790A1 (en) * | 2000-07-22 | 2002-01-24 | Park Young-Hoon | Atomic layer deposition (ALD) thin film deposition equipment having cleaning apparatus and cleaning method |
US20020021544A1 (en) * | 2000-08-11 | 2002-02-21 | Hag-Ju Cho | Integrated circuit devices having dielectric regions protected with multi-layer insulation structures and methods of fabricating same |
US20020098627A1 (en) * | 2000-11-24 | 2002-07-25 | Pomarede Christophe F. | Surface preparation prior to deposition |
US20020162506A1 (en) * | 2000-11-29 | 2002-11-07 | Ofer Sneh | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition |
US20020076837A1 (en) * | 2000-11-30 | 2002-06-20 | Juha Hujanen | Thin films for magnetic device |
US20020164421A1 (en) * | 2000-12-06 | 2002-11-07 | Chiang Tony P. | Sequential method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) |
US20020104481A1 (en) * | 2000-12-06 | 2002-08-08 | Chiang Tony P. | System and method for modulated ion-induced atomic layer deposition (MII-ALD) |
US20020068458A1 (en) * | 2000-12-06 | 2002-06-06 | Chiang Tony P. | Method for integrated in-situ cleaning and susequent atomic layer deposition within a single processing chamber |
US20020197402A1 (en) * | 2000-12-06 | 2002-12-26 | Chiang Tony P. | System for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) |
US6468924B2 (en) * | 2000-12-06 | 2002-10-22 | Samsung Electronics Co., Ltd. | Methods of forming thin films by atomic layer deposition |
US6428859B1 (en) * | 2000-12-06 | 2002-08-06 | Angstron Systems, Inc. | Sequential method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) |
US6416822B1 (en) * | 2000-12-06 | 2002-07-09 | Angstrom Systems, Inc. | Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) |
US20020073924A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Gas introduction system for a reactor |
US20020076507A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Process sequence for atomic layer deposition |
US20020076481A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Chamber pressure state-based control for a reactor |
US20020076508A1 (en) * | 2000-12-15 | 2002-06-20 | Chiang Tony P. | Varying conductance out of a process region to control gas flux in an ALD reactor |
US20020106536A1 (en) * | 2001-02-02 | 2002-08-08 | Jongho Lee | Dielectric layer for semiconductor device and method of manufacturing the same |
US20020182320A1 (en) * | 2001-03-16 | 2002-12-05 | Markku Leskela | Method for preparing metal nitride thin films |
US20020164423A1 (en) * | 2001-03-19 | 2002-11-07 | Chiang Tony P. | Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) |
US20020146511A1 (en) * | 2001-04-05 | 2002-10-10 | Chiang Tony P. | Chemisorption technique for atomic layer deposition |
US20020144655A1 (en) * | 2001-04-05 | 2002-10-10 | Chiang Tony P. | Gas valve system for a reactor |
US20020144657A1 (en) * | 2001-04-05 | 2002-10-10 | Chiang Tony P. | ALD reactor employing electrostatic chuck |
US20020177282A1 (en) * | 2001-05-23 | 2002-11-28 | Samsung Electronics Co., Ltd. | Method of forming semiconductor device having a GAA type transistor |
US20030013320A1 (en) * | 2001-05-31 | 2003-01-16 | Samsung Electronics Co., Ltd. | Method of forming a thin film using atomic layer deposition |
US20030049942A1 (en) * | 2001-08-31 | 2003-03-13 | Suvi Haukka | Low temperature gate stack |
US20030042630A1 (en) * | 2001-09-05 | 2003-03-06 | Babcoke Jason E. | Bubbler for gas delivery |
US20030082296A1 (en) * | 2001-09-14 | 2003-05-01 | Kai Elers | Metal nitride deposition by ALD with reduction pulse |
US20030072975A1 (en) * | 2001-10-02 | 2003-04-17 | Shero Eric J. | Incorporation of nitrogen into high k dielectric film |
US20030124262A1 (en) * | 2001-10-26 | 2003-07-03 | Ling Chen | Integration of ALD tantalum nitride and alpha-phase tantalum for copper metallization application |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7670945B2 (en) | 1998-10-01 | 2010-03-02 | Applied Materials, Inc. | In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application |
US6831004B2 (en) | 2000-06-27 | 2004-12-14 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
US7846840B2 (en) | 2000-06-28 | 2010-12-07 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
US7745333B2 (en) | 2000-06-28 | 2010-06-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
US20070218688A1 (en) * | 2000-06-28 | 2007-09-20 | Ming Xi | Method for depositing tungsten-containing layers by vapor deposition techniques |
US7709385B2 (en) | 2000-06-28 | 2010-05-04 | Applied Materials, Inc. | Method for depositing tungsten-containing layers by vapor deposition techniques |
US7674715B2 (en) | 2000-06-28 | 2010-03-09 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
US8187970B2 (en) | 2001-07-25 | 2012-05-29 | Applied Materials, Inc. | Process for forming cobalt and cobalt silicide materials in tungsten contact applications |
US8563424B2 (en) | 2001-07-25 | 2013-10-22 | Applied Materials, Inc. | Process for forming cobalt and cobalt silicide materials in tungsten contact applications |
US9051641B2 (en) | 2001-07-25 | 2015-06-09 | Applied Materials, Inc. | Cobalt deposition on barrier surfaces |
US8110489B2 (en) | 2001-07-25 | 2012-02-07 | Applied Materials, Inc. | Process for forming cobalt-containing materials |
US9209074B2 (en) | 2001-07-25 | 2015-12-08 | Applied Materials, Inc. | Cobalt deposition on barrier surfaces |
US8318266B2 (en) | 2001-10-26 | 2012-11-27 | Applied Materials, Inc. | Enhanced copper growth with ultrathin barrier layer for high performance interconnects |
US8293328B2 (en) | 2001-10-26 | 2012-10-23 | Applied Materials, Inc. | Enhanced copper growth with ultrathin barrier layer for high performance interconnects |
US8668776B2 (en) | 2001-10-26 | 2014-03-11 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
US7780785B2 (en) | 2001-10-26 | 2010-08-24 | Applied Materials, Inc. | Gas delivery apparatus for atomic layer deposition |
US7780788B2 (en) | 2001-10-26 | 2010-08-24 | Applied Materials, Inc. | Gas delivery apparatus for atomic layer deposition |
US7892602B2 (en) | 2001-12-07 | 2011-02-22 | Applied Materials, Inc. | Cyclical deposition of refractory metal silicon nitride |
US7732325B2 (en) | 2002-01-26 | 2010-06-08 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
US7745329B2 (en) | 2002-02-26 | 2010-06-29 | Applied Materials, Inc. | Tungsten nitride atomic layer deposition processes |
US7867896B2 (en) | 2002-03-04 | 2011-01-11 | Applied Materials, Inc. | Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor |
US7867914B2 (en) | 2002-04-16 | 2011-01-11 | Applied Materials, Inc. | System and method for forming an integrated barrier layer |
US7678194B2 (en) | 2002-07-17 | 2010-03-16 | Applied Materials, Inc. | Method for providing gas to a processing chamber |
WO2005093127A2 (en) | 2004-03-27 | 2005-10-06 | Aixtron Ag | Method for the deposition in particular of metal oxides by non-continuous precursor injection |
WO2005093127A3 (en) * | 2004-03-27 | 2006-04-13 | Aixtron Ag | Method for the deposition in particular of metal oxides by non-continuous precursor injection |
US20080274278A1 (en) * | 2004-03-27 | 2008-11-06 | Peter Baumann | Method for Depositing in Particular Metal Oxides by Means of Discontinuous Precursor Injection |
KR101266153B1 (en) | 2004-03-27 | 2013-05-23 | 아익스트론 에스이 | Method for the deposition in particular of metal oxides by non-continuous precursor injection |
US7794544B2 (en) | 2004-05-12 | 2010-09-14 | Applied Materials, Inc. | Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system |
US8282992B2 (en) | 2004-05-12 | 2012-10-09 | Applied Materials, Inc. | Methods for atomic layer deposition of hafnium-containing high-K dielectric materials |
US8343279B2 (en) | 2004-05-12 | 2013-01-01 | Applied Materials, Inc. | Apparatuses for atomic layer deposition |
US8323754B2 (en) | 2004-05-21 | 2012-12-04 | Applied Materials, Inc. | Stabilization of high-k dielectric materials |
US7691742B2 (en) | 2004-07-20 | 2010-04-06 | Applied Materials, Inc. | Atomic layer deposition of tantalum-containing materials using the tantalum precursor TAIMATA |
US7682946B2 (en) | 2005-11-04 | 2010-03-23 | Applied Materials, Inc. | Apparatus and process for plasma-enhanced atomic layer deposition |
US7850779B2 (en) | 2005-11-04 | 2010-12-14 | Applied Materisals, Inc. | Apparatus and process for plasma-enhanced atomic layer deposition |
US9032906B2 (en) | 2005-11-04 | 2015-05-19 | Applied Materials, Inc. | Apparatus and process for plasma-enhanced atomic layer deposition |
US7798096B2 (en) | 2006-05-05 | 2010-09-21 | Applied Materials, Inc. | Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool |
US7678298B2 (en) | 2007-09-25 | 2010-03-16 | Applied Materials, Inc. | Tantalum carbide nitride materials by vapor deposition processes |
US7824743B2 (en) | 2007-09-28 | 2010-11-02 | Applied Materials, Inc. | Deposition processes for titanium nitride barrier and aluminum |
US8491967B2 (en) | 2008-09-08 | 2013-07-23 | Applied Materials, Inc. | In-situ chamber treatment and deposition process |
US9418890B2 (en) | 2008-09-08 | 2016-08-16 | Applied Materials, Inc. | Method for tuning a deposition rate during an atomic layer deposition process |
US8146896B2 (en) | 2008-10-31 | 2012-04-03 | Applied Materials, Inc. | Chemical precursor ampoule for vapor deposition processes |
US9685371B2 (en) | 2013-09-27 | 2017-06-20 | Applied Materials, Inc. | Method of enabling seamless cobalt gap-fill |
US10699946B2 (en) | 2013-09-27 | 2020-06-30 | Applied Materials, Inc. | Method of enabling seamless cobalt gap-fill |
US10276393B2 (en) | 2015-01-26 | 2019-04-30 | Kokusai Electric Corporation | Method of manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
WO2003056619A2 (en) | 2003-07-10 |
CN1319134C (en) | 2007-05-30 |
KR20040068969A (en) | 2004-08-02 |
WO2003056619A3 (en) | 2004-03-25 |
EP1459369A2 (en) | 2004-09-22 |
US6939801B2 (en) | 2005-09-06 |
CN1620721A (en) | 2005-05-25 |
JP2005531918A (en) | 2005-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6939801B2 (en) | Selective deposition of a barrier layer on a dielectric material | |
US6809026B2 (en) | Selective deposition of a barrier layer on a metal film | |
US7041335B2 (en) | Titanium tantalum nitride silicide layer | |
US7279432B2 (en) | System and method for forming an integrated barrier layer | |
US9012334B2 (en) | Formation of a tantalum-nitride layer | |
US7786006B2 (en) | Interconnect structures with a metal nitride diffusion barrier containing ruthenium and method of forming | |
US7262133B2 (en) | Enhancement of copper line reliability using thin ALD tan film to cap the copper line | |
US7244683B2 (en) | Integration of ALD/CVD barriers with porous low k materials | |
US7867896B2 (en) | Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor | |
US20020086111A1 (en) | Method of forming refractory metal nitride layers using chemisorption techniques | |
US20030124262A1 (en) | Integration of ALD tantalum nitride and alpha-phase tantalum for copper metallization application | |
TWI385730B (en) | Methods of fabricating a barrier layer with varying composition for copper metallization | |
JP2005518088A (en) | Formation of tungsten composite film | |
EP1295331A2 (en) | Formation of boride barrier layers using chemisorption techniques | |
WO2003038892A2 (en) | Atomic-layer-deposited tantalum nitride and alpha-phase tantalum as barrier layers for copper metallization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLIED MATERIALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHUNG, HUA;CHEN, LING;KU, VINCENT W.;AND OTHERS;REEL/FRAME:013687/0607;SIGNING DATES FROM 20030224 TO 20030430 |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20130906 |