US20030217506A1 - Method for controlling deposits in the fuel reformer of a fuel cell system - Google Patents

Method for controlling deposits in the fuel reformer of a fuel cell system Download PDF

Info

Publication number
US20030217506A1
US20030217506A1 US10/155,153 US15515302A US2003217506A1 US 20030217506 A1 US20030217506 A1 US 20030217506A1 US 15515302 A US15515302 A US 15515302A US 2003217506 A1 US2003217506 A1 US 2003217506A1
Authority
US
United States
Prior art keywords
fuel
hydrocarbyl
nitrogen
carbon atoms
oxyalkylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/155,153
Other versions
US6660050B1 (en
Inventor
Gunther Dieckmann
James Kramer
Richard Cherpeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron USA Inc filed Critical Chevron USA Inc
Assigned to CHEVRON U.S.A. INC. reassignment CHEVRON U.S.A. INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHERPECK, RICHARD E., DIECKMANN, GUNTHER H., KRAMER, JAMES D.
Priority to US10/155,153 priority Critical patent/US6660050B1/en
Priority to JP2004508215A priority patent/JP4959938B2/en
Priority to AU2003243196A priority patent/AU2003243196A1/en
Priority to CA2486053A priority patent/CA2486053C/en
Priority to PCT/US2003/013952 priority patent/WO2003099970A1/en
Priority to EP03755343A priority patent/EP1506273A4/en
Publication of US20030217506A1 publication Critical patent/US20030217506A1/en
Publication of US6660050B1 publication Critical patent/US6660050B1/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/1905Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • C10L1/2387Polyoxyalkyleneamines (poly)oxyalkylene amines and derivatives thereof (substituted by a macromolecular group containing 30C)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This invention relates to a method for preventing the formation of deposits in the fuel reformer associated with a fuel cell system when liquid hydrocarbons are employed as a source of hydrogen.
  • Fuel cells offer advantages over conventional internal combustion engines in certain applications. Fuel cells are usually more efficient and emit less pollutants into the environment when compared to heat engines. Accordingly, fuel cell systems are being proposed for both stationary and mobile applications which have traditionally been occupied by internal combustion engines. Several different types of fuel cells currently exist or are under development. Most types require hydrogen as a fuel which through an electrochemical conversion is used to generate electricity. The resulting electrical charge provides a source of electricity which may be used to power an electric motor. Unfortunately, hydrogen has a number of significant disadvantages as a practical fuel for commercial applications. In addition to being explosive, pure hydrogen is difficult and expensive to store.
  • a liquid hydrocarbon such as gasoline
  • it must first be converted to hydrogen.
  • This processing step is typically carried out in a fuel reformer which is included as an integral part of the fuel cell system.
  • the liquid hydrocarbon is usually vaporized in a heated chamber and passed over an active catalyst which converts the hydrocarbon into hydrogen and carbon dioxide.
  • the liquid hydrocarbon is sprayed into the heated vaporization chamber of the fuel reformer under pressure through one or more orifices opening into the chamber. It has not been previously recognized that deposits will form in these orifices. These deposits will eventually lead to the plugging of the orifice and inoperability of the fuel reformer.
  • the word “comprises” or “comprising” is intended as an open-ended transition meaning the inclusion of the named elements, but not necessarily excluding other unnamed elements.
  • the phrase “consists essentially of” or “consisting essentially of” is intended to mean the exclusion of other elements of any essential significance to the composition.
  • the phrases “consisting of” or “consists of” are intended as a transition meaning the exclusion of all but the recited elements with the exception of only minor traces of impurities.
  • the present invention is directed to a method for controlling the deposits in the fuel vaporizer of a fuel reformer used to prepare a liquid hydrocarbon for use as a fuel in a fuel cell which comprises introducing into the fuel vaporizer a liquid hydrocarbon containing an effective deposit controlling amount of a nitrogen-containing detergent additive.
  • a nitrogen-containing detergent additive include aliphatic hydrocarbyl amines, hydrocarbyl poly(oxyalkylene) amines, hydrocarbyl-substituted succinimides, Mannich reaction products, amino aromatic esters of polyalkylphenoxyalkanols, polyalkylphenoxyaminoalkanes, and mixtures thereof.
  • the present invention is also directed to a fuel composition suitable for use in a fuel cell which comprises a liquid hydrocarbon having a boiling range at atmospheric pressure falling between about 77 degrees F. (25 degrees C.) and about 437 degrees F. (225 degrees C.), a total sulfur content of less than 3 ppm, an octane rating of less than 85 (R+M)/2 and containing an effective deposit controlling amount of a nitrogen-containing detergent additive.
  • a liquid hydrocarbon will predominantly comprise hydrotreated straight run gasoline, rerun alkylate, reformate, hydrotreated FCC gasoline, hydrotreated or desulfurized gasoline, or a mixture containing two or more of these.
  • a special fuel cell fuel may be prepared from a mixture of low sulfur gasoline blend streams and hydrotreated FCC light cycle oil, hydrotreated jet, hydrotreated diesel, and/or light coker gas oil. While the hydrocarbons listed may be present as components in gasoline, conventional gasoline is not ideal as a fuel for use in a fuel cell. Conventional gasoline has too high a total sulfur content to serve as a suitable fuel for certain types of fuel cell systems without treatment to remove the sulfur. For example, the catalysts used to convert the hydrogen and oxygen to electricity in a proton exchange membrane fuel cell are very sensitive to even very low levels of sulfur and are rapidly deactivated at the sulfur levels normally present in conventional gasoline which typically falls within the range of from about 50 to 500 ppm sulfur.
  • Liquid hydrocarbons most suitable for use as a source of hydrogen for such a fuel cell should have a total sulfur content of less than 3 ppm, preferably less than 1 ppm, and most preferably below 0.5 ppm. While the fuel will contain mostly hydrocarbons, a significant amount of oxygenates, such as alcohols, and other components may also be present. Generally a fuel-soluble, non-volatile carrier can also be present to assist in solubilizing the detergent additive.
  • the Figure is a schematic representation of a fuel reformer used to convert a liquid hydrocarbon into a hydrogen-rich gas.
  • Fuel cells convert chemical energy of a fuel directly into electricity. They do this electrochemically, without fuel combustion and without heat engine mechanical intermediaries like boiler/steam turbines, gas turbines, or internal combustion engines. Hydrogen is the fuel of choice for fuel cells because of its high reactivity in the presence of catalyst and its ready availability from hydrocarbons by reforming. Fuel cells have been suggested as a lower polluting and more efficient alternative to internal combustion engines, including applications for stationary uses, such as electric power generation, and mobile applications, such as for powering vehicles.
  • the proton exchange membrane fuel cell is the embodiment most suited to transportation applications. PEM fuel cells are rugged, compact, able to operate at relatively low temperatures, able to respond quickly to load changes, and potentially relatively less expensive to manufacture than other designs.
  • the PEM fuel cell uses hydrogen as the fuel and oxygen, typically from the air, as the oxidant. Hydrogen gas is ionized at the anode side of the cell by a catalyst, usually a platinum-on-carbon catalyst, and releases an electron. The electron flows through an external circuit to perform work in the circuit, for example by running a motor. At the same time, the proton diffuses through the proton exchange membrane which serves as a solid electrolyte to the cathode of the fuel cell. Once at the cathode, the protons are combined with oxygen and the electrons to produce water.
  • Solid oxide fuel cells are also under commercial development. After PEM fuel cells, solid oxide fuel cells are expected to have the best commercial prospects. Solid oxide fuel cells operate at a high temperature and use a solid ceramic electrolyte, typically made of yttria-stabilized zirconia. Solid oxide fuel cell systems are well suited for larger stationary applications because of their potential for high electrical generation efficiency. Other types of fuel cells include alkaline fuel cells, phosphoric acid fuel cells, and molten carbonate fuel cells.
  • distillate fuels refers to fuels, blends, or components of blends generated from vaporized fractionation overhead streams.
  • Distillate fuels include hydrocarbons having a boiling range which falls between approximately 32 degrees F. (0 degrees C.) and 1100 degrees F. (593 degrees C.). However, lower boiling hydrocarbons are easier to vaporize and are generally preferred. Therefore, hydrocarbons which have a boiling range falling between about 32 degrees F. (0 degrees C.) and about 650 degrees F. (343 degrees C.) are generally preferred. Even more preferred are hydrocarbons boiling between about 77 degrees F. (25 degrees C.) and about 437 degrees F. (225 degrees C.).
  • the liquid hydrocarbons may be relatively homogenous, i.e. be made up of hydrocarbons having a specified number of carbon atoms, however, typically they will consist of a blend of various hydrocarbons having a specified dew point.
  • Gasoline or the various components of gasoline have been proposed as a source of hydrogen through reforming, since it is readily available in large quantities through an existing commercial distribution system.
  • Gasoline as it is sold at the pump is generally prepared from a number of blend streams. Typical blend components include butanes, light straight run, isomerate, FCC cracked products, hydrocracked naphtha, coker gasoline, alkylate, reformate, added ethers, etc.
  • a principal disadvantage of gasoline as a fuel for use in fuel cells is its sulfur content. Hydrocarbons intended for fuel cells require a significantly lower sulfur content than is seen in conventional or reformulated gasoline, which typically falls within the range of from about 20 to 500 ppm.
  • Hydrocarbons intended for use as a fuel cell should contain less than 3 ppm total sulfur, preferably less than 1 ppm and even more preferably below 0.5 ppm.
  • low sulfur gasoline blend stocks such as, for example, hydrotreated straight run gasoline, rerun alkylate, reformate, and hydrotreated FCC gasoline, represent a preferred choice over gasoline.
  • a conventional gasoline may be hydrotreated or otherwise desulfurized resulting in a product that may or may not meet the octane requirements for an internal combustion engine but would otherwise be ideally suited for use in a fuel cell reformer.
  • Hydrotreating a conventional gasoline will saturate the majority of the olefins and possibly some of the aromatic rings resulting in a fuel with an octane rate, (R+M)/2, of less than 85 commonly less than 83.
  • Particularly preferred as hydrocarbon fuels for use in a fuel cell are the low sulfur gasoline blending stocks and/or a hydrotreated regular grade gasoline.
  • hydrocarbons intended for use in fuel cells are normally a liquid at atmospheric pressure and room temperature, lower boiling hydrocarbons may be present also. Hydrocarbons containing less than six carbon atoms, such as pentane, butane, and propane, may be present provided that the total fuel composition does not exceed the desired vapor pressure limit. In addition to the hydrocarbons, oxygenates, generally alcohols, may be present in significant quantities. Methanol especially has been proposed as a fuel for use in a fuel cell. In the present invention, lower alcohols, such as methanol, ethanol, and isopropyl alcohol may be present in the fuel composition in amounts up to about 15 percent by weight.
  • additives such as dispersants and anti-oxidants, may also be present to improve the stability or physical properties of the fuel.
  • conventional gasoline and diesel usually contain additives which are intended to improve engine performance, such as, for example, octane improvers and ignition promoters, which are not needed in a fuel intended for a fuel cell, such additives also may be present so long as they do not adversely affect the operation of the fuel cell system.
  • water may also be present in the fuel composition.
  • FIG. 1 a simple schematic representation of an autothermal reformer of the general type which may be used to reform a liquid hydrocarbon into a hydrogen-rich gas is illustrated in the Figure.
  • the reformer shown may be divided into three regions which each have a different function in the reforming operation. These regions comprise a vaporization chamber 2 which contains a heat exchanger 8 , a mixing region 4 where the steam and vaporized fuel are mixed with air, and a catalyst bed 6 .
  • the liquid hydrocarbon fuel enters via line 10 and is sprayed into the vaporization chamber through an orifice which would be located at the outlet 12 of line 10 . Water enters the vaporization chamber by means of line 14 .
  • the vaporization chamber is heated to a temperature sufficient to vaporize both the hydrocarbon and the water by means of the heat exchanger 8 .
  • the vaporized hydrocarbon and steam mixture is mixed with air entering via line 16 .
  • the air/steam/hydrocarbon mixture flows through the catalyst bed 6 which contains an active catalyst, typically a supported nickel or platinum group metal catalyst, that converts the mixture into a hydrogen-rich gas which is collected and exits the reformer via outlet 1 - 8 .
  • an active catalyst typically a supported nickel or platinum group metal catalyst
  • a partial oxidation reforming process described in U.S. Pat. No. 4,087,259 teaches that the fuel is first vaporized and then mixed with air just prior to the catalyst bed.
  • International publication WO 99/19249 teaches an embodiment in which the fuel is sprayed into a hot air stream prior to contact with the reforming catalyst.
  • deposits may also form within the reformer on the chamber walls, on the heat exchange coils, or in the catalyst bed.
  • the present invention also may be used to control the formation of deposits in these areas.
  • the oxygen (as O 2 ) to carbon ratio typically ranges from about 0.2 to about 0.5, more preferably from about 0.3 to about 0.45, while the steam to carbon mole ratio ranges from about 1 to about 4, more preferably from about 2 to about 3.
  • the hydrocarbons are sprayed through an orifice or series of orifices into the heated vaporization chamber. The size of the orifice or orifices will vary depending upon such factors as the density of fuel, the pressure at which the fuel is sprayed, and the number of orifices in the fuel reformer.
  • the typical orifice will generally fall within the range of from about 30 microns to about 200 microns in diameter. It has been found that when the hydrocarbons are sprayed intermittently as would be expected in a fuel reformer associated with a vehicle, a deposit will form which will quickly plug up the orifice. The accumulation of these deposits will interfere with the proper operation of the reformer or even render it inoperable after a short period of time.
  • an effective deposit controlling amount of a nitrogen-containing detergent additive In order to control the accumulation of deposits both in the orifice and on the surfaces inside of the reformer, it is advantageous to include in the hydrocarbon fuel composition an effective deposit controlling amount of a nitrogen-containing detergent additive. Although such deposits have not been reported previously in fuel reformers under continuous operation, it is likely that such deposits may also form over an extended period of operation.
  • the phrase “effective deposit controlling amount” or variations thereof means the minimum amount of deposit control additive necessary to prevent the plugging of the orifice in the fuel reformer under the mode of operation under which the reformer is intended to be operated.
  • the effective deposit controlling amount of the detergent will vary with a number of factors, such as, for example, the size of the orifice, the composition of the fuel, the temperature of the vaporization chamber, and whether the fuel cell is operated intermittently or continuously.
  • the term “deposit control” or variations thereof, is meant to include the prevention, reduction or elimination of deposits in the orifice or within the fuel reformer.
  • the amount of the deposit control additive will fall within the range of from about 25 ppm to about 2500 ppm, with amounts between about 35 ppm and about 1000 ppm being preferred.
  • the nitrogen-containing detergent additives which may be employed in carrying out the present invention include aliphatic hydrocarbyl amines, hydrocarbyl poly(oxyalkylene) amines, hydrocarbyl-substituted succinimides, Mannich reaction products, amino aromatic esters of polyalkylphenoxyalkanols, polyalkylphenoxyaminoalkanes, and mixtures thereof.
  • the aliphatic hydrocarbyl-substituted amines which may be employed in the present invention are typically straight or branched chain hydrocarbyl-substituted amines having at least one basic nitrogen atom and wherein the hydrocarbyl group has a number average molecular weight of about 700 to 3,000.
  • Preferred aliphatic hydrocarbyl-substituted amines include polyisobutenyl and polyisobutyl monoamines and polyamines.
  • aliphatic hydrocarbyl amines employed in this invention are prepared by conventional procedures known in the art. Such aliphatic hydrocarbyl amines and their preparations are described in detail in U.S. Pat. Nos. 3,438,757; 3,565,804; 3,574,576; 3,848,056; 3,960,515; 4,832,702; and 6,203,584, the disclosures of which are incorporated herein by reference.
  • hydrocarbyl poly(oxyalkylene) amines also referred to as polyether amines.
  • Typical hydrocarbyl poly(oxyalkylene) amines include hydrocarbyl poly(oxyalkylene) monoamines and polyamines wherein the hydrocarbyl group contains from 1 to about 30 carbon atoms, the number of oxyalkylene units will range from about 5 to 100, and the amine moiety is derived from ammonia, a primary alkyl or secondary dialkyl monoamine, or a polyamine having a terminal amino nitrogen atom.
  • the oxyalkylene moiety will be oxypropylene or oxybutylene or a mixture thereof.
  • hydrocarbyl poly(oxyalkylene) amines are described, for example, in U.S. Pat. No. 6,217,624 to Morris et al., and U.S. Pat. No. 5,112,364 to Rath et al., the disclosures of which are incorporated herein by reference.
  • a preferred type of hydrocarbyl poly(oxyalkylene) monoamine is an alkyl or alkylphenyl poly(oxyalkylene)monoamine wherein the poly(oxyalkylene) moiety contains oxypropylene units or oxybutylene units or mixtures of oxypropylene and oxybutylene units.
  • the alkyl substituent or the alkyl group on the alkylphenyl moiety is a straight or branched-chain alkyl of 1 to 24 carbon atoms.
  • An especially preferred alkylphenyl moiety is tetrapropenylphenyl, that is, where the alkyl group is a branched-chain alkyl of 12 carbon atoms derived from propylene tetramer.
  • An additional type of substituted poly(oxyalkylene)amine finding use in the present invention are hydrocarbyl poly(oxyalkylene) aminocarbamates disclosed for example, in U.S. Pat. Nos. 4,288,612; 4,236,020; 4,160,648; 4,191,537; 4,270,930; 4,233,168; 4,197,409; 4,243,798 and 4,881,945, the disclosure of each of which are incorporated herein by reference.
  • hydrocarbyl poly(oxyalkylene)aminocarbamates contain at least one basic nitrogen atom and have an average molecular weight of about 500 to 10,000, preferably about 500 to 5,000, and more preferably about 1,000 to 3,000.
  • a preferred aminocarbamate is alkylphenyl poly(oxybutylene) aminocarbamate wherein the amine moiety is derived from ethylene diamine or diethylene triamine.
  • a further class of detergent additives suitable for use in the present invention is the hydrocarbyl-substituted succinimides.
  • Typical hydrocarbyl-substituted succinimides include polyalkyl and polyalkenyl succinimides wherein the polyalkyl or polyalkenyl group has an average molecular weight of about 500 to 5,000, and preferably about 700 to 3,000.
  • the hydrocarbyl-substituted succinimides are typically prepared by reacting a hydrocarbyl-substituted succinic anhydride with a polyamine having at least one reactive hydrogen bonded to an amine nitrogen atom.
  • Preferred hydrocarbyl-substituted succinimides include polyisobutenyl and polyisobutanyl succinimides, and derivatives thereof.
  • Yet another class of detergent additives which may be employed in the present invention are Mannich reaction products which are typically obtained from the Mannich condensation of a high molecular weight alkyl-substituted hydroxyaromatic compound, an amine containing at least one reactive hydrogen, and an aldehyde.
  • the high molecular weight alkyl-substituted hydroxyaromatic compounds are preferably polyalkylphenols, such as polypropylphenol and polybutylphenol, especially polyisobutylphenol, wherein the polyakyl group has an average molecular weight of about 600 to 3,000.
  • the amine reactant is typically a polyamine, such as alkylene polyamines, especially ethylene or polyethylene polyamines, for example, ethylene diamine, diethylene triamine, 3-dimethylaminopropylamine, 2-aminoethylpipeazine, triethylene tetramine, and the like.
  • the aldehyde reactant is generally an aliphatic aldehyde, such as formaldehyde, including paraformaldehyde and formalin, and acetaldehyde.
  • a preferred Mannich reaction product is obtained by condensing a polyisobutylphenol with formaldehyde and polyamine, wherein the polyisobutyl group has an average molecular weight of about 1,000.
  • a still further class of detergent additives suitable for use in the present invention are the polyalkylphenoxyaminoalkanes.
  • Preferred polyalkylphenoxyaminoalkanes include those having the formula:
  • R 5 is a polyalkyl group having an average molecular weight in the range of about 600 to 5,000;
  • R 6 and R 7 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms.
  • A is amino, N-alkyl amino having about 1 to about 20 carbon atoms in the alkyl group, N,N-dialkyl amino having about 1 to about 20 carbon atoms in each alkyl group, or a polyamine moiety having about 2 to about 12 amine nitrogen atoms and about 2 to about 40 carbon atoms.
  • a preferred class of detergent additive finding use in the present invention is the nitro and amino aromatic esters of polyalkylphenoxyalkanols.
  • Preferred amino aromatic esters of polyalkylphenoxyalkanols include those having the formula:
  • R 8 is —(CH 2 ) n —NR 13 R 14 , wherein R 13 and R 14 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms and n is 0 or 1;
  • R 9 is hydrogen, hydroxy, nitro or —NR 15 R 16 , wherein R 15 and R 16 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms;
  • R 10 and R 11 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms.
  • R 12 is a polyalkyl group having an average molecular weight in the range of about 450 to 5,000.
  • Preferred hydrocarbyl poly(oxyalkylene) amines which may be employed as detergent additives in the present invention include those having the formula:
  • R 17 is a hydrocarbyl group having from about 1 to about 30 carbon atoms
  • R 18 and R 19 are each independently hydrogen or lower alkyl having about 1 to about 6 carbon atoms and each R 18 and R 19 is independently selected in each —O—CHR 18 —CHR 19 - unit;
  • B is amino, N-alkyl amino having about 1 to about 20 carbon atoms in the alkyl group, N,N-dialkyl amino having about 1 to about 20 carbon atoms in each alkyl group, or a polyamine moiety having about 2 to about 12 amine nitrogen atoms and about 2 to about 40 carbon atoms; and
  • m is an integer from about 5 to about 100.
  • hydrocarbyl poly(oxyalkylene) amines of Formula III above and their preparations are described in detail in U.S. Pat. No. 6,217,624, the disclosure of which is incorporated herein by reference.
  • hydrocarbyl poly(oxyalkylene) amines of Formula III are preferably utilized either by themselves or in combination with other detergent additives, particularly with the polyalkylphenoxyaminoalkanes of Formula I or the amino aromatic esters of polyalkylphenoxyalkanols shown in Formula II. More preferably, the detergent additives employed in the present invention will be combinations of the hydrocarbyl poly(oxyalkylene) amines of Formula III with the amino aromatic esters of polyalkylphenoxyalkanols shown in Formula II.
  • a particularly preferred hydrocarbyl poly(oxyalkylene) amine detergent additive is dodecylphenoxy poly(oxybutylene) amine and a particularly preferred combination of detergent additives is the combination of dodecylphenoxy poly(oxybutylene) amine and 4-polyisobutylphenoxyethyl para-aminobenzoate.
  • the carburetor/injector detergent additives are typically relatively low molecular weight compounds having a number average molecular weight of about 100 to about 600 and possessing at least one polar moiety and at least one non-polar moiety.
  • the non-polar moiety is typically a linear or branched-chain alkyl or alkenyl group having about 6 to about 40 carbon atoms.
  • the polar moiety is typically nitrogen-containing.
  • Typical nitrogen-containing polar moieties include amines (for example, as described in U.S. Pat. No. 5,139,534 and PCT International Publication No.
  • WO 90/10051 ether amines (for example, as described in U.S. Pat. No. 3,849,083 and PCT International Publication No. WO 90/10051), amides, polyamides and amide-esters (for example, as described in U.S. Pat. Nos. 2,622,018; 4,729,769; and 5,139,534; and European Patent Publication No.149,486), imidazolines (for example, as described in U.S. Pat. No. 4,518,782), amine oxides (for example, as described in U.S. Pat. Nos. 4,810,263 and 4,836,829), hydroxyamines (for example, as described in U.S. Pat. No. 4,409,000), and succinimides (for example, as described in U.S. Pat. No. 4,292,046).
  • imidazolines for example, as described in U.S. Pat. No. 4,518,782
  • amine oxides for example, as described in
  • a fuel-soluble, nonvolatile carrier fluid or oil may also be used with the nitrogen-containing detergent additive employed in the present invention.
  • the carrier fluid is a chemically inert hydrocarbon-soluble liquid vehicle which substantially increases the nonvolatile residue (NVR), or solvent-free liquid fraction of the nitrogen-containing detergent additive while not adversely affecting the reforming operation.
  • the carrier fluid may be a natural or synthetic fluid, such as mineral oil, refined petroleum oils, synthetic polyalkanes and alkenes, including hydrogenated and unhydrogenated polyalphaolefins, and synthetic polyoxyalkylene-derived fluids, such as those described, for example, in U.S. Pat. No. 4,191,537 to Lewis, and polyesters, such as those described, for example, in U.S.
  • carrier fluids are believed to act as a carrier for the nitrogen-containing detergent additive employed in the present invention and to assist in removing and retarding deposits.
  • the carrier fluid may also exhibit synergistic deposit control properties when used in combination with the nitrogen-containing detergent additive employed in this invention.
  • the carrier fluids are typically employed in amounts ranging from about 25 to about 2500 ppm by weight of the hydrocarbon fuel, preferably from about 35 to about 1000 ppm of the fuel.
  • n.m.r. were determined at 300 mHz, signals are assigned as singlets (s), broad singlets (bs), doublets (d), double doublets (dd), triplets (t), double triplets (dt), quartets (q), and multiplets (m), and cps refers to cycles per second.
  • a dodecylphenoxypoly(oxybutylene)poly(oxypropylene) amine was prepared by the reductive amination with ammonia of the random copolymer poly(oxyalkylene) alcohol, dodecylphenoxy poly(oxybutylene)poly(oxypropylene) alcohol, wherein the alcohol has an average molecular weight of about 1598.
  • the poly(oxyalkylene) alcohol was prepared from dodecylphenol using a 75/25 weight/weight ratio of butylene oxide and propylene oxide, in accordance with the procedures described in U.S. Pat. Nos.
  • a dodecylphenoxy poly(oxybutylene) amine was prepared by the reductive amination with ammonia of a dodecylphenoxy poly(oxybutylene) alcohol having an average molecular weight of about 1600.
  • the dodecylphenoxy poly(oxybutylene) alcohol was prepared from dodecylphenol and butylene oxide, in accordance with the procedures described in U.S. Pat. Nos. 4,191,537; 2,782,240, and 2,841,479, as well as in Kirk-Othmer, “Encyclopedia of Chemical Technology”, 4th edition, Volume 19, 1996, page 722.
  • the reductive amination of the dodecylphenoxy poly(oxybutylene) alcohol was carried out using conventional techniques as described in U.S. Pat. Nos. 5,112,364; 4,609,377; and 3,440,029.
  • Example 10 The test described in Example 10 was repeated, except a deposit control additive mixture was added to the gasoline in an amount giving the following concentrations in the fuel: Dodecylphenoxy poly(oxybutylene) amine 175 ppm 4-Polyisobutylphenoxyethyl para-aminobenzoate 29 ppm Emkarate 1020 (di- isodecyl phthalate) 67 ppm
  • a comparison of the results of examples 10 and 11 illustrate that the presence of a nitrogen-containing deposit control additive will control the accumulation of deposits and prevent plugging of the orifice during intermittent operation as would be expected during operation of a fuel reformer in a vehicle.

Abstract

A method for controlling the deposits in the fuel vaporizer of a fuel reformer used to prepare a liquid hydrocarbon for use as a fuel in a fuel cell which comprises introducing into the fuel vaporizer a liquid hydrocarbon containing an effective deposit controlling amount of a nitrogen-containing detergent additive and a fuel composition suitable for use in a fuel cell which comprises a liquid hydrocarbon having a boiling range at atmospheric pressure falling between about 77 degrees F. (25 degrees C.) and about 437 degrees F. (225 degrees C.), a total sulfur content of less than 3 ppm, and containing an effective deposit controlling amount of a nitrogen-containing detergent additive.

Description

    FIELD OF THE INVENTION
  • This invention relates to a method for preventing the formation of deposits in the fuel reformer associated with a fuel cell system when liquid hydrocarbons are employed as a source of hydrogen. [0001]
  • BACKGROUND OF THE INVENTION
  • Fuel cells offer advantages over conventional internal combustion engines in certain applications. Fuel cells are usually more efficient and emit less pollutants into the environment when compared to heat engines. Accordingly, fuel cell systems are being proposed for both stationary and mobile applications which have traditionally been occupied by internal combustion engines. Several different types of fuel cells currently exist or are under development. Most types require hydrogen as a fuel which through an electrochemical conversion is used to generate electricity. The resulting electrical charge provides a source of electricity which may be used to power an electric motor. Unfortunately, hydrogen has a number of significant disadvantages as a practical fuel for commercial applications. In addition to being explosive, pure hydrogen is difficult and expensive to store. Therefore, other fuels such as natural gas and methanol which are easily converted to hydrogen at the site of the fuel cell have been proposed, but these fuels also have serious drawbacks. For example, methanol is expensive as a fuel, lacks an extensive distribution network, and presents groundwater pollution problems. Natural gas, while useful for stationary applications, is less practical for widespread use as a transportation fuel due to its storage and handling problems. Jet, diesel, gasoline and various refinery-blending streams have been suggested as a suitable alternative fuel for use in fuel cells if the sulfur content is reduced sufficiently. See U.S. Pat. No. 6,156,084. Gasoline has the advantage over other fuels of being relatively inexpensive, of already being widely available through a commercial distribution network, and of lacking the storage problems associated with gases such as hydrogen and natural gas. [0002]
  • Before a liquid hydrocarbon, such as gasoline, can be used to fuel a fuel cell, it must first be converted to hydrogen. This processing step is typically carried out in a fuel reformer which is included as an integral part of the fuel cell system. In the fuel reformer, the liquid hydrocarbon is usually vaporized in a heated chamber and passed over an active catalyst which converts the hydrocarbon into hydrogen and carbon dioxide. Typically the liquid hydrocarbon is sprayed into the heated vaporization chamber of the fuel reformer under pressure through one or more orifices opening into the chamber. It has not been previously recognized that deposits will form in these orifices. These deposits will eventually lead to the plugging of the orifice and inoperability of the fuel reformer. This problem has not been observed when gaseous hydrocarbons, such as methane or propane, are used as the fuel but appears to be unique to liquid hydrocarbon fuels. This problem becomes particularly acute when the liquid hydrocarbon is sprayed intermittently as would be expected in a fuel cell system used in a vehicle. However, even in fuel reformers which operate steadily as found in stationary fuel cell systems, deposits may build up over time eventually resulting in a loss of efficiency or in inoperability. Therefore, in order to insure long-term operation in a commercially viable fuel cell system, some method for controlling the formation of deposits is essential when a liquid hydrocarbon is used as the hydrogen source. [0003]
  • The use of detergents and other additive packages have been described for use in fuels intended for internal combustion engines. See for example U.S. Pat. Nos. 5,749,929 and 6,117,197. However, such additives previously have not been described as necessary for use with fuels intended for fuel cells. [0004]
  • As used in this disclosure the word “comprises” or “comprising” is intended as an open-ended transition meaning the inclusion of the named elements, but not necessarily excluding other unnamed elements. The phrase “consists essentially of” or “consisting essentially of” is intended to mean the exclusion of other elements of any essential significance to the composition. The phrases “consisting of” or “consists of” are intended as a transition meaning the exclusion of all but the recited elements with the exception of only minor traces of impurities. [0005]
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a method for controlling the deposits in the fuel vaporizer of a fuel reformer used to prepare a liquid hydrocarbon for use as a fuel in a fuel cell which comprises introducing into the fuel vaporizer a liquid hydrocarbon containing an effective deposit controlling amount of a nitrogen-containing detergent additive. Useful nitrogen-containing detergent additives according to the present invention include aliphatic hydrocarbyl amines, hydrocarbyl poly(oxyalkylene) amines, hydrocarbyl-substituted succinimides, Mannich reaction products, amino aromatic esters of polyalkylphenoxyalkanols, polyalkylphenoxyaminoalkanes, and mixtures thereof. [0006]
  • The present invention is also directed to a fuel composition suitable for use in a fuel cell which comprises a liquid hydrocarbon having a boiling range at atmospheric pressure falling between about 77 degrees F. (25 degrees C.) and about 437 degrees F. (225 degrees C.), a total sulfur content of less than 3 ppm, an octane rating of less than 85 (R+M)/2 and containing an effective deposit controlling amount of a nitrogen-containing detergent additive. Preferably the liquid hydrocarbon will predominantly comprise hydrotreated straight run gasoline, rerun alkylate, reformate, hydrotreated FCC gasoline, hydrotreated or desulfurized gasoline, or a mixture containing two or more of these. Additionally, a special fuel cell fuel may be prepared from a mixture of low sulfur gasoline blend streams and hydrotreated FCC light cycle oil, hydrotreated jet, hydrotreated diesel, and/or light coker gas oil. While the hydrocarbons listed may be present as components in gasoline, conventional gasoline is not ideal as a fuel for use in a fuel cell. Conventional gasoline has too high a total sulfur content to serve as a suitable fuel for certain types of fuel cell systems without treatment to remove the sulfur. For example, the catalysts used to convert the hydrogen and oxygen to electricity in a proton exchange membrane fuel cell are very sensitive to even very low levels of sulfur and are rapidly deactivated at the sulfur levels normally present in conventional gasoline which typically falls within the range of from about 50 to 500 ppm sulfur. Even the current reformulated gasoline with about 20 to 30 ppm sulfur would still have too much sulfur. Liquid hydrocarbons most suitable for use as a source of hydrogen for such a fuel cell should have a total sulfur content of less than 3 ppm, preferably less than 1 ppm, and most preferably below 0.5 ppm. While the fuel will contain mostly hydrocarbons, a significant amount of oxygenates, such as alcohols, and other components may also be present. Generally a fuel-soluble, non-volatile carrier can also be present to assist in solubilizing the detergent additive.[0007]
  • BRIEF DESCRIPTION OF THE DRAWING
  • The Figure is a schematic representation of a fuel reformer used to convert a liquid hydrocarbon into a hydrogen-rich gas.[0008]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Fuel cells convert chemical energy of a fuel directly into electricity. They do this electrochemically, without fuel combustion and without heat engine mechanical intermediaries like boiler/steam turbines, gas turbines, or internal combustion engines. Hydrogen is the fuel of choice for fuel cells because of its high reactivity in the presence of catalyst and its ready availability from hydrocarbons by reforming. Fuel cells have been suggested as a lower polluting and more efficient alternative to internal combustion engines, including applications for stationary uses, such as electric power generation, and mobile applications, such as for powering vehicles. [0009]
  • Several types of fuel cells are currently under commercial development. The proton exchange membrane fuel cell, usually referred to as the PEM fuel cell, is the embodiment most suited to transportation applications. PEM fuel cells are rugged, compact, able to operate at relatively low temperatures, able to respond quickly to load changes, and potentially relatively less expensive to manufacture than other designs. The PEM fuel cell uses hydrogen as the fuel and oxygen, typically from the air, as the oxidant. Hydrogen gas is ionized at the anode side of the cell by a catalyst, usually a platinum-on-carbon catalyst, and releases an electron. The electron flows through an external circuit to perform work in the circuit, for example by running a motor. At the same time, the proton diffuses through the proton exchange membrane which serves as a solid electrolyte to the cathode of the fuel cell. Once at the cathode, the protons are combined with oxygen and the electrons to produce water. [0010]
  • Other types of fuel cells are also under commercial development. After PEM fuel cells, solid oxide fuel cells are expected to have the best commercial prospects. Solid oxide fuel cells operate at a high temperature and use a solid ceramic electrolyte, typically made of yttria-stabilized zirconia. Solid oxide fuel cell systems are well suited for larger stationary applications because of their potential for high electrical generation efficiency. Other types of fuel cells include alkaline fuel cells, phosphoric acid fuel cells, and molten carbonate fuel cells. [0011]
  • Due to the high cost and difficulty of storing pure hydrogen, fuel reformers are under development to reform more commonly available hydrocarbon fuels into hydrogen as part of an integrated fuel cell system. Gasoline and other hydrocarbon fuels do not have enough electrochemical reactivity to be used directly in PEM or other types of fuel cells. A fuel reformer is needed to convert the fuels to hydrogen-rich gases that provide hydrogen at the fuel cell anode. In general, almost any liquid hydrocarbons may be reformed to produce a hydrogen-rich gas. Accordingly, distillate fuels, such as diesel and naphtha, may be used. The term “distillate fuels” refers to fuels, blends, or components of blends generated from vaporized fractionation overhead streams. Distillate fuels include hydrocarbons having a boiling range which falls between approximately 32 degrees F. (0 degrees C.) and 1100 degrees F. (593 degrees C.). However, lower boiling hydrocarbons are easier to vaporize and are generally preferred. Therefore, hydrocarbons which have a boiling range falling between about 32 degrees F. (0 degrees C.) and about 650 degrees F. (343 degrees C.) are generally preferred. Even more preferred are hydrocarbons boiling between about 77 degrees F. (25 degrees C.) and about 437 degrees F. (225 degrees C.). The liquid hydrocarbons may be relatively homogenous, i.e. be made up of hydrocarbons having a specified number of carbon atoms, however, typically they will consist of a blend of various hydrocarbons having a specified dew point. [0012]
  • Gasoline or the various components of gasoline have been proposed as a source of hydrogen through reforming, since it is readily available in large quantities through an existing commercial distribution system. Gasoline as it is sold at the pump is generally prepared from a number of blend streams. Typical blend components include butanes, light straight run, isomerate, FCC cracked products, hydrocracked naphtha, coker gasoline, alkylate, reformate, added ethers, etc. However, a principal disadvantage of gasoline as a fuel for use in fuel cells is its sulfur content. Hydrocarbons intended for fuel cells require a significantly lower sulfur content than is seen in conventional or reformulated gasoline, which typically falls within the range of from about 20 to 500 ppm. Hydrocarbons intended for use as a fuel cell should contain less than 3 ppm total sulfur, preferably less than 1 ppm and even more preferably below 0.5 ppm. For this reason, low sulfur gasoline blend stocks, such as, for example, hydrotreated straight run gasoline, rerun alkylate, reformate, and hydrotreated FCC gasoline, represent a preferred choice over gasoline. Alternatively, a conventional gasoline may be hydrotreated or otherwise desulfurized resulting in a product that may or may not meet the octane requirements for an internal combustion engine but would otherwise be ideally suited for use in a fuel cell reformer. Hydrotreating a conventional gasoline will saturate the majority of the olefins and possibly some of the aromatic rings resulting in a fuel with an octane rate, (R+M)/2, of less than 85 commonly less than 83. Particularly preferred as hydrocarbon fuels for use in a fuel cell are the low sulfur gasoline blending stocks and/or a hydrotreated regular grade gasoline. [0013]
  • Although the hydrocarbons intended for use in fuel cells are normally a liquid at atmospheric pressure and room temperature, lower boiling hydrocarbons may be present also. Hydrocarbons containing less than six carbon atoms, such as pentane, butane, and propane, may be present provided that the total fuel composition does not exceed the desired vapor pressure limit. In addition to the hydrocarbons, oxygenates, generally alcohols, may be present in significant quantities. Methanol especially has been proposed as a fuel for use in a fuel cell. In the present invention, lower alcohols, such as methanol, ethanol, and isopropyl alcohol may be present in the fuel composition in amounts up to about 15 percent by weight. Other components typically found in fuel blends include, but are not necessarily limited to, dimethylcarbonate, MTBE, and TAME. Additives, such as dispersants and anti-oxidants, may also be present to improve the stability or physical properties of the fuel. Although conventional gasoline and diesel usually contain additives which are intended to improve engine performance, such as, for example, octane improvers and ignition promoters, which are not needed in a fuel intended for a fuel cell, such additives also may be present so long as they do not adversely affect the operation of the fuel cell system. When steam reforming is used, water may also be present in the fuel composition. [0014]
  • In order to further clarify the invention, a simple schematic representation of an autothermal reformer of the general type which may be used to reform a liquid hydrocarbon into a hydrogen-rich gas is illustrated in the Figure. The reformer shown may be divided into three regions which each have a different function in the reforming operation. These regions comprise a [0015] vaporization chamber 2 which contains a heat exchanger 8, a mixing region 4 where the steam and vaporized fuel are mixed with air, and a catalyst bed 6. In operation, the liquid hydrocarbon fuel enters via line 10 and is sprayed into the vaporization chamber through an orifice which would be located at the outlet 12 of line 10. Water enters the vaporization chamber by means of line 14. The vaporization chamber is heated to a temperature sufficient to vaporize both the hydrocarbon and the water by means of the heat exchanger 8. The vaporized hydrocarbon and steam mixture is mixed with air entering via line 16. The air/steam/hydrocarbon mixture flows through the catalyst bed 6 which contains an active catalyst, typically a supported nickel or platinum group metal catalyst, that converts the mixture into a hydrogen-rich gas which is collected and exits the reformer via outlet 1-8. A more detailed description of this design of reformer may be found in WO 00/72954. Other designs have been proposed. For example, WO 00/72954 also describes a reformer in which a steam/air mixture is heated together first and then the hydrocarbon is injected into the hot steam/air mixture just prior to the catalyst bed. A partial oxidation reforming process described in U.S. Pat. No. 4,087,259 teaches that the fuel is first vaporized and then mixed with air just prior to the catalyst bed. International publication WO 99/19249 teaches an embodiment in which the fuel is sprayed into a hot air stream prior to contact with the reforming catalyst. In each of these designs, there is the potential for deposits to form in the orifice through which the hydrocarbon enters the reformer. In addition, deposits may also form within the reformer on the chamber walls, on the heat exchange coils, or in the catalyst bed. In each instance, the present invention also may be used to control the formation of deposits in these areas.
  • For proper operation, it is essential that precisely controlled quantities of fuel be mixed with the air and steam in the reformer. In autothermal reforming, the oxygen (as O[0016] 2) to carbon ratio typically ranges from about 0.2 to about 0.5, more preferably from about 0.3 to about 0.45, while the steam to carbon mole ratio ranges from about 1 to about 4, more preferably from about 2 to about 3. As noted above, the hydrocarbons are sprayed through an orifice or series of orifices into the heated vaporization chamber. The size of the orifice or orifices will vary depending upon such factors as the density of fuel, the pressure at which the fuel is sprayed, and the number of orifices in the fuel reformer. It may be desirable to use a system with a large number of orifices, thereby insuring even distribution of the fuel with the steam and/or air. Thus, the typical orifice will generally fall within the range of from about 30 microns to about 200 microns in diameter. It has been found that when the hydrocarbons are sprayed intermittently as would be expected in a fuel reformer associated with a vehicle, a deposit will form which will quickly plug up the orifice. The accumulation of these deposits will interfere with the proper operation of the reformer or even render it inoperable after a short period of time. In order to control the accumulation of deposits both in the orifice and on the surfaces inside of the reformer, it is advantageous to include in the hydrocarbon fuel composition an effective deposit controlling amount of a nitrogen-containing detergent additive. Although such deposits have not been reported previously in fuel reformers under continuous operation, it is likely that such deposits may also form over an extended period of operation. As used herein the phrase “effective deposit controlling amount” or variations thereof means the minimum amount of deposit control additive necessary to prevent the plugging of the orifice in the fuel reformer under the mode of operation under which the reformer is intended to be operated. Obviously the effective deposit controlling amount of the detergent will vary with a number of factors, such as, for example, the size of the orifice, the composition of the fuel, the temperature of the vaporization chamber, and whether the fuel cell is operated intermittently or continuously. The term “deposit control” or variations thereof, is meant to include the prevention, reduction or elimination of deposits in the orifice or within the fuel reformer. In general, the amount of the deposit control additive will fall within the range of from about 25 ppm to about 2500 ppm, with amounts between about 35 ppm and about 1000 ppm being preferred.
  • The nitrogen-containing detergent additives which may be employed in carrying out the present invention include aliphatic hydrocarbyl amines, hydrocarbyl poly(oxyalkylene) amines, hydrocarbyl-substituted succinimides, Mannich reaction products, amino aromatic esters of polyalkylphenoxyalkanols, polyalkylphenoxyaminoalkanes, and mixtures thereof. [0017]
  • The aliphatic hydrocarbyl-substituted amines which may be employed in the present invention are typically straight or branched chain hydrocarbyl-substituted amines having at least one basic nitrogen atom and wherein the hydrocarbyl group has a number average molecular weight of about 700 to 3,000. Preferred aliphatic hydrocarbyl-substituted amines include polyisobutenyl and polyisobutyl monoamines and polyamines. [0018]
  • The aliphatic hydrocarbyl amines employed in this invention are prepared by conventional procedures known in the art. Such aliphatic hydrocarbyl amines and their preparations are described in detail in U.S. Pat. Nos. 3,438,757; 3,565,804; 3,574,576; 3,848,056; 3,960,515; 4,832,702; and 6,203,584, the disclosures of which are incorporated herein by reference. [0019]
  • Another class of detergent additives suitable for use in the present invention is the hydrocarbyl poly(oxyalkylene) amines, also referred to as polyether amines. Typical hydrocarbyl poly(oxyalkylene) amines include hydrocarbyl poly(oxyalkylene) monoamines and polyamines wherein the hydrocarbyl group contains from 1 to about 30 carbon atoms, the number of oxyalkylene units will range from about 5 to 100, and the amine moiety is derived from ammonia, a primary alkyl or secondary dialkyl monoamine, or a polyamine having a terminal amino nitrogen atom. Preferably, the oxyalkylene moiety will be oxypropylene or oxybutylene or a mixture thereof. Such hydrocarbyl poly(oxyalkylene) amines are described, for example, in U.S. Pat. No. 6,217,624 to Morris et al., and U.S. Pat. No. 5,112,364 to Rath et al., the disclosures of which are incorporated herein by reference. [0020]
  • A preferred type of hydrocarbyl poly(oxyalkylene) monoamine is an alkyl or alkylphenyl poly(oxyalkylene)monoamine wherein the poly(oxyalkylene) moiety contains oxypropylene units or oxybutylene units or mixtures of oxypropylene and oxybutylene units. Preferably, the alkyl substituent or the alkyl group on the alkylphenyl moiety is a straight or branched-chain alkyl of 1 to 24 carbon atoms. An especially preferred alkylphenyl moiety is tetrapropenylphenyl, that is, where the alkyl group is a branched-chain alkyl of 12 carbon atoms derived from propylene tetramer. [0021]
  • An additional type of substituted poly(oxyalkylene)amine finding use in the present invention are hydrocarbyl poly(oxyalkylene) aminocarbamates disclosed for example, in U.S. Pat. Nos. 4,288,612; 4,236,020; 4,160,648; 4,191,537; 4,270,930; 4,233,168; 4,197,409; 4,243,798 and 4,881,945, the disclosure of each of which are incorporated herein by reference. [0022]
  • These hydrocarbyl poly(oxyalkylene)aminocarbamates contain at least one basic nitrogen atom and have an average molecular weight of about 500 to 10,000, preferably about 500 to 5,000, and more preferably about 1,000 to 3,000. A preferred aminocarbamate is alkylphenyl poly(oxybutylene) aminocarbamate wherein the amine moiety is derived from ethylene diamine or diethylene triamine. [0023]
  • A further class of detergent additives suitable for use in the present invention is the hydrocarbyl-substituted succinimides. Typical hydrocarbyl-substituted succinimides include polyalkyl and polyalkenyl succinimides wherein the polyalkyl or polyalkenyl group has an average molecular weight of about 500 to 5,000, and preferably about 700 to 3,000. The hydrocarbyl-substituted succinimides are typically prepared by reacting a hydrocarbyl-substituted succinic anhydride with a polyamine having at least one reactive hydrogen bonded to an amine nitrogen atom. Preferred hydrocarbyl-substituted succinimides include polyisobutenyl and polyisobutanyl succinimides, and derivatives thereof. [0024]
  • The hydrocarbyl-substituted succinimides finding use in the present invention are described, for example, in U.S. Pat. Nos. 5,393,309; 5,588,973; 5,620,486; 5,916,825; 5,954,843; 5,993,497; and 6,114,542, and British Patent No.1,486,144, the disclosure of each of which are incorporated herein by reference. [0025]
  • Yet another class of detergent additives which may be employed in the present invention are Mannich reaction products which are typically obtained from the Mannich condensation of a high molecular weight alkyl-substituted hydroxyaromatic compound, an amine containing at least one reactive hydrogen, and an aldehyde. The high molecular weight alkyl-substituted hydroxyaromatic compounds are preferably polyalkylphenols, such as polypropylphenol and polybutylphenol, especially polyisobutylphenol, wherein the polyakyl group has an average molecular weight of about 600 to 3,000. The amine reactant is typically a polyamine, such as alkylene polyamines, especially ethylene or polyethylene polyamines, for example, ethylene diamine, diethylene triamine, 3-dimethylaminopropylamine, 2-aminoethylpipeazine, triethylene tetramine, and the like. The aldehyde reactant is generally an aliphatic aldehyde, such as formaldehyde, including paraformaldehyde and formalin, and acetaldehyde. A preferred Mannich reaction product is obtained by condensing a polyisobutylphenol with formaldehyde and polyamine, wherein the polyisobutyl group has an average molecular weight of about 1,000. [0026]
  • The Mannich reaction products suitable for use in the present invention are described, for example, in U.S. Pat. Nos. 4,231,759 and 5,697,988, the disclosures of each of which are incorporated herein by reference. [0027]
  • A still further class of detergent additives suitable for use in the present invention are the polyalkylphenoxyaminoalkanes. Preferred polyalkylphenoxyaminoalkanes include those having the formula: [0028]
    Figure US20030217506A1-20031127-C00001
  • wherein: [0029]
  • R[0030] 5 is a polyalkyl group having an average molecular weight in the range of about 600 to 5,000;
  • R[0031] 6 and R7 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms; and
  • A is amino, N-alkyl amino having about 1 to about 20 carbon atoms in the alkyl group, N,N-dialkyl amino having about 1 to about 20 carbon atoms in each alkyl group, or a polyamine moiety having about 2 to about 12 amine nitrogen atoms and about 2 to about 40 carbon atoms. [0032]
  • The polyalkylphenoxyaminoalkanes of Formula I above and their preparations are described in detail in U.S. Pat. No. 5,669,939, the disclosure of which is incorporated herein by reference. [0033]
  • Mixtures of polyalkylphenoxyaminoalkanes and poly(oxyalkylene) amines are also suitable for use in the present invention. These mixtures are described in detail in U.S. Pat. No. 5,851,242, the disclosure of which is incorporated herein by reference. [0034]
  • A preferred class of detergent additive finding use in the present invention is the nitro and amino aromatic esters of polyalkylphenoxyalkanols. Preferred amino aromatic esters of polyalkylphenoxyalkanols include those having the formula: [0035]
    Figure US20030217506A1-20031127-C00002
  • wherein: [0036]
  • R[0037] 8 is —(CH2)n—NR13R14, wherein R13 and R14 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms and n is 0 or 1;
  • R[0038] 9 is hydrogen, hydroxy, nitro or —NR15R16, wherein R15 and R16 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms;
  • R[0039] 10 and R11 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms; and
  • R[0040] 12 is a polyalkyl group having an average molecular weight in the range of about 450 to 5,000.
  • The aromatic esters of polyalkylphenoxyalkanols shown in Formula II above and their preparations are described in detail in U.S. Pat. No. 5,618,320, the disclosure of which is incorporated herein by reference. [0041]
  • Mixtures of amino aromatic esters of polyalkylphenoxyalkanols and hydrocarbyl poly(oxyalkylene) amines are also preferably contemplated for use in the present invention. These mixtures are described in detail in U.S. Pat. No. 5,749,929, the disclosure of which is incorporated herein by reference. [0042]
  • Preferred hydrocarbyl poly(oxyalkylene) amines which may be employed as detergent additives in the present invention include those having the formula: [0043]
    Figure US20030217506A1-20031127-C00003
  • wherein: [0044]
  • R[0045] 17 is a hydrocarbyl group having from about 1 to about 30 carbon atoms;
  • R[0046] 18 and R19 are each independently hydrogen or lower alkyl having about 1 to about 6 carbon atoms and each R18 and R19 is independently selected in each —O—CHR18—CHR19- unit;
  • B is amino, N-alkyl amino having about 1 to about 20 carbon atoms in the alkyl group, N,N-dialkyl amino having about 1 to about 20 carbon atoms in each alkyl group, or a polyamine moiety having about 2 to about 12 amine nitrogen atoms and about 2 to about 40 carbon atoms; and [0047]
  • m is an integer from about 5 to about 100. [0048]
  • The hydrocarbyl poly(oxyalkylene) amines of Formula III above and their preparations are described in detail in U.S. Pat. No. 6,217,624, the disclosure of which is incorporated herein by reference. [0049]
  • The hydrocarbyl poly(oxyalkylene) amines of Formula III are preferably utilized either by themselves or in combination with other detergent additives, particularly with the polyalkylphenoxyaminoalkanes of Formula I or the amino aromatic esters of polyalkylphenoxyalkanols shown in Formula II. More preferably, the detergent additives employed in the present invention will be combinations of the hydrocarbyl poly(oxyalkylene) amines of Formula III with the amino aromatic esters of polyalkylphenoxyalkanols shown in Formula II. A particularly preferred hydrocarbyl poly(oxyalkylene) amine detergent additive is dodecylphenoxy poly(oxybutylene) amine and a particularly preferred combination of detergent additives is the combination of dodecylphenoxy poly(oxybutylene) amine and 4-polyisobutylphenoxyethyl para-aminobenzoate. [0050]
  • Another type of detergent additive suitable for use in the present invention is the nitrogen-containing carburetor/injector detergent. The carburetor/injector detergent additives are typically relatively low molecular weight compounds having a number average molecular weight of about 100 to about 600 and possessing at least one polar moiety and at least one non-polar moiety. The non-polar moiety is typically a linear or branched-chain alkyl or alkenyl group having about 6 to about 40 carbon atoms. The polar moiety is typically nitrogen-containing. Typical nitrogen-containing polar moieties include amines (for example, as described in U.S. Pat. No. 5,139,534 and PCT International Publication No. WO 90/10051), ether amines (for example, as described in U.S. Pat. No. 3,849,083 and PCT International Publication No. WO 90/10051), amides, polyamides and amide-esters (for example, as described in U.S. Pat. Nos. 2,622,018; 4,729,769; and 5,139,534; and European Patent Publication No.149,486), imidazolines (for example, as described in U.S. Pat. No. 4,518,782), amine oxides (for example, as described in U.S. Pat. Nos. 4,810,263 and 4,836,829), hydroxyamines (for example, as described in U.S. Pat. No. 4,409,000), and succinimides (for example, as described in U.S. Pat. No. 4,292,046). [0051]
  • A fuel-soluble, nonvolatile carrier fluid or oil may also be used with the nitrogen-containing detergent additive employed in the present invention. The carrier fluid is a chemically inert hydrocarbon-soluble liquid vehicle which substantially increases the nonvolatile residue (NVR), or solvent-free liquid fraction of the nitrogen-containing detergent additive while not adversely affecting the reforming operation. The carrier fluid may be a natural or synthetic fluid, such as mineral oil, refined petroleum oils, synthetic polyalkanes and alkenes, including hydrogenated and unhydrogenated polyalphaolefins, and synthetic polyoxyalkylene-derived fluids, such as those described, for example, in U.S. Pat. No. 4,191,537 to Lewis, and polyesters, such as those described, for example, in U.S. Pat. No. 3,756,793 to Robinson and U.S. Pat. No. 5,004,478 to Vogel et al., and in European Patent Application Nos. 356,726, published Mar. 7, 1990, and U.S. Pat. No. 382,159, published Aug. 16, 1990. The use of aromatic di- and tri-carboxylic acid esters, such as phthalate esters, is also described in U.S. Pat. Nos. 5,405,418 to Ansari et al. and U.S. Pat. No. 6,117,197 to Houser. [0052]
  • These carrier fluids are believed to act as a carrier for the nitrogen-containing detergent additive employed in the present invention and to assist in removing and retarding deposits. The carrier fluid may also exhibit synergistic deposit control properties when used in combination with the nitrogen-containing detergent additive employed in this invention. [0053]
  • The carrier fluids are typically employed in amounts ranging from about 25 to about 2500 ppm by weight of the hydrocarbon fuel, preferably from about 35 to about 1000 ppm of the fuel. [0054]
  • The following examples are intended to further illustrate the invention but are not to be construed as limitations thereon. [0055]
  • EXAMPLES
  • Unless expressly stated to the contrary, in the following examples all temperatures and temperature ranges refer to the Centigrade system and the term “ambient” or “room temperature” refers to about 20° C. to 25° C. The term “percent” or “%” refers to weight percent and the term “mole” or “moles” refers to gram moles. The term “equivalent” refers to a quantity of reagent equal in moles, to the moles of the preceding or succeeding reactant recited in that example in terms of finite moles or finite weight or volume. Where given, proton-magnetic resonance spectrum (p.m.r. or n.m.r.) were determined at 300 mHz, signals are assigned as singlets (s), broad singlets (bs), doublets (d), double doublets (dd), triplets (t), double triplets (dt), quartets (q), and multiplets (m), and cps refers to cycles per second. [0056]
  • Example 1 Preparation of Polvisobutyl Phenol
  • To a flask equipped with a magnetic stirrer, reflux condenser, thermometer, addition funnel and nitrogen inlet was added 203.2 grams of phenol. The phenol was warmed to 40° C. and the heat source was removed. Then, 73.5 milliliters of boron trifluoride etherate was added dropwise. 1040 grams of [0057] Ultravis 10 Polyisobutene (molecular weight 950, 76% methylvinylidene, available from British Petroleum) was dissolved in 1,863 milliliters of hexane. The polyisobutene was added to the reaction at a rate to maintain the temperature between 22° C. to 27° C. The reaction mixture was stirred for 16 hours at room temperature. Then, 400 milliliters of concentrated ammonium hydroxide was added, followed by 2,000 milliliters of hexane. The reaction mixture was washed with water (3×2,000 milliliters), dried over magnesium sulfate, filtered and the solvents removed under vacuum to yield 1,056.5 grams of a crude reaction product. The crude reaction product was determined to contain 80% of the desired product by proton NMR and chromatography on silica gel eluting with hexane, followed by hexane: ethylacetate:ethanol (93:5:2).
  • Example 2 Preparation of
  • [0058]
    Figure US20030217506A1-20031127-C00004
  • 1.1 grams of a 35 weight percent dispersion of potassium hydride in mineral oil and 4- polyisobutyl phenol (99.7 grams, prepared as in Example 1) were added to a flask equipped with a magnetic stirrer, reflux condenser, nitrogen inlet and thermometer. The reaction was heated at 130° C. for one hour and then cooled to 100° C. Ethylene carbonate (8.6 grams) was added and the mixture was heated at 160° C. for 16 hours. The reaction was cooled to room temperature and one milliliter of isopropanol was added. The reaction was diluted with one liter of hexane, washed three times with water and once with brine. The organic layer was dried over anhydrous magnesium sulfate, filtered and the solvents removed in vacuo to yield 98.0 grams of the desired product as a yellow oil. [0059]
  • Example 3 Preparation of
  • [0060]
    Figure US20030217506A1-20031127-C00005
  • 15.1 grams of a 35 weight percent dispersion of potassium hydride in mineral oil and 4- polyisobutyl phenol (1378.5 grams, prepared as in Example 1) were added to a flask equipped with a mechanical stirrer, reflux condenser, nitrogen inlet and thermometer. The reaction was heated at 130° C. for one hour and then cooled to 100° C. Propylene carbonate (115.7 milliliters) was added and the mixture was heated at 160° C. for 16 hours. The reaction was cooled to room temperature and ten milliliters of isopropanol were added. The reaction was diluted with ten liters of hexane, washed three times with water and once with brine. The organic layer was dried over anhydrous magnesium sulfate, filtered and the solvents removed in vacuo to yield 1301.7 grams of the desired product as a yellow oil. [0061]
  • Example 4 Preparation of
  • [0062]
    Figure US20030217506A1-20031127-C00006
  • To a flask equipped with a magnetic stirrer, thermometer, Dean-Stark trap, reflux condenser and nitrogen inlet was added 15.0 grams of the alcohol from Example 2, 2.6 grams of 4-nitrobenzoic acid and 0.24 grams of p-toluenesulfonic acid. The mixture was stirred at 130° C. for sixteen hours, cooled to room temperature and diluted with 200 mL of hexane. The organic phase was washed twice with saturated aqueous sodium bicarbonate followed by once with saturated aqueous sodium chloride. The organic layer was then dried over anhydrous magnesium sulfate, filtered and the solvents removed in vacuo to yield 15.0 grams of the desired product as brown oil. The oil was chromatographed on silica gel, eluting with hexane/ethyl acetate (9:1) to afford 14.0 grams of the desired ester as yellow oil. [0063] 1H NMR (CDCl3) d 8.3 (AB quartet, 4H), 7.25 (d, 2H), 6.85 (d, 2H), 4.7 (t, 2H), 4.3 (t, 2H), 0.7-1.6 (m, 137H).
  • Example 5 Preparation of
  • [0064]
    Figure US20030217506A1-20031127-C00007
  • To a flask equipped with a magnetic stirrer, thermometer, Dean-Stark trap, reflux condenser and nitrogen inlet was added 15.0 grams of the alcohol from Example 3, 2.7 grams of 4-nitrobenzoic acid and 0.23 grams of p-toluenesulfonic acid. The mixture was stirred at 130° C. for sixteen hours, cooled to room temperature and diluted with 200 mL of hexane. The organic phase was washed twice with saturated aqueous sodium bicarbonate followed by once with saturated aqueous sodium chloride. The organic layer was then dried over anhydrous magnesium sulfate, filtered and the solvents removed in vacuo to yield 16.0 grams of the desired product as brown oil. The oil was chromatographed on silica gel, eluting with hexane/ethyl acetate (8:2) to afford 15.2 grams of the desired ester as brown oil. [0065] 1H NMR (CDCl3) d 8.2 (AB quartet, 4H), 7.25 (d, 2H), 6.85 (d, 2H), 5.55 (hx, 1H), 4.1 (t, 2H), 0.6-1.8 (m, 140H).
  • Example 6 Preparation of
  • [0066]
    Figure US20030217506A1-20031127-C00008
  • A solution of 9.4 grams of the product from Example 4 in 100 milliliters of ethyl acetate containing 1.0 gram of 10% palladium on charcoal was hydrogenolyzed at 35-40 psi for 16 hours on a Parr low-pressure hydrogenator. Catalyst filtration and removal of the solvent in vacuo yield 7.7 grams of the desired product as yellow oil. [0067] 1H NMR (CDCl3) d 7.85 (d, 2H), 7.3 (d, 2H), 6.85 (d, 2H), 6.6 (d, 2H), 4.6 (t, 2H), 4.25 (t, 2H), 4.05 (bs, 2H), 0.7-1.6 (m, 137H).
  • Example 7 Preparation of
  • [0068]
    Figure US20030217506A1-20031127-C00009
  • A solution of 15.2 grams of the product from Example 5 in 200 milliliters of ethyl acetate containing 1.0 gram of 10% palladium on charcoal was hydrogenolyzed at 35-40 psi for 16 hours on a Parr low-pressure hydrogenator. Catalyst filtration and removal of the solvent in vacuo yield 15.0 grams of the desired product as brown oil. [0069] 1H NMR (CDCl3/D2O) d 7.85 (d, 2H), 7.25 (d, 2H), 6.85 (d, 2H), 6.6 (d, 2H), 5.4 (hx, 1H), 3.8-4.2 (m, 4H), 0.6-1.8 (m, 140H).
  • Example 8 Preparation of Dodecylphenoxy Poly(oxybutylene)poly(oxypropylene) Amine
  • A dodecylphenoxypoly(oxybutylene)poly(oxypropylene) amine was prepared by the reductive amination with ammonia of the random copolymer poly(oxyalkylene) alcohol, dodecylphenoxy poly(oxybutylene)poly(oxypropylene) alcohol, wherein the alcohol has an average molecular weight of about 1598. The poly(oxyalkylene) alcohol was prepared from dodecylphenol using a 75/25 weight/weight ratio of butylene oxide and propylene oxide, in accordance with the procedures described in U.S. Pat. Nos. 4,191,537; 2,782,240 and 2,841,479, as well as in Kirk-Othmer, “Encyclopedia of Chemical Technology”, 4th edition, Volume 19, 1996, page 722. The reductive amination of the poly(oxyalkylene) alcohol was carried out using conventional techniques as described in U.S. Pat. Nos. 5,112,364; 4,609,377 and 3,440,029. [0070]
  • Example 9 Preparation of Dodecylphenoxy Poly(oxybutylene) Amine
  • A dodecylphenoxy poly(oxybutylene) amine was prepared by the reductive amination with ammonia of a dodecylphenoxy poly(oxybutylene) alcohol having an average molecular weight of about 1600. The dodecylphenoxy poly(oxybutylene) alcohol was prepared from dodecylphenol and butylene oxide, in accordance with the procedures described in U.S. Pat. Nos. 4,191,537; 2,782,240, and 2,841,479, as well as in Kirk-Othmer, “Encyclopedia of Chemical Technology”, 4th edition, Volume 19, 1996, page 722. The reductive amination of the dodecylphenoxy poly(oxybutylene) alcohol was carried out using conventional techniques as described in U.S. Pat. Nos. 5,112,364; 4,609,377; and 3,440,029. [0071]
  • Example 10 Plugging Test Using Gasoline Without Additive Sprayed Through a Heated Orifice
  • The conditions in the vaporization chamber of a fuel reformer were simulated by placing a regular unleaded gasoline containing no deposit control additive in a syringe pump (Harvard Apparatus Model 44) and pumping the fuel through a 12 micron orifice made from 316 stainless steel at a rate of 10 ml/hr into a heated chamber continuously flushed with nitrogen gas. The temperature of the orifice was kept at a temperature of approximately 66 degrees C. Starting with a clean orifice, it was possible to maintain the flow through the orifice. However, once the pump was stopped, it became impossible to restart the pump. The orifice was found to be plugged. The plugged orifice was cleaned by burning away the deposits in a furnace at 500 degrees C. The test was repeated. When the pump was stopped the orifice became plugged again, and the pump could not be restarted. [0072]
  • Example 11 Plugging Test Using Gasoline With Additive Sprayed Through a Heated Orifice
  • The test described in Example 10 was repeated, except a deposit control additive mixture was added to the gasoline in an amount giving the following concentrations in the fuel: [0073]
    Dodecylphenoxy poly(oxybutylene) amine 175 ppm
    4-Polyisobutylphenoxyethyl para-aminobenzoate  29 ppm
    Emkarate 1020 (di- isodecyl phthalate)  67 ppm
  • The pump was started and shut-off 30 times during the test without any plugging of the orifice. [0074]
  • A comparison of the results of examples 10 and 11 illustrate that the presence of a nitrogen-containing deposit control additive will control the accumulation of deposits and prevent plugging of the orifice during intermittent operation as would be expected during operation of a fuel reformer in a vehicle. [0075]

Claims (62)

What is claimed is:
1. A method for controlling deposits in the fuel vaporizer of a fuel reformer used to prepare a liquid hydrocarbon for use as a fuel in a fuel cell which comprises introducing into the fuel vaporizer a liquid hydrocarbon containing an effective deposit controlling amount of a nitrogen-containing detergent additive.
2. The method of claim 1 wherein the nitrogen-containing detergent additive is selected from the group consisting of aliphatic hydrocarbyl amines, hydrocarbyl poly(oxyalkylene) amines, hydrocarbyl-substituted succinimides, Mannich reaction products, nitro and amino aromatic esters of polyalkylphenoxyalkanols, polyalkylphenoxyaminoalkanes, and mixtures thereof.
3. The method of claim 2 wherein the nitrogen-containing detergent additive includes at least one aliphatic hydrocarbyl amine.
4. The method of claim 3 wherein the aliphatic hydrocarbyl amine is selected from the group consisting of polyisobutenyl and polyisobutyl monoamine and polyamine.
5. The method of claim 2 wherein the nitrogen-containing detergent additive includes at least one hydrocarbyl poly(oxyalkylene) amine.
6. The method of claim 5 wherein the hydrocarbyl poly(oxyalkylene) amine is selected from the group consisting of hydrocarbyl poly(oxyalkylene) monoamines and polyamines wherein the hydrocarbyl group contains from 1 to about 30 carbon atoms, the number of oxyalkylene units will range from about 5 to 100, and the amine moiety is derived from ammonia, a primary alkyl or secondary dialkyl monoamine, or a polyamine having a terminal amino nitrogen atom.
7. The method of claim 6 wherein the hydrocarbyl poly(oxyalkene) amine is a alkylphenyl poly(oxyalkylene) monoamine, wherein the poly(oxyalkylene) moiety contains oxypropylene or oxybutylene units or a mixture of oxypropylene and oxybutylene units.
8. The method of claim 5 wherein the hydrocarbyl poly(oxyalkylene) amine is a hydrocarbyl poly(oxyalkylene) aminocarbamate.
9. The method of claim 5 wherein the hydrocarbyl poly(oxyalkylene) amine is characterized by the formula:
Figure US20030217506A1-20031127-C00010
wherein:
R17 is a hydrocarbyl group having from about 1 to about 30 carbon atoms;
R18 and R19 are each independently hydrogen or lower alkyl having about 1 to about 6 carbon atoms and each R18 and R19 is independently selected in each —O—CHR18—CHR19- unit;
B is amino, N-alkyl amino having about 1 to about 20 carbon atoms in the alkyl group, N,N-dialkyl amino having about 1 to about 20 carbon atoms in each alkyl group, or a polyamine moiety having about 2 to about 12 amine nitrogen atoms and about 2 to about 40 carbon atoms; and
m is an integer from about 5 to about 100.
10. The method of claim 2 wherein the nitrogen-containing detergent additive includes at least one hydrocarbyl-substituted succinimide.
11. The method of claim 10 wherein the hydrocarbyl-substituted succinimide is a polyalkyl or polyalkenyl succinimide wherein the polyalkyl or polyalkenyl moiety has an average molecular weight of from about 500 to about 5,000.
12. The method of claim 2 wherein the nitrogen-containing detergent additive includes at least one Mannich reaction product.
13. The method of claim 12 Wherein the Mannich reaction product is obtained by condensing a polyalkylphenol with an aliphatic aldehyde and an alkylene polyamine.
14. The method of claim 2 wherein the nitrogen-containing detergent additive includes at least one amino aromatic ester of polyalkylphenoxyalkanol.
15. The method of claim 14 wherein the amino aromatic ester of a polyalkylphenoxyalkanol is characterized by the formula:
Figure US20030217506A1-20031127-C00011
wherein:
R8 is —(CH2)n—NR13R14, wherein R13 and R14 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms and n is 0 or 1;
R9 is hydrogen, hydroxy, nitro or —NR15R16, wherein R15 and R16 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms;
R10 and R11 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms; and
R12 is a polyalkyl group having an average molecular weight in the 6 range of about 450 to 5,000.
16. The method of claim 2 wherein the nitrogen-containing detergent additive includes at least one polyalkylphenoxyaminoalkane.
17. The method of claim 16 wherein the polyalkylphenoxyaminoalkane is characterized by the formula:
Figure US20030217506A1-20031127-C00012
wherein:
R5 is a polyalkyl group having an average molecular weight in the range of about 600 to 5,000;
R6 and R7 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms; and
A is amino, N-alkyl amino having about 1 to about 20 carbon atoms in the alkyl group, N,N-dialkyl amino having about 1 to about 20 carbon atoms in each alkyl group, or a polyamine moiety having about 2 to about 12 amine nitrogen atoms and about 2 to about 40 carbon atoms.
18. The method of claim 2 wherein the nitrogen-containing detergent additive comprises a mixture of an amino aromatic ester of a polyalkylphenoxyalkanol and a hydrocarbyl poly(oxyalkylene) amine.
19. The method of claim 1 wherein the nitrogen-containing detergent additive is present in the liquid hydrocarbon in a concentration within the range of from about 25 ppm to about 2500 ppm.
20. The method of claim 19 wherein the nitrogen-containing detergent additive is present in the liquid hydrocarbon in a concentration within the range of from about 35 ppm to about 1000 ppm.
21. The method of claim 1 wherein a fuel-soluble, non-volatile carrier is also present in the liquid hydrocarbon.
22. The method of claim 21 wherein the fuel-soluble, non-volatile carrier is present in the liquid hydrocarbon in a concentration within the range of from about 25 ppm to about 2500 ppm.
23. The method of claim 22 wherein the fuel-soluble, non-volatile carrier is present in the liquid hydrocarbon in a concentration within the range of from about 35 ppm to about 1000 ppm.
24. The method of claim 1 wherein the liquid hydrocarbon primarily comprises a distillate fuel.
25. The method of claim 24 wherein the distillate fuel comprises a low sulfur gasoline blend stock.
26. The method of claim 25 wherein the low sulfur gasolines blend stock is hydrotreated straight run gasoline.
27. The method of claim 25 wherein the low sulfur gasolines blend stock is hydrotreated FCC gasoline.
28. The method of claim 25 wherein the low sulfur gasoline blend stock is rerun alkylate.
29. The method of claim 25 wherein the low sulfur gasolines blend stock is reformate.
30. The method of claim 24 wherein the distillate contains less than 3 ppm of sulfur.
31. The method of claim 30 wherein the distillate contains less than 1 ppm of sulfur.
32. The method of claim 31 wherein the distillate contains less than 0.5 ppm of sulfur.
33. The method of claim 1 wherein the fuel cell is a PEM fuel cell.
34. A fuel composition suitable for use in a fuel cell which comprises a liquid hydrocarbon having a boiling range at atmospheric pressure falling between about 77 degrees F. and about 437 degrees F., a total sulfur content of less than 3 ppm, an octane rating of less than 85 (R+M)/2, and containing an effective deposit controlling amount of a nitrogen-containing detergent additive.
35. The fuel composition of claim 34 wherein the total sulfur present is less than 1 ppm.
36. The fuel composition of claim 35 wherein the total sulfur present is less than 0.5 ppm.
37. The fuel composition of claim 34 wherein the liquid hydrocarbon comprises hydrotreated straight run gasoline.
38. The fuel composition of claim 34 wherein the liquid hydrocarbon comprises rerun alkylate.
39. The fuel composition of claim 34 wherein the liquid hydrocarbon comprises reformate.
40. The fuel composition of claim 34 wherein the liquid hydrocarbon comprises hydrotreated FCC gasoline.
41. The fuel composition of claim 34 wherein the nitrogen-containing detergent additive is selected from the group consisting of aliphatic hydrocarbyl amines, hydrocarbyl poly(oxyalkylene) amines, hydrocarbyl-substituted succinimides, Mannich reaction products, nitro and amino aromatic esters of polyalkylphenoxyalkanols, polyalkylphenoxyaminoalkanes, and mixtures thereof.
42. The fuel composition of claim 41 wherein the nitrogen-containing detergent additive includes at least one aliphatic hydrocarbyl amine.
43. The fuel composition of claim 42 wherein the aliphatic hydrocarbyl amine is selected from the group consisting of polyisobutenyl and polyisobutyl monoamine and polyamine.
44. The method of claim 41 wherein the nitrogen-containing detergent additive includes at least one hydrocarbyl poly(oxyalkylene) amine.
45. The fuel composition of claim 44 wherein the hydrocarbyl poly(oxyalkylene) amine is selected from the group consisting of hydrocarbyl poly(oxyalkylene) monoamines and polyamines wherein the hydrocarbyl group contains from 1 to about 30 carbon atoms, the number of oxyalkylene units will range from about 5 to 100, and the amine moiety is derived from ammonia, a primary alkyl or secondary dialkyl monoamine, or a polyamine having a terminal amino nitrogen atom.
46. The fuel composition of claim 45 wherein the hydrocarbyl poly(oxyalkene) amine is a alkylphenyl poly(oxyalkylene) monoamine, wherein the poly(oxyalkylene) moiety contains oxypropylene or oxybutylene units or a mixture of oxypropylene and oxybutylene units.
47. The fuel composition of claim 44 wherein the hydrocarbyl poly(oxyalkylene) amine is a hydrocarbyl poly(oxyalkylene) aminocarbamate.
48. The fuel composition of claim 44 wherein the hydrocarbyl-substituted poly(oxyalkylene) amine is characterized by the formula:
Figure US20030217506A1-20031127-C00013
wherein:
R17 is a hydrocarbyl group having from about 1 to about 30 carbon atoms;
R18 and R19 are each independently hydrogen or lower alkyl having about 1 to about 6 carbon atoms and each R18 and R19 is independently selected in each —O—CHR18—CHR19- unit;
B is amino, N-alkyl amino having about 1 to about 20 carbon atoms in the alkyl group, N,N-dialkyl amino having about 1 to about 20 carbon atoms in each alkyl group, or a polyamine moiety having about 2 to about 12 amine nitrogen atoms and about 2 to about 40 carbon atoms; and
m is an integer from about 5 to about 100.
49. The fuel composition of claim 41 wherein the nitrogen-containing detergent additive includes at least one hydrocarbyl-substituted succinimide.
50. The fuel composition of claim 49 wherein the hydrocarbyl-substituted succinimide is a polyalkyl or polyalkenyl succinimide wherein the polyalkyl and polyalkenyl moiety has an average molecular weight of from about 500 to about 5,000.
51. The fuel composition of claim 41 wherein the nitrogen-containing detergent additive includes at least one Mannich reaction product.
52. The fuel composition of claim 50 wherein the Mannich reaction product is obtained by condensing a polyalkylphenol with an aliphatic aldehyde and an alkylene polyamine.
53. The fuel composition of claim 41 wherein the nitrogen-containing detergent additive includes at least one amino aromatic ester of a polyalkylphenoxyalkanol.
54. The fuel composition of claim 53 wherein the amino aromatic ester of a polyalkylphenoxyalkanol is characterized by the formula:
Figure US20030217506A1-20031127-C00014
wherein:
R8 is —(CH2)n—NR13R14, wherein R13 and R14 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms and n is 0 or 1;
R9 is hydrogen, hydroxy, nitro or —NR15R16, wherein R15 and R16 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms;
R10 and R11 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms; and
R12 is a polyalkyl group having an average molecular weight in the range of about 450 to 5,000.
55. The fuel composition of claim 41 wherein the nitrogen-containing detergent additive includes at least one polyalkylphenoxyaminoalkane.
56. The fuel composition of claim 55 wherein the polyalkylphenoxyaminoalkane is characterized by the formula:
Figure US20030217506A1-20031127-C00015
wherein:
R5 is a polyalkyl group having an average molecular weight in the range of about 600 to 5,000;
R6 and R7 are independently hydrogen or lower alkyl having 1 to 6 carbon atoms; and
A is amino, N-alkyl amino having about 1 to about 20 carbon atoms in the alkyl group, N,N-dialkyl amino having about 1 to about 20 carbon atoms in each alkyl group, or a polyamine moiety having about 2 to about 12 amine nitrogen atoms and about 2 to about 40 carbon atoms.
57. The fuel composition of claim 41 wherein the nitrogen-containing detergent additive comprises a mixture of an amino aromatic ester of a polyalkylphenoxyalkanol and a hydrocarbyl poly(oxyalkylene) amine.
58. The fuel composition of claim 34 wherein the nitrogen-containing detergent additive is present in the liquid hydrocarbon in a concentration within the range of from about 25 ppm to about 2500 ppm.
59. The fuel composition of claim 58 wherein the nitrogen-containing detergent additive is present in the liquid hydrocarbon in a concentration within the range of from about 35 ppm to about 1000 ppm.
60. The fuel composition of claim 34 wherein a fuel-soluble, non-volatile carrier is also present.
61. The fuel composition of claim 60 wherein the fuel-soluble, non-volatile carrier is present in the liquid hydrocarbon in a concentration within the range of from about 25 ppm to about 2500 ppm.
62. The fuel composition of claim 61 wherein the fuel-soluble, non-volatile carrier is present in the liquid hydrocarbon in a concentration within the range of from about 35 ppm to about 1000 ppm.
US10/155,153 2002-05-23 2002-05-23 Method for controlling deposits in the fuel reformer of a fuel cell system Expired - Lifetime US6660050B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/155,153 US6660050B1 (en) 2002-05-23 2002-05-23 Method for controlling deposits in the fuel reformer of a fuel cell system
PCT/US2003/013952 WO2003099970A1 (en) 2002-05-23 2003-05-01 Method for controlling deposits in the fuel reformer of a fuel cell system
AU2003243196A AU2003243196A1 (en) 2002-05-23 2003-05-01 Method for controlling deposits in the fuel reformer of a fuel cell system
CA2486053A CA2486053C (en) 2002-05-23 2003-05-01 Method for controlling deposits in the fuel reformer of a fuel cell system
JP2004508215A JP4959938B2 (en) 2002-05-23 2003-05-01 Method for suppressing deposit in fuel reformer of fuel cell system
EP03755343A EP1506273A4 (en) 2002-05-23 2003-05-01 Method for controlling deposits in the fuel reformer of a fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/155,153 US6660050B1 (en) 2002-05-23 2002-05-23 Method for controlling deposits in the fuel reformer of a fuel cell system

Publications (2)

Publication Number Publication Date
US20030217506A1 true US20030217506A1 (en) 2003-11-27
US6660050B1 US6660050B1 (en) 2003-12-09

Family

ID=29549003

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/155,153 Expired - Lifetime US6660050B1 (en) 2002-05-23 2002-05-23 Method for controlling deposits in the fuel reformer of a fuel cell system

Country Status (6)

Country Link
US (1) US6660050B1 (en)
EP (1) EP1506273A4 (en)
JP (1) JP4959938B2 (en)
AU (1) AU2003243196A1 (en)
CA (1) CA2486053C (en)
WO (1) WO2003099970A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130125454A1 (en) * 2010-04-08 2013-05-23 Advanced Fuel Technologies Uk Limited Fuel enrichment method and device
WO2016008488A1 (en) * 2014-07-16 2016-01-21 Serenergy A/S An evaporator for a fuel cell system
CN106573180A (en) * 2014-07-16 2017-04-19 喜能源私人有限公司 A burner evaporator for a fuel cell system
EP1713838B1 (en) 2004-02-02 2018-08-15 Basf Se Method for producing polyisobutenylphenols

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1893101A (en) * 1999-12-17 2001-06-25 Idemitsu Kosan Co. Ltd Fuel oil for fuel cell, fuel oil composition and automobile driving system
AU2001244743A1 (en) * 2000-04-10 2001-10-23 Nippon Mitsubishi Oil Corporation Fuel for use in fuel cell system
JP4598891B2 (en) * 2000-04-10 2010-12-15 Jx日鉱日石エネルギー株式会社 Fuel for fuel cell system
AU4688701A (en) * 2000-04-10 2001-10-23 Nippon Mitsubishi Oil Corporation Fuel for use in fuel cell system
WO2002000814A1 (en) * 2000-06-29 2002-01-03 Nippon Oil Corporation Fuel for fuel cell system
US20030150154A1 (en) * 2001-12-21 2003-08-14 Cherpeck Richard E. Polyalkylphenoxyaminoalkanes and fuel compositions containing the same
US8249816B2 (en) * 2004-02-13 2012-08-21 Chevron Oronite Company, Llc High throughput screening methods for fuel compositions
DE102004055425B4 (en) * 2004-11-17 2007-06-14 Forschungszentrum Jülich GmbH Mixing chamber for a reformer and method for operating the same
US20080060627A1 (en) 2004-11-18 2008-03-13 Massachusetts Institute Of Technology Optimized fuel management system for direct injection ethanol enhancement of gasoline engines
US20060133993A1 (en) * 2004-12-16 2006-06-22 Chevron U.S.A. Inc. Hydrocarbon fuel process using fuels with high autoignition temperature
US8465560B1 (en) * 2009-02-05 2013-06-18 Butamax Advanced Biofuels Llc Gasoline deposit control additive composition
US20110104045A1 (en) * 2009-11-05 2011-05-05 Air Liquide Process And Construction, Inc. Hydrogen Production With CO2 Capture
WO2014020764A1 (en) * 2012-08-03 2014-02-06 株式会社日立製作所 Alkaline fuel cell, fuel composition for alkaline fuel cells, and fuel cartridge for alkaline fuel cells

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800798A (en) * 1992-04-06 1998-09-01 Nippon Oil Co., Ltd Process for producing fuel gas for fuel cell
US5833722A (en) * 1994-12-13 1998-11-10 Exxon Chemical Patents, Inc. Fuel oil compositions with improved lubricity properties
US5976201A (en) * 1993-03-05 1999-11-02 Mobil Oil Corporation Low emissions diesel fuel
USH1849H (en) * 1998-11-20 2000-05-02 Sasol Technology (Proprietary) Limited Fischer-Tropsch products as fuel for fuel cells
US6086645A (en) * 1996-05-17 2000-07-11 Ethyl Petroleum Additives, Ltd Fuel additives and compositions
US6129835A (en) * 1998-12-28 2000-10-10 International Fuel Cells, Llc System and method for desulfurizing gasoline or diesel fuel to produce a low sulfur-content fuel for use in an internal combustion engine
US6348278B1 (en) * 1998-06-09 2002-02-19 Mobil Oil Corporation Method and system for supplying hydrogen for use in fuel cells
US6454935B1 (en) * 1999-12-22 2002-09-24 Utc Fuel Cells, Llc Method for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant
US6475376B2 (en) * 1999-06-11 2002-11-05 Chevron U.S.A. Inc. Mild hydrotreating/extraction process for low sulfur fuel for use in fuel cells
US20030031616A1 (en) * 2001-07-31 2003-02-13 Szydlowski Donald F. Method and system for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant
US20030127355A1 (en) * 2000-04-10 2003-07-10 Kenichirou Saitou Fuel for use in a fuel cell system

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2622018A (en) 1949-10-19 1952-12-16 Socony Vacuum Oil Co Inc Motor fuel
US2782240A (en) 1952-11-21 1957-02-19 Dow Chemical Co Ethers of polyoxyalkylene glycols
US2841479A (en) 1954-05-28 1958-07-01 Dow Chemical Co Glycerol triether lubricant compositions
US3440029A (en) 1964-05-20 1969-04-22 Dow Chemical Co Gasoline containing anti-icing additive
US3574576A (en) 1965-08-23 1971-04-13 Chevron Res Distillate fuel compositions having a hydrocarbon substituted alkylene polyamine
US3778240A (en) * 1969-08-11 1973-12-11 Int Materials Corp Coking prevention system
GB1346765A (en) 1970-06-16 1974-02-13 Shell Int Research Fuel compositions
US3776835A (en) * 1972-02-23 1973-12-04 Union Oil Co Fouling rate reduction in hydrocarbon streams
US3849083A (en) 1972-04-14 1974-11-19 Ethyl Corp Gasoline additive
US3848056A (en) 1972-09-05 1974-11-12 Continental Oil Co Molten alkaline alkanoic mixtures for absorption of sulfur oxides
US4231759A (en) 1973-03-12 1980-11-04 Standard Oil Company (Indiana) Liquid hydrocarbon fuels containing high molecular weight Mannich bases
US3960515A (en) 1973-10-11 1976-06-01 Chevron Research Company Hydrocarbyl amine additives for distillate fuels
US4087259A (en) 1974-09-20 1978-05-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for partially oxidizing hydrocarbons
US4288612A (en) 1976-06-21 1981-09-08 Chevron Research Company Deposit control additives
US4160648A (en) 1976-06-21 1979-07-10 Chevron Research Company Fuel compositions containing deposit control additives
US4236020A (en) 1976-06-21 1980-11-25 Chevron Research Company Carbamate deposit control additives
US4191537A (en) 1976-06-21 1980-03-04 Chevron Research Company Fuel compositions of poly(oxyalkylene) aminocarbamate
US4233168A (en) 1978-06-19 1980-11-11 Chevron Research Company Lubricant compositions containing dispersant additives
US4197409A (en) 1978-08-08 1980-04-08 Chevron Research Company Poly(oxyalkylene)aminocarbomates of alkylene polyamine
US4243798A (en) 1979-08-09 1981-01-06 Chevron Research Company Process for the production of a polymeric carbamate
US4292046A (en) 1979-08-10 1981-09-29 Mobil Oil Corporation Detergent compositions
US4270930A (en) 1979-12-21 1981-06-02 Chevron Research Company Clean combustion chamber fuel composition
US4518782A (en) 1981-08-10 1985-05-21 Texaco Inc. Fuel compositions containing N-alkyl glycyl imidazoline
US4409000A (en) 1981-12-14 1983-10-11 The Lubrizol Corporation Combinations of hydroxy amines and carboxylic dispersants as fuel additives
EP0149486A3 (en) 1984-01-17 1986-10-08 Atlantic Richfield Company Detergent composition and gasoline composition containing same
US4609377A (en) 1985-10-07 1986-09-02 Texaco Inc. Aminated polyisopropoxylated polyethoxylated alkylphenol and ethanol/gasoline blend composition containing same
US4836829A (en) 1986-03-14 1989-06-06 Exxon Research And Engineering Company Fuel composition and process for multi-port fuel injection systems (PNE-509)
DE3611230A1 (en) 1986-04-04 1987-10-08 Basf Ag POLYBUTYL AND POLYISOBUTYLAMINE, METHOD FOR THE PRODUCTION THEREOF AND THE FUEL AND LUBRICANT COMPOSITIONS CONTAINING THE SAME
US4810263A (en) 1986-04-11 1989-03-07 Exxon Research And Engineering Company Fuel composition
US4729769A (en) 1986-05-08 1988-03-08 Texaco Inc. Gasoline compositions containing reaction products of fatty acid esters and amines as carburetor detergents
US4881945A (en) 1987-10-23 1989-11-21 Chevron Research Company Fuel compositions containing very long chain alkylphenyl poly(oxyalkylene) aminocarbonates
DE3826608A1 (en) 1988-08-05 1990-02-08 Basf Ag FUELS CONTAINING POLYETHERAMINE OR POLYETHERAMINE DERIVATIVES FOR OTTO ENGINES
DE3826797A1 (en) 1988-08-06 1990-02-08 Basf Ag FUEL COMPOSITIONS CONTAINING POLYCARBONIC ACIDIC LOW-CHAIN ALCOHOLS
DE3838918A1 (en) 1988-11-17 1990-05-23 Basf Ag FUELS FOR COMBUSTION ENGINES
EP0382159A1 (en) 1989-02-06 1990-08-16 E.I. Du Pont De Nemours And Company Defouling of fuel systems
WO1990010051A1 (en) 1989-02-21 1990-09-07 Union Oil Company Of California Fuel composition for control of intake valve deposits
GB9007431D0 (en) 1990-04-03 1990-05-30 Shell Int Research Diesel fuel additives
ATE140475T1 (en) 1991-09-13 1996-08-15 Chevron Chem Co FUEL COMPOSITIONS CONTAINING POLYISOBUTENYLSUCCINIMIDE
US5697988A (en) 1991-11-18 1997-12-16 Ethyl Corporation Fuel compositions
GB9208034D0 (en) 1992-04-10 1992-05-27 Bp Chem Int Ltd Fuel composition
US5405418A (en) 1994-05-02 1995-04-11 Chevron Chemical Company Fuel additive compositions containing an aliphatic amine, a polyolefin and an aromatic ester
US5620486A (en) 1994-12-30 1997-04-15 Chevron Chemical Company Fuel compositions containing aryl succinimides
US5618320A (en) 1996-05-14 1997-04-08 Chevron Chemical Company Aromatic esters of polyalkylphenoxyalkanols and fuel compositions containing the same
US5669939A (en) 1996-05-14 1997-09-23 Chevron Chemical Company Polyalkylphenoxyaminoalkanes and fuel compositions containing the same
JPH1179703A (en) * 1997-09-04 1999-03-23 Aisin Seiki Co Ltd Reforming device for fuel cell
AR017317A1 (en) 1997-10-14 2001-09-05 Shell Int Research CATALYTIC PARTIAL OXIDATION PROCESS, A METHOD AND PROVISION TO GENERATE ELECTRICAL ENERGY THROUGH THE SUCH PROCESS, AND PROVISIONED TRANSPORTATION MEANS WITH SUCH DISPOSITION
US6203584B1 (en) 1998-03-31 2001-03-20 Chevron Chemical Company Llc Fuel composition containing an amine compound and an ester
JPH11311136A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Hybrid automobile and driving device therefor
US6156084A (en) 1998-06-24 2000-12-05 International Fuel Cells, Llc System for desulfurizing a fuel for use in a fuel cell power plant
US6045772A (en) * 1998-08-19 2000-04-04 International Fuel Cells, Llc Method and apparatus for injecting a liquid hydrocarbon fuel into a fuel cell power plant reformer
US6114542A (en) 1998-08-28 2000-09-05 Chevron Chemical Company Llc Ethers of polyalkyl or polyalkenyl N-hydroxyalkyl succinimides and fuel compositions containing the same
US5993497A (en) 1998-08-28 1999-11-30 Chevron Chemical Company Llc Esters of polyalkyl or polyalkenyl N-hydroxyalkyl succinimides and fuel compositions containing the same
US5916825A (en) 1998-08-28 1999-06-29 Chevron Chemical Company Llc Polyisobutanyl succinimides and fuel compositions containing the same
US5954843A (en) 1998-08-28 1999-09-21 Chevron Chemical Company Llc Aminocarbamates of polyalkyl or polyalkenyl N-hydroxyalkyl succinimides and fuel compositions containing the same
JP2000073869A (en) * 1998-08-31 2000-03-07 Nippon Walbro:Kk Caburettor for two stroke internal combustion engine
CA2345966C (en) * 1998-10-14 2003-04-01 Idatech Llc Fuel processing system
US6117197A (en) 1998-11-25 2000-09-12 Chevron Chemical Company Llc Fuel compositions containing aromatic esters of polyalkylphenoxy alkanols, poly(oxyalkylene) amines and di- or tri-carboxylic acid esters
DE19905211A1 (en) 1999-02-09 2000-08-10 Basf Ag Fuel composition
US6217624B1 (en) 1999-02-18 2001-04-17 Chevron Chemical Company Llc Fuel compositions containing hydrocarbyl-substituted polyoxyalkylene amines
US6797244B1 (en) 1999-05-27 2004-09-28 Dtc Fuel Cells Llc Compact light weight autothermal reformer assembly
US6270539B1 (en) * 1999-08-31 2001-08-07 Ethyl Corporation Mannich dispersants with enhanced lubricity
JP2001303070A (en) * 2000-04-24 2001-10-31 Idemitsu Kosan Co Ltd Fuel oil composition and driving system of automobile
AU1893101A (en) * 1999-12-17 2001-06-25 Idemitsu Kosan Co. Ltd Fuel oil for fuel cell, fuel oil composition and automobile driving system
CA2334508A1 (en) * 2000-03-01 2001-09-01 Majid R. Ahmadi Fuel additive compositions containing mannich condensation products and hydrocarbyl-substituted polyoxyalkylene amines
JP2001338671A (en) * 2000-03-24 2001-12-07 Honda Motor Co Ltd Controller for fuel cell
JP2001303071A (en) * 2000-04-24 2001-10-31 Idemitsu Kosan Co Ltd Fuel oil composition
JPWO2002031090A1 (en) * 2000-10-11 2004-02-19 新日本石油株式会社 Gasoline vehicle and fuel for fuel cell system, and storage and / or supply system thereof
JP2003265276A (en) 2002-03-18 2003-09-24 Honda Access Corp Body support bag

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800798A (en) * 1992-04-06 1998-09-01 Nippon Oil Co., Ltd Process for producing fuel gas for fuel cell
US5976201A (en) * 1993-03-05 1999-11-02 Mobil Oil Corporation Low emissions diesel fuel
US5833722A (en) * 1994-12-13 1998-11-10 Exxon Chemical Patents, Inc. Fuel oil compositions with improved lubricity properties
US6086645A (en) * 1996-05-17 2000-07-11 Ethyl Petroleum Additives, Ltd Fuel additives and compositions
US6348278B1 (en) * 1998-06-09 2002-02-19 Mobil Oil Corporation Method and system for supplying hydrogen for use in fuel cells
USH1849H (en) * 1998-11-20 2000-05-02 Sasol Technology (Proprietary) Limited Fischer-Tropsch products as fuel for fuel cells
US6129835A (en) * 1998-12-28 2000-10-10 International Fuel Cells, Llc System and method for desulfurizing gasoline or diesel fuel to produce a low sulfur-content fuel for use in an internal combustion engine
US6475376B2 (en) * 1999-06-11 2002-11-05 Chevron U.S.A. Inc. Mild hydrotreating/extraction process for low sulfur fuel for use in fuel cells
US6454935B1 (en) * 1999-12-22 2002-09-24 Utc Fuel Cells, Llc Method for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant
US20030127355A1 (en) * 2000-04-10 2003-07-10 Kenichirou Saitou Fuel for use in a fuel cell system
US20030031616A1 (en) * 2001-07-31 2003-02-13 Szydlowski Donald F. Method and system for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1713838B1 (en) 2004-02-02 2018-08-15 Basf Se Method for producing polyisobutenylphenols
US10016731B2 (en) * 2010-04-08 2018-07-10 Advanced Fuel Technologies Uk Limited Fuel enrichment method and device
US10695727B2 (en) 2010-04-08 2020-06-30 Advanced Fuel Technologies Uk Limited Fuel enrichment method and device
US20130125454A1 (en) * 2010-04-08 2013-05-23 Advanced Fuel Technologies Uk Limited Fuel enrichment method and device
DK178559B1 (en) * 2014-07-16 2016-06-20 Serenergy As An evaporator for a fuel cell system
CN106659942A (en) * 2014-07-16 2017-05-10 喜能源私人有限公司 An evaporator for a fuel cell system
US20170222240A1 (en) * 2014-07-16 2017-08-03 Serenergy A/S A burner evaporator for a fuel cell system
US20170237098A1 (en) * 2014-07-16 2017-08-17 Serenergy A/S An evaporator for a fuel cell system
CN106573180A (en) * 2014-07-16 2017-04-19 喜能源私人有限公司 A burner evaporator for a fuel cell system
DK201400385A1 (en) * 2014-07-16 2016-01-25 Serenergy As An evaporator for a fuel cell system
WO2016008488A1 (en) * 2014-07-16 2016-01-21 Serenergy A/S An evaporator for a fuel cell system
US11121387B2 (en) * 2014-07-16 2021-09-14 Serenergy A/S Burner evaporator for a fuel cell system
US11177495B2 (en) * 2014-07-16 2021-11-16 Serenergy A/S Evaporator for a fuel cell system

Also Published As

Publication number Publication date
AU2003243196A1 (en) 2003-12-12
EP1506273A1 (en) 2005-02-16
WO2003099970A1 (en) 2003-12-04
US6660050B1 (en) 2003-12-09
JP2005527082A (en) 2005-09-08
CA2486053C (en) 2012-07-17
CA2486053A1 (en) 2003-12-04
JP4959938B2 (en) 2012-06-27
EP1506273A4 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
US6660050B1 (en) Method for controlling deposits in the fuel reformer of a fuel cell system
US5851242A (en) Fuel additive compositions containing polyalkylphenoxy-aminoalkanes and poly (oxyalkylene) amines
CN105722961B (en) Purposes, relevant concentrations and composition of the quaternized nitrogen compound in fuel
US5192335A (en) Fuel additive compositions containing poly(oxyalkylene) amines and polyalkyl hydroxyaromatics
US20030213728A1 (en) Dual purpose fuel for gasoline driven automobile and fuel cell system, and system for storage and/or supply thereof
EP1323814B1 (en) Fuel additive compositions containing a Mannich condensation product, a poly(oxyalkylene) monool, and a carboxylic acid
US6824573B2 (en) Fuel for use in fuel cell
US6958117B2 (en) Fuel for use in a fuel cell system
JP4598889B2 (en) Fuel for fuel cell system
EP1273651A1 (en) Fuel for use in fuel cell system
CA2226672C (en) Fuel additive compositions containing polyalkyphenoxyaminoalkanes and poly(oxyalkylene) amines
JP2023534510A (en) fuel composition
US6837909B2 (en) Fuel for use in a fuel cell system
US20030056430A1 (en) Fuel for fuel cell system
US6962650B2 (en) Fuel for use in a fuel cell system
US7141084B2 (en) Fuel for fuel cell system
US20030187310A1 (en) Fuel for fuel cell system
MXPA98000304A (en) The polyalykylphenoxyaminoalcanos and compositions for fuel containing the mis
MXPA98000316A (en) Compositions of fuel additives containing polyalkylphenoxyaminoalcanes and poly (oxialquilen) ami

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEVRON U.S.A. INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DIECKMANN, GUNTHER H.;KRAMER, JAMES D.;CHERPECK, RICHARD E.;REEL/FRAME:012941/0620;SIGNING DATES FROM 20020517 TO 20020521

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12