New! View global litigation for patent families

US20030199859A1 - Method and apparatus for the selective targeting of lipid-rich tissues - Google Patents

Method and apparatus for the selective targeting of lipid-rich tissues Download PDF

Info

Publication number
US20030199859A1
US20030199859A1 US10442598 US44259803A US2003199859A1 US 20030199859 A1 US20030199859 A1 US 20030199859A1 US 10442598 US10442598 US 10442598 US 44259803 A US44259803 A US 44259803A US 2003199859 A1 US2003199859 A1 US 2003199859A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
fat
nm
radiation
tissue
lipid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10442598
Inventor
Gregory Altshuler
R. Anderson
Dieter Manstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altshuler Gregory B
Original Assignee
Altshuler Gregory B.
Anderson R. Rox
Dieter Manstein
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/30Surgical pincettes without pivotal connections
    • A61B2017/306Surgical pincettes without pivotal connections holding by means of suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00458Deeper parts of the skin, e.g. treatment of vascular disorders or port wine stains
    • A61B2018/00464Subcutaneous fat, e.g. liposuction, lipolysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00476Hair follicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/208Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser with multiple treatment beams not sharing a common path, e.g. non-axial or parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infra-red
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • A61N5/0617Hair treatment

Abstract

A method and apparatus are provided for targeting lipid-rich tissue to effect a desired, the method/apparatus involving irradiating the lipid-rich tissue with energy at a wavelength preferentially absorbed by lipid cells, such wavelength being preferably in a band between 880 nm and 935 nm, 1150 nm and 1230 nm, 1690 nm to 1780 nm, or 2250 nm to 2450 nm with a fluence and duration sufficient to achieve a desired treatment. For preferred embodiments, the irradiation wavelength is between 900-930 nm, 1190-1220 nm, 1700-1730 nm, or 2280-2350 nm. The method and apparatus may for example be used to target one or more sebaceous glands for the treatment of acne or hair removal, to target subcutaneous fat for removal thereof or for targeting fat on anatomical elements for various purposes.

Description

  • [0001]
    This application is a continuation of application Ser. No. 09/277,307, filed Mar. 26, 1999, which claims priority from provisional application serial No. 60/079,710 filed Mar. 27, 1998, the subject matter of the above-applications is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • [0002]
    This invention relates to methods and apparatus for the selective heating of lipid-rich tissue including sebaceous glands, subcutaneous fat, lipid in membranes of cells, and fat surrounding organs, vessels, hair bulbs, and other anatomical elements, and/or to the selective destruction or removal of such tissue and/or structures adjacent thereto; and more particularly to methods and apparatus for using optical radiation in selected wavebands, which radiation may be obtained from a laser or other suitable light source, to effect such heating, removal and/or destruction.
  • BACKGROUND OF THE INVENTION
  • [0003]
    Adipose or lipid-rich tissue, which is also sometimes referred to as “fat” or “fatty tissue”, is a common cosmetic and surgical problem, and excessive body fat may also pose certain other health risks. Many factors, including heredity, glandular function, nutrition and lifestyle affect both the extent and location of body fat. Despite dieting and exercise, many people cannot lose fat, particularly in certain areas. Heretofore, liposuction, a procedure in which fat is removed by a suction cannula under local anesthesia, or other forms of fat excision have been used. Fat also occurs in pads on the face and neck and small area local liposuction has sometimes been performed in these areas. However, liposuction is an invasive surgical procedure and presents all of the disadvantages and risks to the patient involved in such a procedure, including scars at the sites of entry into skin. Another problem with liposuction is that it is not selective in only removing unwanted fat, but also rips out tissue in the path of the liposuction hose, including the collagen supporting structure holding the patient's skin in place. This can result in cosmetically unattractive sagging skin in the treated area, in addition to significant pain to the patient both during and after the procedure, risk of infection and other potential problems. The trauma caused by extreme liposuction has in some cases even resulted in the death of the patient. Further, while liposuction can be used for the removal of deep fat, it is significantly less effective for removing fat at a superficial level of subcutaneous fat just below the dermis. Such removal is desirable in some cases because it is less traumatic to the patient. However, it is difficult to do with a liposuction cannula without scratching the dermis, damage to the dermis not healing readily, and attempts to perform surface liposuction also result in an uneven removal of fat which leaves an esthetically unattractive patterning on the patient's skin. Therefore, while liposuction is still used extensively for the removal of excess fat, it is not a desirable procedure.
  • [0004]
    Fat is also a problem in various surgical procedures where it may be difficult to locate vessels, organs or other anatomical elements on which surgery is to be performed when these elements are covered in fat, and it may be difficult to close surgical openings in such elements. Performing surgery on vessels, organs or other elements covered by fat is therefore risky and current procedures for removing such fat to facilitate surgical procedures have significant limitations. Of particular concern is mesenteric fat which is a common hindrance in laparoscopic surgery. With the current trend of making surgical procedures less invasive by inserting tools through a small surgical opening, the removal of fat in the region where a surgical procedure is being performed, utilizing a tool consistent with such surgical procedures, so as to facilitate remote viewing of the anatomical element being treated/operated on is therefore becoming increasingly important.
  • [0005]
    In addition, a major problem for teenagers and others is acne which originates at least in part from obstruction of outflow from a sebaceous gland. Certain drug treatments for acne operate through a mechanism of decreasing sebaceous gland output. Destruction, removal, or unblocking of the sebaceous gland, which gland contains lipid-rich tissue, in a non-invasive manner are therefore desirable alternatives for treatment or prevention of acne.
  • [0006]
    Another related problem is the removal of unwanted hair, and in particular the long-term or permanent removal of such hair by the damage or destruction of the hair follicle. Many techniques have been employed over the years for this treatment, including electrolysis, waxing and treatments with various forms of radiation, including light. However, electrolysis is slow and both electrolysis and waxing are painful to the patient and seldom permanent. Various radiation treatments, particularly those involving light, work more effectively for patients having darker hair than for patients with light hair and various proposals have been made over the years to add a chromophore in some way to the follicle to facilitate such treatments. The use of such artificial chromphores has not heretofore been particularly successful.
  • [0007]
    Other related problems involve either removing fat, for example in the stratum corneum, under certain conditions, for example when a pressure injection is to be given, selectively porating cells having lipid-rich walls to permit substances, for example therapeutic agents, to enter the cells or to permit the removal of wanted or unwanted substances therefrom or to otherwise heat or destroy lipid-rich tissue for various therapeutic purposes.
  • [0008]
    While lasers or other light sources have been proposed in the past for heating, removal, destruction (for example killing), photocoagulation, eradication or otherwise treating (hereinafter collectively referred to as “treating” or “treatment”) of lipid-rich tissue such as subcutaneous fat, the lasers proposed for such procedures have operated at a wavelength where lipid-rich tissue has an absorption coefficient which is generally significantly less then than that for water. This presents several problems. First, lipid-rich tissue is radiation heated as a result of absorption in the tissue of radiation energy. Therefore, for wavelengths at which lipid-rich tissue does not absorb the radiation strongly, large amounts of energy must be applied to the tissue in order to obtain the requisite heating. However, in addition to significantly increasing the-cost of the procedure, the need for high energy poses a danger of damage to surrounding tissue or the tissue through which the radiation passes, particularly since most such tissue is primarily composed of water which absorbs the radiant energy much more at these wavelengths.
  • [0009]
    This is a particular problem for subcutaneous fat which generally starts at a depth of at least 1 to 4 mm into a patient's skin, and may be deeper for some individuals or some body areas. Therefore, in order for the radiation to target to the subcutaneous fat to cause selective heating or destruction thereof, it must pass through several millimeters of tissue formed primarily of water. Since water preferentially absorbs at these wavelengths, most of the incident radiation is absorbed in the skin prior to reaching the subcutaneous fat and, since skin is a scattering medium, incident light is also scattered and reflected from the patient's skin, resulting in a very small fraction of the incident light reaching the subcutaneous fat. Therefore, due to both the small fraction of the applied energy reaching the subcutaneous fat and the low absorption of this energy by the fat, in order to get enough energy to the subcutaneous fat at these wavelengths to be effective, large amounts of radiation would need to be applied to the overlying epidermis and dermis. Since such high levels of radiation absorbed in the dermis or epidermis would cause significant thermal damage to these skin layers at the prior art wavelengths, treatment/destruction of fat cannot be performed through the skin, but must be performed by providing an opening, for example a surgical opening, through the skin to provide direct contact with the fat tissue to be treated. Even when the radiation is applied directly to the fat tissue to be treated, high energy is required and great care must be exercised to avoid excessive radiation of surrounding or underlying tissue so as to minimize damage thereto. Other prior art fat treatment techniques, involving the use of either microwaves or ultrasound, either alone or in conjunction with liposuction, to melt or loosen the fat and to remove it or have it absorbed into the body, have either proved not to be effective for fat removal, have posed potential health hazards to patients, either actual or perceived, or have still involved invasive procedures, the risk of which have been discussed earlier.
  • [0010]
    A need therefore exists for an improved technique for heating and destroying, or otherwise targeting lipid-rich tissue, including, but not limited to, subcutaneous fat, sebaceous gland, lipid in membrane cells and fat covering anatomical elements on which surgical or other procedures are is to be performed, which does not suffer the limitations of prior art techniques, including liposuction, and which is significantly more selective than the prior art in the destruction of lipid-rich tissue over tissue containing water so as to safely achieve the desired effects on lipid-rich tissue in performing a therapeutic procedure.
  • SUMMARY OF THE INVENTIONS
  • [0011]
    In accordance with the above, this invention provides a method and apparatus for selectively targeting lipid-rich tissue to effect a desired treatment, the method/apparatus involving irradiating the lipid-rich tissue at an infrared wavelength at which the ratio of absorption of the radiation by lipid-rich tissue to absorption by water is 0.5 or greater, and preferably greater than one. In particular the irradiation is preferably at a wavelength between 880-935 nm, 1150 to 1230 nm, 1690 to 1780 nm, or 2250 to 2450 nm with a fluence and for a duration sufficient to treat such lipid-rich tissue. For preferred embodiments, depending on application, the irradiation wavelength is between approximately, 900 to 930 nm, 1190 to 1220 nm, 1700 to 1730 nm, or 2280 to 2360 nm, with approximately 920 nm, 1210 nm, 1715 nm, and 2300 nm being most preferred wavelengths. While the fluence and duration of irradiation will vary somewhat with the patient undergoing treatment, the anatomical location of the tissues being treated, the radiation source and wavelength, the size of the lipid-rich tissue being treated and other factors, for preferred embodiments the treatment fluence may for example be approximately 0.5 J/cm2 to 500 J/cm2, with the duration of treatment pulses being approximately 10 μs to several seconds, or even minutes for photothermal effect, and less than 1 μs (i.e., generally 1 μs to 1 ns) for photomechanical effects.
  • [0012]
    Where the lipid-rich tissue being treated is one or more sebaceous glands, irradiating the tissue/gland is performed by applying the energy at an indicated wavelength, which wavelength is preferably in one of the higher bands, to the skin surface overlying such one or more sebaceous glands. Where the lipid-rich tissue is subcutaneous fat, energy may be applied to the skin surface overlying the subcutaneous fat to be treated. Where either the sebaceous gland or subcutaneous fat is treated through the overlying skin, and particularly for subcutaneous fat, the radiation is preferably applied through an applicator which applies pressure to the skin above the lipid-rich tissue being treated. This pressure reduces the distance from the radiation-applying applicator to the lipid-rich tissue being targeted, removes blood from the area above the fat tissue being targeted and compresses such overlying tissue to reduce scattering and enhance optical focusing of radiation on the treatment area. It is also desirable that the skin above the area being treated be cooled to a selected depth, which depth is above that of the lipid-rich/fat tissue being targeted. Thus, cooling could be deeper for the treatment of subcutaneous fat, where the cooling could be most of the way through the dermis, while the cooling would be to a much shallower depth, perhaps only to the dermis/epidermis (DE) junction, where the sebaceous gland is being treated. While radiation in the higher bands can be used, and may be preferable because of the higher absorption coefficient of fat in these bands, for treating the sebaceous gland which is relatively close to the skin surface, absorption by water at these wavelengths make it difficult to reach subcutaneous fat, and radiation in the lower bands, for example in 1150 to 1230 nm range where water is less absorbent may therefore be preferable for treating subcutaneous fat. In addition to or instead of pressure being applied to the skin, a fold of skin may be drawn into a recess in a radiation delivery head in a suitable manner and radiation applied to the recess from at least two directions. This has a number of beneficial effects, including reducing the distance from the radiation source to the lipid tissue, increasing the radiation at the desired depth without increasing radiation in regions above the target area and, where a retroreflection technique to be discussed later is utilized, substantially eliminating radiation loss as a result of the scattered radiation reflected from the patient's skin. Alternatively, to increase the local intensity for treatment of subcutaneous fat when delivered through the overlying skin, a convergent incident beam is advantageous to compensate for losses due to optical scattering and absorption in the dermis.
  • [0013]
    While the sebaceous gland may be heated to destroy the gland as part of an acne treatment, the sebaceous gland may also be heated to cause destruction of adjacent areas of a hair follicle, for example the stem cells of the hair follicle as a treatment to achieve hair removal and impede regrowth. Radiation in the indicated wavelengths may also be applied selectively to cells having lipid-rich membranes to porate the membranes to for example permit selective drug delivery to the cells or for other purposes for lipid-rich cells or tissue may be otherwise targeted and heated for affecting some other therapeutic function. Since the radiation fluence, pulse duration, wavelength and other factors may be carefully controlled, and the area to which the radiation is directed may also be controlled, selective lipid-rich cells may be non-invasively targeted to achieve the above and other therapeutic affects.
  • [0014]
    Where subcutaneous fat is being non-invasively treated, duration of radiation pulse and the temperature to which the fat or lipid tissue is heated are critical to the desired results. For example, at increased temperature, fat is altered by a biochemical reaction or lipolysis, while for higher temperatures and sufficient pulse duration, fat cells are killed, permitting the cells and liquid lipid therein to be absorbed. At still higher temperatures, cell membranes are destroyed, permitting lipid pools to be formed. These pools may also be absorbed but, since free fatty acid in lipid can be toxic in sufficient quantity, if substantial quantities of fat cell membranes have been destroyed, permitting a large lipid pool to be formed, it is preferable to remove the lipid, for example with a cannula or needle. The heated collagen of supporting structure may react to provide a more pleasing skin appearance after treatment and avoid sagging folds of skin or skin depressions where the lipid tissue has been destroyed. While all of the fat in a subcutaneous layer may be treated, it is difficult to get sufficient energy deep into the fat, so treatment is generally restricted to a surface layer of the fat. Repetitive treatments may be performed to remove successive layers of the subcutaneous fat.
  • [0015]
    While non-invasive procedures are preferable, subcutaneous fat may also be treated by passing a probe through the skin to the subcutaneous fat to be treated. The probe, which may for example be a needle, may be passed into the subcutaneous fat at an angle to the skin surface and the probe may be moved both in an out of the skin and rotated about its skin entry point to irradiate and treat subcutaneous fat over a selected area. This needle or probe may also contain a cannula for removing liquid lipid pooled as indicated above from the radiation treatment Where lipid-rich tissue/fat surrounds a vessel, organ or other anatomical element on which a surgical or other procedure is to be performed, the irradiation may be performed by use of a tool which is in at least near contact, and preferably in contact, with the fat to be treated, the element treating the fat to expose the anatomical element on which the procedure is to be performed. Because radiation for this embodiment does not need to pass through water rich tissue to reach the fat, wavelengths in the higher bands would normally be used for this procedure.
  • [0016]
    While various light sources might be utilized to obtain optical energy within the required bands, and in particular at the preferred wavelengths, including a suitably filtered tungsten lamp, an optical parametric oscillator, a Raman convertor or shifter, a color center laser or a tunable dye laser, the preferred light source at the desired wavelengths is a diode laser or lasers with flashlamp or diode pumping which will be described in greater detail later.
  • [0017]
    The foregoing and other objects, feature and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention as illustrated in the accompanying drawings:
  • IN THE DRAWINGS
  • [0018]
    [0018]FIG. 1 is a diagrammatic sectional view of human skin illustrating both a hair follicle with a sebaceous gland and subcutaneous fat.
  • [0019]
    [0019]FIG. 2A is a sectional view illustrating an area of subcutaneous fat under treatment in accordance with the teachings of a first embodiment of this invention.
  • [0020]
    [0020]FIG. 2B is a sectional view illustrating an area of skin, either subcutaneous fat, sebaceous gland or other targeted lipid-rich tissue, under treatment in accordance with an alternative embodiment of the invention.
  • [0021]
    [0021]FIG. 3 is a sectional view illustrating a section of skin with subcutaneous fat under treatment employing another alternative embodiment of the invention.
  • [0022]
    [0022]FIG. 4 is a sectional view illustrating a tool being utilized to clear fat from a vessel on which a surgical procedure is to be performed in accordance with the teachings of this invention.
  • [0023]
    [0023]FIG. 5 is a graph illustrating the coefficient of absorption of water and of human fatty tissue as a function of wavelength.
  • [0024]
    [0024]FIG. 6 is a graph illustrating the ratio of human fatty tissue coefficient of absorption to water coefficient of absorption as a function of wavelength.
  • DETAILED DESCRIPTION
  • [0025]
    [0025]FIG. 1 is a simplified sectional view through a piece of human skin 10 illustrating the major skin layers. The outermost layer is the epidermis 12 which overlies the dermis 14. Under the dermis is a layer of subcutaneous fat 16. The epidermis is typically relatively thin, on the order of 0.1 mm, although this thickness varies for different parts of the body, with the lower portions of the epidermis near the DE junction 18 containing quantities of melanin which vary with the pigmentation of the individuals skin. The thickness of dermis layer 14 varies from approximately 1 to 5 mm depending on the part of the body and on the individual, and may be thicker in some instances. The lower third of the dermis typically contains numerous lobules of fat. Subcutaneous fat 16, which may be several centimeters thick, therefore generally starts at a depth of a little less than 1 mm to approximately 4 mm from the skin surface.
  • [0026]
    [0026]FIG. 1 also illustrates a single hair follicle 20 with an adjacent sebaceous gland 22. Hair follicle 20 has a bulb or papilla 23 and stem cells in a bulge region 25, both of which are involved in the growth and regrowth of hair from the follicle. Sebaceous glands 22 are formed primarily of fat/lipid-rich tissue. The cells lining the outer portion of sebaceous glands are called sebocytes. These cells migrate inward, synthesizing a lipid-rich fluid called sebum as they differentiate and finally are shed. The sebum flows outward through a duct into the infundibulum (“pore”) of the follicle. The greasy, oily material which accumulates on the surface of skin is sebum, after flowing out of numerous follicles. When the outflow from a sebaceous gland becomes clogged, it may result in the formation of an acne pimple. This is a particular problem for larger sebaceous glands, for example those on the face and upper back, which are the most common sites of acne. Sebaceous glands are typically found approximately 1 mm below the skin surface, although they may be at greater depths in some instances, and are in the dermal layer 14 as shown in FIG. 1.
  • [0027]
    While as was discussed earlier, various techniques have been used in the past to remove unwanted fat, and there has been limited use of lasers for treating fat tissue, since there was not selective absorption by lipid-rich tissue for the wavelengths at which such procedures were conducted, such fat treatment could generally be done only through a surgical procedure which permitted the laser to be brought directly adjacent or in contact with the fat tissue to be treated. However, because of the low absorptions of fat at such wavelengths, and the high ratio of water absorption to fat absorption, very high energy was required for treatment and extreme care had to be exercised so as to avoid unintended damage to other tissue either adjacent to or underlying the fat tissue to be treated. As a result, such procedures have not been used to any significant extent.
  • [0028]
    In order to determine a preferential wavelength for lipid absorption, it should be appreciated that the temperature rise in a given tissue as a result of absorbing a given amount of energy is a function of the density of the tissue and its heat capacity. When this temperature increase for absorbed energy is compared for water and fat or lipid-rich tissue, it is found that the temperature rise in the lipid-rich tissue for a given energy absorption is 1.8 to 2 times that for water. Therefore, lipid-rich tissue need absorb 0.5 to 0.6 as much energy to achieve the same temperature rise as for water. Thus, for purposes of the following discussion, it will be assumed that lipid tissue preferentially absorbs at a wavelength for which the coefficient of absorption for fat is at least 0.5 that of water, although this ratio for preferred wavelengths is at least 1 and is 1.5 or higher for selected wavelengths.
  • [0029]
    Thus, as illustrated in FIGS. 5 and 6, and in accordance with the teachings of this invention, it has been discovered that for wavelengths between approximately 880 nm and 935 nm, 1150 and 1230 nm, 1690 and 1780 nm, or 2250 and 2450 nm, lipid has at least 0.5 the absorption of water, and generally greater absorption than water, water being the major constituent of lipid-poor tissue. This absorption is attributed to a vibrational mode in the C═H and C—H bands common in lipids. These wavelength bands also are readily compatible with silica optics. For these regions, the absolute absorption by both water and lipid increases with increases in the wavelength (i.e., both water and lipid absorb most strongly in the 2250 to 2450 nm range and absorb least strongly in the 900 to 930 nm range). The ratio of lipid absorption to water absorption is also greater for the higher wavelengths, being over 1.5 for maximas at approximately 1715 nm and 2300 nm. Therefore, radiation within the above-indicated wavelength bands, and in particular radiation at or near various maxima in these bands such as 925 nm, 1210 to 1230 nm, 1715 nm, or 2300 nm would be particularly effective for treating lipid-rich tissue such as sebaceous glands or subcutaneous fat. However, the depth which light/radiation reaches in a patient's skin is inversely proportional to light absorption above such depth. Since water is the primary constituent of skin tissue, water absorption is a controlling factor in the depth which radiation of a particular wavelength may reach in a patient's skin. Therefore, radiation in the 900 to 930 nm band and 1210 to 1230 nm band which are most weakly absorbed by water, while still being at least somewhat strongly absorbed by fat, are the currently preferred radiation bands for non-invasively treating subcutaneous fat, where the radiation generally needs to reach at least 3 to 4 mm within the patient's skin. However, radiation in the higher bands, and particularly at 1200 nm (with focusing), 1715 nm, and 2300 nm wavelengths, may be preferable for treating the sebaceous gland which is generally located only 1 mm into the patient's skin, since fat absorbs more strongly at these wavelengths and water absorption in the overlying skin is not as big a factor. The longer wavelengths could also be used where a suitable light emitting probe is positioned adjacent the fat to be ablated, for example to clear fat from a vessel, organ or the like or where a needle is used to get to subcutaneous fat.
  • [0030]
    The first issue in implementing the teachings of this invention is to find a radiation source adapted for generating sufficient radiation at the required wavelengths. Unfortunately, while commercially available lasers or other radiation sources are available for the 900-930 nm range and YAG lasers operate at approximately 1060 and 1300 nm, current commercially available lasers/radiation sources are not normally adapted for generating radiation at the other preferred wavelengths. However, there are lasers and other radiation sources suitable for generating such radiation.
  • [0031]
    For example, the following light sources with wavelengths around 920, 1200, 1715, or 2300 nm can be used for fatty tissue targeting:
  • [0032]
    1. Tungsten lamp or an arc lamp with an absorptive or reflective filter which filters the required spectral region. Optimum lamp temperature is in the region 1300-2000 K.
  • [0033]
    2. Tungsten lamp or an arc lamp with a luminescence filter with a peak of luminescence at one of the spectral regions described above. As a filter, the following can be used: crystals with color centers, liquid dyes or dyes in a solid matrix.
  • [0034]
    3. Diode lasers, such as GaAs (920 nm), AlGaSbAs (1200, 1215 nm), InGaAsP/InP (1715 nm), InGaAs (2300 nm).
  • [0035]
    4. Lasers based on crystals with color centers and lamp or laser pumping. These would include crystals NaF with F2+ centers (1200 nm) or KCl with F2+ centers (1215 nm) or KClLi with F2+ centers (2300 nm).
  • [0036]
    5. Lasers with non-linear wavelength conversion; optical parametric oscillators (OPO) or Raman converters can be used as such non-linear converters. Solid state lasers can be used for pumping (Nd laser, Ho laser, Er laser, fiber laser etc.) of OPO or Raman converter.
  • [0037]
    6. One of the most effective lasers can be a lamp pumped solid state laser with correct spectral lines. For example crystals with ions Er3+ can generate in the region 1200 nm (4S3/2
    Figure US20030199859A1-20031023-P00001
    4I11,12) and 1715 (4S3/2
    Figure US20030199859A1-20031023-P00002
    4I9/2).
  • [0038]
    For operating in the 1700 to 1730 nm range, one suitable laser is a potassium cadmium laser with the matrix KCd(WO4)2 which is doped with Er3+ (erbium) ions. The concentration of Er3+ ions should be in the range of 1-10 percent, with the optimal concentration being approximately 2-5 percent. The energy level transition 4S3/2
    Figure US20030199859A1-20031023-P00003
    4I9/2 should be used for laser generation. For both levels 4S3/2 and 4I9/2, Stark broadening and the wavelength for maximum laser output depend on the relative orientation of the crystal axis, laser radiation axis and polarization of laser radiation. When the orientation is such that the axis of the laser beam is at an angle greater than 45 degrees with the crystal line axis [010], the spectral maximum of the laser output is at the desired 1715 nm wavelength. Maximum efficiency is achieved when the axis of the laser beam lies in the plane determined by the crystalline axis [100] and [001] and is directed along the optical axis Nm which forms an angle of 24 degrees with crystalline axis [100]. If the same crystal is used for laser generation along the crystalline axis [010], the wavelength of laser generation for the same transition is 1730 nm. Flashlamps, laser diodes, other lasers or other pump mechanisms can be used to pump the above crystal in order to achieve the desired wavelength output.
  • [0039]
    In order to obtain maximum efficiency, the following scheme might be used to provide the desired radiation:
  • [0040]
    A diode laser generating an output at approximately 920 nm is used to pump a Yb doped glass or fiber with a laser wavelength of 1100 nm. This output is then frequency-doubled to obtain a wavelength of 550 nm which is the most efficient pumping wavelength and may be utilized for direct pumping of the 4S3/2 level. The maximum efficiency would be 0.6 (diode)×0.3 (fiber laser)×0.7 (doubling)×0.3 (Er laser)=3.75 percent. With this laser, it is possible to achieve generation of wavelengths 850 nm (4S3/2
    Figure US20030199859A1-20031023-P00004
    4I3/2 transition) and 1220 nm (4S3/2
    Figure US20030199859A1-20031023-P00005
    4I11/12 transition), along with the generation at wavelengths 1715 nm or 1732 nm. The laser can work simultaneously at various combinations of these wavelengths including:
  • [0041]
    λ=1715 nm and λ=850 nm, or
  • [0042]
    λ=1715 nm (λ=1730 nm) and λ=1210 nm, or
  • [0043]
    λ=1715 nm (λ=1730 nm), λ=1210 nm and λ=850 nm.
  • [0044]
    Laser light from pumping diode laser (920 nm) can also be used for selectively heating fat. Control over the spectral distribution is achieved by changing mirrors or by a dispersive element inside the laser cavity.
  • [0045]
    Radiation at 1730 nm, may be obtained if lasers based on YLF, YAG, YAL, YSGG or a fiber doped with Er3+ ions are used. In these lasers, the same transition where 4S3/2
    Figure US20030199859A1-20031023-P00006
    4I9/2 is used, and the ion concentrations and the pumping methods would be substantially the same as for the preferred laser indicated above, but as indicated previously, would result in an output at 1730 nm, which is not one of the most optimal wavelengths for lipid-rich tissue ablation, although still suitable for this purpose. Its combination with λ=1210 nm and λ=850 nm is also possible. Pumping methods and concentration of active ions is the same as for the KCd(WO4)2:Er3+. The concentration of Er3+ ions should be in the range 1-50%, with an optimal ion concentration being in the range 2-5%.
  • [0046]
    Radiation at 1730 nm may be achieved using for example, an YLF:Er3+ with concentration of Er3+ 25% laser with flashlamp pumping. For this laser, the maximum output energy is 1 J, slope efficiency is 0.5%, repetition rate is 4 Hz and the pulse width is 0.4 ms.
  • [0047]
    Certain diode lasers may also be utilized to generate radiation within the desired wavelength ranges. For example, a laser based on InGaAsP/InP can generate laser output in a range of wavelengths about 1700 nm with fine temperature tunability and stabilization. Blackbody sources, such as a tungsten lamp with suitable optical filters, can also be used to produce the desired radiation. However, the spectral power and tissue selectivity of such light sources would be less than for laser sources. The optimal temperature of the heat source should be about 1700 degrees K, with approximately 5 percent of the radiation of the lamp operating at this temperature being in the spectral region between 1700 nm and 1760 nm. Further, while the desired wavelengths can also be achieved by a tunable laser like a dye laser, free electron laser, color center laser or Raman shifter, the efficiencies of these lasers is low and they are very expensive. They are therefore not as practical as other sources for this application. Finally, an optical parametric oscillator (OPO) with pumping from a solid state laser or a fiber laser could also generate energy at the desired wavelengths. An OPO has maximum efficiency only for very short pulses, and would be most useful therefore when treatment is accomplished by photomechanical or photodissociation at 1 ns to 4 fs interactions. Other light sources generating radiation within the indicated wavelength band might also be utilized in appropriate applications.
  • [0048]
    The time of exposure at a given site can be effectively used over a very wide range, but is preferably within either of two regions causing photothermal or photomechanical effects. For photothermal damage, or necrosis of lipid-rich tissues including fat and sebaceous glands, exposure durations of 0.1 ms to several minutes and sometimes higher are desirable, depending on the size of the targeted structure (for example the sebaceous gland diameter or subcutaneous fate depth being treated). For photomechanically-mediated damage, or necrosis, e.g. by violent castation, shock waves, or spallation, an exposure of less than 1 microsecond is desirable, and less than 10 μs is most preferred. The longer exposure duration can be generated for example by a flashlamp-pumped laser, scanned or shuttered CW laser, or conventional sources described above. The shorter exposure durations, less than 10 μAs can be generated by Q-switching or mode-locking of laser cavities, or by an OPO or Raman-shifted Q-switched laser as described above.
  • [0049]
    [0049]FIG. 2 illustrates one way in which the teachings of this invention might be utilized to non-invasively treat either subcutaneous fat 16 (as shown in the figure), at least one sebaceous gland 22 or other targeted lipid-rich tissue. For this embodiment of the invention, an applicator 30, which could for example be of the type shown in U.S. Pat. Nos. 5,595,568 or 5,735,844, is utilized. Applicator 30 may have a lens 32 or other suitable contact element at the front end thereof, which element is adapted to be in pressure contact with the upper surface of epidermis 12, thereby deforming the skin in the contact area for example as shown in FIG. 2. Applying pressure to the skin in this way provides a number of advantages. First, the pressure reduces the distance between the laser source and the sebaceous gland 22/subcutaneous fat 16, thereby reducing the amount of tissue through which the light must pass prior to reaching the area under treatment. While radiation within the indicated bands is preferentially absorbed by the lipid-rich tissue, there is still absorption by the water/blood-containing tissue above the lipid-rich tissue being treated. Therefore, the greater the reduction in the quantity and thickness of this tissue, by for example tension, the less energy is lost in this tissue, resulting both in more energy being available for treatment at the desired location and in less heating, and therefore less potential thermal damage, to the lipid-poor tissue not under treatment.
  • [0050]
    The second advantage is that if the pressure is above the body's blood pressure (e.g., about 3 psi), the pressure will force blood out from under the applicator, further reducing absorption in the lipid-poor tissue through which the radiation passes. It has also been found that compressed tissue causes significantly less scattering of light energy passing therethrough, or in other words is more transparent to such light energy, when under significant pressure than when not under such pressure. Not only does this phenomenon reduce radiant energy loss, and thus heating in the tissue above the tissue under treatment, but it also permits more effective focusing of light energy to facilitate heating and/or damage of only desired tissue. Thus, light could be focused to a depth of approximately 1 mm for treatment of lipid-rich sebaceous glands to for example treat an acne problem or for hair removal, and could be focused to a depth of for example 3 or 5 mm for treatment of subcutaneous fat 16. FIG. 2 shows an exemplary such focused radiation beam 34 being directed to the upper portions of subcutaneous fat layer 16.
  • [0051]
    However, while applying pressure has some advantages, it is also disadvantageous in that blood flowing through the dermis is one effective way of removing heat so as to protect this area. This disadvantage needs to be balanced against the previously discussed advantages in deciding on whether to utilize pressure.
  • [0052]
    One problem with applying energy to the sebaceous gland 22 or to subcutaneous fat 16 through the overlying epidermis and dermal tissue is that, even though the overlying tissue do not preferentially absorb radiation at the indicated wavelengths, they do as can be seen from FIG. 5, and depending on wavelength, absorb significant radiation and can therefore become heated. Such heating can cause potential temporary skin damage or permanent scarring, with permanent scarring occurring primarily in the dermis 14. Blistering, peeling, and depigmentation are other potential adverse affects which may result from the heating of tissue above the lipid-rich tissue under treatment.
  • [0053]
    Therefore, it is preferable that the epidermis and dermis above the lipid-rich tissue being treated be cooled at least prior to, and preferably both prior to and during, the application of the radiation to minimize thermal damage to tissue in these areas. However, it is also important that the cooling not extend to the lipid-rich tissue being treated since such cooling would impede the treatment of this lipid-rich tissue and may prevent the desired treatment thereof. Therefore, when the sebaceous gland is being treated, cooling should not extent below or much below the DE boundary layer 18, and certainly should not extend much beyond 1 mm from the skin surface. Where subcutaneous fat 16 is being treated, the cooling may extent several millimeters into the dermis, depending on the thickness thereof. The cooling may be performed in the manner indicated in the before-mentioned patents or by other techniques known in the art. In particular, cryogenic cooling may be utilized to cool the skin to a predetermined depth prior to irradiation, or contact piece 32 may be cooled by flowing water or gas, or preferably by semiconductor Peltier effect cooling as taught in co-pending application Ser. No. 08/759,136. The temperature of for example contact piece 32 and the time during which this piece is in contact with the skin prior to irradiation will be primary factors in determining the depth of cooling.
  • [0054]
    The energy or fluence required to heat to a desired temperature and/or destroy targeted fat and the duration of the light pulses used for this purpose will vary, sometimes significantly, with the individual being treated, the area of the body being treated, the specific lipid-rich/fat tissue which is to be treated and the wavelength utilized. For a sebaceous gland 22 having a diameter which is generally in the 0.5 to 3 mm range, which is typical for sebaceous glands being treated which are frequently larger sebaceous glands, a fluence of approximately 10 J/cm2 to 500 J/cm2 applied for a duration of approximately 10 ms to one second depending on the size of the gland, should result in destructive heating or other treatment of sebaceous glands in most instances, particularly if the pressure and cooling procedures discussed in the preceding paragraphs are followed. Higher fluencies are required if shorter wavelengths are used (for example 920 nm or 1200 nm) because of the lower absorption coefficient of fat at these wavelengths.
  • [0055]
    While because of the higher absorption of lipid tissue at the longer wavelengths, wavelengths such as 1715 nm, or 2300 nm may be utilized for targeting of a sebaceous gland 22 or for treatment when the light source is adjacent the lipid-rich tissue, for non-invasive treatment of subcutaneous fat, particularly in region where the dermis is 3 to 4 nm thick, the high absorption of water at these wavelengths effectively prevents radiation at these wavelengths from penetrating to reach the subcutaneous fat layer, even when relatively high fluence signals are utilized. However, at the shorter wavelengths, for example 920 nm or 1200 nm, water is significantly less absorbent, permitting a significant percentage of the applied radiation to reach at least the upper level of subcutaneous fat layer 16. However, as may be seen from FIG. 5, fat also has a significantly lower coefficient of absorption at these wavelengths than at the higher preferred wavelengths, meaning that more energy must be applied to the fat in order to achieve the same level of heating. For example, almost 10 times the energy must be applied to the fat at 920 nm as at 1200 nm in order to achieve the same heating of the fat, and the heating increases by nearly another six times for the same energy at 1715 nm. At 2300 nm, the energy absorbed is about five times greater than at 1715. However, beyond 1300 nm, substantially all energy applied to water-rich tissue is absorbed in passing through several millimeters of skin, and it is therefore very difficult, even with pressure, for radiation at these wavelengths to be used for non-invasively targeting subcutaneous fat, except possibly in areas such as sacks under the eyes or in the neck where this fat may be closer to the surface. Therefore, it is currently contemplated that radiation in the band around 1200 nm is the best compromise between energy reaching the subcutaneous fat through the overlying tissue and the radiation being of a wavelength which is absorbed sufficiently by the fat tissue to cause a desired treatment to occur.
  • [0056]
    The mechanism by which the fat is destroyed or otherwise reduced will vary to some extent with the duration of radiation pulses and the temperature to which the fat is raised. If the fat cell temperature is raised slightly from body temperature of about 37° C. by for example less than 10° C., no lethal injury occurs to most of the cells. This temperature rise does however initiate a biochemical reaction or lipolysis in the fat cells causing the cells to metabolize fat, or accelerate the metabolization thereof, thereby reducing the level of fat. At higher temperatures, for a sufficient duration, depending on size, fat cells are killed. As with most dead cells, the body ultimately absorbs and disposes of these cells. At still higher temperatures, for example above 60° C., the walls or membranes of the lipid cells, which walls are primarily of lipid-rich material, are blebed, losing their ability to encapsulate the liquid lipid therein, the liquid lipid leaking therefrom to form pools which will also ultimately be absorbed by the body. However, liquid lipid contains free fatty acid which, in sufficient quantity, can be toxic to the human body. Therefore, if a substantial pool of liquid lipid is formed in this way, it is preferable that a hypodermic needle be inserted into this pool and that at least most of the liquid lipid be removed through the hypodermic needle so as to limit the amount thereof which is absorbed into the body. Typically, both because of the limited depth to which significant radiation can be applied in the subcutaneous fat layer and for other reasons, the blebed cells would generally only extend for a few millimeters into the subcutaneous fat layer, for example 2 to 3 mm. Pooled liquid lipid may also be removed by perforating the skin above it and permitting it to drain or by facilitating drainage by manipulation/massage of the area or other techniques known in the art.
  • [0057]
    The advantage of the above procedure is that, so long as the temperature is kept low enough, for example below approximately 70° C. or other collagen damage threshold, there will be no damage to the collagen bands which hold the skin to the body, and in fact these bands may be contracted by the heat. This maintains skin tone, notwithstanding the removal of the underlying subcutaneous fat and reduces sagging skin or dimples in the treated skin area. While if the temperature of fat cells was raised high enough, the lipid could be melted, eliminating the need for the body to either absorb it or for it to otherwise be removed, and such procedure is also within the contemplation of the invention, it is not currently believed to be a preferred procedure because of the damage to the collagen bands in the subcutaneous fat layer and other problems which might occur at these elevated temperatures.
  • [0058]
    A possible procedure when using the teachings of this invention for ablating subcutaneous fat would be to place a cooling hand piece 32 in contact with the patient's skin, probably under at least some pressure, for a time sufficient to cool the skin to a desired level, perhaps 5 to 10 seconds. Because of hot blood flowing through the dermis, cooling generally levels off after roughly this duration and cooling to greater depth is not achieved.
  • [0059]
    Once the precooling has been completed, the radiation source, for example the laser, is activated for an appropriate period of time, perhaps 1 to 100 seconds. The required fluence and pulse duration can be calculated or can be determined empirically by using microwave or ultrasonic depth measuring techniques or other techniques known in the art for measuring temperature at depth. Another option is to insert a needle into the area where a liquid lipid pool should be formed if the heat was sufficient to bleb the cell membranes to see if a liquid pool has been formed. If a liquid pool has not been formed, then treatment is required at either a higher fluence or for longer duration. This procedure can be repeated until liquid lipid is obtained. The area from which the liquid lipid is being removed may be manually manipulated or “milked” to facilitate the removal of the liquid lipid pool.
  • [0060]
    Since substantial fluence may be required in order to ablate subcutaneous fat in the manner indicated above because of both the energy loss in the overlying layers and the relatively low coefficient of absorption for the fat at the wavelengths which must be used to reach the subcutaneous fat, the head used for applying radiation should preferably utilize a photorecycling technique, such as that taught in U.S. Pat. No. 5,824,023 or in co-pending application Ser. No. ______ filed Mar. 12, 1999. In conjunction with photorecycling, another way of more efficiently getting energy to an area under treatment is to pinch a fold of skin containing the treatment area in a section of the radiation emitting head, facilitating the application of radiation to the treatment area from at least two directions. Such techniques are taught, for example in U.S. Pat. No. 5,735,844 and in co-pending application Ser. No. ______, the contents of which are incorporated herein by reference. FIG. 2B illustrates an embodiment 36 of the invention which practices this pinched-fold technique. For this embodiment, the head is formed of an optically transparent dielectric material 37 such as sapphire or glass and has a plurality of optical fibers 38 affixed thereto or embedded therein which fibers are angled to impinge on a fold of skin 39 drawn into a recess 41 formed in material 37. Recess 41 might for example be ½ inch across. The head and recess may be relatively shallow with only the fibers 38 shown in the figure or the head and recess may extend for a selected width into FIG. 2B and additional fibers 38 may be provided at selected points along such width. A hole or groove 43 is provided to which negative pressure or vacuum may be applied to draw the fold of skin into groove 41 and a high reflecting coating 45 may be applied to the outer surface of material 37. Coating 45 is effective to retroreflect radiation exiting skin fold 39 back into the skin in a manner discussed in the prior patent/application to enhance energy efficiency, thus permitting more radiation to reach a desired site for the same energy from a radiation source. Optical fibers 38 can be angled to target a desired lipid-rich tissue region in fold 39.
  • [0061]
    While in the discussion above, required fluence has been more or less empirically determined, in some applications, the required fluence can be estimated by use of the following equation: P = ρ f - Cf Δ T_d ( 1 - e - τ τ 1 ) 1 · ( 1 - e - aSUBf d )
    Figure US20030199859A1-20031023-M00001
  • [0062]
    Where P is power density, ΔT is temperature rise required from normal body temperature of approximately 37° C. to achieve lipid heating in accordance with the selected technique discussed above, d is the size of the targeted lipid region, for example the diameter of a sebaceous gland or the depth in for example subcutaneous fat or fat surrounding an organ, vessel or the like which is to be targeted, τf I is a thermal relaxation time of the fatty tissue targeted, τ is pulse width, αf is absorption coefficient of the fatty tissue, ρf is the density of the
  • E=Pτ
  • [0063]
    fat and cf is the heat capacity of the fat. Fluence (E) is given by:
  • [0064]
    Thermal relaxation time for fatty tissue can vary from several nanoseconds for lipid in the membrane of a cell, to seconds (for example for a sebaceous gland), to several hours (for example for subcutaneous fat).
  • [0065]
    Using the above equations, and assuming a temperature rise ΔT in the fat of approximately 13° C., to 50° C., the fluence required to be applied to the skin for a wavelength of 920 nm is 50-500 J/cm2, the fluence required to be applied to the skin at 1200 nm is roughly 10-100 J/cm2 and the fluence for 1715 nm is 1-50 J/cm2. The low value in these ranges assumes the fat to be treated at substantially the skin surface with the fluence increasing as the depth of the fat being treated increases, the highest value being for subcutaneous fat at a depth of approximately 4 mm. Since at the other preferred wavelength band, radiation applied to the skin will not normally reach subcutaneous fat, for this wavelength band it has been assumed that the radiation is applied directly or nearly directly to the fat cells, differences in range being accounted for by differences in size or depth of the lipid cells being treated, pulse width and the temperature to which the fat is to be raised. With these assumptions, at 2300 nm, the fluence range is 0.5-20 J/cm2.
  • [0066]
    Where the pulse duration is longer than the thermal relaxation time of the fat cells or tissues being heated, this being sometimes referred to as quasi-stationary heating, power densities required for selective damage of or initiation of biochemical processes in the fatty tissue are estimated to be in the following range:
    920 nm: 500-2000 W/cm2
    1200 nm: 50-500 W/cm2
    1715 nm: 10-200 W/cm2
    2300 nm: 5-50 W/cm2
  • [0067]
    The first three of these values are taken at the skin surface, while the last one is taken at the surface of the lipid tissue.
  • [0068]
    While in the discussion above, the sebaceous gland 22 has been targeted for destruction as a treatment for acne, the sebaceous gland, being located close to the stem cells 25 of a hair follicle 20, may be targeted for other therapeutic purposes. In particular, the fat in the sebaceous gland could serve as a chromophore which is preferably heated by radiation at one of the selected wavelengths, the heat from the sebaceous gland if at a relatively low level being sufficient to sever the hair shaft at the level of the sebaceous gland, which hairs may then be washed away. This would be the equivalent of a shave which might last several weeks. More intense targeting of the sebaceous gland could result in sufficient heating to destroy the stem cells of the follicle which could sufficiently damage or destroy the follicle to provide long term or even permanent hair removal. This technique would be particularly advantageous for people having very light hair and light skin with little melanin in either the hair shaft or follicle, melanin being the chromophore normally used in other radiation hair removal techniques.
  • [0069]
    Another mechanism by which the teachings of this invention could be used for hair removal stems from the fact that papilla or bulb 23 is located in the upper regions of subcutaneous fat 16. Therefore, heating subcutaneous fat in the region of a hair follicle in the manner previously discussed will also result in a heating of the bulb/papilla of the hair follicle which can damage or destroy these structures. Damage or destruction of the bulb or papilla is another mechanism by which hair removal is effected.
  • [0070]
    The teachings of this invention may also be utilized to target lipid-rich tissue in other regions for other purposes. For example, the stratum corneum contains a layer of lipid tissue which serves as liquid barrier in a persons epidermis. This liquid barrier can reduce the effectiveness of needless injections which rely primarily on pressure to inject a liquid agent into the patient. A short burst of radiation at one of the wavelengths indicated above, for example 1715 nm or 2300 nm, could remove this lipid barrier in the area where the injection is to be made just prior to the injection to enhance the effectiveness thereof.
  • [0071]
    It is also known that the membranes walls of many cells are composed substantially of lipid and that these membranes differ somewhat from cell to cell. Radiation at one of the wavelengths indicated above may therefore be effective to selectively porate cells, the selectivity being achieved either as a result of controlling the focusing of the radiation to a targeted region and/or certain of the cells in the region porating at lower fluence or less time of radiation application than others as a result of cell size, wall thickness and/or other factors. Poration may be done for example to permit a drug or other therapeutic agent to enter the cell for healing or destruction thereof, for example, for the destruction of cancer cells, or to permit the content of the cell to flow out for various purposes. The poration may be temporary, or may be permanent resulting in cell destruction.
  • [0072]
    Finally, while in the discussion above the targeting of lipid as a chromophore for affecting hair removal in two different ways has been discussed, it is apparent that lipid could be targeted in other areas as a chromophore for the heating and either the destruction or therapy on other body components. Thus, in certain areas of the body, heating of lipid may be used to shrink collagen for wrinkle removal or skin toning or the lipid layer in the stratum corneum may be targeted for other purposes. Fat surrounding nerves, blood vessels or other biological structures may also be target for heating and treating the underlying structure. The radiation wavelength, intensity, and pulse duration would in each instance be adjusted based on the size of the lipid structure being targeted, its depth, the wavelength utilized, and other factors.
  • [0073]
    [0073]FIG. 3 illustrates a technique which may be employed to treat subcutaneous fat either in areas where the dermis is too thick for treatment to be performed from the skin surface as shown in FIG. 2, where treatment is desired at depths in subcutaneous fat layer 16 which are too deep for treatment from the skin surface, where it is desired to operate at one of the more efficient longer wavelengths which do not normally penetrate to the subcutaneous fat, or for other reasons. In FIG. 3, a probe 40 is inserted through epidermis 12 and dermis 14 into subcutaneous fat region 16. Probe 40 may be a needle, or an opening may be formed in the skin through which a trocar or other cannula may be inserted, the probe 40 then passing through the cannula or trocar to the desired location. Other techniques known in the art for positioning a probe in subcutaneous fat region may be employed.
  • [0074]
    Probe 40 can contain an optical fiber or fiber bundle through which optical radiation at the wavelengths previously indicated may be applied to the end of the probe. The end of the probe may be formed to either direct the light straight ahead, to direct the light at some angle to the direction of the probe or to direct the radiation in more than one direction. Particularly where one of the longer wavelengths, for example 2300 nm, are utilized which have a high coefficient of absorption in fat, a dispersive lens might also be employed at the end of the needle to expend treatment area. A relatively large area of subcutaneous fat may be treated by a single insertion of the probe by moving the probe in and out of the subcutaneous fat and possibly by also rotating the probe about the entry point. Where light is coming out at an angle to the direction of the probe, the probe may also be rotated to cover a larger area. By inserting the probe at an angle as shown in FIG. 3, a larger area can be covered, though at a shallower depth. A smaller area to a greater depth can be covered by inserting probe 40 at a sharper angle. If the temperature to which the fat is raised by the radiations from the needle results in a liquid lipid pool being formed, a cannula could be included around the optical fiber in probe 40 to remove this liquid on a periodic or continuous basis, or the pool could be removed in the manner previously discussed. While the procedure of FIG. 3 may be used for any part of the body where fat is to be removed, it may be particularly advantageous for areas with smaller pockets of fat such as the face or neck. Further, while several techniques have been taught above for applying radiation within a preferentially absorbed wavelength band to subcutaneous fat for the treatment thereof, other techniques, including various surgical techniques, could be utilized for reaching selected regions of subcutaneous fat in appropriate situations.
  • [0075]
    Another area where the teachings of this invention might be advantageously employed is to remove fat covering vessels, organs, or other anatomical elements on which a surgical procedure is to be performed so that the surgical procedure may be more accurately and safely performed with better visibility. In this instance, the tool for removing the fat might be inserted through a surgical opening or might be part of an endoscope or other tool inserted through a body cavity. The tool inserted could be similar to probe 40 and, to minimize damage to surrounding tissue, is preferably placed in contact with the fat to be treated, or at least in near contact with such fat, for irradiation. Thus, in FIG. 4 the tool is shown as a probe 50 inserted through a catheter 52 to the fat 54 surrounding a vessel, gut or other vital structure 56 to be surgically treated. Catheter 52 could also include a standard probe to permit viewing of the area under treatment so that catheter 52 can be repositioned and treatment can be continued until a sufficient amount of the fat 54 has been removed to expose vessel 56. Where larger surgical incisions are made, the tool for removal/treatment of fat 54 from vessel 56 might be hand held by the surgeon and manipulated by him to remove fat. Since fat 54 preferentially absorbs radiation at the applied wavelengths, and strongly absorbs at the higher wavelengths usable where there is substantial contract between the probe and the fat to be treated, the treatment of fat 54 should result in little if any thermal damage to underlying vessel 56 and, particularly if the wavelength is at approximately 1715 nm, or 2300 nm, this danger will be significantly reduced from prior art procedures were the radiation utilized was not preferentially absorbed by the fat tissue. More specifically, the fluence and exposure duration can be adjusted to ablate or otherwise treat fat, but not the nearby or underlying non-fat tissue.
  • [0076]
    A technique has thus been disclosed for the targeting of lipid-rich or fat tissue to effect a desired treatment by the selective application of optical radiation to such fat tissue at a wavelength preferentially absorbed thereby. While for various embodiments, the fat tissue for targeting has been discussed above, including the sebaceous gland, subcutaneous fat and fat surrounding anatomical elements on which surgical procedures arc to be performed, the invention is not limited to targeting only such fat tissue, but may be employed for the targeting of any lipid-rich tissue. Further, while specific hardware has been described for producing radiation within the selected wavelength bands, other radiation sources capable of producing radiation within such bands might also be utilized. Finally, while specific methods and hardware have been disclosed for applying the radiation to the various areas of lipid-rich tissue to be targeted, other techniques suitable for directing sufficient radiation at the requisite wavelengths to lipid-rich tissue may also be employed. Thus, while the invention has particularly been shown and described above with reference to preferred embodiments, the foregoing and other changes in form and detail may be made therein by those skilled in the art without departing from the spirit and scope of the invention, which invention is to be limited only by the following claims.

Claims (48)

    What is claimed is:
  1. 1. An applicator comprising:
    a radiation source; and
    a transmission element optically coupled to the radiation source and configured and arranged to contact an area of a skin surface and to project radiation from the source thereon, the radiation projected onto the area of the skin surface having a ratio of energy absorption by fat to energy absorption by water of greater than 1.5.
  2. 2. The applicator of claim 1, wherein the radiation has a wavelength in a band which is one of (a) 1690 to 1780 nm, and (b) 2250 nm to 2450 nm.
  3. 3. The applicator of claim 2, wherein the radiation has a wavelength in a band which is one of 1700 nm to 1730 nm, and 2280 nm to 2350 nm.
  4. 4. The applicator of claim 1, wherein the transmission element is adapted to be in pressure contact with the area of the skin surface.
  5. 5. The applicator of claim 1, further comprising a mechanism configured and arranged to cool the area of the skin surface.
  6. 6. The applicator of claim 1, further comprising a recess and a mechanism for drawing the area of the skin surface into the recess.
  7. 7. The applicator of claim 1, wherein the transmission element is adapted to converge the radiation.
  8. 8. The applicator of claim 1, wherein the transmission element is adapted to converge the radiation onto subcutaneous fat tissue.
  9. 9. The applicator of claim 1, wherein the radiation source is a lamp.
  10. 10. The applicator of claim 9, further comprising a filter optically coupled to the lamp.
  11. 11. A radiation applicator comprising:
    a radiation source; and
    a transmission element optically coupled to the radiation source and configured and arranged to contact an area of a skin surface and to project radiation thereon, the radiation projected onto the area of the skin surface having a wavelength greater than 1300 nm and a ratio of energy absorption by fat to energy absorption by water of greater than 0.5.
  12. 12. The applicator of claim 11, wherein the wavelength is in a band which is one of (a) 1690 to 1780 nm, and (b) 2250 nm to 2450 nm.
  13. 13. The applicator of claim 12, wherein the wavelength is in a band which is one of 1700 nm to 1730 nm, and 2280 nm to 2350 nm.
  14. 14. The applicator of claim 11, wherein the transmission element is adapted to be in pressure contact with the area of the skin surface.
  15. 15. The applicator of claim 11, further comprising a mechanism configured and arranged to cool the area of the skin surface.
  16. 16. The applicator of claim 11, further comprising a recess and a mechanism for drawing the area of the skin surface into the recess.
  17. 17. The applicator of claim 11, wherein the transmission element is adapted to converge the radiation.
  18. 18. The applicator of claim 11, wherein the transmission element is adapted to converge the radiation onto subcutaneous fat tissue.
  19. 19. The applicator of claim 11, wherein the radiation source is a lamp.
  20. 20. The applicator of claim 19, further comprising a filter optically coupled to the lamp.
  21. 21. A radiation applicator comprising:
    a radiation source; and
    at least one transmission element optically coupled to the radiation source and configured and arranged to focus radiation through the skin and onto subcutaneous fat tissue, the radiation projected onto the skin having a ratio of energy absorption by fat to energy absorption by water of greater than 0.5.
  22. 22. The applicator of claim 21, wherein the radiation has a wavelength in a band which is one of (a) 880 to 935 nm, (b) 1150 to 1230 nm (c) 1690 to 1780 nm, and (d) 2250 nm to 2450 nm.
  23. 23. The applicator of claim 22, wherein the radiation has a wavelength in a band which is one of 900 nm to 930 nm, 1190 to 1220 nm, 1700 nm to 1730 nm, and 2280 nm to 2350 nm.
  24. 24. The applicator of claim 21, wherein the transmission element is adapted to be in pressure contact with a surface of the skin.
  25. 25. The applicator of claim 21, further comprising a mechanism configured and arranged to cool a surface of the skin.
  26. 26. The applicator of claim 21, further comprising a recess and a mechanism for drawing the skin into the recess.
  27. 27. The applicator of claim 21, wherein the transmission element is adapted to converge the radiation.
  28. 28. The applicator of claim 21, wherein the radiation source is a lamp.
  29. 29. The applicator of claim 28, further comprising a filter optically coupled to the lamp.
  30. 30. The applicator of claim 21, wherein the at least one transmission element is arranged to contact a surface of the skin.
  31. 31. The applicator of claim 21, wherein the at least one transmission element is comprised of a first transmission element arranged to contact the skin and a second transmission element configured and arranged to focus the radiation.
  32. 32. The applicator of claim 21, wherein the at least one transmission element is comprised of a single transmission element configured and arranged, both, to contact the skin and to focus the radiation
  33. 33. A method of treating subcutaneous fat tissue, comprising:
    providing a radiation source;
    projecting radiation from the radiation source onto a skin surface overlying the subcutaneous fat tissue, the radiation adapted to converge on the subcutaneous fat tissue, the radiation from the radiation source that is projected on the skin surface having a ratio of energy absorption by lipid tissue to energy absorption by water of at least 0.5; and
    irradiating the lipid-rich tissue with a portion of the radiation.
  34. 34. The method of claim 33, wherein said ratio is greater than 1.5.
  35. 35. The method of claim 33, wherein the radiation is in a wavelength band which is at least one of (a) 880 to 935 nm, (b) 1150 to 1230 nm, (c) 1690 to 1780 nm, and (d) 2250 nm to 2450 nm.
  36. 36. The method of claim 35, wherein the radiation is in a wavelength band which is at least one of one of 900 nm to 930 nm, 1190 to 1220 nm, 1700 nm to 1730 nm, and 2280 nm to 2360 nm.
  37. 37. The method of claim 36, wherein the radiation has a wavelength approximately equal to at least one of 920 nm, 1210 nm, 1715 nm, and 2300 nm.
  38. 38. The method of claim 35, wherein the radiation has a fluence in the range 15 J/cm2 to 25 J/cm2.
  39. 39. The method of claim 35, wherein the radiation has a duration in the range 10 ms to 100 ms.
  40. 40. The method of claim 33, wherein the radiation is applied through an applicator in contact with the skin surface, the method further comprising a step of applying pressure to the skin surface with the applicator.
  41. 41. The method of claim 33, further comprising a step of cooling the skin surface.
  42. 42. The method of claim 41, wherein the step of cooling cools to a depth in the dermal layer.
  43. 43. The method of claim 33, further comprising a step of drawing a fold of the skin surface containing the subcutaneous fat into a slotted head, and wherein the step of irradiating occurs from at least two directions.
  44. 44. The method of claim 33, wherein the step of irradiating ablates the walls of the subcutaneous fat tissue.
  45. 45. The method of claim 44, further comprising a step of inserting a needle into said liquid fat pool, and a step of removing liquid fat from said pool through said needle.
  46. 46. The method of claim 44, wherein said liquid fat pool is absorbed into a patient's body.
  47. 47. The method of claim 44, further comprising a step of draining said liquid fat pool through an opening in the skin surface.
  48. 48. The method of claim 33, wherein the radiation is at a wavelength for which a ratio of the absorption coefficient for fat and the absorption coefficient of water is at least 0.5.
US10442598 1998-03-27 2003-05-21 Method and apparatus for the selective targeting of lipid-rich tissues Abandoned US20030199859A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US7971098 true 1998-03-27 1998-03-27
US09277307 US6605080B1 (en) 1998-03-27 1999-03-26 Method and apparatus for the selective targeting of lipid-rich tissues
US10442598 US20030199859A1 (en) 1998-03-27 2003-05-21 Method and apparatus for the selective targeting of lipid-rich tissues

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10442598 US20030199859A1 (en) 1998-03-27 2003-05-21 Method and apparatus for the selective targeting of lipid-rich tissues

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09277307 Continuation US6605080B1 (en) 1998-03-27 1999-03-26 Method and apparatus for the selective targeting of lipid-rich tissues

Publications (1)

Publication Number Publication Date
US20030199859A1 true true US20030199859A1 (en) 2003-10-23

Family

ID=22152299

Family Applications (3)

Application Number Title Priority Date Filing Date
US09277307 Active US6605080B1 (en) 1998-03-27 1999-03-26 Method and apparatus for the selective targeting of lipid-rich tissues
US10442598 Abandoned US20030199859A1 (en) 1998-03-27 2003-05-21 Method and apparatus for the selective targeting of lipid-rich tissues
US10640195 Active 2019-07-10 US7060061B2 (en) 1998-03-27 2003-08-12 Method and apparatus for the selective targeting of lipid-rich tissues

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09277307 Active US6605080B1 (en) 1998-03-27 1999-03-26 Method and apparatus for the selective targeting of lipid-rich tissues

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10640195 Active 2019-07-10 US7060061B2 (en) 1998-03-27 2003-08-12 Method and apparatus for the selective targeting of lipid-rich tissues

Country Status (5)

Country Link
US (3) US6605080B1 (en)
EP (2) EP1066086B1 (en)
CA (1) CA2326120C (en)
ES (2) ES2403359T3 (en)
WO (1) WO1999049937A1 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050154381A1 (en) * 2003-12-31 2005-07-14 Altshuler Gregory B. Dermatological treatment with visualization
US20050251118A1 (en) * 2004-05-07 2005-11-10 Anderson Robert S Apparatus and method having a cooling material and reduced pressure to treat biological external tissue
US20060020265A1 (en) * 1997-09-09 2006-01-26 Ryan Thomas P Apparatus and method for sealing and cutting tissue
US20060189964A1 (en) * 2004-05-07 2006-08-24 Anderson Robert S Apparatus and method to apply substances to tissue
US20070173749A1 (en) * 2006-01-20 2007-07-26 Biocellulase, Inc. Mechanical massage device
US20070239236A1 (en) * 2006-04-07 2007-10-11 The General Hospital Corporation Method and apparatus for producing thermal damage within the skin
US20070265604A1 (en) * 2006-03-03 2007-11-15 Davenport Scott A Aesthetic treatment for wrinkle reduction and rejuvenation
US20080071258A1 (en) * 2006-04-12 2008-03-20 Vladimir Lemberg System and method for microablation of tissue
US20080082091A1 (en) * 2006-09-10 2008-04-03 Vladimir Rubtsov Fiber optic tissue ablation
US20080119831A1 (en) * 2005-03-02 2008-05-22 Meridian Co., Ltd. Adipose resolve apparatus for low-power laser
US20080215040A1 (en) * 2007-03-02 2008-09-04 Paithankar Dilip Y Variable depth skin heating with lasers
US20090012434A1 (en) * 2007-07-03 2009-01-08 Anderson Robert S Apparatus, method, and system to treat a volume of skin
US20090048514A1 (en) * 2006-03-09 2009-02-19 Slender Medical Ltd. Device for ultrasound monitored tissue treatment
US20090069795A1 (en) * 2007-09-10 2009-03-12 Anderson Robert S Apparatus and method for selective treatment of tissue
US20090093864A1 (en) * 2007-10-08 2009-04-09 Anderson Robert S Methods and devices for applying energy to tissue
US7722600B2 (en) 2003-08-25 2010-05-25 Cutera, Inc. System and method for heating skin using light to provide tissue treatment
US7758621B2 (en) 1997-05-15 2010-07-20 Palomar Medical Technologies, Inc. Method and apparatus for therapeutic EMR treatment on the skin
US7763016B2 (en) 1997-05-15 2010-07-27 Palomar Medical Technologies, Inc. Light energy delivery head
US7780652B2 (en) 2003-12-22 2010-08-24 Cutera, Inc. System and method for flexible architecture for dermatologic treatments utilizing multiple light sources
US20110077627A1 (en) * 2006-04-12 2011-03-31 Vladimir Lemberg System and method for Microablation of tissue
US7942915B2 (en) 2002-05-23 2011-05-17 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants
US7981111B2 (en) 2003-02-25 2011-07-19 Tria Beauty, Inc. Method and apparatus for the treatment of benign pigmented lesions
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
US8268332B2 (en) 2004-04-01 2012-09-18 The General Hospital Corporation Method for dermatological treatment using chromophores
US8328794B2 (en) 1996-12-02 2012-12-11 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US8346347B2 (en) 2005-09-15 2013-01-01 Palomar Medical Technologies, Inc. Skin optical characterization device
US20130253496A1 (en) * 2002-03-15 2013-09-26 The General Hospital Corporation Treatment systems for removing heat from subcutaneous lipid-rich cells
US8551104B2 (en) 2003-02-25 2013-10-08 Tria Beauty, Inc. Self-contained, diode-laser-based dermatologic treatment apparatus
US20130345685A1 (en) * 2012-06-22 2013-12-26 Epilady 2000, Llc Aesthetic treatment device and method
US8709003B2 (en) 2003-02-25 2014-04-29 Tria Beauty, Inc. Capacitive sensing method and device for detecting skin
US8777935B2 (en) 2004-02-25 2014-07-15 Tria Beauty, Inc. Optical sensor and method for identifying the presence of skin
US8870856B2 (en) 2003-08-25 2014-10-28 Cutera, Inc. Method for heating skin using light to provide tissue treatment
US8915948B2 (en) 2002-06-19 2014-12-23 Palomar Medical Technologies, Llc Method and apparatus for photothermal treatment of tissue at depth
US8915906B2 (en) 2003-08-25 2014-12-23 Cutera, Inc. Method for treatment of post-partum abdominal skin redundancy or laxity
US9028536B2 (en) 2006-08-02 2015-05-12 Cynosure, Inc. Picosecond laser apparatus and methods for its operation and use
US9314368B2 (en) 2010-01-25 2016-04-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods
US9375345B2 (en) 2006-09-26 2016-06-28 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US9408745B2 (en) 2007-08-21 2016-08-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
US9655770B2 (en) 2007-07-13 2017-05-23 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US9687671B2 (en) 2008-04-25 2017-06-27 Channel Investments, Llc Optical sensor and method for identifying the presence of skin and the pigmentation of skin
US9737434B2 (en) 2008-12-17 2017-08-22 Zeltiq Aestehtics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US9780518B2 (en) 2012-04-18 2017-10-03 Cynosure, Inc. Picosecond laser apparatus and methods for treating target tissues with same
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9861520B2 (en) 2009-04-30 2018-01-09 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US9861421B2 (en) 2014-01-31 2018-01-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance

Families Citing this family (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452358B2 (en) * 1996-01-05 2008-11-18 Thermage, Inc. RF electrode assembly for handpiece
US7229436B2 (en) * 1996-01-05 2007-06-12 Thermage, Inc. Method and kit for treatment of tissue
US7115123B2 (en) * 1996-01-05 2006-10-03 Thermage, Inc. Handpiece with electrode and non-volatile memory
US7473251B2 (en) * 1996-01-05 2009-01-06 Thermage, Inc. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US20030212393A1 (en) * 1996-01-05 2003-11-13 Knowlton Edward W. Handpiece with RF electrode and non-volatile memory
US7189230B2 (en) * 1996-01-05 2007-03-13 Thermage, Inc. Method for treating skin and underlying tissue
US6599316B2 (en) * 1996-11-04 2003-07-29 Advanced Stent Technologies, Inc. Extendible stent apparatus
US20060149343A1 (en) * 1996-12-02 2006-07-06 Palomar Medical Technologies, Inc. Cooling system for a photocosmetic device
US6248102B1 (en) 1997-04-04 2001-06-19 Keralase Ltd. Method of hair removal by transcutaneous application of laser light
US6104959A (en) 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
GB9721506D0 (en) * 1997-10-10 1997-12-10 Virulite Limited Treatment of diseases
EP1066086B1 (en) * 1998-03-27 2013-01-02 The General Hospital Corporation Method and apparatus for the selective targeting of lipid-rich tissues
USRE46208E1 (en) 1998-10-16 2016-11-22 Reliant Technologies, Llc Method for cryogenically treating tissue below the skin surface
US6059820A (en) 1998-10-16 2000-05-09 Paradigm Medical Corporation Tissue cooling rod for laser surgery
US6514242B1 (en) * 1998-12-03 2003-02-04 David Vasily Method and apparatus for laser removal of hair
US20020156471A1 (en) * 1999-03-09 2002-10-24 Stern Roger A. Method for treatment of tissue
US7141049B2 (en) * 1999-03-09 2006-11-28 Thermage, Inc. Handpiece for treatment of tissue
US7041094B2 (en) * 1999-03-15 2006-05-09 Cutera, Inc. Tissue treatment device and method
US7384797B1 (en) 2000-10-12 2008-06-10 University Of Utah Research Foundation Resonant optical cavities for high-sensitivity high-throughput biological sensors and methods
US20030036749A1 (en) * 1999-12-10 2003-02-20 Durkin Anthony J. Method of treating disorders associated with sebaceous follicles
US6743222B2 (en) 1999-12-10 2004-06-01 Candela Corporation Method of treating disorders associated with sebaceous follicles
EP1261307A1 (en) 1999-12-15 2002-12-04 Tensor Technologies, LLC Massage device
EP1251791A1 (en) * 2000-01-25 2002-10-30 Palomar Medical Technologies, Inc. Method and apparatus for medical treatment utilizing long duration electromagnetic radiation
US6503268B1 (en) * 2000-04-03 2003-01-07 Ceramoptec Industries, Inc. Therapeutic laser system operating between 1000nm and 1300nm and its use
WO2002013906A1 (en) * 2000-08-16 2002-02-21 Vanderbilt University Methods and devices for optical stimulation of neural tissues
US20080183162A1 (en) * 2000-12-28 2008-07-31 Palomar Medical Technologies, Inc. Methods And Devices For Fractional Ablation Of Tissue
CA2433022C (en) * 2000-12-28 2016-12-06 Palomar Medical Technologies, Inc. Method and apparatus for therapeutic emr treatment of the skin
CA2433797A1 (en) * 2001-01-11 2002-07-18 The Johns Hopkins University Assessment of tooth structure using laser based ultrasonics
US6888319B2 (en) * 2001-03-01 2005-05-03 Palomar Medical Technologies, Inc. Flashlamp drive circuit
US20060206103A1 (en) * 2001-03-02 2006-09-14 Palomar Medical Technologies, Inc. Dermatological treatment device
EP1365699A2 (en) * 2001-03-02 2003-12-03 Palomar Medical Technologies, Inc. Apparatus and method for photocosmetic and photodermatological treatment
CN1524272A (en) 2001-05-03 2004-08-25 先进光技术有限责任公司 Differential photochemical & photomechamical processing
KR100699759B1 (en) 2001-06-27 2007-03-27 라디언시 인크. Acne treatment
WO2003003903A3 (en) 2001-07-02 2003-12-11 Palomar Medical Tech Inc Laser device for medical/cosmetic procedures
US7347855B2 (en) * 2001-10-29 2008-03-25 Ultrashape Ltd. Non-invasive ultrasonic body contouring
US20030109787A1 (en) * 2001-12-12 2003-06-12 Michael Black Multiple laser diagnostics
US20030109860A1 (en) * 2001-12-12 2003-06-12 Michael Black Multiple laser treatment
WO2003057059A1 (en) * 2001-12-27 2003-07-17 Palomar Medical Technologies, Inc. Method and apparatus for improved vascular related treatment
US8840608B2 (en) * 2002-03-15 2014-09-23 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
US8074661B2 (en) * 2002-05-31 2011-12-13 Duke University Method and apparatus for laser tissue ablation
US7351252B2 (en) * 2002-06-19 2008-04-01 Palomar Medical Technologies, Inc. Method and apparatus for photothermal treatment of tissue at depth
US7250047B2 (en) * 2002-08-16 2007-07-31 Lumenis Ltd. System and method for treating tissue
US20040156743A1 (en) * 2002-08-28 2004-08-12 Eric Bornstein Near infrared microbial elimination laser system
US7713294B2 (en) * 2002-08-28 2010-05-11 Nomir Medical Technologies, Inc. Near infrared microbial elimination laser systems (NIMEL)
US20080131968A1 (en) * 2002-08-28 2008-06-05 Nomir Medical Technologies, Inc. Near-infrared electromagnetic modification of cellular steady-state membrane potentials
US20040126272A1 (en) * 2002-08-28 2004-07-01 Eric Bornstein Near infrared microbial elimination laser system
US8506979B2 (en) 2002-08-28 2013-08-13 Nomir Medical Technologies, Inc. Near-infrared electromagnetic modification of cellular steady-state membrane potentials
WO2008073979A3 (en) * 2006-12-12 2008-10-23 Eric Bornstein Near-infrared electromagnetic modification of cellular steady- state membrane potentials
US7259906B1 (en) 2002-09-03 2007-08-21 Cheetah Omni, Llc System and method for voice control of medical devices
US20040048842A1 (en) * 2002-09-10 2004-03-11 Mcmillan Kathleen Method of treating skin disorders
CA2506280A1 (en) * 2002-11-04 2004-05-21 Universita' Degli Studi Di Padova Laser apparatus for treating hard tissues and method for using the apparatus
US7255560B2 (en) * 2002-12-02 2007-08-14 Nomir Medical Technologies, Inc. Laser augmented periodontal scaling instruments
JP2006511275A (en) * 2002-12-20 2006-04-06 パロマー・メディカル・テクノロジーズ・インコーポレイテッドPalomar Medical Technologies,Inc. Phototherapy device acne and other follicle disorders
CA2515695A1 (en) * 2003-02-10 2004-10-07 Palomar Medical Technologies, Inc. Light emitting oral appliance and method of use
CA2515843A1 (en) * 2003-02-19 2004-09-02 Palomar Medical Technologies, Inc. Method and apparatus for treating pseudofolliculitis barbae
US7703458B2 (en) * 2003-02-21 2010-04-27 Cutera, Inc. Methods and devices for non-ablative laser treatment of dermatologic conditions
EP2604215B1 (en) * 2003-02-25 2017-10-11 Tria Beauty, Inc. Eye-safe dermatologic treatment apparatus and method
US7413567B2 (en) * 2003-02-25 2008-08-19 Spectragenics, Inc. Optical sensor and method for identifying the presence of skin
EP1596744B1 (en) * 2003-02-25 2016-02-17 Tria Beauty, Inc. Self-contained, eye-safe hair-regrowth-inhibition apparatus and method
EP1596747B1 (en) * 2003-02-25 2016-02-17 Tria Beauty, Inc. Eye-safe dermatologic treatment apparatus
US20040176823A1 (en) * 2003-02-25 2004-09-09 Island Tobin C. Acne treatment device and method
JP2004259144A (en) * 2003-02-27 2004-09-16 Renesas Solutions Corp Semiconductor storage device
US7354433B2 (en) 2003-02-28 2008-04-08 Advanced Light Technologies, Llc Disinfection, destruction of neoplastic growth, and sterilization by differential absorption of electromagnetic energy
US20110040295A1 (en) * 2003-02-28 2011-02-17 Photometics, Inc. Cancer treatment using selective photo-apoptosis
US20040176824A1 (en) * 2003-03-04 2004-09-09 Weckwerth Mark V. Method and apparatus for the repigmentation of human skin
WO2004080279A3 (en) * 2003-03-06 2007-02-01 Spectragenics Inc In the patent cooperation treaty application for patent
DE202004021226U1 (en) 2003-03-27 2007-07-26 The General Hospital Corp., Boston Device for dermatological treatment and fractional resurfacing the skin
US7470124B2 (en) * 2003-05-08 2008-12-30 Nomir Medical Technologies, Inc. Instrument for delivery of optical energy to the dental root canal system for hidden bacterial and live biofilm thermolysis
EP1718236A4 (en) * 2003-10-08 2009-06-17 Eric Bornstein Use of secondary optical emission as a novel biofilm targeting technology
US20080172045A1 (en) * 2003-10-24 2008-07-17 Shanks Steven C Acne treatment device
US7282060B2 (en) 2003-12-23 2007-10-16 Reliant Technologies, Inc. Method and apparatus for monitoring and controlling laser-induced tissue treatment
US7372606B2 (en) 2003-12-31 2008-05-13 Reliant Technologies, Inc. Optical pattern generator using a single rotating component
US7196831B2 (en) * 2003-12-31 2007-03-27 Reliant Technologies, Inc. Two-dimensional optical scan system using a counter-rotating disk scanner
US7184184B2 (en) * 2003-12-31 2007-02-27 Reliant Technologies, Inc. High speed, high efficiency optical pattern generator using rotating optical elements
US7090670B2 (en) * 2003-12-31 2006-08-15 Reliant Technologies, Inc. Multi-spot laser surgical apparatus and method
US20080125837A1 (en) * 2004-02-06 2008-05-29 Therapy Products, Inc. Noninvasive method for site-specific fat reduction with catalyst
US20060020309A1 (en) * 2004-04-09 2006-01-26 Palomar Medical Technologies, Inc. Methods and products for producing lattices of EMR-treated islets in tissues, and uses therefor
US20050251117A1 (en) * 2004-05-07 2005-11-10 Anderson Robert S Apparatus and method for treating biological external tissue
US20070179482A1 (en) * 2004-05-07 2007-08-02 Anderson Robert S Apparatuses and methods to treat biological external tissue
US7413572B2 (en) 2004-06-14 2008-08-19 Reliant Technologies, Inc. Adaptive control of optical pulses for laser medicine
GB0414113D0 (en) * 2004-06-24 2004-07-28 Virulite Distrib Ltd Cosmetic uses of electromagnetic radiation
US20110160712A1 (en) * 2004-07-12 2011-06-30 Nikolai Tankovich Laser treatment system and method for producing thermal cavities and energy droplets
US7837675B2 (en) * 2004-07-22 2010-11-23 Shaser, Inc. Method and device for skin treatment with replaceable photosensitive window
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US20150025420A1 (en) * 2004-10-06 2015-01-22 Guided Therapy Systems, Llc Ultrasound treatment device and methods of use
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
DK1855759T3 (en) 2004-10-06 2017-06-06 Guided Therapy Systems Llc A system for ultrasonic treatment of tissue
EP2279699A3 (en) 2004-10-06 2014-02-19 Guided Therapy Systems, L.L.C. Method and system for non-invasive cosmetic enhancement of cellulite
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
US20070096352A1 (en) * 2004-12-03 2007-05-03 Cochran Don W Method and system for laser-based, wavelength specific infrared irradiation treatment
US7425296B2 (en) * 2004-12-03 2008-09-16 Pressco Technology Inc. Method and system for wavelength specific thermal irradiation and treatment
US8277495B2 (en) 2005-01-13 2012-10-02 Candela Corporation Method and apparatus for treating a diseased nail
US20060253176A1 (en) * 2005-02-18 2006-11-09 Palomar Medical Technologies, Inc. Dermatological treatment device with deflector optic
US7975702B2 (en) * 2005-04-05 2011-07-12 El.En. S.P.A. System and method for laser lipolysis
US8801764B2 (en) * 2005-05-05 2014-08-12 Biolitec Pharma Marketing Ltd Cosmetic laser treatment device and method for localized lipodystrophies and flaccidity
US8127771B2 (en) * 2005-05-18 2012-03-06 Cooltouch Incorporated Treatment of cellulite and adipose tissue with mid-infrared radiation
US7217265B2 (en) * 2005-05-18 2007-05-15 Cooltouch Incorporated Treatment of cellulite with mid-infrared radiation
US8256429B2 (en) * 2005-05-18 2012-09-04 Cooltouch Incorporated Treatment of cellulite and adipose tissue with mid-infrared radiation
US8276590B2 (en) * 2005-05-18 2012-10-02 Cooltouch Incorporated Thermally mediated tissue molding
US8357146B2 (en) * 2005-05-18 2013-01-22 Cooltouch Incorporated Treatment of cellulite and adipose tissue with mid-infrared radiation
GB0512038D0 (en) * 2005-06-14 2005-07-20 Dougal Gordon Therapeutic and cosmetic uses of electromagnetic radiation
US20090043365A1 (en) 2005-07-18 2009-02-12 Kolis Scientific, Inc. Methods, apparatuses, and systems for reducing intraocular pressure as a means of preventing or treating open-angle glaucoma
WO2013003594A3 (en) * 2011-06-28 2013-02-28 Tearscience, Inc. Methods and systems for treating meibomian gland dysfunction using radio-frequency energy
US20090118721A1 (en) * 2005-07-21 2009-05-07 Eric Bornstein Near Infrared Microbial Elimination Laser System (NIMELS)
US20070031482A1 (en) 2005-08-02 2007-02-08 Ceramoptec Industries, Ind. PDT treatment method for cellulites and cosmetic use
US20070176262A1 (en) * 2005-08-11 2007-08-02 Ernest Sirkin Series connection of a diode laser bar
US8323273B2 (en) * 2005-08-12 2012-12-04 Board Of Regents, The University Of Texas System Systems, devices, and methods for optically clearing tissue
US20070173799A1 (en) * 2005-09-01 2007-07-26 Hsia James C Treatment of fatty tissue adjacent an eye
US7967763B2 (en) 2005-09-07 2011-06-28 Cabochon Aesthetics, Inc. Method for treating subcutaneous tissues
US9358064B2 (en) 2009-08-07 2016-06-07 Ulthera, Inc. Handpiece and methods for performing subcutaneous surgery
US9486274B2 (en) 2005-09-07 2016-11-08 Ulthera, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US9248317B2 (en) 2005-12-02 2016-02-02 Ulthera, Inc. Devices and methods for selectively lysing cells
US9011473B2 (en) 2005-09-07 2015-04-21 Ulthera, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US8518069B2 (en) 2005-09-07 2013-08-27 Cabochon Aesthetics, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US9358033B2 (en) 2005-09-07 2016-06-07 Ulthera, Inc. Fluid-jet dissection system and method for reducing the appearance of cellulite
WO2007038567A1 (en) 2005-09-28 2007-04-05 Candela Corporation Treating cellulite
JP2007089992A (en) * 2005-09-30 2007-04-12 Terumo Corp Energy irradiation device, control device and control method
US20070083190A1 (en) * 2005-10-11 2007-04-12 Yacov Domankevitz Compression device for a laser handpiece
US7519253B2 (en) 2005-11-18 2009-04-14 Omni Sciences, Inc. Broadband or mid-infrared fiber light sources
US7891362B2 (en) 2005-12-23 2011-02-22 Candela Corporation Methods for treating pigmentary and vascular abnormalities in a dermal region
US8048064B2 (en) 2005-12-23 2011-11-01 Lutronic Corporation Method of curing inflammatory acne by using carbon lotion and pulsed laser
US8540703B2 (en) 2005-12-23 2013-09-24 Lutronic Corporation Methods for treating skin conditions using laser
US20070154538A1 (en) * 2005-12-29 2007-07-05 Ceramoptec Gmbh Removal of fat cells by PDT
CA2642741A1 (en) * 2006-01-24 2007-08-02 Nomir Medical Technologies, Inc. Optical method and device for modulation of biochemical processes in adipose tissue
US20070194717A1 (en) * 2006-02-17 2007-08-23 Palomar Medical Technologies, Inc. Lamp for use in a tissue treatment device
US7854754B2 (en) 2006-02-22 2010-12-21 Zeltiq Aesthetics, Inc. Cooling device for removing heat from subcutaneous lipid-rich cells
KR100742973B1 (en) * 2006-02-22 2007-07-20 주식회사 루트로닉 Fatty tissue removing using 1444nm beam oscillating nd:yag laser
KR100799524B1 (en) * 2006-02-28 2008-01-31 전용규 An applicator in a device for treating skin
WO2007103721A3 (en) * 2006-03-01 2007-11-08 Richard Rox Anderson System and method for providing cell specific laser therapy of atherosclerotic plaques by targeting light absorbers in macrophages
US20070213696A1 (en) * 2006-03-10 2007-09-13 Palomar Medical Technologies, Inc. Photocosmetic device
US20070219604A1 (en) * 2006-03-20 2007-09-20 Palomar Medical Technologies, Inc. Treatment of tissue with radiant energy
KR100649890B1 (en) * 2006-03-27 2006-11-20 주식회사 루트로닉 Control method and control structure of laser beam irradiation by using a contact sensor
US20070255355A1 (en) * 2006-04-06 2007-11-01 Palomar Medical Technologies, Inc. Apparatus and method for skin treatment with compression and decompression
WO2007118246A1 (en) * 2006-04-07 2007-10-18 The General Hospital Corporation Method, system and apparatus for dermatological treatment and fractusal skin resurfacing
US20130274834A1 (en) * 2006-04-18 2013-10-17 Daniel Barolet Method for the treatment of skin tissues.
US20070264626A1 (en) * 2006-05-11 2007-11-15 Reliant Technologies, Inc. Apparatus and Method for a Combination of Ablative and Nonablative Dermatological Treatment
US20070264625A1 (en) * 2006-05-11 2007-11-15 Reliant Technologies, Inc. Apparatus and Method for Ablation-Related Dermatological Treatment of Selected Targets
US8246611B2 (en) 2006-06-14 2012-08-21 Candela Corporation Treatment of skin by spatial modulation of thermal heating
WO2008008971A1 (en) * 2006-07-13 2008-01-17 Candela Corporation Compact, handheld device for home-based acne treatment
US20080161745A1 (en) * 2006-09-08 2008-07-03 Oliver Stumpp Bleaching of contrast enhancing agent applied to skin for use with a dermatological treatment system
US8192474B2 (en) 2006-09-26 2012-06-05 Zeltiq Aesthetics, Inc. Tissue treatment methods
US8249695B2 (en) * 2006-09-29 2012-08-21 Tearscience, Inc. Meibomian gland imaging
US8255039B2 (en) * 2006-09-29 2012-08-28 Tearscience, Inc. Meibomian gland illuminating and imaging
US20080154247A1 (en) * 2006-12-20 2008-06-26 Reliant Technologies, Inc. Apparatus and method for hair removal and follicle devitalization
US9028520B2 (en) 2006-12-22 2015-05-12 The Spectranetics Corporation Tissue separating systems and methods
US8961551B2 (en) 2006-12-22 2015-02-24 The Spectranetics Corporation Retractable separating systems and methods
US20080221649A1 (en) * 2007-03-09 2008-09-11 Agustina Echague Method of sequentially treating tissue
EP2139560B1 (en) * 2007-03-19 2012-05-30 Syneron Medical Ltd. Device for soft tissue destruction
KR101654863B1 (en) 2007-12-12 2016-09-22 미라마 랩스 인코포레이티드 Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
KR101826243B1 (en) 2007-12-12 2018-02-06 미라마 랩스 인코포레이티드 Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
EP2142129A4 (en) 2007-04-19 2011-04-20 Miramar Labs Inc Methods and apparatus for reducing sweat production
CN101711134B (en) 2007-04-19 2016-08-17 米勒玛尔实验室公司 System for applying microwave energy to the tissue and produce a tissue layer effect in a tissue system
EP2271276A4 (en) 2008-04-17 2013-01-23 Miramar Labs Inc Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US20080262484A1 (en) * 2007-04-23 2008-10-23 Nlight Photonics Corporation Motion-controlled laser surface treatment apparatus
US20080269735A1 (en) * 2007-04-26 2008-10-30 Agustina Vila Echague Optical array for treating biological tissue
US20080287839A1 (en) * 2007-05-18 2008-11-20 Juniper Medical, Inc. Method of enhanced removal of heat from subcutaneous lipid-rich cells and treatment apparatus having an actuator
US7885793B2 (en) 2007-05-22 2011-02-08 International Business Machines Corporation Method and system for developing a conceptual model to facilitate generating a business-aligned information technology solution
US8236036B1 (en) 2007-07-21 2012-08-07 Frost Ricky A Optical dermatological and medical treatment apparatus having replaceable laser diodes
CA2604112C (en) * 2007-09-24 2016-07-05 Meridian Co. Ltd. Adipose resolve apparatus for low-power laser
US20090105588A1 (en) * 2007-10-02 2009-04-23 Board Of Regents, The University Of Texas System Real-Time Ultrasound Monitoring of Heat-Induced Tissue Interactions
US9414470B2 (en) * 2007-10-22 2016-08-09 Radiancy Inc. Hand held skin treatment device
US20110040287A1 (en) * 2007-11-12 2011-02-17 Jeff Ference Surgical liposuction instrument with radiant energy source
US20090254155A1 (en) * 2008-04-04 2009-10-08 Medical Quant Usa, Inc. Dba Multi Radiance Medical Therapeutic emitter retaining device
US9518288B2 (en) 2008-04-11 2016-12-13 University Of Utah Research Foundation Methods and compositions related to quantitative, array based methylation analysis
US20090275933A1 (en) * 2008-05-02 2009-11-05 Zelickson Brian D Laser energy devices and methods for soft tissue removal
KR100987386B1 (en) * 2008-05-15 2010-10-12 한국전자통신연구원 Multi-resonant fiber laser system
GB0812753D0 (en) * 2008-07-14 2008-08-20 Dougal Gordon R P Electromagnetic radiation and its therapeutic effect
EP2331153A4 (en) * 2008-08-25 2014-01-15 Laser Abrasive Technologies Llc Method and apparatus for regeneration of oral cavity tissues
EP2346428A4 (en) 2008-09-25 2017-08-16 Zeltiq Aesthetics Inc Treatment planning systems and methods for body contouring applications
KR20110101204A (en) 2008-12-24 2011-09-15 가이디드 테라피 시스템스, 엘.엘.씨. Methods and systems for fat reduction and/or cellulite treatment
US8167280B2 (en) * 2009-03-23 2012-05-01 Cabochon Aesthetics, Inc. Bubble generator having disposable bubble cartridges
WO2010142013A1 (en) * 2009-06-08 2010-12-16 Biolux Research Limited Method and device for accelerating orthodontic tooth movement
KR101049160B1 (en) 2009-07-06 2011-07-14 주식회사 루트로닉 Νd: YAG laser device
US8465471B2 (en) 2009-08-05 2013-06-18 Rocin Laboratories, Inc. Endoscopically-guided electro-cauterizing power-assisted fat aspiration system for aspirating visceral fat tissue within the abdomen of a patient
US8348929B2 (en) 2009-08-05 2013-01-08 Rocin Laboratories, Inc. Endoscopically-guided tissue aspiration system for safely removing fat tissue from a patient
US20110054543A1 (en) * 2009-08-31 2011-03-03 Warsaw Orthopedic, Inc. Locking mechanism
US20110190745A1 (en) * 2009-12-04 2011-08-04 Uebelhoer Nathan S Treatment of sweat glands
KR100963395B1 (en) 2009-12-16 2010-06-14 단국대학교 산학협력단 Method and apparatus for elliminating fat using infrared optical parametric oscillator laser
WO2011084863A3 (en) 2010-01-07 2011-11-17 Cheetah Omni, Llc Fiber lasers and mid-infrared light sources in methods and systems for selective biological tissue processing and spectroscopy
US8676338B2 (en) 2010-07-20 2014-03-18 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
US8439940B2 (en) 2010-12-22 2013-05-14 Cabochon Aesthetics, Inc. Dissection handpiece with aspiration means for reducing the appearance of cellulite
US9038640B2 (en) 2011-03-31 2015-05-26 Viora Ltd. System and method for fractional treatment of skin
US9314301B2 (en) 2011-08-01 2016-04-19 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
KR101322658B1 (en) * 2011-11-24 2013-10-30 주식회사 루트로닉 Apparatus for treating medical using laser
US9522289B2 (en) 2012-05-08 2016-12-20 The Regents Of The University Of California Selective fat removal using photothermal heating
EP2846872B1 (en) 2012-05-08 2017-08-30 The Regents of The University of California Fine spatiotemporal control of thermolysis and lipolysis using nir light
US9724122B2 (en) 2012-09-14 2017-08-08 The Spectranetics Corporation Expandable lead jacket
US20140125532A1 (en) * 2012-11-08 2014-05-08 University Of Utah Tattooed antennas
WO2014143276A3 (en) 2012-12-31 2015-01-22 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications
US9164032B2 (en) 2012-12-31 2015-10-20 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for detecting counterfeit or illicit drugs and pharmaceutical process control
US9291663B2 (en) 2013-03-13 2016-03-22 The Spectranetics Corporation Alarm for lead insulation abnormality
US9456872B2 (en) 2013-03-13 2016-10-04 The Spectranetics Corporation Laser ablation catheter
US9883885B2 (en) 2013-03-13 2018-02-06 The Spectranetics Corporation System and method of ablative cutting and pulsed vacuum aspiration
US9283040B2 (en) 2013-03-13 2016-03-15 The Spectranetics Corporation Device and method of ablative cutting with helical tip
USD765243S1 (en) 2015-02-20 2016-08-30 The Spectranetics Corporation Medical device handle
EP2967634A4 (en) 2013-03-15 2017-02-08 Spectranetics Corp Surgical instrument for removing an implanted object
US9668765B2 (en) 2013-03-15 2017-06-06 The Spectranetics Corporation Retractable blade for lead removal device
USD770616S1 (en) 2015-02-20 2016-11-01 The Spectranetics Corporation Medical device handle
US9918737B2 (en) 2013-03-15 2018-03-20 The Spectranetics Corporation Medical device for removing an implanted object
US9655926B1 (en) * 2013-08-23 2017-05-23 Amiya Prasad Treatment for hair thinning and hair loss
CN105682603A (en) 2013-10-22 2016-06-15 碧奥鲁克斯研究有限公司 Intra-oral light-therapy apparatuses and methods for their use
WO2017109667A1 (en) * 2015-12-22 2017-06-29 Quanta System S.P.A. Laser device for selective treatment of acne with reduced skin temperature increase

Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3327712A (en) * 1961-09-15 1967-06-27 Ira H Kaufman Photocoagulation type fiber optical surgical device
US3527932A (en) * 1967-11-16 1970-09-08 James J Thomas Transilluminating flashlight
US3693623A (en) * 1970-12-25 1972-09-26 Gregory System Inc Photocoagulation means and method for depilation
US3818914A (en) * 1972-04-17 1974-06-25 Spectroderm Inc Apparatus and method for treatment of skin disorders
US3834391A (en) * 1973-01-19 1974-09-10 Block Carol Ltd Method and apparatus for photoepilation
US3900034A (en) * 1974-04-10 1975-08-19 Us Energy Photochemical stimulation of nerves
US4273109A (en) * 1976-07-06 1981-06-16 Cavitron Corporation Fiber optic light delivery apparatus and medical instrument utilizing same
US4316467A (en) * 1980-06-23 1982-02-23 Lorenzo P. Maun Control for laser hemangioma treatment system
US4388924A (en) * 1981-05-21 1983-06-21 Weissman Howard R Method for laser depilation
US4461294A (en) * 1982-01-20 1984-07-24 Baron Neville A Apparatus and process for recurving the cornea of an eye
US4539987A (en) * 1980-02-27 1985-09-10 Nath Guenther Apparatus for coagulation by heat radiation
US4608978A (en) * 1983-09-26 1986-09-02 Carol Block Limited Method and apparatus for photoepiltion
US4695697A (en) * 1985-12-13 1987-09-22 Gv Medical, Inc. Fiber tip monitoring and protection assembly
US4718416A (en) * 1984-01-13 1988-01-12 Kabushiki Kaisha Toshiba Laser treatment apparatus
US4733660A (en) * 1984-08-07 1988-03-29 Medical Laser Research And Development Corporation Laser system for providing target specific energy deposition and damage
US4747660A (en) * 1983-08-12 1988-05-31 Olympus Optical Co., Ltd. Light transmitter
US4819669A (en) * 1985-03-29 1989-04-11 Politzer Eugene J Method and apparatus for shaving the beard
US4832024A (en) * 1986-04-29 1989-05-23 Georges Boussignac Cardio-vascular catheter for shooting a laser beam
US4860172A (en) * 1988-01-19 1989-08-22 Biotronics Associates, Inc. Lamp-based laser simulator
US4860744A (en) * 1987-11-02 1989-08-29 Raj K. Anand Thermoelectrically controlled heat medical catheter
US4917084A (en) * 1985-07-31 1990-04-17 C. R. Bard, Inc. Infrared laser catheter system
US4926227A (en) * 1986-08-01 1990-05-15 Nanometrics Inc. Sensor devices with internal packaged coolers
US4945239A (en) * 1989-03-29 1990-07-31 Center For Innovative Technology Early detection of breast cancer using transillumination
US5000752A (en) * 1985-12-13 1991-03-19 William J. Hoskin Treatment apparatus and method
US5108388A (en) * 1983-12-15 1992-04-28 Visx, Incorporated Laser surgery method
US5137530A (en) * 1985-09-27 1992-08-11 Sand Bruce J Collagen treatment apparatus
US5140984A (en) * 1983-10-06 1992-08-25 Proclosure, Inc. Laser healing method and apparatus
US5178617A (en) * 1991-07-09 1993-01-12 Laserscope System for controlled distribution of laser dosage
US5182557A (en) * 1989-09-20 1993-01-26 Semborg Recrob, Corp. Motorized joystick
US5182857A (en) * 1989-11-02 1993-02-02 U.S. Philips Corp. Shaving apparatus
US5196004A (en) * 1985-07-31 1993-03-23 C. R. Bard, Inc. Infrared laser catheter system
US5207671A (en) * 1991-04-02 1993-05-04 Franken Peter A Laser debridement of wounds
US5225926A (en) * 1991-09-04 1993-07-06 International Business Machines Corporation Durable optical elements fabricated from free standing polycrystalline diamond and non-hydrogenated amorphous diamond like carbon (dlc) thin films
US5226907A (en) * 1991-10-29 1993-07-13 Tankovich Nikolai I Hair removal device and method
US5282797A (en) * 1989-05-30 1994-02-01 Cyrus Chess Method for treating cutaneous vascular lesions
US5300097A (en) * 1991-02-13 1994-04-05 Lerner Ethan A Fiber optic psoriasis treatment device
US5304170A (en) * 1993-03-12 1994-04-19 Green Howard A Method of laser-induced tissue necrosis in carotenoid-containing skin structures
US5306274A (en) * 1991-12-23 1994-04-26 Laser Centers Of America Laser-powered high temperature energy delivery tip element with throughflow of vaporized materials and electrocauterization capability
US5320618A (en) * 1990-04-09 1994-06-14 Morgan Gustafsson Device for treatment of undesired skin disfigurements
US5334191A (en) * 1992-05-21 1994-08-02 Dix Phillip Poppas Laser tissue welding control system
US5334193A (en) * 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5344418A (en) * 1991-12-12 1994-09-06 Shahriar Ghaffari Optical system for treatment of vascular lesions
US5380317A (en) * 1988-06-10 1995-01-10 Trimedyne Laser Systems, Inc. Medical device applying localized high intensity light and heat, particularly for destruction of the endometrium
US5403306A (en) * 1993-06-22 1995-04-04 Vanderbilt University Laser surgery method
US5405368A (en) * 1992-10-20 1995-04-11 Esc Inc. Method and apparatus for therapeutic electromagnetic treatment
US5415654A (en) * 1993-10-05 1995-05-16 S.L.T. Japan Co., Ltd. Laser balloon catheter apparatus
US5425728A (en) * 1991-10-29 1995-06-20 Tankovich; Nicolai I. Hair removal device and method
US5486172A (en) * 1989-05-30 1996-01-23 Chess; Cyrus Apparatus for treating cutaneous vascular lesions
US5505726A (en) * 1994-03-21 1996-04-09 Dusa Pharmaceuticals, Inc. Article of manufacture for the photodynamic therapy of dermal lesion
US5505727A (en) * 1991-09-25 1996-04-09 Keller; Gregory S. Method of laser cosmetic surgery
US5519534A (en) * 1994-05-25 1996-05-21 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Irradiance attachment for an optical fiber to provide a uniform level of illumination across a plane
US5522813A (en) * 1994-09-23 1996-06-04 Coherent, Inc. Method of treating veins
US5531739A (en) * 1994-09-23 1996-07-02 Coherent, Inc. Method of treating veins
US5595568A (en) * 1995-02-01 1997-01-21 The General Hospital Corporation Permanent hair removal using optical pulses
US5616140A (en) * 1994-03-21 1997-04-01 Prescott; Marvin Method and apparatus for therapeutic laser treatment
US5620478A (en) * 1992-10-20 1997-04-15 Esc Medical Systems Ltd. Method and apparatus for therapeutic electromagnetic treatment
US5626631A (en) * 1992-10-20 1997-05-06 Esc Medical Systems Ltd. Method and apparatus for therapeutic electromagnetic treatment
US5630811A (en) * 1996-03-25 1997-05-20 Miller; Iain D. Method and apparatus for hair removal
US5649972A (en) * 1993-11-22 1997-07-22 Hochstein; Peter A. Infrared heating apparatus
US5655547A (en) * 1996-05-15 1997-08-12 Esc Medical Systems Ltd. Method for laser surgery
US5658323A (en) * 1995-07-12 1997-08-19 Miller; Iain D. Method and apparatus for dermatology treatment
US5707403A (en) * 1993-02-24 1998-01-13 Star Medical Technologies, Inc. Method for the laser treatment of subsurface blood vessels
US5720772A (en) * 1992-10-20 1998-02-24 Esc Medical Systems Ltd. Method and apparatus for therapeutic electromagnetic treatment
US5735884A (en) * 1994-10-04 1998-04-07 Medtronic, Inc. Filtered feedthrough assembly for implantable medical device
US5735844A (en) * 1995-02-01 1998-04-07 The General Hospital Corporation Hair removal using optical pulses
US5743901A (en) * 1996-05-15 1998-04-28 Star Medical Technologies, Inc. High fluence diode laser device and method for the fabrication and use thereof
US5759200A (en) * 1996-09-04 1998-06-02 Azar; Zion Method of selective photothermolysis
US5782249A (en) * 1996-09-30 1998-07-21 Weber; Paul J. Laser manicure process
US5885274A (en) * 1997-06-24 1999-03-23 New Star Lasers, Inc. Filament lamp for dermatological treatment
US5885273A (en) * 1995-03-29 1999-03-23 Esc Medical Systems, Ltd. Method for depilation using pulsed electromagnetic radiation
US5885211A (en) * 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
US5891063A (en) * 1997-04-03 1999-04-06 Vigil; Arlene Skin rejuvinating system
US5913883A (en) * 1996-08-06 1999-06-22 Alexander; Dane Therapeutic facial mask
US5944748A (en) * 1996-07-25 1999-08-31 Light Medicine, Inc. Photodynamic therapy apparatus and methods
US6015404A (en) * 1996-12-02 2000-01-18 Palomar Medical Technologies, Inc. Laser dermatology with feedback control
US6027495A (en) * 1995-07-12 2000-02-22 Esc Medical Systems Ltd. Method and apparatus for dermatology treatment
US6050990A (en) * 1996-12-05 2000-04-18 Thermolase Corporation Methods and devices for inhibiting hair growth and related skin treatments
US6056738A (en) * 1997-01-31 2000-05-02 Transmedica International, Inc. Interstitial fluid monitoring
US6059820A (en) * 1998-10-16 2000-05-09 Paradigm Medical Corporation Tissue cooling rod for laser surgery
US6074382A (en) * 1997-08-29 2000-06-13 Asah Medico A/S Apparatus for tissue treatment
US6080146A (en) * 1998-02-24 2000-06-27 Altshuler; Gregory Method and apparatus for hair removal
US6096029A (en) * 1997-02-24 2000-08-01 Laser Skin Toner, Inc. Laser method for subsurface cutaneous treatment
US6096209A (en) * 1998-11-25 2000-08-01 Aws Industries, L.L.C. Three media silver recovery apparatus
US6104959A (en) * 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
US6235016B1 (en) * 1999-03-16 2001-05-22 Bob W. Stewart Method of reducing sebum production by application of pulsed light
US6267780B1 (en) * 1999-03-23 2001-07-31 Jackson Streeter Method for treating musculoskeletal injury
US6273885B1 (en) * 1997-08-16 2001-08-14 Cooltouch Corporation Handheld photoepilation device and method
US6273884B1 (en) * 1997-05-15 2001-08-14 Palomar Medical Technologies, Inc. Method and apparatus for dermatology treatment
US6280438B1 (en) * 1992-10-20 2001-08-28 Esc Medical Systems Ltd. Method and apparatus for electromagnetic treatment of the skin, including hair depilation
US20020026225A1 (en) * 1992-04-24 2002-02-28 Segal Kim Robin Diode laser irradiation and electrotherapy system for biological tissue stimulation
US6354370B1 (en) * 1999-12-16 2002-03-12 The United States Of America As Represented By The Secretary Of The Air Force Liquid spray phase-change cooling of laser devices
US6508813B1 (en) * 1996-12-02 2003-01-21 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US6517532B1 (en) * 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US6605080B1 (en) * 1998-03-27 2003-08-12 The General Hospital Corporation Method and apparatus for the selective targeting of lipid-rich tissues

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3538919A (en) 1967-04-07 1970-11-10 Gregory System Inc Depilation by means of laser energy
US3622743A (en) 1969-04-28 1971-11-23 Hrand M Muncheryan Laser eraser and microwelder
GB1485908A (en) 1974-05-21 1977-09-14 Nath G Apparatus for applying light radiation
DE7906381U1 (en) 1979-03-08 1979-07-12 Richard Wolf Gmbh, 7134 Knittlingen Lighting for surgical and examination fields
GB2123287B (en) 1982-07-09 1986-03-05 Anna Gunilla Sutton Depilaton device
FR2591902B1 (en) 1985-12-23 1989-06-30 Collin Yvon Apparatus external Lasertherapie comprising one or more laser diodes in the suction cups
DE3837248A1 (en) 1988-10-28 1990-05-03 Teichmann Heinrich Otto Dr Phy Device for treating skin lesions
US5263951A (en) 1989-04-21 1993-11-23 Kerus Medical Systems Correction of the optical focusing system of the eye using laser thermal keratoplasty
US5059192A (en) 1990-04-24 1991-10-22 Nardo Zaias Method of hair depilation
US5071417A (en) 1990-06-15 1991-12-10 Rare Earth Medical Lasers, Inc. Laser fusion of biological materials
US5065515A (en) 1991-01-24 1991-11-19 Warner-Lambert Company Thermally assisted shaving system
RU2122848C1 (en) 1991-06-24 1998-12-10 Учебно-научно-производственный лазерный центр Санкт-Петербургского института точной механики и оптики Reflexotherapy device
US5474549A (en) 1991-07-09 1995-12-12 Laserscope Method and system for scanning a laser beam for controlled distribution of laser dosage
US5817089A (en) 1991-10-29 1998-10-06 Thermolase Corporation Skin treatment process using laser
CA2093055C (en) 1992-04-09 2002-02-19 Shimon Eckhouse Method and apparatus for therapeutic electromagnetic treatment
US5292320A (en) 1992-07-06 1994-03-08 Ceramoptec, Inc. Radial medical laser delivery device
DE69311478T2 (en) 1992-09-07 1998-01-02 Philips Electronics Nv A process for producing a block-shaped support body for a semiconductor component
US5350376A (en) 1993-04-16 1994-09-27 Ceramoptec, Inc. Optical controller device
RU2089126C1 (en) 1994-04-11 1997-09-10 Учебно-научно-производственный "Лазерный центр" Института точной механики и оптики Method of treatment of tooth hard tissues by laser radiation and device for its realization
US5586132A (en) * 1994-07-27 1996-12-17 Laser Industries Ltd. Method and apparatus for generating bright light sources
US5698866A (en) 1994-09-19 1997-12-16 Pdt Systems, Inc. Uniform illuminator for phototherapy
US5662643A (en) 1994-09-28 1997-09-02 Abiomed R & D, Inc. Laser welding system
RU2089127C1 (en) 1994-11-02 1997-09-10 Григорий Борисович Альтшулер Method of treatment of tooth hard tissues by laser radiation and device for its realization
GB9514872D0 (en) * 1994-12-14 1995-09-20 Brine Lee Optical fibre laser delivery probe and use thereof
US5643334A (en) 1995-02-07 1997-07-01 Esc Medical Systems Ltd. Method and apparatus for the diagnostic and composite pulsed heating and photodynamic therapy treatment
RU2096051C1 (en) 1995-02-24 1997-11-20 Григорий Борисович Альтшулер Apparatus for laser treatment of biological tissues (alternative embodiments)
US5683380A (en) 1995-03-29 1997-11-04 Esc Medical Systems Ltd. Method and apparatus for depilation using pulsed electromagnetic radiation
RU2082337C1 (en) 1995-04-10 1997-06-27 Григорий Борисович Альтшулер Tip piece of laser system for treating biological tissue
US6241753B1 (en) 1995-05-05 2001-06-05 Thermage, Inc. Method for scar collagen formation and contraction
US5964749A (en) 1995-09-15 1999-10-12 Esc Medical Systems Ltd. Method and apparatus for skin rejuvenation and wrinkle smoothing
US5836999A (en) 1995-09-28 1998-11-17 Esc Medical Systems Ltd. Method and apparatus for treating psoriasis using pulsed electromagnetic radiation
US5776175A (en) 1995-09-29 1998-07-07 Esc Medical Systems Ltd. Method and apparatus for treatment of cancer using pulsed electromagnetic radiation
US5824023A (en) 1995-10-12 1998-10-20 The General Hospital Corporation Radiation-delivery device
US5849029A (en) 1995-12-26 1998-12-15 Esc Medical Systems, Ltd. Method for controlling the thermal profile of the skin
US5954710A (en) * 1996-02-13 1999-09-21 El.En. S.P.A. Device and method for eliminating adipose layers by means of laser energy
US5662644A (en) 1996-05-14 1997-09-02 Mdlt, Inc. Dermatological laser apparatus and method
US5820626A (en) 1996-07-30 1998-10-13 Laser Aesthetics, Inc. Cooling laser handpiece with refillable coolant reservoir
WO1998005380A1 (en) * 1996-08-06 1998-02-12 Knowlton Edward W Method for tightening skin
JP3036232U (en) 1996-09-26 1997-04-15 ヤーマン株式会社 Light hair removal device
US5830208A (en) 1997-01-31 1998-11-03 Laserlite, Llc Peltier cooled apparatus and methods for dermatological treatment
US5810801A (en) 1997-02-05 1998-09-22 Candela Corporation Method and apparatus for treating wrinkles in skin using radiation
US5968034A (en) 1997-06-24 1999-10-19 Laser Aesthetics, Inc. Pulsed filament lamp for dermatological treatment
US5968033A (en) 1997-11-03 1999-10-19 Fuller Research Corporation Optical delivery system and method for subsurface tissue irradiation
US6149644A (en) * 1998-02-17 2000-11-21 Altralight, Inc. Method and apparatus for epidermal treatment with computer controlled moving focused infrared light
DE19914108A1 (en) 1999-03-23 2000-10-05 Plasmaphotonics Gmbh Irradiation device, in particular for optical thermolysis
GB2360946B (en) 2000-04-08 2002-06-12 Lynton Lasers Ltd Dermatological treatment apparatus

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3327712A (en) * 1961-09-15 1967-06-27 Ira H Kaufman Photocoagulation type fiber optical surgical device
US3527932A (en) * 1967-11-16 1970-09-08 James J Thomas Transilluminating flashlight
US3693623A (en) * 1970-12-25 1972-09-26 Gregory System Inc Photocoagulation means and method for depilation
US3818914A (en) * 1972-04-17 1974-06-25 Spectroderm Inc Apparatus and method for treatment of skin disorders
US3834391A (en) * 1973-01-19 1974-09-10 Block Carol Ltd Method and apparatus for photoepilation
US3900034A (en) * 1974-04-10 1975-08-19 Us Energy Photochemical stimulation of nerves
US4273109A (en) * 1976-07-06 1981-06-16 Cavitron Corporation Fiber optic light delivery apparatus and medical instrument utilizing same
US4539987A (en) * 1980-02-27 1985-09-10 Nath Guenther Apparatus for coagulation by heat radiation
US4316467A (en) * 1980-06-23 1982-02-23 Lorenzo P. Maun Control for laser hemangioma treatment system
US4388924A (en) * 1981-05-21 1983-06-21 Weissman Howard R Method for laser depilation
US4461294A (en) * 1982-01-20 1984-07-24 Baron Neville A Apparatus and process for recurving the cornea of an eye
US4747660A (en) * 1983-08-12 1988-05-31 Olympus Optical Co., Ltd. Light transmitter
US4608978A (en) * 1983-09-26 1986-09-02 Carol Block Limited Method and apparatus for photoepiltion
US5140984A (en) * 1983-10-06 1992-08-25 Proclosure, Inc. Laser healing method and apparatus
US5108388A (en) * 1983-12-15 1992-04-28 Visx, Incorporated Laser surgery method
US5108388B1 (en) * 1983-12-15 2000-09-19 Visx Inc Laser surgery method
US4718416A (en) * 1984-01-13 1988-01-12 Kabushiki Kaisha Toshiba Laser treatment apparatus
US4733660A (en) * 1984-08-07 1988-03-29 Medical Laser Research And Development Corporation Laser system for providing target specific energy deposition and damage
US4819669A (en) * 1985-03-29 1989-04-11 Politzer Eugene J Method and apparatus for shaving the beard
US5196004A (en) * 1985-07-31 1993-03-23 C. R. Bard, Inc. Infrared laser catheter system
US4917084A (en) * 1985-07-31 1990-04-17 C. R. Bard, Inc. Infrared laser catheter system
US5137530A (en) * 1985-09-27 1992-08-11 Sand Bruce J Collagen treatment apparatus
US5000752A (en) * 1985-12-13 1991-03-19 William J. Hoskin Treatment apparatus and method
US4695697A (en) * 1985-12-13 1987-09-22 Gv Medical, Inc. Fiber tip monitoring and protection assembly
US4832024A (en) * 1986-04-29 1989-05-23 Georges Boussignac Cardio-vascular catheter for shooting a laser beam
US4926227A (en) * 1986-08-01 1990-05-15 Nanometrics Inc. Sensor devices with internal packaged coolers
US4860744A (en) * 1987-11-02 1989-08-29 Raj K. Anand Thermoelectrically controlled heat medical catheter
US4860172A (en) * 1988-01-19 1989-08-22 Biotronics Associates, Inc. Lamp-based laser simulator
US5380317A (en) * 1988-06-10 1995-01-10 Trimedyne Laser Systems, Inc. Medical device applying localized high intensity light and heat, particularly for destruction of the endometrium
US4945239A (en) * 1989-03-29 1990-07-31 Center For Innovative Technology Early detection of breast cancer using transillumination
US5486172A (en) * 1989-05-30 1996-01-23 Chess; Cyrus Apparatus for treating cutaneous vascular lesions
US5282797A (en) * 1989-05-30 1994-02-01 Cyrus Chess Method for treating cutaneous vascular lesions
US5182557A (en) * 1989-09-20 1993-01-26 Semborg Recrob, Corp. Motorized joystick
US5182857A (en) * 1989-11-02 1993-02-02 U.S. Philips Corp. Shaving apparatus
US5320618A (en) * 1990-04-09 1994-06-14 Morgan Gustafsson Device for treatment of undesired skin disfigurements
US5300097A (en) * 1991-02-13 1994-04-05 Lerner Ethan A Fiber optic psoriasis treatment device
US5207671A (en) * 1991-04-02 1993-05-04 Franken Peter A Laser debridement of wounds
US5178617A (en) * 1991-07-09 1993-01-12 Laserscope System for controlled distribution of laser dosage
US5225926A (en) * 1991-09-04 1993-07-06 International Business Machines Corporation Durable optical elements fabricated from free standing polycrystalline diamond and non-hydrogenated amorphous diamond like carbon (dlc) thin films
US5505727A (en) * 1991-09-25 1996-04-09 Keller; Gregory S. Method of laser cosmetic surgery
US5226907A (en) * 1991-10-29 1993-07-13 Tankovich Nikolai I Hair removal device and method
US5425728A (en) * 1991-10-29 1995-06-20 Tankovich; Nicolai I. Hair removal device and method
USRE36634E (en) * 1991-12-12 2000-03-28 Ghaffari; Shahriar Optical system for treatment of vascular lesions
US5344418A (en) * 1991-12-12 1994-09-06 Shahriar Ghaffari Optical system for treatment of vascular lesions
US5306274A (en) * 1991-12-23 1994-04-26 Laser Centers Of America Laser-powered high temperature energy delivery tip element with throughflow of vaporized materials and electrocauterization capability
US20020026225A1 (en) * 1992-04-24 2002-02-28 Segal Kim Robin Diode laser irradiation and electrotherapy system for biological tissue stimulation
US5334191A (en) * 1992-05-21 1994-08-02 Dix Phillip Poppas Laser tissue welding control system
US5405368A (en) * 1992-10-20 1995-04-11 Esc Inc. Method and apparatus for therapeutic electromagnetic treatment
US6174325B1 (en) * 1992-10-20 2001-01-16 Esc Medical Systems Ltd. Method and apparatus for therapeutic electromagnetic treatment
US6280438B1 (en) * 1992-10-20 2001-08-28 Esc Medical Systems Ltd. Method and apparatus for electromagnetic treatment of the skin, including hair depilation
US5620478A (en) * 1992-10-20 1997-04-15 Esc Medical Systems Ltd. Method and apparatus for therapeutic electromagnetic treatment
US5755751A (en) * 1992-10-20 1998-05-26 Esc Medical Systems Ltd. Method and apparatus for therapeutic electromagnetic treatment
US5626631A (en) * 1992-10-20 1997-05-06 Esc Medical Systems Ltd. Method and apparatus for therapeutic electromagnetic treatment
US5720772A (en) * 1992-10-20 1998-02-24 Esc Medical Systems Ltd. Method and apparatus for therapeutic electromagnetic treatment
US5334193A (en) * 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5707403A (en) * 1993-02-24 1998-01-13 Star Medical Technologies, Inc. Method for the laser treatment of subsurface blood vessels
US5304170A (en) * 1993-03-12 1994-04-19 Green Howard A Method of laser-induced tissue necrosis in carotenoid-containing skin structures
US5403306A (en) * 1993-06-22 1995-04-04 Vanderbilt University Laser surgery method
US5415654A (en) * 1993-10-05 1995-05-16 S.L.T. Japan Co., Ltd. Laser balloon catheter apparatus
US5885211A (en) * 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
US5649972A (en) * 1993-11-22 1997-07-22 Hochstein; Peter A. Infrared heating apparatus
US5616140A (en) * 1994-03-21 1997-04-01 Prescott; Marvin Method and apparatus for therapeutic laser treatment
US5505726A (en) * 1994-03-21 1996-04-09 Dusa Pharmaceuticals, Inc. Article of manufacture for the photodynamic therapy of dermal lesion
US5519534A (en) * 1994-05-25 1996-05-21 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Irradiance attachment for an optical fiber to provide a uniform level of illumination across a plane
US5522813A (en) * 1994-09-23 1996-06-04 Coherent, Inc. Method of treating veins
US5531739A (en) * 1994-09-23 1996-07-02 Coherent, Inc. Method of treating veins
US5735884A (en) * 1994-10-04 1998-04-07 Medtronic, Inc. Filtered feedthrough assembly for implantable medical device
US5735844A (en) * 1995-02-01 1998-04-07 The General Hospital Corporation Hair removal using optical pulses
US5595568A (en) * 1995-02-01 1997-01-21 The General Hospital Corporation Permanent hair removal using optical pulses
US5885273A (en) * 1995-03-29 1999-03-23 Esc Medical Systems, Ltd. Method for depilation using pulsed electromagnetic radiation
US6027495A (en) * 1995-07-12 2000-02-22 Esc Medical Systems Ltd. Method and apparatus for dermatology treatment
US5658323A (en) * 1995-07-12 1997-08-19 Miller; Iain D. Method and apparatus for dermatology treatment
US5630811A (en) * 1996-03-25 1997-05-20 Miller; Iain D. Method and apparatus for hair removal
US5655547A (en) * 1996-05-15 1997-08-12 Esc Medical Systems Ltd. Method for laser surgery
US5743901A (en) * 1996-05-15 1998-04-28 Star Medical Technologies, Inc. High fluence diode laser device and method for the fabrication and use thereof
US5944748A (en) * 1996-07-25 1999-08-31 Light Medicine, Inc. Photodynamic therapy apparatus and methods
US5913883A (en) * 1996-08-06 1999-06-22 Alexander; Dane Therapeutic facial mask
US6197020B1 (en) * 1996-08-12 2001-03-06 Sublase, Inc. Laser apparatus for subsurface cutaneous treatment
US5759200A (en) * 1996-09-04 1998-06-02 Azar; Zion Method of selective photothermolysis
US5782249A (en) * 1996-09-30 1998-07-21 Weber; Paul J. Laser manicure process
US6508813B1 (en) * 1996-12-02 2003-01-21 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US6015404A (en) * 1996-12-02 2000-01-18 Palomar Medical Technologies, Inc. Laser dermatology with feedback control
US6050990A (en) * 1996-12-05 2000-04-18 Thermolase Corporation Methods and devices for inhibiting hair growth and related skin treatments
US6056738A (en) * 1997-01-31 2000-05-02 Transmedica International, Inc. Interstitial fluid monitoring
US6096029A (en) * 1997-02-24 2000-08-01 Laser Skin Toner, Inc. Laser method for subsurface cutaneous treatment
US5891063A (en) * 1997-04-03 1999-04-06 Vigil; Arlene Skin rejuvinating system
US6517532B1 (en) * 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US6511475B1 (en) * 1997-05-15 2003-01-28 The General Hospital Corporation Heads for dermatology treatment
US6273884B1 (en) * 1997-05-15 2001-08-14 Palomar Medical Technologies, Inc. Method and apparatus for dermatology treatment
US5885274A (en) * 1997-06-24 1999-03-23 New Star Lasers, Inc. Filament lamp for dermatological treatment
US6104959A (en) * 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
US6273885B1 (en) * 1997-08-16 2001-08-14 Cooltouch Corporation Handheld photoepilation device and method
US6074382A (en) * 1997-08-29 2000-06-13 Asah Medico A/S Apparatus for tissue treatment
US6080146A (en) * 1998-02-24 2000-06-27 Altshuler; Gregory Method and apparatus for hair removal
US6605080B1 (en) * 1998-03-27 2003-08-12 The General Hospital Corporation Method and apparatus for the selective targeting of lipid-rich tissues
US6059820A (en) * 1998-10-16 2000-05-09 Paradigm Medical Corporation Tissue cooling rod for laser surgery
US6096209A (en) * 1998-11-25 2000-08-01 Aws Industries, L.L.C. Three media silver recovery apparatus
US6235016B1 (en) * 1999-03-16 2001-05-22 Bob W. Stewart Method of reducing sebum production by application of pulsed light
US6267780B1 (en) * 1999-03-23 2001-07-31 Jackson Streeter Method for treating musculoskeletal injury
US6354370B1 (en) * 1999-12-16 2002-03-12 The United States Of America As Represented By The Secretary Of The Air Force Liquid spray phase-change cooling of laser devices

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8328794B2 (en) 1996-12-02 2012-12-11 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US8328796B2 (en) 1997-05-15 2012-12-11 Palomar Medical Technologies, Inc. Light energy delivery head
US7758621B2 (en) 1997-05-15 2010-07-20 Palomar Medical Technologies, Inc. Method and apparatus for therapeutic EMR treatment on the skin
US7763016B2 (en) 1997-05-15 2010-07-27 Palomar Medical Technologies, Inc. Light energy delivery head
US8002768B1 (en) 1997-05-15 2011-08-23 Palomar Medical Technologies, Inc. Light energy delivery head
US8109924B2 (en) 1997-05-15 2012-02-07 Palomar Medical Technologies, Inc. Heads for dermatology treatment
US7935107B2 (en) 1997-05-15 2011-05-03 Palomar Medical Technologies, Inc. Heads for dermatology treatment
US20060020265A1 (en) * 1997-09-09 2006-01-26 Ryan Thomas P Apparatus and method for sealing and cutting tissue
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
US9649220B2 (en) * 2002-03-15 2017-05-16 The General Hospital Corporation Treatment systems for removing heat from subcutaneous lipid-rich cells
US20130253496A1 (en) * 2002-03-15 2013-09-26 The General Hospital Corporation Treatment systems for removing heat from subcutaneous lipid-rich cells
US7942916B2 (en) 2002-05-23 2011-05-17 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
US7942915B2 (en) 2002-05-23 2011-05-17 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants
US8915948B2 (en) 2002-06-19 2014-12-23 Palomar Medical Technologies, Llc Method and apparatus for photothermal treatment of tissue at depth
US8551104B2 (en) 2003-02-25 2013-10-08 Tria Beauty, Inc. Self-contained, diode-laser-based dermatologic treatment apparatus
US8709003B2 (en) 2003-02-25 2014-04-29 Tria Beauty, Inc. Capacitive sensing method and device for detecting skin
US7981111B2 (en) 2003-02-25 2011-07-19 Tria Beauty, Inc. Method and apparatus for the treatment of benign pigmented lesions
US7722600B2 (en) 2003-08-25 2010-05-25 Cutera, Inc. System and method for heating skin using light to provide tissue treatment
US8915906B2 (en) 2003-08-25 2014-12-23 Cutera, Inc. Method for treatment of post-partum abdominal skin redundancy or laxity
US8870856B2 (en) 2003-08-25 2014-10-28 Cutera, Inc. Method for heating skin using light to provide tissue treatment
US7780652B2 (en) 2003-12-22 2010-08-24 Cutera, Inc. System and method for flexible architecture for dermatologic treatments utilizing multiple light sources
US20050154381A1 (en) * 2003-12-31 2005-07-14 Altshuler Gregory B. Dermatological treatment with visualization
US8777935B2 (en) 2004-02-25 2014-07-15 Tria Beauty, Inc. Optical sensor and method for identifying the presence of skin
US8268332B2 (en) 2004-04-01 2012-09-18 The General Hospital Corporation Method for dermatological treatment using chromophores
US9452013B2 (en) 2004-04-01 2016-09-27 The General Hospital Corporation Apparatus for dermatological treatment using chromophores
US7842029B2 (en) 2004-05-07 2010-11-30 Aesthera Apparatus and method having a cooling material and reduced pressure to treat biological external tissue
US20060189964A1 (en) * 2004-05-07 2006-08-24 Anderson Robert S Apparatus and method to apply substances to tissue
US20050251118A1 (en) * 2004-05-07 2005-11-10 Anderson Robert S Apparatus and method having a cooling material and reduced pressure to treat biological external tissue
US8571648B2 (en) * 2004-05-07 2013-10-29 Aesthera Apparatus and method to apply substances to tissue
US20080119831A1 (en) * 2005-03-02 2008-05-22 Meridian Co., Ltd. Adipose resolve apparatus for low-power laser
US8771326B2 (en) * 2005-03-02 2014-07-08 Yolo Medical Inc. Adipose resolve apparatus for low-power laser
US8346347B2 (en) 2005-09-15 2013-01-01 Palomar Medical Technologies, Inc. Skin optical characterization device
US20070173749A1 (en) * 2006-01-20 2007-07-26 Biocellulase, Inc. Mechanical massage device
US8276592B2 (en) 2006-03-03 2012-10-02 Cutera, Inc. Aesthetic treatment for wrinkle reduction and rejuvenation
US20110004200A1 (en) * 2006-03-03 2011-01-06 Cutera, Inc. Aesthetic treatment for wrinkle reduction and rejuvenation
US20070265604A1 (en) * 2006-03-03 2007-11-15 Davenport Scott A Aesthetic treatment for wrinkle reduction and rejuvenation
US7814915B2 (en) * 2006-03-03 2010-10-19 Cutera, Inc. Aesthetic treatment for wrinkle reduction and rejuvenation
US8656931B2 (en) 2006-03-03 2014-02-25 Cutera, Inc. Aesthetic treatment for wrinkle reduction and rejuvenation
US20090048514A1 (en) * 2006-03-09 2009-02-19 Slender Medical Ltd. Device for ultrasound monitored tissue treatment
US20070239236A1 (en) * 2006-04-07 2007-10-11 The General Hospital Corporation Method and apparatus for producing thermal damage within the skin
US20080071258A1 (en) * 2006-04-12 2008-03-20 Vladimir Lemberg System and method for microablation of tissue
US20110077627A1 (en) * 2006-04-12 2011-03-31 Vladimir Lemberg System and method for Microablation of tissue
US9078680B2 (en) 2006-04-12 2015-07-14 Lumenis Ltd. System and method for microablation of tissue
US8496696B2 (en) 2006-04-12 2013-07-30 Lumenis Ltd. System and method for microablation of tissue
US9028536B2 (en) 2006-08-02 2015-05-12 Cynosure, Inc. Picosecond laser apparatus and methods for its operation and use
US20080082091A1 (en) * 2006-09-10 2008-04-03 Vladimir Rubtsov Fiber optic tissue ablation
US9375345B2 (en) 2006-09-26 2016-06-28 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US20080215040A1 (en) * 2007-03-02 2008-09-04 Paithankar Dilip Y Variable depth skin heating with lasers
US20090012434A1 (en) * 2007-07-03 2009-01-08 Anderson Robert S Apparatus, method, and system to treat a volume of skin
US9655770B2 (en) 2007-07-13 2017-05-23 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US9408745B2 (en) 2007-08-21 2016-08-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US20090069795A1 (en) * 2007-09-10 2009-03-12 Anderson Robert S Apparatus and method for selective treatment of tissue
US20090093864A1 (en) * 2007-10-08 2009-04-09 Anderson Robert S Methods and devices for applying energy to tissue
US9687671B2 (en) 2008-04-25 2017-06-27 Channel Investments, Llc Optical sensor and method for identifying the presence of skin and the pigmentation of skin
US9737434B2 (en) 2008-12-17 2017-08-22 Zeltiq Aestehtics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US9861520B2 (en) 2009-04-30 2018-01-09 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
US9844461B2 (en) 2010-01-25 2017-12-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants
US9314368B2 (en) 2010-01-25 2016-04-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods
US9780518B2 (en) 2012-04-18 2017-10-03 Cynosure, Inc. Picosecond laser apparatus and methods for treating target tissues with same
US9480529B2 (en) * 2012-06-22 2016-11-01 S & Y Enterprises Llc Aesthetic treatment device and method
US20130345685A1 (en) * 2012-06-22 2013-12-26 Epilady 2000, Llc Aesthetic treatment device and method
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9861421B2 (en) 2014-01-31 2018-01-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue

Also Published As

Publication number Publication date Type
EP2263749A3 (en) 2012-09-26 application
EP2263749A2 (en) 2010-12-22 application
CA2326120C (en) 2015-01-13 grant
US7060061B2 (en) 2006-06-13 grant
EP1066086A4 (en) 2007-08-15 application
CA2326120A1 (en) 1999-10-07 application
ES2403359T3 (en) 2013-05-17 grant
EP1066086A1 (en) 2001-01-10 application
US20040034341A1 (en) 2004-02-19 application
US6605080B1 (en) 2003-08-12 grant
EP2263749B1 (en) 2017-06-21 grant
WO1999049937A1 (en) 1999-10-07 application
ES2640937T3 (en) 2017-11-07 grant
EP1066086B1 (en) 2013-01-02 grant

Similar Documents

Publication Publication Date Title
Fitzpatrick et al. The depth of thermal necrosis using the CO2 laser: a comparison of the superpulsed mode and conventional mode
US5836999A (en) Method and apparatus for treating psoriasis using pulsed electromagnetic radiation
US6203540B1 (en) Ultrasound and laser face-lift and bulbous lysing device
Geronemus Fractional photothermolysis: current and future applications
US6080147A (en) Method of employing a flashlamp for removal of hair, veins and capillaries
Hobbs et al. Superpulsed lasers: minimizing thermal damage with short duration, high irradiance pulses
US6315772B1 (en) Laser assisted pharmaceutical delivery and fluid removal
US6408212B1 (en) Method for treating acne
US6485484B1 (en) Hair removal device
US6569156B1 (en) Medical cosmetic laser with second wavelength enhancement
US6413253B1 (en) Subsurface heating of material
US5059192A (en) Method of hair depilation
US6168590B1 (en) Method for permanent hair removal
US6083217A (en) Destruction for unwanted tissue by deep laser heating of water
US20050107852A1 (en) Methods and devices for non-ablative laser treatment of dermatologic conditions
US20040230258A1 (en) Method and apparatus for treating pseudofolliculitis barbae
US5527350A (en) Pulsed infrared laser treatment of psoriasis
US20080132886A1 (en) Use of fractional emr technology on incisions and internal tissues
US20060155266A1 (en) Method and apparatus for dermatological treatment and fractional skin resurfacing
US5968034A (en) Pulsed filament lamp for dermatological treatment
US20070293849A1 (en) Treatment of cellulite and adipose tissue with mid-infrared radiation
US6355054B1 (en) Laser system for improved transbarrier therapeutic radiation delivery
US6149645A (en) Apparatus and method employing lasers for removal of hair
US6228075B1 (en) Alexandrite laser system for hair removal
US6277111B1 (en) Depilation