US20030176893A1 - Metallized film capacitor for use in implantable defibrillator - Google Patents

Metallized film capacitor for use in implantable defibrillator Download PDF

Info

Publication number
US20030176893A1
US20030176893A1 US10/358,877 US35887703A US2003176893A1 US 20030176893 A1 US20030176893 A1 US 20030176893A1 US 35887703 A US35887703 A US 35887703A US 2003176893 A1 US2003176893 A1 US 2003176893A1
Authority
US
United States
Prior art keywords
layer
capacitor
film
layers
metallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/358,877
Inventor
Mohammed Munshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intermedics Inc
Original Assignee
Intermedics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intermedics Inc filed Critical Intermedics Inc
Priority to US10/358,877 priority Critical patent/US20030176893A1/en
Publication of US20030176893A1 publication Critical patent/US20030176893A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/015Special provisions for self-healing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Definitions

  • the present invention relates generally to electrical energy storage capacitors, and more particularly to energy storage capacitors suitable for use in an implantable cardiac defibrillator.
  • Implantable defibrillators are implanted in patients who are at risk of suffering cardiac arrhythmias, such as ventricular fibrillation, that can cause sudden death.
  • the defibrillator detects the occurrence of ventricular fibrillation and automatically delivers defibrillating therapy in the form of a high-energy shock to the cardiac tissue.
  • Implantable defibrillators in their most general form include appropriate electrical leads and electrodes for collecting electrical signals generated by the heart, and for delivering electric shocks to the heart. Also included are batteries and energy storage capacitors, and control circuitry connected to the leads, batteries and capacitors. The control circuitry senses the electrical activity of the heart and controls the charging of the capacitors and the delivery of the shocks through the leads to the heart.
  • Defibrillation therapy generally involves rapid delivery of a relatively large amount of electrical energy to the heart at high voltage. Typical values include 20 joules or more at 700 volts or more.
  • Presently available batteries suitable for use in implantable defibrillators are not capable of delivering energy at such levels directly. Consequently, it is customary to provide a high-voltage energy storage capacitor that is charged by the battery via appropriate voltage transformation and charging circuitry. To avoid wasting battery energy, the high-voltage energy storage capacitor is not maintained in a charged state, but rather is charged after fibrillation has been identified by the control circuitry and immediately prior to delivering the shock.
  • Aluminum electrolytic capacitors have plates of aluminum foil separated by a porous layer, often paper, impregnated with a viscous liquid electrolyte comprising ethylene glycol plus additives. Alternating layers of foil and paper are wound in a spiral about a mandrel to form a cylindrical capacitor. Electrical leads are attached to respective separate foil layers. The wound capacitor is placed in a cylindrical aluminum can, or housing, closed at one end and open at the other. The dielectric is formed at the electrolyte-to-plate interface by applying a controlled direct current between the leads of the capacitor.
  • the open end of the aluminum can is closed by an elastomeric seal, through which the electrical leads project.
  • the elastomeric seal prevents leakage of electrolyte from the aluminum can, but does not provide an hermetic seal. This permits venting of hydrogen gas that is normally liberated in the aluminum electrolytic capacitor during use.
  • Typical aluminum electrolytic photoflash capacitors have energy densities of about 1.8 Joules per cubic centimeter.
  • aluminum electrolytic capacitors typically have a maximum working voltage of about 380 V, whereas implantable defibrillators are usually designed to deliver a shock at 700 V or more. Consequently, two capacitors must be employed in series to achieve the desired working voltage. This results in inefficient space utilization in the implantable device.
  • the need to periodically reform the dielectric of the aluminum electrolytic capacitor is also an undesirable characteristic of a capacitor enclosed in a self contained, battery powered, implanted device. The periodic reformation consumes energy from the battery that otherwise would be available for therapeutic use, thereby reducing the longevity of the implanted device.
  • Ceramic dielectric capacitor Another capacitor technology that has been considered for use in implantable defibrillators is the ceramic dielectric capacitor.
  • the ceramic capacitor has advantages over the aluminum electrolytic capacitor in that it is free of outgassing and does not need periodic reformation. Nevertheless, the ceramic capacitor has been difficult to manufacture with the working voltage and reliability characteristics needed for use in an implantable defibrillator. For example, working voltages above about 400 V have been difficult to achieve. A single local defect in the ceramic dielectric can result in a short circuit between the plates, resulting in catastrophic failure of the capacitor. Also, ceramic capacitors are relatively heavy. Excess weight is undesirable in an implantable device because it can complicate the task of reliably anchoring the device to adjacent tissue and may raise issues of patient comfort.
  • capacitors employ a thin polymer dielectric film between the metallic capacitor plates, as opposed to the electrolyte dielectric material of the typically employed photoflash aluminum electrolytic capacitor.
  • the plates of the thin polymer film capacitor usually take the form of very thin metal layers that are vapor deposited directly to the dielectric substrate to a thickness of about 150 to 350 angstroms.
  • the result is a so-called metallized polymer film that provides both the dielectric and plate functions of the capacitor.
  • two layers of metallized polymer film are overlaid and are tightly wound about a mandrel to form a wound cylindrical capacitor.
  • a capacitor wound from metallized polymer film can be constructed with a relatively high energy density because of the efficient use of space permitted by the extremely thin metal plates, and because working voltages well in excess of 700 V can be achieved in a single capacitor.
  • the energy density that can be achieved is limited primarily by the manufacturability of polymer films of arbitrarily small thickness, and by the dielectric properties of the particular polymer film, which dictate the minimum thickness required for a particular design voltage. Energy densities of about one (1) Joule per cubic centimeter are typical for polyester film capacitors, for example. Polyester has a dielectric constant of about 2.5 to 3.0.
  • An advantageous characteristic of the metallized, thin polymer film capacitor is its ability to self-heal, or clear, minor defects in the dielectric when subjected to an initial clearing voltage greater than its designed working voltage. This characteristic provides a capacitor of high reliability. During clearing, imbedded foreign particles or micro-flaws in the capacitor dielectric lead to localized breakdowns of the film dielectric. The breakdown event results in an arc between the two metallized layers that develops a localized high temperature and pressure. A puncture develops in the polymer film, and the thin metallized plate in the vicinity of the failure site is rapidly vaporized and blown away from the puncture.
  • the evaporation of the electrode around the arc causes it to extinguish, which electrically isolates the two plates on either side of the dielectric film in the vicinity of the puncture. This prevents large-scale damage and catastrophic failure of the capacitor.
  • the clearing process removes an electrode area that is a very small percentage of the entire area of the capacitor plate electrodes, resulting in no significant loss of capacitance.
  • the more flexible and elastic the film material is, and the lower the pressure between the winding layers the greater the probability that a puncture will self-heal.
  • inter-layer (radial) pressures are high, the gas pressure associated with the arc increases rapidly, damaging adjacent layers and extinguishing the arc prematurely. This incomplete burning leaves behind a carbon residue that continues to conduct, leading to a thermal runaway that melts many layers of metallized plastic film and generates a catastrophic, high resistance short.
  • polymers that burn well i.e., that will sustain a flame once ignited, have good clearing properties.
  • Such polymers usually have oxygen in their molecular structure, e.g., polyester, but there are notable exceptions, such as polypropylene.
  • PVDF polyvinylidene fluoride
  • PVDF exhibits lower leakage than aluminum electrolytic capacitors, with leakage currents on the order of tens of micro-amps rather than hundreds or thousands of micro-amps. Compared with polyester, however, PVDF has relatively poor self-healing, or clearing, characteristics.
  • the wrinkling is believed to have been caused by the winding process in which the first few turns resist bending smoothly at the small radius involved.
  • the wrinkling may have resulted in localized areas of high inter-layer pressure in which breakdown events that ordinarily would have terminated in a self-healing, nevertheless cascaded through several layers into catastrophic failure.
  • a thin film capacitor for use in an implantable defibrillator includes first and second dielectric polymer film layers, each of the first and second dielectric polymer film layers having a metallized film on one side thereof.
  • the first and second dielectric polymer film layers are overlain on each other and wound spirally with the metallized film of one layer adjacent the dielectric polymer of the other layer.
  • the beginnings of the metallized films are offset from the respective beginnings of the first and second polymer film layers in the direction of winding.
  • the first and second dielectric polymer film layers are tapered in increasing thickness from a middle portion of uniform thickness toward the respective beginnings and ends of the dielectric polymer film layers.
  • each of the first and second dielectric polymer film layers comprises at least two layers of differing polymer materials, one of which provides the primary dielectric characteristics of the capacitor and the other of which provides enhanced self-healing characteristics.
  • FIG. 1 is an end view of a prior art arrangement of metallized polymer films prior to being wound spirally about a mandrel to form a cylindrical capacitor.
  • FIG. 2 is a perspective view of the prior art arrangement of metallized polymer films of FIG. 1.
  • FIG. 3 is a perspective view of a first embodiment of an arrangement of metallized polymer films in accordance with the present invention, prior to being wound spirally about a mandrel to form a cylindrical capacitor.
  • FIG. 4 is a perspective view of a second embodiment of an arrangement of metallized polymer films in accordance with the present invention, prior to being wound spirally about a mandrel to form a cylindrical capacitor.
  • FIG. 5 is a perspective view of a third embodiment of an arrangement of metallized polymer films in accordance with the present invention, prior to being wound spirally about a mandrel to form a cylindrical capacitor.
  • FIGS. 1 and 2 a prior art arrangement of two layers of metallized polymer dielectric film is shown, prior to being wound spirally on a mandrel about axis A to form a cylindrical capacitor.
  • the thickness of the layers as illustrated, is greatly exaggerated.
  • Polymer film layer 10 has deposited on the upper side thereof a thin metallic layer 12 .
  • metallic layer 12 is spaced therefrom by a margin M.
  • polymer film layer 14 has deposited on the upper side thereof a thin metallic layer 16 .
  • metallic layer 16 is spaced therefrom by a margin “M”.
  • Polymer layers 10 and 14 are offset relative to each other in the direction of the winding axis A by an offset “O”, such that the edge having the margin “M” of each polymer layer is recessed relative to the non-margined edge of the other polymer layer.
  • FIG. 3 a first embodiment of the present invention is illustrated in which two metallized layers of polymer dielectric film are shown prior to being wound spirally about a mandrel to form a cylindrical capacitor.
  • Film layer 110 has a metallized layer 112 that begins at a location 18 offset in the direction of winding from the starting end 20 of layer 110 .
  • film layer 114 has a metallized layer 116 that begins at a location 22 offset in the direction of winding from the starting end 24 of layer 114 .
  • the amount of offset of the beginnings 18 and 22 of metallized layers 112 and 116 from the beginnings 20 and 24 of film layers 112 and 114 should be at least several multiples of the circumference of the mandrel on which the capacitor is to be wound. This will assure that wrinkling at the start of the winding process will be confined to an area of the windings devoid of metallization, thereby avoiding injury to the dielectric layer that lies between the metallized plates.
  • a similar offset is provided at the ends 26 and 28 of film layers 110 and 114 , respectively, whereby the metallized layers 112 and 116 terminate at locations 30 and 32 .
  • the amount of offset of the metallized layers at the end of the winding should be at least several multiples of the circumference of the capacitor at the end of winding. This will prevent failures due to shorting at the end of the windings.
  • FIG. 4 a second embodiment of the present invention is illustrated in which two metallized layers of polymer dielectric film are shown prior to being wound spirally about a mandrel to form a cylindrical capacitor.
  • Components that correspond to similar components described above with respect to the prior art construction illustrated in FIGS. 1 and 2, and the first embodiment illustrated in FIG. 3, are designated by similar reference numerals in the two hundred series.
  • Film layer 210 has a metallized layer 212 .
  • film layer 214 has a metallized layer 216 .
  • Each of film layers 210 and 214 is of uniform thickness in a middle portion, but is tapered to an increased thickness at the beginning ends 220 and 224 and at the terminating ends 226 and 228 .
  • the film layer is tapered to an increased thickness over a distance in the direction of winding that is at least several multiples of the circumference of the mandrel, at the starting end, and at least several multiples of the capacitor circumference at the terminating end.
  • FIG. 5 a third embodiment of the present invention is illustrated, in which two metallized layers of polymer dielectric film are shown prior to being wound spirally about a mandrel to form a cylindrical capacitor.
  • Components that correspond to similar components described above with respect to the prior art construction illustrated in FIGS. 1 and 2, and the first embodiment illustrated in FIG. 3, are designated by similar reference numerals in the three hundred series.
  • Film layer 310 has a metallized layer 312 .
  • film layer 314 has a metallized layer 316 .
  • polymer film layer 310 is itself comprised of two layers of different polymers, the primary layer 40 being polyvinylidene fluoride, and the secondary layer 42 being polyester.
  • the metallized layer 312 is deposited on the secondary layer 42 .
  • the PVDF layer 40 with its high dielectric constant primarily determines the energy density characteristics of the capacitor.
  • the polyester layer 42 with its significantly lower dielectric constant, is preferred to be much thinner than the PVDF layer 40 so as not to adversely affect the volume of the capacitor.
  • the polyester layer 42 serves to improve the clearing, or self-healing characteristics of the composite dielectric layer 310 .
  • polymer film layer 314 is itself also comprised of two layers of different polymers, the primary layer 44 being polyvinylidene fluoride, and the secondary layer 46 being polyester.
  • the metallized layer 316 is deposited on the secondary layer 46 .
  • FIGS. 3, 4 and 5 Three specific embodiments have been described and illustrated in FIGS. 3, 4 and 5 . It should be understood, however, that combining the features illustrated in the first three embodiments can make other embodiments.
  • the offsets of the metallic layers at the starting and terminating ends of the polymer film layers, as shown in FIG. 3 can be combined with the tapered dielectric as shown in FIG. 4, or with the composite dielectric as shown in FIG. 5, or with both the tapered dielectric of FIG. 4 and the composite dielectric of FIG. 5.
  • Another desirable combination is the tapered dielectric of FIG. 4 in combination with the composite dielectric of FIG. 5.
  • the preferred materials for the dielectric layer is PVDF and the preferred material for the self-healing enhancing layer is polyester. Other polymers could be substituted.
  • the self-healing enhancing layer could be any polymer material having better self-healing characteristics than the material of the dielectric layer, although polymers having oxygen in their molecular structure are preferred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

A thin film capacitor for use in an implantable defibrillator. A first dielectric polymer filmlayer has a metallized film on one side thereof. A second dielectric polymer film layer has a metallized film on one side thereof. The first and second layers are overlain on each other and wound spirally with the metallized film of one layer adjacent the dielectric polymer of the other layer. The beginnings and ends of the first and second metallized films are offset from the respective beginnings and ends of the first and second polymer film layers. The dielectric layers can be tapered in increasing thickness toward the respective beginnings and ends of the layers. The dielectric layers can themselves comprise at least two layers of differing polymer materials, the preferred materials being polyvinylidene fluoride and polyester for improved energy density and self-healing properties.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates generally to electrical energy storage capacitors, and more particularly to energy storage capacitors suitable for use in an implantable cardiac defibrillator. [0002]
  • 2. Background Information [0003]
  • Implantable defibrillators are implanted in patients who are at risk of suffering cardiac arrhythmias, such as ventricular fibrillation, that can cause sudden death. The defibrillator detects the occurrence of ventricular fibrillation and automatically delivers defibrillating therapy in the form of a high-energy shock to the cardiac tissue. Implantable defibrillators in their most general form include appropriate electrical leads and electrodes for collecting electrical signals generated by the heart, and for delivering electric shocks to the heart. Also included are batteries and energy storage capacitors, and control circuitry connected to the leads, batteries and capacitors. The control circuitry senses the electrical activity of the heart and controls the charging of the capacitors and the delivery of the shocks through the leads to the heart. [0004]
  • Defibrillation therapy generally involves rapid delivery of a relatively large amount of electrical energy to the heart at high voltage. Typical values include 20 joules or more at 700 volts or more. Presently available batteries suitable for use in implantable defibrillators are not capable of delivering energy at such levels directly. Consequently, it is customary to provide a high-voltage energy storage capacitor that is charged by the battery via appropriate voltage transformation and charging circuitry. To avoid wasting battery energy, the high-voltage energy storage capacitor is not maintained in a charged state, but rather is charged after fibrillation has been identified by the control circuitry and immediately prior to delivering the shock. [0005]
  • The amount of electrical energy that must be transferred to cardiac tissue to effect defibrillation is quite large by the standards of other implantable cardiac stimulators, such as pacemakers and cardioverters, which treat bradycardia and tachycardia, respectively. Consequently, the physical volume of the energy storage capacitors employed in implantable defibrillators is substantial. Together with the battery, the energy storage capacitor presents a major limitation to reducing the overall size of the implanted device. [0006]
  • Conventional energy storage capacitors used in implantable defibrillators have employed an aluminum electrolytic capacitor technology that had been developed for photoflash capacitors. Aluminum electrolytic capacitors have plates of aluminum foil separated by a porous layer, often paper, impregnated with a viscous liquid electrolyte comprising ethylene glycol plus additives. Alternating layers of foil and paper are wound in a spiral about a mandrel to form a cylindrical capacitor. Electrical leads are attached to respective separate foil layers. The wound capacitor is placed in a cylindrical aluminum can, or housing, closed at one end and open at the other. The dielectric is formed at the electrolyte-to-plate interface by applying a controlled direct current between the leads of the capacitor. Periodically throughout life of the capacitor, especially after periods of non-use, that same process must be used to re-form the dielectric of the aluminum electrolytic capacitor. To complete the construction of the aluminum electrolytic capacitor, the open end of the aluminum can is closed by an elastomeric seal, through which the electrical leads project. The elastomeric seal prevents leakage of electrolyte from the aluminum can, but does not provide an hermetic seal. This permits venting of hydrogen gas that is normally liberated in the aluminum electrolytic capacitor during use. [0007]
  • While aluminum electrolytic capacitors have been used successfully in implantable defibrillators, certain of their characteristics are regarded as disadvantageous. For example, the outgassing characteristic is undesirable in a capacitor that is contained within an implantable device that itself must be hermetically sealed against intrusion by body fluids. The device either must be provided with internal hydrogen adsorbers or else made permeable to hydrogen to prevent an internal buildup of pressure. The relative thickness of the aluminum foil plates and paper separators, as well as the head room required at the ends of the capacitor housing, place upper limits on the energy density of the aluminum electrolytic capacitor, resulting in a relatively bulky device. This is undesirable in the context of pectorally implanted defibrillators which, for reasons related to ease of implantation, comfort and cosmetics, are desired to be as small as possible. Typical aluminum electrolytic photoflash capacitors have energy densities of about 1.8 Joules per cubic centimeter. Also, aluminum electrolytic capacitors typically have a maximum working voltage of about 380 V, whereas implantable defibrillators are usually designed to deliver a shock at 700 V or more. Consequently, two capacitors must be employed in series to achieve the desired working voltage. This results in inefficient space utilization in the implantable device. The need to periodically reform the dielectric of the aluminum electrolytic capacitor is also an undesirable characteristic of a capacitor enclosed in a self contained, battery powered, implanted device. The periodic reformation consumes energy from the battery that otherwise would be available for therapeutic use, thereby reducing the longevity of the implanted device. [0008]
  • Another capacitor technology that has been considered for use in implantable defibrillators is the ceramic dielectric capacitor. The ceramic capacitor has advantages over the aluminum electrolytic capacitor in that it is free of outgassing and does not need periodic reformation. Nevertheless, the ceramic capacitor has been difficult to manufacture with the working voltage and reliability characteristics needed for use in an implantable defibrillator. For example, working voltages above about 400 V have been difficult to achieve. A single local defect in the ceramic dielectric can result in a short circuit between the plates, resulting in catastrophic failure of the capacitor. Also, ceramic capacitors are relatively heavy. Excess weight is undesirable in an implantable device because it can complicate the task of reliably anchoring the device to adjacent tissue and may raise issues of patient comfort. [0009]
  • Yet another capacitor technology that has been considered for use in implantable defibrillators is the thin polymer film capacitor. Such capacitors employ a thin polymer dielectric film between the metallic capacitor plates, as opposed to the electrolyte dielectric material of the typically employed photoflash aluminum electrolytic capacitor. The plates of the thin polymer film capacitor usually take the form of very thin metal layers that are vapor deposited directly to the dielectric substrate to a thickness of about 150 to 350 angstroms. The result is a so-called metallized polymer film that provides both the dielectric and plate functions of the capacitor. Typically, two layers of metallized polymer film are overlaid and are tightly wound about a mandrel to form a wound cylindrical capacitor. The metallized layers on the two polymer films are offset from opposite respective edges of the films, allowing alternate plates of the spiral-wound structure to be soldered together at opposite ends of the cylindrical capacitor and connected to respective leads. A capacitor wound from metallized polymer film can be constructed with a relatively high energy density because of the efficient use of space permitted by the extremely thin metal plates, and because working voltages well in excess of 700 V can be achieved in a single capacitor. The energy density that can be achieved is limited primarily by the manufacturability of polymer films of arbitrarily small thickness, and by the dielectric properties of the particular polymer film, which dictate the minimum thickness required for a particular design voltage. Energy densities of about one (1) Joule per cubic centimeter are typical for polyester film capacitors, for example. Polyester has a dielectric constant of about 2.5 to 3.0. [0010]
  • An advantageous characteristic of the metallized, thin polymer film capacitor is its ability to self-heal, or clear, minor defects in the dielectric when subjected to an initial clearing voltage greater than its designed working voltage. This characteristic provides a capacitor of high reliability. During clearing, imbedded foreign particles or micro-flaws in the capacitor dielectric lead to localized breakdowns of the film dielectric. The breakdown event results in an arc between the two metallized layers that develops a localized high temperature and pressure. A puncture develops in the polymer film, and the thin metallized plate in the vicinity of the failure site is rapidly vaporized and blown away from the puncture. The evaporation of the electrode around the arc causes it to extinguish, which electrically isolates the two plates on either side of the dielectric film in the vicinity of the puncture. This prevents large-scale damage and catastrophic failure of the capacitor. The clearing process removes an electrode area that is a very small percentage of the entire area of the capacitor plate electrodes, resulting in no significant loss of capacitance. As a general rule, the more flexible and elastic the film material is, and the lower the pressure between the winding layers, the greater the probability that a puncture will self-heal. When inter-layer (radial) pressures are high, the gas pressure associated with the arc increases rapidly, damaging adjacent layers and extinguishing the arc prematurely. This incomplete burning leaves behind a carbon residue that continues to conduct, leading to a thermal runaway that melts many layers of metallized plastic film and generates a catastrophic, high resistance short. [0011]
  • Some polymer films demonstrate better clearing characteristics than others do. In general, polymers that burn well, i.e., that will sustain a flame once ignited, have good clearing properties. Such polymers usually have oxygen in their molecular structure, e.g., polyester, but there are notable exceptions, such as polypropylene. [0012]
  • One promising polymer film for constructing a high energy-density thin film capacitors is polyvinylidene fluoride, or PVDF. This material has a very-high dielectric constant, i.e., k=12, which presents the possibility of constructing a capacitor with very thin films. This would permit more windings within a given capacitor diameter, which increases the plate area within a given cylindrical volume and increases the energy density. Energy densities of about 4 Joules per cubic centimeter are possible with a PVDF dielectric. Also, PVDF exhibits lower leakage than aluminum electrolytic capacitors, with leakage currents on the order of tens of micro-amps rather than hundreds or thousands of micro-amps. Compared with polyester, however, PVDF has relatively poor self-healing, or clearing, characteristics. [0013]
  • Evaluations of capacitors constructed using metallized thin films of PVDF have shown electrical degradation at voltages lower than expected, considering the inherent voltage breakdown characteristics of PVDF. For example, two metallized layers of PVDF were cylindrically (spirally) wound on a mandrel having a diameter of about 2 to 3 mm. The layers were wound until the capacitor had a diameter of about 14.5 to 15 mm, with a height of about 50 mm. The PVDF film had a thickness of about 6 microns, and the metallized layers were offset about 2.5 mm from respective opposite ends of the cylindrical construct. In theory, such a capacitor should have withstood at least 2000 V without breakdown, but in fact exhibited voltage breakdown at about 800 V to about 1050 V. Subsequent examination of the failed capacitors revealed many successful clearings of minor defects, as well as some catastrophic failures involving localized voltage breakdown through several layers of dielectric film. The catastrophic failures had not taken place at locations distributed uniformly over the film, but rather had been concentrated at the beginning (near the mandrel) and at the end (on the surface of the capacitor) of the film. It was noted that the failures at the end of the windings were due to shorting between the edges of the two films. The polymer film from which the capacitor had been wound had not been de-metallized at the last few turns. It was also noted that the film windings at the center of the capacitor, i.e., at the beginning of the winding near the mandrel, were very wrinkled. The wrinkling is believed to have been caused by the winding process in which the first few turns resist bending smoothly at the small radius involved. The wrinkling may have resulted in localized areas of high inter-layer pressure in which breakdown events that ordinarily would have terminated in a self-healing, nevertheless cascaded through several layers into catastrophic failure. [0014]
  • It would be desirable to provide improvements in the design of and manufacturing steps for making thin film capacitors to permit the full potential of very thin films of PVDF to be exploited to increase the energy density of the capacitor. These and other advantages are provided by the present invention. [0015]
  • SUMMARY OF THE INVENTION
  • In accordance with one aspect of the present invention, a thin film capacitor for use in an implantable defibrillator includes first and second dielectric polymer film layers, each of the first and second dielectric polymer film layers having a metallized film on one side thereof. The first and second dielectric polymer film layers are overlain on each other and wound spirally with the metallized film of one layer adjacent the dielectric polymer of the other layer. The beginnings of the metallized films are offset from the respective beginnings of the first and second polymer film layers in the direction of winding. [0016]
  • In accordance with a further aspect of the present invention, the first and second dielectric polymer film layers are tapered in increasing thickness from a middle portion of uniform thickness toward the respective beginnings and ends of the dielectric polymer film layers. [0017]
  • In accordance with yet another aspect of the present invention, each of the first and second dielectric polymer film layers comprises at least two layers of differing polymer materials, one of which provides the primary dielectric characteristics of the capacitor and the other of which provides enhanced self-healing characteristics. [0018]
  • It is an object of the present invention to provide an improved electrical energy storage capacitor for use in an implantable defibrillator.[0019]
  • Other objects and advantages of the invention will be apparent from the following descriptions of preferred embodiments made with reference to the drawings. [0020]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an end view of a prior art arrangement of metallized polymer films prior to being wound spirally about a mandrel to form a cylindrical capacitor. [0021]
  • FIG. 2 is a perspective view of the prior art arrangement of metallized polymer films of FIG. 1. [0022]
  • FIG. 3 is a perspective view of a first embodiment of an arrangement of metallized polymer films in accordance with the present invention, prior to being wound spirally about a mandrel to form a cylindrical capacitor. [0023]
  • FIG. 4 is a perspective view of a second embodiment of an arrangement of metallized polymer films in accordance with the present invention, prior to being wound spirally about a mandrel to form a cylindrical capacitor. [0024]
  • FIG. 5 is a perspective view of a third embodiment of an arrangement of metallized polymer films in accordance with the present invention, prior to being wound spirally about a mandrel to form a cylindrical capacitor. [0025]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIGS. 1 and 2, a prior art arrangement of two layers of metallized polymer dielectric film is shown, prior to being wound spirally on a mandrel about axis A to form a cylindrical capacitor. The thickness of the layers as illustrated, is greatly exaggerated. [0026] Polymer film layer 10 has deposited on the upper side thereof a thin metallic layer 12. Along one edge of film layer 10, perpendicular to the winding axis A, metallic layer 12 is spaced therefrom by a margin M. Similarly, polymer film layer 14 has deposited on the upper side thereof a thin metallic layer 16. Along one edge of film layer 14, perpendicular to the winding axis A and opposite to the edge referred to above with regard to polymer film layer 10, metallic layer 16 is spaced therefrom by a margin “M”. Polymer layers 10 and 14 are offset relative to each other in the direction of the winding axis A by an offset “O”, such that the edge having the margin “M” of each polymer layer is recessed relative to the non-margined edge of the other polymer layer. When layers 10 and 14, with their respective metallic layers 12 and 16, are wound spirally about winding axis A, one edge of metallic layer 12 is exposed at one end of the resulting cylindrical capacitor, whereas the opposite edge of metallic layer 16 is exposed at the opposite end of the resulting cylindrical capacitor. Solder is sprayed on one end of the capacitor in electrical contact with a continuous edge of one, but only one, of the metallic layers. Similarly, solder is sprayed on the opposite end of the capacitor in electrical contact with a continuous edge of only the other metallic layer.
  • Referring to FIG. 3, a first embodiment of the present invention is illustrated in which two metallized layers of polymer dielectric film are shown prior to being wound spirally about a mandrel to form a cylindrical capacitor. Components that correspond to similar components described above with respect to the prior art construction illustrated in FIGS. 1 and 2 are designated by similar reference numerals in the one hundred series. [0027] Film layer 110 has a metallized layer 112 that begins at a location 18 offset in the direction of winding from the starting end 20 of layer 110. Likewise, film layer 114 has a metallized layer 116 that begins at a location 22 offset in the direction of winding from the starting end 24 of layer 114. The amount of offset of the beginnings 18 and 22 of metallized layers 112 and 116 from the beginnings 20 and 24 of film layers 112 and 114 should be at least several multiples of the circumference of the mandrel on which the capacitor is to be wound. This will assure that wrinkling at the start of the winding process will be confined to an area of the windings devoid of metallization, thereby avoiding injury to the dielectric layer that lies between the metallized plates. A similar offset is provided at the ends 26 and 28 of film layers 110 and 114, respectively, whereby the metallized layers 112 and 116 terminate at locations 30 and 32. The amount of offset of the metallized layers at the end of the winding should be at least several multiples of the circumference of the capacitor at the end of winding. This will prevent failures due to shorting at the end of the windings.
  • Referring to FIG. 4, a second embodiment of the present invention is illustrated in which two metallized layers of polymer dielectric film are shown prior to being wound spirally about a mandrel to form a cylindrical capacitor. Components that correspond to similar components described above with respect to the prior art construction illustrated in FIGS. 1 and 2, and the first embodiment illustrated in FIG. 3, are designated by similar reference numerals in the two hundred series. [0028] Film layer 210 has a metallized layer 212. Likewise, film layer 214 has a metallized layer 216. Each of film layers 210 and 214 is of uniform thickness in a middle portion, but is tapered to an increased thickness at the beginning ends 220 and 224 and at the terminating ends 226 and 228. As preferred, the film layer is tapered to an increased thickness over a distance in the direction of winding that is at least several multiples of the circumference of the mandrel, at the starting end, and at least several multiples of the capacitor circumference at the terminating end. By increasing the thickness of the dielectric at the ends of the winding, where failure modes are more likely to occur, the reliability of the capacitor is increased.
  • Referring to FIG. 5, a third embodiment of the present invention is illustrated, in which two metallized layers of polymer dielectric film are shown prior to being wound spirally about a mandrel to form a cylindrical capacitor. Components that correspond to similar components described above with respect to the prior art construction illustrated in FIGS. 1 and 2, and the first embodiment illustrated in FIG. 3, are designated by similar reference numerals in the three hundred series. [0029] Film layer 310 has a metallized layer 312. Likewise, film layer 314 has a metallized layer 316. Unlike previously described embodiments, polymer film layer 310 is itself comprised of two layers of different polymers, the primary layer 40 being polyvinylidene fluoride, and the secondary layer 42 being polyester. The metallized layer 312 is deposited on the secondary layer 42. As preferred, the PVDF layer 40 with its high dielectric constant primarily determines the energy density characteristics of the capacitor. The polyester layer 42, with its significantly lower dielectric constant, is preferred to be much thinner than the PVDF layer 40 so as not to adversely affect the volume of the capacitor. The polyester layer 42 serves to improve the clearing, or self-healing characteristics of the composite dielectric layer 310. Similarly, polymer film layer 314 is itself also comprised of two layers of different polymers, the primary layer 44 being polyvinylidene fluoride, and the secondary layer 46 being polyester. The metallized layer 316 is deposited on the secondary layer 46.
  • Three specific embodiments have been described and illustrated in FIGS. 3, 4 and [0030] 5. It should be understood, however, that combining the features illustrated in the first three embodiments can make other embodiments. For example, the offsets of the metallic layers at the starting and terminating ends of the polymer film layers, as shown in FIG. 3, can be combined with the tapered dielectric as shown in FIG. 4, or with the composite dielectric as shown in FIG. 5, or with both the tapered dielectric of FIG. 4 and the composite dielectric of FIG. 5. Another desirable combination is the tapered dielectric of FIG. 4 in combination with the composite dielectric of FIG. 5. In the embodiment illustrated in FIG. 5, the preferred materials for the dielectric layer is PVDF and the preferred material for the self-healing enhancing layer is polyester. Other polymers could be substituted. The self-healing enhancing layer could be any polymer material having better self-healing characteristics than the material of the dielectric layer, although polymers having oxygen in their molecular structure are preferred.

Claims (18)

I claim:
1. A thin film capacitor for use in an implantable defibrillator, comprising:
a first dielectric polymer film layer, said first layer having a metallized film on one side thereof, said first layer having a beginning and an end, said first metallized film having a beginning and a end;
a second dielectric polymer film layer, said second layer having a metallized film on one side thereof, said second layer having a beginning and an end, said second metallized film having a beginning and a end;
said first and second layers being overlain on each other and wound spirally with the metallized film of one layer adjacent the dielectric polymer of the other layer; and
said beginnings of said first and second metallized films being offset from said respective beginnings of said first and second polymer film layers.
2. The thin film capacitor of claim 1, in which said ends of said first and second metallized films are offset from said respective ends of said first and second polymer film layers.
3. A thin film capacitor for use in an implantable defibrillator, comprising:
a first dielectric polymer film layer, said first layer having a metallized film on one side thereof, said first layer having a beginning and an end, said first metallized film having a beginning and a end;
a second dielectric polymer film layer, said second layer having a metallized film on one side thereof, said second layer having a beginning and an end, said second metallized film having a beginning and a end;
said first and second layers being overlain on each other and wound spirally with the metallized film of one layer adjacent the dielectric polymer of the other layer; and
said ends of said first and second metallized films being offset from said respective ends of said first and second polymer film layers.
4. The thin film capacitor of claim 3, in which said beginnings of said first and second metallized films are offset from said respective beginnings of said first and second polymer film layers.
5. A thin film capacitor for use in an implantable defibrillator, comprising:
a first dielectric polymer film layer, said first layer having a metallized film on one side thereof, said first layer having a beginning and an end;
a second dielectric polymer film layer, said second layer having a metallized film on one side thereof, said second layer having a beginning and an end;
said first and second layers being overlain on each other and wound spirally with the metallized film of one layer adjacent the dielectric polymer of the other layer; and
said first layer having a middle portion of substantially uniform thickness and a first portion that tapers in increasing thickness from said middle portion to said beginning of said first layer.
6. The thin film capacitor of claim 5, in which said first layer tapers in thickness over a distance in the direction of winding at least several multiples of the inner circumference of the capacitor.
7. The thin film capacitor of claim 5, in which said second layer has a middle portion of substantially uniform thickness and a first portion that tapers in increasing thickness from said middle portion to said beginning of said second layer.
8. The thin film capacitor of claim 7, in which said first layer tapers in thickness over a distance in the direction of winding at least several multiples of the inner circumference of the capacitor.
9. A thin film capacitor for use in an implantable defibrillator, comprising:
a first dielectric polymer film layer, said first layer having a metallized film on one side thereof, said first layer having a beginning and an end;
a second dielectric polymer film layer, said second layer having a metallized film on one side thereof, said second layer having a beginning and an end;
said first and second layers being overlain on each other and wound spirally with the metallized film of one layer adjacent the dielectric polymer of the other layer; and
said second layer having a middle portion of substantially uniform thickness and a first portion that tapers in increasing thickness from said middle portion to said beginning of said second layer.
10. The thin film capacitor of claim 9, in which said second layer tapers in thickness over a distance in the direction of winding at least several multiples of the inner circumference of the capacitor.
11. The thin film capacitor of claim 9, in which said first layer has a middle portion of substantially uniform thickness and a first portion that tapers in increasing thickness from said middle portion to said beginning of said first layer.
12. The thin film capacitor of claim 9, in which said second layer has a second portion that tapers in increasing thickness from said middle portion to said end of said second layer.
13. The thin film capacitor of claim 12, in which said first portion of said second layer tapers in thickness over a distance in the direction of winding at least several multiples of the inner circumference of the capacitor.
14. The thin film capacitor of claim 12, in which said second portion of said second layer tapers in thickness over a distance in the direction of winding at least several multiples of the outer circumference of the capacitor.
15. A thin film capacitor for use in an implantable defibrillator, comprising:
a first dielectric polymer film layer, said first layer having a metallized film on one side thereof, said first layer having a beginning and an end;
a second dielectric polymer film layer, said second layer having a metallized film on one side thereof, said second layer having a beginning and an end;
said first and second layers being overlain on each other and wound spirally with the metallized film of one layer adjacent the dielectric polymer of the other layer; and
said first dielectric polymer film layer comprising at least two layers of differing polymers.
16. The thin film capacitor of claim 15, in which said at least two layers of differing polymers include polyvinylidene fluoride and polyester.
17. The thin film capacitor of claim 15, in which said second dielectric polymer film layer comprises at least two layers of differing polymers.
18. The thin film capacitor of claim 17, in which said at least two layers of differing polymers include polyvinylidene fluoride and polyester.
US10/358,877 1998-04-23 2003-02-04 Metallized film capacitor for use in implantable defibrillator Abandoned US20030176893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/358,877 US20030176893A1 (en) 1998-04-23 2003-02-04 Metallized film capacitor for use in implantable defibrillator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/065,131 US6187028B1 (en) 1998-04-23 1998-04-23 Capacitors having metallized film with tapered thickness
US09/782,443 US6514276B2 (en) 1998-04-23 2001-02-13 Metallized film capacitor for use in implantable defibrillator
US10/358,877 US20030176893A1 (en) 1998-04-23 2003-02-04 Metallized film capacitor for use in implantable defibrillator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/782,443 Division US6514276B2 (en) 1998-04-23 2001-02-13 Metallized film capacitor for use in implantable defibrillator

Publications (1)

Publication Number Publication Date
US20030176893A1 true US20030176893A1 (en) 2003-09-18

Family

ID=22060547

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/065,131 Expired - Fee Related US6187028B1 (en) 1998-04-23 1998-04-23 Capacitors having metallized film with tapered thickness
US09/782,443 Expired - Lifetime US6514276B2 (en) 1998-04-23 2001-02-13 Metallized film capacitor for use in implantable defibrillator
US10/358,877 Abandoned US20030176893A1 (en) 1998-04-23 2003-02-04 Metallized film capacitor for use in implantable defibrillator

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/065,131 Expired - Fee Related US6187028B1 (en) 1998-04-23 1998-04-23 Capacitors having metallized film with tapered thickness
US09/782,443 Expired - Lifetime US6514276B2 (en) 1998-04-23 2001-02-13 Metallized film capacitor for use in implantable defibrillator

Country Status (5)

Country Link
US (3) US6187028B1 (en)
EP (1) EP1090400A1 (en)
JP (1) JP2002512443A (en)
CA (1) CA2329211A1 (en)
WO (1) WO1999054894A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050113874A1 (en) * 2003-04-02 2005-05-26 Biophan Technologies, Inc. Device and method for preventing magnetic-resonance imaging induced damage
US20060271140A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271147A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271141A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271145A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271143A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271142A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271146A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271138A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271144A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20090005825A1 (en) * 2007-06-27 2009-01-01 Medtronic, Inc. Mri-safe defibrillator electrodes
US8133286B2 (en) 2004-07-16 2012-03-13 Cardiac Pacemakers, Inc. Method and apparatus for high voltage aluminum capacitor design

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056323A (en) * 1998-08-12 2000-02-25 Hitachi Ltd Liquid crystal display device
US6426861B1 (en) * 1999-06-22 2002-07-30 Lithium Power Technologies, Inc. High energy density metallized film capacitors and methods of manufacture thereof
US6754528B2 (en) 2001-11-21 2004-06-22 Cameraon Health, Inc. Apparatus and method of arrhythmia detection in a subcutaneous implantable cardioverter/defibrillator
US7076296B2 (en) * 2000-09-18 2006-07-11 Cameron Health, Inc. Method of supplying energy to subcutaneous cardioverter-defibrillator and pacer
US7194302B2 (en) 2000-09-18 2007-03-20 Cameron Health, Inc. Subcutaneous cardiac stimulator with small contact surface electrodes
US7069080B2 (en) 2000-09-18 2006-06-27 Cameron Health, Inc. Active housing and subcutaneous electrode cardioversion/defibrillating system
US6721597B1 (en) 2000-09-18 2004-04-13 Cameron Health, Inc. Subcutaneous only implantable cardioverter defibrillator and optional pacer
US7146212B2 (en) * 2000-09-18 2006-12-05 Cameron Health, Inc. Anti-bradycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US8249710B2 (en) 2002-10-07 2012-08-21 Medtronic, Inc. Complex connector in component footprint of implantable medical device
US20070156197A1 (en) * 2005-12-15 2007-07-05 Cardiac Pacemakers, Inc. Method and apparatus for improved medical device profile
WO2006109732A1 (en) * 2005-04-08 2006-10-19 Matsushita Electric Industrial Co., Ltd. Metalized film capacitor, case module type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit
JP2008541416A (en) * 2005-05-02 2008-11-20 エプコス アクチエンゲゼルシャフト Power capacitor
EP1878032B1 (en) * 2005-05-02 2011-06-08 Epcos Ag Power electronics module comprising a capacitor
US20060271139A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
JP5308825B2 (en) * 2005-12-15 2013-10-09 カーディアック ペースメイカーズ, インコーポレイテッド Method for manufacturing implantable device
US8761875B2 (en) 2006-08-03 2014-06-24 Cardiac Pacemakers, Inc. Method and apparatus for selectable energy storage partitioned capacitor
WO2008156903A2 (en) * 2007-04-10 2008-12-24 Lockheed Martin Corporation Garment including electrical energy storage unit
US20090047541A1 (en) * 2007-08-15 2009-02-19 Lithium Power Technologies, Inc. Methods and Systems of Dielectric Film Materials For Use in Capacitors
JP2010040633A (en) * 2008-08-01 2010-02-18 Taitsu Corp Film capacitor
US8611068B2 (en) * 2008-10-16 2013-12-17 Case Western Reserve University Multilayer polymer dialectric film having a charge-delocalizing interface
US9558888B2 (en) 2008-10-16 2017-01-31 The Government Of The United States Of America, As Represented By Secretary Of The Navy Multilayer polymer film having a charge-delocalizing interface
JP5333456B2 (en) * 2008-12-01 2013-11-06 ダイキン工業株式会社 Laminated high dielectric film
RU2571511C2 (en) 2011-07-22 2015-12-20 Квэлкомм Инкорпорейтед Encoding of motion depth maps with depth range variation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3641640A (en) * 1969-10-14 1972-02-15 Illinois Tool Works Method of making metallized capacitors
US3789277A (en) * 1973-01-29 1974-01-29 Sprague Electric Co Wound capacitor
US4121274A (en) * 1976-04-30 1978-10-17 Siemens Aktiengesellschaft Self-healing electrical capacitor and method for its production
US4244010A (en) * 1978-11-16 1981-01-06 Sprague Electric Company AC Electrolytic motor start capacitor
US4456945A (en) * 1982-07-01 1984-06-26 Emhart Industries, Inc. Capacitor
US4945322A (en) * 1988-03-23 1990-07-31 Murata Manufacturing Co., Ltd. Noise filter
US4983934A (en) * 1988-04-20 1991-01-08 Murata Manufacturing Co., Ltd. Noise filter
US5636100A (en) * 1993-10-12 1997-06-03 The United States Of America As Represented By The Secretary Of The Army Capacitor having an enhanced dielectric breakdown strength

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1114491A (en) 1964-05-20 1968-05-22 Ebason Denki Kabushiki Kaisha An improved electrode plate
US4371406A (en) 1965-09-28 1983-02-01 Li Chou H Solid-state device
US3765956A (en) 1965-09-28 1973-10-16 C Li Solid-state device
US3398333A (en) 1966-01-27 1968-08-20 Sprague Electric Co Electrical component end seal
US3659615A (en) 1970-06-08 1972-05-02 Carl C Enger Encapsulated non-permeable piezoelectric powered pacesetter
US3789502A (en) 1972-06-05 1974-02-05 Whitehall Electronics Corp Fused cathode electrolytic capacitors and method of making the same
US4136435A (en) 1973-10-10 1979-01-30 Li Chou H Method for making solid-state device
US3918460A (en) 1974-07-05 1975-11-11 Medtronic Inc Implantable electrical medical device with battery gas venting means
US3943937A (en) 1974-07-05 1976-03-16 Medtronic, Inc. Gas absorbing implantable electrical medical device
US4041955A (en) 1976-01-29 1977-08-16 Pacesetter Systems Inc. Implantable living tissue stimulator with an improved hermetic metal container
US4041956A (en) 1976-02-17 1977-08-16 Coratomic, Inc. Pacemakers of low weight and method of making such pacemakers
US4243042A (en) 1977-05-04 1981-01-06 Medtronic, Inc. Enclosure system for body implantable electrical systems
US4127890A (en) 1977-07-12 1978-11-28 Illinois Tool Works Inc. Single pleat metallized film capacitor with sprayed edge terminations
US4146914A (en) 1977-07-12 1979-03-27 Illinois Tool Works Inc. Pleated metallized film capacitor with staggered edges
US4183600A (en) 1978-10-10 1980-01-15 Sprague Electric Company Electrolytic capacitor cover-terminal assembly
US4690714A (en) 1979-01-29 1987-09-01 Li Chou H Method of making active solid state devices
US4333469A (en) 1979-07-20 1982-06-08 Telectronics Pty. Ltd. Bone growth stimulator
US4692147A (en) 1980-04-02 1987-09-08 Medtronic, Inc. Drug administration device
US4385342A (en) 1980-05-12 1983-05-24 Sprague Electric Company Flat electrolytic capacitor
US4409642A (en) 1980-11-24 1983-10-11 Sprague Electric Company Offset lead configuration for solid electrolyte capacitor
DE3110351A1 (en) 1981-03-17 1982-09-30 Siemens AG, 1000 Berlin und 8000 München METHOD FOR THE PRODUCTION OF ELECTRIC LAYER CAPACITORS WITH GLOW POLYMERIZED LAYERS AS DIELECTRICS
US4546415A (en) 1981-12-10 1985-10-08 North American Philips Corporation Heat dissipation aluminum electrolytic capacitor
US4521830A (en) 1981-12-24 1985-06-04 Sangamo Weston, Inc. Low leakage capacitor header and manufacturing method therefor
US4454563A (en) 1982-07-14 1984-06-12 Honeywell Inc. Electrical capacitor
US4395305A (en) 1982-08-23 1983-07-26 Sprague Electric Company Chemical etching of aluminum capacitor foil
US4663824A (en) 1983-07-05 1987-05-12 Matsushita Electric Industrial Co., Ltd. Aluminum electrolytic capacitor and a manufacturing method therefor
US4516187A (en) 1983-07-13 1985-05-07 Electronic Concepts, Inc. Outer wrapping and planar terminations for a metallized wound capacitor and method therefor
FR2550681B1 (en) 1983-08-12 1985-12-06 Centre Nat Rech Scient ION SOURCE HAS AT LEAST TWO IONIZATION CHAMBERS, PARTICULARLY FOR THE FORMATION OF CHEMICALLY REACTIVE ION BEAMS
DE3432816A1 (en) 1984-09-06 1986-03-13 Siemens AG, 1000 Berlin und 8000 München Metallised-plastic capacitor, especially a self-healing, end-contacted electrical wound capacitor
DE3629837A1 (en) 1986-09-02 1988-03-03 Siemens Ag ELECTRIC CAPACITOR FROM A STRENGTHENED WRAP OR STRENGTHED PACK OF METALLIZED PLASTIC LAYERS LAYERED TOGETHER AND METHOD FOR THE PRODUCTION THEREOF
US4944300A (en) 1987-04-28 1990-07-31 Sanjeev Saksena Method for high energy defibrillation of ventricular fibrillation in humans without a thoracotomy
US4942501A (en) 1987-04-30 1990-07-17 Specialised Conductives Pty. Limited Solid electrolyte capacitors and methods of making the same
US5153820A (en) 1987-04-30 1992-10-06 Specialised Conductives Pty. Limited Crosslinked electrolyte capacitors and methods of making the same
US5146391A (en) 1987-04-30 1992-09-08 Specialised Conductives Pty. Ltd. Crosslinked electrolyte capacitors and methods of making the same
FR2625602B1 (en) 1987-12-30 1994-07-01 Europ Composants Electron PROCESS FOR MANUFACTURING ALUMINUM ELECTROLYTIC CAPACITORS AND CONDENSER WITH INTEGRATED ANODE OBTAINED BY THIS PROCESS
DE3906731A1 (en) 1989-03-03 1990-09-06 Philips Patentverwaltung CAPACITOR AND METHOD FOR THE PRODUCTION THEREOF
US5086374A (en) 1989-05-24 1992-02-04 Specialised Conductives Pty. Limited Aprotic electrolyte capacitors and methods of making the same
ATE112884T1 (en) 1989-06-29 1994-10-15 Siemens Ag ELECTROLYTE CAPACITOR.
US5055889A (en) 1989-10-31 1991-10-08 Knauf Fiber Glass, Gmbh Lateral varactor with staggered punch-through and method of fabrication
FR2659485A1 (en) 1990-03-09 1991-09-13 Europ Composants Electron METALIZED SOFT DIELECTRIC FILM CAPACITOR AND METHOD OF MAKING SUCH CAPACITOR THEREFOR.
US4987519A (en) 1990-03-26 1991-01-22 Sprague Electric Company Hermetically sealed aluminum electrolytic capacitor
FR2664760B1 (en) 1990-07-13 1996-09-27 Sgs Thomson Microelectronics DEVICE FOR PROTECTION AGAINST OVERVOLTAGES AND ITS MONOLITHIC IMPLEMENTATION.
US5131388A (en) 1991-03-14 1992-07-21 Ventritex, Inc. Implantable cardiac defibrillator with improved capacitors
EP0534782A1 (en) 1991-09-26 1993-03-31 Medtronic, Inc. Implantable medical device enclosure
JPH0813423B2 (en) 1991-12-27 1996-02-14 株式会社セイワ製作所 Welding method of aluminum foil
US5275621A (en) 1992-04-13 1994-01-04 Medtronic, Inc. Method and apparatus for terminating tachycardia
US5867363A (en) 1992-09-18 1999-02-02 Pinnacle Research Institute, Inc. Energy storage device
US5711988A (en) 1992-09-18 1998-01-27 Pinnacle Research Institute, Inc. Energy storage device and its methods of manufacture
US5800857A (en) 1992-09-18 1998-09-01 Pinnacle Research Institute, Inc. Energy storage device and methods of manufacture
US5697953A (en) 1993-03-13 1997-12-16 Angeion Corporation Implantable cardioverter defibrillator having a smaller displacement volume
US5370663A (en) 1993-08-12 1994-12-06 Intermedics, Inc. Implantable cardiac-stimulator with flat capacitor
JP3982842B2 (en) 1993-08-18 2007-09-26 株式会社ルネサステクノロジ Semiconductor device
US5380341A (en) 1993-09-27 1995-01-10 Ventritex, Inc. Solid state electrochemical capacitors and their preparation
US5439760A (en) 1993-11-19 1995-08-08 Medtronic, Inc. High reliability electrochemical cell and electrode assembly therefor
JP2684980B2 (en) 1993-12-24 1997-12-03 日本電気株式会社 Semiconductor memory device and manufacturing method thereof
JP3153065B2 (en) 1993-12-27 2001-04-03 株式会社半導体エネルギー研究所 Method for manufacturing electrode of semiconductor integrated circuit
US5500534A (en) 1994-03-31 1996-03-19 Iowa State University Research Foundation Integrated energy-sensitive and position-sensitive x-ray detection system
US5628801A (en) 1994-05-02 1997-05-13 Specialized Conductives Pty. Limited Electrolyte capacitor and method of making the same
US5536964A (en) 1994-09-30 1996-07-16 Green; Evan D. H. Combined thin film pinhole and semiconductor photodetectors
US5728594A (en) 1994-11-02 1998-03-17 Texas Instruments Incorporated Method of making a multiple transistor integrated circuit with thick copper interconnect
US5468984A (en) 1994-11-02 1995-11-21 Texas Instruments Incorporated ESD protection structure using LDMOS diodes with thick copper interconnect
US5522851A (en) 1994-12-06 1996-06-04 Ventritex, Inc. Capacitor for an implantable cardiac defibrillator
US5591211A (en) 1994-12-09 1997-01-07 Ventritex, Inc. Defibrillator having redundant switchable high voltage capacitors
US5584890A (en) 1995-01-24 1996-12-17 Macfarlane; Douglas R. Methods of making multiple anode capacitors
US5597658A (en) 1995-02-28 1997-01-28 Kejha; Joseph B. Rolled single cell and bi-cell electrochemical devices and method of manufacturing the same
US5545184A (en) 1995-04-19 1996-08-13 The Penn State Research Foundation Cardiac defibrillator with high energy storage antiferroelectric capacitor
US5660737A (en) 1995-05-17 1997-08-26 Ventritex, Inc. Process for making a capacitor foil with enhanced surface area
US5661629A (en) 1995-06-06 1997-08-26 Macfarlane; Douglas Robert High conductivity crosslinked electrolyte materials and capacitors incorporating the same
US5748439A (en) 1995-06-06 1998-05-05 Telectronics Pacing Systems, Inc. Capacitors having high strength electrolytic capacitor separators
DE19525143A1 (en) 1995-07-11 1997-01-16 Biotronik Mess & Therapieg Electrolytic capacitor, in particular tantalum electrolytic capacitor
US5677539A (en) 1995-10-13 1997-10-14 Digirad Semiconductor radiation detector with enhanced charge collection
US5661625A (en) 1995-11-14 1997-08-26 Yang; Tai-Her Circuit device for unstable power source transient state compensation and low voltage cutoff protection of an active controller component
US5711861A (en) 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
US5926357A (en) 1995-12-05 1999-07-20 Pacesetter, Inc. Aluminum electrolytic capacitor for implantable medical device
US5959535A (en) 1995-12-20 1999-09-28 Remsburg; Ralph Electrogalvanic-powered diaper wetness sensor
DE69630006T2 (en) 1995-12-22 2004-06-09 Mitsubishi Polyester Film Corp. Polyester film and its application in a capacitor
US5737179A (en) 1996-02-07 1998-04-07 Catalina Coatings, Inc. Metallized film capacitor
US5674260A (en) 1996-02-23 1997-10-07 Pacesetter, Inc. Apparatus and method for mounting an activity sensor or other component within a pacemaker using a contoured hybrid lid
US5980977A (en) 1996-12-09 1999-11-09 Pinnacle Research Institute, Inc. Method of producing high surface area metal oxynitrides as substrates in electrical energy storage
US5837995A (en) 1996-11-25 1998-11-17 Alan Y. Chow Wavelength-controllable voltage-phase photodiode optoelectronic switch ("opsistor")
JP3258249B2 (en) 1996-12-25 2002-02-18 日本ケミコン株式会社 Aluminum electrode foil for electrolytic capacitors
US5895733A (en) 1997-02-03 1999-04-20 Medtronic, Inc. Synthesis method for silver vanadium oxide
US5895416A (en) 1997-03-12 1999-04-20 Medtronic, Inc. Method and apparatus for controlling and steering an electric field
US5814082A (en) 1997-04-23 1998-09-29 Pacesetter, Inc. Layered capacitor with alignment elements for an implantable cardiac defibrillator
US5963418A (en) 1997-05-02 1999-10-05 Cm Components, Inc. Multiple anode high energy density electrolytic capacitor
US5949638A (en) 1997-05-02 1999-09-07 Cm Components, Inc. Multiple anode capacitor
US5776628A (en) 1997-06-30 1998-07-07 Wilson Greatbatch Ltd. Flat-folded, multi-plate electrode assembly
US5930109A (en) 1997-11-07 1999-07-27 Pacesetter, Inc. Electrolytic capacitor with multiple independent anodes
US5968210A (en) 1997-11-12 1999-10-19 Pacesetter, Inc. Electrolytic capacitor and method of manufacture
US5983472A (en) 1997-11-12 1999-11-16 Pacesetter, Inc. Capacitor for an implantable cardiac defibrillator
US6006133A (en) 1998-04-03 1999-12-21 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with consolidated electrode assembly
WO1999051301A1 (en) 1998-04-03 1999-10-14 Medtronic, Inc. Implantable device having flat multilayered electrolytic capacitor
US6141205A (en) 1998-04-03 2000-10-31 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with consolidated electrode tabs and corresponding feedthroughs
US6042624A (en) 1998-04-03 2000-03-28 Medtronic, Inc. Method of making an implantable medical device having a flat electrolytic capacitor
US6009348A (en) 1998-04-03 1999-12-28 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with registered electrode layers
EP1067987B1 (en) 1998-04-03 2008-08-13 Medtronic, Inc. Defibrillator having electrolytic capacitor with cold-welded electrode layers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3641640A (en) * 1969-10-14 1972-02-15 Illinois Tool Works Method of making metallized capacitors
US3789277A (en) * 1973-01-29 1974-01-29 Sprague Electric Co Wound capacitor
US4121274A (en) * 1976-04-30 1978-10-17 Siemens Aktiengesellschaft Self-healing electrical capacitor and method for its production
US4244010A (en) * 1978-11-16 1981-01-06 Sprague Electric Company AC Electrolytic motor start capacitor
US4456945A (en) * 1982-07-01 1984-06-26 Emhart Industries, Inc. Capacitor
US4945322A (en) * 1988-03-23 1990-07-31 Murata Manufacturing Co., Ltd. Noise filter
US4983934A (en) * 1988-04-20 1991-01-08 Murata Manufacturing Co., Ltd. Noise filter
US5636100A (en) * 1993-10-12 1997-06-03 The United States Of America As Represented By The Secretary Of The Army Capacitor having an enhanced dielectric breakdown strength

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050113874A1 (en) * 2003-04-02 2005-05-26 Biophan Technologies, Inc. Device and method for preventing magnetic-resonance imaging induced damage
US8323768B2 (en) 2003-04-02 2012-12-04 Medtronic, Inc. Device and method for preventing magnetic-resonance imaging induced damage
US8465555B2 (en) 2004-07-16 2013-06-18 Cardiac Pacemakers, Inc. Method and apparatus for high voltage aluminum capacitor design
US8133286B2 (en) 2004-07-16 2012-03-13 Cardiac Pacemakers, Inc. Method and apparatus for high voltage aluminum capacitor design
US7529590B2 (en) 2005-05-27 2009-05-05 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7539546B2 (en) 2005-05-27 2009-05-26 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271142A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271146A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271138A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271144A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US8849423B2 (en) 2005-05-27 2014-09-30 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7529591B2 (en) 2005-05-27 2009-05-05 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271145A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271143A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7539545B2 (en) 2005-05-27 2009-05-26 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7551966B2 (en) 2005-05-27 2009-06-23 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7555350B2 (en) 2005-05-27 2009-06-30 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7801625B2 (en) 2005-05-27 2010-09-21 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20110004284A1 (en) * 2005-05-27 2011-01-06 Medtronic, Inc. Electromagnetic intereference immune pacing/defibrillation lead
US20060271140A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271141A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271147A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US8121705B2 (en) 2007-06-27 2012-02-21 Medtronic, Inc. MRI-safe defibrillator electrodes
US20090005825A1 (en) * 2007-06-27 2009-01-01 Medtronic, Inc. Mri-safe defibrillator electrodes

Also Published As

Publication number Publication date
WO1999054894A1 (en) 1999-10-28
US20010011183A1 (en) 2001-08-02
JP2002512443A (en) 2002-04-23
US6514276B2 (en) 2003-02-04
CA2329211A1 (en) 1999-10-28
US6187028B1 (en) 2001-02-13
EP1090400A1 (en) 2001-04-11

Similar Documents

Publication Publication Date Title
US6514276B2 (en) Metallized film capacitor for use in implantable defibrillator
US6110233A (en) Wound multi-anode electrolytic capacitor with offset anodes
US6881232B2 (en) Electrolytic capacitor and multi-anodic attachment
US6535374B2 (en) Smaller electrolytic capacitors for implantable defibrillators
EP1053763B1 (en) Implantable medical device having a capacitor assembly with liner
US5610796A (en) Metallized capacitor having increased dielectric breakdown voltage and method for making the same
US5935154A (en) Implantable tissue stimulator incorporating deposited multilayer capacitor
US6885887B2 (en) Method of constructing a capacitor stack for a flat capacitor
US7684171B2 (en) Capacitors based on valve metal alloys for use in medical devices
US7491246B2 (en) Capacitor electrodes produced with atomic layer deposition for use in implantable medical devices
US20170194099A1 (en) Methods of manufacturing a hermetically sealed wet electrolytic capacitor and a hermetically sealed wet electrolytic capacitor
WO2000019467A1 (en) Smaller electrolytic capacitors for implantable defibrillators
US4580191A (en) Discharge capacitor of high energy and high direct voltage
US5608600A (en) Metallized film capacitor with increased dielectric breakdown voltage
US7006347B1 (en) Low deformation electrolytic capacitor
US20040158291A1 (en) Implantable heart monitors having electrolytic capacitors with hydrogen-getting materials

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION