US20030149942A1 - Voltage reference circuit layout inside multi-layered substrate - Google Patents

Voltage reference circuit layout inside multi-layered substrate Download PDF

Info

Publication number
US20030149942A1
US20030149942A1 US10/063,737 US6373702A US2003149942A1 US 20030149942 A1 US20030149942 A1 US 20030149942A1 US 6373702 A US6373702 A US 6373702A US 2003149942 A1 US2003149942 A1 US 2003149942A1
Authority
US
United States
Prior art keywords
layer
signal
voltage reference
reference signal
layered substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/063,737
Inventor
Jimmy Hsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Technologies Inc
Original Assignee
Via Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Via Technologies Inc filed Critical Via Technologies Inc
Assigned to VIA TECHNOLOGIES, INC. reassignment VIA TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HSU, JIMMY
Publication of US20030149942A1 publication Critical patent/US20030149942A1/en
Priority to US11/160,355 priority Critical patent/US7356782B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15173Fan-out arrangement of the internal vias in a single layer of the multilayer substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09336Signal conductors in same plane as power plane

Definitions

  • the present invention relates to a voltage reference circuit layout inside a multi-layered substrate. More particularly, the present invention relates to a multi-layered substrate having a voltage reference trace in one of the non-signaling layers.
  • V ref voltage reference signal
  • V ref voltage reference standard for determining the voltage level of a logic signal and processing digital signals. Since accuracy of digital processing depends very much on the voltage reference signal, a constant voltage level is always desired. To maintain a constant reference voltage level, coupling of voltage reference with other signals must be minimized. When there is voltage variation in the voltage reference signal due to coupling with surrounding signals, the reference voltage no longer can serve as a standard for gauging the voltage level of other digital logic signals. Consequently, decision regarding logic level is likely to be in error and the entire system may break down. Hence, the maintenance of signal integrity through a reduction in the coupling with external signals is very important.
  • FIG. 1 is a schematic cross-sectional view of a conventional four-layered substrate.
  • a package substrate or a printed circuit board (PCB) has a four-layered structure.
  • a four-layered substrate 100 is shown in FIG. 1.
  • the four-layered substrate 100 includes a signal layer 104 , a ground layer 108 , a power layer 112 and another signal layer 116 .
  • An insulation layer 106 is formed between the signal layer 104 and the ground layer 108 .
  • an insulation layer 110 is formed between the ground layer 108 and the power layer 112 and an insulation layer 114 is formed between the power layer 112 and the signal layer 116 .
  • a solder mask layer 102 and another solder mask layer 118 are formed over the signal layer 104 and the signal layer 116 respectively.
  • Circuits within the signal layer 104 and the signal layer 116 are used for signal inputs/outputs. Furthermore, the signal layers 104 and 116 may be electrically connected through plugs (not shown).
  • FIG. 2 is a schematic diagram showing a conventional voltage reference signal circuit layout within a signal layer.
  • the voltage reference signal circuit layout within the signal layer mainly comprises a voltage reference signal trace and a plruality of signal traces.
  • the voltage reference signal circuit layout within the signal layer 104 mainly comprises a voltage reference signal trace 104 a and the signal traces 104 b .
  • the voltage reference signal trace 104 a and the signal traces 104 b connect electrically with the signal layer 116 (shown in FIG. 1) through plugs 120 .
  • signal transmitting within the voltage reference signal trace 104 a is frequently affected by signals transmitting within the nearby signal traces 104 b due to coupling. Consequently, the voltage inside the voltage reference signal trace 104 a varies and a standard voltage reference level is hard to maintain.
  • FIG. 3 is a schematic diagram showing another conventional voltage reference signal circuit layout within a signal layer.
  • the voltage reference signal circuit layout is very similar to the one in FIG. 2.
  • One principle difference is that a double spacing is used between the signal traces 104 b and the voltage reference signal trace 104 a so that coupling of the voltage reference signal trace 104 a with the signal traces 104 b is lowered.
  • the voltage reference signal circuit layout in FIG. 3 still cannot completely eliminate interference due to electromagnetic field.
  • a compromise must be made between spatial layout limitation and acceptable degree of coupling.
  • one object of the present invention is to provide a multi-layered substrate having a voltage reference signal circuit layout capable of preventing signal coupling between the voltage reference signal trace and other neighboring signal traces.
  • the invention provides a multi-layered substrate having a voltage reference signal circuit layout therein.
  • the voltage reference signal trace is moved to another non-signaling layer so that the signal traces within the signal layer have larger layout area.
  • the voltage reference signal trace within the non-signaling layer not only is free from signal interference from signal traces, but also has more layout flexibility.
  • the voltage reference signal circuit may employ a wide conductive trace design so that parasitic resistance is reduced.
  • the multi-layered substrate according to this invention includes a first signal layer, a plurality of plugs, a ground layer, a power and a second signal layer.
  • the plugs, the ground layer and the power layer are formed between a first signal layer and a second signal layer.
  • the first signal layer comprises a first voltage reference signal trace and a plurality of signal traces.
  • a second voltage reference signal trace is in the power layer or the ground layer (non-signaling layer).
  • the plurality of the plugs are used for electrically connecting the first signal layer and the second signal layer, the first signal layer and the second voltage reference signal circuit, and the second signal layer and the second voltage reference signal circuit
  • the first signal layer, the ground layer, the power layer and the second signal layer separate from each other by dielectric layers. Furthermore, a solder mask layer is formed over the exterior surface of the first signal layer and the second signal layer respectively.
  • the multi-layered substrate may also include a signal layer between the ground layer and the power layer, a ground-signal layer between the first signal layer and the ground layer and a power-signal layer between the second signal layer and the power layer.
  • the voltage reference signal may be transmitted through a plug directly to the second voltage reference signal trace in the non-signaling layer without the first voltage reference signal trace in the signal layer.
  • a flip-chip package IC device can meet this kind of layout design.
  • FIG. 1 is a schematic cross-sectional view of a conventional four-layered substrate
  • FIG. 2 is a schematic diagram showing a conventional voltage reference signal circuit layout within a signal layer
  • FIG. 3 is a schematic diagram showing another conventional voltage reference signal circuit layout within a signal layer
  • FIG. 4 is a schematic cross-sectional view of a four-layered substrate according to a first preferred embodiment of this invention.
  • FIG. 5 is a schematic diagram showing a voltage reference signal circuit layout within a signal layer according to the first embodiment of this invention
  • FIG. 6 is a schematic diagram showing a voltage reference signal circuit layout within a power layer according to the first embodiment of this invention.
  • FIG. 7 is a schematic diagram showing a voltage reference signal circuit layout after the signal layer and the power layer stacked together according to the first embodiment
  • FIG. 8 is a schematic cross-sectional view of a multi-layered substrate according to a second preferred embodiment of this invention.
  • FIG. 9 is a schematic cross-sectional view of a multi-layered substrate according to a third preferred embodiment of this invention.
  • FIG. 10 is a schematic cross-sectional view of a multi-layered substrate according to a fourth preferred embodiment of this invention.
  • FIG. 4 is a schematic cross-sectional view of a four-layered substrate according to a first preferred embodiment of this invention. Most packaging substrates or printed circuit boards have a four-layered structure. A four-layered substrate 200 is shown in FIG. 4. The four-layered substrate 200 includes a signal layer 204 , a ground layer 208 , a power layer 212 and another signal layer 216 .
  • An insulation layer 206 separates the signal layer 204 from the ground layer 208 .
  • an insulation layer 210 separates the ground layer 208 from the power layer 212 and an insulation layer 214 separates the power layer 212 from the signal layer 216 .
  • the exterior surface of the signal layer 204 has a solder mask layer 202 while the exterior surface of the signal layer 216 has another solder mask layer 218 .
  • the circuits within the signal layers 204 and 216 serve as signal input/output channels. In other words, all incoming or outgoing signals will get through either of the signal layers 204 and 216 .
  • the signal layers 204 and 216 are electrically connected through plugs (as shown in FIG. 5).
  • FIG. 5 is a schematic diagram showing a voltage reference signal circuit layout within a signal layer according to the first embodiment of this invention. As shown in FIGS. 4 and 5, the traces within the signal layers 204 and 216 mainly comprises a voltage reference signal circuit and signal circuits.
  • the voltage reference signal circuit layout within the signal layer 204 includes a first voltage reference signal trace 204 a and a plurality of signal traces 204 b .
  • One end of the first voltage reference signal trace 204 a is electrically connected with a plug 220 .
  • the other signal traces 204 b are electrically connected to the signal layer 216 underneath through various plugs 224 .
  • FIG. 6 is a schematic diagram showing a voltage reference signal circuit layout within a power layer according to the first embodiment of this invention.
  • the power layer 212 mainly includes a second voltage reference signal trace 226 and a patterned conductive plane 228 for transmitting the voltage reference signal.
  • the terminals of the second voltage reference signal trace 226 are electrically connected a first plug 220 and a second plug 222 respectively.
  • the patterned conductive layer 228 has empty areas surrounding the second voltage reference signal trace 226 as well as the plugs 220 , 222 and 224 .
  • the patterned conductive layer 228 is less vulnerable to short circuiting with the second voltage reference signal trace 226 and various plugs 220 , 222 , 224 .
  • anyone familiar with such technologies may also notice that in places corresponding to the plugs 220 , 222 and 224 within the ground layer 208 between the signal layer 204 and the power layer 212 also have empty areas to facilitate the positioning of the plugs.
  • Each of the plugs 220 , 222 and 224 within the four-layered substrate 200 has a special function.
  • the plug 220 connects the first voltage reference signal trace 204 a and the second voltage reference signal trace 226 electrically.
  • the plug 222 connects the second voltage reference signal trace 226 and the signal layer 216 electrically and the plug 224 connects the signal layer 204 and the signal layer 216 electrically.
  • FIG. 7 is a schematic diagram showing a voltage reference signal circuit layout after the signal layer and the power layer stacked together according to the first embodiment. As shown in FIGS. 4 and 7, one end of the second voltage reference signal trace 226 and the first voltage reference signal trace 204 a are electrically connected through the plug 220 after the signal layer 204 and the power layer 212 stacked together. Similarly, the other end of the second voltage reference signal trace 226 and the signal layer 216 underneath are electrically connected through the plug 222 .
  • the first voltage reference signal trace 204 a and the second voltage reference signal trace 226 together form a complete voltage reference signal circuit. Since the second voltage reference signal trace 226 is formed within the power layer 212 , the ground layer 208 between the power layer 212 and the signal layer 204 functions as an electromagnetic shield reducing any signal coupling between the voltage reference signal circuit and other signal circuits. Ultimately, a constant voltage level is maintained within the voltage reference signal trace 204 a.
  • the voltage reference signal trace within the signal layer 204 is moved to the power layer 212 so that the signal traces 204 b within the signal layer 204 can have a larger space for wiring layout. Consequently, the second voltage reference signal trace 226 can have more layout flexibility. Furthermore, a wider conductive line may be employed in the second voltage reference signal trace 226 to reduce parasitic resistance.
  • FIG. 8 is a schematic cross-sectional view of a multi-layered substrate according to a second preferred embodiment of this invention.
  • the voltage reference signal circuit layout according to this invention has applications in other types of multi-layered substrate aside from a four-layered substrate.
  • the multi-layered substrate 300 comprises a signal layer 304 , a ground layer 308 , a second signal layer 312 , a third signal layer 316 , a power layer 320 and a fourth signal layer 324 .
  • An insulation layer 306 separates the signal layer 304 and the ground layer 308 .
  • an insulation layer 310 separates the ground layer 308 and the second signal layer 312
  • an insulation layer 314 separates the second signal layer 312 and the third signal layer 316
  • an insulation layer 318 separates the third signal layer 316 and the power layer 320
  • an insulation layer 322 separates the power layer 320 and the fourth signal layer 324 .
  • a solder mask layer 302 is formed on the exterior surface of the signal layer 304 and another solder mask layer 326 is formed on the exterior surface of the fourth signal layer 324 .
  • the voltage reference signal trace within the signal layer 304 may move to either the ground layer 308 or the power layer 320 . This arrangement similarly prevents signal coupling and increases layout flexibility.
  • FIG. 9 is a schematic cross-sectional view of a multi-layered substrate according to a third preferred embodiment of this invention.
  • the multi-layered substrate 400 comprises a signal layer 404 , a ground-signal layer 408 , a ground layer 412 , a power layer 416 , a power-signal layer 420 and a second signal layer 424 .
  • An insulation layer 406 separates the signal layer 404 and the ground-signal layer 408 .
  • an insulation layer 410 separates the ground-signal layer 408 and the ground layer 412
  • an insulation layer 414 separates the ground layer 412 and the power layer 416
  • an insulation layer 418 separates the power layer 416 and the power-signal layer 420
  • an insulation layer 422 separates the power-signal layer 420 and the second signal layer 424 .
  • a solder mask layer 402 is formed on the exterior surface of the signal layer 404 and another solder mask layer 426 is formed on the exterior surface of the second signal layer 424 .
  • the voltage reference signal circuit within the signal layer 404 may move to the ground-signal layer 408 , the ground layer 412 , the power layer 416 or the power-signal layer 420 . This arrangement similarly prevents signal coupling and increases layout flexibility.
  • FIG. 10 is a schematic cross-sectional view of a multi-layered substrate according to a fourth preferred embodiment of this invention.
  • the multi-layered substrate 500 comprises a signal layer 504 , a non-signaling layer 508 and a second signal layer 512 .
  • An insulation layer 506 separates the signal layer 504 and the non-signaling layer 508 and, an insulation layer 510 separates the non-signaling layer 508 and the second signal layer 512 .
  • a solder mask layer 502 is formed on the exterior surface of the signal layer 504 and another solder mask layer 514 is formed on the exterior surface of the second signal layer 512 .
  • the voltage reference signal circuit within the signal layer 504 may move to the non-signaling layer 508 . This arrangement similarly prevents signal coupling and increases layout flexibility.
  • the multi-layered substrate having a voltage reference signal circuit layout therein according to this invention has at least the following advantages:
  • the conductive plane in the ground layer is an electromagnetic shield for the voltage reference signal circuit that prevents the coupling of other signal circuits with the voltage reference signal circuit.
  • the voltage reference signal circuit is formed in a conductive layer outside the signal layer so that the voltage reference signal circuit can have more layout flexibility.
  • the voltage reference signal circuit is formed in a conductive layer outside the signal layer, other signal circuits within the signal layer can have a larger layout area.
  • the conductive trace having a larger width may be employed to form the voltage reference signal circuit so that effective parasitic resistance is greatly reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Geometry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

A multi-layered substrate having a voltage reference signal circuit layout therein. A major change in the design of the multi-layered substrate is the moving of a voltage reference signal trace from a signal layer to a non-signaling layer. Once the voltage reference signal trace is moved, the signal traces within the signal layer can have a larger layout area. Similarly, the voltage reference signal trace within the non-signaling layer can have greater layout flexibility in addition to electromagnetic shielding from other signal traces. Moreover, the voltage reference signal trace having a greater width may be used to reduce parasitic resistance within the voltage reference signal circuit.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the priority benefit of Taiwan application serial no. 91102057, filed Feb. 6, 2002. [0001]
  • BACKGROUND OF INVENTION
  • 1. Field of Invention [0002]
  • The present invention relates to a voltage reference circuit layout inside a multi-layered substrate. More particularly, the present invention relates to a multi-layered substrate having a voltage reference trace in one of the non-signaling layers. [0003]
  • 2. Description of Related Art [0004]
  • In most logic circuit chips or large-scale integrated circuits, a voltage reference signal (V[0005] ref) is often required as a voltage reference standard for determining the voltage level of a logic signal and processing digital signals. Since accuracy of digital processing depends very much on the voltage reference signal, a constant voltage level is always desired. To maintain a constant reference voltage level, coupling of voltage reference with other signals must be minimized. When there is voltage variation in the voltage reference signal due to coupling with surrounding signals, the reference voltage no longer can serve as a standard for gauging the voltage level of other digital logic signals. Consequently, decision regarding logic level is likely to be in error and the entire system may break down. Hence, the maintenance of signal integrity through a reduction in the coupling with external signals is very important.
  • FIG. 1 is a schematic cross-sectional view of a conventional four-layered substrate. In general, a package substrate or a printed circuit board (PCB) has a four-layered structure. A four-[0006] layered substrate 100 is shown in FIG. 1. The four-layered substrate 100 includes a signal layer 104, a ground layer 108, a power layer 112 and another signal layer 116. An insulation layer 106 is formed between the signal layer 104 and the ground layer 108. Similarly, an insulation layer 110 is formed between the ground layer 108 and the power layer 112 and an insulation layer 114 is formed between the power layer 112 and the signal layer 116. In addition, a solder mask layer 102 and another solder mask layer 118 are formed over the signal layer 104 and the signal layer 116 respectively.
  • Circuits within the [0007] signal layer 104 and the signal layer 116 are used for signal inputs/outputs. Furthermore, the signal layers 104 and 116 may be electrically connected through plugs (not shown).
  • FIG. 2 is a schematic diagram showing a conventional voltage reference signal circuit layout within a signal layer. As shown in FIG. 2, the voltage reference signal circuit layout within the signal layer mainly comprises a voltage reference signal trace and a plruality of signal traces. Using the [0008] signal layer 104 above the insulation layer 106 as an example, the voltage reference signal circuit layout within the signal layer 104 mainly comprises a voltage reference signal trace 104 a and the signal traces 104 b. The voltage reference signal trace 104 a and the signal traces 104 b connect electrically with the signal layer 116 (shown in FIG. 1) through plugs 120. In general, signal transmitting within the voltage reference signal trace 104 a is frequently affected by signals transmitting within the nearby signal traces 104 b due to coupling. Consequently, the voltage inside the voltage reference signal trace 104 a varies and a standard voltage reference level is hard to maintain.
  • FIG. 3 is a schematic diagram showing another conventional voltage reference signal circuit layout within a signal layer. The voltage reference signal circuit layout is very similar to the one in FIG. 2. One principle difference is that a double spacing is used between the [0009] signal traces 104 b and the voltage reference signal trace 104 a so that coupling of the voltage reference signal trace 104 a with the signal traces 104 b is lowered. However, the voltage reference signal circuit layout in FIG. 3 still cannot completely eliminate interference due to electromagnetic field. Moreover, a compromise must be made between spatial layout limitation and acceptable degree of coupling.
  • SUMMARY OF INVENTION
  • Accordingly, one object of the present invention is to provide a multi-layered substrate having a voltage reference signal circuit layout capable of preventing signal coupling between the voltage reference signal trace and other neighboring signal traces. [0010]
  • To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention provides a multi-layered substrate having a voltage reference signal circuit layout therein. In this invention, the voltage reference signal trace is moved to another non-signaling layer so that the signal traces within the signal layer have larger layout area. The voltage reference signal trace within the non-signaling layer not only is free from signal interference from signal traces, but also has more layout flexibility. In addition, the voltage reference signal circuit may employ a wide conductive trace design so that parasitic resistance is reduced. [0011]
  • The multi-layered substrate according to this invention includes a first signal layer, a plurality of plugs, a ground layer, a power and a second signal layer. The plugs, the ground layer and the power layer are formed between a first signal layer and a second signal layer. The first signal layer comprises a first voltage reference signal trace and a plurality of signal traces. A second voltage reference signal trace is in the power layer or the ground layer (non-signaling layer). The plurality of the plugs are used for electrically connecting the first signal layer and the second signal layer, the first signal layer and the second voltage reference signal circuit, and the second signal layer and the second voltage reference signal circuit [0012]
  • The first signal layer, the ground layer, the power layer and the second signal layer separate from each other by dielectric layers. Furthermore, a solder mask layer is formed over the exterior surface of the first signal layer and the second signal layer respectively. [0013]
  • In addition, the multi-layered substrate may also include a signal layer between the ground layer and the power layer, a ground-signal layer between the first signal layer and the ground layer and a power-signal layer between the second signal layer and the power layer. [0014]
  • Depending on the process capability, the voltage reference signal may be transmitted through a plug directly to the second voltage reference signal trace in the non-signaling layer without the first voltage reference signal trace in the signal layer. For example, a flip-chip package IC device can meet this kind of layout design. [0015]
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.[0016]
  • BRIEF DESCRIPTION OF DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings, [0017]
  • FIG. 1 is a schematic cross-sectional view of a conventional four-layered substrate; [0018]
  • FIG. 2 is a schematic diagram showing a conventional voltage reference signal circuit layout within a signal layer; [0019]
  • FIG. 3 is a schematic diagram showing another conventional voltage reference signal circuit layout within a signal layer; [0020]
  • FIG. 4 is a schematic cross-sectional view of a four-layered substrate according to a first preferred embodiment of this invention; [0021]
  • FIG. 5 is a schematic diagram showing a voltage reference signal circuit layout within a signal layer according to the first embodiment of this invention; [0022]
  • FIG. 6 is a schematic diagram showing a voltage reference signal circuit layout within a power layer according to the first embodiment of this invention; [0023]
  • FIG. 7 is a schematic diagram showing a voltage reference signal circuit layout after the signal layer and the power layer stacked together according to the first embodiment; [0024]
  • FIG. 8 is a schematic cross-sectional view of a multi-layered substrate according to a second preferred embodiment of this invention; [0025]
  • FIG. 9 is a schematic cross-sectional view of a multi-layered substrate according to a third preferred embodiment of this invention; and [0026]
  • FIG. 10 is a schematic cross-sectional view of a multi-layered substrate according to a fourth preferred embodiment of this invention.[0027]
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts. [0028]
  • FIG. 4 is a schematic cross-sectional view of a four-layered substrate according to a first preferred embodiment of this invention. Most packaging substrates or printed circuit boards have a four-layered structure. A four-layered [0029] substrate 200 is shown in FIG. 4. The four-layered substrate 200 includes a signal layer 204, a ground layer 208, a power layer 212 and another signal layer 216.
  • An [0030] insulation layer 206 separates the signal layer 204 from the ground layer 208. Similarly, an insulation layer 210 separates the ground layer 208 from the power layer 212 and an insulation layer 214 separates the power layer 212 from the signal layer 216. In addition, the exterior surface of the signal layer 204 has a solder mask layer 202 while the exterior surface of the signal layer 216 has another solder mask layer 218.
  • The circuits within the signal layers [0031] 204 and 216 serve as signal input/output channels. In other words, all incoming or outgoing signals will get through either of the signal layers 204 and 216. The signal layers 204 and 216 are electrically connected through plugs (as shown in FIG. 5).
  • FIG. 5 is a schematic diagram showing a voltage reference signal circuit layout within a signal layer according to the first embodiment of this invention. As shown in FIGS. 4 and 5, the traces within the signal layers [0032] 204 and 216 mainly comprises a voltage reference signal circuit and signal circuits.
  • Using the [0033] signal layer 204 above the insulation layer 206 as an example, the voltage reference signal circuit layout within the signal layer 204 includes a first voltage reference signal trace 204 a and a plurality of signal traces 204 b. One end of the first voltage reference signal trace 204 a is electrically connected with a plug 220. The other signal traces 204 b are electrically connected to the signal layer 216 underneath through various plugs 224.
  • FIG. 6 is a schematic diagram showing a voltage reference signal circuit layout within a power layer according to the first embodiment of this invention. As shown in FIGS. 4 and 6, the [0034] power layer 212 mainly includes a second voltage reference signal trace 226 and a patterned conductive plane 228 for transmitting the voltage reference signal. The terminals of the second voltage reference signal trace 226 are electrically connected a first plug 220 and a second plug 222 respectively. The patterned conductive layer 228 has empty areas surrounding the second voltage reference signal trace 226 as well as the plugs 220, 222 and 224. With this design arrangement, the patterned conductive layer 228 is less vulnerable to short circuiting with the second voltage reference signal trace 226 and various plugs 220, 222, 224. Anyone familiar with such technologies may also notice that in places corresponding to the plugs 220, 222 and 224 within the ground layer 208 between the signal layer 204 and the power layer 212 also have empty areas to facilitate the positioning of the plugs.
  • Each of the [0035] plugs 220, 222 and 224 within the four-layered substrate 200 has a special function. For example, the plug 220 connects the first voltage reference signal trace 204 a and the second voltage reference signal trace 226 electrically. Similarly, the plug 222 connects the second voltage reference signal trace 226 and the signal layer 216 electrically and the plug 224 connects the signal layer 204 and the signal layer 216 electrically.
  • FIG. 7 is a schematic diagram showing a voltage reference signal circuit layout after the signal layer and the power layer stacked together according to the first embodiment. As shown in FIGS. 4 and 7, one end of the second voltage [0036] reference signal trace 226 and the first voltage reference signal trace 204 a are electrically connected through the plug 220 after the signal layer 204 and the power layer 212 stacked together. Similarly, the other end of the second voltage reference signal trace 226 and the signal layer 216 underneath are electrically connected through the plug 222.
  • The first voltage [0037] reference signal trace 204 a and the second voltage reference signal trace 226 together form a complete voltage reference signal circuit. Since the second voltage reference signal trace 226 is formed within the power layer 212, the ground layer 208 between the power layer 212 and the signal layer 204 functions as an electromagnetic shield reducing any signal coupling between the voltage reference signal circuit and other signal circuits. Ultimately, a constant voltage level is maintained within the voltage reference signal trace 204 a.
  • The voltage reference signal trace within the [0038] signal layer 204 is moved to the power layer 212 so that the signal traces 204 b within the signal layer 204 can have a larger space for wiring layout. Consequently, the second voltage reference signal trace 226 can have more layout flexibility. Furthermore, a wider conductive line may be employed in the second voltage reference signal trace 226 to reduce parasitic resistance.
  • Anyone familiar with the technologies may notice that moving the voltage reference signal trace within the [0039] signal layer 204 to the ground layer 208 is also a feasible alternative. This arrangement similarly increases area for accommodating the signal traces 204 b and provides more flexibility to the layout of voltage reference signal circuit.
  • FIG. 8 is a schematic cross-sectional view of a multi-layered substrate according to a second preferred embodiment of this invention. The voltage reference signal circuit layout according to this invention has applications in other types of multi-layered substrate aside from a four-layered substrate. As shown in FIG. 8, the [0040] multi-layered substrate 300 comprises a signal layer 304, a ground layer 308, a second signal layer 312, a third signal layer 316, a power layer 320 and a fourth signal layer 324. An insulation layer 306 separates the signal layer 304 and the ground layer 308. Similarly, an insulation layer 310 separates the ground layer 308 and the second signal layer 312, an insulation layer 314 separates the second signal layer 312 and the third signal layer 316, an insulation layer 318 separates the third signal layer 316 and the power layer 320, and an insulation layer 322 separates the power layer 320 and the fourth signal layer 324. In addition, a solder mask layer 302 is formed on the exterior surface of the signal layer 304 and another solder mask layer 326 is formed on the exterior surface of the fourth signal layer 324.
  • In the second embodiment, the voltage reference signal trace within the [0041] signal layer 304 may move to either the ground layer 308 or the power layer 320. This arrangement similarly prevents signal coupling and increases layout flexibility.
  • FIG. 9 is a schematic cross-sectional view of a multi-layered substrate according to a third preferred embodiment of this invention. As shown in FIG. 9, the [0042] multi-layered substrate 400 comprises a signal layer 404, a ground-signal layer 408, a ground layer 412, a power layer 416, a power-signal layer 420 and a second signal layer 424. An insulation layer 406 separates the signal layer 404 and the ground-signal layer 408. Similarly, an insulation layer 410 separates the ground-signal layer 408 and the ground layer 412, an insulation layer 414 separates the ground layer 412 and the power layer 416, an insulation layer 418 separates the power layer 416 and the power-signal layer 420, and an insulation layer 422 separates the power-signal layer 420 and the second signal layer 424. In addition, a solder mask layer 402 is formed on the exterior surface of the signal layer 404 and another solder mask layer 426 is formed on the exterior surface of the second signal layer 424.
  • In the third embodiment, the voltage reference signal circuit within the [0043] signal layer 404 may move to the ground-signal layer 408, the ground layer 412, the power layer 416 or the power-signal layer 420. This arrangement similarly prevents signal coupling and increases layout flexibility.
  • FIG. 10 is a schematic cross-sectional view of a multi-layered substrate according to a fourth preferred embodiment of this invention. As shown in FIG. 10, the [0044] multi-layered substrate 500 comprises a signal layer 504, a non-signaling layer 508 and a second signal layer 512. An insulation layer 506 separates the signal layer 504 and the non-signaling layer 508 and, an insulation layer 510 separates the non-signaling layer 508 and the second signal layer 512. In addition, a solder mask layer 502 is formed on the exterior surface of the signal layer 504 and another solder mask layer 514 is formed on the exterior surface of the second signal layer 512.
  • In the fourth embodiment, the voltage reference signal circuit within the [0045] signal layer 504 may move to the non-signaling layer 508. This arrangement similarly prevents signal coupling and increases layout flexibility.
  • In conclusion, the multi-layered substrate having a voltage reference signal circuit layout therein according to this invention has at least the following advantages: [0046]
  • 1. The conductive plane in the ground layer is an electromagnetic shield for the voltage reference signal circuit that prevents the coupling of other signal circuits with the voltage reference signal circuit. [0047]
  • 2. The voltage reference signal circuit is formed in a conductive layer outside the signal layer so that the voltage reference signal circuit can have more layout flexibility. [0048]
  • 3. Since the voltage reference signal circuit is formed in a conductive layer outside the signal layer, other signal circuits within the signal layer can have a larger layout area. [0049]
  • 4. Because the voltage reference signal circuit is formed in a conductive layer outside the signal layer, the conductive trace having a larger width may be employed to form the voltage reference signal circuit so that effective parasitic resistance is greatly reduced. [0050]
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents. [0051]

Claims (26)

1. A multi-layered substrate having a voltage reference signal circuit layout therein, comprising:
a first layer having a plurality of signal traces;
a second layer having at least one conductive plane;
a third layer having at least one conductive plane and a voltage reference signal trace; and
a fourth layer having a plurality of signal traces.
2. The multi-layered substrate of claim 1, wherein the conductive plane at the second layer is a ground plane.
3. The multi-layered substrate of claim 1, wherein the conductive plane at the second layer is a power plane.
4. The multi-layered substrate of claim 1, wherein the conductive plane at the third layer is a ground plane.
5. The multi-layered substrate of claim 1, wherein the conductive plane at the third layer is a power plane.
6. The multi-layered substrate of claim 1, wherein the voltage reference signal trace is surrounded by the conductive plane at the third layer.
7. The multi-layered substrate of claim 1, wherein the substrate further at least one layer having a plurality of signal traces between the second layer and the third layer.
8. The multi-layered substrate of claim 1, wherein the substrate further a layer having at least one ground plane and a plurality of signal traces between the first layer and the second layer.
9. The multi-layered substrate of claim 1, wherein the substrate further a layer having at least one power plane and a plurality of signal traces between the third layer and the fourth layer.
10. The multi-layered substrate of claim 1, wherein the first layer further includes a voltage reference signal trace.
11. A multi-layered substrate having a voltage reference signal circuit layout therein, comprising:
a first signal layer having a plurality of signal traces;
a second signal layer having a plurality of signal traces; and
at least one non-signaling layer between the first signal layer and the second signal layer, wherein a voltage reference signal trace is in one of the non-signaling layers.
12. The multi-layered substrate of claim 11, wherein the non-signaling layer includes at least one power plane.
13. The multi-layered substrate of claim 11, wherein the non-signaling layer includes at least one ground layer plane.
14. The multi-layered substrate of claim 11, wherein the non-signaling layer includes at least one power plane and a plurality of signal traces.
15. The multi-layered substrate of claim 11, wherein the non-signaling layer includes at least one ground layer plane and a plurality of signal traces.
16. A multi-layered substrate having a voltage reference signal circuit layout therein, comprising:
at least one signal layer having a plurality of signal traces;
a non-signaling layer having a voltage reference signal trace; and
a conductive plane between the signal layer and the non-signaling layer.
17. The multi-layered substrate of claim 16, wherein the non-signaling layer includes at least one power plane.
18. The multi-layered substrate of claim 16, wherein the non-signaling layer includes at least one ground layer plane.
19. The multi-layered substrate of claim 16, wherein the non-signaling layer includes at least one power plane and a plurality of signal traces.
20. The multi-layered substrate of claim 16, wherein the non-signaling layer includes at least one ground layer plane and a plurality of signal traces.
21. The multi-layered substrate of claim 16, wherein the conductive plane includes a ground plane.
22. The multi-layered substrate of claim 16, wherein the conductive plane includes a power plane.
23. A multi-layered substrate having a voltage reference signal circuit layout therein, comprising:
at least one signal layer having a plurality of signal traces; and
at least one non-signaling layer having a voltage reference signal trace.
24. The multi-layered substrate of claim 23, wherein the non-signaling layer includes at least one ground layer plane.
25. The multi-layered substrate of claim 23, wherein the non-signaling layer includes at least one power plane and a plurality of signal traces.
26. The multi-layered substrate of claim 23, wherein the non-signaling layer includes at least one ground layer plane and a plurality of signal traces.
US10/063,737 2002-02-06 2002-05-09 Voltage reference circuit layout inside multi-layered substrate Abandoned US20030149942A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/160,355 US7356782B2 (en) 2002-02-06 2005-06-21 Voltage reference signal circuit layout inside multi-layered substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW91102057 2002-02-06
TW091102057A TW550991B (en) 2002-02-06 2002-02-06 Multi-layered substrate having voltage reference signal circuit layout

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/160,355 Continuation-In-Part US7356782B2 (en) 2002-02-06 2005-06-21 Voltage reference signal circuit layout inside multi-layered substrate

Publications (1)

Publication Number Publication Date
US20030149942A1 true US20030149942A1 (en) 2003-08-07

Family

ID=27657734

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/063,737 Abandoned US20030149942A1 (en) 2002-02-06 2002-05-09 Voltage reference circuit layout inside multi-layered substrate
US11/160,355 Expired - Lifetime US7356782B2 (en) 2002-02-06 2005-06-21 Voltage reference signal circuit layout inside multi-layered substrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/160,355 Expired - Lifetime US7356782B2 (en) 2002-02-06 2005-06-21 Voltage reference signal circuit layout inside multi-layered substrate

Country Status (2)

Country Link
US (2) US20030149942A1 (en)
TW (1) TW550991B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030223352A1 (en) * 2002-05-29 2003-12-04 Williams Ricki Dee Reduction of forward crosstalk using time division multiplexing
US20070158846A1 (en) * 2005-12-22 2007-07-12 Broadcom Corporation Method and system for innovative substrate/package design for a high performance integrated circuit chipset
US7694252B1 (en) * 2007-04-21 2010-04-06 Synopsys, Inc. Method and system for static verification of multi-voltage circuit design

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120104641A (en) 2004-02-04 2012-09-21 이비덴 가부시키가이샤 Multilayer printed wiring board
TWI424222B (en) * 2008-08-28 2014-01-21 Chunghwa Picture Tubes Ltd Display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500804A (en) * 1993-12-08 1996-03-19 International Business Machines Corporation Method to optimize the wiring of multiple wiring media packages
US5990547A (en) * 1998-03-02 1999-11-23 Motorola, Inc. Semiconductor device having plated contacts and method thereof
US6111205A (en) * 1997-10-28 2000-08-29 Intel Corporation Via pad geometry supporting uniform transmission line structures
US6326244B1 (en) * 1998-09-03 2001-12-04 Micron Technology, Inc. Method of making a cavity ball grid array apparatus
US6441319B1 (en) * 2000-12-28 2002-08-27 Nortel Networks Limited Inserted components for via connection of signal tracks to achieve continuous impedance matching in multi-layer substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500804A (en) * 1993-12-08 1996-03-19 International Business Machines Corporation Method to optimize the wiring of multiple wiring media packages
US6111205A (en) * 1997-10-28 2000-08-29 Intel Corporation Via pad geometry supporting uniform transmission line structures
US5990547A (en) * 1998-03-02 1999-11-23 Motorola, Inc. Semiconductor device having plated contacts and method thereof
US6326244B1 (en) * 1998-09-03 2001-12-04 Micron Technology, Inc. Method of making a cavity ball grid array apparatus
US6441319B1 (en) * 2000-12-28 2002-08-27 Nortel Networks Limited Inserted components for via connection of signal tracks to achieve continuous impedance matching in multi-layer substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030223352A1 (en) * 2002-05-29 2003-12-04 Williams Ricki Dee Reduction of forward crosstalk using time division multiplexing
US20070158846A1 (en) * 2005-12-22 2007-07-12 Broadcom Corporation Method and system for innovative substrate/package design for a high performance integrated circuit chipset
US7867816B2 (en) * 2005-12-22 2011-01-11 Broadcom Corporation Method and system for innovative substrate/package design for a high performance integrated circuit chipset
US8237262B2 (en) 2005-12-22 2012-08-07 Broadcom Corporation Method and system for innovative substrate/package design for a high performance integrated circuit chipset
US7694252B1 (en) * 2007-04-21 2010-04-06 Synopsys, Inc. Method and system for static verification of multi-voltage circuit design

Also Published As

Publication number Publication date
US7356782B2 (en) 2008-04-08
US20050235233A1 (en) 2005-10-20
TW550991B (en) 2003-09-01

Similar Documents

Publication Publication Date Title
US5488540A (en) Printed circuit board for reducing noise
EP2160931B1 (en) Printed circuit board
US7193324B2 (en) Circuit structure of package substrate
US7518884B2 (en) Tailoring impedances of conductive traces in a circuit board
US9445492B2 (en) Printed circuit board
US20090040741A1 (en) Method for transmitting moving image data and communication apparatus
US8022313B2 (en) Circuit board with electromagnetic bandgap adjacent or overlapping differential signals
US7356782B2 (en) Voltage reference signal circuit layout inside multi-layered substrate
US7791896B1 (en) Providing an embedded capacitor in a circuit board
KR20060116419A (en) Multilayer substrate and the manufacturing method thereof
US20060191712A1 (en) Interconnect
US9681554B2 (en) Printed circuit board
US11764151B2 (en) Connection of several circuits of an electronic chip
US20020117739A1 (en) Wiring board and semiconductor device using the same
US20070194434A1 (en) Differential signal transmission structure, wiring board, and chip package
US20070228578A1 (en) Circuit substrate
JP2008072022A (en) Connector of signal transmission cable, and signal transmission device for outputting signal to signal transmission cable
US20030123238A1 (en) Enhanced PCB and stacked substrate structure
JP3799949B2 (en) Printed board
US8077477B2 (en) Electronic component and circuit board
JPH02184096A (en) Electronic circuit board
US8023278B2 (en) Circuit board
KR20040096171A (en) PCB to improve static electricity discharge
US6861921B1 (en) Removing ground plane resonance
US20160156086A1 (en) Power and Signal Extender and Related Circuit Board

Legal Events

Date Code Title Description
AS Assignment

Owner name: VIA TECHNOLOGIES, INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HSU, JIMMY;REEL/FRAME:012672/0085

Effective date: 20020305

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION