US20030134802A1 - Novel effectors of dipepetidyl peptidase IV - Google Patents

Novel effectors of dipepetidyl peptidase IV Download PDF

Info

Publication number
US20030134802A1
US20030134802A1 US10/361,956 US36195603A US2003134802A1 US 20030134802 A1 US20030134802 A1 US 20030134802A1 US 36195603 A US36195603 A US 36195603A US 2003134802 A1 US2003134802 A1 US 2003134802A1
Authority
US
United States
Prior art keywords
salts
dipeptide
compound
isoleucyl
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/361,956
Inventor
Hans-Ulrich Demuth
Konrad Glund
Dagmar Schlenzig
Susanne Kruber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prosidion Ltd
Original Assignee
Hans-Ulrich Demuth
Konrad Glund
Dagmar Schlenzig
Susanne Kruber
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hans-Ulrich Demuth, Konrad Glund, Dagmar Schlenzig, Susanne Kruber filed Critical Hans-Ulrich Demuth
Priority to US10/361,956 priority Critical patent/US20030134802A1/en
Publication of US20030134802A1 publication Critical patent/US20030134802A1/en
Priority to US10/727,209 priority patent/US20050203030A1/en
Assigned to PROSIDION LIMITED reassignment PROSIDION LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PROBIODRUG AG
Assigned to PROSIDION LIMITED reassignment PROSIDION LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PROBIODRUG AG
Assigned to PROSIDION LIMITED reassignment PROSIDION LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PROBIODRUG AG
Assigned to PROSIDION LIMITED reassignment PROSIDION LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PROBIODRUG AG
Assigned to PROSIDION LIMITED reassignment PROSIDION LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PROBIODRUG AG
Priority to US11/443,389 priority patent/US20080182798A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/185Radicals derived from carboxylic acids from aliphatic carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/05Dipeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/4261,3-Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/04Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members

Definitions

  • hyperglycaemia and associated causes and sequelae are treated by the administration of insulin (e.g. material isolated from bovine pancreas or obtained by genetic engineering techniques) to the diseased organisms in various forms of administration.
  • insulin e.g. material isolated from bovine pancreas or obtained by genetic engineering techniques
  • All methods known hitherto, including more modern procedures, are distinguished by the requirement of a large amount of material, by high costs and often by a distinct impairment of the quality of life of the patients.
  • the conventional method (daily i.v. insulin injection, customary since the 1930s) treats the acute symptoms of the disease, but after prolonged use leads inter alia to serious vascular changes (arteriosclerosis) and nerve damage.
  • Isoleucyl thiazolidide which is used in the latter prior art, is a natural, that is to say L-threo-isoleucyl thiazolidide: on the priority date and also on the application date of the two specifications, only that form, the natural form, of isoleucyl thiazolidide was available.
  • diabetes mellitus patients must be “stabilised” individually in order that their illness can be treated in an optimum manner. In some cases, for example, a reduction in the activity by DP IV effectors ought to be sufficient. It is also possible that too high a level of inhibitor activity and the permanent administration of the same medicament, especially in view of the life-long duration of treatment, may result in undesirable side-effects. Furthermore, it could also be desirable to improve certain transport properties in order to increase the rate of absorption of the effectors in vivo
  • the present invention relates to dipeptide compounds and compounds analogous to dipeptide compounds that are formed from an amino acid and a thiazolidine or pyrrolidine group, and salts thereof, referred to hereinafter as dipeptide compounds, and to the use of the compounds in the treatment of impaired glucose tolerance, glycosuria, hyperlipidaemia, metabolic acidoses, diabetes mellitus, diabetic neuropathy and nephropathy and also of sequelae of diabetes mellitus in mammals.
  • the invention therefore relates also to a simple method of lowering the blood sugar concentration in mammals with the aid of dipeptide compounds as activity-reducing effectors (substrates, pseudosubstrates, inhibitors, binding proteins, antibodies etc.) for enzymes having activity comparable to or identical to the enzymatic activity of the enzyme dipeptidyl peptidase IV.
  • dipeptide compounds as activity-reducing effectors (substrates, pseudosubstrates, inhibitors, binding proteins, antibodies etc.) for enzymes having activity comparable to or identical to the enzymatic activity of the enzyme dipeptidyl peptidase IV.
  • DP IV or DP IV-analogous activity occurs in the blood circulation where it splits off dipeptides highly specifically from the N-terminus of biologically active peptides when proline or alanine are the adjacent residues of the N-terminal amino acid in their sequence.
  • the glucose-dependent insulinotropic polypeptides gastric inhibitory polypeptide 1-2 (GIP 1-42 ) and glucagonlike peptide amide-1 7-36 (GLP-1 7-36 ), that is to say hormones that stimulate glucose-induced secretion of insulin by the pancreas (also called incretins), are substrates of DP IV, since the latter is able to split off the dipeptides tyrosinyl-alanine and histidylalanine, respectively, from the N-terminal sequences of those peptides in vitro and in vivo.
  • GIP 1-42 gastric inhibitory polypeptide 1-2
  • GLP-1 7-36 glucagonlike peptide amide-1 7-36
  • DP IV and DP IV-analogous enzyme activity of the cleavage of those substrates in vivo can be used to bring about effective suppression of undesired enzyme activity under laboratory conditions and also in the case of pathological conditions in mammalian organisms.
  • diabetes mellitus Type II including adult-onset diabetes
  • DP IV and DP IV-analogous enzyme activity of the cleavage of those substrates in vivo can be used to bring about effective suppression of undesired enzyme activity under laboratory conditions and also in the case of pathological conditions in mammalian organisms.
  • diabetes mellitus Type II including adult-onset diabetes
  • hyperglycaemia and associated causes and sequelae are treated by the administration of insulin (e.g. material isolated from bovine pancreas or obtained by genetic engineering techniques) to the diseased organisms in various forms of administration.
  • insulin e.g. material isolated from bovine pancreas or obtained by genetic engineering techniques
  • All methods known hitherto, including more modern procedures, are distinguished by the requirement of a large amount of material, by high costs and often by a distinct impairment of the quality of life of the patients.
  • the conventional method (daily i.v. insulin injection, customary since the 1930s) treats the acute symptoms of the disease but after prolonged use leads inter alia to serious vascular changes (arteriosclerosis) and nerve damage.
  • diabetes mellitus patients must be “stabilised” individually in order that their illness can be treated in an optimum manner. In some cases, for example, a reduction in the activity by DP IV effectors ought to be sufficient. It is also possible that too high a level of inhibitor activity and the permanent administration of the same medicament, especially in view of the life-long duration of treatment, may result in undesirable side effects. Furthermore, it could also be desirable to improve certain transport properties in order to increase the rate of absorption of the effectors in vivo.
  • the aim of the invention is therefore to provide new (especially activity-reducing) effectors for the treatment of e.g. impaired glucose tolerance, glycosuria, hyperlipidaemia, metabolic acidoses, diabetes mellitus, diabetic neuropathy and nephropathy and also of sequelae of diabetes mellitus in mammals, and a simple method of treating such diseases.
  • This aim is achieved according to the invention by the provision of dipeptide compounds or analogues of dipeptides that are formed from an amino acid and a thiazolidine or pyrrolidine group, and salts thereof.
  • FIG. 1 depicts capillary zone electrophoretic separation of the isomers of isoleucyl thiazolide this separation is representative of a 1:1:1:1 mixture of L-threo-Ile-Thi*fum, L-allo-Ile-Thia*fum, D-threo-Ile-Thia*fum, D-allo-Ile-Thia*fum;
  • FIG. 2 depicts capillary zone electrophoretic separation of Ile-Thia*fumarate this separation is representative of a 1:1000 mixture of L-threo-Ile-Thia*fumarate to D-allo-Ile-Thia*fumarate;
  • FIG. 3 depicts a graphic representation of serum DP VI activity after oral administration of various H-Ile-Thia stereoisomers (5 ⁇ M/300 g rat). Enazyme activity influenced only by L-Allo-Ile-Thia and L-threo-Ile-Thia; and
  • FIG. 4 depicts action of various aminoacyl-thiazolidides on the glucose tolerance of rats (oral glucose tolerance test with 2 g/300 g Wistar rat at time point, administration of DP IV inhibitors 10 minutes prior to oral glucose stimulation).
  • the endogenous (or additionally exogenously administered) insulinotropic peptides GIP 1-42 and GLP-1 7-36 are broken down to a reduced extent by DP IV or DP IV-like enzymes and therefore the decrease in the concentration of those peptide hormones or their analogues is reduced or delayed.
  • the invention is therefore based on the finding that a reduction in the DP IV or DP IV-like enzymatic activity acting in the blood circulation has an effect on the blood sugar level. It has been found that
  • dipeptide compounds in which the amino acid is selected from a natural amino acid, such as, for example, leucine, valine, glutamine, proline, isoleucine, asparagine and aspartic acid.
  • a natural amino acid such as, for example, leucine, valine, glutamine, proline, isoleucine, asparagine and aspartic acid.
  • the administration, where possible oral administration, of the high-affinity, low molecular weight enzyme inhibitors according to the invention is a more economical alternative e.g. to invasive surgical techniques in the treatment of pathological symptoms.
  • invasive surgical techniques e.g. to invasive surgical techniques in the treatment of pathological symptoms.
  • the dipeptide compounds according to the invention therefore exhibit at a concentration (of dipeptide compounds) of 10 ⁇ M, especially under the conditions indicated in Table 1, a reduction in the activity of dipeptidyl peptidase IV or DP IV-analogous enzyme activities of at least 10%, especially of at least 40%. Frequently a reduction in activity of at least 60% or at least 70% is also required. Preferred effectors may also exhibit a reduction in activity of a maximum of 20% or 30%. Furthermore, the transport properties of the present compounds, especially by the peptide transporter Pep T1, are significantly improved.
  • Especially preferred dipeptide compounds are L-allo-isoleucyl thiazolidide and salts thereof. Those compounds surprisingly exhibit an approximately five-fold improvement in transport by the peptide transporter Pep T1 in comparison with L-threo-isoleucyl thiazolidide, while having approximately the same degree of action with respect to glucose modulation.
  • the salts of the dipeptide compounds according to the invention may be, for example, organic salts such as acetates, succinates, tartrates or fumarates, or inorganic acid radicals such as phosphates or sulphates. Special preference is given to the fumarates, which have an excellent action combined with a surprisingly high degree of stability towards hydrolysis and are considerably less soluble than the hydrochlorides. Those properties are also advantageous from the galenical standpoint.
  • L-threo-isoleucyl pyrrolidide and salts thereof especially the fumaric salts
  • L-allo-isoleucyl pyrrolidide and salts thereof especially the fumaric salts.
  • the salts of the dipeptide compounds can be present in a molar ratio of dipeptide (-analogous) component to salt component of 1:1 or 2:1.
  • a salt is, for example, (Ile-Thia) 2 fumaric acid.
  • Especially preferred salts are the fumaric salts of L-threo-isoleucyl thiazolidide and L-allo-isoleucyl thiazolidide.
  • the invention accordingly relates to effectors of dipeptidyl peptidase IV (DP IV) or DP IV-analogous enzyme activity and their use in lowering the blood sugar level in the serum of a mammalian organism below the glucose concentration that is characteristic of hyperglycaemia.
  • the invention relates especially to the use of the effectors of DP IV or DP IV-analogous enzyme activity according to the invention in preventing or alleviating pathological metabolic anomalies in mammalian organisms, such as, for example, impaired glucose tolerance, glycosuria, hyperlipidaemia, metabolic acidoses, diabetes mellitus, diabetic neuropathy and nephropathy and also sequelae or diabetes mellitus in mammals.
  • the invention relates to a method of lowering the blood sugar level in the serum of a mammalian organism below the glucose concentration that is characteristic of hyperglycaemia, characterised in that a therapeutically effective amount of at least one effector of DP IV or DP IV-analogous enzyme activity according to the invention is administered to a mammalian organism.
  • the invention relates to pharmaceutical compositions, that is to say medicaments, that comprise at least one compounds according to the invention or a salt thereof, optionally in combination with one or more pharmaceutically acceptable carriers and/or solvents.
  • compositions may be, for example, in the form of parenteral or enteral formulations and may contain appropriate carriers or they may be in the form of oral formulations that may contain appropriate carriers suitable for oral administration. They are preferably in the form of oral formulations.
  • compositions may contain one or more active ingredients having a hypoglycaemic action, which may be active ingredients known by those skilled in the art per se.
  • the effectors of DP IV or DP IV-analogous enzyme activity according to the invention can be used for lowering the blood sugar level in the serum of a mammalian organism below the glucose concentration that is characteristic of hyperglycaemia or for the production of a corresponding medicament.
  • effectors of DP IV or DP IV-analogous enzymes administered according to the invention can be used in pharmaceutically acceptable formulations or formulation complexes as inhibitors, substrates, pseudosubstrates, inhibitors of DP IV expression, binding proteins or antibodies of those enzyme proteins or combinations of those different substances that reduce the DP IV or DP IV-analogous protein concentration in the mammalian organism.
  • Effectors according to the invention are, for example, DP IV-inhibitors such as the dipeptide derivatives or dipeptide mimetics L-allo-isoleucyl thiazolidide and the effectors indicated in Table 1 and fumaric salts thereof.
  • the effectors according to the invention enable the treatment of patients and diseases to be adjusted individually, it being possible especially to avoid intolerances, allergies and side effects occurring in individual cases.
  • the compounds also exhibit different effectiveness behaviours over time.
  • the physician carrying out the treatment has the opportunity to respond in various ways according to the individual situation of a patient: he is able, on the one hand, to set accurately the speed of onset of the action and, on the other hand, the duration of action and especially the strength of action.
  • the method according to the invention represents a new kind of procedure for lowering raised blood glucose concentrations in the serum of mammals. It is simple, capable of commercial exploitation and suitable for use in therapy, especially of diseases that are based on above-average blood glucose values, in mammals and more especially in human medicine.
  • the effectors are administered, for example, in the form of pharmaceutical preparations that comprise the active ingredient in combination with customary carrier materials known in the prior art.
  • they will be administered parenterally (e.g. i.v., in physiological saline) or enterally (e.g. orally, formulated with customary carrier materials, such as, for example, glucose).
  • the effectors will need to be administered one or more times per day in order to achieve the desired normalisation of the blood glucose values.
  • a dosage range in human beings may lie in the range of from 0.01 mg to 30.0 mg per day, preferably in the range of from 0.01 to 10 mg of effector substance per kilogram of body weight.
  • the blood sugar level in the serum of the organism being treated falls below the glucose concentration that is characteristic of hyperglycaemia, thus making it possible to prevent or alleviate metabolic anomalies such as impaired glucose tolerance, glycosuria, hyperlipidaemia and possible severe metabolic acidoses and diabetes mellitus, which are clinical syndromes resulting from raised glucose concentrations in the blood over a prolonged period.
  • metabolic anomalies such as impaired glucose tolerance, glycosuria, hyperlipidaemia and possible severe metabolic acidoses and diabetes mellitus, which are clinical syndromes resulting from raised glucose concentrations in the blood over a prolonged period.
  • the molecular weights of the sulphonylureas vary in the range around 500 to 700 Da.
  • aminoacyl thiazolidides are hydrolysed by aminopeptidases and by acidic hydrolysis to form endogenous substances, such as amino acids and cysteamine, so that the use of the compounds according to the invention as orally available anti-diabetics constitutes an enrichment of pharmacy.
  • aminoacyl pyrrolidides and aminoacyl thiazolidides can be broken down by the enzymes proline aminopeptidase and prolidase present in the mucosa cells of the small intestine, in serum and in liver cells and that the thiazolidine ring has a tendency to open in the presence of acids (for example in the stomach) with the formation of the corresponding cysteamine derivative [see U.S. Pat. No. 458,407]. It was therefore surprising to find that the active ingredients have a dose-dependent effectiveness after peroral administration.
  • the compounds used according to the invention can be made in a manner known by those skilled in the art per se into the customary formulations, such as, for example, tablets, capsules, dragees, pills, suppositories, granules, aerosols, syrups, liquid, solid and cream-type emulsions and suspensions and solutions using inert, non-toxic, pharmaceutically acceptable carriers and additives or solvents.
  • the therapeutically effective compounds are in each case preferably present in a concentration of approximately from 0.1 to 80% by weight, preferably from 1 to 50% by weight, of the total mixture, that is to say in amounts sufficient to achieve a dosage within the indicated range.
  • the substances can be administered as medicaments in the form of dragees, capsules, bitable capsules, tablets, drops and syrup, as well as in the form of pessaries and nasal sprays.
  • the formulations are produced, for example, by extending the active ingredient with solvents and/or carriers, optionally using emulsifiers and/or dispersing agents, and optionally, for example where water is used as diluent, organic solvents may be used as auxiliary solvents.
  • auxiliaries may be mentioned by way of example: water, non-toxic organic solvents, such as paraffins (e.g. mineral oil fractions), vegetable oils (e.g. rapeseed oil, groundnut oil, sesame oil), alcohols (e.g. ethyl alcohol, glycerol), glycols (e.g. propylene glycol, polyethylene glycol); solid carriers, such as, for example, ground natural minerals (e.g. highly dispersed silicic acid, silicates), sugars (e.g. unrefined sugar, lactose and dextrose); emulsifiers, such as non-ionic and anionic emulsifiers (e.g.
  • paraffins e.g. mineral oil fractions
  • vegetable oils e.g. rapeseed oil, groundnut oil, sesame oil
  • alcohols e.g. ethyl alcohol, glycerol
  • glycols e.g. propylene glycol, polyethylene
  • polyoxyethylene fatty acid esters polyoxyethylene fatty alcohol ethers, alkylsulphonates and arylsulphonates
  • dispersing agents e.g. lignin, spent sulphite liquors, methylcellulose, starch and polyvinylpyrrolidone
  • glidants e.g. magnesium stearate, talcum, stearic acid and sodium lauryl sulphate
  • optionally flavourings e.g. magnesium stearate, talcum, stearic acid and sodium lauryl sulphate
  • Administration is effected in customary manner, preferably enterally or parenterally, especially orally.
  • tablets may also comprise other additives, such as sodium citrate, calcium carbonate and calcium phosphate, together with various supplementary ingredients, such as starch, especially potato starch, gelatin and the like.
  • glidants such as magnesium stearate, sodium lauryl sulphate and talcum, for tableting purposes.
  • various taste correctors or colourings to be added to the active ingredients in addition to the auxiliaries mentioned above.
  • liquid carrier materials for parenteral administration it is possible to use solutions of the active ingredients using suitable liquid carrier materials.
  • intravenous administration it has generally proved advantageous to administer amounts of approximately from 0.01 to 2.0 mg/kg, preferably approximately from 0.01 to 1.0 mg/kg, body weight per day in order to achieve effective results, and in the case of enteral administration the dosage is approximately from 0.01 to 2 mg/kg, preferably approximately from 0.01 to 1 mg/kg, body weight per day.
  • the solution is introduced into soft gelatin capsules in a manner known by those skilled in the art per se.
  • the capsules are suitable for chewing or swallowing.
  • the following amounts relate to the production of 100,000 tablets: The following amounts relate to the production of 100,000 tablets: L-allo-isoleucyl thiazolidide hydrochloride, 10.0 kg finely ground glucose 4.35 kg lactose 4.35 kg starch 4.50 kg cellulose, finely ground 4.50 kg
  • Substrate: GPpNA*HCl Stock solution: 2.1 mM Measuring Perkin-Elmer Bio Assay Reader, HTS 7000 Plus, apparatus: T 30° C.
  • Buffer, water/inhibitor and enzyme were preheated to 30° C. and the reaction was started by the addition of substrate which was likewise preheated.
  • the measuring time was 10 minutes.
  • the salts have the following data which is shown in Table 5.: TABLE 5 The salts have the following data which is shown in Table 5.: IT*salt K i M (gmol- 1 ) Mp (° C.) succinate 5.1 e ⁇ 8 522.73 116 tartrate 8.3 e ⁇ 8 352.41 122 fumarate 8.3 e ⁇ 8 520.71 156 hydrochloride 7.2 e ⁇ 8 238.77 169 phosphate 1.3 e ⁇ 7 300.32 105
  • [0081] corresponds to 0.02 mmol (520.72 g/mol)
  • Boc-protected amino acid Boc-Ile-OH is placed in ethyl acetate and the batch is cooled to about ⁇ 5° C.
  • N-Methylmorpholine is added dropwise, pivalic acid chloride (on a laboratory scale) or neohexanoyl chloride (on a pilot-plant scale) is added dropwise at constant temperature. The reaction is stirred for a few minutes for activation.
  • N-Methylmorpholine (laboratory scale) an thiazolidine hydrochloride (laboratory scale) are added dropwise in succession, thiazolidine (pilot-plant scale) is added.
  • Working-up in the laboratory is effected in conventional manner using salt solutions, on a pilot-plant scale the batch is purified with NaOH and CH 3 COOH solutions.

Abstract

Dipeptide compounds and compounds analogous to dipeptide compounds that are formed from an amino acid and a thiazolidine or pyrrolidine group and salts thereof used in the treatment of impaired glucose tolerance, glycosuria, hyperlipidaemia, metabolic acidoses, diabetes mellitus, diabetic neuropathy and nephropathy and also of sequelae of diabetes mellitus in mammals.

Description

    CROSS REFERENCE TO OTHER APPLICATIONS
  • The present application is a continuation of application U.S. Ser. No. 09/723,638 that claims priority of DE 198/23831.2 filed on May 28, 1998 and subsequent PCT EP 99/03712 application filed on May 28, 1999.[0001]
  • BACKGROUND OF THE INVENTION
  • According to the current state of the art, hyperglycaemia and associated causes and sequelae (including diabetes mellitus) are treated by the administration of insulin (e.g. material isolated from bovine pancreas or obtained by genetic engineering techniques) to the diseased organisms in various forms of administration. All methods known hitherto, including more modern procedures, are distinguished by the requirement of a large amount of material, by high costs and often by a distinct impairment of the quality of life of the patients. The conventional method (daily i.v. insulin injection, customary since the 1930s) treats the acute symptoms of the disease, but after prolonged use leads inter alia to serious vascular changes (arteriosclerosis) and nerve damage. [0002]
  • More recently the installation of subcutaneous depot implants (the insulin is released in metered amounts, and daily injections are unnecessary) and implantation (transplantation) of intact Langerhan's cells into the functionally impaired pancreatic gland or into other organs and tissues have been proposed. Such transplants require a high level of technical resources. Furthermore, they involve a surgical intervention into the recipient organism, which is associated with risks, and even in the case of cell transplants require methods of suppressing or circumventing the immune system. [0003]
  • The use of alanyl pyrrolidide and isoleucyl thiazolidide as inhibitors of DP IV or of DP IV-analogous enzyme activity is already known from PCT/DE 97/00820 and the use of isoleucyl pyrrolidide and isoleucyl thiazolidide hydrochloride is already known from DD 296 075. Isoleucyl thiazolidide, which is used in the latter prior art, is a natural, that is to say L-threo-isoleucyl thiazolidide: on the priority date and also on the application date of the two specifications, only that form, the natural form, of isoleucyl thiazolidide was available. [0004]
  • It has been established that those compounds, especially L-threo-isoleucyl thiazolidide, are good effectors for DP IV and DP IV-analogous enzyme activities, but the use of that compound may give rise to certain problems in the case of some patients or some forms of the disease: [0005]
  • Depending upon the symptoms and the severity e.g. of diabetes mellitus it would be desirable, for example, to have available effectors that have an action different from that of the known compounds: for example, it is known that diabetes mellitus patients must be “stabilised” individually in order that their illness can be treated in an optimum manner. In some cases, for example, a reduction in the activity by DP IV effectors ought to be sufficient. It is also possible that too high a level of inhibitor activity and the permanent administration of the same medicament, especially in view of the life-long duration of treatment, may result in undesirable side-effects. Furthermore, it could also be desirable to improve certain transport properties in order to increase the rate of absorption of the effectors in vivo [0006]
  • SUMMARY OF THE INVENTION
  • The present invention relates to dipeptide compounds and compounds analogous to dipeptide compounds that are formed from an amino acid and a thiazolidine or pyrrolidine group, and salts thereof, referred to hereinafter as dipeptide compounds, and to the use of the compounds in the treatment of impaired glucose tolerance, glycosuria, hyperlipidaemia, metabolic acidoses, diabetes mellitus, diabetic neuropathy and nephropathy and also of sequelae of diabetes mellitus in mammals. [0007]
  • The invention therefore relates also to a simple method of lowering the blood sugar concentration in mammals with the aid of dipeptide compounds as activity-reducing effectors (substrates, pseudosubstrates, inhibitors, binding proteins, antibodies etc.) for enzymes having activity comparable to or identical to the enzymatic activity of the enzyme dipeptidyl peptidase IV. [0008]
  • DP IV or DP IV-analogous activity (for example the cytosolic DP II has a substrate specificity almost identical to DP IV) occurs in the blood circulation where it splits off dipeptides highly specifically from the N-terminus of biologically active peptides when proline or alanine are the adjacent residues of the N-terminal amino acid in their sequence. [0009]
  • The glucose-dependent insulinotropic polypeptides: gastric inhibitory polypeptide 1-2 (GIP[0010] 1-42) and glucagonlike peptide amide-1 7-36 (GLP-17-36), that is to say hormones that stimulate glucose-induced secretion of insulin by the pancreas (also called incretins), are substrates of DP IV, since the latter is able to split off the dipeptides tyrosinyl-alanine and histidylalanine, respectively, from the N-terminal sequences of those peptides in vitro and in vivo.
  • The reduction of such DP IV and DP IV-analogous enzyme activity of the cleavage of those substrates in vivo can be used to bring about effective suppression of undesired enzyme activity under laboratory conditions and also in the case of pathological conditions in mammalian organisms. For example, diabetes mellitus Type II (including adult-onset diabetes) is based on a reduced secretion of insulin or disorders in the receptor function resulting inter alia from anomalous incretin concentrations arising from proteolysis. [0011]
  • According to the current state of the art, hyperglycaemia and associated causes and sequelae (including diabetes mellitus) are treated by the administration of insulin (e.g. material isolated from bovine pancreas or obtained by genetic engineering techniques) to the diseased organisms in various forms of administration. All methods known hitherto, including more modern procedures, are distinguished by the requirement of a large amount of material, by high costs and often by a distinct impairment of the quality of life of the patients. The conventional method (daily i.v. insulin injection, customary since the 1930s) treats the acute symptoms of the disease but after prolonged use leads inter alia to serious vascular changes (arteriosclerosis) and nerve damage. [0012]
  • More recently the installation of subcutaneous depot implants (the insulin is released in metered amounts, and daily injections are unnecessary) and implantation (transplantation) of intact Langerhan's cells into the functionally impaired pancreatic gland or into other organs and tissues have been proposed. Such transplants require a high level of technical resources. Furthermore, they involve a surgical intervention into the recipient organism, which is associated with risks, and even in the case of cell transplants require methods of suppressing or circumventing the immune system. [0013]
  • The use of alanyl pyrrolidide and isoleucyl thiazolidide as inhibitors of DP IV or of DP IV analogous enzyme activity is already known from PCT/DE 97/00820 and the use of isoleucyl pyrrolidide and isoleucyl thiazolidide hydrochloride is already know from DD 296 075. Isoleucyl thiazolidide, which is used in the latter prior art, is a natural, that is to say L-threo-isoleucyl thiazolidide: on the priority date and also on the application date of the two specifications, only that form, the natural form, of isoleucyl thiazolidide was available. [0014]
  • It has been established that those compounds, especially L-threo-isoleucyl thiazolidide, are good effectors for DP IV and DP IV analogous enzyme activities, but the use of that compound may give rise to certain problems in the case of some patients or some forms of the disease: [0015]
  • Depending upon the symptoms and the severity e.g. of diabetes mellitus it would be desirable, for example, to have available effectors that have an action different from that of the known compounds: for example, it is known that diabetes mellitus patients must be “stabilised” individually in order that their illness can be treated in an optimum manner. In some cases, for example, a reduction in the activity by DP IV effectors ought to be sufficient. It is also possible that too high a level of inhibitor activity and the permanent administration of the same medicament, especially in view of the life-long duration of treatment, may result in undesirable side effects. Furthermore, it could also be desirable to improve certain transport properties in order to increase the rate of absorption of the effectors in vivo. [0016]
  • The aim of the invention is therefore to provide new (especially activity-reducing) effectors for the treatment of e.g. impaired glucose tolerance, glycosuria, hyperlipidaemia, metabolic acidoses, diabetes mellitus, diabetic neuropathy and nephropathy and also of sequelae of diabetes mellitus in mammals, and a simple method of treating such diseases. [0017]
  • This aim is achieved according to the invention by the provision of dipeptide compounds or analogues of dipeptides that are formed from an amino acid and a thiazolidine or pyrrolidine group, and salts thereof. [0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts capillary zone electrophoretic separation of the isomers of isoleucyl thiazolide this separation is representative of a 1:1:1:1 mixture of L-threo-Ile-Thi*fum, L-allo-Ile-Thia*fum, D-threo-Ile-Thia*fum, D-allo-Ile-Thia*fum; [0019]
  • FIG. 2 depicts capillary zone electrophoretic separation of Ile-Thia*fumarate this separation is representative of a 1:1000 mixture of L-threo-Ile-Thia*fumarate to D-allo-Ile-Thia*fumarate; [0020]
  • FIG. 3 depicts a graphic representation of serum DP VI activity after oral administration of various H-Ile-Thia stereoisomers (5 μM/300 g rat). Enazyme activity influenced only by L-Allo-Ile-Thia and L-threo-Ile-Thia; and [0021]
  • FIG. 4 depicts action of various aminoacyl-thiazolidides on the glucose tolerance of rats (oral glucose tolerance test with 2 g/300 g Wistar rat at time point, administration of DP IV [0022] inhibitors 10 minutes prior to oral glucose stimulation).
  • DETAILED DESCRIPTION OF THE INVENTION
  • On administration, preferably oral administration, of these effectors to a mammalian organism, the endogenous (or additionally exogenously administered) insulinotropic peptides GIP[0023] 1-42 and GLP-17-36 (or alternatively GLP17-37 or analogues thereof) are broken down to a reduced extent by DP IV or DP IV-like enzymes and therefore the decrease in the concentration of those peptide hormones or their analogues is reduced or delayed. The invention is therefore based on the finding that a reduction in the DP IV or DP IV-like enzymatic activity acting in the blood circulation has an effect on the blood sugar level. It has been found that
  • 1. the reduction in DP IV or DP IV-analogous activity leads to an increase in the relative stability of the glucose-stimulated or externally introduced incretins (or analogues thereof), that is to say by administration of effectors of DP IV or DP IV-analogous proteins it is possible to control the breakdown of incretin in the blood; [0024]
  • 2. the increase in the biological breakdown stability of the incretins (or their analogues) results in a change in the action of endogenous insulin; [0025]
  • 3. the increase in the stability of the incretins brought about by the reduction in DP IV or DP IV-analogous enzymatic activity in the blood results in a subsequent change in the glucose-induced insulin action and therefore in a modulation of the blood glucose level that is controllable by means of DP IV-effectors. [0026]
  • Especially suitable for that purpose according to the invention are dipeptide compounds in which the amino acid is selected from a natural amino acid, such as, for example, leucine, valine, glutamine, proline, isoleucine, asparagine and aspartic acid. [0027]
  • The administration, where possible oral administration, of the high-affinity, low molecular weight enzyme inhibitors according to the invention is a more economical alternative e.g. to invasive surgical techniques in the treatment of pathological symptoms. Through a chemical design of stability, transport and clearance properties, their mode of action can be modified and matched to individual characteristics. [0028]
  • As mentioned above, it may be necessary, for example in the case of the long-term treatment of diabetes mellitus, to provide effectors having a defined activity with which it is possible to meet the individual needs of patients and to treat their symptoms. The dipeptide compounds according to the invention therefore exhibit at a concentration (of dipeptide compounds) of 10 μM, especially under the conditions indicated in Table 1, a reduction in the activity of dipeptidyl peptidase IV or DP IV-analogous enzyme activities of at least 10%, especially of at least 40%. Frequently a reduction in activity of at least 60% or at least 70% is also required. Preferred effectors may also exhibit a reduction in activity of a maximum of 20% or 30%. Furthermore, the transport properties of the present compounds, especially by the peptide transporter Pep T1, are significantly improved. [0029]
  • Especially preferred dipeptide compounds are L-allo-isoleucyl thiazolidide and salts thereof. Those compounds surprisingly exhibit an approximately five-fold improvement in transport by the peptide transporter Pep T1 in comparison with L-threo-isoleucyl thiazolidide, while having approximately the same degree of action with respect to glucose modulation. [0030]
  • Further preferred illustrative compounds are given in Table 1. [0031]
  • The salts of the dipeptide compounds according to the invention may be, for example, organic salts such as acetates, succinates, tartrates or fumarates, or inorganic acid radicals such as phosphates or sulphates. Special preference is given to the fumarates, which have an excellent action combined with a surprisingly high degree of stability towards hydrolysis and are considerably less soluble than the hydrochlorides. Those properties are also advantageous from the galenical standpoint. [0032]
  • Also preferred are L-threo-isoleucyl pyrrolidide and salts thereof, especially the fumaric salts, and L-allo-isoleucyl pyrrolidide and salts thereof, especially the fumaric salts. [0033]
  • The salts of the dipeptide compounds can be present in a molar ratio of dipeptide (-analogous) component to salt component of 1:1 or 2:1. Such a salt is, for example, (Ile-Thia)[0034] 2 fumaric acid.
  • Especially preferred salts are the fumaric salts of L-threo-isoleucyl thiazolidide and L-allo-isoleucyl thiazolidide. [0035]
  • The invention accordingly relates to effectors of dipeptidyl peptidase IV (DP IV) or DP IV-analogous enzyme activity and their use in lowering the blood sugar level in the serum of a mammalian organism below the glucose concentration that is characteristic of hyperglycaemia. The invention relates especially to the use of the effectors of DP IV or DP IV-analogous enzyme activity according to the invention in preventing or alleviating pathological metabolic anomalies in mammalian organisms, such as, for example, impaired glucose tolerance, glycosuria, hyperlipidaemia, metabolic acidoses, diabetes mellitus, diabetic neuropathy and nephropathy and also sequelae or diabetes mellitus in mammals. In a further preferred embodiment, the invention relates to a method of lowering the blood sugar level in the serum of a mammalian organism below the glucose concentration that is characteristic of hyperglycaemia, characterised in that a therapeutically effective amount of at least one effector of DP IV or DP IV-analogous enzyme activity according to the invention is administered to a mammalian organism. [0036]
  • In an alternative further preferred illustrative embodiment, the invention relates to pharmaceutical compositions, that is to say medicaments, that comprise at least one compounds according to the invention or a salt thereof, optionally in combination with one or more pharmaceutically acceptable carriers and/or solvents. [0037]
  • The pharmaceutical compositions may be, for example, in the form of parenteral or enteral formulations and may contain appropriate carriers or they may be in the form of oral formulations that may contain appropriate carriers suitable for oral administration. They are preferably in the form of oral formulations. [0038]
  • In addition, the pharmaceutical compositions may contain one or more active ingredients having a hypoglycaemic action, which may be active ingredients known by those skilled in the art per se. [0039]
  • The effectors of DP IV or DP IV-analogous enzyme activity according to the invention can be used for lowering the blood sugar level in the serum of a mammalian organism below the glucose concentration that is characteristic of hyperglycaemia or for the production of a corresponding medicament. [0040]
  • The effectors of DP IV or DP IV-analogous enzymes administered according to the invention can be used in pharmaceutically acceptable formulations or formulation complexes as inhibitors, substrates, pseudosubstrates, inhibitors of DP IV expression, binding proteins or antibodies of those enzyme proteins or combinations of those different substances that reduce the DP IV or DP IV-analogous protein concentration in the mammalian organism. Effectors according to the invention are, for example, DP IV-inhibitors such as the dipeptide derivatives or dipeptide mimetics L-allo-isoleucyl thiazolidide and the effectors indicated in Table 1 and fumaric salts thereof. The effectors according to the invention enable the treatment of patients and diseases to be adjusted individually, it being possible especially to avoid intolerances, allergies and side effects occurring in individual cases. [0041]
  • The compounds also exhibit different effectiveness behaviours over time. As a result, the physician carrying out the treatment has the opportunity to respond in various ways according to the individual situation of a patient: he is able, on the one hand, to set accurately the speed of onset of the action and, on the other hand, the duration of action and especially the strength of action. [0042]
  • The method according to the invention represents a new kind of procedure for lowering raised blood glucose concentrations in the serum of mammals. It is simple, capable of commercial exploitation and suitable for use in therapy, especially of diseases that are based on above-average blood glucose values, in mammals and more especially in human medicine. [0043]
  • The effectors are administered, for example, in the form of pharmaceutical preparations that comprise the active ingredient in combination with customary carrier materials known in the prior art. For example, they will be administered parenterally (e.g. i.v., in physiological saline) or enterally (e.g. orally, formulated with customary carrier materials, such as, for example, glucose). [0044]
  • Depending upon their endogenous stability and their bioavailability, the effectors will need to be administered one or more times per day in order to achieve the desired normalisation of the blood glucose values. For example, such a dosage range in human beings may lie in the range of from 0.01 mg to 30.0 mg per day, preferably in the range of from 0.01 to 10 mg of effector substance per kilogram of body weight. [0045]
  • It has been found that as a direct result of the administration of effectors of dipeptidyl peptidase IV or DP IV-analogous enzyme activities in the blood of a mammal, by virtue of the associated temporary reduction in the activity thereof, the endogenous (or additionally exogenously administered) insulinotropic peptides gastric inhibitory polypeptide 1-42 (GIP[0046] 1-42) and glucagon-like peptide amide-1 7-36 (GLP-17-36) (or alternatively GLP-17-37) or analogues thereof) are broken down to a reduced extent by DP IV and DP IV-like enzymes and thus the decrease in the concentration of those peptide hormones or their analogues is reduced or delayed. The increase in the stability of the (endogenously present or exogenously introduced) incretins or their analogues brought about by the action of DP IV-effectors, with the result that the former are available in increased amounts for insulinotropic stimulation of the incretin receptors of the Langerhan's cells in the pancreas, alters inter alia the effectiveness of the body's own insulin, which results in a stimulation of the carbohydrate metabolism of the treated organism.
  • As a result, the blood sugar level in the serum of the organism being treated falls below the glucose concentration that is characteristic of hyperglycaemia, thus making it possible to prevent or alleviate metabolic anomalies such as impaired glucose tolerance, glycosuria, hyperlipidaemia and possible severe metabolic acidoses and diabetes mellitus, which are clinical syndromes resulting from raised glucose concentrations in the blood over a prolonged period. [0047]
  • Among the number of orally effective anti-diabetics known from the prior art, such an effective low molecular weight substance class has been unknown hitherto (with the exception of the biguanide metformin: molecular weight 130). The molecular weights of the aminoacyl thiazolidides vary between 146 (glycyl thiazolidide), 203 (isoleucyl thiazolidide) and 275 (tryptophanyl thiazolidide). In comparison, the molecular weights of the sulphonylureas (glibenclamide: 494), the saccharides (acarbose: 630) and the thiazolidinediones (pioglitazon: 586) vary in the range around 500 to 700 Da. In the body, aminoacyl thiazolidides are hydrolysed by aminopeptidases and by acidic hydrolysis to form endogenous substances, such as amino acids and cysteamine, so that the use of the compounds according to the invention as orally available anti-diabetics constitutes an enrichment of pharmacy. [0048]
  • In rats and mice, experimentally induced hyperglycaemia can be treated to a better than average extent by oral administration of the compounds used according to the invention as shown in (-Tables 2 and 3-). The administration of 500 to 1000 times the effective dose did not result in any demonstrable pathological change during three-week toxicological experiments on rats and mice. The advantageous action of compounds according to the invention on DP IV is shown by way of example in Table 1: [0049]
    TABLE 1
    Action of various effectors on the dipeptidyl-peptidase-IV-catalysed
    hydrolysis of 0.4 mM of the substrate H-Gly-Pro-pNA at
    30° C., pH 7.6 and an ionic strength of 0.125
    Effector affinity % Residual activity of
    to DP IV: DP IV in the presence
    Effector Ki [nM] of 10 μM effector
    metformin >>1,000,000 100
    glibenclamide >>1,000,000 100
    acarbose >>1,000,000 100
    H-Asn-pyrrolidide 12,000 83.1
    H-Asn-thiazolidide 3,500 47.2
    H-Asp-pyrrolidide 14,000 81.6
    H-Asp-thiazolidide 2,900 45.6
    H-Asp(NHOH)-pyrrolidide 13,000 88.2
    H-Asp(NHOH)-thiazolidide 8,800 54.5
    H-Glu-pyrrolidide 2,200 38.5
    H-Glu-thiazolidide 610 25.0
    H-Glu(NHOH)-pyrrolidide 2,800 44.9
    H-Glu(NHOH)-thiazolidide 1,700 36.5
    H-His-pyrrolidide 3,500 49.7
    H-His-thiazolidide 1,800 35.2
    H-Pro-pyrrolidide 4,100 50.2
    H-Pro-thiazolidide 1,200 27.2
    H-Ile-azididide 3,100 43.8
    H-Ile-pyrrolidide 210 12.3
    H-L-allo-Ile-thiazolidide 190 10.0
    H-Val-pyrrolidide 480 23.3
    H-Val-thiazolidide 270 13.6
  • It is known that aminoacyl pyrrolidides and aminoacyl thiazolidides can be broken down by the enzymes proline aminopeptidase and prolidase present in the mucosa cells of the small intestine, in serum and in liver cells and that the thiazolidine ring has a tendency to open in the presence of acids (for example in the stomach) with the formation of the corresponding cysteamine derivative [see U.S. Pat. No. 458,407]. It was therefore surprising to find that the active ingredients have a dose-dependent effectiveness after peroral administration. The dose-dependency of the action of L-allo-Ile-thiazolidide on the serum-DP IV activity after oral administration of L-allo-isoleucyl thiazolidide to healthy Wistar rats is documented in the following Table: [0050]
    TABLE 2
    Residual activity of DP IV in serum towards 0.4 mM of the substrate
    H-Gly-Pro-pNA at 30° C., pH 7.6 and an ionic strength of 0.125,
    after oral administration and in dependence upon the dose of
    L-allo-isoleucyl thiazolidide, determined 30 min after
    administration of the inhibitor
    Dose per experimental animal Residual activity of DP IV in %
     0 mg 100
    2.5 mg  52
    5.0 mg 40
    10 mg 28
    20 mg 29
  • Extremely surprising and desirable is the glucose-reducing action of the active ingredient L-allo-isoleucyl thiazolidide according to the invention achieved in the diabetic animal model after oral administration with synchronous oral glucose stimulation as shown in (-Table 3-). [0051]
  • In order to intensify the blood-sugar-reducing action of various anti-diabetics, use is frequently made of combinations of different orally effective anti-diabetics. Since the anti-hyperglycaemic action of the effectors according to the invention is exhibited independently of other known orally oraly administrable anti-diabetics, the active ingredients according to the invention are analogously suitable for use in combination therapies, in a suitable galenical form, for achieving the desired normoglycaemic effect. [0052]
  • Accordingly, the compounds used according to the invention can be made in a manner known by those skilled in the art per se into the customary formulations, such as, for example, tablets, capsules, dragees, pills, suppositories, granules, aerosols, syrups, liquid, solid and cream-type emulsions and suspensions and solutions using inert, non-toxic, pharmaceutically acceptable carriers and additives or solvents. In such formulations the therapeutically effective compounds are in each case preferably present in a concentration of approximately from 0.1 to 80% by weight, preferably from 1 to 50% by weight, of the total mixture, that is to say in amounts sufficient to achieve a dosage within the indicated range. [0053]
    TABLE 3
    Reduction in the circulating blood glucose within a period of 60
    min after oral administration of 20 μM of L-allo-Ile thiazolidide
    to rats of various animal models with a synchronous glucose
    tolerance test (data in % based on) normoglycaemic values).
    Glucose Glucose concentration
    concentration in in %
    Animal model % control L-allo-Ile-thiazolidide-treated
    Wistar rat, normal 100 82
    Wistar rat (diabetes 100 73
    2b-model, obese)
  • The good absorption of the compounds used according to the invention by mucosae of the gastro-intestinal tract enables a large number of galenical preparations to be used: [0054]
  • The substances can be administered as medicaments in the form of dragees, capsules, bitable capsules, tablets, drops and syrup, as well as in the form of pessaries and nasal sprays. [0055]
  • The formulations are produced, for example, by extending the active ingredient with solvents and/or carriers, optionally using emulsifiers and/or dispersing agents, and optionally, for example where water is used as diluent, organic solvents may be used as auxiliary solvents. [0056]
  • The following auxiliaries may be mentioned by way of example: water, non-toxic organic solvents, such as paraffins (e.g. mineral oil fractions), vegetable oils (e.g. rapeseed oil, groundnut oil, sesame oil), alcohols (e.g. ethyl alcohol, glycerol), glycols (e.g. propylene glycol, polyethylene glycol); solid carriers, such as, for example, ground natural minerals (e.g. highly dispersed silicic acid, silicates), sugars (e.g. unrefined sugar, lactose and dextrose); emulsifiers, such as non-ionic and anionic emulsifiers (e.g. polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, alkylsulphonates and arylsulphonates), dispersing agents (e.g. lignin, spent sulphite liquors, methylcellulose, starch and polyvinylpyrrolidone) and glidants (e.g. magnesium stearate, talcum, stearic acid and sodium lauryl sulphate) and optionally flavourings. [0057]
  • Administration is effected in customary manner, preferably enterally or parenterally, especially orally. In the case of enteral administration, in addition to containing the mentioned carriers, tablets may also comprise other additives, such as sodium citrate, calcium carbonate and calcium phosphate, together with various supplementary ingredients, such as starch, especially potato starch, gelatin and the like. It is also possible to use glidants, such as magnesium stearate, sodium lauryl sulphate and talcum, for tableting purposes. In the case of aqueous suspensions and/or elixirs intended for oral uses it is also possible for various taste correctors or colourings to be added to the active ingredients in addition to the auxiliaries mentioned above. [0058]
  • For parenteral administration it is possible to use solutions of the active ingredients using suitable liquid carrier materials. In the case of intravenous administration it has generally proved advantageous to administer amounts of approximately from 0.01 to 2.0 mg/kg, preferably approximately from 0.01 to 1.0 mg/kg, body weight per day in order to achieve effective results, and in the case of enteral administration the dosage is approximately from 0.01 to 2 mg/kg, preferably approximately from 0.01 to 1 mg/kg, body weight per day. [0059]
  • Nevertheless in some cases it may be necessary to depart from the amounts indicated, depending upon the body weight of the experimental animal or patient or the nature of the administration route, and also on the basis of the species of animal and its individual response to the medicament or the intervals at which the administration is made. In some cases, for example, it may be sufficient to use less than the above-mentioned minimum amount, whereas in other cases it will be necessary to exceed the above-mentioned upper limit. Where relatively large amounts are administered it may be advisable to divide the amount into several individual doses over the day. For use in human medicine the same range of dosage is provided, the comments made above also applying accordingly. [0060]
  • Examples of Pharmaceutical Formulations
  • 1. Capsules having 100 mg of L-allo-isoleucyl thiazolidide per capsule: [0061]
  • For about 10,000 capsules, a solution of the following composition is prepared: [0062]
    L-allo-isoleucyl thiazolidide hydrochloride 1.0 kg
    glycerol 0.5 kg
    polyethylene glycol 3.0 kg
    water 0.5 kg
    5.0 kg
  • The solution is introduced into soft gelatin capsules in a manner known by those skilled in the art per se. The capsules are suitable for chewing or swallowing. [0063]
  • 2. Tablets/coated tablets or dragees having 100 mg of L-allo-isoleucyl thiazolidide: [0064]
  • The following amounts relate to the production of 100,000 tablets: [0065]
    The following amounts relate to the production of 100,000 tablets:
    L-allo-isoleucyl thiazolidide hydrochloride, 10.0 kg
    finely ground
    glucose 4.35 kg
    lactose 4.35 kg
    starch 4.50 kg
    cellulose, finely ground 4.50 kg
  • The above constituents are mixed together and then combined with a solution, prepared from [0066]
    polyvinylpyrrolidone 2.0 kg
    polysorbate 0.1 kg
    and water about 5.0 kg
  • and granulated in a manner known by those skilled in the art per se by grating the moist mass and, after the addition of 0.2 kg of magnesium stearate, drying. The finished tablet mixture of 30.0 kg is processed to form domed tablets each weighing 300 mg. The tablets can be coated or sugar-coated in a manner known by those skilled in the art per se. [0067]
  • The technical data of preferred illustrative compounds are shown in Table 4. given below. [0068]
    TABLE 4
    Tests on Ile-Thia*fumarate (isomer) and other salts
    Substance Ki Mp (° C.) CE (min) MS [α]H2O
    L-threo-IT*F 8*10-8 150DSC 160 203 −10.7
    (405 nm)
    D-threo-IT*F no 147 158 203 not
    inhibition determined
    L-allo-IT*F 2*10-7 145-6 154 203 −4.58
    (380 nm)
    D-allo-IT*F no 144-6 150 203 4.5
    inhibition (380 nm)
  • Measurement Conditions for the Ki Determination of the Substances
  • [0069]
    Enzyme: DP Ivporcine kidney, 0.75 mg/ml,
    18 U/ml (GPpNA) in 25 mM Tris pH 7.6,
    30% ammonium sulphate, 0.5 mM EDTA, 05 mM DTE
    Stock solution: 1:250 diluted in measuring buffer
    Buffer: 40 mM HEPES pH 7.6, I = 0.125 (KC1)
    Substrate: GPpNA*HCl
    Stock solution: 2.1 mM
    Measuring Perkin-Elmer Bio Assay Reader, HTS 7000 Plus,
    apparatus: T = 30° C.
    λ = 405 nm
    Measurement
    100 μl buffer
    batch: 100 μl substrate (3 different concentrations
     0.8 mM - 0.2 mM)
     50 μl water/inhibitor (7 different concentrations
     2.1 μM - 32.8 nM)
     10 μl enzyme
  • Buffer, water/inhibitor and enzyme were preheated to 30° C. and the reaction was started by the addition of substrate which was likewise preheated. [0070]
  • Determinations were carried out four times. [0071]
  • The measuring time was 10 minutes. [0072]
  • Melting Point Determination
  • Melting points were determined on a Kofler heating platform microscope from Leica [0073]
  • Aktiengesellschaft, the values are not corrected, or on a DSC apparatus (Heumann-Pharma). [0074]
  • Optical Rotation
  • The rotation values were recorded at different wavelengths on a “Polarimeter 341” or higher, from the Perkin-Elmer company. [0075]
  • Measurement Conditions for the Mass Spectroscopy
  • The mass spectra were recorded by means of electrospray ionisation (ESI) on an “API 165” or “API 365” from the PE Sciex Company. [0076]
  • The operation is carried out using an appropriate concentration of c=10 μg/ml, the substance is taken up in MeOH/H[0077] 2O 50:50, 0.1% HCO2H, the infusion is effected using a spray pump (20 μl/min). The measurements were made in positive mode [M+H]+, the ESI voltage is U=5600V.
  • The salts have the following data which is shown in Table 5.: [0078]
    TABLE 5
    The salts have the following data which is shown in Table 5.:
    IT*salt Ki M (gmol-1) Mp (° C.)
    succinate 5.1 e−8 522.73 116
    tartrate 8.3 e−8 352.41 122
    fumarate 8.3 e−8 520.71 156
    hydrochloride 7.2 e−8 238.77 169
    phosphate 1.3 e−7 300.32 105
  • Testing the Solubility of Salts of Ile-Thia
  • Ile-Thia*fum [0079]
  • Amount weighed in 10.55 mg [0080]
  • corresponds to 0.02 mmol (520.72 g/mol) [0081]
  • Addition of 100 [0082] μl H 20dist.
  • 100 μl no solution, visually: no surface-wetting [0083]
  • from 200 μl successive beginning of solubility [0084]
  • at 400 μl complete dissolution is observed [0085]
  • 2.63% [0086]
  • It is therefore established that this salt is scarcely wettable and does not decompose. [0087]
  • Ile-Thia*succ [0088]
  • Amount weighed in 16.6 mg [0089]
  • corresponds to 0.031 mmol (522.73 g/mol) [0090]
  • Addition of 16 μl H[0091] 2Odist.
  • 16 μl no solution, visually: “sucking-up” of the moisture from 66 μl-1.5 ml no complete dissolution of the substance is observed [0092]
  • Ile-Thia*tartrate [0093]
  • Amount weighed in 17.3 mg [0094]
  • corresponds to 0.049 mmol (352.41 g/mol) [0095]
  • Addition of 100 [0096] μl H 20dist.
  • 100 μl complete dissolution [0097]
  • 17.3% [0098]
  • Ile-Thia*phos [0099]
  • Amount weighed in 15.5 mg [0100]
  • corresponds to 0.051 mmol (300.32 g/mol) [0101]
  • Addition of 100 [0102] μl H 20dist.
  • 100 μl slight dissolution is observed [0103]
  • successive addition of 100 [0104] μl H 20
  • at 400 μl complete dissolution [0105]
  • 3.87% [0106]
  • Ile-Thia*HCl [0107]
  • Amount weighed in 16.1 mg [0108]
  • corresponds to 0.067 mmol 238.77 (g/mol) [0109]
  • Addition of 100 [0110] μl H 20dist.
  • at 100 μl complete dissolution [0111]
  • 16.1% [0112]
  • General Synthesis of Ile-Thia*salt
  • The Boc-protected amino acid Boc-Ile-OH is placed in ethyl acetate and the batch is cooled to about −5° C. N-Methylmorpholine is added dropwise, pivalic acid chloride (on a laboratory scale) or neohexanoyl chloride (on a pilot-plant scale) is added dropwise at constant temperature. The reaction is stirred for a few minutes for activation. N-Methylmorpholine (laboratory scale) an thiazolidine hydrochloride (laboratory scale) are added dropwise in succession, thiazolidine (pilot-plant scale) is added. Working-up in the laboratory is effected in conventional manner using salt solutions, on a pilot-plant scale the batch is purified with NaOH and CH[0113] 3COOH solutions.
  • The removal of the Boc protecting group is carried out using HCl/dioxane (laboratory scale) or H[0114] 2SO4 (pilot-plant scale).
  • In the laboratory the hydrochloride is crystallised from EtOH/ether. [0115]
  • On a pilot-plant scale the free amine is prepared by the addition of NaOH/NH[0116] 3. Fumaric acid is dissolved in hot ethanol, the free amine is added dropwise, and (Ile-Thia)2 fumarate (M=520.71 gmol-1) precipitates.
  • The analysis of isomers and enantiomers is carried out by electrophoresis. [0117]

Claims (18)

1. Dipeptide compound formed from an amino acid and a thiazolidine or pyrrolidine group, and salts thereof.
2. Dipeptide compound according to claim 1, characterised in that the amino acid is selected from a natural amino acid.
3. Dipeptide compound according to either one of the preceding claims, characterised in that at a concentration of 10 μM it brings about a reduction in the activity of dipeptidyl peptidase IV or DP IV-analogous enzyme activities of at least 10%.
4. Dipeptide compound according to claim 3, characterised in that it brings about a reduction in activity of at least 40%.
5. Dipeptide compound according to any one of the preceding claims, characterised in that the amino acid is selected from leucine, valine, glutamine, proline, isoleucine, asparagine and aspartic acid.
6. Dipeptide compound according to any one of the preceding claims, namely L-threo-isoleucyl pyrrolidide, L-allo-isoleucyl thiazolidide, 1-allo-isoleucyl pyrrolidide and salts thereof.
7. Dipeptide compound according to any one of the preceding claims, characterised in that the salts are organic salts such as acetates, succinates, tartrates or fumarates, or inorganic acid radicals such as phosphates or sulphates.
8. Salts of dipeptide compounds according to any one of the preceding claims, characterised in that they are present in a molar ratio of dipeptide compound to salt of 1:1 or 2:1.
9. Salts of dipeptide compounds according to any one of the preceding claims, namely fumaric salts.
10. Salts of dipeptide compounds according to claim 9, namely fumaric salts of L-threo-isoleucyl thiazolidide or fumaric salts of L-allo-isoleucyl thiazolidide.
11. Pharmaceutical composition, characterised in that it comprises at least one compound or a salt thereof according to any one of the preceding claims optionally in combination with one or more pharmaceutically acceptable carriers and/or solvents.
12. Pharmaceutical composition according to claim 11, characterised in that the carrier is a carrier for parenteral or enteral formulations.
13. Pharmaceutical composition according to claim 11, characterised in that it is present in a formulation for oral administration.
14. Pharmaceutical composition according to any one of claims 11 to 13, characterised in that it additionally comprises an active ingredient having hypoglycaemic action.
15. Use of at least one compound or pharmaceutical composition according to any one of the preceding claims in the production of a medicament for reducing the activity of dipeptidyl peptidase IV or of dipeptidyl peptidase IV-analogous enzyme activities.
16. Use of at least one compound or composition according to any one of claims 1 to 14 in the production of a medicament for lowering the blood sugar level in the serum of a mammal below the glucose concentration that is characteristic of hyperglycaemia.
17. Use of at least one compound or composition according to any one of claims 1 to 14 in the production of a medicament for the oral treatment of metabolic disorders associated with diabetes mellitus.
18. Use of at least one compound or composition according to any one of claims 1 to 14 in the production of a medicament for the treatment of impaired glucose tolerance, glycosuria, hyperlipidaemia, metabolic acidoses, diabetes mellitus, diabetic neuropathy and nephropathy and also of sequelae of diabetes mellitus in mammals.
US10/361,956 1998-05-28 2003-02-10 Novel effectors of dipepetidyl peptidase IV Abandoned US20030134802A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/361,956 US20030134802A1 (en) 1998-05-28 2003-02-10 Novel effectors of dipepetidyl peptidase IV
US10/727,209 US20050203030A1 (en) 1998-05-28 2003-12-02 Novel effectors of dipeptidyl peptidase IV
US11/443,389 US20080182798A1 (en) 1998-05-28 2006-05-30 Novel effectors of dipeptidyl peptidase IV

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE19823831A DE19823831A1 (en) 1998-05-28 1998-05-28 New pharmaceutical use of isoleucyl thiazolidide and its salts
DE198/23831.2 1998-05-28
PCT/EP1999/003712 WO1999061431A1 (en) 1998-05-28 1999-05-28 New dipeptidyl peptidase iv effectors
WOPCT/EP99/03712 1999-05-28
US09/723,638 US6548481B1 (en) 1998-05-28 2000-11-28 Effectors of dipeptidyl peptidase IV
US10/361,956 US20030134802A1 (en) 1998-05-28 2003-02-10 Novel effectors of dipepetidyl peptidase IV

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/723,638 Continuation US6548481B1 (en) 1998-05-28 2000-11-28 Effectors of dipeptidyl peptidase IV

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/727,209 Continuation US20050203030A1 (en) 1998-05-28 2003-12-02 Novel effectors of dipeptidyl peptidase IV

Publications (1)

Publication Number Publication Date
US20030134802A1 true US20030134802A1 (en) 2003-07-17

Family

ID=7869159

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/723,638 Expired - Lifetime US6548481B1 (en) 1998-05-28 2000-11-28 Effectors of dipeptidyl peptidase IV
US10/361,956 Abandoned US20030134802A1 (en) 1998-05-28 2003-02-10 Novel effectors of dipepetidyl peptidase IV
US10/727,209 Abandoned US20050203030A1 (en) 1998-05-28 2003-12-02 Novel effectors of dipeptidyl peptidase IV
US11/443,389 Abandoned US20080182798A1 (en) 1998-05-28 2006-05-30 Novel effectors of dipeptidyl peptidase IV

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/723,638 Expired - Lifetime US6548481B1 (en) 1998-05-28 2000-11-28 Effectors of dipeptidyl peptidase IV

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/727,209 Abandoned US20050203030A1 (en) 1998-05-28 2003-12-02 Novel effectors of dipeptidyl peptidase IV
US11/443,389 Abandoned US20080182798A1 (en) 1998-05-28 2006-05-30 Novel effectors of dipeptidyl peptidase IV

Country Status (24)

Country Link
US (4) US6548481B1 (en)
EP (6) EP1428533B1 (en)
JP (1) JP2002516318A (en)
KR (2) KR100630258B1 (en)
CN (4) CN1637018A (en)
AT (6) ATE338546T1 (en)
AU (1) AU764262B2 (en)
BR (1) BR9910758A (en)
CA (1) CA2333603C (en)
DE (10) DE19823831A1 (en)
DK (2) DK1214936T3 (en)
ES (5) ES2271723T3 (en)
HK (3) HK1033316A1 (en)
HU (1) HUP0102001A3 (en)
IL (3) IL139862A0 (en)
IS (3) IS5728A (en)
NO (1) NO317989B1 (en)
NZ (2) NZ508260A (en)
PL (1) PL344403A1 (en)
PT (2) PT1304327E (en)
RU (3) RU2227800C2 (en)
SI (2) SI1082314T1 (en)
UA (1) UA54599C2 (en)
WO (1) WO1999061431A1 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152192A1 (en) * 1997-09-29 2004-08-05 Point Therapeutics, Inc. Stimulation of hematopoietic cells in vitro
US20040242566A1 (en) * 2003-03-25 2004-12-02 Syrrx, Inc. Dipeptidyl peptidase inhibitors
US20060052310A1 (en) * 1998-08-21 2006-03-09 Point Therapeutics, Inc. Regulation of substrate activity
US20060063719A1 (en) * 2004-09-21 2006-03-23 Point Therapeutics, Inc. Methods for treating diabetes
US20060154866A1 (en) * 2005-01-10 2006-07-13 Zhi-Liang Chu Combination therapy for the treatment of diabetes and conditions related thereto and for the treatment of conditions ameliorated by increasing a blood GLP-1 level
US20060287245A1 (en) * 1999-05-25 2006-12-21 Point Therapeutics, Inc. Anti-tumor agents
US7169926B1 (en) 2003-08-13 2007-01-30 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US20070117786A1 (en) * 2003-12-19 2007-05-24 Altana Pharma Ag Intermediates for the preparation of tricyclic dihydropyrano-imidazo-pyridines derivatives
US20080287476A1 (en) * 2007-03-13 2008-11-20 Takeda Pharmaceutical Company Limited Administration of dipeptidyl peptidase inhibitors
US7504423B2 (en) 2003-12-11 2009-03-17 Mitsubishi Tanabe Pharma Corporation α-amino acid derivatives and use thereof as medicines
US20090124626A1 (en) * 2005-09-29 2009-05-14 Daiichi Sankyo Company, Limited Pharmaceutical agent comprising insulin resistance improving agent
US7678909B1 (en) 2003-08-13 2010-03-16 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7687638B2 (en) 2004-06-04 2010-03-30 Takeda San Diego, Inc. Dipeptidyl peptidase inhibitors
US7723344B2 (en) 2003-08-13 2010-05-25 Takeda San Diego, Inc. Dipeptidyl peptidase inhibitors
US7732446B1 (en) 2004-03-11 2010-06-08 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US20100190750A1 (en) * 2006-04-11 2010-07-29 Arena Pharmaceuticals, Inc. GPR119 Receptor Agonists in Methods of Increasing Bone Mass and of Treating Osteoporosis and Other Conditions Characterized by Low Bone Mass, and Combination Therapy Relating Thereto
US20100203038A1 (en) * 2006-04-11 2010-08-12 Arena Pharmaceuticals, Inc. Methods of using gpr119 to identify compounds useful for increasing bone mass in an individual
US20100203556A1 (en) * 2008-04-07 2010-08-12 Arena Pharmaceuticals, Inc. Methods of using a g protein-coupled receptor to identify peptide yy (pyy) secretagogues and compounds useful in the treatment of conditions modulated by pyy
US7781584B2 (en) 2004-03-15 2010-08-24 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7790734B2 (en) 2003-09-08 2010-09-07 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7825242B2 (en) 2004-07-16 2010-11-02 Takeda Pharmaceutical Company Limted Dipeptidyl peptidase inhibitors
WO2011005929A1 (en) 2009-07-09 2011-01-13 Arena Pharmaceuticals, Inc. Piperidine derivative and its use for the treatment of diabets and obesity
US7872124B2 (en) 2004-12-21 2011-01-18 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7960384B2 (en) 2006-03-28 2011-06-14 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
WO2011127051A1 (en) 2010-04-06 2011-10-13 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
US8084605B2 (en) 2006-11-29 2011-12-27 Kelly Ron C Polymorphs of succinate salt of 2-[6-(3-amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-ylmethy]-4-fluor-benzonitrile and methods of use therefor
US8093236B2 (en) 2007-03-13 2012-01-10 Takeda Pharmaceuticals Company Limited Weekly administration of dipeptidyl peptidase inhibitors
WO2012040279A1 (en) 2010-09-22 2012-03-29 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
US8222411B2 (en) 2005-09-16 2012-07-17 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
WO2012135570A1 (en) 2011-04-01 2012-10-04 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
WO2012145603A1 (en) 2011-04-22 2012-10-26 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
WO2012145604A1 (en) 2011-04-22 2012-10-26 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
WO2012145361A1 (en) 2011-04-19 2012-10-26 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
US8324383B2 (en) 2006-09-13 2012-12-04 Takeda Pharmaceutical Company Limited Methods of making polymorphs of benzoate salt of 2-[[6-[(3R)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2H)-pyrimidinyl]methyl]-benzonitrile
WO2012170702A1 (en) 2011-06-08 2012-12-13 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
WO2013055910A1 (en) 2011-10-12 2013-04-18 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
US8604198B2 (en) 2005-02-18 2013-12-10 Mitsubishi Tanabe Pharma Corporation Salt of proline derivative, solvate thereof, and production method thereof
WO2014074668A1 (en) 2012-11-08 2014-05-15 Arena Pharmaceuticals, Inc. Modulators of gpr119 and the treatment of disorders related thereto
US8906901B2 (en) 2005-09-14 2014-12-09 Takeda Pharmaceutical Company Limited Administration of dipeptidyl peptidase inhibitors
US10555929B2 (en) 2015-03-09 2020-02-11 Coherus Biosciences, Inc. Methods for the treatment of nonalcoholic fatty liver disease and/or lipodystrophy
US11253508B2 (en) 2017-04-03 2022-02-22 Coherus Biosciences, Inc. PPARy agonist for treatment of progressive supranuclear palsy

Families Citing this family (201)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020006899A1 (en) * 1998-10-06 2002-01-17 Pospisilik Andrew J. Use of dipeptidyl peptidase IV effectors for lowering blood pressure in mammals
DE19823831A1 (en) * 1998-05-28 1999-12-02 Probiodrug Ges Fuer Arzneim New pharmaceutical use of isoleucyl thiazolidide and its salts
DE19828113A1 (en) 1998-06-24 2000-01-05 Probiodrug Ges Fuer Arzneim Prodrugs of Dipeptidyl Peptidase IV Inhibitors
DE19834591A1 (en) * 1998-07-31 2000-02-03 Probiodrug Ges Fuer Arzneim Use of substances that decrease the activity of dipeptidyl peptidase IV to increase blood sugar levels, e.g. for treating hypoglycemia
US20030176357A1 (en) * 1998-10-06 2003-09-18 Pospisilik Andrew J. Dipeptidyl peptidase IV inhibitors and their uses for lowering blood pressure levels
AU3960400A (en) * 1999-03-05 2000-09-28 Molteni L. E C. Dei Fratelli Alitti Societa' Di Esercizio S.P.A. Use of metformin in the preparation of pharmaceutical compositions capable of inhibiting the enzyme dipeptidyl peptidase iv
US6548529B1 (en) 1999-04-05 2003-04-15 Bristol-Myers Squibb Company Heterocyclic containing biphenyl aP2 inhibitors and method
DE19940130A1 (en) * 1999-08-24 2001-03-01 Probiodrug Ges Fuer Arzneim New effectors of Dipeptidyl Peptidase IV for topical use
JP2003534239A (en) * 1999-12-17 2003-11-18 ヴァージコア・インコーポレーテッド Novel succinate compounds, compositions, and methods of use and preparation
US20080076811A1 (en) * 2000-01-21 2008-03-27 Bork Balkan Combinations comprising depeptidypeptidase-iv inhibitors and antidiabetic agents
EP1248604B2 (en) * 2000-01-21 2012-02-29 Novartis AG Combinations comprising dipeptidylpeptidase-iv inhibitors and antidiabetic agents
AU2001233622A1 (en) * 2000-02-25 2001-09-03 Novo-Nordisk A/S Inhibition of beta cell degeneration
ES2320630T5 (en) 2000-03-31 2013-03-12 Royalty Pharma Collection Trust Method for the improvement of islet signaling in diabetes mellitus and for its prevention
GB0010183D0 (en) * 2000-04-26 2000-06-14 Ferring Bv Inhibitors of dipeptidyl peptidase IV
US7078397B2 (en) 2000-06-19 2006-07-18 Smithkline Beecham Corporation Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus
GB0014969D0 (en) 2000-06-19 2000-08-09 Smithkline Beecham Plc Novel method of treatment
US7074794B2 (en) * 2000-08-10 2006-07-11 Mitsubishi Pharma Corporation Proline derivatives and the use thereof as drugs
EP1891948A1 (en) * 2000-10-27 2008-02-27 Probiodrug AG Treatment of neurological and neuropsychological disorders
US7132104B1 (en) 2000-10-27 2006-11-07 Probiodrug Ag Modulation of central nervous system (CNS) dipeptidyl peptidase IV (DPIV) -like activity for the treatment of neurological and neuropsychological disorders
EP1328271B1 (en) * 2000-10-27 2008-06-25 Probiodrug AG Treatment of neurological and neuropsychological disorders
US20040180925A1 (en) * 2000-12-27 2004-09-16 Kenji Matsuno Dipeptidylpeptidase-IV inhibitor
PT1757606E (en) * 2001-02-24 2009-05-26 Boehringer Ingelheim Pharma Xanthinderivatives for use as medical agents and the preparation thereof
US20070293426A1 (en) * 2001-04-02 2007-12-20 Hans-Ulrich Demuth Methods for improving islet signaling in diabetes mellitus and for its prevention
US6890905B2 (en) 2001-04-02 2005-05-10 Prosidion Limited Methods for improving islet signaling in diabetes mellitus and for its prevention
GB0109146D0 (en) * 2001-04-11 2001-05-30 Ferring Bv Treatment of type 2 diabetes
US6774112B2 (en) 2001-04-11 2004-08-10 Bristol-Myers Squibb Company Amino acid complexes of C-aryl glucosides for treatment of diabetes and method
US6944925B2 (en) * 2001-06-13 2005-09-20 Ttx Company Articulated connector reconditioning process and apparatuses
WO2003002530A2 (en) 2001-06-27 2003-01-09 Smithkline Beecham Corporation Pyrrolidines as dipeptidyl peptidase inhibitors
US7183290B2 (en) 2001-06-27 2007-02-27 Smithkline Beecham Corporation Fluoropyrrolidines as dipeptidyl peptidase inhibitors
CN1990468A (en) * 2001-06-27 2007-07-04 史密丝克莱恩比彻姆公司 Pyrrolidines as dipeptidyl peptidase inhibitors
DE10150203A1 (en) 2001-10-12 2003-04-17 Probiodrug Ag Use of dipeptidyl peptidase IV inhibitor in treatment of cancer
CA2424645A1 (en) * 2001-06-27 2003-01-09 Probiodrug Ag New use of dipeptidyl peptidase iv inhibitors
US7368421B2 (en) 2001-06-27 2008-05-06 Probiodrug Ag Use of dipeptidyl peptidase IV inhibitors in the treatment of multiple sclerosis
US20030130199A1 (en) 2001-06-27 2003-07-10 Von Hoersten Stephan Dipeptidyl peptidase IV inhibitors and their uses as anti-cancer agents
UA74912C2 (en) 2001-07-06 2006-02-15 Merck & Co Inc Beta-aminotetrahydroimidazo-(1,2-a)-pyrazines and tetratriazolo-(4,3-a)-pyrazines as inhibitors of dipeptylpeptidase for the treatment or prevention of diabetes
JP2005504766A (en) * 2001-08-16 2005-02-17 プロバイオドラッグ アーゲー Use of a proline endopeptidase inhibitor to regulate intracellular signal cascade dependent inositol (1,4,5) triphosphate concentration.
US6844316B2 (en) 2001-09-06 2005-01-18 Probiodrug Ag Inhibitors of dipeptidyl peptidase I
KR20040033048A (en) 2001-09-14 2004-04-17 미츠비시 웰파마 가부시키가이샤 Thiazolidine derivative and medicinal use thereof
US7238671B2 (en) 2001-10-18 2007-07-03 Bristol-Myers Squibb Company Human glucagon-like-peptide-1 mimics and their use in the treatment of diabetes and related conditions
WO2003033671A2 (en) 2001-10-18 2003-04-24 Bristol-Myers Squibb Company Human glucagon-like-peptide-1 mimics and their use in the treatment of diabetes and related conditions
GB0125446D0 (en) 2001-10-23 2001-12-12 Ferring Bv Novel anti-diabetic agents
EP1338595B1 (en) 2002-02-25 2006-05-03 Eisai Co., Ltd. Xanthine derivatives as DPP-IV inhibitors
DK1480961T3 (en) 2002-02-28 2007-05-07 Prosidion Ltd Glutaminyl-based DPIV inhibitors
EP1695970A1 (en) * 2002-02-28 2006-08-30 Prosidion Limited Peptides useful for competitive modulation of dipeptidyl peptidase IV catalysis
US20030232761A1 (en) * 2002-03-28 2003-12-18 Hinke Simon A. Novel analogues of glucose-dependent insulinotropic polypeptide
US7057046B2 (en) 2002-05-20 2006-06-06 Bristol-Myers Squibb Company Lactam glycogen phosphorylase inhibitors and method of use
US6710040B1 (en) 2002-06-04 2004-03-23 Pfizer Inc. Fluorinated cyclic amides as dipeptidyl peptidase IV inhibitors
EP1528931B1 (en) * 2002-08-09 2008-05-07 Prosidion Ltd. Dipeptidyl peptidase iv inhibitors for decreasing the rate of chronic weight gain
TW200404796A (en) * 2002-08-19 2004-04-01 Ono Pharmaceutical Co Nitrogen-containing compound
US7407955B2 (en) 2002-08-21 2008-08-05 Boehringer Ingelheim Pharma Gmbh & Co., Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US7569574B2 (en) 2002-08-22 2009-08-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Purine derivatives, the preparation thereof and their use as pharmaceutical compositions
US7495005B2 (en) * 2002-08-22 2009-02-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg Xanthine derivatives, their preparation and their use in pharmaceutical compositions
US20040058876A1 (en) * 2002-09-18 2004-03-25 Torsten Hoffmann Secondary binding site of dipeptidyl peptidase IV (DP IV)
DE60331747D1 (en) 2002-09-18 2010-04-29 Prosidion Ltd SECONDARY BINDING CENTER OF DIPEPTIDYLPEPTIDASE IV (DP IV)
AU2003282983A1 (en) 2002-10-23 2004-05-13 Bristol-Myers Squibb Company Glycinenitrile-based inhibitors of dipeptidyl peptidase iv and methods
US7482337B2 (en) 2002-11-08 2009-01-27 Boehringer Ingelheim Pharma Gmbh & Co. Kg Xanthine derivatives, the preparation thereof and their use as pharmaceutical compositions
US7098235B2 (en) 2002-11-14 2006-08-29 Bristol-Myers Squibb Co. Triglyceride and triglyceride-like prodrugs of glycogen phosphorylase inhibiting compounds
DE10254304A1 (en) * 2002-11-21 2004-06-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg New xanthine derivatives, their production and their use as medicines
TW200504021A (en) 2003-01-24 2005-02-01 Bristol Myers Squibb Co Substituted anilide ligands for the thyroid receptor
US7148246B2 (en) 2003-02-27 2006-12-12 Sanofi-Aventis Deutschland Gmbh Cycloalkyl derivatives having bioisosteric carboxylic acid groups, processes for their preparation and their use as pharmaceuticals
DE10308353A1 (en) 2003-02-27 2004-12-02 Aventis Pharma Deutschland Gmbh Diarylcycloalkyl derivatives, processes for their preparation and their use as medicines
DE10308355A1 (en) 2003-02-27 2004-12-23 Aventis Pharma Deutschland Gmbh Aryl-cycloalkyl-substituted alkanoic acid derivatives, process for their preparation and their use as medicaments
DE10308352A1 (en) 2003-02-27 2004-09-09 Aventis Pharma Deutschland Gmbh Branched side chain arylcycloalkyl derivatives, process for their preparation and their use as medicaments
DE10308351A1 (en) 2003-02-27 2004-11-25 Aventis Pharma Deutschland Gmbh 1,3-substituted cycloalkyl derivatives having acidic, usually heterocyclic groups, processes for their preparation and their use as medicaments
EP1622870A2 (en) * 2003-05-05 2006-02-08 Prosidion Ltd. Glutaminyl based dp iv-inhibitors
CA2524009C (en) 2003-05-05 2014-04-29 Probiodrug Ag Use of effectors of glutaminyl and glutamate cyclases
EP1620091B1 (en) 2003-05-05 2010-03-31 Probiodrug AG Inhibitors of glutaminyl cyclase
NZ572274A (en) 2003-05-05 2009-06-26 Probiodrug Ag Use of effectors of glutaminyl and glutamate cyclases
EP1625122A1 (en) 2003-05-14 2006-02-15 Takeda San Diego, Inc. Dipeptidyl peptidase inhibitors
US7459474B2 (en) 2003-06-11 2008-12-02 Bristol-Myers Squibb Company Modulators of the glucocorticoid receptor and method
US7566707B2 (en) * 2003-06-18 2009-07-28 Boehringer Ingelheim International Gmbh Imidazopyridazinone and imidazopyridone derivatives, the preparation thereof and their use as pharmaceutical compositions
US6995183B2 (en) 2003-08-01 2006-02-07 Bristol Myers Squibb Company Adamantylglycine-based inhibitors of dipeptidyl peptidase IV and methods
CA2535971C (en) 2003-08-20 2018-04-10 Biosite, Inc. Methods and compositions for measuring biologically active natriuretic peptides and for improving their therapeutic potential
CA2536432A1 (en) * 2003-09-02 2005-03-10 Prosidion Limited Combination therapy for glycaemic control
US7371759B2 (en) 2003-09-25 2008-05-13 Bristol-Myers Squibb Company HMG-CoA reductase inhibitors and method
DE10348023A1 (en) * 2003-10-15 2005-05-19 Imtm Gmbh New alanyl aminopeptidase inhibitors for the functional manipulation of different cells and for the treatment of immunological, inflammatory, neuronal and other diseases
AU2004283461B2 (en) 2003-10-15 2010-02-11 Probiodrug Ag Use of effectors of glutaminyl and glutamate cyclases
WO2005049027A2 (en) 2003-11-03 2005-06-02 Probiodrug Ag Combinations useful for the treatment of neuronal disorders
KR20060109911A (en) 2003-11-17 2006-10-23 노파르티스 아게 Use of dipeptidyl peptidase iv inhibitors
US7420059B2 (en) 2003-11-20 2008-09-02 Bristol-Myers Squibb Company HMG-CoA reductase inhibitors and method
DE10355304A1 (en) * 2003-11-27 2005-06-23 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel 8- (piperazin-1-yl) and 8 - ([1,4] diazepan-1-yl) xanthines, their preparation and their use as pharmaceuticals
EP1715893B8 (en) 2004-01-20 2009-12-16 Novartis Ag Direct compression formulation and process
CN101262851A (en) * 2004-01-20 2008-09-10 诺瓦提斯公司 Direct compression formulation and process
US7241787B2 (en) 2004-01-25 2007-07-10 Sanofi-Aventis Deutschland Gmbh Substituted N-cycloexylimidazolinones, process for their preparation and their use as medicaments
US7304086B2 (en) 2004-02-05 2007-12-04 Probiodrug Ag Inhibitors of glutaminyl cyclase
US7501426B2 (en) * 2004-02-18 2009-03-10 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions
DE102004009039A1 (en) * 2004-02-23 2005-09-08 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8- [3-Amino-piperidin-1-yl] xanthines, their preparation and use as pharmaceuticals
US7393847B2 (en) * 2004-03-13 2008-07-01 Boehringer Ingleheim International Gmbh Imidazopyridazinediones, their preparation and their use as pharmaceutical compositions
EP1586573B1 (en) 2004-04-01 2007-02-07 Sanofi-Aventis Deutschland GmbH Oxadiazolones, processes for their preparation and their use as pharmaceuticals
US7179809B2 (en) * 2004-04-10 2007-02-20 Boehringer Ingelheim International Gmbh 2-Amino-imidazo[4,5-d]pyridazin-4-ones, their preparation and their use as pharmaceutical compositions
US7439370B2 (en) * 2004-05-10 2008-10-21 Boehringer Ingelheim International Gmbh Imidazole derivatives, their preparation and their use as intermediates for the preparation of pharmaceutical compositions and pesticides
DE102004030502A1 (en) 2004-06-24 2006-01-12 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel imidazoles and triazoles, their preparation and use as medicines
US7145040B2 (en) 2004-07-02 2006-12-05 Bristol-Myers Squibb Co. Process for the preparation of amino acids useful in the preparation of peptide receptor modulators
TW200611704A (en) 2004-07-02 2006-04-16 Bristol Myers Squibb Co Human glucagon-like-peptide-1 modulators and their use in the treatment of diabetes and related conditions
US7534763B2 (en) 2004-07-02 2009-05-19 Bristol-Myers Squibb Company Sustained release GLP-1 receptor modulators
ATE553077T1 (en) * 2004-07-23 2012-04-15 Nuada Llc PEPTIDATE INHIBITORS
WO2006022428A1 (en) * 2004-08-26 2006-03-02 Takeda Pharmaceutical Company Limited Remedy for diabetes
PE20060652A1 (en) 2004-08-27 2006-08-11 Novartis Ag IMMEDIATE RELEASE PHARMACEUTICAL COMPOSITIONS INCLUDING FUSION GRANULES
DE102004043944A1 (en) * 2004-09-11 2006-03-30 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel 8- (3-amino-piperidin-1-yl) -7- (but-2-ynyl) -xanthines, their preparation and their use as pharmaceuticals
DE102004044221A1 (en) * 2004-09-14 2006-03-16 Boehringer Ingelheim Pharma Gmbh & Co. Kg New 3-methyl-7-butynyl xanthines, their preparation and their use as pharmaceuticals
AR051446A1 (en) 2004-09-23 2007-01-17 Bristol Myers Squibb Co C-ARYL GLUCOSIDS AS SELECTIVE INHIBITORS OF GLUCOSE CONVEYORS (SGLT2)
DE102004054054A1 (en) 2004-11-05 2006-05-11 Boehringer Ingelheim Pharma Gmbh & Co. Kg Process for preparing chiral 8- (3-amino-piperidin-1-yl) -xanthines
US7635699B2 (en) 2004-12-29 2009-12-22 Bristol-Myers Squibb Company Azolopyrimidine-based inhibitors of dipeptidyl peptidase IV and methods
US7589088B2 (en) 2004-12-29 2009-09-15 Bristol-Myers Squibb Company Pyrimidine-based inhibitors of dipeptidyl peptidase IV and methods
US7317024B2 (en) 2005-01-13 2008-01-08 Bristol-Myers Squibb Co. Heterocyclic modulators of the glucocorticoid receptor, AP-1, and/or NF-κB activity and use thereof
EP2527337A1 (en) 2005-04-14 2012-11-28 Bristol-Myers Squibb Company Inhibitors of 11-beta hydroxysteroid dehydrogenase type I
US7521557B2 (en) 2005-05-20 2009-04-21 Bristol-Myers Squibb Company Pyrrolopyridine-based inhibitors of dipeptidyl peptidase IV and methods
CA2610022A1 (en) 2005-06-06 2006-12-14 Georgetown University Compositions and methods for lipo modeling
DE102005026762A1 (en) 2005-06-09 2006-12-21 Sanofi-Aventis Deutschland Gmbh Azolopyridin-2-one derivatives as inhibitors of lipases and phospholipases
US7888381B2 (en) 2005-06-14 2011-02-15 Bristol-Myers Squibb Company Modulators of glucocorticoid receptor, AP-1, and/or NF-κB activity, and use thereof
ES2426345T3 (en) 2005-07-20 2013-10-22 Eli Lilly And Company Compound bound in 1-amino position
DE102005035891A1 (en) 2005-07-30 2007-02-08 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8- (3-amino-piperidin-1-yl) -xanthines, their preparation and their use as pharmaceuticals
BRPI0614732A2 (en) * 2005-08-11 2011-04-12 Hoffmann La Roche A pharmaceutical composition comprising a dpp-iv inhibitor, use of a dpp-iv inhibitor and method for treating diseases associated with high blood glucose levels.
TW200745080A (en) * 2005-09-16 2007-12-16 Takeda Pharmaceuticals Co Polymorphs of tartrate salt of 2-[2-(3-(R)-amino-piperidin-1-yl)-5-fluoro-6-oxo-6H-pyrimidin-1-ylmethyl]-benzonitrile and methods of use therefor
JOP20180109A1 (en) * 2005-09-29 2019-01-30 Novartis Ag New Formulation
WO2007053819A2 (en) 2005-10-31 2007-05-10 Bristol-Myers Squibb Company Pyrrolidinyl beta-amino amide-based inhibitors of dipeptidyl peptidase iv and methods
EP1971614A1 (en) 2005-11-14 2008-09-24 Probiodrug AG Cyclopropyl-fused pyrrolidine derivatives as dipeptidyl peptidase iv inhibitors
JP5165582B2 (en) * 2005-12-16 2013-03-21 メルク・シャープ・エンド・ドーム・コーポレイション Pharmaceutical composition comprising a combination of a dipeptidyl peptidase-4 inhibitor and metformin
US7592461B2 (en) 2005-12-21 2009-09-22 Bristol-Myers Squibb Company Indane modulators of glucocorticoid receptor, AP-1, and/or NF-κB activity and use thereof
GB0526291D0 (en) 2005-12-23 2006-02-01 Prosidion Ltd Therapeutic method
EA200802054A1 (en) 2006-04-12 2009-04-28 Пробиодруг Аг ENZYME INHIBITORS
EP2039366A4 (en) 2006-04-21 2010-01-06 Meiji Seika Kaisha Composition containing peptide as the active ingredient
PE20080251A1 (en) 2006-05-04 2008-04-25 Boehringer Ingelheim Int USES OF DPP IV INHIBITORS
BRPI0711558A2 (en) 2006-05-04 2011-11-08 Boeringer Ingelheim Internat Gmbh polymorphs
EP1852108A1 (en) * 2006-05-04 2007-11-07 Boehringer Ingelheim Pharma GmbH & Co.KG DPP IV inhibitor formulations
EP2021014A1 (en) 2006-05-26 2009-02-11 Brystol-Myers Squibb Company Sustained release glp-1 receptor modulators
US7919598B2 (en) 2006-06-28 2011-04-05 Bristol-Myers Squibb Company Crystal structures of SGLT2 inhibitors and processes for preparing same
US7910747B2 (en) 2006-07-06 2011-03-22 Bristol-Myers Squibb Company Phosphonate and phosphinate pyrazolylamide glucokinase activators
US7795291B2 (en) 2006-07-07 2010-09-14 Bristol-Myers Squibb Company Substituted acid derivatives useful as anti-atherosclerotic, anti-dyslipidemic, anti-diabetic and anti-obesity agents and method
JP2010500326A (en) * 2006-08-08 2010-01-07 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Pyrrolo [3,2-D] pyrimidine as a DPP-IV inhibitor for the treatment of diabetes
NZ574710A (en) 2006-09-07 2012-02-24 Nycomed Gmbh Combination treatment comprising the PDE4 inhibitor Compound A ((2R,4aR, 10bR)6-(2,6-Dimethoxy-pyridin-3-yl)-9-ethoxy-8-methoxy-1 ,2,3,4,4a,10b-hexahydrophenanthridin-2-ol) for diabetes mellitus
WO2008057862A2 (en) 2006-11-01 2008-05-15 Bristol-Myers Squibb Company MODULATORS OF GLUCOCORTICOID RECEPTOR, AP-1, AND/OR NF-ϰB ACTIVITY AND USE THEREOF
JP2010508358A (en) 2006-11-01 2010-03-18 ブリストル−マイヤーズ スクイブ カンパニー Glucocorticoid receptor, AP-1 and / or modulator of NF-κB activity, and use thereof
JP5379692B2 (en) 2006-11-09 2013-12-25 プロビオドルグ エージー 3-Hydroxy-1,5-dihydro-pyrrol-2-one derivatives as inhibitors of glutaminyl cyclase for the treatment of ulcers, cancer and other diseases
ATE554085T1 (en) 2006-11-30 2012-05-15 Probiodrug Ag NEW INHIBITORS OF GLUTAMINYL CYCLASE
EP2099442B1 (en) 2006-12-26 2014-11-19 Pharmacyclics, Inc. Method of using histone deacetylase inhibitors and monitoring biomarkers in combination therapy
PE20090185A1 (en) 2007-03-22 2009-02-28 Bristol Myers Squibb Co PHARMACEUTICAL FORMULATIONS CONTAINING AN SGLT2 INHIBITOR
KR101361427B1 (en) 2007-04-03 2014-02-10 미쓰비시 타나베 파마 코퍼레이션 Combined use of dipeptidyl peptidase iv inhibitor compound and sweetener
US9656991B2 (en) 2007-04-18 2017-05-23 Probiodrug Ag Inhibitors of glutaminyl cyclase
PE20090696A1 (en) 2007-04-20 2009-06-20 Bristol Myers Squibb Co CRYSTALLINE FORMS OF SAXAGLIPTIN AND PROCESSES FOR PREPARING THEM
AU2008259342B2 (en) 2007-06-04 2014-07-10 Ben-Gurion University Of The Negev Research And Development Authority Tri-aryl compounds and compositions comprising the same
MX354786B (en) 2007-06-04 2018-03-21 Synergy Pharmaceuticals Inc AGONISTS OF GUANYLATE CYCLASE USEFUL FOR THE TREATMENT OF GASTROINTESTINAL DISORDERS, INFLAMMATION, CANCER and OTHER DISORDERS.
US8969514B2 (en) 2007-06-04 2015-03-03 Synergy Pharmaceuticals, Inc. Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia, atherosclerosis, coronary heart disease, gallstone, obesity and other cardiovascular diseases
WO2009018065A2 (en) * 2007-07-27 2009-02-05 Bristol-Myers Squibb Company Novel glucokinase activators and methods of using same
RU2569749C2 (en) * 2007-08-17 2015-11-27 Бёрингер Ингельхайм Интернациональ Гмбх Purine derivatives applicable for treating fap-related (fibroblast activator protein) diseases
CN101910171A (en) 2007-11-01 2010-12-08 百时美施贵宝公司 Nonsteroidal compounds useful as modulators of glucocorticoid receptor AP-1 and/or NF-kappa B activity and use thereof
CL2008003653A1 (en) 2008-01-17 2010-03-05 Mitsubishi Tanabe Pharma Corp Use of a glucopyranosyl-derived sglt inhibitor and a selected dppiv inhibitor to treat diabetes; and pharmaceutical composition.
AR071175A1 (en) * 2008-04-03 2010-06-02 Boehringer Ingelheim Int PHARMACEUTICAL COMPOSITION THAT INCLUDES AN INHIBITOR OF DIPEPTIDIL-PEPTIDASA-4 (DPP4) AND A COMPARING PHARMACO
PE20100156A1 (en) * 2008-06-03 2010-02-23 Boehringer Ingelheim Int NAFLD TREATMENT
AU2009256157B2 (en) 2008-06-04 2014-12-18 Bausch Health Ireland Limited Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders
EP2334671A1 (en) 2008-06-24 2011-06-22 Bristol-Myers Squibb Company Cyclopentathiophene modulators of the glucocorticoid receptor, ap-1, and/or nf-kappa b activity and use thereof
ES2624828T3 (en) 2008-07-16 2017-07-17 Synergy Pharmaceuticals Inc. Guanylate cyclase agonists useful for the treatment of gastrointestinal disorders, inflammation, cancer and others
KR20190016601A (en) 2008-08-06 2019-02-18 베링거 인겔하임 인터내셔날 게엠베하 Treatment for diabetes in patients inappropriate for metformin therapy
UY32030A (en) 2008-08-06 2010-03-26 Boehringer Ingelheim Int "TREATMENT FOR DIABETES IN INAPPROPRIATE PATIENTS FOR THERAPY WITH METFORMIN"
AU2009281122C1 (en) * 2008-08-15 2016-04-21 Boehringer Ingelheim International Gmbh Purin derivatives for use in the treatment of fab-related diseases
EP2344195A2 (en) 2008-09-10 2011-07-20 Boehringer Ingelheim International GmbH Combination therapy for the treatment of diabetes and related conditions
US20200155558A1 (en) 2018-11-20 2020-05-21 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral antidiabetic drug
KR101054911B1 (en) 2008-10-17 2011-08-05 동아제약주식회사 Pharmaceutical composition for the prevention and treatment of diabetes or obesity containing a compound that inhibits the activity of dipeptidyl peptidase-IV and other anti-diabetic or anti-obesity drugs as an active ingredient
JP2012512848A (en) 2008-12-23 2012-06-07 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Salt forms of organic compounds
TW201036975A (en) 2009-01-07 2010-10-16 Boehringer Ingelheim Int Treatment for diabetes in patients with inadequate glycemic control despite metformin therapy
EP2475428B1 (en) 2009-09-11 2015-07-01 Probiodrug AG Heterocylcic derivatives as inhibitors of glutaminyl cyclase
HUE040486T2 (en) 2009-11-13 2019-03-28 Astrazeneca Ab Bilayer tablet formulations
MX2012005425A (en) 2009-11-13 2012-06-14 Astrazeneca Uk Ltd Reduced mass metformin formulations.
MX2012005365A (en) 2009-11-13 2012-05-29 Bristol Myers Squibb Co Immediate release tablet formulations.
KR20210033559A (en) 2009-11-27 2021-03-26 베링거 인겔하임 인터내셔날 게엠베하 Treatment of genotyped diabetic patients with dpp-iv inhibitors such as linagliptin
TWI562775B (en) 2010-03-02 2016-12-21 Lexicon Pharmaceuticals Inc Methods of using inhibitors of sodium-glucose cotransporters 1 and 2
JP6026284B2 (en) 2010-03-03 2016-11-16 プロビオドルグ エージー Inhibitors of glutaminyl cyclase
JP5688745B2 (en) 2010-03-10 2015-03-25 プロビオドルグ エージー Heterocyclic inhibitor of glutaminyl cyclase (QC, EC 2.3.2.5)
US8592396B2 (en) 2010-04-14 2013-11-26 Bristol-Myers Squibb Company Glucokinase activators and methods of using same
US8581001B2 (en) 2010-04-16 2013-11-12 Codman & Shurtleff Metformin-cysteine prodrug
US8541596B2 (en) 2010-04-21 2013-09-24 Probiodrug Ag Inhibitors
US9186392B2 (en) 2010-05-05 2015-11-17 Boehringer Ingelheim International Gmbh Combination therapy
CA2803504C (en) 2010-06-24 2022-08-30 Boehringer Ingelheim International Gmbh A combination for diabetes therapy comprising linagliptin and a long-acting insulin
EP2611442B1 (en) 2010-09-03 2018-07-04 Bristol-Myers Squibb Company Drug formulations using water soluble antioxidants
US9616097B2 (en) 2010-09-15 2017-04-11 Synergy Pharmaceuticals, Inc. Formulations of guanylate cyclase C agonists and methods of use
AR083878A1 (en) 2010-11-15 2013-03-27 Boehringer Ingelheim Int VASOPROTECTORA AND CARDIOPROTECTORA ANTIDIABETIC THERAPY, LINAGLIPTINA, TREATMENT METHOD
TWI631963B (en) 2011-01-05 2018-08-11 雷西肯製藥股份有限公司 Compositions comprising and methods of using inhibitors of sodium-glucose cotransporters 1 and 2
ES2801725T3 (en) 2011-02-01 2021-01-12 Bristol Myers Squibb Co Pharmaceutical formulations that include an amine compound
WO2012118972A2 (en) 2011-03-01 2012-09-07 Synegy Pharmaceuticals Inc. Process of preparing guanylate cyclase c agonists
WO2012123563A1 (en) 2011-03-16 2012-09-20 Probiodrug Ag Benz imidazole derivatives as inhibitors of glutaminyl cyclase
EP2532506A1 (en) 2011-06-06 2012-12-12 Battenfeld-Cincinnati Germany GmbH Haul-off device for an extruder
CA2841552C (en) 2011-07-15 2020-06-23 Boehringer Ingelheim International Gmbh Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
EP2849755A1 (en) 2012-05-14 2015-03-25 Boehringer Ingelheim International GmbH A xanthine derivative as dpp -4 inhibitor for use in the treatment of podocytes related disorders and/or nephrotic syndrome
WO2013174767A1 (en) 2012-05-24 2013-11-28 Boehringer Ingelheim International Gmbh A xanthine derivative as dpp -4 inhibitor for use in modifying food intake and regulating food preference
EP2925735B1 (en) 2012-11-20 2019-03-13 Lexicon Pharmaceuticals, Inc. Inhibitors of sodium glucose cotransporter 1
CA2905438A1 (en) 2013-03-15 2014-09-25 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase and their uses
AU2014235209B2 (en) 2013-03-15 2018-06-14 Bausch Health Ireland Limited Guanylate cyclase receptor agonists combined with other drugs
CA2913737A1 (en) 2013-06-05 2014-12-11 Synergy Pharmaceuticals, Inc. Ultra-pure agonists of guanylate cyclase c, method of making and using same
WO2015027021A1 (en) 2013-08-22 2015-02-26 Bristol-Myers Squibb Company Imide and acylurea derivatives as modulators of the glucocorticoid receptor
CN106061940A (en) 2013-11-05 2016-10-26 本古里安大学内盖夫研究发展局 Compounds for the treatment of diabetes and disease complications arising from same
ES2950384T3 (en) 2014-02-28 2023-10-09 Boehringer Ingelheim Int Medical use of a DPP-4 inhibitor
GB201415598D0 (en) 2014-09-03 2014-10-15 Univ Birmingham Elavated Itercranial Pressure Treatment
CA3022202A1 (en) 2016-06-10 2017-12-14 Boehringer Ingelheim International Gmbh Combinations of linagliptin and metformin
JP2018123065A (en) * 2017-01-30 2018-08-09 株式会社明治 Insulin secretion promoting composition
WO2018162722A1 (en) 2017-03-09 2018-09-13 Deutsches Institut Für Ernährungsforschung Potsdam-Rehbrücke Dpp-4 inhibitors for use in treating bone fractures
ES2812698T3 (en) 2017-09-29 2021-03-18 Probiodrug Ag Glutaminyl cyclase inhibitors
CN112512530A (en) 2018-07-19 2021-03-16 阿斯利康(瑞典)有限公司 Methods of treating HFpEF using dapagliflozin and compositions comprising dapagliflozin
CA3113037A1 (en) 2018-09-26 2020-04-02 Lexicon Pharmaceuticals, Inc. Crystalline forms of n-(1-((2-(dimethylamino)ethyl)amino)-2-methyl-1-oopropan-2-yl)-4-(4-(2-methyl-5-(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(methylthio)tetrahydro-2h-pyran-2-yl)benzyl)phenl)butanamide and methods of their synthesis
TW202220672A (en) 2020-07-27 2022-06-01 瑞典商阿斯特捷利康公司 Methods of treating chronic kidney disease with dapagliflozin
WO2023144722A1 (en) 2022-01-26 2023-08-03 Astrazeneca Ab Dapagliflozin for use in the treatment of prediabetes or reducing the risk of developing type 2 diabetes

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US25023A (en) * 1859-08-09 Improved device for making electro-magnetic currents, constant or intermittent
US2961377A (en) * 1957-08-05 1960-11-22 Us Vitamin Pharm Corp Oral anti-diabetic compositions and methods
US3174901A (en) * 1963-01-31 1965-03-23 Jan Marcel Didier Aron Samuel Process for the oral treatment of diabetes
US3879541A (en) * 1970-03-03 1975-04-22 Bayer Ag Antihyperglycemic methods and compositions
US3960949A (en) * 1971-04-02 1976-06-01 Schering Aktiengesellschaft 1,2-Biguanides
US4028402A (en) * 1974-10-11 1977-06-07 Hoffmann-La Roche Inc. Biguanide salts
US4935493A (en) * 1987-10-06 1990-06-19 E. I. Du Pont De Nemours And Company Protease inhibitors
US5433955A (en) * 1989-01-23 1995-07-18 Akzo N.V. Site specific in vivo activation of therapeutic drugs
US5462928A (en) * 1990-04-14 1995-10-31 New England Medical Center Hospitals, Inc. Inhibitors of dipeptidyl-aminopeptidase type IV
US5512549A (en) * 1994-10-18 1996-04-30 Eli Lilly And Company Glucagon-like insulinotropic peptide analogs, compositions, and methods of use
US5543396A (en) * 1994-04-28 1996-08-06 Georgia Tech Research Corp. Proline phosphonate derivatives
US5614379A (en) * 1995-04-26 1997-03-25 Eli Lilly And Company Process for preparing anti-obesity protein
US5624894A (en) * 1992-09-17 1997-04-29 University Of Florida Brain-enhanced delivery of neuroactive peptides by sequential metabolism
US5705483A (en) * 1993-12-09 1998-01-06 Eli Lilly And Company Glucagon-like insulinotropic peptides, compositions and methods
US5827898A (en) * 1996-10-07 1998-10-27 Shaman Pharmaceuticals, Inc. Use of bisphenolic compounds to treat type II diabetes
US5939560A (en) * 1993-12-03 1999-08-17 Ferring B.V. Inhibitors of DP-mediated processes, compositions and therapeutic methods thereof
US6006753A (en) * 1996-08-30 1999-12-28 Eli Lilly And Company Use of GLP-1 or analogs to abolish catabolic changes after surgery
US6011155A (en) * 1996-11-07 2000-01-04 Novartis Ag N-(substituted glycyl)-2-cyanopyrrolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
US6107317A (en) * 1999-06-24 2000-08-22 Novartis Ag N-(substituted glycyl)-thiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
US6110949A (en) * 1999-06-24 2000-08-29 Novartis Ag N-(substituted glycyl)-4-cyanothiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
US6172081B1 (en) * 1999-06-24 2001-01-09 Novartis Ag Tetrahydroisoquinoline 3-carboxamide derivatives
US6303661B1 (en) * 1996-04-25 2001-10-16 Probiodrug Use of dipeptidyl peptidase IV effectors for lowering the blood glucose level in mammals
US6319893B1 (en) * 1998-07-31 2001-11-20 Probiodrug Raising blood sugar level in hypoglycemic mammals by administering inhibitors of dipeptidyl peptidase IV
US6500804B2 (en) * 2000-03-31 2002-12-31 Probiodrug Ag Method for the improvement of islet signaling in diabetes mellitus and for its prevention
US6548481B1 (en) * 1998-05-28 2003-04-15 Probiodrug Ag Effectors of dipeptidyl peptidase IV

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940442B2 (en) * 1971-08-30 1974-11-02
DD296075A5 (en) * 1989-08-07 1991-11-21 Martin-Luther-Universitaet Halle-Wittenberg,De PROCESS FOR THE PREPARATION OF NEW INHIBITORS OF DIPEPTIDYL PEPTIDASE IV
US5258185A (en) * 1989-08-23 1993-11-02 Bauer Kurt H Highly active, rapidly absorbable formulations of glibenclamide, processes for the production thereof and their use
ATE164852T1 (en) 1990-01-24 1998-04-15 Douglas I Buckley GLP-1 ANALOGUE USABLE IN DIABETES TREATMENT
WO1991016339A1 (en) 1990-04-14 1991-10-31 New England Medical Center Hospitals, Inc. Inhibitors of dipeptidyl-aminopeptidase type iv
WO1991017767A1 (en) 1990-05-21 1991-11-28 New England Medical Center Hospitals, Inc. Method of treating inhibition of dipeptidyl aminopeptidase type iv
JPH0819154B2 (en) 1991-03-14 1996-02-28 江崎グリコ株式会社 Peptides that inhibit dipeptidyl carboxypeptidase
JPH04334357A (en) * 1991-05-02 1992-11-20 Fujirebio Inc Acyl derivative having enzyme-inhibiting action
DK0610317T3 (en) 1991-10-22 2001-02-19 New England Medical Center Inc Inhibitors of dipeptidyl aminopeptidase type IV
DE4140177C2 (en) * 1991-12-05 1995-12-21 Alfatec Pharma Gmbh Nanosol acute form for glibenclamide
US5614219A (en) * 1991-12-05 1997-03-25 Alfatec-Pharma Gmbh Oral administration form for peptide pharmaceutical substances, in particular insulin
WO1995011689A1 (en) 1993-10-29 1995-05-04 Trustees Of Tufts College Use of inhibitors of dipeptidyl-aminopeptidase to block entry of hiv into cells
DE4432757A1 (en) * 1994-09-14 1996-03-21 Boehringer Mannheim Gmbh Pharmaceutical preparation containing metformin and process for its preparation
WO1997045117A1 (en) 1996-05-29 1997-12-04 Prototek, Inc. Prodrugs of thalidomide and methods for using same as modulators of t-cell function
EP0930882A2 (en) * 1996-08-02 1999-07-28 Institut Pasteur De Lille Prevention or treatment of type 2 diabetes or cardiovascular disease with ppar modulators
JPH10182687A (en) * 1996-10-21 1998-07-07 Bayer Yakuhin Kk Stabilization of storage of acarbose
TW492957B (en) * 1996-11-07 2002-07-01 Novartis Ag N-substituted 2-cyanopyrrolidnes
AR016751A1 (en) 1996-11-22 2001-08-01 Athena Neurosciences Inc METHOD FOR INHIBITING THE RELEASE OF THE BETA-AMYLOID PEPTIDE IN A CELL, PHARMACEUTICAL COMPOSITION AND USEFUL COMPOUNDS IN THIS METHOD
WO2000001849A1 (en) 1998-07-02 2000-01-13 Invitro Diagnostics, Inc. Methods, compositions and apparatus for making nucleic acid molecules having a selected affinity to a target molecule
AU3960400A (en) 1999-03-05 2000-09-28 Molteni L. E C. Dei Fratelli Alitti Societa' Di Esercizio S.P.A. Use of metformin in the preparation of pharmaceutical compositions capable of inhibiting the enzyme dipeptidyl peptidase iv
US7064145B2 (en) * 2000-02-25 2006-06-20 Novo Nordisk A/S Inhibition of beta cell degeneration
AU2001233622A1 (en) 2000-02-25 2001-09-03 Novo-Nordisk A/S Inhibition of beta cell degeneration
DK1480961T3 (en) * 2002-02-28 2007-05-07 Prosidion Ltd Glutaminyl-based DPIV inhibitors

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US25023A (en) * 1859-08-09 Improved device for making electro-magnetic currents, constant or intermittent
US2961377A (en) * 1957-08-05 1960-11-22 Us Vitamin Pharm Corp Oral anti-diabetic compositions and methods
US3174901A (en) * 1963-01-31 1965-03-23 Jan Marcel Didier Aron Samuel Process for the oral treatment of diabetes
US3879541A (en) * 1970-03-03 1975-04-22 Bayer Ag Antihyperglycemic methods and compositions
US3960949A (en) * 1971-04-02 1976-06-01 Schering Aktiengesellschaft 1,2-Biguanides
US4028402A (en) * 1974-10-11 1977-06-07 Hoffmann-La Roche Inc. Biguanide salts
US4935493A (en) * 1987-10-06 1990-06-19 E. I. Du Pont De Nemours And Company Protease inhibitors
US5433955A (en) * 1989-01-23 1995-07-18 Akzo N.V. Site specific in vivo activation of therapeutic drugs
US5462928A (en) * 1990-04-14 1995-10-31 New England Medical Center Hospitals, Inc. Inhibitors of dipeptidyl-aminopeptidase type IV
US5624894A (en) * 1992-09-17 1997-04-29 University Of Florida Brain-enhanced delivery of neuroactive peptides by sequential metabolism
US6201132B1 (en) * 1993-12-03 2001-03-13 Ferring B.V. Inhibitors of DP-mediated processes, compositions, and therapeutic methods thereof
US5939560A (en) * 1993-12-03 1999-08-17 Ferring B.V. Inhibitors of DP-mediated processes, compositions and therapeutic methods thereof
US5705483A (en) * 1993-12-09 1998-01-06 Eli Lilly And Company Glucagon-like insulinotropic peptides, compositions and methods
US5543396A (en) * 1994-04-28 1996-08-06 Georgia Tech Research Corp. Proline phosphonate derivatives
US5512549A (en) * 1994-10-18 1996-04-30 Eli Lilly And Company Glucagon-like insulinotropic peptide analogs, compositions, and methods of use
US5614379A (en) * 1995-04-26 1997-03-25 Eli Lilly And Company Process for preparing anti-obesity protein
US6303661B1 (en) * 1996-04-25 2001-10-16 Probiodrug Use of dipeptidyl peptidase IV effectors for lowering the blood glucose level in mammals
US6006753A (en) * 1996-08-30 1999-12-28 Eli Lilly And Company Use of GLP-1 or analogs to abolish catabolic changes after surgery
US5827898A (en) * 1996-10-07 1998-10-27 Shaman Pharmaceuticals, Inc. Use of bisphenolic compounds to treat type II diabetes
US6124305A (en) * 1996-11-07 2000-09-26 Novartis Ag Use of N-(substituted glycyl)-2-cyanopyrrolidines in inhibiting dipeptidyl peptidase-IV
US6011155A (en) * 1996-11-07 2000-01-04 Novartis Ag N-(substituted glycyl)-2-cyanopyrrolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
US6548481B1 (en) * 1998-05-28 2003-04-15 Probiodrug Ag Effectors of dipeptidyl peptidase IV
US6319893B1 (en) * 1998-07-31 2001-11-20 Probiodrug Raising blood sugar level in hypoglycemic mammals by administering inhibitors of dipeptidyl peptidase IV
US6110949A (en) * 1999-06-24 2000-08-29 Novartis Ag N-(substituted glycyl)-4-cyanothiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
US6172081B1 (en) * 1999-06-24 2001-01-09 Novartis Ag Tetrahydroisoquinoline 3-carboxamide derivatives
US6107317A (en) * 1999-06-24 2000-08-22 Novartis Ag N-(substituted glycyl)-thiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
US6500804B2 (en) * 2000-03-31 2002-12-31 Probiodrug Ag Method for the improvement of islet signaling in diabetes mellitus and for its prevention

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276371B2 (en) 1997-09-29 2007-10-02 Point Therapeutics, Inc. Stimulation of hematopoietic cells in vitro
US20040152192A1 (en) * 1997-09-29 2004-08-05 Point Therapeutics, Inc. Stimulation of hematopoietic cells in vitro
US7265118B2 (en) 1998-08-21 2007-09-04 Point Therapeutics, Inc. Regulation of substrate activity
US20060052310A1 (en) * 1998-08-21 2006-03-09 Point Therapeutics, Inc. Regulation of substrate activity
US7259138B2 (en) 1999-05-25 2007-08-21 Point Therapeutics, Inc. Anti-tumor agents
US20060287245A1 (en) * 1999-05-25 2006-12-21 Point Therapeutics, Inc. Anti-tumor agents
US7282484B2 (en) 1999-05-25 2007-10-16 Point Therapeutics, Inc. Anti-tumor agents
US7687625B2 (en) 2003-03-25 2010-03-30 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US20040242566A1 (en) * 2003-03-25 2004-12-02 Syrrx, Inc. Dipeptidyl peptidase inhibitors
US7169926B1 (en) 2003-08-13 2007-01-30 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7790736B2 (en) 2003-08-13 2010-09-07 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7678909B1 (en) 2003-08-13 2010-03-16 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7723344B2 (en) 2003-08-13 2010-05-25 Takeda San Diego, Inc. Dipeptidyl peptidase inhibitors
US7790734B2 (en) 2003-09-08 2010-09-07 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7504423B2 (en) 2003-12-11 2009-03-17 Mitsubishi Tanabe Pharma Corporation α-amino acid derivatives and use thereof as medicines
US20070117786A1 (en) * 2003-12-19 2007-05-24 Altana Pharma Ag Intermediates for the preparation of tricyclic dihydropyrano-imidazo-pyridines derivatives
US7732446B1 (en) 2004-03-11 2010-06-08 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US8188275B2 (en) 2004-03-15 2012-05-29 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7906523B2 (en) 2004-03-15 2011-03-15 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US8329900B2 (en) 2004-03-15 2012-12-11 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US8288539B2 (en) 2004-03-15 2012-10-16 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US8173663B2 (en) 2004-03-15 2012-05-08 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7807689B2 (en) 2004-03-15 2010-10-05 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7781584B2 (en) 2004-03-15 2010-08-24 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7687638B2 (en) 2004-06-04 2010-03-30 Takeda San Diego, Inc. Dipeptidyl peptidase inhibitors
US7825242B2 (en) 2004-07-16 2010-11-02 Takeda Pharmaceutical Company Limted Dipeptidyl peptidase inhibitors
US20070072830A1 (en) * 2004-09-21 2007-03-29 Point Therapeutics, Inc. Methods for treating diabetes
US20060063719A1 (en) * 2004-09-21 2006-03-23 Point Therapeutics, Inc. Methods for treating diabetes
US7872124B2 (en) 2004-12-21 2011-01-18 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US20100285494A1 (en) * 2005-01-10 2010-11-11 Arena Pharmaceuticals, Inc. Combination therapy for the treatment of diabetes and conditions related thereto and for the treatment of conditions ameliorated by increasing a blood glp-1 level
US20100285495A1 (en) * 2005-01-10 2010-11-11 Arena Pharmaceuticals, Inc. Combination therapy for the treatment of diabetes and conditions related thereto and for the treatment of conditions ameliorated by increasing a blood glp-1 level
US7803753B2 (en) 2005-01-10 2010-09-28 Arena Pharmaceuticals, Inc. Combination therapy for the treatment of diabetes and conditions related thereto and for the treatment of conditions ameliorated by increasing a blood GLP-1 level
US7803754B2 (en) 2005-01-10 2010-09-28 Arena Pharmaceuticals, Inc. Combination therapy for the treatment of diabetes and conditions related thereto and for the treatment of conditions ameliorated by increasing a blood GLP-1 level
US8198232B2 (en) 2005-01-10 2012-06-12 Arena Pharmaceuticals, Inc. Combination therapy for the treatment of diabetes and conditions related thereto and for the treatment of conditions ameliorated by increasing a blood GLP-1 level
US20100137293A1 (en) * 2005-01-10 2010-06-03 Arena Pharmaceuticals, Inc. Combination therapy for the treatment of diabetes and conditions related thereto and for the treatment of conditions ameliorated by increasing a blood glp-1 level
US20060154866A1 (en) * 2005-01-10 2006-07-13 Zhi-Liang Chu Combination therapy for the treatment of diabetes and conditions related thereto and for the treatment of conditions ameliorated by increasing a blood GLP-1 level
US20100298333A1 (en) * 2005-01-10 2010-11-25 Arena Pharmaceuticals, Inc. Combination therapy for the treatment of diabetes and conditions related thereto and for the treatment of conditions ameliorated by increasing a blood glp-1 level
US20100286172A1 (en) * 2005-01-10 2010-11-11 Arena Pharmaceuticals, Inc. Combination therapy for the treatment of diabetes and conditions related thereto and for the treatment of conditions ameliorated by increasing a blood glp-1 level
US20100286153A1 (en) * 2005-01-10 2010-11-11 Arena Pharmaceuticals, Inc. Combination therapy for the treatment of diabetes and conditions related thereto and for the treatment of conditions ameliorated by increasing a blood glp-1 level
US8003597B2 (en) 2005-01-10 2011-08-23 Arena Pharmaceuticals, Inc. Combination therapy for the treatment of diabetes and conditions related thereto and for the treatment of conditions ameliorated by increasing a blood GLP-1 level
US8030270B2 (en) 2005-01-10 2011-10-04 Arena Pharmaceuticals, Inc. Methods for identifying GLP-1 secretagogues
US8022034B2 (en) 2005-01-10 2011-09-20 Arena Pharmaceuticals, Inc. Combination therapy for the treatment of diabetes and conditions related thereto and for the treatment of conditions ameliorated by increasing a blood GLP-1 level
US8604198B2 (en) 2005-02-18 2013-12-10 Mitsubishi Tanabe Pharma Corporation Salt of proline derivative, solvate thereof, and production method thereof
US8906901B2 (en) 2005-09-14 2014-12-09 Takeda Pharmaceutical Company Limited Administration of dipeptidyl peptidase inhibitors
US8222411B2 (en) 2005-09-16 2012-07-17 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US20090124626A1 (en) * 2005-09-29 2009-05-14 Daiichi Sankyo Company, Limited Pharmaceutical agent comprising insulin resistance improving agent
US7960384B2 (en) 2006-03-28 2011-06-14 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US8017574B2 (en) 2006-04-11 2011-09-13 Arena Pharmaceuticals, Inc. Methods of preparing pharmaceutical compositions comprising GPR119 agonists having the effect of glucose-dependent insulinotropic peptide secretagogues
US8580526B2 (en) 2006-04-11 2013-11-12 Arena Pharmaceuticals, Inc. Methods of using GPR119 receptor to identify compounds which stimulate glucose-dependent insulinotropic peptide secretion
EP2253311A2 (en) 2006-04-11 2010-11-24 Arena Pharmaceuticals, Inc. Use of GPR119 receptor agonists for increasing bone mass and for treating osteoporosis, as well as combination therapy relating thereto
US20100190750A1 (en) * 2006-04-11 2010-07-29 Arena Pharmaceuticals, Inc. GPR119 Receptor Agonists in Methods of Increasing Bone Mass and of Treating Osteoporosis and Other Conditions Characterized by Low Bone Mass, and Combination Therapy Relating Thereto
US8026074B2 (en) 2006-04-11 2011-09-27 Arena Pharmaceuticals, Inc. Methods of using GPR119 to identify compounds useful for increasing bone mass in an individual
US8026212B2 (en) 2006-04-11 2011-09-27 Arena Pharmaceuticals, Inc. Methods of preparing pharmaceutical compositions comprising GPR119 agonists having the effect of glucose-dependent insulinotropic peptide secretatgogues
US7833730B2 (en) 2006-04-11 2010-11-16 Arena Pharmaceuticals, Inc. Methods of using GPR119 to identify compounds useful for increasing bone mass in an individual
US20100203577A1 (en) * 2006-04-11 2010-08-12 Arena Pharmaceuticals, Inc. Methods of using gpr119 to identify compounds useful for increasing bone mass in an individual
US20100203037A1 (en) * 2006-04-11 2010-08-12 Arena Pharmaceuticals, Inc. Methods of using gpr119 to identify compounds useful for increasing bone mass in an individual
US20100203038A1 (en) * 2006-04-11 2010-08-12 Arena Pharmaceuticals, Inc. Methods of using gpr119 to identify compounds useful for increasing bone mass in an individual
US8101626B2 (en) 2006-04-11 2012-01-24 Arena Pharmaceuticals, Inc. GPR119 receptor agonists in methods of increasing bone mass and of treating osteoporosis and other conditions characterized by low bone mass, and combination therapy relating thereto
US7816364B2 (en) 2006-04-11 2010-10-19 Arena Pharmaceuticals, Inc. GRP119 receptor agonists in methods of increasing bone mass and of treating osteoporosis and other conditions characterized by low bone mass, and combination therapy relating thereto
US8324383B2 (en) 2006-09-13 2012-12-04 Takeda Pharmaceutical Company Limited Methods of making polymorphs of benzoate salt of 2-[[6-[(3R)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2H)-pyrimidinyl]methyl]-benzonitrile
US8084605B2 (en) 2006-11-29 2011-12-27 Kelly Ron C Polymorphs of succinate salt of 2-[6-(3-amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-ylmethy]-4-fluor-benzonitrile and methods of use therefor
US8093236B2 (en) 2007-03-13 2012-01-10 Takeda Pharmaceuticals Company Limited Weekly administration of dipeptidyl peptidase inhibitors
US20080287476A1 (en) * 2007-03-13 2008-11-20 Takeda Pharmaceutical Company Limited Administration of dipeptidyl peptidase inhibitors
US8486646B2 (en) 2008-04-07 2013-07-16 Arena Pharmaceuticals, Inc. Methods of using a G protein-coupled receptor to identify peptide YY (PYY) secretagogues
US20100203556A1 (en) * 2008-04-07 2010-08-12 Arena Pharmaceuticals, Inc. Methods of using a g protein-coupled receptor to identify peptide yy (pyy) secretagogues and compounds useful in the treatment of conditions modulated by pyy
US8883714B2 (en) 2008-04-07 2014-11-11 Arena Pharmaceuticals, Inc. Pharmaceutical compositions comprising GPR119 agonists which act as peptide YY (PYY) secretagogues
US7838254B2 (en) 2008-04-07 2010-11-23 Arena Pharmaceuticals, Inc. Methods of using GPR119 to identify peptide YY (PYY) secretagogues and compounds useful in the treatment of conditions modulated by PYY
US20100210666A1 (en) * 2008-04-07 2010-08-19 Arena Pharmaceuticals, Inc. Methods of using a g protein-coupled receptor to identify peptide yy (pyy) secretagogues and compounds useful in the treatment of conditions modulated by pyy
WO2011005929A1 (en) 2009-07-09 2011-01-13 Arena Pharmaceuticals, Inc. Piperidine derivative and its use for the treatment of diabets and obesity
WO2011127051A1 (en) 2010-04-06 2011-10-13 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
WO2012040279A1 (en) 2010-09-22 2012-03-29 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
EP3323818A1 (en) 2010-09-22 2018-05-23 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
WO2012135570A1 (en) 2011-04-01 2012-10-04 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
WO2012145361A1 (en) 2011-04-19 2012-10-26 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
WO2012145604A1 (en) 2011-04-22 2012-10-26 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
WO2012145603A1 (en) 2011-04-22 2012-10-26 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
WO2012170702A1 (en) 2011-06-08 2012-12-13 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
WO2013055910A1 (en) 2011-10-12 2013-04-18 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
WO2014074668A1 (en) 2012-11-08 2014-05-15 Arena Pharmaceuticals, Inc. Modulators of gpr119 and the treatment of disorders related thereto
US11400072B2 (en) 2015-03-09 2022-08-02 Coherus Biosciences, Inc. Methods for the treatment of nonalcoholic fatty liver disease and/or lipodystrophy
US10772865B2 (en) 2015-03-09 2020-09-15 Coherus Biosciences, Inc. Methods for the treatment of nonalcoholic fatty liver disease and/or lipodystrophy
US10555929B2 (en) 2015-03-09 2020-02-11 Coherus Biosciences, Inc. Methods for the treatment of nonalcoholic fatty liver disease and/or lipodystrophy
US11253508B2 (en) 2017-04-03 2022-02-22 Coherus Biosciences, Inc. PPARy agonist for treatment of progressive supranuclear palsy

Also Published As

Publication number Publication date
HK1047887A1 (en) 2003-03-14
SI1082314T1 (en) 2003-08-31
EP1398030A2 (en) 2004-03-17
ATE338546T1 (en) 2006-09-15
HUP0102001A2 (en) 2001-11-28
DE19823831A1 (en) 1999-12-02
ATE289598T1 (en) 2005-03-15
DE29909211U1 (en) 1999-09-23
EP1214936B1 (en) 2004-07-28
IL139862A (en) 2006-08-20
DE59911670D1 (en) 2005-03-31
PL344403A1 (en) 2001-11-05
CN1637018A (en) 2005-07-13
AU764262B2 (en) 2003-08-14
PT1304327E (en) 2005-07-29
NO20005994L (en) 2001-01-25
RU2227800C2 (en) 2004-04-27
ES2223981T3 (en) 2005-03-01
NO317989B1 (en) 2005-01-17
CN1636593A (en) 2005-07-13
CN101095675A (en) 2008-01-02
BR9910758A (en) 2001-02-13
IS2130B (en) 2006-07-14
IS5728A (en) 2000-11-24
EP1398030A3 (en) 2004-04-07
SI1304327T1 (en) 2005-08-31
DK1304327T3 (en) 2005-06-27
DE29909210U1 (en) 1999-09-09
CN1303381A (en) 2001-07-11
US6548481B1 (en) 2003-04-15
WO1999061431A1 (en) 1999-12-02
ATE272059T1 (en) 2004-08-15
RU2309161C2 (en) 2007-10-27
KR20040063979A (en) 2004-07-15
RU2004101292A (en) 2005-06-20
NZ525799A (en) 2004-09-24
EP1082314A1 (en) 2001-03-14
US20050203030A1 (en) 2005-09-15
DE29909208U1 (en) 1999-09-09
EP1398030B1 (en) 2006-09-06
RU2003121766A (en) 2005-02-10
EP1428533A2 (en) 2004-06-16
KR100630258B1 (en) 2006-10-02
EP1215207B1 (en) 2004-07-28
IS7763A (en) 2005-03-21
ES2271458T3 (en) 2007-04-16
IS7764A (en) 2005-03-21
IL139862A0 (en) 2002-02-10
EP1215207A3 (en) 2002-07-03
NZ508260A (en) 2003-06-30
JP2002516318A (en) 2002-06-04
ES2193709T3 (en) 2003-11-01
EP1304327B1 (en) 2005-02-23
HUP0102001A3 (en) 2001-12-28
HK1052708A1 (en) 2003-09-26
EP1304327A2 (en) 2003-04-23
ES2271723T3 (en) 2007-04-16
HK1033316A1 (en) 2001-08-24
EP1428533B1 (en) 2006-08-16
EP1428533A3 (en) 2004-06-23
US20080182798A1 (en) 2008-07-31
ATE336248T1 (en) 2006-09-15
KR100628668B1 (en) 2006-09-27
CN1332954C (en) 2007-08-22
DE59904100D1 (en) 2003-02-27
HK1047887B (en) 2005-05-13
KR20010071335A (en) 2001-07-28
EP1214936A3 (en) 2002-07-03
DE59910083D1 (en) 2004-09-02
CA2333603A1 (en) 1999-12-02
DE59913784D1 (en) 2006-09-28
IL175407A0 (en) 2006-09-05
EP1304327A3 (en) 2003-05-02
DK1214936T3 (en) 2004-12-06
IS2089B (en) 2006-03-15
EP1082314B1 (en) 2003-04-23
EP1215207A2 (en) 2002-06-19
PT1214936E (en) 2004-12-31
CA2333603C (en) 2007-07-31
ES2238641T3 (en) 2005-09-01
NO20005994D0 (en) 2000-11-27
ATE231497T1 (en) 2003-02-15
ATE271869T1 (en) 2004-08-15
DE59913840D1 (en) 2006-10-19
UA54599C2 (en) 2003-03-17
AU4370999A (en) 1999-12-13
HK1052708B (en) 2005-05-27
EP1214936A2 (en) 2002-06-19
DE59910084D1 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US6548481B1 (en) Effectors of dipeptidyl peptidase IV
DE10150203A1 (en) Use of dipeptidyl peptidase IV inhibitor in treatment of cancer
KR20090038908A (en) Combination treatment of metabolic disorders
JP2002053557A (en) Apolipoprotein a-i-producing facilitator
AU2003262286B2 (en) Novel Effectors of Dipeptidyl Peptidase IV
AU2006202684A1 (en) Novel effectors of dipeptidyl peptidase IV
US20050119197A1 (en) Naadp analogues for modulating t-cell activity
WO2002012177A1 (en) Composition of metformin with succinic acid or salts thereof and method for treating diabetes
MXPA00011600A (en) New dipeptidyl peptidase iv effectors
CZ20004427A3 (en) Novel effectors of IV dipeptidyl peptidase
DE29924609U1 (en) Orally effective hypoglycemic compositions, useful e.g. for treating diabetes mellitus or hyperlipidemia, containing dipeptidyl peptidase IV effector and another antidiabetic agent

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION

AS Assignment

Owner name: PROSIDION LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:016536/0107

Effective date: 20050321

AS Assignment

Owner name: PROSIDION LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:016561/0783

Effective date: 20050321

Owner name: PROSIDION LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:016547/0581

Effective date: 20050321

Owner name: PROSIDION LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:017045/0252

Effective date: 20050321

Owner name: PROSIDION LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:016536/0621

Effective date: 20050321