US20030134099A1 - Bioabsorbable fibers and reinforced composites produced therefrom - Google Patents
Bioabsorbable fibers and reinforced composites produced therefrom Download PDFInfo
- Publication number
- US20030134099A1 US20030134099A1 US10/351,881 US35188103A US2003134099A1 US 20030134099 A1 US20030134099 A1 US 20030134099A1 US 35188103 A US35188103 A US 35188103A US 2003134099 A1 US2003134099 A1 US 2003134099A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- core
- bioabsorbable
- sheath
- poly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 125
- 239000002131 composite material Substances 0.000 title claims abstract description 33
- 229920000642 polymer Polymers 0.000 claims abstract description 159
- 230000004927 fusion Effects 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 13
- 230000001070 adhesive effect Effects 0.000 claims abstract description 12
- 239000000853 adhesive Substances 0.000 claims abstract description 11
- 238000001727 in vivo Methods 0.000 claims abstract description 7
- 238000002513 implantation Methods 0.000 claims abstract description 5
- -1 poly(L-lactide) Polymers 0.000 claims description 43
- 239000011347 resin Substances 0.000 claims description 32
- 229920005989 resin Polymers 0.000 claims description 32
- 238000002347 injection Methods 0.000 claims description 24
- 239000007924 injection Substances 0.000 claims description 24
- 238000002844 melting Methods 0.000 claims description 24
- 230000008018 melting Effects 0.000 claims description 24
- 229920001577 copolymer Polymers 0.000 claims description 23
- 238000001746 injection moulding Methods 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 238000000465 moulding Methods 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 17
- 239000007943 implant Substances 0.000 claims description 16
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 claims description 14
- YFHICDDUDORKJB-UHFFFAOYSA-N trimethylene carbonate Chemical compound O=C1OCCCO1 YFHICDDUDORKJB-UHFFFAOYSA-N 0.000 claims description 14
- 239000004744 fabric Substances 0.000 claims description 13
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 claims description 12
- 239000000622 polydioxanone Substances 0.000 claims description 12
- 229920000954 Polyglycolide Polymers 0.000 claims description 11
- 239000000178 monomer Substances 0.000 claims description 11
- 229920000515 polycarbonate Polymers 0.000 claims description 11
- 239000004417 polycarbonate Substances 0.000 claims description 11
- 229920001432 poly(L-lactide) Polymers 0.000 claims description 9
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 8
- 229920001244 Poly(D,L-lactide) Polymers 0.000 claims description 8
- 239000012764 mineral filler Substances 0.000 claims description 8
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 8
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 claims description 8
- VPVXHAANQNHFSF-UHFFFAOYSA-N 1,4-dioxan-2-one Chemical compound O=C1COCCO1 VPVXHAANQNHFSF-UHFFFAOYSA-N 0.000 claims description 7
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 claims description 7
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 7
- 238000007334 copolymerization reaction Methods 0.000 claims description 7
- 239000000945 filler Substances 0.000 claims description 7
- 229920001610 polycaprolactone Polymers 0.000 claims description 7
- 229920000166 polytrimethylene carbonate Polymers 0.000 claims description 7
- 230000002787 reinforcement Effects 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 6
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 6
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 4
- 229920001400 block copolymer Polymers 0.000 claims description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 3
- 229910000077 silane Inorganic materials 0.000 claims description 3
- ZWVMLYRJXORSEP-LURJTMIESA-N (2s)-hexane-1,2,6-triol Chemical compound OCCCC[C@H](O)CO ZWVMLYRJXORSEP-LURJTMIESA-N 0.000 claims description 2
- 238000006116 polymerization reaction Methods 0.000 claims description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 claims 1
- 239000002245 particle Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 4
- 229920000747 poly(lactic acid) Polymers 0.000 description 38
- 210000000988 bone and bone Anatomy 0.000 description 14
- 235000010582 Pisum sativum Nutrition 0.000 description 7
- 238000006731 degradation reaction Methods 0.000 description 7
- 229920000120 polyethyl acrylate Polymers 0.000 description 7
- 239000007857 degradation product Substances 0.000 description 6
- CQWXKASOCUAEOW-UHFFFAOYSA-N 2-[2-(carboxymethoxy)ethoxy]acetic acid Chemical compound OC(=O)COCCOCC(O)=O CQWXKASOCUAEOW-UHFFFAOYSA-N 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 229920005594 polymer fiber Polymers 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 240000004713 Pisum sativum Species 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 241000219843 Pisum Species 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000399 orthopedic effect Effects 0.000 description 3
- 229920001781 poly(TMC-co-L-lactide) Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229920006125 amorphous polymer Polymers 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 210000000013 bile duct Anatomy 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 210000000578 peripheral nerve Anatomy 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920006126 semicrystalline polymer Polymers 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- OFNZWAAUVOEYMK-UHFFFAOYSA-N 1,3-dioxan-2-one;oxepan-2-one Chemical compound O=C1OCCCO1.O=C1CCCCCO1 OFNZWAAUVOEYMK-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229920013641 bioerodible polymer Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- 230000023852 carbohydrate metabolic process Effects 0.000 description 1
- 235000021256 carbohydrate metabolism Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001279 poly(ester amides) Polymers 0.000 description 1
- 229940065514 poly(lactide) Drugs 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 210000003708 urethra Anatomy 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/14—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/48—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/12—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/12—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L31/125—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L31/128—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing other specific inorganic fillers not covered by A61L31/126 or A61L31/127
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/72—Intramedullary pins, nails or other devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00004—(bio)absorbable, (bio)resorbable or resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2/30965—Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/4455—Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/30062—(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/24994—Fiber embedded in or on the surface of a polymeric matrix
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2904—Staple length fiber
- Y10T428/2907—Staple length fiber with coating or impregnation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2929—Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2929—Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
- Y10T428/2931—Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
Definitions
- This invention relates to synthetic bioabsorbable fibers.
- the present invention also relates to methods of making bioabsorbable fibers from at least two different polymers by separately melt extruding the at least two different polymers and bonding the extruded polymers together to form a fiber with a semicrystalline polymer core and an amorphous polymer sheath.
- the invention also relates to reinforced composites, made at least in part from synthetic bioabsorbable fibers.
- the present invention relates to devices comprised of such reinforced composites, wherein the devices are designed for use as in vivo implants, including implants which can support high loads, such as for use in fracture fixation and spinal fusion.
- Metal implants have a long history of successful use in orthopedic surgery but also carry many risks for complications.
- a second surgery for device removal is recommended about one year after confirmation of osseous union. If the device is not removed the bone can remodel into a weakened condition due to stress shielding. There is also the potential for an increased risk of infection.
- metal cages for spinal fusion complications due to migration, infection, corrosion, reduced bone density, non-union, and fracture are especially serious since major surgery is required for device removal.
- Poly(lactic acid) has been the subject of continuous research as a material for use in surgical devices since it was first proposed for this purpose in the mid 1960s. Since poly(lactic acid) is ultimately hydrolyzed into lactic acid, a normal intermediate carbohydrate metabolism in man, it continues to be viewed as the ideal implantable material from the standpoint of toxicological safety.
- PLA fibers produced from semicrystalline poly(L-lactic acid), also known as poly(lactide), hereinafter referred to as PLA have been studied as braided implants for use as a ligament augmentation device.
- PLA fibers are known to be capable of retaining about 70% of their initial tensile strength after 10 months in vivo.
- injection molded PLA typically may have a tensile strength of 60 MPa. This value may be increased up to about 300 MPa by stressing the injection molded parts to achieve orientation prior to crystallization. Highly drawn PLA fibers, on the other hand, can give tensile strength in excess of 2,000 MPa.
- PLA fibers into a matrix of PLA or a similar polymer such as poly(dl-lacitc acid) which is totally amorphous.
- poly(dl-lacitc acid) which is totally amorphous.
- the problem with using poly(dl-lacitc acid) is that it degrades too rapidly for orthopedic applications.
- Pure self-reinforced PLA fiber composites have been made by sintering together bundles of PLA fibers thereby sacrificing some of the fibers to produce a molten matrix for embedding the remaining fibers. This process is difficult to control and yields unreliable results. It also tends to produce a substantial amorphous phase that can slowly recrystallize upon prolonged storage to give a brittle, non-reinforcing structure.
- Fiber reinforced composites of PLA with the use of other bioabsorbable polymers as a matrix have generally failed to achieve adequate in vivo performance due to moisture penetration into the interface between fiber and matrix. This typical mode of failure has been the principal problem with all approaches to fully bioabsorbable composites of the prior art.
- the present invention is a bioabsorbable fiber comprising a core of a semicrystalline fiber-forming bioabsorbable core polymer with a crystalline core melting temperature, and a sheath of an amorphous bioabsorbable sheath polymer with a softening point below the crystalline core melting temperature, wherein the core polymer and sheath polymer are separately melt extruded, and the sheath is connected to the core through an adhesive bond.
- the present invention is a reinforced composite, comprising a plurality of filaments of the bioabsorbable fiber and a molding resin reinforced therewith.
- the present invention is a device designed for in vivo implantation or insertion, fabricated from the reinforced composite.
- the present invention is a method of making the bioabsorbable fiber, comprising the steps of:
- the present invention is a method of making a surgical device of a reinforced composite of bioabsorbable fibers, comprising the steps of:
- Poly(ester-amide) shall mean to include any of the polymers described in U.S. Pat. No. 4,343,931, “Synthetic Absorbable Surgical Devices of Poly(esteramides)”, T. H. Barrows, Aug. 19, 1982, the teachings of which are incorporated herein by reference, and to include any of the polymers described in Provisional Patent Application Serial No. 60/062,064, “Bioabsorbable Triglycolic Acid Poly(ester-amide)s”, T. H. Barrows, filed Oct. 16, 1997, the teachings of which are incorporated herein by reference.
- “Tryosine-derived polycarbonates” shall mean to include any of the polymers described in U.S. Pat. No. 5,198,507, “Synthesis of Amino Acid-derived Bioerodible Polymers”, J. B. Kohn and S. K. K. Pulapura, Mar. 30, 1993, the teachings of which are incorporated herein by reference.
- PLA shall mean poly(L-lactide).
- PGA shall mean polyglycolide
- PEA shall mean poly(ester-amide).
- TMC trimethylene carbonate
- Softening point shall mean the temperature range below which a polymer is non-tacky and non-self-adherent and above which the polymer is tacky and self-adherent.
- Melting temperature shall mean the crystalline core melting transition temperature (Tm) of a semi-crystalline polymer.
- injection temperature shall mean the minimum temperature of a molten polymer that allows it to have adequately low viscosity under pressure to flow into an injection mold cavity containing multifilament fibers such that the spaces between the fibers are completely filled with the injected molten polymer.
- Bioabsorbable shall mean the property of a composition, material, or device, that allows it to degrade post-implantation completely into non-toxic degradation products that are eliminated from the body or are transformed into normal metabolites utilized within the body.
- the present invention provides fibers fabricated by a core-sheath coextrusion process in which two different bioabsorbable polymers are separately melt extruded and forced into a single die such that the resultant filaments are comprised of one polymer substantially at the core and the other polymer substantially as a sheath.
- the core polymer is preferably a semi-crystalline, high strength fiber-forming polymer and the sheath polymer is preferably a normally amorphous polymer with a softening point well below the crystalline melting temperature of the core polymer (hereinafter, the “crystalline core melting temperature”).
- the sheath polymer also preferably has a softening point high enough that it is tack-free at the temperatures required for optimum hot drawing and annealing of the core fiber.
- the two polymers must be capable of forming an adequate adhesive bond between them such that when the molten filament is solidified by cooling and subsequently hot stretched, the sheath polymer will elongate with the core polymer and not separate from the core.
- the coextrusion process in which the two polymers come into contact with each other in the molten phase provides the optimum environment needed for the development of an interfacial bond that will tolerate said processing without failure.
- an important feature of the present invention is the discovery that dissimilar bioabsorbable polymers that normally would not adhere to each other by hot pressing the two polymers as pre-formed solid articles adhere well as a result of an intimate interface created during coextrusion.
- sheath polymers can be selected from a wide variety of known bioabsorbable polymers as well as from custom formulated blends and or custom synthesized copolymers.
- Sheath polymers are preferably selected which have a softening point value which ensures subsequent processing of the core component filaments to produce high strength fibers.
- Sheath polymers are also preferably selected to optimize the integrity of adhesion between the sheath and the core, by minimizing the penetration of moisture into the interface between the sheath and core, and by ensuring moisture penetration into the interface between the sheath and core does not occur at a rate faster than moisture penetration into the bulk of the sheath polymer.
- Said fibers ideally are fine multifilaments since it is known in the art of fiber spinning that maximum draw ratio and therefore maximum tensile strength and modulus are achieved more readily with small rather than large diameter fibers.
- multifilament yarns are more versatile in subsequent device fabrication processing steps than monofilament fiber.
- Fibers of the present invention are comprised of a core of one bioabsorbable polymer, the “core polymer”, and a partial or complete sheath of a second bioabsorbable polymer, the “sheath polymer”.
- the core polymer is preferably selected from the group consisting of poly(L-lactide), polyglycolide, poly(epsilon-caprolactone), polydioxanone, poly(ester-amide)s, and any combination of copolymers of said polymers including copolymers made with the use of trimethylene carbonate and or dl-lactide as comonomers.
- the sheath polymer is preferably selected from the group consisting of poly(ester-amide)s, tyrosine-derived polycarbonates, poly(trimethylene carbonate), poly(dl-lactide), polydioxanone, poly(epsilon-caprolactone), and copolymers, mixtures, and blends of these polymers.
- the sheath polymer is the product of copolymerization of any two or more monomers selected from the group comprised of epsilon-caprolactone, trimethylene carbonate, L-lactide, dl-lactide, glycolide, and para-dioxanone.
- the specific core and sheath polymers suitable for inclusion in a given biocomponent fiber of the present invention depends upon the intended use for the particular biocomponent fiber.
- the preferred core polymer is PLA and the preferred sheath polymer is selected from the group comprised of polyTMC, poly(TMC-co-L-lactide), poly(TMC-co-epsilon-caprolactone), tyrosine-derived polycarbonates, and PEAs.
- the preferred core polymer for fracture fixation and spinal fusion devices is PLA due to its high strength, stiffness, and long-lasting strength retention.
- the slow degradation time of crystalline PLA fibers is not anticipated to result in the release of excessively acidic degradation products due to the long time course of degradation.
- the sheath polymer and the molding resin polymer preferably are not PLA or PLA/PGA copolymers since the release of acidic degradation products and the autocatalytic acceleration of the degradation process mentioned previously are possible drawbacks.
- polycarbonates such as polyTMC, polyTMC copolymers, and tyrosine-derived polycarbonates as well as certain PEAs are preferred since they degrade slowly, are relatively hydrophobic, and do not release a significant amount of acidic degradation products.
- Triglycolic acid PEAs are especially preferred as sheath polymers and as molding resin polymers since they provide exceptionally good inter-fiber adhesion due to their “hot melt” adhesive properties.
- a further advantage of triglycolic acid PEAs is that they can be block copolymerized with PLA to provide a strong intermolecular interaction with the molten PLA core during coextrusion and thus provide an interfacial bond between core and sheath that is highly resistant to premature moisture penetration.
- TMC can be randomly or block copolymerized with lactide or caprolactone both to increase the softening point of pure polyTMC and to improve its compatibility as a sheath polymer with the PLA core during the coextrusion process.
- Pure polyTMC of an appropriate molecular weight may be a suitable injection molding resin polymer due to its low injection temperature, slow degradation rate, hydrophobic nature, and non-acidic degradation products.
- the biocomponent fibers of the present invention can be processed into reinforced composites by a number of different methods.
- a preferred method is injection molding.
- short (e.g. 1-10 mm) chopped fibers can be added to a molding resin polymer such that the “filled” molding resin contains about 10 to 70% of reinforcement fibers by volume.
- the injection molding cavity can be pre-loaded with a fabric of said fibers in continuous form and injected with an injection molding resin polymer selected from any of the polymers in the group identified above as sheath polymers.
- the injection molding resin polymer may be the same polymer as the sheath polymer of the continuous fibers or a different polymer.
- the injection molding resin polymer also may be “filled” with a reinforcement filler in the form of short fibers of the present invention and or a mineral filler such as hydroxyapatite.
- Mineral fillers also optionally may be pre-treated with coupling reagents such as silane coupling agents known in the prior art to provide improved bonding to injection molding resin polymers.
- Production of devices of the reinforced composites of the present invention can be achieved most conveniently by injection molding with a molding resin that is “filled” with the above fibers cut into short lengths.
- the molding resin can be the same polymer as the sheath polymer or a polymer of similar composition such that excellent adhesion is obtained between the molding resin and the sheath of the reinforcing fiber.
- the injection temperature of the molding resin may be higher or lower than the softening temperature of the sheath polymer, but must be below the melting temperature of the core polymer.
- bioabsorbable fibers of the present invention is in the fabrication of high strength tubular implants for use as intramedullary rods for fracture fixation and as cage implants for spinal fusion.
- the biocomponent fibers are first tightly wrapped around a mandrel in multiple layers with a ply angle of about 45 degrees.
- the fiber covered mandrel then serves as the core of an injection mold cavity which is injected with the appropriate bioabsorbable polymer to obtain a solid, fiber reinforced tubular device.
- the bending strength of the tubular device is determined by the wall thickness which can be varied by varying the diameter of the mandrel or the dimensions of the injection molding cavity.
- the external surface of the device can be provided with any desired texture or added features such as parallel flutes for implant stabilization by proper design of the mold cavity.
- a threaded, perforated, spinal fusion cage can be fabricated by inserting retractable pins into the mandrel core of the mold cavity and winding fibers at a lower ply angle (e.g. about 30 degrees) such that the fibers are aligned more closely with the axis of the mandrel and are woven between the pins.
- the pins serve both to prevent the fibers from shifting during injection molding and to provide perforations in the device needed for autologous bone graft placed by the surgeon in the “cage” to grow out into the surrounding space.
- a loosely woven fabric of the biocomponent fibers can be wrapped many times around the mandrel with protruding removable pins such that the fibers separate enough to allow the pins to pass through the fabric.
- most of the fibers can be aligned completely parallel with the axis of the mandrel which is the direction in greatest need of reinforcement if the device is implanted parallel to the spinal column.
- the finished part Upon clamping the mold and injecting it with the appropriate bioabsorbable polymer molding resin, cooling, parting the mold, extracting the pins, and retracting the mandrel core, the finished part will be a solid fiber reinforced tube with perforations in the wall corresponding to the number and size of the pins.
- the external surface of the device can be provided with any desired texture or added features such as threads for implant stabilization by proper design of the mold cavity.
- the molding resin optionally can be modified by the addition of other additives such as finely divided mineral such as hydroxyapatite to improve the hardness of the molding resin.
- additives such as finely divided mineral such as hydroxyapatite to improve the hardness of the molding resin.
- PEA is an especially preferred molding resin for use with a mineral filler since the nylon like character of PEA ensures good adhesion of the polymer to the filler if a silane coupling agent such as trimethoxyaminopropyl silane is used to pre-treat the mineral filler.
- the spinal fusion devices of the present invention function in a manner similar to commercially available titanium fusion cages. These cages are packed with autologous bone chips which eventually regenerate new bone that grows through the holes in the cylinder walls as well as through the open ends of the tube thereby bridging or “fusing” the adjacent vertebral bodies.
- a superior long term result is anticipated with fully bioabsorbable devices of the present invention since the implant gradually transfers loads onto the new bone thereby stimulating it to remodel into denser, more functional tissue.
- the fully bioabsorbable device of the present invention will be completely replaced with new bone that can remodel into normal healthy tissue.
- stents can be produced from fibers of the present invention by placing woven, nonwoven, knitted, or braided fabric or mesh around a mandrel and injection molding. Upon cooling and removing the mandrel, a tubular stent with the desired degree of stiffness and porosity (imparted by the surface topography of the mold cavity or mandrel core) will be obtained.
- stents are useful in a variety of surgical applications such as in the urinary tract, bile duct, and peripheral nerves.
- the fibrous nature of the composite ensures good suture holding strength in thin walled constructions.
- a copolymer of TMC and L-lactide is prepared from a mixture of L-lactide and TMC by heating under an inert atmosphere and anhydrous conditions with stirring in the presence of stannous octoate as a catalyst and lauryl alcohol as an initiator.
- the ratio of L-lactide to TMC is adjusted so that the resulting high molecular weight polymer has a softening point below the crystalline melting point of PLA (e.g. about 180° C.) and above the temperature needed to hot stretch and anneal PLA fibers (e.g. about 90-110° C.).
- PLA and the above poly(TMC-co-L-lactide) polymers are separately melt extruded into a single specially designed multifilament core-sheath spinneret. The ratios of polymers are adjusted such that the core is 60-90% by volume and the sheath is 40-10% by volume. After maximum drawing, the fiber tow is annealed to give high tensile strength, high modulus fibers that are in the size range of 3-20 denier per filament.
- a core-sheath polymer fiber is produced as described in Example 1 except that TMC and epsilon-caprolactone are copolymerized in the appropriate ratio to obtain a sheath polymer with the proper softening point for use in coextrusion with PLA.
- a core-sheath polymer fiber is produced as described in Example 1 except that TMC and para-dioxanone are copolymerized in the appropriate ratio to obtain a sheath polymer with the proper softening point for use in coextrusion with PLA.
- a core-sheath polymer fiber is produced as described in Example 1 except that poly[2,5-dioxahexane-1,6-di(carbonyloxy)hexane-1,6-di (amidocarbonylpentamethylene)], prepared as described in Provisional Patent Application by T. H. Barrows entitled, “Bioabsorbable Triglycolic Acid Poly(ester-amide)s”, filed Oct. 16, 1997, is used for coextrusion with PLA.
- a core-sheath polymer fiber is produced as described in Example 4 except that the sheath polymer is further reacted with L-lactide to form a block copolymer.
- This block copolymer is described in Provisional Patent Application by T. H. Barrows entitled, “Bioabsorbable Triglycolic Acid Poly(ester-amide)s”, filed Oct. 16, 1997. This sheath polymer is used for coextrusion with PLA.
- a core-sheath polymer fiber is produced as described in Example 1 except that poly(DTH carbonate) prepared as described in U.S. Pat. No. 5,198,507 is used for coextrusion with PLA.
- the bicomponent fibers of Examples 1 through 6, respectively, are produced in a similar manner except that PGA is used instead of PLA as the core polymer.
- the sheath polymers in Examples 7 and 11 are copolymers made with the substitution of glycolide for lactide.
- Example 1 The bicomponent fibers of Example 1 are produced in a similar manner except that PGA is used instead of PLA as the core polymer and poly(dl-lactide) is used as the sheath polymer.
- Biocomponent fibers prepared as described in any of the above Examples 1-13 are cut into 1-3 mm lengths and melt blended with 30 to 90% by volume of the corresponding sheath polymer and extruded at a temperature below the melting temperature of the core polymer into a 3-6 mm diameter strand, cooled, and cut into pellets with a cutting machine to produce pelletized fiber filled resin for injection molding.
- a loosely woven or knitted fabric in the form of a 3 cm wide continuous strip is produced from any of the fibers in Examples 1 through 6.
- This fabric is wound around a mandrel that is 7 mm in diameter and features an equally spaced array of 24 protruding 3 mm diameter pins over a central 3 cm length such that the open spaces in the fabric allow the pins to pass through the fabric.
- the fabric is then tightly wound on the surface of the mandrel to build up a 4 mm thick layer of fabric.
- the mandrel thus prepared is inserted into a specially design injection molding cavity that both mates with the pins and has an inner surface that produces an outer surface for the resultant molded part that features 1 by 3 mm threads.
- the mold With the mold properly clamped it is then injected with molten polymer that has approximately the same composition as the sheath polymer in the reinforcement fibers.
- the injection molding resin polymer preferably has a low injection temperature and low viscosity to ensure complete impregnation of the reinforcement fabric.
- the mold Upon completion of the molding cycle, the mold is parted, the pins are extracted, and the part is ejected by retraction of the core.
- the resultant injection molded part is an open tube approximately 3 cm long and approximately 15 mm in diameter with threads on the external surface and 24 equally spaced 3 mm diameter holes passing through the wall of the tube.
- the bioabsorbable fiber reinforced spinal fusion cage described above can be utilized to bridge and fuse adjacent vertebrae in the same manner as commercially available titanium fusion cages.
- two such cages are filled with autologous bone chips and threaded into separate predrilled and tapped holes created in the surfaces of the adjacent vertebrae facing the space created by removal of the disc.
- the fusion cage of this example is fully bioabsorbable.
- the implant slowly weakens due to degradation and gradually transfers mechanical loads onto the new bone, thereby stimulating it to remodel into a stronger, denser, more functional tissue than is possible for a bone graft confined in a metal implant.
- the fusion cage of this example is bioabsorbed and eliminated from the body, thereby creating additional space for the regeneration of more new bone.
- the bioabsorbable fusion cage of Example 15 is produced in a similar manner except that the injection molding resin is “filled” with 10 to 70% by volume of hydroxyapatite mineral in finely divided form, preferably surface treated with a coupling agent such as trimethoxyaminopropyl silane to promote adhesion of the mineral filler with the injection molding resin polymer.
- This filler provides a device with greater hardness and strength. It also reduces the volume of bioabsorbable polymer in the implant and replaces it with a mineral that is normally present in bone and will be incorporated into the new bone that is formed upon bioabsorption of the implant.
- the fabric may act as a filter and prevent filler from entering the spaces between the fibers, this would result in the filler being concentrated in the threads of the device where would be most useful.
- a PGA core biocomponent fiber selected from those described in Examples 7 through 13 is used to fabricate a knitted or woven fabric.
- the fabric is wrapped around a mandrel that forms the core of an injection molding cavity.
- the mold is then injected with molten polymer selected for any of the above mentioned sheath polymers.
- molten polymer selected for any of the above mentioned sheath polymers.
- Upon cooling, parting the mold, and retracting the core a thin walled, semi-rigid tube with good suture holding properties is formed that can be used as a stent for peripheral nerve grafting, bile duct reconstruction, and in ureter and urethra reconstruction.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Medicinal Chemistry (AREA)
- Textile Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Materials For Medical Uses (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Multicomponent Fibers (AREA)
- Prostheses (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 60/070,610, filed Jan. 6, 1998.
- Not Applicable
- This invention relates to synthetic bioabsorbable fibers. The present invention also relates to methods of making bioabsorbable fibers from at least two different polymers by separately melt extruding the at least two different polymers and bonding the extruded polymers together to form a fiber with a semicrystalline polymer core and an amorphous polymer sheath. The invention also relates to reinforced composites, made at least in part from synthetic bioabsorbable fibers. Finally, the present invention relates to devices comprised of such reinforced composites, wherein the devices are designed for use as in vivo implants, including implants which can support high loads, such as for use in fracture fixation and spinal fusion.
- Metal implants have a long history of successful use in orthopedic surgery but also carry many risks for complications. In the case of metal rods and plates for fracture fixation, a second surgery for device removal is recommended about one year after confirmation of osseous union. If the device is not removed the bone can remodel into a weakened condition due to stress shielding. There is also the potential for an increased risk of infection. In the case of metal cages for spinal fusion, complications due to migration, infection, corrosion, reduced bone density, non-union, and fracture are especially serious since major surgery is required for device removal.
- Poly(lactic acid) has been the subject of continuous research as a material for use in surgical devices since it was first proposed for this purpose in the mid 1960s. Since poly(lactic acid) is ultimately hydrolyzed into lactic acid, a normal intermediate carbohydrate metabolism in man, it continues to be viewed as the ideal implantable material from the standpoint of toxicological safety.
- High strength and high modulus fibers produced from semicrystalline poly(L-lactic acid), also known as poly(lactide), hereinafter referred to as PLA, have been studied as braided implants for use as a ligament augmentation device. PLA fibers are known to be capable of retaining about 70% of their initial tensile strength after 10 months in vivo.
- In spite of the excellent strength retention of PLA fibers in vivo, molded articles made from PLA have generally failed to achieve commercial success as orthopedic implants. The physical properties of a polymer in fiber form resulting from optimum drawing and annealing of the fiber cannot be duplicated in the same polymer processed by injection molding. Thus injection molded PLA typically may have a tensile strength of 60 MPa. This value may be increased up to about 300 MPa by stressing the injection molded parts to achieve orientation prior to crystallization. Highly drawn PLA fibers, on the other hand, can give tensile strength in excess of 2,000 MPa.
- One possibility for obtaining fiber strength in a molded part would be to incorporate PLA fibers into a matrix of PLA or a similar polymer such as poly(dl-lacitc acid) which is totally amorphous. The problem with using poly(dl-lacitc acid) is that it degrades too rapidly for orthopedic applications. Pure self-reinforced PLA fiber composites have been made by sintering together bundles of PLA fibers thereby sacrificing some of the fibers to produce a molten matrix for embedding the remaining fibers. This process is difficult to control and yields unreliable results. It also tends to produce a substantial amorphous phase that can slowly recrystallize upon prolonged storage to give a brittle, non-reinforcing structure. Moreover, even if recrystallization is suppressed by copolymerization of L-lactide with small amounts of dl-lactide, degradation of the amorphous PLA tends to result in the build-up of acidic degradation products in the interior of the molded device resulting in an autocatalytic acceleration of the hydrolytic degradation process.
- Fiber reinforced composites of PLA with the use of other bioabsorbable polymers as a matrix have generally failed to achieve adequate in vivo performance due to moisture penetration into the interface between fiber and matrix. This typical mode of failure has been the principal problem with all approaches to fully bioabsorbable composites of the prior art.
- In one aspect, the present invention is a bioabsorbable fiber comprising a core of a semicrystalline fiber-forming bioabsorbable core polymer with a crystalline core melting temperature, and a sheath of an amorphous bioabsorbable sheath polymer with a softening point below the crystalline core melting temperature, wherein the core polymer and sheath polymer are separately melt extruded, and the sheath is connected to the core through an adhesive bond.
- In another aspect, the present invention is a reinforced composite, comprising a plurality of filaments of the bioabsorbable fiber and a molding resin reinforced therewith.
- In yet another aspect, the present invention is a device designed for in vivo implantation or insertion, fabricated from the reinforced composite.
- In a further aspect, the present invention is a method of making the bioabsorbable fiber, comprising the steps of:
- a. selecting a core polymer which is semicrystalline, fiber-forming, and bioabsorbable, with a crystalline core melting temperature;
- b. selecting a sheath polymer which is bioabsorbable, and which forms an amorphous phase on polymerization, with a softening point below the crystalline core melting temperature;
- c. separately melt extruding the core polymer and sheath polymer; and
- d. forming an adhesive bond between the core polymer and sheath polymer, such that the resulting bioabsorbable fiber comprises a core of the core polymer and a sheath of the sheath polymer.
- Finally, in yet another aspect, the present invention is a method of making a surgical device of a reinforced composite of bioabsorbable fibers, comprising the steps of:
- a. providing a plurality of the bioabsorbable fibers;
- b. providing an injection mold having interior walls which define an interior cavity;
- c. inserting the plurality of bioabsorbable fibers into the interior cavity of the injection mold; and
- d. adding a bioabsorbable injection molding resin polymer to the injection mold at an injection temperature which is lower than the crystalline core melting temperature.
- A. Definitions:
- The following terms used herein shall have the following definitions:
- “Poly(ester-amide)” shall mean to include any of the polymers described in U.S. Pat. No. 4,343,931, “Synthetic Absorbable Surgical Devices of Poly(esteramides)”, T. H. Barrows, Aug. 19, 1982, the teachings of which are incorporated herein by reference, and to include any of the polymers described in Provisional Patent Application Serial No. 60/062,064, “Bioabsorbable Triglycolic Acid Poly(ester-amide)s”, T. H. Barrows, filed Oct. 16, 1997, the teachings of which are incorporated herein by reference.
- “Tryosine-derived polycarbonates” shall mean to include any of the polymers described in U.S. Pat. No. 5,198,507, “Synthesis of Amino Acid-derived Bioerodible Polymers”, J. B. Kohn and S. K. K. Pulapura, Mar. 30, 1993, the teachings of which are incorporated herein by reference.
- “PLA” shall mean poly(L-lactide).
- “PGA” shall mean polyglycolide.
- “PEA” shall mean poly(ester-amide).
- “TMC” shall mean trimethylene carbonate.
- “Softening point” shall mean the temperature range below which a polymer is non-tacky and non-self-adherent and above which the polymer is tacky and self-adherent.
- “Melting temperature” shall mean the crystalline core melting transition temperature (Tm) of a semi-crystalline polymer.
- “Injection temperature” shall mean the minimum temperature of a molten polymer that allows it to have adequately low viscosity under pressure to flow into an injection mold cavity containing multifilament fibers such that the spaces between the fibers are completely filled with the injected molten polymer.
- “Bioabsorbable” shall mean the property of a composition, material, or device, that allows it to degrade post-implantation completely into non-toxic degradation products that are eliminated from the body or are transformed into normal metabolites utilized within the body.
- B. Bioabsorbable Fibers
- The present invention provides fibers fabricated by a core-sheath coextrusion process in which two different bioabsorbable polymers are separately melt extruded and forced into a single die such that the resultant filaments are comprised of one polymer substantially at the core and the other polymer substantially as a sheath. The core polymer is preferably a semi-crystalline, high strength fiber-forming polymer and the sheath polymer is preferably a normally amorphous polymer with a softening point well below the crystalline melting temperature of the core polymer (hereinafter, the “crystalline core melting temperature”). The sheath polymer also preferably has a softening point high enough that it is tack-free at the temperatures required for optimum hot drawing and annealing of the core fiber.
- The two polymers must be capable of forming an adequate adhesive bond between them such that when the molten filament is solidified by cooling and subsequently hot stretched, the sheath polymer will elongate with the core polymer and not separate from the core. The coextrusion process in which the two polymers come into contact with each other in the molten phase provides the optimum environment needed for the development of an interfacial bond that will tolerate said processing without failure. Thus an important feature of the present invention is the discovery that dissimilar bioabsorbable polymers that normally would not adhere to each other by hot pressing the two polymers as pre-formed solid articles adhere well as a result of an intimate interface created during coextrusion.
- A further advantage of the present invention is that sheath polymers can be selected from a wide variety of known bioabsorbable polymers as well as from custom formulated blends and or custom synthesized copolymers. Sheath polymers are preferably selected which have a softening point value which ensures subsequent processing of the core component filaments to produce high strength fibers. Sheath polymers are also preferably selected to optimize the integrity of adhesion between the sheath and the core, by minimizing the penetration of moisture into the interface between the sheath and core, and by ensuring moisture penetration into the interface between the sheath and core does not occur at a rate faster than moisture penetration into the bulk of the sheath polymer.
- Said fibers ideally are fine multifilaments since it is known in the art of fiber spinning that maximum draw ratio and therefore maximum tensile strength and modulus are achieved more readily with small rather than large diameter fibers. In addition, multifilament yarns are more versatile in subsequent device fabrication processing steps than monofilament fiber.
- Fibers of the present invention are comprised of a core of one bioabsorbable polymer, the “core polymer”, and a partial or complete sheath of a second bioabsorbable polymer, the “sheath polymer”. The core polymer is preferably selected from the group consisting of poly(L-lactide), polyglycolide, poly(epsilon-caprolactone), polydioxanone, poly(ester-amide)s, and any combination of copolymers of said polymers including copolymers made with the use of trimethylene carbonate and or dl-lactide as comonomers. The sheath polymer is preferably selected from the group consisting of poly(ester-amide)s, tyrosine-derived polycarbonates, poly(trimethylene carbonate), poly(dl-lactide), polydioxanone, poly(epsilon-caprolactone), and copolymers, mixtures, and blends of these polymers. Alternatively, the sheath polymer is the product of copolymerization of any two or more monomers selected from the group comprised of epsilon-caprolactone, trimethylene carbonate, L-lactide, dl-lactide, glycolide, and para-dioxanone.
- The specific core and sheath polymers suitable for inclusion in a given biocomponent fiber of the present invention depends upon the intended use for the particular biocomponent fiber. For example, if the fiber is to be used to fabricated a device for implantation into bone, the preferred core polymer is PLA and the preferred sheath polymer is selected from the group comprised of polyTMC, poly(TMC-co-L-lactide), poly(TMC-co-epsilon-caprolactone), tyrosine-derived polycarbonates, and PEAs.
- The preferred core polymer for fracture fixation and spinal fusion devices is PLA due to its high strength, stiffness, and long-lasting strength retention. The slow degradation time of crystalline PLA fibers is not anticipated to result in the release of excessively acidic degradation products due to the long time course of degradation. The sheath polymer and the molding resin polymer, on the other hand, preferably are not PLA or PLA/PGA copolymers since the release of acidic degradation products and the autocatalytic acceleration of the degradation process mentioned previously are possible drawbacks. Instead, polycarbonates such as polyTMC, polyTMC copolymers, and tyrosine-derived polycarbonates as well as certain PEAs are preferred since they degrade slowly, are relatively hydrophobic, and do not release a significant amount of acidic degradation products.
- Triglycolic acid PEAs are especially preferred as sheath polymers and as molding resin polymers since they provide exceptionally good inter-fiber adhesion due to their “hot melt” adhesive properties. A further advantage of triglycolic acid PEAs is that they can be block copolymerized with PLA to provide a strong intermolecular interaction with the molten PLA core during coextrusion and thus provide an interfacial bond between core and sheath that is highly resistant to premature moisture penetration. Similarly, TMC can be randomly or block copolymerized with lactide or caprolactone both to increase the softening point of pure polyTMC and to improve its compatibility as a sheath polymer with the PLA core during the coextrusion process. Pure polyTMC of an appropriate molecular weight may be a suitable injection molding resin polymer due to its low injection temperature, slow degradation rate, hydrophobic nature, and non-acidic degradation products.
- C. Production of Reinforced Composites
- The biocomponent fibers of the present invention can be processed into reinforced composites by a number of different methods. A preferred method is injection molding. Thus short (e.g. 1-10 mm) chopped fibers can be added to a molding resin polymer such that the “filled” molding resin contains about 10 to 70% of reinforcement fibers by volume.
- Alternatively the injection molding cavity can be pre-loaded with a fabric of said fibers in continuous form and injected with an injection molding resin polymer selected from any of the polymers in the group identified above as sheath polymers. The injection molding resin polymer may be the same polymer as the sheath polymer of the continuous fibers or a different polymer. Optionally, the injection molding resin polymer also may be “filled” with a reinforcement filler in the form of short fibers of the present invention and or a mineral filler such as hydroxyapatite. Mineral fillers also optionally may be pre-treated with coupling reagents such as silane coupling agents known in the prior art to provide improved bonding to injection molding resin polymers.
- D. Production of Devices of the Reinforced Composites:
- Production of devices of the reinforced composites of the present invention can be achieved most conveniently by injection molding with a molding resin that is “filled” with the above fibers cut into short lengths. The molding resin can be the same polymer as the sheath polymer or a polymer of similar composition such that excellent adhesion is obtained between the molding resin and the sheath of the reinforcing fiber. The injection temperature of the molding resin may be higher or lower than the softening temperature of the sheath polymer, but must be below the melting temperature of the core polymer.
- An especially advantageous use for the bioabsorbable fibers of the present invention is in the fabrication of high strength tubular implants for use as intramedullary rods for fracture fixation and as cage implants for spinal fusion. Thus the biocomponent fibers are first tightly wrapped around a mandrel in multiple layers with a ply angle of about 45 degrees. The fiber covered mandrel then serves as the core of an injection mold cavity which is injected with the appropriate bioabsorbable polymer to obtain a solid, fiber reinforced tubular device. The bending strength of the tubular device is determined by the wall thickness which can be varied by varying the diameter of the mandrel or the dimensions of the injection molding cavity. The external surface of the device can be provided with any desired texture or added features such as parallel flutes for implant stabilization by proper design of the mold cavity.
- Similarly, a threaded, perforated, spinal fusion cage can be fabricated by inserting retractable pins into the mandrel core of the mold cavity and winding fibers at a lower ply angle (e.g. about 30 degrees) such that the fibers are aligned more closely with the axis of the mandrel and are woven between the pins. The pins serve both to prevent the fibers from shifting during injection molding and to provide perforations in the device needed for autologous bone graft placed by the surgeon in the “cage” to grow out into the surrounding space. Alternatively, a loosely woven fabric of the biocomponent fibers can be wrapped many times around the mandrel with protruding removable pins such that the fibers separate enough to allow the pins to pass through the fabric. In this way most of the fibers can be aligned completely parallel with the axis of the mandrel which is the direction in greatest need of reinforcement if the device is implanted parallel to the spinal column. Upon clamping the mold and injecting it with the appropriate bioabsorbable polymer molding resin, cooling, parting the mold, extracting the pins, and retracting the mandrel core, the finished part will be a solid fiber reinforced tube with perforations in the wall corresponding to the number and size of the pins. The external surface of the device can be provided with any desired texture or added features such as threads for implant stabilization by proper design of the mold cavity.
- The molding resin optionally can be modified by the addition of other additives such as finely divided mineral such as hydroxyapatite to improve the hardness of the molding resin. This could be especially useful in the case of the threaded spinal fusion cage since the mineral would tend to be filtered out of the fiber containing portion of the mold and concentrated in the open cavities that form the threads where it is most needed. PEA is an especially preferred molding resin for use with a mineral filler since the nylon like character of PEA ensures good adhesion of the polymer to the filler if a silane coupling agent such as trimethoxyaminopropyl silane is used to pre-treat the mineral filler.
- The spinal fusion devices of the present invention, produced as described above, function in a manner similar to commercially available titanium fusion cages. These cages are packed with autologous bone chips which eventually regenerate new bone that grows through the holes in the cylinder walls as well as through the open ends of the tube thereby bridging or “fusing” the adjacent vertebral bodies. A superior long term result is anticipated with fully bioabsorbable devices of the present invention since the implant gradually transfers loads onto the new bone thereby stimulating it to remodel into denser, more functional tissue. Ultimately the fully bioabsorbable device of the present invention will be completely replaced with new bone that can remodel into normal healthy tissue.
- Other thinner more flexible tubular devices such as stents can be produced from fibers of the present invention by placing woven, nonwoven, knitted, or braided fabric or mesh around a mandrel and injection molding. Upon cooling and removing the mandrel, a tubular stent with the desired degree of stiffness and porosity (imparted by the surface topography of the mold cavity or mandrel core) will be obtained. Such stents are useful in a variety of surgical applications such as in the urinary tract, bile duct, and peripheral nerves. The fibrous nature of the composite ensures good suture holding strength in thin walled constructions.
- Other methods of processing fibers of the present invention into composite structures and other uses for such composite materials will be apparent to those skilled in the art of fiber processing and surgical device fabrication.
- The following examples are given to illustrate various aspects of the invention, without limiting the scope thereof:
- A copolymer of TMC and L-lactide is prepared from a mixture of L-lactide and TMC by heating under an inert atmosphere and anhydrous conditions with stirring in the presence of stannous octoate as a catalyst and lauryl alcohol as an initiator. The ratio of L-lactide to TMC is adjusted so that the resulting high molecular weight polymer has a softening point below the crystalline melting point of PLA (e.g. about 180° C.) and above the temperature needed to hot stretch and anneal PLA fibers (e.g. about 90-110° C.).
- PLA and the above poly(TMC-co-L-lactide) polymers are separately melt extruded into a single specially designed multifilament core-sheath spinneret. The ratios of polymers are adjusted such that the core is 60-90% by volume and the sheath is 40-10% by volume. After maximum drawing, the fiber tow is annealed to give high tensile strength, high modulus fibers that are in the size range of 3-20 denier per filament.
- A core-sheath polymer fiber is produced as described in Example 1 except that TMC and epsilon-caprolactone are copolymerized in the appropriate ratio to obtain a sheath polymer with the proper softening point for use in coextrusion with PLA.
- A core-sheath polymer fiber is produced as described in Example 1 except that TMC and para-dioxanone are copolymerized in the appropriate ratio to obtain a sheath polymer with the proper softening point for use in coextrusion with PLA.
- A core-sheath polymer fiber is produced as described in Example 1 except that poly[2,5-dioxahexane-1,6-di(carbonyloxy)hexane-1,6-di (amidocarbonylpentamethylene)], prepared as described in Provisional Patent Application by T. H. Barrows entitled, “Bioabsorbable Triglycolic Acid Poly(ester-amide)s”, filed Oct. 16, 1997, is used for coextrusion with PLA.
- A core-sheath polymer fiber is produced as described in Example 4 except that the sheath polymer is further reacted with L-lactide to form a block copolymer. This block copolymer is described in Provisional Patent Application by T. H. Barrows entitled, “Bioabsorbable Triglycolic Acid Poly(ester-amide)s”, filed Oct. 16, 1997. This sheath polymer is used for coextrusion with PLA.
- A core-sheath polymer fiber is produced as described in Example 1 except that poly(DTH carbonate) prepared as described in U.S. Pat. No. 5,198,507 is used for coextrusion with PLA.
- The bicomponent fibers of Examples 1 through 6, respectively, are produced in a similar manner except that PGA is used instead of PLA as the core polymer. The sheath polymers in Examples 7 and 11 are copolymers made with the substitution of glycolide for lactide.
- The bicomponent fibers of Example 1 are produced in a similar manner except that PGA is used instead of PLA as the core polymer and poly(dl-lactide) is used as the sheath polymer.
- Biocomponent fibers prepared as described in any of the above Examples 1-13 are cut into 1-3 mm lengths and melt blended with 30 to 90% by volume of the corresponding sheath polymer and extruded at a temperature below the melting temperature of the core polymer into a 3-6 mm diameter strand, cooled, and cut into pellets with a cutting machine to produce pelletized fiber filled resin for injection molding.
- A loosely woven or knitted fabric in the form of a 3 cm wide continuous strip is produced from any of the fibers in Examples 1 through 6. This fabric is wound around a mandrel that is 7 mm in diameter and features an equally spaced array of 24 protruding 3 mm diameter pins over a central 3 cm length such that the open spaces in the fabric allow the pins to pass through the fabric. The fabric is then tightly wound on the surface of the mandrel to build up a 4 mm thick layer of fabric. The mandrel thus prepared is inserted into a specially design injection molding cavity that both mates with the pins and has an inner surface that produces an outer surface for the resultant molded part that features 1 by 3 mm threads.
- With the mold properly clamped it is then injected with molten polymer that has approximately the same composition as the sheath polymer in the reinforcement fibers. The injection molding resin polymer preferably has a low injection temperature and low viscosity to ensure complete impregnation of the reinforcement fabric. Upon completion of the molding cycle, the mold is parted, the pins are extracted, and the part is ejected by retraction of the core. The resultant injection molded part is an open tube approximately 3 cm long and approximately 15 mm in diameter with threads on the external surface and 24 equally spaced 3 mm diameter holes passing through the wall of the tube.
- The bioabsorbable fiber reinforced spinal fusion cage described above can be utilized to bridge and fuse adjacent vertebrae in the same manner as commercially available titanium fusion cages. Thus two such cages are filled with autologous bone chips and threaded into separate predrilled and tapped holes created in the surfaces of the adjacent vertebrae facing the space created by removal of the disc. Unlike the metal implants, however, the fusion cage of this example is fully bioabsorbable. Thus over time after the graft of bone chips “takes” and heals, the implant slowly weakens due to degradation and gradually transfers mechanical loads onto the new bone, thereby stimulating it to remodel into a stronger, denser, more functional tissue than is possible for a bone graft confined in a metal implant. Ultimately the fusion cage of this example is bioabsorbed and eliminated from the body, thereby creating additional space for the regeneration of more new bone.
- The bioabsorbable fusion cage of Example 15 is produced in a similar manner except that the injection molding resin is “filled” with 10 to 70% by volume of hydroxyapatite mineral in finely divided form, preferably surface treated with a coupling agent such as trimethoxyaminopropyl silane to promote adhesion of the mineral filler with the injection molding resin polymer. This filler provides a device with greater hardness and strength. It also reduces the volume of bioabsorbable polymer in the implant and replaces it with a mineral that is normally present in bone and will be incorporated into the new bone that is formed upon bioabsorption of the implant. Although the fabric may act as a filter and prevent filler from entering the spaces between the fibers, this would result in the filler being concentrated in the threads of the device where would be most useful.
- A PGA core biocomponent fiber selected from those described in Examples 7 through 13 is used to fabricate a knitted or woven fabric. The fabric is wrapped around a mandrel that forms the core of an injection molding cavity. The mold is then injected with molten polymer selected for any of the above mentioned sheath polymers. Upon cooling, parting the mold, and retracting the core, a thin walled, semi-rigid tube with good suture holding properties is formed that can be used as a stent for peripheral nerve grafting, bile duct reconstruction, and in ureter and urethra reconstruction.
Claims (41)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/351,881 US20030134099A1 (en) | 1998-01-06 | 2003-01-27 | Bioabsorbable fibers and reinforced composites produced therefrom |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7061098P | 1998-01-06 | 1998-01-06 | |
US09/582,833 US6511748B1 (en) | 1998-01-06 | 1999-01-06 | Bioabsorbable fibers and reinforced composites produced therefrom |
US10/351,881 US20030134099A1 (en) | 1998-01-06 | 2003-01-27 | Bioabsorbable fibers and reinforced composites produced therefrom |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/582,833 Division US6511748B1 (en) | 1998-01-06 | 1999-01-06 | Bioabsorbable fibers and reinforced composites produced therefrom |
PCT/US1999/000252 Division WO1999034750A1 (en) | 1998-01-06 | 1999-01-06 | Bioabsorbable fibers and reinforced composites produced therefrom |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030134099A1 true US20030134099A1 (en) | 2003-07-17 |
Family
ID=22096353
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/582,833 Expired - Fee Related US6511748B1 (en) | 1998-01-06 | 1999-01-06 | Bioabsorbable fibers and reinforced composites produced therefrom |
US10/351,881 Abandoned US20030134099A1 (en) | 1998-01-06 | 2003-01-27 | Bioabsorbable fibers and reinforced composites produced therefrom |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/582,833 Expired - Fee Related US6511748B1 (en) | 1998-01-06 | 1999-01-06 | Bioabsorbable fibers and reinforced composites produced therefrom |
Country Status (6)
Country | Link |
---|---|
US (2) | US6511748B1 (en) |
EP (1) | EP1045677A4 (en) |
JP (1) | JP2002500065A (en) |
AU (1) | AU734539B2 (en) |
CA (1) | CA2314963A1 (en) |
WO (1) | WO1999034750A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050191748A1 (en) * | 1999-02-08 | 2005-09-01 | Aderans Research Institute, Inc. | Filamentary means for introducing agents into tissue of a living host |
US20050214344A1 (en) * | 2004-03-26 | 2005-09-29 | Aderans Research Institute, Inc. | Tissue engineered biomimetic hair follicle graft |
US20060013863A1 (en) * | 2004-07-16 | 2006-01-19 | Shalaby Shalaby W | Hemostatic microfibrous constructs |
WO2006019600A2 (en) * | 2004-07-16 | 2006-02-23 | Poly-Med, Inc. | Hemostatix microfibrous constructs |
US20060062770A1 (en) * | 2004-08-13 | 2006-03-23 | Aderans Research Institute, Inc. | Organogenesis from dissociated cells |
US20070148138A1 (en) * | 2005-11-22 | 2007-06-28 | Aderans Research Institute, Inc. | Hair follicle graft from tissue engineered skin |
DE102006016538A1 (en) * | 2006-04-07 | 2007-11-08 | Garntec Gmbh | Biodegradable binding yarns |
WO2008036206A2 (en) * | 2006-09-19 | 2008-03-27 | Abbott Cardiovascular Systems Inc. | Copolymer-bioceramic composite implantable medical devices |
US20080226908A1 (en) * | 2004-03-23 | 2008-09-18 | John Greg Hancock | Bi-Component Electrically Conductive Drawn Polyester Fiber and Method For Making Same |
US20080311044A1 (en) * | 2007-06-12 | 2008-12-18 | Aderans Research Institute, Inc. | Methods of determining hair follicle inductive properties |
US20090299465A1 (en) * | 2003-01-31 | 2009-12-03 | Shalaby Shalaby W | Absorbable / biodegradable tubular stent and methods of making the same |
WO2010011941A3 (en) * | 2008-07-25 | 2010-04-01 | Smith & Nephew, Inc. | Fracture fixation systems |
US7737060B2 (en) | 2006-03-31 | 2010-06-15 | Boston Scientific Scimed, Inc. | Medical devices containing multi-component fibers |
US20110060073A1 (en) * | 2006-05-30 | 2011-03-10 | Bin Huang | Methods For Fabricating Polymer-Bioceramic Composite Implantable Medical Devices |
WO2014134020A1 (en) * | 2013-02-27 | 2014-09-04 | Bha Altair, Llc | Bi-component fiber and filter media including bi-component fibers |
US9144487B2 (en) * | 2007-06-11 | 2015-09-29 | Abbott Cardiovascular Systems Inc. | Polymer-bioceramic composite medical devices with bioceramic particles having grafted polymers |
US9173973B2 (en) | 2006-07-20 | 2015-11-03 | G. Lawrence Thatcher | Bioabsorbable polymeric composition for a medical device |
US9211205B2 (en) | 2006-10-20 | 2015-12-15 | Orbusneich Medical, Inc. | Bioabsorbable medical device with coating |
US20160000592A1 (en) * | 2005-08-15 | 2016-01-07 | Abbott Cardiovascular Systems Inc. | Fiber reinforced composite stents |
US9724864B2 (en) | 2006-10-20 | 2017-08-08 | Orbusneich Medical, Inc. | Bioabsorbable polymeric composition and medical device |
US20210161690A1 (en) * | 2016-12-29 | 2021-06-03 | Boston Scientific Scimed, Inc. | Medical devices formed from polymer filaments |
US11203822B2 (en) * | 2019-07-08 | 2021-12-21 | Sung Man Lee | Fabric having improved winding property and commodity including the same |
Families Citing this family (181)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10028851B2 (en) * | 1997-04-15 | 2018-07-24 | Advanced Cardiovascular Systems, Inc. | Coatings for controlling erosion of a substrate of an implantable medical device |
US6240616B1 (en) * | 1997-04-15 | 2001-06-05 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
US8172897B2 (en) * | 1997-04-15 | 2012-05-08 | Advanced Cardiovascular Systems, Inc. | Polymer and metal composite implantable medical devices |
US6776792B1 (en) * | 1997-04-24 | 2004-08-17 | Advanced Cardiovascular Systems Inc. | Coated endovascular stent |
US6790228B2 (en) * | 1999-12-23 | 2004-09-14 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US6494908B1 (en) * | 1999-12-22 | 2002-12-17 | Ethicon, Inc. | Removable stent for body lumens |
US7169187B2 (en) | 1999-12-22 | 2007-01-30 | Ethicon, Inc. | Biodegradable stent |
US6981987B2 (en) | 1999-12-22 | 2006-01-03 | Ethicon, Inc. | Removable stent for body lumens |
US6338739B1 (en) | 1999-12-22 | 2002-01-15 | Ethicon, Inc. | Biodegradable stent |
US9522217B2 (en) * | 2000-03-15 | 2016-12-20 | Orbusneich Medical, Inc. | Medical device with coating for capturing genetically-altered cells and methods for using same |
US8088060B2 (en) * | 2000-03-15 | 2012-01-03 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
US8460367B2 (en) | 2000-03-15 | 2013-06-11 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
US20050271701A1 (en) * | 2000-03-15 | 2005-12-08 | Orbus Medical Technologies, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
US20160287708A9 (en) * | 2000-03-15 | 2016-10-06 | Orbusneich Medical, Inc. | Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device |
WO2002015952A1 (en) * | 2000-08-08 | 2002-02-28 | Bioamide, Inc. | Scaffolds for tissue engineered hair |
WO2002098476A1 (en) * | 2001-06-01 | 2002-12-12 | Ams Research Corporation | Bioresorbable medical devices |
US6565659B1 (en) * | 2001-06-28 | 2003-05-20 | Advanced Cardiovascular Systems, Inc. | Stent mounting assembly and a method of using the same to coat a stent |
US7989018B2 (en) * | 2001-09-17 | 2011-08-02 | Advanced Cardiovascular Systems, Inc. | Fluid treatment of a polymeric coating on an implantable medical device |
US7285304B1 (en) * | 2003-06-25 | 2007-10-23 | Advanced Cardiovascular Systems, Inc. | Fluid treatment of a polymeric coating on an implantable medical device |
US6863683B2 (en) | 2001-09-19 | 2005-03-08 | Abbott Laboratoris Vascular Entities Limited | Cold-molding process for loading a stent onto a stent delivery system |
US7303817B2 (en) * | 2001-10-24 | 2007-12-04 | Weitao Jia | Dental filling material |
US7204874B2 (en) * | 2001-10-24 | 2007-04-17 | Pentron Clinical Technologies, Llc | Root canal filling material |
US7750063B2 (en) * | 2001-10-24 | 2010-07-06 | Pentron Clinical Technologies, Llc | Dental filling material |
US7204875B2 (en) * | 2001-10-24 | 2007-04-17 | Pentron Clinical Technologies, Llc | Dental filling material |
US20040068284A1 (en) * | 2002-01-29 | 2004-04-08 | Barrows Thomas H. | Method for stimulating hair growth and kit for carrying out said method |
AU2003225882A1 (en) * | 2002-03-20 | 2003-10-08 | Advanced Cardiovascular Systems, Inc. | Biodegradable hydrophobic polymer for stents |
US7070610B2 (en) * | 2002-03-30 | 2006-07-04 | Samyang Corporation | Monofilament suture and manufacturing method thereof |
US20060271168A1 (en) * | 2002-10-30 | 2006-11-30 | Klaus Kleine | Degradable medical device |
US8435550B2 (en) * | 2002-12-16 | 2013-05-07 | Abbot Cardiovascular Systems Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US7758881B2 (en) * | 2004-06-30 | 2010-07-20 | Advanced Cardiovascular Systems, Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US7198675B2 (en) * | 2003-09-30 | 2007-04-03 | Advanced Cardiovascular Systems | Stent mandrel fixture and method for selectively coating surfaces of a stent |
US20050288481A1 (en) * | 2004-04-30 | 2005-12-29 | Desnoyer Jessica R | Design of poly(ester amides) for the control of agent-release from polymeric compositions |
US8568469B1 (en) | 2004-06-28 | 2013-10-29 | Advanced Cardiovascular Systems, Inc. | Stent locking element and a method of securing a stent on a delivery system |
US8241554B1 (en) | 2004-06-29 | 2012-08-14 | Advanced Cardiovascular Systems, Inc. | Method of forming a stent pattern on a tube |
US20060020330A1 (en) * | 2004-07-26 | 2006-01-26 | Bin Huang | Method of fabricating an implantable medical device with biaxially oriented polymers |
US7971333B2 (en) * | 2006-05-30 | 2011-07-05 | Advanced Cardiovascular Systems, Inc. | Manufacturing process for polymetric stents |
US8778256B1 (en) | 2004-09-30 | 2014-07-15 | Advanced Cardiovascular Systems, Inc. | Deformation of a polymer tube in the fabrication of a medical article |
US8747879B2 (en) * | 2006-04-28 | 2014-06-10 | Advanced Cardiovascular Systems, Inc. | Method of fabricating an implantable medical device to reduce chance of late inflammatory response |
US8747878B2 (en) | 2006-04-28 | 2014-06-10 | Advanced Cardiovascular Systems, Inc. | Method of fabricating an implantable medical device by controlling crystalline structure |
US7731890B2 (en) | 2006-06-15 | 2010-06-08 | Advanced Cardiovascular Systems, Inc. | Methods of fabricating stents with enhanced fracture toughness |
US20060041102A1 (en) * | 2004-08-23 | 2006-02-23 | Advanced Cardiovascular Systems, Inc. | Implantable devices comprising biologically absorbable polymers having constant rate of degradation and methods for fabricating the same |
US9283099B2 (en) * | 2004-08-25 | 2016-03-15 | Advanced Cardiovascular Systems, Inc. | Stent-catheter assembly with a releasable connection for stent retention |
US7229471B2 (en) * | 2004-09-10 | 2007-06-12 | Advanced Cardiovascular Systems, Inc. | Compositions containing fast-leaching plasticizers for improved performance of medical devices |
US7875233B2 (en) | 2004-09-30 | 2011-01-25 | Advanced Cardiovascular Systems, Inc. | Method of fabricating a biaxially oriented implantable medical device |
US8043553B1 (en) | 2004-09-30 | 2011-10-25 | Advanced Cardiovascular Systems, Inc. | Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article |
US8173062B1 (en) | 2004-09-30 | 2012-05-08 | Advanced Cardiovascular Systems, Inc. | Controlled deformation of a polymer tube in fabricating a medical article |
US7419504B2 (en) * | 2004-12-27 | 2008-09-02 | Advanced Cardiovascular Systems, Inc. | Poly(ester amide) block copolymers |
US20060216431A1 (en) * | 2005-03-28 | 2006-09-28 | Kerrigan Cameron K | Electrostatic abluminal coating of a stent crimped on a balloon catheter |
US20060224226A1 (en) * | 2005-03-31 | 2006-10-05 | Bin Huang | In-vivo radial orientation of a polymeric implantable medical device |
US7381048B2 (en) * | 2005-04-12 | 2008-06-03 | Advanced Cardiovascular Systems, Inc. | Stents with profiles for gripping a balloon catheter and molds for fabricating stents |
US7291166B2 (en) * | 2005-05-18 | 2007-11-06 | Advanced Cardiovascular Systems, Inc. | Polymeric stent patterns |
US7622070B2 (en) * | 2005-06-20 | 2009-11-24 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing an implantable polymeric medical device |
US20090062909A1 (en) | 2005-07-15 | 2009-03-05 | Micell Technologies, Inc. | Stent with polymer coating containing amorphous rapamycin |
CN105233349B (en) | 2005-07-15 | 2019-06-18 | 胶束技术股份有限公司 | The polymer coating of drug powder comprising controlled morphology |
US7658880B2 (en) * | 2005-07-29 | 2010-02-09 | Advanced Cardiovascular Systems, Inc. | Polymeric stent polishing method and apparatus |
US7604668B2 (en) * | 2005-07-29 | 2009-10-20 | Gore Enterprise Holdings, Inc. | Composite self-cohered web materials |
US20070026040A1 (en) * | 2005-07-29 | 2007-02-01 | Crawley Jerald M | Composite self-cohered web materials |
US7655288B2 (en) * | 2005-07-29 | 2010-02-02 | Gore Enterprise Holdings, Inc. | Composite self-cohered web materials |
US8048503B2 (en) * | 2005-07-29 | 2011-11-01 | Gore Enterprise Holdings, Inc. | Highly porous self-cohered web materials |
US20070026039A1 (en) * | 2005-07-29 | 2007-02-01 | Drumheller Paul D | Composite self-cohered web materials |
US7655584B2 (en) * | 2005-07-29 | 2010-02-02 | Gore Enterprise Holdings, Inc. | Highly porous self-cohered web materials |
US20070027551A1 (en) * | 2005-07-29 | 2007-02-01 | Farnsworth Ted R | Composite self-cohered web materials |
US7850810B2 (en) * | 2005-07-29 | 2010-12-14 | Gore Enterprise Holdings, Inc. | Method of making porous self-cohered web materials |
US7297758B2 (en) * | 2005-08-02 | 2007-11-20 | Advanced Cardiovascular Systems, Inc. | Method for extending shelf-life of constructs of semi-crystallizable polymers |
US7476245B2 (en) * | 2005-08-16 | 2009-01-13 | Advanced Cardiovascular Systems, Inc. | Polymeric stent patterns |
US9248034B2 (en) * | 2005-08-23 | 2016-02-02 | Advanced Cardiovascular Systems, Inc. | Controlled disintegrating implantable medical devices |
US20070045252A1 (en) * | 2005-08-23 | 2007-03-01 | Klaus Kleine | Laser induced plasma machining with a process gas |
US20070045255A1 (en) * | 2005-08-23 | 2007-03-01 | Klaus Kleine | Laser induced plasma machining with an optimized process gas |
TW200803877A (en) * | 2005-11-22 | 2008-01-16 | Aderans Res Inst Inc | Hair grafts derived from plucked hair |
US7867547B2 (en) | 2005-12-19 | 2011-01-11 | Advanced Cardiovascular Systems, Inc. | Selectively coating luminal surfaces of stents |
US20070151961A1 (en) * | 2006-01-03 | 2007-07-05 | Klaus Kleine | Fabrication of an implantable medical device with a modified laser beam |
US20070156230A1 (en) | 2006-01-04 | 2007-07-05 | Dugan Stephen R | Stents with radiopaque markers |
US7951185B1 (en) | 2006-01-06 | 2011-05-31 | Advanced Cardiovascular Systems, Inc. | Delivery of a stent at an elevated temperature |
US7655026B2 (en) | 2006-01-31 | 2010-02-02 | Warsaw Orthopedic, Inc. | Expandable spinal rods and methods of use |
US20070179219A1 (en) * | 2006-01-31 | 2007-08-02 | Bin Huang | Method of fabricating an implantable medical device using gel extrusion and charge induced orientation |
US8315700B2 (en) | 2006-02-08 | 2012-11-20 | Tyrx, Inc. | Preventing biofilm formation on implantable medical devices |
US8591531B2 (en) | 2006-02-08 | 2013-11-26 | Tyrx, Inc. | Mesh pouches for implantable medical devices |
MX2008010126A (en) | 2006-02-08 | 2010-02-22 | Tyrx Pharma Inc | Temporarily stiffened mesh prostheses. |
US7964210B2 (en) * | 2006-03-31 | 2011-06-21 | Abbott Cardiovascular Systems Inc. | Degradable polymeric implantable medical devices with a continuous phase and discrete phase |
CN101495065B (en) * | 2006-04-25 | 2014-07-23 | 泰里福来克斯医学公司 | Calcium phosphate polymer composite and method |
CA2650590C (en) | 2006-04-26 | 2018-04-03 | Micell Technologies, Inc. | Coatings containing multiple drugs |
US20070254012A1 (en) * | 2006-04-28 | 2007-11-01 | Ludwig Florian N | Controlled degradation and drug release in stents |
US8003156B2 (en) * | 2006-05-04 | 2011-08-23 | Advanced Cardiovascular Systems, Inc. | Rotatable support elements for stents |
US7761968B2 (en) * | 2006-05-25 | 2010-07-27 | Advanced Cardiovascular Systems, Inc. | Method of crimping a polymeric stent |
US8752268B2 (en) | 2006-05-26 | 2014-06-17 | Abbott Cardiovascular Systems Inc. | Method of making stents with radiopaque markers |
US7951194B2 (en) | 2006-05-26 | 2011-05-31 | Abbott Cardiovascular Sysetms Inc. | Bioabsorbable stent with radiopaque coating |
US8343530B2 (en) * | 2006-05-30 | 2013-01-01 | Abbott Cardiovascular Systems Inc. | Polymer-and polymer blend-bioceramic composite implantable medical devices |
US7842737B2 (en) | 2006-09-29 | 2010-11-30 | Abbott Cardiovascular Systems Inc. | Polymer blend-bioceramic composite implantable medical devices |
US20080058916A1 (en) * | 2006-05-31 | 2008-03-06 | Bin Huang | Method of fabricating polymeric self-expandable stent |
US20070281073A1 (en) * | 2006-06-01 | 2007-12-06 | Gale David C | Enhanced adhesion of drug delivery coatings on stents |
US8034287B2 (en) | 2006-06-01 | 2011-10-11 | Abbott Cardiovascular Systems Inc. | Radiation sterilization of medical devices |
US20070282433A1 (en) * | 2006-06-01 | 2007-12-06 | Limon Timothy A | Stent with retention protrusions formed during crimping |
US8486135B2 (en) | 2006-06-01 | 2013-07-16 | Abbott Cardiovascular Systems Inc. | Implantable medical devices fabricated from branched polymers |
US20080124372A1 (en) * | 2006-06-06 | 2008-05-29 | Hossainy Syed F A | Morphology profiles for control of agent release rates from polymer matrices |
US20070286941A1 (en) * | 2006-06-13 | 2007-12-13 | Bin Huang | Surface treatment of a polymeric stent |
US8603530B2 (en) * | 2006-06-14 | 2013-12-10 | Abbott Cardiovascular Systems Inc. | Nanoshell therapy |
US8048448B2 (en) * | 2006-06-15 | 2011-11-01 | Abbott Cardiovascular Systems Inc. | Nanoshells for drug delivery |
US8535372B1 (en) | 2006-06-16 | 2013-09-17 | Abbott Cardiovascular Systems Inc. | Bioabsorbable stent with prohealing layer |
US20070290412A1 (en) * | 2006-06-19 | 2007-12-20 | John Capek | Fabricating a stent with selected properties in the radial and axial directions |
US8333000B2 (en) | 2006-06-19 | 2012-12-18 | Advanced Cardiovascular Systems, Inc. | Methods for improving stent retention on a balloon catheter |
US8017237B2 (en) | 2006-06-23 | 2011-09-13 | Abbott Cardiovascular Systems, Inc. | Nanoshells on polymers |
US9072820B2 (en) * | 2006-06-26 | 2015-07-07 | Advanced Cardiovascular Systems, Inc. | Polymer composite stent with polymer particles |
US8128688B2 (en) * | 2006-06-27 | 2012-03-06 | Abbott Cardiovascular Systems Inc. | Carbon coating on an implantable device |
US20070299511A1 (en) * | 2006-06-27 | 2007-12-27 | Gale David C | Thin stent coating |
US7794776B1 (en) | 2006-06-29 | 2010-09-14 | Abbott Cardiovascular Systems Inc. | Modification of polymer stents with radiation |
US7740791B2 (en) * | 2006-06-30 | 2010-06-22 | Advanced Cardiovascular Systems, Inc. | Method of fabricating a stent with features by blow molding |
US20080009938A1 (en) * | 2006-07-07 | 2008-01-10 | Bin Huang | Stent with a radiopaque marker and method for making the same |
US7823263B2 (en) | 2006-07-11 | 2010-11-02 | Abbott Cardiovascular Systems Inc. | Method of removing stent islands from a stent |
US20080014244A1 (en) * | 2006-07-13 | 2008-01-17 | Gale David C | Implantable medical devices and coatings therefor comprising physically crosslinked block copolymers |
US7998404B2 (en) * | 2006-07-13 | 2011-08-16 | Advanced Cardiovascular Systems, Inc. | Reduced temperature sterilization of stents |
US7757543B2 (en) | 2006-07-13 | 2010-07-20 | Advanced Cardiovascular Systems, Inc. | Radio frequency identification monitoring of stents |
US7794495B2 (en) * | 2006-07-17 | 2010-09-14 | Advanced Cardiovascular Systems, Inc. | Controlled degradation of stents |
US7886419B2 (en) * | 2006-07-18 | 2011-02-15 | Advanced Cardiovascular Systems, Inc. | Stent crimping apparatus and method |
US8460362B2 (en) | 2006-07-20 | 2013-06-11 | Orbusneich Medical, Inc. | Bioabsorbable polymeric medical device |
US8016879B2 (en) * | 2006-08-01 | 2011-09-13 | Abbott Cardiovascular Systems Inc. | Drug delivery after biodegradation of the stent scaffolding |
US20080091262A1 (en) * | 2006-10-17 | 2008-04-17 | Gale David C | Drug delivery after biodegradation of the stent scaffolding |
US9173733B1 (en) | 2006-08-21 | 2015-11-03 | Abbott Cardiovascular Systems Inc. | Tracheobronchial implantable medical device and methods of use |
US7923022B2 (en) * | 2006-09-13 | 2011-04-12 | Advanced Cardiovascular Systems, Inc. | Degradable polymeric implantable medical devices with continuous phase and discrete phase |
ES2625134T3 (en) * | 2006-11-06 | 2017-07-18 | Tyrx, Inc. | Mesh bags for implantable medical devices |
US9023114B2 (en) | 2006-11-06 | 2015-05-05 | Tyrx, Inc. | Resorbable pouches for implantable medical devices |
CA2679365C (en) * | 2006-11-30 | 2016-05-03 | Smith & Nephew, Inc. | Fiber reinforced composite material |
US8099849B2 (en) | 2006-12-13 | 2012-01-24 | Abbott Cardiovascular Systems Inc. | Optimizing fracture toughness of polymeric stent |
US11426494B2 (en) | 2007-01-08 | 2022-08-30 | MT Acquisition Holdings LLC | Stents having biodegradable layers |
CN101711137B (en) | 2007-01-08 | 2014-10-22 | 米歇尔技术公司 | Stents having biodegradable layers |
US20080243228A1 (en) * | 2007-03-28 | 2008-10-02 | Yunbing Wang | Implantable medical devices fabricated from block copolymers |
US8262723B2 (en) | 2007-04-09 | 2012-09-11 | Abbott Cardiovascular Systems Inc. | Implantable medical devices fabricated from polymer blends with star-block copolymers |
FI20075246A0 (en) * | 2007-04-12 | 2007-04-12 | Bioretec Oy | Medical agent |
US20080269746A1 (en) * | 2007-04-24 | 2008-10-30 | Osteolign, Inc. | Conformable intramedullary implant with nestable components |
US7829008B2 (en) * | 2007-05-30 | 2010-11-09 | Abbott Cardiovascular Systems Inc. | Fabricating a stent from a blow molded tube |
US7959857B2 (en) * | 2007-06-01 | 2011-06-14 | Abbott Cardiovascular Systems Inc. | Radiation sterilization of medical devices |
US8293260B2 (en) * | 2007-06-05 | 2012-10-23 | Abbott Cardiovascular Systems Inc. | Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices |
US20080306582A1 (en) * | 2007-06-05 | 2008-12-11 | Yunbing Wang | Implantable medical devices with elastomeric copolymer coatings |
US8202528B2 (en) * | 2007-06-05 | 2012-06-19 | Abbott Cardiovascular Systems Inc. | Implantable medical devices with elastomeric block copolymer coatings |
US8048441B2 (en) | 2007-06-25 | 2011-11-01 | Abbott Cardiovascular Systems, Inc. | Nanobead releasing medical devices |
US7901452B2 (en) * | 2007-06-27 | 2011-03-08 | Abbott Cardiovascular Systems Inc. | Method to fabricate a stent having selected morphology to reduce restenosis |
US7955381B1 (en) | 2007-06-29 | 2011-06-07 | Advanced Cardiovascular Systems, Inc. | Polymer-bioceramic composite implantable medical device with different types of bioceramic particles |
CN102083397B (en) | 2008-04-17 | 2013-12-25 | 米歇尔技术公司 | Stents having bioabsorbable layers |
US8112869B2 (en) * | 2008-12-18 | 2012-02-14 | Depuy Products, Inc. | Avascular necrosis cage manufacturing process |
WO2010120552A2 (en) | 2009-04-01 | 2010-10-21 | Micell Technologies, Inc. | Coated stents |
US8992601B2 (en) | 2009-05-20 | 2015-03-31 | 480 Biomedical, Inc. | Medical implants |
US9309347B2 (en) | 2009-05-20 | 2016-04-12 | Biomedical, Inc. | Bioresorbable thermoset polyester/urethane elastomers |
CA2762811C (en) * | 2009-05-20 | 2023-03-21 | Arsenal Medical, Inc. | Self-expandable medical device comprising polymeric strands and coatings thereon |
EP2453834A4 (en) | 2009-07-16 | 2014-04-16 | Micell Technologies Inc | Drug delivery medical device |
US8808353B2 (en) | 2010-01-30 | 2014-08-19 | Abbott Cardiovascular Systems Inc. | Crush recoverable polymer scaffolds having a low crossing profile |
US8568471B2 (en) | 2010-01-30 | 2013-10-29 | Abbott Cardiovascular Systems Inc. | Crush recoverable polymer scaffolds |
WO2011097103A1 (en) | 2010-02-02 | 2011-08-11 | Micell Technologies, Inc. | Stent and stent delivery system with improved deliverability |
CA2805631C (en) | 2010-07-16 | 2018-07-31 | Micell Technologies, Inc. | Drug delivery medical device |
US10525169B2 (en) | 2010-10-20 | 2020-01-07 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
US11291483B2 (en) | 2010-10-20 | 2022-04-05 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants |
US11484627B2 (en) | 2010-10-20 | 2022-11-01 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
US20120101593A1 (en) | 2010-10-20 | 2012-04-26 | BIOS2 Medical, Inc. | Implantable polymer for bone and vascular lesions |
US11207109B2 (en) | 2010-10-20 | 2021-12-28 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
WO2015095745A1 (en) | 2010-10-20 | 2015-06-25 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
US11058796B2 (en) | 2010-10-20 | 2021-07-13 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
EP2637713B1 (en) | 2010-11-12 | 2016-04-20 | Tyrx, Inc. | Anchorage devices comprising an active pharmaceutical ingredient |
US10117972B2 (en) | 2011-07-15 | 2018-11-06 | Micell Technologies, Inc. | Drug delivery medical device |
US20130024005A1 (en) * | 2011-07-19 | 2013-01-24 | Hilton Becker | Composite implant |
US8726483B2 (en) | 2011-07-29 | 2014-05-20 | Abbott Cardiovascular Systems Inc. | Methods for uniform crimping and deployment of a polymer scaffold |
US8998059B2 (en) | 2011-08-01 | 2015-04-07 | Ethicon Endo-Surgery, Inc. | Adjunct therapy device having driver with cavity for hemostatic agent |
US9492170B2 (en) | 2011-08-10 | 2016-11-15 | Ethicon Endo-Surgery, Inc. | Device for applying adjunct in endoscopic procedure |
US8998060B2 (en) | 2011-09-13 | 2015-04-07 | Ethicon Endo-Surgery, Inc. | Resistive heated surgical staple cartridge with phase change sealant |
US9101359B2 (en) | 2011-09-13 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Surgical staple cartridge with self-dispensing staple buttress |
US9999408B2 (en) | 2011-09-14 | 2018-06-19 | Ethicon Endo-Surgery, Inc. | Surgical instrument with fluid fillable buttress |
US8814025B2 (en) | 2011-09-15 | 2014-08-26 | Ethicon Endo-Surgery, Inc. | Fibrin pad matrix with suspended heat activated beads of adhesive |
US9254180B2 (en) | 2011-09-15 | 2016-02-09 | Ethicon Endo-Surgery, Inc. | Surgical instrument with staple reinforcement clip |
US9125649B2 (en) | 2011-09-15 | 2015-09-08 | Ethicon Endo-Surgery, Inc. | Surgical instrument with filled staple |
US9198644B2 (en) | 2011-09-22 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Anvil cartridge for surgical fastening device |
US9393018B2 (en) | 2011-09-22 | 2016-07-19 | Ethicon Endo-Surgery, Inc. | Surgical staple assembly with hemostatic feature |
US8985429B2 (en) | 2011-09-23 | 2015-03-24 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with adjunct material application feature |
US8899464B2 (en) | 2011-10-03 | 2014-12-02 | Ethicon Endo-Surgery, Inc. | Attachment of surgical staple buttress to cartridge |
US9089326B2 (en) | 2011-10-07 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Dual staple cartridge for surgical stapler |
EP2819620A4 (en) | 2012-02-29 | 2015-11-04 | 206 Ortho Inc | Method and apparatus for treating bone fractures, including the use of composite implants |
EP2821534A4 (en) * | 2012-03-01 | 2016-02-10 | Kureha Corp | Water-disintegrable composite fiber and process for producing same |
CA2881517C (en) * | 2012-09-14 | 2016-06-14 | Kureha Corporation | Water-disintegrable composite fiber and method for producing the same |
CN102936759B (en) * | 2012-12-11 | 2015-05-13 | 江南大学 | Multifunctional polylactic acid (PLA) fiber and preparation method thereof |
KR20150143476A (en) | 2013-03-12 | 2015-12-23 | 미셀 테크놀로지즈, 인코포레이티드 | Bioabsorbable biomedical implants |
WO2014186532A1 (en) * | 2013-05-15 | 2014-11-20 | Micell Technologies, Inc. | Bioabsorbable biomedical implants |
AU2014268380B2 (en) | 2013-05-23 | 2019-06-27 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants |
US9999527B2 (en) | 2015-02-11 | 2018-06-19 | Abbott Cardiovascular Systems Inc. | Scaffolds having radiopaque markers |
US9700443B2 (en) | 2015-06-12 | 2017-07-11 | Abbott Cardiovascular Systems Inc. | Methods for attaching a radiopaque marker to a scaffold |
CN113618954B (en) * | 2021-07-19 | 2022-09-02 | 天津工业大学 | I fiber implantation device and I fiber implantation equipment |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4052988A (en) * | 1976-01-12 | 1977-10-11 | Ethicon, Inc. | Synthetic absorbable surgical devices of poly-dioxanone |
US4209607A (en) * | 1978-05-12 | 1980-06-24 | Ethicon, Inc. | Polyesteramides derived from bis-oxamidodiols and dicarboxylic acids |
US4343931A (en) * | 1979-12-17 | 1982-08-10 | Minnesota Mining And Manufacturing Company | Synthetic absorbable surgical devices of poly(esteramides) |
US4604097A (en) * | 1985-02-19 | 1986-08-05 | University Of Dayton | Bioabsorbable glass fibers for use in the reinforcement of bioabsorbable polymers for bone fixation devices and artificial ligaments |
US5133739A (en) * | 1990-02-06 | 1992-07-28 | Ethicon, Inc. | Segmented copolymers of ε-caprolactone and glycolide |
US5147400A (en) * | 1989-05-10 | 1992-09-15 | United States Surgical Corporation | Connective tissue prosthesis |
US5198507A (en) * | 1990-06-12 | 1993-03-30 | Rutgers, The State University Of New Jersey | Synthesis of amino acid-derived bioerodible polymers |
US5403347A (en) * | 1993-05-27 | 1995-04-04 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US5522841A (en) * | 1993-05-27 | 1996-06-04 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US5578046A (en) * | 1994-02-10 | 1996-11-26 | United States Surgical Corporation | Composite bioabsorbable materials and surgical articles made thereform |
US5674286A (en) * | 1991-02-12 | 1997-10-07 | United States Surgical Corporation | Bioabsorbable medical implants |
US6147135A (en) * | 1998-12-31 | 2000-11-14 | Ethicon, Inc. | Fabrication of biocompatible polymeric composites |
-
1999
- 1999-01-06 JP JP2000527206A patent/JP2002500065A/en active Pending
- 1999-01-06 WO PCT/US1999/000252 patent/WO1999034750A1/en not_active Application Discontinuation
- 1999-01-06 US US09/582,833 patent/US6511748B1/en not_active Expired - Fee Related
- 1999-01-06 EP EP99901342A patent/EP1045677A4/en not_active Withdrawn
- 1999-01-06 CA CA002314963A patent/CA2314963A1/en not_active Abandoned
- 1999-01-06 AU AU21064/99A patent/AU734539B2/en not_active Ceased
-
2003
- 2003-01-27 US US10/351,881 patent/US20030134099A1/en not_active Abandoned
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4052988A (en) * | 1976-01-12 | 1977-10-11 | Ethicon, Inc. | Synthetic absorbable surgical devices of poly-dioxanone |
US4209607A (en) * | 1978-05-12 | 1980-06-24 | Ethicon, Inc. | Polyesteramides derived from bis-oxamidodiols and dicarboxylic acids |
US4343931A (en) * | 1979-12-17 | 1982-08-10 | Minnesota Mining And Manufacturing Company | Synthetic absorbable surgical devices of poly(esteramides) |
US4604097A (en) * | 1985-02-19 | 1986-08-05 | University Of Dayton | Bioabsorbable glass fibers for use in the reinforcement of bioabsorbable polymers for bone fixation devices and artificial ligaments |
US4604097B1 (en) * | 1985-02-19 | 1991-09-10 | Univ Dayton | |
US5147400A (en) * | 1989-05-10 | 1992-09-15 | United States Surgical Corporation | Connective tissue prosthesis |
US5133739A (en) * | 1990-02-06 | 1992-07-28 | Ethicon, Inc. | Segmented copolymers of ε-caprolactone and glycolide |
US5198507A (en) * | 1990-06-12 | 1993-03-30 | Rutgers, The State University Of New Jersey | Synthesis of amino acid-derived bioerodible polymers |
US5674286A (en) * | 1991-02-12 | 1997-10-07 | United States Surgical Corporation | Bioabsorbable medical implants |
US5403347A (en) * | 1993-05-27 | 1995-04-04 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US5522841A (en) * | 1993-05-27 | 1996-06-04 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US5578046A (en) * | 1994-02-10 | 1996-11-26 | United States Surgical Corporation | Composite bioabsorbable materials and surgical articles made thereform |
US6147135A (en) * | 1998-12-31 | 2000-11-14 | Ethicon, Inc. | Fabrication of biocompatible polymeric composites |
US6303697B1 (en) * | 1998-12-31 | 2001-10-16 | Ethicon, Inc. | Fabrication of biocompatible polymeric composites |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050191748A1 (en) * | 1999-02-08 | 2005-09-01 | Aderans Research Institute, Inc. | Filamentary means for introducing agents into tissue of a living host |
US20090299465A1 (en) * | 2003-01-31 | 2009-12-03 | Shalaby Shalaby W | Absorbable / biodegradable tubular stent and methods of making the same |
US20080226908A1 (en) * | 2004-03-23 | 2008-09-18 | John Greg Hancock | Bi-Component Electrically Conductive Drawn Polyester Fiber and Method For Making Same |
US20050214344A1 (en) * | 2004-03-26 | 2005-09-29 | Aderans Research Institute, Inc. | Tissue engineered biomimetic hair follicle graft |
US20060013863A1 (en) * | 2004-07-16 | 2006-01-19 | Shalaby Shalaby W | Hemostatic microfibrous constructs |
WO2006019600A2 (en) * | 2004-07-16 | 2006-02-23 | Poly-Med, Inc. | Hemostatix microfibrous constructs |
WO2006019600A3 (en) * | 2004-07-16 | 2006-06-01 | Poly Med Inc | Hemostatix microfibrous constructs |
US8481074B2 (en) | 2004-07-16 | 2013-07-09 | Poly-Med, Inc. | Hemostatic microfibrous constructs |
US20060062770A1 (en) * | 2004-08-13 | 2006-03-23 | Aderans Research Institute, Inc. | Organogenesis from dissociated cells |
US9717610B2 (en) * | 2005-08-15 | 2017-08-01 | Abbott Cardiovascular Systems Inc. | Fiber reinforced composite stents |
US20160000592A1 (en) * | 2005-08-15 | 2016-01-07 | Abbott Cardiovascular Systems Inc. | Fiber reinforced composite stents |
US9023380B2 (en) | 2005-11-22 | 2015-05-05 | Aderans Research Institute, Inc. | Hair follicle graft from tissue engineered skin |
US20070148138A1 (en) * | 2005-11-22 | 2007-06-28 | Aderans Research Institute, Inc. | Hair follicle graft from tissue engineered skin |
US20100178683A1 (en) * | 2005-11-22 | 2010-07-15 | Aderans Research Insitute, Inc. | Hair follicle graft from tissue engineered skin |
US7737060B2 (en) | 2006-03-31 | 2010-06-15 | Boston Scientific Scimed, Inc. | Medical devices containing multi-component fibers |
DE102006016538A1 (en) * | 2006-04-07 | 2007-11-08 | Garntec Gmbh | Biodegradable binding yarns |
US20110207843A1 (en) * | 2006-05-30 | 2011-08-25 | Advanced Cardiovascular Systems, Inc. | Polymer-Bioceramic Composite Implantable Medical Devices |
US8613877B2 (en) | 2006-05-30 | 2013-12-24 | Abbott Cardiovascular Systems Inc. | Methods for fabricating polymer-bioceramic composite implantable medical devices |
US7959940B2 (en) | 2006-05-30 | 2011-06-14 | Advanced Cardiovascular Systems, Inc. | Polymer-bioceramic composite implantable medical devices |
US20110060073A1 (en) * | 2006-05-30 | 2011-03-10 | Bin Huang | Methods For Fabricating Polymer-Bioceramic Composite Implantable Medical Devices |
US20110015726A1 (en) * | 2006-05-30 | 2011-01-20 | Advanced Cardiovascular Systems, Inc. | Copolymer-Bioceramic Composite Implantable Medical Devices |
US8192665B2 (en) | 2006-05-30 | 2012-06-05 | Abbott Cardiovascular Systems Inc. | Methods for fabricating polymer-bioceramic composite implantable medical devices |
US8309114B2 (en) | 2006-05-30 | 2012-11-13 | Advanced Cardiovascular Systems, Inc. | Method of making Polymer-bioceramic composite implantable medical devices |
US8377356B2 (en) | 2006-05-30 | 2013-02-19 | Abbott Cardiovascular Systems Inc. | Methods for fabricating polymer-bioceramic composite implantable medical devices |
US8512735B2 (en) | 2006-05-30 | 2013-08-20 | Abbott Cardiovascular Systems Inc. | Method of making polymer-bioceramic composite implantable medical devices |
US9173973B2 (en) | 2006-07-20 | 2015-11-03 | G. Lawrence Thatcher | Bioabsorbable polymeric composition for a medical device |
WO2008036206A2 (en) * | 2006-09-19 | 2008-03-27 | Abbott Cardiovascular Systems Inc. | Copolymer-bioceramic composite implantable medical devices |
WO2008036206A3 (en) * | 2006-09-19 | 2009-04-02 | Abbott Cardiovascular Systems | Copolymer-bioceramic composite implantable medical devices |
US9724864B2 (en) | 2006-10-20 | 2017-08-08 | Orbusneich Medical, Inc. | Bioabsorbable polymeric composition and medical device |
US9211205B2 (en) | 2006-10-20 | 2015-12-15 | Orbusneich Medical, Inc. | Bioabsorbable medical device with coating |
US9144487B2 (en) * | 2007-06-11 | 2015-09-29 | Abbott Cardiovascular Systems Inc. | Polymer-bioceramic composite medical devices with bioceramic particles having grafted polymers |
US20080311044A1 (en) * | 2007-06-12 | 2008-12-18 | Aderans Research Institute, Inc. | Methods of determining hair follicle inductive properties |
US7985537B2 (en) | 2007-06-12 | 2011-07-26 | Aderans Research Institute, Inc. | Methods for determining the hair follicle inductive properties of a composition |
WO2010011941A3 (en) * | 2008-07-25 | 2010-04-01 | Smith & Nephew, Inc. | Fracture fixation systems |
US8546456B2 (en) | 2008-07-25 | 2013-10-01 | Smith & Nephew, Inc. | Fracture fixation systems |
US9730740B2 (en) | 2008-07-25 | 2017-08-15 | Smith & Nephew, Inc. | Fracture fixation systems |
US8951325B2 (en) | 2013-02-27 | 2015-02-10 | Bha Altair, Llc | Bi-component fiber and filter media including bi-component fibers |
WO2014134020A1 (en) * | 2013-02-27 | 2014-09-04 | Bha Altair, Llc | Bi-component fiber and filter media including bi-component fibers |
US20210161690A1 (en) * | 2016-12-29 | 2021-06-03 | Boston Scientific Scimed, Inc. | Medical devices formed from polymer filaments |
US11203822B2 (en) * | 2019-07-08 | 2021-12-21 | Sung Man Lee | Fabric having improved winding property and commodity including the same |
Also Published As
Publication number | Publication date |
---|---|
EP1045677A4 (en) | 2005-01-12 |
WO1999034750A1 (en) | 1999-07-15 |
AU734539B2 (en) | 2001-06-14 |
JP2002500065A (en) | 2002-01-08 |
AU2106499A (en) | 1999-07-26 |
EP1045677A1 (en) | 2000-10-25 |
US6511748B1 (en) | 2003-01-28 |
CA2314963A1 (en) | 1999-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6511748B1 (en) | Bioabsorbable fibers and reinforced composites produced therefrom | |
JP3779327B2 (en) | Degradable material under tissue conditions and method for producing the same | |
EP1645298B1 (en) | Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof | |
EP1874366B1 (en) | A bioabsorbable and bioactive composite material and a method for manufacturing the composite | |
CA1311689C (en) | Surgical materials and devices | |
EP2231913B1 (en) | Medical devices containing melt-blown non-wovens of poly-r-hydroxybutyrate and copolymers | |
US6773459B2 (en) | Medical, bioresorbable implant, process for its production and the use thereof | |
US7622068B2 (en) | Tissue repair device and fabrication thereof | |
CA1341061C (en) | Felt-like implant | |
US7862585B2 (en) | Tissue repair device and fabrication thereof | |
EP1980279B1 (en) | A medical device | |
Vert et al. | Totally bioresorbable composites systems for internal fixation of bone fractures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADERANS RESEARCH INSTITUTE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOAMIDE, INC.;REEL/FRAME:013711/0563 Effective date: 20020628 |
|
AS | Assignment |
Owner name: ADERANS RESEARCH INSTITUTE, INC., CALIFORNIA Free format text: RE-RECORD TO CORRECT THE ADDRESS OF THE ASSIGNEE, PREVIOUSLY RECORDED ON REEL 013711 FRAME 0563, ASSIGNOR CONFIRMS THE ASSIGNMENT OF THE ENTIRE INTEREST.;ASSIGNOR:BIOAMIDE, INC.;REEL/FRAME:015681/0746 Effective date: 20020628 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |