US20030131578A1 - Stretch polyester/cotton spun yarn - Google Patents

Stretch polyester/cotton spun yarn Download PDF

Info

Publication number
US20030131578A1
US20030131578A1 US10/286,683 US28668302A US2003131578A1 US 20030131578 A1 US20030131578 A1 US 20030131578A1 US 28668302 A US28668302 A US 28668302A US 2003131578 A1 US2003131578 A1 US 2003131578A1
Authority
US
United States
Prior art keywords
spun yarn
staple fiber
bicomponent staple
cotton
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/286,683
Inventor
Geoffrey Hietpas
Steven Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Invista North America LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/286,683 priority Critical patent/US20030131578A1/en
Priority to US10/323,302 priority patent/US7036299B2/en
Priority to EP08075082A priority patent/EP1956121B1/en
Priority to KR1020047009603A priority patent/KR100871966B1/en
Priority to EP02798572A priority patent/EP1456442B1/en
Priority to JP2003562369A priority patent/JP4450626B2/en
Priority to DE60236770T priority patent/DE60236770D1/en
Priority to TW091136841A priority patent/TWI285690B/en
Priority to CNB028225953A priority patent/CN100467686C/en
Priority to PCT/US2002/041124 priority patent/WO2003062511A1/en
Priority to BR122013002047A priority patent/BR122013002047B1/en
Priority to BRPI0215342-4B1A priority patent/BR0215342B1/en
Priority to DE60227192T priority patent/DE60227192D1/en
Priority to MXPA04006058A priority patent/MXPA04006058A/en
Assigned to E. I. DU PONT DE NEMOURS AND COMPANY reassignment E. I. DU PONT DE NEMOURS AND COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIETPAS, GEOFFREY D., SMITH, STEVEN W.
Publication of US20030131578A1 publication Critical patent/US20030131578A1/en
Assigned to INVISTA NORTH AMERICA S.A.R.L. reassignment INVISTA NORTH AMERICA S.A.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: E. I. DU PONT DE NEMOURS AND COMPANY
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INVISTA NORTH AMERICA S.A.R.L. F/K/A ARTEVA NORTH AMERICA S.A.R.
Priority to US11/145,853 priority patent/US20050227069A1/en
Priority to HK05107070.3A priority patent/HK1074860A1/en
Priority to US11/163,046 priority patent/US7240476B2/en
Assigned to INVISTA NORTH AMERICA S.A.R.L. (F/K/A ARTEVA NORTH AMERICA S.A.R.L.) reassignment INVISTA NORTH AMERICA S.A.R.L. (F/K/A ARTEVA NORTH AMERICA S.A.R.L.) RELEASE OF U.S. PATENT SECURITY INTEREST Assignors: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT (F/K/A JPMORGAN CHASE BANK)
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent

Definitions

  • This invention relates to spun yarn comprising polyester staple fiber and cotton, more particularly such a yarn in which the polyester staple is a bicomponent that imparts desirable properties to the yarn.
  • Polyester bicomponent fibers are known from U.S. Pat. Nos. 3,454,460 and 3,671,379, which disclose spun yarns made from bicomponent staple having certain ranges of crimp properties outside of which the yarns are said to be boardy, harsh, and aesthetically undesirable.
  • Spun yarns comprising bicomponent staple fibers are disclosed in Japanese Published Patent Applications JP62-085026, and JP2000-328382 and U.S. Pat. No. 5,874,372, but such fibers can have little recovery power and need to be mechanically crimped, which adds to their cost.
  • Polyester fibers having longitudinal grooves in their surfaces are described in U.S. Pat. Nos. 3,914,488, 4,634,625, 5,626,961, and 5,736,243, and Published International Patent Application WO01/66837, but such fibers can lack good stretch and recovery properties.
  • the present invention provides a spun yarn having a total boil-off shrinkage of at least about 22% and comprising cotton and a bicomponent staple fiber comprising poly(ethylene terephthalate) and poly(trimethylene terephthalate) wherein the bicomponent fiber has, a crimp development value of at least about 35% and no higher than about 70%, a crimp index value at least 15% and no higher than about 45%, a length of at least about 1.3 cm and no higher than about 5.5 cm, a linear density of at least about 0.7 decitex per fiber, and no higher than about 3.0 decitex per fiber, and wherein the bicomponent fiber is present at a level of at least about 20 wt % and no higher than about 65 wt %, based on total weight of the spun yarn and wherein the cotton is present at a level of at least about 35 wt % and no higher than about 80 wt %, based on total weight of the spun yarn.
  • the invention also provides a process for making spun yarn from cotton and the bicomponent fiber of the invention, comprising the steps of:
  • the bicomponent fiber is present at a level of from about 20 wt % to about 65 wt %, the cotton is present at a level of from about 35 wt %, to about 80 wt % based on total weight of the blended fibers;
  • the invention further provides a fabric selected from the group consisting of knits and wovens and comprising such a spun yarn as made by the process of the invention.
  • FIGURE shows a schematic cross-section of a spinneret pack useful in making bicomponent polyester fiber tow.
  • spun yarn comprising cotton and a bicomponent staple fiber which in turn comprises poly(ethylene terephthalate) and poly(trimethylene terephthalate) and has selected mechanical properties, has unexpectedly high stretch characteristics, cardability, and uniformity.
  • bicomponent fiber means a fiber in which two polymers are in a side-by-side or eccentric sheath-core relationship and includes both spontaneously crimped fibers and fibers with latent spontaneous crimp that has not yet been realized.
  • “Intimate blending” means the process of gravimetrically and thoroughly mixing dissimilar fibers in an opening room (for example with a weigh-pan hopper feeder) before feeding the mixture to the card or of mixing the fibers in a dual feed chute on the card, and is to be distinguished from draw-frame blending.
  • the spun yarn of the invention comprises cotton and a polyester bicomponent staple fiber comprising poly(ethylene terephthalate) (“2G-T”) and poly(trimethylene terephthalate) (“ 3 G-T”) and has a total boil-off shrinkage of at least about 22%.
  • Such shrinkage corresponds to about 20% elongation when a 0.045 g/den (0.04 dN/tex) load is applied to the yarn after boil-off in the yarn.
  • the total boil-off shrinkage is less than about 22%, the stretch-and-recovery properties of the yarn can be inadequate.
  • the spun yarn has too little total boil-off shrinkage to generate good recovery in fabrics made therefrom.
  • the CI value is low, mechanical crimping can be necessary for satisfactory carding and spinning.
  • the bicomponent staple can have too much crimp to be readily cardable, and the uniformity of the spun yarn can be inadequate.
  • the bicomponent staple fiber has a length of about at least about 1.3 cm and no higher than about 5.5 cm.
  • the bicomponent fiber has a length of from about 2 to about 4 cm.
  • the bicomponent fiber has a linear density of at least about 0.7 dtex and preferably at least about 0.9 dtex per fiber and no higher than about 3.0 dtex per fiber.
  • the bicomponent staple has a linear density above about 3.0 dtex per fiber, the yarn can have a harsh hand, and it can be hard to blend with the cotton, resulting in a poorly consolidated, weak yarn.
  • it has a linear density below about 0.7 dtex per fiber, it can be difficult to card.
  • the bicomponent staple For a spun yarn of higher uniformity, it is preferred that the bicomponent staple have a linear density less than about 2.5 dtex per fiber.
  • the bicomponent staple fiber is present at a level of at least about 20 wt %, preferably at least about 35 wt %, and no more than about 65 wt %, preferably less than 50 wt %, based on the total weight of the spun yarn.
  • the yarn of the invention comprises less than about 20 wt % polyester bicomponent, the yarn can exhibit inadequate stretch and recovery properties, as indicated by low total boil-off shrinkage.
  • the yarn comprises more than about 65 wt % bicomponent staple fiber, the blended fibers can be difficult to card.
  • the cotton is present at a level of at least about 35 wt % and no higher than about 80 wt %, based on total weight of the spun yarn.
  • up to about 30 wt %, based on total weight of the spun yarn, can be other staple fibers, for example poly(ethylene terephthalate) staple.
  • the spun yarn of the invention have a Coefficient of Variation (“CV”) of mass of no higher than about 22%, more preferably no higher than about 18%. Above those values, the yarn can become less desirable for use in some types of fabrics.
  • CV Coefficient of Variation
  • the bicomponent staple fiber can have a weight ratio of poly(ethylene terephthalate) to poly(trimethylene terephthalate) of about 30:70 to 70:30, preferably 40:60 to 60:40.
  • One or both of the polyesters comprising the bicomponent fiber can be copolyesters, and “poly(ethylene terephthalate)” and “poly(trimethylene terephthalate)” include such copolyesters within their meanings.
  • a copoly(ethylene terephthalate) can be used in which the comonomer used to make the copolyester is selected from the group consisting of linear, cyclic, and branched aliphatic dicarboxylic acids having 4-12 carbon atoms (for example butanedioic acid, pentanedioic acid, hexanedioic acid, dodecanedioic acid, and 1,4-cyclo-hexanedicarboxylic acid); aromatic dicarboxylic acids other than terephthalic acid and having 8-12 carbon atoms (for example isophthalic acid and 2,6-naphthalenedicarboxylic acid); linear, cyclic, and branched aliphatic diols having 3-8 carbon atoms (for example 1,3-propane diol, 1,2-propanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, 2,2-d
  • the comonomer can be present to the extent that it does not compromise the benefits of the invention, for example at levels of about 0.5-15 mole percent based on total polymer ingredients.
  • Isophthalic acid, pentanedioic acid, hexanedioic acid, 1,3-propane diol, and 1,4-butanediol are preferred comonomers.
  • the copolyester(s) can also be made with minor amounts of other comonomers, provided such comonomers do not have an adverse affect on the benefits of the invention.
  • Such other comonomers include 5-sodium-sulfoisophthalate, the sodium salt of 3-(2-sulfoethyl) hexanedioic acid, and dialkyl esters thereof, which can be incorporated at about 0.2-4 mole percent based on total polyester.
  • the (co)polyester(s) can also be mixed with polymeric secondary amine additives, for example poly(6,6′-imino-bishexamethylene terephthalamide) and copolyamides thereof with hexamethylenediamine, preferably phosphoric acid and phosphorous acid salts thereof.
  • polymeric secondary amine additives for example poly(6,6′-imino-bishexamethylene terephthalamide) and copolyamides thereof with hexamethylenediamine, preferably phosphoric acid and phosphorous acid salts thereof.
  • the spun yarn of the invention comprises cotton and a bicomponent staple fiber comprising poly(ethylene terephthalate) and poly(trimethylene terephthalate) and having a plurality of longitudinal grooves in the surface thereof.
  • a bicomponent staple fiber can be considered to have a “scalloped oval” cross-section which can improve the wicking properties of the polyester bicomponent.
  • polyester bicomponent staple fibers in the spun yarn of the present invention can also comprise conventional additives such as antistats, antioxidants, antimicrobials, flameproofing agents, dyestuffs, light stabilizers, and delustrants such as titanium dioxide, provided they do not detract from the benefits of the invention.
  • the bicomponent staple fiber of which the spun yarn of the invention is comprised have a tenacity-at-break of at least about 3.5 dN/tex and no higher than about 5.5 dN/tex.
  • the linear density of the spun yarn be in the range of about 100 to 700 denier (111 to 778 dtex).
  • the process of the invention comprises a step of mixing preferably by intimate blending, cotton (which can optionally be combed) with a polyester bicomponent staple fiber having the composition and characteristics described hereinbefore, wherein the bicomponent staple fiber is present at a level of at least about 20 wt % and no more than about 65 wt %, preferably less than 50 wt %, based on the total weight of the blended fibers.
  • the cotton is present at a level of at least about 35 wt % and no higher than about 80 wt %, based on total weight of the blended fibers.
  • up to about 30 wt %, based on total weight of the spun yarn can be other staple fibers, for example poly(ethylene terephthalate) staple.
  • bicomponent staple fiber exhibiting follow-the-leader crimp is preferred because such staple is believed to improve carding due to its lower CI level.
  • the bicomponent fibers in the tow precursor to the staple fiber be ‘in register’ with each other and not be ‘de-registered’.
  • the blended fibers are further processed by carding the blended fibers to form a card sliver, drawing the card sliver, doubling and redrawing the card sliver up to 3 times, converting the drawn sliver to roving, and ring-spinning the roving with a twist multiplier of 3 to 5.5 to form the spun yarn having a total boil-off shrinkage of at least about 22%.
  • IV Intrinsic viscosity
  • Viscotek Forced Flow Viscometer Model Y-900 at a 0.4% concentration at 19° C. and according to ASTM D-4603-96 but in 50/50 wt % trifluoroacetic acid/methylene chloride instead of the prescribed 60/40 wt % phenol/1,1,2,2-tetrachloroethane.
  • the measured viscosity was then correlated with standard viscosities in 60/40 wt % phenol/1,1,2,2-tetrachloroethane to arrive at the reported intrinsic viscosity values.
  • tow Crimp Index (“C.I.”)
  • C.I. To measure tow Crimp Index (“C.I.”), a 1.1 meter sample of polyester bicomponent tow was weighed, and its denier was calculated; the tow size was typically of about 38,000 to 60,000 denier (42,000 to 66,700 dtex).
  • Two knots separated by 25 mm were tied at each end of the tow.
  • Tension was applied to the vertical sample by applying a first clamp at the inner knot of the first end and hanging a 40 mg/den (0.035 dN/tex) weight between the knots of the second end. The sample was exercised three times by lifting and slowly lowering the weight.
  • the ‘true’ shrinkage of the spun yarn was measured by applying a 200 mg/den (0.18 dN/tex) load, measuring the extended length, and calculating the percent difference between the before-boil-off and extended after-boil-off lengths.
  • the true shrinkage of the samples was generally less than about 5%. Since true shrinkage constitutes only a very minor fraction of total boil-off shrinkage, the latter is used herein as a reliable measure of the stretch characteristics of the spun yarns. Higher total boil-off shrinkage corresponds to desirably higher stretch.
  • the cotton was Standard Strict Low Midland Eastern Variety with an average micronaire of 4.3 (about 1.5 denier per fiber (1.7 dtex per fiber)).
  • the cotton and the polyester bicomponent staple fiber were blended by loading both into a dual feed chute feeder, which fed the Trutzschler card.
  • the resulting card sliver was 70 grain/yard (about 49,500 dtex).
  • Six ends of sliver were drawn together 6.5 ⁇ in each of two passes to give 60 grain/yard (about 42,500 dtex) drawn sliver which was then converted to roving, unless otherwise noted.
  • the total draft in the roving process was 9.9 ⁇ .
  • the roving was then double-creeled and ring-spun on a Saco-Lowell frame using a back draft of 1.35 and a total draft of 29 to give a 22/1 cotton count (270 dtex) spun yarn having a twist multiplier of 3.8 and 17.8 turns per inch.
  • the resulting spun yarn had a CV of 22% and a total boil-off shrinkage of 5%.
  • the fibers had substantially equal linear densities and polymer ratios of poly(ethylene terephthalate) to poly(trimethylene terephthalate). No mechanical crimp was applied to the bicomponent staple fibers in the Examples.
  • Polyester bicomponent staple fiber was made from bicomponent continuous filaments of poly(ethylene terephthalate) (Crystar® 4415-763, a registered trademark of E. I. du Pont de Nemours and Company), having an intrinsic viscosity (“IV”) of 0.52 dl/g, and Sorona® brand poly(trimethylene terephthalate) (Sorona®, a registered trademark of E. I. DuPont de Nemours and Company), having an IV of 1.00, which were melt-spun through a 68-hole post-coalescing spinneret at a spin block, temperature of 255-265° C.
  • the weight ratio of the polymers was 60/40 2G-T/3G-T.
  • the filaments were withdrawn from the spinneret at 450-550 m/min and quenched with crossflow air.
  • the filaments, having a ‘snowman’ cross-section, were drawn 4.4 ⁇ , heat-treated at 170° C., interlaced, and wound up at 2100-2400 m/min.
  • the filaments had 12% CI (a value believed to be considerably depressed by the interlacing), 51% CD, and a linear density of 2.4 dtex/filament.
  • filaments from wound packages were collected into a tow and fed into a conventional staple tow cutter, the blade spacings of which were adjusted to obtain a 1.5 inch (3.8 cm) staple length.
  • the polyester bicomponent staple fiber from Example 1A was intimately blended with cotton to obtain various weight percents of the two fibers.
  • the blended fibers were carded, drawn, converted to roving, and ring-spun.
  • the resulting spun yarns had the CV and total Boil-Off Shrinkage (“B.O.S.”) values shown in Table I. TABLE I Staple Total Bicomponent, B.O.S., Spun Yarn wt % Cardability CV, % % Comp.
  • Sample 1A 30 Good 17 18
  • Sample 1C 50 Satisfactory 19 34
  • Sample 1D 60 Satisfactory 22 36 Comp.
  • Polyester bicomponent staple fiber was made as described in Example 1A, with the following differences.
  • the weight ratio of 2G-T/3G-T was 40/60, the spinneret had 34 holes, and the resulting filaments had a 4.9 dtex/fil linear density.
  • the CI was 16% and the CD was 50%, but cardability with cotton at levels of 65 wt %, 40 wt %, and even 20 wt % polyester bicomponent staple was very poor, showing the unsatisfactory results obtained when the polyester bicomponent staple had high linear density.
  • Polyester bicomponent staple fiber was made substantially as described in Example 1A, except that the continuous filaments used were drawn 2.6 ⁇ and had only 3% CI and 29% CD. Cardability was good in a 60/40 polyester/cotton blend, but the boil-off shrinkage of the yarn spun from such a blend was only 15%, showing the inadequate spun yarn properties that result when CD is too low.
  • polyester bicomponent staple fibers used in Examples 3 and 4 poly(ethylene terephthalate) of 0.58 IV was prepared in a continuous polymerizer from terephthalic acid and ethylene glycol in a two-step process using an antimony transesterification catalyst in the second step. TiO 2 (0.3 wt %, based on weight of polymer) was added, and the polymer was transferred at 285° C. and fed by a metering pump to a 790-hole bicomponent fiber spinneret pack maintained at 280° C.
  • Poly(trimethylene terephthalate) (1.04 IV Sorona® brand poly(trimethylene terephthalate)) was solid-phase polymerized, dried, melt-extruded at 258° C., and separately metered to the spinneret pack.
  • FIGURE shows a cross-section of the spinneret pack that was used.
  • Molten poly(ethylene terephthalate) and poly(trimethylene terephthalate) entered distribution plate 2 at holes 1 a and 1 b, were distributed radially through corresponding annular channels 3 a and 3 b , and first contacted each other in slot 4 in distribution plate 5 .
  • the two polyesters passed through hole 6 in metering plate 7 and through counterbore 8 in spinneret plate 9 , and exited the spinneret plate through capillary 10 .
  • the internal diameters of hole 6 and capillary 10 were substantially the same.
  • the fibers were spun at 0.5-1.0 g/min per capillary into a radial flow of air supplied at 142 to 200 standard cubic feet per minute (4.0 to 5.6 cubic meters per minute) so that the mass ratio of air:polymer was in the range of 9:1 to 13:1.
  • the quench chamber was substantially the same as that disclosed in U.S. Pat. No. 5,219,506 but used a foraminous quench gas distribution cylinder having similar sized perforations so that it provided ‘constant’ air flow.
  • Spin finish was applied to the fibers with a conical applicator at 0.07 wt % to 0.09 wt % based on fiber weight, and then they were wound onto packages.
  • Bicomponent staple Sample 2B was blended with cotton at a polyester bicomponent/cotton weight ratio of 60/40, and the blend was carded and drawn as described hereinabove, but without making a roving.
  • the drawn sliver was air-jet spun into 22/1 yarn on a Murata 802H spinning frame at an air nozzle pressure ratio (N1/N2) of 2.5/5.0, a total draft of 160, and a take-up speed of 200 meters/min.
  • the total boil-off shrinkage of the yarn was only 14%, showing that air-jet spun yarn had unsatisfactory stretch and recovery.
  • Women's 3 ⁇ 1 quarter socks with a 1 ⁇ 2 cushion foot were knit on a Lonati 454J, 108 needle, 4 inch (10 cm) cylinder machine, using only spun yarns from Example 1.
  • Each sock was bleached with aqueous hydrogen peroxide at 180° F. (82° C.) and boarded at 250° F. (121° C.) for 1.5 minutes with dry heat.
  • the unload power of the socks was determined as follows. To avoid edge effects, the sock was not cut. It was marked with a 2.5 inch ⁇ 2.5 inch (6.4 cm ⁇ 6.4 cm) square, centered on the foot, between the toe and heel. The grips of an Instron tensile tester were placed at the sock foot top and bottom, avoiding the heel and toe and leaving the centered square between the grips so that the test sample had a 2.5 inch (6.4 cm) gauge. Each sample was cycled 3 times to 50% elongation at a speed of 200% elongation per minute. The unload force was measured at 30% remaining available stretch on the 3 rd cycle relaxation and reported in kilograms force and is reported in Table V.
  • a 3/1 twill fabric was made on an air jet loom with a warp of 100% ring-spun cotton of 40/1 cotton count, reeded to 96 ends/inch (38 ends/cm).
  • the filling yarn consisted of a 22/1 cotton count ring-spun yarn of 40 wt % cotton and 60 wt % of bicomponent staple Sample 2H, inserted at 65 picks per inch (251 ⁇ 2 picks per cm) and 500 picks/minute.
  • the fabric was scoured for an hour at the boil and conventionally dyed with direct and disperse dyes. The available stretch was 21%, and the growth was 3.8%, both desirable properties.
  • Example 6A was repeated but with a spun yarn of bicomponent staple Sample 2E ring-spun at the same blend ratio with cotton, inserted at 45 picks per inch (18 picks/cm).
  • the fabric was scoured for hour at the boil and conventionally dyed with direct and disperse dyes.
  • the available stretch was desirably high at 25%, and the growth was desirably low at 4.6%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

The invention provides a spun yarn comprising cotton and a bicomponent polyester staple. The fiber of the invention exhibits unusually high stretch characteristics and has excellent cardability and uniformity.

Description

    CROSS REFERENCE(S) TO RELATED APPLICATION(S)
  • This application is a continuation-in-part of pending application Ser. No. 10/029,575 filed Dec. 21, 2001.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • This invention relates to spun yarn comprising polyester staple fiber and cotton, more particularly such a yarn in which the polyester staple is a bicomponent that imparts desirable properties to the yarn. [0003]
  • 2. Discussion of Background Art [0004]
  • Polyester bicomponent fibers are known from U.S. Pat. Nos. 3,454,460 and 3,671,379, which disclose spun yarns made from bicomponent staple having certain ranges of crimp properties outside of which the yarns are said to be boardy, harsh, and aesthetically undesirable. [0005]
  • Spun yarns comprising bicomponent staple fibers are disclosed in Japanese Published Patent Applications JP62-085026, and JP2000-328382 and U.S. Pat. No. 5,874,372, but such fibers can have little recovery power and need to be mechanically crimped, which adds to their cost. [0006]
  • Polyester fibers having longitudinal grooves in their surfaces are described in U.S. Pat. Nos. 3,914,488, 4,634,625, 5,626,961, and 5,736,243, and Published International Patent Application WO01/66837, but such fibers can lack good stretch and recovery properties. [0007]
  • Spun yarns of polyester bicomponent staple fibers and cotton that have high stretch and uniformity characteristics are still needed. [0008]
  • SUMMARY OF THE INVENTION
  • The present invention provides a spun yarn having a total boil-off shrinkage of at least about 22% and comprising cotton and a bicomponent staple fiber comprising poly(ethylene terephthalate) and poly(trimethylene terephthalate) wherein the bicomponent fiber has, a crimp development value of at least about 35% and no higher than about 70%, a crimp index value at least 15% and no higher than about 45%, a length of at least about 1.3 cm and no higher than about 5.5 cm, a linear density of at least about 0.7 decitex per fiber, and no higher than about 3.0 decitex per fiber, and wherein the bicomponent fiber is present at a level of at least about 20 wt % and no higher than about 65 wt %, based on total weight of the spun yarn and wherein the cotton is present at a level of at least about 35 wt % and no higher than about 80 wt %, based on total weight of the spun yarn. [0009]
  • The invention also provides a process for making spun yarn from cotton and the bicomponent fiber of the invention, comprising the steps of: [0010]
  • a) providing the bicomponent staple fiber; [0011]
  • b) providing cotton; [0012]
  • c) combining at least the cotton and the bicomponent staple fiber so that: the bicomponent fiber is present at a level of from about 20 wt % to about 65 wt %, the cotton is present at a level of from about 35 wt %, to about 80 wt % based on total weight of the blended fibers; [0013]
  • d) carding the blended fibers to form a card sliver; [0014]
  • e) drawing the card sliver; [0015]
  • f) doubling and redrawing the card sliver up to about 3 times; [0016]
  • g) converting the drawn sliver to roving; and [0017]
  • h) ring-spinning the roving to form the spun yarn. [0018]
  • The invention further provides a fabric selected from the group consisting of knits and wovens and comprising such a spun yarn as made by the process of the invention.[0019]
  • BRIEF DESCRIPTION OF THE FIGURE
  • The FIGURE shows a schematic cross-section of a spinneret pack useful in making bicomponent polyester fiber tow.[0020]
  • DETAILED DESCRIPTION OF THE INVENTION
  • It has now been found that spun yarn comprising cotton and a bicomponent staple fiber which in turn comprises poly(ethylene terephthalate) and poly(trimethylene terephthalate) and has selected mechanical properties, has unexpectedly high stretch characteristics, cardability, and uniformity. [0021]
  • As used herein, ‘bicomponent fiber’ means a fiber in which two polymers are in a side-by-side or eccentric sheath-core relationship and includes both spontaneously crimped fibers and fibers with latent spontaneous crimp that has not yet been realized. [0022]
  • “Intimate blending” means the process of gravimetrically and thoroughly mixing dissimilar fibers in an opening room (for example with a weigh-pan hopper feeder) before feeding the mixture to the card or of mixing the fibers in a dual feed chute on the card, and is to be distinguished from draw-frame blending. [0023]
  • The spun yarn of the invention comprises cotton and a polyester bicomponent staple fiber comprising poly(ethylene terephthalate) (“2G-T”) and poly(trimethylene terephthalate) (“[0024] 3G-T”) and has a total boil-off shrinkage of at least about 22%. Such shrinkage corresponds to about 20% elongation when a 0.045 g/den (0.04 dN/tex) load is applied to the yarn after boil-off in the yarn. When the total boil-off shrinkage is less than about 22%, the stretch-and-recovery properties of the yarn can be inadequate. The bicomponent staple fiber has a crimp development (“CD”) value of at least about 35% and no higher than about 70% and has a crimp index (“CI”) value of at least 15%, preferably at least about 20%, when substantially free of interlacing, and no higher than about 45%, preferably no higher than about 42%, more preferably no higher than about 30%.
  • When the CD value is lower than about 35%, the spun yarn has too little total boil-off shrinkage to generate good recovery in fabrics made therefrom. When the CI value is low, mechanical crimping can be necessary for satisfactory carding and spinning. When the CI value is high, the bicomponent staple can have too much crimp to be readily cardable, and the uniformity of the spun yarn can be inadequate. [0025]
  • The bicomponent staple fiber has a length of about at least about 1.3 cm and no higher than about 5.5 cm. When the bicomponent fiber is shorter than about 1.3 cm, it can be difficult to card, and when it is longer than about 5.5 cm, it can be difficult to spin with cotton. The cotton can have a length of from about 2 to about 4 cm. The bicomponent fiber has a linear density of at least about 0.7 dtex and preferably at least about 0.9 dtex per fiber and no higher than about 3.0 dtex per fiber. When the bicomponent staple has a linear density above about 3.0 dtex per fiber, the yarn can have a harsh hand, and it can be hard to blend with the cotton, resulting in a poorly consolidated, weak yarn. When it has a linear density below about 0.7 dtex per fiber, it can be difficult to card. For a spun yarn of higher uniformity, it is preferred that the bicomponent staple have a linear density less than about 2.5 dtex per fiber. [0026]
  • In the spun yarn, the bicomponent staple fiber is present at a level of at least about 20 wt %, preferably at least about 35 wt %, and no more than about 65 wt %, preferably less than 50 wt %, based on the total weight of the spun yarn. When the yarn of the invention comprises less than about 20 wt % polyester bicomponent, the yarn can exhibit inadequate stretch and recovery properties, as indicated by low total boil-off shrinkage. When the yarn comprises more than about 65 wt % bicomponent staple fiber, the blended fibers can be difficult to card. [0027]
  • In the spun yarn of the invention, the cotton is present at a level of at least about 35 wt % and no higher than about 80 wt %, based on total weight of the spun yarn. Optionally, up to about 30 wt %, based on total weight of the spun yarn, can be other staple fibers, for example poly(ethylene terephthalate) staple. [0028]
  • When the CI of the bicomponent staple fiber is lower in the range of acceptable values, higher proportions of polyester bicomponent staple fibers can be used without compromising cardability and yarn uniformity. When CD is higher in the range of acceptable values, lower proportions of bicomponent staple can be used without compromising total boil-off shrinkage. In particular, since the fiber blend level, CI, and cardability are inter-related, satisfactory cardability can be retained even with high CI values (for example as high as about 45%) if the amount of bicomponent fiber in the blend is low (for example as low as about 20 wt %, based on total weight of spun yarn). Similarly, since the fiber blend level, CD, and total boil-off shrinkage are inter-related, satisfactory total boil-off shrinkage can be retained even at about 20 wt % bicomponent fiber, based on total weight of spun yarn, if the CD is high, for example at about 55% or more. [0029]
  • It is preferred that the spun yarn of the invention have a Coefficient of Variation (“CV”) of mass of no higher than about 22%, more preferably no higher than about 18%. Above those values, the yarn can become less desirable for use in some types of fabrics. [0030]
  • The bicomponent staple fiber can have a weight ratio of poly(ethylene terephthalate) to poly(trimethylene terephthalate) of about 30:70 to 70:30, preferably 40:60 to 60:40. One or both of the polyesters comprising the bicomponent fiber can be copolyesters, and “poly(ethylene terephthalate)” and “poly(trimethylene terephthalate)” include such copolyesters within their meanings. For example, a copoly(ethylene terephthalate) can be used in which the comonomer used to make the copolyester is selected from the group consisting of linear, cyclic, and branched aliphatic dicarboxylic acids having 4-12 carbon atoms (for example butanedioic acid, pentanedioic acid, hexanedioic acid, dodecanedioic acid, and 1,4-cyclo-hexanedicarboxylic acid); aromatic dicarboxylic acids other than terephthalic acid and having 8-12 carbon atoms (for example isophthalic acid and 2,6-naphthalenedicarboxylic acid); linear, cyclic, and branched aliphatic diols having 3-8 carbon atoms (for example 1,3-propane diol, 1,2-propanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, 2-methyl-1,3-propanediol, and 1,4-cyclohexanediol); and aliphatic and araliphatic ether glycols having 4-10 carbon atoms (for example, hydroquinone bis(2-hydroxyethyl) ether, or a poly(ethyleneether) glycol having a molecular weight below about 460, including diethyleneether glycol). The comonomer can be present to the extent that it does not compromise the benefits of the invention, for example at levels of about 0.5-15 mole percent based on total polymer ingredients. Isophthalic acid, pentanedioic acid, hexanedioic acid, 1,3-propane diol, and 1,4-butanediol are preferred comonomers. [0031]
  • The copolyester(s) can also be made with minor amounts of other comonomers, provided such comonomers do not have an adverse affect on the benefits of the invention. Such other comonomers include 5-sodium-sulfoisophthalate, the sodium salt of 3-(2-sulfoethyl) hexanedioic acid, and dialkyl esters thereof, which can be incorporated at about 0.2-4 mole percent based on total polyester. For improved acid dyeability, the (co)polyester(s) can also be mixed with polymeric secondary amine additives, for example poly(6,6′-imino-bishexamethylene terephthalamide) and copolyamides thereof with hexamethylenediamine, preferably phosphoric acid and phosphorous acid salts thereof. [0032]
  • There is no particular limitation on the outer cross-section of the bicomponent fiber, which can be round, oval, triangular, ‘snowman’ and the like. A “snowman” cross-section can be described as a side-by-side cross-section having a long axis, a short axis and at least two maxima in the length of the short axis when plotted against the long axis. In one embodiment, the spun yarn of the invention comprises cotton and a bicomponent staple fiber comprising poly(ethylene terephthalate) and poly(trimethylene terephthalate) and having a plurality of longitudinal grooves in the surface thereof. Such a bicomponent staple fiber can be considered to have a “scalloped oval” cross-section which can improve the wicking properties of the polyester bicomponent. [0033]
  • The polyester bicomponent staple fibers in the spun yarn of the present invention can also comprise conventional additives such as antistats, antioxidants, antimicrobials, flameproofing agents, dyestuffs, light stabilizers, and delustrants such as titanium dioxide, provided they do not detract from the benefits of the invention. [0034]
  • It is preferred that the bicomponent staple fiber of which the spun yarn of the invention is comprised have a tenacity-at-break of at least about 3.5 dN/tex and no higher than about 5.5 dN/tex. When the tenacity is too low, carding and spinning can be difficult, and when it is too high, fabrics made from the spun yarn of the invention can exhibit undesirable pilling. It is also preferred that the linear density of the spun yarn be in the range of about 100 to 700 denier (111 to 778 dtex). [0035]
  • Knit (for example circular knit and flat knit) and woven (for example plainwoven and twill) stretch fabrics can be made from the spun yarn of the invention. [0036]
  • The process of the invention comprises a step of mixing preferably by intimate blending, cotton (which can optionally be combed) with a polyester bicomponent staple fiber having the composition and characteristics described hereinbefore, wherein the bicomponent staple fiber is present at a level of at least about 20 wt % and no more than about 65 wt %, preferably less than 50 wt %, based on the total weight of the blended fibers. The cotton is present at a level of at least about 35 wt % and no higher than about 80 wt %, based on total weight of the blended fibers. Optionally, up to about 30 wt %, based on total weight of the spun yarn, can be other staple fibers, for example poly(ethylene terephthalate) staple. [0037]
  • Use of bicomponent staple fiber exhibiting follow-the-leader crimp is preferred because such staple is believed to improve carding due to its lower CI level. Correspondingly, it is preferred that the bicomponent fibers in the tow precursor to the staple fiber be ‘in register’ with each other and not be ‘de-registered’. [0038]
  • The blended fibers are further processed by carding the blended fibers to form a card sliver, drawing the card sliver, doubling and redrawing the card sliver up to 3 times, converting the drawn sliver to roving, and ring-spinning the roving with a twist multiplier of 3 to 5.5 to form the spun yarn having a total boil-off shrinkage of at least about 22%. [0039]
  • Intrinsic viscosity (“IV”) of the polyesters was measured with a Viscotek Forced Flow Viscometer Model Y-900 at a 0.4% concentration at 19° C. and according to ASTM D-4603-96 but in 50/50 wt % trifluoroacetic acid/methylene chloride instead of the prescribed 60/40 wt % phenol/1,1,2,2-tetrachloroethane. The measured viscosity was then correlated with standard viscosities in 60/40 wt % phenol/1,1,2,2-tetrachloroethane to arrive at the reported intrinsic viscosity values. [0040]
  • Unless otherwise noted, the following methods of measuring tow Crimp Development and tow Crimp Index of the bicomponent fiber were used in the Examples. To measure tow Crimp Index (“C.I.”), a 1.1 meter sample of polyester bicomponent tow was weighed, and its denier was calculated; the tow size was typically of about 38,000 to 60,000 denier (42,000 to 66,700 dtex). Two knots separated by 25 mm were tied at each end of the tow. Tension was applied to the vertical sample by applying a first clamp at the inner knot of the first end and hanging a 40 mg/den (0.035 dN/tex) weight between the knots of the second end. The sample was exercised three times by lifting and slowly lowering the weight. Then a second clamp was applied at 100 cm down from the inner knot of the first end while the weight was in place between the knots of the second end, the 0.035 dN/tex weight was removed from the second end, and the sample was inverted while maintaining the tension so that the first end was at the bottom. A 1.5 mg/den (0.0013 dN/tex) weight was hung between the knots at the first end, the first clamp was removed from the first end, the sample was allowed to retract against the 0.0013 dN/tex weight, and the (retracted) length from the clamp to the inner knot at the first end was measured in cm and identified as L[0041] r. C.I. was calculated according to Formula I. To measure tow Crimp Development (“C.D.”), the same procedure was carried out, except that the 1.1 meter sample was placed—unrestrained—in boiling water for 1 minute and allowed fully to dry before applying the 40 mg/den (0.035 dN/tex) weight.
  • C.I. and C.D. (%)=100×(100 cm−L r)/100 cm  (I)
  • To determine the total boil-off-shrinkage of the spun yarns in the Examples, the yarn was made into a skein of 25 wraps on a standard skein winder. While the sample was held taut on the winder, a 10 inch (25.4 cm) length (“L[0042] o”) was marked on the sample with a dye marker. The skein was removed from the winder, placed in boiling water for 1 minute without restraint, removed from the water, and allowed to dry at room temperature. The dry skein was laid flat, and the distance between the dye marks was again measured (“Lbo”). Total boil-off shrinkage was calculated from formula II:
  • Total B.O.S.(%)=100×(L bo −L o)/L o  (II)
  • Using the same sample that had been subjected to the boil-off total shrinkage test, the ‘true’ shrinkage of the spun yarn was measured by applying a 200 mg/den (0.18 dN/tex) load, measuring the extended length, and calculating the percent difference between the before-boil-off and extended after-boil-off lengths. The true shrinkage of the samples was generally less than about 5%. Since true shrinkage constitutes only a very minor fraction of total boil-off shrinkage, the latter is used herein as a reliable measure of the stretch characteristics of the spun yarns. Higher total boil-off shrinkage corresponds to desirably higher stretch. [0043]
  • The uniformity of the mass of the spun yarns along their length was determined with a Uniformity 1-B Tester (made by Zellweger Uster Corp.) and reported as Coefficient of Variation (“CV”) in percentage units. In this test, yarn was fed into the Tester at 400 yds/min (366 m/min) for 2.5 minutes, during which the mass of the yarn was measured every 8 mm. The standard deviation of the resulting data was calculated, multiplied by 100, and divided by the average mass of the yarn tested to arrive at percent CV. [0044]
  • Spun yarn tensile properties were determined using a Tensojet (also made by Zellweger Uster Corp.) [0045]
  • The cardability of the fiber blends used to make the spun yarns in the Examples was assessed with a Trutzschler Corp. staple card for which a rate of 45 pounds per hour (20 kg/hour) was considered “100% speed”. Cardability was rated “Good” if the card could be run at 100% speed with no more than 1 stop in a 40 pound (18 kg) test run, “Satisfactory” for at least 80% speed with no more than 3 stops in a run, and “Poor” if the speed was lower or the number of stops higher than for “Satisfactory”. Stops were generally caused by web breaks or coiling jams. [0046]
  • To determine available stretch in the fabrics of Examples 6A and 6B, three 60×6.5 cm sample specimens were cut from each of the fabrics in Examples 4A and 4B. The long dimension corresponded to the stretch direction. Each specimen was unraveled equally on each side until it was 5 cm wide. One end of the fabric was folded to form a loop, and a seam was sewn across the width to fix the loop. At 6.5 cm from the unlooped end of the fabric a first line was drawn, and 50 cm away (“GL”) from the first line, a second line was drawn. The sample was conditioned for at least 16 hours at 20+/−2° C. and 65+/−2% relative humidity. The sample was clamped at the first line, and hung vertically. A 30 newton weight was hung from the loop, and the sample was exercised 3 times by alternately allowing it to be stretched by the weight for 3 seconds and then supporting the weight so the fabric was unloaded. The weight was re-applied, and the distance between the lines (“ML”) was recorded to the nearest millimeter. The available stretch was calculated from formula III, and the results from the three specimens were averaged[0047]
  • % Available Stretch=100×(ML−GL)/GL  (III)
  • To measure percent growth (a measure of recovery after stretching) in Examples 6A and 6B, three new specimens were prepared as described for the Available Stretch test, extended to 80% of the previously determined Available Stretch, and held in the extended condition for 30 minutes. They were then allowed to relax without restraint for 60 minutes, and the length (“L[0048] 2”) between the lines was again measured. Percent Fabric Growth was calculated from Formula IV, and the results from the three specimens were averaged.
  • % Fabric Growth=100×(L 2 −GL)/GL  (IV)
  • In the Examples, the cotton was Standard Strict Low Midland Eastern Variety with an average micronaire of 4.3 (about 1.5 denier per fiber (1.7 dtex per fiber)). The cotton and the polyester bicomponent staple fiber were blended by loading both into a dual feed chute feeder, which fed the Trutzschler card. The resulting card sliver was 70 grain/yard (about 49,500 dtex). Six ends of sliver were drawn together 6.5× in each of two passes to give 60 grain/yard (about 42,500 dtex) drawn sliver which was then converted to roving, unless otherwise noted. The total draft in the roving process was 9.9×. Unless otherwise noted, the roving was then double-creeled and ring-spun on a Saco-Lowell frame using a back draft of 1.35 and a total draft of 29 to give a 22/1 cotton count (270 dtex) spun yarn having a twist multiplier of 3.8 and 17.8 turns per inch. When 100% cotton was so processed, the resulting spun yarn had a CV of 22% and a total boil-off shrinkage of 5%. [0049]
  • Within each bicomponent staple fiber sample, the fibers had substantially equal linear densities and polymer ratios of poly(ethylene terephthalate) to poly(trimethylene terephthalate). No mechanical crimp was applied to the bicomponent staple fibers in the Examples. [0050]
  • In the Tables, “Comp.” indicates a Comparison Sample, and ‘nm’ indicates ‘not measured’. [0051]
  • EXAMPLE 1A
  • Polyester bicomponent staple fiber was made from bicomponent continuous filaments of poly(ethylene terephthalate) (Crystar® 4415-763, a registered trademark of E. I. du Pont de Nemours and Company), having an intrinsic viscosity (“IV”) of 0.52 dl/g, and Sorona® brand poly(trimethylene terephthalate) (Sorona®, a registered trademark of E. I. DuPont de Nemours and Company), having an IV of 1.00, which were melt-spun through a 68-hole post-coalescing spinneret at a spin block, temperature of 255-265° C. The weight ratio of the polymers was 60/40 2G-T/3G-T. The filaments were withdrawn from the spinneret at 450-550 m/min and quenched with crossflow air. The filaments, having a ‘snowman’ cross-section, were drawn 4.4×, heat-treated at 170° C., interlaced, and wound up at 2100-2400 m/min. The filaments had 12% CI (a value believed to be considerably depressed by the interlacing), 51% CD, and a linear density of 2.4 dtex/filament. For conversion to staple fiber, filaments from wound packages were collected into a tow and fed into a conventional staple tow cutter, the blade spacings of which were adjusted to obtain a 1.5 inch (3.8 cm) staple length. [0052]
  • EXAMPLE 1B
  • The polyester bicomponent staple fiber from Example 1A was intimately blended with cotton to obtain various weight percents of the two fibers. The blended fibers were carded, drawn, converted to roving, and ring-spun. The resulting spun yarns had the CV and total Boil-Off Shrinkage (“B.O.S.”) values shown in Table I. [0053]
    TABLE I
    Staple Total
    Bicomponent, B.O.S.,
    Spun Yarn wt % Cardability CV, % %
    Comp. Sample 1A 30 Good 17 18
    Sample 1B 40 Good 18 24
    Sample 1C 50 Satisfactory 19 34
    Sample 1D 60 Satisfactory 22 36
    Comp. Sample 1E 70 Poor 25 nm
  • Interpolation of the data in Table I shows that total boil-off shrinkage was low when this particular bicomponent staple was less than about 35 wt % of the weight of the spun yarn. The data also show that cardability suffered when the amount of polyester bicomponent staple fiber exceeded about 65 wt %, based on weight of the spun yarn. Uniformity was improved if the proportion of polyester bicomponent was less than 50 wt %. [0054]
  • COMPARISON EXAMPLE 1
  • Polyester bicomponent staple fiber was made as described in Example 1A, with the following differences. The weight ratio of 2G-T/3G-T was 40/60, the spinneret had 34 holes, and the resulting filaments had a 4.9 dtex/fil linear density. The CI was 16% and the CD was 50%, but cardability with cotton at levels of 65 wt %, 40 wt %, and even 20 wt % polyester bicomponent staple was very poor, showing the unsatisfactory results obtained when the polyester bicomponent staple had high linear density. [0055]
  • COMPARISON EXAMPLE 2
  • Polyester bicomponent staple fiber was made substantially as described in Example 1A, except that the continuous filaments used were drawn 2.6× and had only 3% CI and 29% CD. Cardability was good in a 60/40 polyester/cotton blend, but the boil-off shrinkage of the yarn spun from such a blend was only 15%, showing the inadequate spun yarn properties that result when CD is too low. [0056]
  • EXAMPLE 2
  • To make the polyester bicomponent staple fibers used in Examples 3 and 4, poly(ethylene terephthalate) of 0.58 IV was prepared in a continuous polymerizer from terephthalic acid and ethylene glycol in a two-step process using an antimony transesterification catalyst in the second step. TiO[0057] 2 (0.3 wt %, based on weight of polymer) was added, and the polymer was transferred at 285° C. and fed by a metering pump to a 790-hole bicomponent fiber spinneret pack maintained at 280° C. Poly(trimethylene terephthalate) (1.04 IV Sorona® brand poly(trimethylene terephthalate)) was solid-phase polymerized, dried, melt-extruded at 258° C., and separately metered to the spinneret pack.
  • The FIGURE shows a cross-section of the spinneret pack that was used. Molten poly(ethylene terephthalate) and poly(trimethylene terephthalate) entered [0058] distribution plate 2 at holes 1 a and 1 b, were distributed radially through corresponding annular channels 3 a and 3 b, and first contacted each other in slot 4 in distribution plate 5. The two polyesters passed through hole 6 in metering plate 7 and through counterbore 8 in spinneret plate 9, and exited the spinneret plate through capillary 10. The internal diameters of hole 6 and capillary 10 were substantially the same.
  • The fibers were spun at 0.5-1.0 g/min per capillary into a radial flow of air supplied at 142 to 200 standard cubic feet per minute (4.0 to 5.6 cubic meters per minute) so that the mass ratio of air:polymer was in the range of 9:1 to 13:1. The quench chamber was substantially the same as that disclosed in U.S. Pat. No. 5,219,506 but used a foraminous quench gas distribution cylinder having similar sized perforations so that it provided ‘constant’ air flow. Spin finish was applied to the fibers with a conical applicator at 0.07 wt % to 0.09 wt % based on fiber weight, and then they were wound onto packages. [0059]
  • About 48 packages of the resulting side-by-side, round cross-section fibers were combined to make a tow of about 130,000 denier (144,400 dtex), passed around a feed roll to a first draw roll operated at less than 35° C., passed to a second draw roll operated at 85° C. to 90° C. and supplied with a hot water spray, heat-treated by contact with six rolls operated at 170° C., optionally over-fed by up to 14% to a puller roll, and, after application of 0.14 wt % finish based on weight of fiber, passed through a continuous, forced convection dryer operating at below 35° C. The tow was then collected into boxes under substantially no tension and cut to 1.5 inches (3.8 cm) for blending with cotton in Examples 3 and 4. The first draw was 77-90% of the total draw applied to the fibers. Additional spinning and drawing conditions and fiber properties are given in Table II. [0060]
    TABLE II
    Drawing: Roll Speeds,
    Spinning m/min Total Over- Linear
    Bicomponent Speed, Draw Draw Draw Feed, Density, Tenacity
    Staple* m/min Feed 1 2 Puller Ratio %** dtex/fiber dN/tex
    Sample 2A 1800 17.4 41.1 45.7 43.4 2.6 5 2.2 4.1
    Sample 2B 1700 22.9 41.1 45.7 43.9 2.0 4 1.8 nm
    Sample 2C 1500 20.9 56.5 73.2 64.3 3.5 14 1.2 5.0
    Comp. Sample 1500 21.3 56.5 73.2 68 3.4 8 1.3 nm
    2D
    Sample 2E 1500 19.7 41.1 45.7 45.7 2.3 0 1.6 3.6
    Sample 2F 1500 26.1 58.1 73.2 64 2.8 14 1.4 4.1
    Sample 2G 1500 26.1 58.1 73.2 67.7 2.8 8 1.4 nm
    Sample 2H 1500 17.4 41.1 45.7 41.4 2.6 10 1.4 4.3
    Sample 2I 1600 21.7 57.1 73.1 64.2 3.4 14 1.0 4.8
    Comp. Sample 1600 23.3 41.1 45.7 44.3 2.0 3 1.6 2.7
    2J
  • EXAMPLE 3
  • Selected bicomponent staple samples made in Example 2 were ring spun at a 60/40 polyester/cotton weight ratio to make 22/1 cotton count spun yarns. Bicomponent staple fiber properties, cardability when blended with cotton, and properties of the resulting spun yarns are given in Table III. [0061]
    TABLE III
    Bicomponent C.I. C.D. B.O.S. CV,
    Staple % Cardability % Spun Yarn % %
    Comp. Sample 2J 9 Good 26 Comp. Sample 3A 20 15
    Sample 2B 16 Good 35 Sample 3B 24 19
    Sample 2A 28 Satisfactory 49 Sample 3C 34 20
    Sample 2H 34 Satisfactory 53 Sample 3D 39 19
    Sample 2E 36 Satisfactory 53 Sample 3E 38 22
  • Interpolation and extrapolation of the data in Table III show that when CI is below 15%, boil-off shrinkage can be inadequate, and that when CI is as high as about 42%, cardability remains satisfactory. [0062]
  • COMPARISON EXAMPLE 3
  • Bicomponent staple Sample 2B was blended with cotton at a polyester bicomponent/cotton weight ratio of 60/40, and the blend was carded and drawn as described hereinabove, but without making a roving. The drawn sliver was air-jet spun into 22/1 yarn on a Murata 802H spinning frame at an air nozzle pressure ratio (N1/N2) of 2.5/5.0, a total draft of 160, and a take-up speed of 200 meters/min. The total boil-off shrinkage of the yarn was only 14%, showing that air-jet spun yarn had unsatisfactory stretch and recovery. [0063]
  • EXAMPLE 4
  • Selected bicomponent staple samples made in Example 2 were ring-spun at 60/40 and 40/60 polyester/cotton weight ratios to make 22/1 cotton count spun yarns. Bicomponent staple fiber properties, cardability of the fiber blends, and properties of the resulting spun yarns are given in Table IV. [0064]
    TABLE IV
    Bicomponent Bicomponent C.I., C.D., B.O.S., CV,
    Staple staple, wt % % Cardability % Spun Yarn % %
    Sample 2I 60 24 Satisfactory 48 Sample 4A 28 18
    Sample 2C 60 34 Satisfactory 56 Sample 4B 37 19
    Sample 2F 60 28 Satisfactory 49 Sample 4C 31 20
    Comp. 60 47 Poor 57 Comp. 38 25
    Sample 2D Sample 4D
    Sample 2G 60 44 Poor 54 Comp. 28 22
    Sample 4E
    Sample 2F 40 28 Good 49 Sample 4F 24 18
    Sample 2G 40 44 Satisfactory 54 Comp. 25 22
    Sample 4G
  • The data in Table IV show that, when CI is above about 42%, carding can be impractically difficult at 60 wt % bicomponent staple but satisfactory at 40 wt % bicomponent staple. Extrapolation of the data shows that at about 20 wt % bicomponent staple having CI as high as about 45%, carding would be good and total boil-off shrinkage and yarn uniformity (CV) would still be acceptable. [0065]
  • EXAMPLE 5
  • Women's 3×1 quarter socks with a ½ cushion foot were knit on a Lonati 454J, 108 needle, 4 inch (10 cm) cylinder machine, using only spun yarns from Example 1. Each sock was bleached with aqueous hydrogen peroxide at 180° F. (82° C.) and boarded at 250° F. (121° C.) for 1.5 minutes with dry heat. [0066]
  • The unload power of the socks was determined as follows. To avoid edge effects, the sock was not cut. It was marked with a 2.5 inch×2.5 inch (6.4 cm×6.4 cm) square, centered on the foot, between the toe and heel. The grips of an Instron tensile tester were placed at the sock foot top and bottom, avoiding the heel and toe and leaving the centered square between the grips so that the test sample had a 2.5 inch (6.4 cm) gauge. Each sample was cycled 3 times to 50% elongation at a speed of 200% elongation per minute. The unload force was measured at 30% remaining available stretch on the 3[0067] rd cycle relaxation and reported in kilograms force and is reported in Table V. In this test, “30% remaining available stretch” means that the fabric had been relaxed 30% from the maximum force on the 3rd cycle.
    TABLE V
    Knit Sock Fabric Bicomponent Unload Force
    Sample Spun Yarn Weight, g/m{circumflex over ( )}2 Content, wt % (kg)
    5A Sample 1D 180 60 0.10
    5B Sample 1C 177 50 0.09
    5C Sample 1B 165 40 0.08
    Comp. None 127 0 0.04
    5E
  • The data in Table V show that knit fabric comprising spun yarn of the invention has high fabric unload force and good stretch-and-recovery properties which are retained even in knits made with spun yarns comprising lower levels of the polyester bicomponent staple fiber. [0068]
  • EXAMPLE 6A
  • A 3/1 twill fabric was made on an air jet loom with a warp of 100% ring-spun cotton of 40/1 cotton count, reeded to 96 ends/inch (38 ends/cm). The filling yarn consisted of a 22/1 cotton count ring-spun yarn of 40 wt % cotton and 60 wt % of bicomponent staple Sample 2H, inserted at 65 picks per inch (25½ picks per cm) and 500 picks/minute. The fabric was scoured for an hour at the boil and conventionally dyed with direct and disperse dyes. The available stretch was 21%, and the growth was 3.8%, both desirable properties. [0069]
  • EXAMPLE 6B
  • Example 6A was repeated but with a spun yarn of bicomponent staple Sample 2E ring-spun at the same blend ratio with cotton, inserted at 45 picks per inch (18 picks/cm). The fabric was scoured for hour at the boil and conventionally dyed with direct and disperse dyes. The available stretch was desirably high at 25%, and the growth was desirably low at 4.6%. [0070]
  • The yarns produced in the examples and fabrics made therefrom in accordance with the invention were soft and aesthetically pleasing. [0071]

Claims (10)

What is claimed is:
1. A spun yarn having a total boil-off shrinkage of at least about 22% comprising cotton and a bicomponent staple fiber comprising poly(ethylene terephthalate) and poly(trimethylene terephthalate) said bicomponent staple fiber having:
a) a crimp development value of from about 35% to about 70%;
b) a crimp index value of from about 15% to about 45%;
c) a length of from about 1.3 cm to about 5.5 cm; and
d) a linear density of from about 0.7 decitex per fiber to about 3.0 decitex per fiber;
wherein the bicomponent staple fiber is present at a level of from about 20 wt %, to about about 65 wt %, based on total weight of the spun yarn; and wherein the cotton is present at a level of from about 35 wt % to about 80 wt %, based on total weight of the spun yarn.
2. The spun yarn of claim 1 wherein the bicomponent staple fiber has a crimp index value of from about 20% to about 30%.
3. The spun yarn of claim 1 having a coefficient of variation of mass no higher than about 22%, and wherein said bicomponent staple fiber has a decitex per fiber no higher than about 2.5.
4. The spun yarn of claim 1 wherein the bicomponent staple fiber is present at a level of less than 50 wt %, based on the total weight of spun yarn.
5. The spun yarn of claim 1 wherein the bicomponent staple fiber has a tenacity-at-break of from about 4.0 dN/tex to about 5.5 dN/tex, and the bicomponent staple fiber is present at a level of at least about 35 wt %, based on the total weight of spun yarn.
6. A process for making the spun yarn of claim 1 comprising the steps of:
a) providing bicomponent staple fiber having
(i) crimp development value of from about 35% to about 70%;
(ii) crimp index value of from about 15% to about 45%;
(iii) length of from about 1.3 cm to about 5.5 cm; and
(iv) linear density of from about 0.7 decitex per fiber to about 3.0 decitex per fiber;
b) providing cotton;
c) combining the cotton and the bicomponent staple fiber so that the bicomponent staple fiber is present at a level of from about 20 wt % to about 65 wt % based on the total weight of the blended fibers and the cotton is present at a level of from about 35 wt % to about 80 wt % based on total weight of the blended fibers;
d) carding the blended fibers to form a card sliver;
e) drawing the card sliver;
f) doubling and redrawing the card sliver up to about 3 times;
g) converting the drawn sliver to roving; and
h) ring-spinning the roving to form the spun yarn.
7. The process of claim 6 wherein the bicomponent staple fiber has a crimp index value of at least about 20% and is present at a level of less than 50 wt %, based on the total weight of the blended fibers.
8. The process of claim 6 wherein the spun yarn has a coefficient of variation of mass of no higher than about 22% and the bicomponent staple fiber is present at a level of at least about 35 wt %, based on the total weight of the blended fibers.
9. A fabric selected from the group consisting of knits and wovens and comprising the spun yarn of claim 1 made by the process of claim 6.
10. A process for making the spun yarn of claim 1 comprising the steps of:
a) providing bicomponent staple fiber;
b) providing cotton;
d) separately carding bicomponent staple fiber and cotton to form a bicomponent staple fiber card sliver and a cotton card sliver;
e) draw-frame blending the bicomponent staple fiber card sliver and the cotton card sliver so that (i) the bicomponent fiber is present at a level of from about 20 wt % to about 65 wt %; and (ii) the cotton is present at a level of from about 35 wt % to about 80 wt %, based on total weight of the blended fibers;
f) doubling and redrawing the blended card sliver of step (e) up to about 3 times;
g) converting the drawn sliver to roving; and
h) ring-spinning the roving to form the spun yarn.
US10/286,683 2001-12-21 2002-11-01 Stretch polyester/cotton spun yarn Abandoned US20030131578A1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
US10/286,683 US20030131578A1 (en) 2001-12-21 2002-11-01 Stretch polyester/cotton spun yarn
US10/323,302 US7036299B2 (en) 2001-12-21 2002-12-19 Stretch polyster/cotton spun yarn
BRPI0215342-4B1A BR0215342B1 (en) 2001-12-21 2002-12-20 Spun yarn and process for producing a spun yarn
MXPA04006058A MXPA04006058A (en) 2001-12-21 2002-12-20 Stretch polyester/cotton spun yarn.
EP02798572A EP1456442B1 (en) 2001-12-21 2002-12-20 Stretch polyester/cotton spun yarn
JP2003562369A JP4450626B2 (en) 2001-12-21 2002-12-20 Stretch polyester / cotton spun yarn
DE60236770T DE60236770D1 (en) 2001-12-21 2002-12-20 Elastic spun yarn of polyester / cotton
TW091136841A TWI285690B (en) 2001-12-21 2002-12-20 Bicomponent staple fiber, spun yarn and fabric comprising the same, and process for making the spun yarn
CNB028225953A CN100467686C (en) 2001-12-21 2002-12-20 Stretch polyester/cotton spun yarn
PCT/US2002/041124 WO2003062511A1 (en) 2001-12-21 2002-12-20 Stretch polyester/cotton spun yarn
BR122013002047A BR122013002047B1 (en) 2001-12-21 2002-12-20 STANDARD BI-COMPONENT LENGTH FIBER
EP08075082A EP1956121B1 (en) 2001-12-21 2002-12-20 Stretch polyester/cotton spun yarn
DE60227192T DE60227192D1 (en) 2001-12-21 2002-12-20 ELASTIC COATED POLYESTER / COTTON YARN
KR1020047009603A KR100871966B1 (en) 2001-12-21 2002-12-20 Stretch polyester/cotton spun yarn
US11/145,853 US20050227069A1 (en) 2001-12-21 2005-06-06 Stretch polyester/cotton spun yarn
HK05107070.3A HK1074860A1 (en) 2001-12-21 2005-08-16 Stretch polyester/cotton spun yarn
US11/163,046 US7240476B2 (en) 2001-12-21 2005-10-03 Stretch polyester/cotton spun yarn

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/029,575 US20030136099A1 (en) 2001-12-21 2001-12-21 Stretch polyester/cotton spun yarn
US10/286,683 US20030131578A1 (en) 2001-12-21 2002-11-01 Stretch polyester/cotton spun yarn

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/029,575 Continuation-In-Part US20030136099A1 (en) 2001-12-21 2001-12-21 Stretch polyester/cotton spun yarn

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/323,302 Continuation-In-Part US7036299B2 (en) 2001-12-21 2002-12-19 Stretch polyster/cotton spun yarn

Publications (1)

Publication Number Publication Date
US20030131578A1 true US20030131578A1 (en) 2003-07-17

Family

ID=21849753

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/029,575 Abandoned US20030136099A1 (en) 2001-12-21 2001-12-21 Stretch polyester/cotton spun yarn
US10/286,683 Abandoned US20030131578A1 (en) 2001-12-21 2002-11-01 Stretch polyester/cotton spun yarn

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/029,575 Abandoned US20030136099A1 (en) 2001-12-21 2001-12-21 Stretch polyester/cotton spun yarn

Country Status (4)

Country Link
US (2) US20030136099A1 (en)
EP (1) EP1956121B1 (en)
DE (1) DE60236770D1 (en)
HK (1) HK1074860A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030159423A1 (en) * 2001-12-21 2003-08-28 Hietpas Geoffrey D. Stretch polyster/cotton spun yarn
CN111979621A (en) * 2020-08-07 2020-11-24 舞钢市龙山纺织科技有限公司 Preparation method of high-grade rice vermicelli

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI320808B (en) * 2003-01-08 2010-02-21 Solotex Corp Sewing thread and sewn fabric products
US7310932B2 (en) * 2005-02-11 2007-12-25 Invista North America S.A.R.L. Stretch woven fabrics
DK2550384T3 (en) * 2010-10-04 2016-01-11 Sanko Tekstil Isletmeleri San Ve Tic As COTTON DENIM SUBSTANCE soft to the touch, has a smooth surface, shiny COLOR AND FALL AS A silk or RAYONSTOF AND METHODS OF MAKING THEREOF
CN102493065A (en) * 2011-12-19 2012-06-13 上海申安纺织有限公司 Regenerated cotton snowflake blended yarn and blending technology thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3454460A (en) * 1966-09-12 1969-07-08 Du Pont Bicomponent polyester textile fiber
US3671379A (en) * 1971-03-09 1972-06-20 Du Pont Composite polyester textile fibers
US3914488A (en) * 1973-09-24 1975-10-21 Du Pont Polyester filaments for fur-like fabrics
US4634625A (en) * 1984-10-25 1987-01-06 E. I. Du Pont De Nemours And Company New fabrics, yarns and process
US4991387A (en) * 1988-03-30 1991-02-12 Teijin Limited Polyester and cotton blended yarn and polyester staple fiber stock used therein
US5102724A (en) * 1987-06-10 1992-04-07 Kanebo, Ltd. Two-way stretch fabric and method for the preparation thereof
US5219506A (en) * 1991-12-06 1993-06-15 E. I. Du Pont De Nemours And Company Preparing fine denier staple fibers
US5626691A (en) * 1995-09-11 1997-05-06 The University Of Virginia Patent Foundation Bulk nanocrystalline titanium alloys with high strength
US5626961A (en) * 1995-06-30 1997-05-06 E. I. Du Pont De Nemours And Company Polyester filaments and tows
US5723215A (en) * 1994-09-30 1998-03-03 E. I. Du Pont De Nemours And Company Bicomponent polyester fibers
US5736243A (en) * 1995-06-30 1998-04-07 E. I. Du Pont De Nemours And Company Polyester tows
US5874372A (en) * 1996-10-30 1999-02-23 Toyo Boseki Kabushiki Kaisha Highly stretchable fabrics and process for producing same
US20030159423A1 (en) * 2001-12-21 2003-08-28 Hietpas Geoffrey D. Stretch polyster/cotton spun yarn

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69308279T2 (en) * 1992-12-31 1997-07-10 Hoechst Celanese Corp Low-pilling mixed yarn made of polyester
WO2001053573A1 (en) * 2000-01-20 2001-07-26 E.I. Du Pont De Nemours And Company Method for high-speed spinning of bicomponent fibers
JP2001288621A (en) * 2000-04-03 2001-10-19 Teijin Ltd Polyester-based conjugate fiber
JP2002054029A (en) * 2000-05-29 2002-02-19 Toray Ind Inc Highly crimped polyester-based conjugate fiber

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3454460A (en) * 1966-09-12 1969-07-08 Du Pont Bicomponent polyester textile fiber
US3671379A (en) * 1971-03-09 1972-06-20 Du Pont Composite polyester textile fibers
US3914488A (en) * 1973-09-24 1975-10-21 Du Pont Polyester filaments for fur-like fabrics
US4634625A (en) * 1984-10-25 1987-01-06 E. I. Du Pont De Nemours And Company New fabrics, yarns and process
US5102724A (en) * 1987-06-10 1992-04-07 Kanebo, Ltd. Two-way stretch fabric and method for the preparation thereof
US4991387A (en) * 1988-03-30 1991-02-12 Teijin Limited Polyester and cotton blended yarn and polyester staple fiber stock used therein
US5219506A (en) * 1991-12-06 1993-06-15 E. I. Du Pont De Nemours And Company Preparing fine denier staple fibers
US5723215A (en) * 1994-09-30 1998-03-03 E. I. Du Pont De Nemours And Company Bicomponent polyester fibers
US5626961A (en) * 1995-06-30 1997-05-06 E. I. Du Pont De Nemours And Company Polyester filaments and tows
US5736243A (en) * 1995-06-30 1998-04-07 E. I. Du Pont De Nemours And Company Polyester tows
US5626691A (en) * 1995-09-11 1997-05-06 The University Of Virginia Patent Foundation Bulk nanocrystalline titanium alloys with high strength
US5874372A (en) * 1996-10-30 1999-02-23 Toyo Boseki Kabushiki Kaisha Highly stretchable fabrics and process for producing same
US20030159423A1 (en) * 2001-12-21 2003-08-28 Hietpas Geoffrey D. Stretch polyster/cotton spun yarn

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030159423A1 (en) * 2001-12-21 2003-08-28 Hietpas Geoffrey D. Stretch polyster/cotton spun yarn
US7036299B2 (en) * 2001-12-21 2006-05-02 Invista North America S.A.R.L. Stretch polyster/cotton spun yarn
CN111979621A (en) * 2020-08-07 2020-11-24 舞钢市龙山纺织科技有限公司 Preparation method of high-grade rice vermicelli

Also Published As

Publication number Publication date
DE60236770D1 (en) 2010-07-29
US20030136099A1 (en) 2003-07-24
EP1956121B1 (en) 2010-06-16
EP1956121A1 (en) 2008-08-13
HK1074860A1 (en) 2005-11-25

Similar Documents

Publication Publication Date Title
US7240476B2 (en) Stretch polyester/cotton spun yarn
JP5112052B2 (en) Composite fiber and yarn containing such fiber
US8513146B2 (en) Scalloped oval bicomponent fibers with good wicking, and high uniformity spun yarns comprising such fibers
US6815060B2 (en) Spun yarn
EP1549789B1 (en) Stretch polyester and acrylic spun yarn
KR20020049049A (en) Poly(Trimethylene Terephthalate) Tetrachannel Cross-Section Staple Fiber
US20030131578A1 (en) Stretch polyester/cotton spun yarn
KR100871966B1 (en) Stretch polyester/cotton spun yarn
JP4450626B2 (en) Stretch polyester / cotton spun yarn
JP2004244731A (en) Spun yarn

Legal Events

Date Code Title Description
AS Assignment

Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIETPAS, GEOFFREY D.;SMITH, STEVEN W.;REEL/FRAME:013441/0115;SIGNING DATES FROM 20021226 TO 20030205

AS Assignment

Owner name: INVISTA NORTH AMERICA S.A.R.L., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:E. I. DU PONT DE NEMOURS AND COMPANY;REEL/FRAME:015286/0708

Effective date: 20040430

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., TEXAS

Free format text: SECURITY INTEREST;ASSIGNOR:INVISTA NORTH AMERICA S.A.R.L. F/K/A ARTEVA NORTH AMERICA S.A.R.;REEL/FRAME:015592/0824

Effective date: 20040430

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: INVISTA NORTH AMERICA S.A.R.L. (F/K/A ARTEVA NORTH

Free format text: RELEASE OF U.S. PATENT SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT (F/K/A JPMORGAN CHASE BANK);REEL/FRAME:022427/0001

Effective date: 20090206