US20030124145A1 - Avian polynucleotide vaccine formula - Google Patents

Avian polynucleotide vaccine formula Download PDF

Info

Publication number
US20030124145A1
US20030124145A1 US10/229,412 US22941202A US2003124145A1 US 20030124145 A1 US20030124145 A1 US 20030124145A1 US 22941202 A US22941202 A US 22941202A US 2003124145 A1 US2003124145 A1 US 2003124145A1
Authority
US
United States
Prior art keywords
vaccine
virus
plasmid
avian
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/229,412
Inventor
Jean-Christophe Audonnet
Annabelle Bouchardon
Michel Riviere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/229,412 priority Critical patent/US20030124145A1/en
Publication of US20030124145A1 publication Critical patent/US20030124145A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/155Paramyxoviridae, e.g. parainfluenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/155Paramyxoviridae, e.g. parainfluenza virus
    • A61K39/17Newcastle disease virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/245Herpetoviridae, e.g. herpes simplex virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/245Herpetoviridae, e.g. herpes simplex virus
    • A61K39/255Marek's disease virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/295Polyvalent viral antigens; Mixtures of viral and bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16311Mardivirus, e.g. Gallid herpesvirus 2, Marek-like viruses, turkey HV
    • C12N2710/16334Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2720/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
    • C12N2720/00011Details
    • C12N2720/10011Birnaviridae
    • C12N2720/10034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/10011Circoviridae
    • C12N2750/10034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18311Metapneumovirus, e.g. avian pneumovirus
    • C12N2760/18334Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/22011Dicistroviridae
    • C12N2770/22034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32411Hepatovirus, i.e. hepatitis A virus
    • C12N2770/32434Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to a vaccine formula allowing the vaccination of avian species, in particular chickens. It also relates to a corresponding method of vaccination.
  • Patent applications WO-A-90 11092, WO-A-92 19183, WO-A-94 21797 and WO-A-95 20660 have made use of the recently developed technique of poly-nucleotide vaccines. It is known that these vaccines use a plasmid capable of expressing, in the host cells, the antigen inserted into the plasmid. All the routes of administration have been proposed (intraperitoneal, intravenous, intramuscular, transcutaneous, intradermal, mucosal and the like).
  • Various vaccination means can also be used, such as DNA deposited at the surface of gold particles and projected so as to penetrate into the animal's skin (Tang et al., Nature, 356, 152-154, 1992) and liquid jet injectors which make it possible to transfect at the same time the skin, the muscle, the fatty tissues and the mammary tissues (Furth et al., Analytical Biochemistry, 205, 365-368, 1992).
  • the polynucleotide vaccines may also use both naked DNAs and DNAs formulated, for example, inside lipids or cationic liposomes.
  • the invention therefore proposes to provide a multivalent vaccine formula which makes it possible to ensure vaccination against a number of pathogenic avian viruses.
  • Another objective of the invention is to provide such a vaccine formula combining different valencies while exhibiting all the criteria required for mutual compatibility and stability of the valencies.
  • Another objective of the invention is to provide such a vaccine formula which makes it possible to combine different valencies in the same vehicle.
  • Another objective of the invention is to provide such a vaccine which is easy and inexpensive to use.
  • Yet another objective of the invention is to provide a method for vaccinating Gallinaceans which makes it possible to obtain protection, including multivalent protection, with a high level of efficiency and of long duration, as well as good safety and an absence of residues.
  • the subject of the present invention is therefore an avian vaccine formula comprising at least three polynucleotide vaccine valencies each comprising a plasmid integrating, so as to express it in vivo in the host cells, a gene with one avian pathogen valency, these valencies being selected from the group consisting of Marek's disease virus (MDV), Newcastle's disease virus (NDV), infectious bursal disease virus (IBDV), infectious bronchitis virus (IBV), infectious anaemia virus (CAV), infectious laryngotracheitis virus (ILTV), encephalomyelitis virus (AEV or avian leukosis virus ALV), pneumovirosis virus, and avian plague virus, the plasmids comprising, for each valency, one or more of the genes selected from the group consisting of gB and gD for the Marek's disease virus, HN and F for the Newcastle disease virus, VP2 for the infectious bursal disease virus, S, MDV
  • Valency in the present invention is understood to mean at least one antigen providing protection against the virus for the pathogen considered, it being possible for the valency to contain, as subvalency, one or more natural or modified genes from one or more strains of the pathogen considered.
  • Pathogenic agent gene is understood to mean not only the complete gene but also the various nucleotide sequences, including fragments which retain the capacity to induce a protective response.
  • the notion of a gene covers the nucleotide sequences equivalent to those described precisely in the examples, that is to say the sequences which are different but which encode the same protein. It also covers the nucleotide sequences of other strains of the pathogen considered, which provide cross-protection or a protection specific for a strain or for a strain group. It also covers the nucleotide sequences which have been modified in order to facilitate the in vivo expression by the host animal but encoding the same protein.
  • the vaccine formula according to the invention comprises three valencies chosen from Marek, infectious bursal, infectious anaemia and Newcastle.
  • the infectious bronchitis valency can also preferably be added thereto.
  • Marek valency two genes may be used encoding gB and gD, in different plasmids or in one and the same plasmid.
  • the use of the gB gene alone is however preferred.
  • the two HN and F chains, integrated into two different plasmids or into one and the same plasmid, are preferably used.
  • S gene For the infectious bronchitis valency, the use of the S gene is preferred.
  • S and M can be associated in a single plasmid or in different plasmids.
  • the two C and NS1 genes are preferably associated in the same plasmid.
  • the use of the gB gene alone is preferred.
  • the two gB and gD genes can be associated in different plasmids or in one and the same plasmid.
  • the use of the HA gene is preferred.
  • the HA sequences from more than one influenza virus strain, in particular from the different strains found in the field are preferably associated in the same vaccine.
  • NP provides cross-protection and the sequence from a single virus strain will therefore be satisfactory.
  • the vaccine formula according to the invention can be presented in a dose volume of between 0.1 and 1 ml and in particular between 0.3 and 0.5 ml.
  • the dose will be generally between 10 ng and 1 mg, preferably between 100 ng and 500 ⁇ g and preferably between 0.1 ⁇ g and 50 ⁇ g per plasmid type.
  • Each plasmid comprises a promoter capable of ensuring the expression of the gene inserted, under its control, into the host cells.
  • This will be in general a strong eukaryotic promoter and in particular a cytomegalovirus early CMV-IE promoter of human or murine origin, or optionally of another origin such as rats, pigs and guinea pigs.
  • the promoter may be either of viral origin or of cellular origin.
  • viral promoter other than CMV-IE there may be mentioned the SV40 virus early or late promoter or the Rous sarcoma virus LTR promoter. It may also be a promoter from the virus from which the gene is derived, for example the gene's own promoter.
  • cytoskeleton gene As cellular promoter, there may be mentioned the promoter of a cytoskeleton gene, such as, for example, the desmin promoter (Bolmont et al., Journal of Submicroscopic Cytology and Pathology, 1990, 22, 117-122; and Zhenlin et al., Gene, 1989, 78, 243-254), or alternatively the actin promoter.
  • the combination of the different vaccine valencies according to the invention may be preferably achieved by mixing the polynucleotide plasmids expressing the antigen(s) of each valency, but it is also possible to envisage causing antigens of several valencies to be expressed by the same plasmid.
  • the subject of the invention is also monovalent vaccine formulae comprising one or more plasmids encoding one or more genes from one of the viruses above, the genes being those described above. Besides their monovalent character, these formulae may possess the characteristics stated above as regards the choice of the genes, their combinations, the composition of the plasmids, the dose volumes, the doses and the like.
  • the monovalent vaccine formulae may also be used (i) for the preparation of a polyvalent vaccine formula as described above, (ii) individually against the actual pathology, (iii) associated with a vaccine of another type (live or inactivated whole, recombinant, subunit) against another pathology, or (iv) as booster for a vaccine as described below.
  • the subject of the present invention is in fact also the use of one or more plasmids according to the invention for the manufacture of an avian vaccine intended to vaccinate animals first vaccinated by means of a first conventional vaccine (monovalent or multivalent) of the type in the prior art, in particular selected from the group consisting of a live whole vaccine, an inactivated whole vaccine, a subunit vaccine, a recombinant vaccine, this first vaccine having (that is to say containing or capable of expressing) the antigen(s) encoded by the plasmids or antigen(s) providing cross-protection.
  • a first conventional vaccine monovalent or multivalent
  • this first vaccine having (that is to say containing or capable of expressing) the antigen(s) encoded by the plasmids or antigen(s) providing cross-protection.
  • the polynucleotide vaccine has a potent booster effect which results in an amplification of the immune response and the acquisition of a long-lasting immunity.
  • the first-vaccination vaccines can be selected from commercial vaccines available from various veterinary vaccine producers.
  • the subject of the invention is also a vaccination kit grouping together a vaccine formula according to the invention and a first-vaccination vaccine as described above. It also relates to a vaccine formula according to the invention accompanied by a leaflet indicating the use of this formula as a booster for a first vaccination as described above.
  • the subject of the present invention is also a method of avian vaccination, comprising the administration of an effective vaccine formula as described above.
  • This vaccination method comprises the administration of one or more doses of the vaccine formula, it being possible for these doses to be administered in succession over a short period of time and/or in succession at widely spaced intervals.
  • the vaccine formulae according to the invention can be administered in the context of this method of vaccination, by the different routes of administration proposed in the prior art for polynucleotide vaccination and by means of known techniques of administration.
  • the intramuscular route, the in ovo route, the intraocular route, nebulization and drinking water will be targeted in particular.
  • the efficiency of presentation of the antigens to the immune system varies according to the tissues.
  • the mucous membranes of the respiratory tree serve as barrier to the entry of pathogens and are associated with lymphoid tissues which support local immunity.
  • the administration of a vaccine by contact with the mucous membranes, in particular the buccal mucous membrane, the pharyngeal mucous membrane and the mucous membrane of the bronchial region is certainly of interest for mass vaccination.
  • the mucosal routes of administration form part of a preferred mode of administration for the invention, using in particular neubilization or spray or drinking water. It will be possible to apply the vaccine formulae and the vaccination methods according to the invention in this context.
  • the subject of the invention is also the method of vaccination consisting in making a first vaccination as described above and a booster with a vaccine formula according to the invention.
  • the process according to the invention there is administered in a first instance, to the animal, an effective dose of the vaccine of the conventional, especially inactivated, live, attenuated or recombinant, type, or alternatively a subunit vaccine so as to provide a first vaccination, and, after a period preferably of 2 to 6 weeks, the polyvalent or monovalent vaccine according to the invention is administered.
  • the invention also relates to the method of preparing the vaccine formulae, namely the preparation of the valencies and mixtures thereof, as evident from this description.
  • FIG. No. 1 Plasmid pVR1012
  • FIG. No. 2 Plasmid pAB045
  • FIG. No. 3 Plasmid pAB080
  • FIG. No. 4 Sequence of the NDV HN gene, Texas GB strain
  • FIG. No. 5 Plasmid pAB046
  • FIG. No 6 Sequence of the NDV F gene, Texas GB strain
  • FIG. No. 7 Plasmid pAB047
  • FIG. No. 8 Sequence of the IBDV VP2 gene, Faragher strain
  • FIG. No. 9 Plasmid pAB048
  • FIG. No. 10 Sequence of the IBV S gene, Massachusetts 41 strain
  • FIG. No. 11 Plasmid pAB049
  • FIG. No. 12 Sequence of the IBV M gene, Massachusetts 41 strain
  • FIG. No. 13 Plasmid pAB050
  • FIG. No. 14 Sequence of the IBV N gene, Massachusetts 41 strain
  • FIG. No. 15 Plasmid pAB051
  • FIG. No. 16 Plasmid pAB054
  • FIG. No. 17 Plasmid pAB055
  • FIG. No. 18 Plasmid pAB076
  • FIG. No. 19 Plasmid pAB089
  • FIG. No. 20 Plasmid pAB086
  • FIG. No. 21 Plasmid pAB081
  • FIG. No. 22 Plasmid pAB082
  • FIG. No. 23 Plasmid pAB077
  • FIG. No. 24 Plasmid pAB078
  • FIG. No. 25 Plasmid pAB088
  • FIG. No. 26 Plasmid pAB079
  • SEQ ID No. 1 Oligonucleotide AB062
  • SEQ ID No. 2 Oligonucleotide AB063
  • SEQ ID No. 3 oligonucleotide AB148
  • SEQ ID No. 7 Sequence of the NDV EN gene, Texas GB strain
  • SEQ ID No. 8 Oligonucleotide AB091
  • SEQ ID No. 10 Sequence of the NDV F gene, Texas GB strain
  • SEQ ID No. 11 Oligonucleotide AB093
  • SEQ ID No. 12 Oligonucleotide AB094
  • SEQ ID No. 13 Sequence of the IBDV VP2 “gene”, Faragher strain
  • SEQ ID No. 15 Oligonucleotide PB096
  • SEQ ID No. 16 Sequence of the IBV S gene, Massachusetts 41 strain
  • SEQ ID No. 17 Oligonucleotide AB097
  • SEQ ID No. 18 Oligonucleotide AB098
  • SEQ ID No. 19 Sequence of the IBV M gene, Massachusetts 41 strain
  • SEQ ID No. 21 Oligonucleotide AB100
  • SEQ ID No. 22 Sequence of the IBV N gene, Massachusetts 41 strain
  • SEQ ID No. 26 Oligonucleotide AB105
  • SEQ ID No. 27 Oligonucleotide AB140
  • SEQ ID No. 28 Oligonucleotide AB141
  • SEQ ID No. 29 Oligonucleotide AB164
  • SEQ ID No. 30 Oligonucleotide AB165
  • SEQ ID No. 31 Oligonucleotide AB160
  • SEQ ID No. 32 Oligonucleotide AB161
  • SEQ ID No. 33 Oligonucleotide AB150
  • SEQ ID No. 35 Oligonucleotide AB152
  • SEQ ID No. 36 Oligonucleotide AB153
  • SEQ ID No. 37 Oligonucleotide AB142
  • SEQ ID No. 38 Oligonucleotide AB143
  • SEQ ID No. 40 Oligonucleotide AB145
  • SEQ ID No. 41 Oligonucleotide AB156
  • SEQ ID No. 42 Oligonucleotide AB158
  • the viruses are cultured on the appropriate cellular system until a cytopathic effect is obtained.
  • the cellular systems to be used for each virus are well known to persons skilled in the art. Briefly, the cells sensitive to the virus used, which are cultured in Eagle's minimum essential medium (MEM medium) or another appropriate medium, are inoculated with the viral strain studied using a multiplicity of infection of 1. The infected cells are then incubated at 37° C. for the time necessary for the appearance of a complete cytopathic effect (on average 36 hours).
  • MEM medium Eagle's minimum essential medium
  • the supernatant and the lysed cells are harvested and the entire viral suspension is centrifuged at 1000 g for 10 minutes at +4° C. so as to remove the cellular debris.
  • the viral particles are then harvested by ultracentrifugation at 400,000 g for 1 hour at +4° C.
  • the pellet is taken up in a minimum volume of buffer (10 mM Tris, 1 mM EDTA).
  • This concentrated viral suspension is treated with proteinase K (100 ⁇ g/ml final) in the presence of sodium dodecyl sulphate (SDS) (0.5% final) for 2 hours at 37° C.
  • SDS sodium dodecyl sulphate
  • the DNA is centrifuged at 10,000 g for 15 minutes at +4° C.
  • the DNA pellet is dried and then taken up in a minimum volume of sterile ultrapure water. It can then be digested with restriction enzymes.
  • RNA viruses were purified according to techniques well known to persons skilled in the art.
  • the genomic viral RNA of each virus was then isolated using the “guanidium thiocyanate/phenol-chloroform” extraction technique described by P. Chromczynski and N. Sacchi (Anal. Biochem., 1987. 162, 156-159).
  • oligonucleotides comprising restriction sites at their 5 40 ends to facilitate the cloning of the amplified fragments
  • the reverse transcription (RT) reaction and the polymerase chain reaction (PCR) were carried out according to standard techniques (Sambrook J. et al., 1989). Each RT-PCR reaction was performed with a pair of specific amplimers and taking, as template, the viral genomic RNA extracted.
  • the complementary DNA amplified was extracted with phenol/chloroform/isoamyl alcohol (25:24:1) before being digested with restriction enzymes.
  • the plasmid pVR1012 (FIG. No. 1 ) was obtained from Vical Inc., San Diego, Calif., USA. Its construction has been described in J. Hartikka et al. (Human Gene Therapy, 1996, 7, 1205-1217).
  • a PCR reaction was carried out with the Marek's disease virus (MDV) (RB 1 B strain) (L. Ross et al., J. Gen. Virol., 1989, 70, 1789-1804) genomic DNA, prepared according to the technique in Example 2, and with the following oligonucleotides: AB062 (37 mer) (SEQ ID No.1) 5′ AAAACTGCAGACTATGCACTATTTTAGGCGGAATTGC 3′ AB063 (35 mer) (SEQ ID No.2) 5′ GGAAGATCTTTACACAGCATCATCTTTCTGAGTCTG 3′
  • a PCR reaction was carried out with the Marek's disease virus (MDV) (RB1B strain) (L. Ross et al., J. Gen. Virol., 1989, 72, 949-954) genomic DNA, prepared according to the technique in Example 2, and with the following oligonucleotides: AB148 (29 mer) (SEQ ID No.3) 5′ AAACTGCAGATGAAAGTATTTTTTTTTAG 3′ AB149 (32 mer) (SEQ ID No.4) 5′ GGAAGATCTTTATAGGCGGGAATATGCCCGTC 3′
  • NDV Newcastle disease virus
  • Texas GB strain Newcastle disease virus
  • genomic RNA prepared according to the technique of Example 3, and with the following oligonucleotides: AB072 (39 mer) (SEQ ID No.5) 5′ AGAATGCGGCCGCGATGGGCTCCAGATCTTCTACCAG 3′ AB094 (34 mer) (SEQ ID No.6) 5′ CGCGGATCCTTAAATCCCATCATCCTTGAGAATC 3′
  • NDV Newcastle disease virus
  • Texas GB strain Newcastle disease virus
  • genomic RNA prepared according to the technique of Example 3, and with the following oligonucleotides: AB091 (37 mer) (SEQ ID No.8) 5′ AGAATGCGGCCGCGATGGGCTCCAGATCTTCTACCAG 3′ AB092 (34 mer) (SEQ ID No.9) 5′ TGCTCTAGATCATATTTTTGTAGTGGCTCTCATC 3′
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the infectious bursal disease virus (IBDV) (Faragher strain) genomic RNA, prepared according to the technique of Example 3, and with the following oligonucleotides: AB093 (33 mer) (SEQ ID No.11) 5′ TCAGATATCGATGACAAACCTGCAAGATCAAAC 3′ AB094 (38 mer) (SEQ ID No.12) 5′ AGAATGCGGCCGCTTACCTCCTTATAGCCCGGATTATG 3′
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the chicken infectious bronchitis virus (IBV) (Massachusetts 41 strain) genomic RNA, prepared according to the technique of Example 3, and with the following oligonucleotides: AB095 (32 mer) (SEQ ID No.14) 5′ ACGCGTCGACATGTTGGTAACACCTCTTTTAC 3′ AB096 (35 mer) (SEQ ID No.15) 5′ GGAAGATCTTCATTAACGTCTAAAACGACGTGTTC 3′
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the chicken infectious bronchitis virus (IBV) (Massachusetts 41 strain) genomic RNA, prepared according to the technique of Example 3, and with the following oligonucleotides: AB097 (37 mer) (SEQ ID No.17) 5′ ATAAGAATGCGGCCGCATGTCCAACGAGACAAATTGTAC 3′ AB098 (38 mer) (SEQ ID No.18) 5′ ATAAGAATGCGGCCGCTTTAGGTGTAAAGACTACTCCC 3′
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the chicken infectious bronchitis virus (IBV) (Massachusetts 41 strain) genomic RNA, prepared according to the technique of Example 3, and with the following oligonucleotides: AB099 (34 mer) (SEQ ID No.20) 5′ AAAACTGCAGTCATGGCAAGCGGTAAGGCAACTG 3′ AB100 (33 mer) (SEQ ID No.21) 5′ CGCGGATCCTCAAAGTTCATTCTCTCCTAGGGC 3′
  • a PCR reaction was carried out with the chicken anaemia virus (CAV) (Cuxhaven-1 strain) genomic DNA (B. Meehan et al., Arch. Virol., 1992, 124, 301-319), prepared according to the technique of Example 2, and with the following oligonucleotides: CD064 (39 mer) (SEQ ID No.23) 5′ TTCTTGCGGCCGCCATGGCAAGACGAGCTCGCAGACCGA 3′ CD065 (38 mer) (SEQ ID No.24) 5′ TTCTTGCGGCCGCTCAGGGCTGCGTCCCCCAGTACATG 3′
  • CAV chicken anaemia virus
  • a PCR reaction was carried out with the chicken anaemia virus (CAV) (Cuxhaven-1 strain) genomic DNA (B. Meehan et al., Arch. Virol., 1992, 124, 301-319), prepared according to the technique of Example 2, and with the following oligonucleotides: CD066 (39 mer) (SEQ ID No.25) 5′ TTCTTGCGGCCGCCATGCACGGGAACGGCGGAACCGG 3′ AB105 (32 mer) (SEQ ID No.26) 5′ CGCGGATCCTCACACTATACGTACCGGGCGG 3′
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the avian encephalomyelitis virus (AEV) (Type C) genomic RNA (E. Bieth et al., Nucleic Acids Res., 1992, 20, 367), prepared according to the technique of Example 3, and with the following oligonucleotides: AB160 (54 mer) 5′ TTTGATATCATGGAAGCCGTCATTAAGGCATTTCTGACTGGATACCCTGGGAAG 3′ (SEQ ID No.31) AB161 (31 mer) 5′ TTTGGATCCTTATACTATTCTGCTTTCAGGC 3′ (SEQ ID No.32)
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the avian encephalomyelitis virus (AEV) (Type C) genomic RNA (E. Bieth et al., Nucleic Acids Res., 1992, 20, 367), prepared according to the technique of Example 3, and with the following oligonucleotides: AB150 (31 mer) (SEQ ID No.33) 5′ ACGCGTCGACATGGAAGCCGTCATTAAGGTG 3′ AB151 (32 mer) (SEQ ID No.34) 5′ TGCTCTAGACTATAAATTTGTCAAGCGGAGCC 3′
  • RT-PCR reaction according to the technique of Example 5 was carried out with the turkey rhinotracheitis virus (TRV) (2119 strain) genomic RNA (K. Juhasz et al., J. Gen. Virol., 1994, 75. 2873-2880), prepared according to the technique of Example 3, and with the following oligonucleotides: AB152 (32 mer) (SEQ ID No.35) 5′ AAACTGCAGAGATGGGGTCAGAGCTCTACATC 3′ AB153 (31 mer) (SEQ ID No.36) 5′ CGAAGATCTTTATTGACTAGTACAGCACCAC 3′
  • Example 5 An RT-PCR reaction according to the technique of Example 5 was carried out with the avian plague virus (AIV) (H2N2 Postdam strain) genomic RNA (J. Schfer et al., Virology, 1993, 194, 781-788), prepared according to the technique of Example 3, and with the following oligonucleotides: AB142 (33 mer) (SEQ ID No.37) 5′ AAACTGCAGCAATGGCCATCATTTATCTAATTC 3′ AB143 (31 mer) (SEQ ID No.38) 5′ CGAAGATCTTCATATGCAGATTCTGCATTGC 3′
  • Example 5 An RT-PCR reaction according to the technique of Example 5 was carried out with the avian plague virus (AIV) (H7N7 für strain) genomic RNA (C. Rohm et al., Virology, 1995, 209, 664-670), prepared according to the technique of Example 3, and with the following oligonucleotides: AB144 (31 mer) (SEQ ID No.39) 5′ AAACTGCAGATGAACACTCAAATCCTGATAC 3′ AB145 (31 mer) (SEQ ID No.40) 5′ TTTGGATCCTTATATACAAATAGTGCACCGC 3′
  • Plasmid pAB088 (Avian Plague NP gene, H1N1 strain)
  • Example 5 An RT-PCR reaction according to the technique of Example 5 was carried out with the avian influenza virus (AIV) (H1N1 Bavaria strain) genomic RNA (M. Gammelin et al., Virology, 1989, 170, 71-80), prepared according to the technique of Example 3, and with the following oligonucleotides: AB156 (32 mer) (SEQ ID No.41) 5′ CCGGTCGACATGGCGTCTCAAGGCACCAAACG 3′ AB158 (30 mer) (SEQ ID No.42) 5′ CGCGGATCCTTAATTGTCATACTCCTCTGC 3′
  • any technique may be used which makes it possible to obtain a suspension of purified plasmids predominantly in the supercoiled form.
  • These techniques are well known to persons skilled in the art. There may be mentioned in particular the alkaline lysis technique followed by two successive ultracentrifugations on a caesium chloride gradient in the presence of ethidium bromide as described in J. Sambrook et al. ( Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989).
  • the various plasmids necessary for the manufacture of an associated vaccine are mixed starting with their concentrated solutions (Example 16).
  • the mixtures are prepared such that the final concentration of each plasmid corresponds to the effective dose of each plasmid.
  • the solutions which can be used to adjust the final concentration of the vaccine may be either a 0.9% NaCl solution, or PBS buffer.
  • compositions such as liposomes, cationic lipids, may also be used for the manufacture of the vaccines.
  • the chickens are vaccinated with doses of 10, 50 or 100 ⁇ g per plasmid.
  • the injections can be performed with a needle by the intramuscular route.
  • the sites of injection are the carina (for chickens more than 2 weeks old) and the thigh (for 1-day-old or older chickens).
  • the vaccinal doses are administered in the volume of 0.1 to 0.3 ml.
  • the injections are also performed by the intramuscular route using a liquid jet injection apparatus (with no needle) which has been specially designed for the vaccination of chickens (for example AVIJET apparatus).
  • the injected volume is 0.3 ml.
  • the injection may be performed in the carina or at the level of the thigh.
  • the injections may be performed with a needle by the intramuscular route, in the carina or in the thigh, in a volume of 0.3 ml.
  • the injection of the plasmid vaccines can also be done in ovo.
  • special formulations as mentioned in Example 29 may be used.
  • the volume injected into the 18-day embryonated egg is between 50 ⁇ l and 200 ⁇ l.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Pulmonology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Communicable Diseases (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The avian vaccine formula comprises at least three polynucleotide vaccine valencies each comprising a plasmid integrating, so as to express it in vivo in the host cells, a gene with one avian pathogen valency, these valencies being selected from the group consisting of Marek's disease virus, Newcastle disease virus, infectious bursal disease virus, infectious bronchitis virus, infectious anaemia virus, the plasmids comprising, for each valency, one or more of the genes selected from the group consisting of gB and gD for the Marek's disease virus, HN and F for the Newcastle disease virus, VP2 for the infectious bursal disease virus, S, M and N for the infectious bronchitis virus, C+NS1 for the infectious anaemia virus.

Description

  • The present invention relates to a vaccine formula allowing the vaccination of avian species, in particular chickens. It also relates to a corresponding method of vaccination. [0001]
  • Associations of vaccines against a number of viruses responsible for pathologies in chicken have already been proposed in the past. [0002]
  • The associations developed so far were prepared from inactivated vaccines or live vaccines. Their use poses problems of compatibility between valencies and of stability. It is indeed necessary to ensure both the compatibility between the different vaccine valencies, whether from the point of view of the different antigens used from the point of view of the formulations themselves. The problem of the conservation of such combined vaccines and also of their safety especially in the presence of an adjuvant also exists. These vaccines are in general quite expensive. [0003]
  • Patent applications WO-A-90 11092, WO-A-92 19183, WO-A-94 21797 and WO-A-95 20660 have made use of the recently developed technique of poly-nucleotide vaccines. It is known that these vaccines use a plasmid capable of expressing, in the host cells, the antigen inserted into the plasmid. All the routes of administration have been proposed (intraperitoneal, intravenous, intramuscular, transcutaneous, intradermal, mucosal and the like). Various vaccination means can also be used, such as DNA deposited at the surface of gold particles and projected so as to penetrate into the animal's skin (Tang et al., Nature, 356, 152-154, 1992) and liquid jet injectors which make it possible to transfect at the same time the skin, the muscle, the fatty tissues and the mammary tissues (Furth et al., Analytical Biochemistry, 205, 365-368, 1992). [0004]
  • The polynucleotide vaccines may also use both naked DNAs and DNAs formulated, for example, inside lipids or cationic liposomes. [0005]
  • The invention therefore proposes to provide a multivalent vaccine formula which makes it possible to ensure vaccination against a number of pathogenic avian viruses. [0006]
  • Another objective of the invention is to provide such a vaccine formula combining different valencies while exhibiting all the criteria required for mutual compatibility and stability of the valencies. [0007]
  • Another objective of the invention is to provide such a vaccine formula which makes it possible to combine different valencies in the same vehicle. [0008]
  • Another objective of the invention is to provide such a vaccine which is easy and inexpensive to use. [0009]
  • Yet another objective of the invention is to provide a method for vaccinating Gallinaceans which makes it possible to obtain protection, including multivalent protection, with a high level of efficiency and of long duration, as well as good safety and an absence of residues. [0010]
  • The subject of the present invention is therefore an avian vaccine formula comprising at least three polynucleotide vaccine valencies each comprising a plasmid integrating, so as to express it in vivo in the host cells, a gene with one avian pathogen valency, these valencies being selected from the group consisting of Marek's disease virus (MDV), Newcastle's disease virus (NDV), infectious bursal disease virus (IBDV), infectious bronchitis virus (IBV), infectious anaemia virus (CAV), infectious laryngotracheitis virus (ILTV), encephalomyelitis virus (AEV or avian leukosis virus ALV), pneumovirosis virus, and avian plague virus, the plasmids comprising, for each valency, one or more of the genes selected from the group consisting of gB and gD for the Marek's disease virus, HN and F for the Newcastle disease virus, VP2 for the infectious bursal disease virus, S, M and N for the infectious bronchitis virus, C+NS1 for the infectious anaemia virus, gB and gD for the infectious laryngotracheitis virus, env and gag/pro for the encephalomyelitis virus, F and G for the pneumovirosis virus and HA, N and NP for the avian plague virus. [0011]
  • Valency in the present invention is understood to mean at least one antigen providing protection against the virus for the pathogen considered, it being possible for the valency to contain, as subvalency, one or more natural or modified genes from one or more strains of the pathogen considered. [0012]
  • Pathogenic agent gene is understood to mean not only the complete gene but also the various nucleotide sequences, including fragments which retain the capacity to induce a protective response. The notion of a gene covers the nucleotide sequences equivalent to those described precisely in the examples, that is to say the sequences which are different but which encode the same protein. It also covers the nucleotide sequences of other strains of the pathogen considered, which provide cross-protection or a protection specific for a strain or for a strain group. It also covers the nucleotide sequences which have been modified in order to facilitate the in vivo expression by the host animal but encoding the same protein. [0013]
  • Preferably, the vaccine formula according to the invention comprises three valencies chosen from Marek, infectious bursal, infectious anaemia and Newcastle. The infectious bronchitis valency can also preferably be added thereto. [0014]
  • On this basis of 3, 4 or 5 valencies, it will be possible to add one or more of the avian plague, laryngotracheitis, pneumovirosis and encephalomyelitis valencies. [0015]
  • As regards the Marek valency, two genes may be used encoding gB and gD, in different plasmids or in one and the same plasmid. The use of the gB gene alone is however preferred. [0016]
  • For the Newcastle valency, the two HN and F chains, integrated into two different plasmids or into one and the same plasmid, are preferably used. [0017]
  • For the infectious bronchitis valency, the use of the S gene is preferred. Optionally, but less preferably, S and M can be associated in a single plasmid or in different plasmids. [0018]
  • For the infectious anaemia valency, the two C and NS1 genes are preferably associated in the same plasmid. [0019]
  • For the infectious laryngotracheitis valency, the use of the gB gene alone is preferred. Optionally, but less preferably, the two gB and gD genes can be associated in different plasmids or in one and the same plasmid. [0020]
  • For the pneumovirosis valency, the use of the two F and G genes, in a single plasmid or in different plasmids, is preferred [0021]
  • For the avian plague valency, the use of the HA gene is preferred. Optionally, but less preferably, it is possible to use the associations HA and NP or HA and N in different plasmids or in one and the same plasmid. Preferably, the HA sequences from more than one influenza virus strain, in particular from the different strains found in the field, are preferably associated in the same vaccine. On the other hand, NP provides cross-protection and the sequence from a single virus strain will therefore be satisfactory. [0022]
  • For the encephalomyelitis valency, the use of env is preferred. [0023]
  • The vaccine formula according to the invention can be presented in a dose volume of between 0.1 and 1 ml and in particular between 0.3 and 0.5 ml. [0024]
  • The dose will be generally between 10 ng and 1 mg, preferably between 100 ng and 500 μg and preferably between 0.1 μg and 50 μg per plasmid type. [0025]
  • Use will be preferably made of naked plasmids, simply placed in the vaccination vehicle which will be in general physiological saline and the like. It is of course possible to use all the polynucleotide vaccine forms described in the prior art and in particular formulated in liposomes. [0026]
  • Each plasmid comprises a promoter capable of ensuring the expression of the gene inserted, under its control, into the host cells. This will be in general a strong eukaryotic promoter and in particular a cytomegalovirus early CMV-IE promoter of human or murine origin, or optionally of another origin such as rats, pigs and guinea pigs. [0027]
  • More generally, the promoter may be either of viral origin or of cellular origin. As viral promoter other than CMV-IE, there may be mentioned the SV40 virus early or late promoter or the Rous sarcoma virus LTR promoter. It may also be a promoter from the virus from which the gene is derived, for example the gene's own promoter. [0028]
  • As cellular promoter, there may be mentioned the promoter of a cytoskeleton gene, such as, for example, the desmin promoter (Bolmont et al., Journal of Submicroscopic Cytology and Pathology, 1990, 22, 117-122; and Zhenlin et al., Gene, 1989, 78, 243-254), or alternatively the actin promoter. [0029]
  • When several genes are present in the same plasmid, these may be presented in the same transcription unit or in two different units. [0030]
  • The combination of the different vaccine valencies according to the invention may be preferably achieved by mixing the polynucleotide plasmids expressing the antigen(s) of each valency, but it is also possible to envisage causing antigens of several valencies to be expressed by the same plasmid. [0031]
  • The subject of the invention is also monovalent vaccine formulae comprising one or more plasmids encoding one or more genes from one of the viruses above, the genes being those described above. Besides their monovalent character, these formulae may possess the characteristics stated above as regards the choice of the genes, their combinations, the composition of the plasmids, the dose volumes, the doses and the like. [0032]
  • The monovalent vaccine formulae may also be used (i) for the preparation of a polyvalent vaccine formula as described above, (ii) individually against the actual pathology, (iii) associated with a vaccine of another type (live or inactivated whole, recombinant, subunit) against another pathology, or (iv) as booster for a vaccine as described below. [0033]
  • The subject of the present invention is in fact also the use of one or more plasmids according to the invention for the manufacture of an avian vaccine intended to vaccinate animals first vaccinated by means of a first conventional vaccine (monovalent or multivalent) of the type in the prior art, in particular selected from the group consisting of a live whole vaccine, an inactivated whole vaccine, a subunit vaccine, a recombinant vaccine, this first vaccine having (that is to say containing or capable of expressing) the antigen(s) encoded by the plasmids or antigen(s) providing cross-protection. [0034]
  • Remarkably, the polynucleotide vaccine has a potent booster effect which results in an amplification of the immune response and the acquisition of a long-lasting immunity. [0035]
  • In general, the first-vaccination vaccines can be selected from commercial vaccines available from various veterinary vaccine producers. [0036]
  • The subject of the invention is also a vaccination kit grouping together a vaccine formula according to the invention and a first-vaccination vaccine as described above. It also relates to a vaccine formula according to the invention accompanied by a leaflet indicating the use of this formula as a booster for a first vaccination as described above. [0037]
  • The subject of the present invention is also a method of avian vaccination, comprising the administration of an effective vaccine formula as described above. This vaccination method comprises the administration of one or more doses of the vaccine formula, it being possible for these doses to be administered in succession over a short period of time and/or in succession at widely spaced intervals. [0038]
  • The vaccine formulae according to the invention can be administered in the context of this method of vaccination, by the different routes of administration proposed in the prior art for polynucleotide vaccination and by means of known techniques of administration. [0039]
  • The intramuscular route, the in ovo route, the intraocular route, nebulization and drinking water will be targeted in particular. [0040]
  • The efficiency of presentation of the antigens to the immune system varies according to the tissues. In particular, the mucous membranes of the respiratory tree serve as barrier to the entry of pathogens and are associated with lymphoid tissues which support local immunity. In addition, the administration of a vaccine by contact with the mucous membranes, in particular the buccal mucous membrane, the pharyngeal mucous membrane and the mucous membrane of the bronchial region, is certainly of interest for mass vaccination. [0041]
  • Consequently, the mucosal routes of administration form part of a preferred mode of administration for the invention, using in particular neubilization or spray or drinking water. It will be possible to apply the vaccine formulae and the vaccination methods according to the invention in this context. [0042]
  • The subject of the invention is also the method of vaccination consisting in making a first vaccination as described above and a booster with a vaccine formula according to the invention. [0043]
  • In a preferred embodiment of the process according to the invention, there is administered in a first instance, to the animal, an effective dose of the vaccine of the conventional, especially inactivated, live, attenuated or recombinant, type, or alternatively a subunit vaccine so as to provide a first vaccination, and, after a period preferably of 2 to 6 weeks, the polyvalent or monovalent vaccine according to the invention is administered.[0044]
  • The invention also relates to the method of preparing the vaccine formulae, namely the preparation of the valencies and mixtures thereof, as evident from this description. [0045]
  • The invention will now be described in greater detail with the aid of the embodiments of the invention taken with reference to the accompanying drawings. [0046]
  • LIST OF FIGURES
  • FIG. No. [0047] 1: Plasmid pVR1012
  • FIG. No. [0048] 2: Plasmid pAB045
  • FIG. No. [0049] 3: Plasmid pAB080
  • FIG. No. [0050] 4: Sequence of the NDV HN gene, Texas GB strain
  • FIG. No. [0051] 5: Plasmid pAB046
  • FIG. No [0052] 6: Sequence of the NDV F gene, Texas GB strain
  • FIG. No. [0053] 7: Plasmid pAB047
  • FIG. No. [0054] 8: Sequence of the IBDV VP2 gene, Faragher strain
  • FIG. No. [0055] 9: Plasmid pAB048
  • FIG. No. [0056] 10: Sequence of the IBV S gene, Massachusetts 41 strain
  • FIG. No. [0057] 11: Plasmid pAB049
  • FIG. No. [0058] 12: Sequence of the IBV M gene, Massachusetts 41 strain
  • FIG. No. [0059] 13: Plasmid pAB050
  • FIG. No. [0060] 14: Sequence of the IBV N gene, Massachusetts 41 strain
  • FIG. No. [0061] 15: Plasmid pAB051
  • FIG. No. [0062] 16: Plasmid pAB054
  • FIG. No. [0063] 17: Plasmid pAB055
  • FIG. No. [0064] 18: Plasmid pAB076
  • FIG. No. [0065] 19: Plasmid pAB089
  • FIG. No. [0066] 20: Plasmid pAB086
  • FIG. No. [0067] 21: Plasmid pAB081
  • FIG. No. [0068] 22: Plasmid pAB082
  • FIG. No. [0069] 23: Plasmid pAB077
  • FIG. No. [0070] 24: Plasmid pAB078
  • FIG. No. [0071] 25: Plasmid pAB088
  • FIG. No. [0072] 26: Plasmid pAB079
  • SEQUENCE LISTING SEQ ID NO.
  • SEQ ID No. 1: Oligonucleotide AB062 [0073]
  • SEQ ID No. 2: Oligonucleotide AB063 [0074]
  • SEQ ID No. 3: oligonucleotide AB148 [0075]
  • SEQ ID No. 4: Oligonucleotide AB149 [0076]
  • SEQ ID No. 5: Oligonucleotide AB072 [0077]
  • SEQ ID No. 6: Oligonucleotide AB073 [0078]
  • SEQ ID No. 7: Sequence of the NDV EN gene, Texas GB strain [0079]
  • SEQ ID No. 8: Oligonucleotide AB091 [0080]
  • SEQ ID No. 9: Oligonucleotide AB092 [0081]
  • SEQ ID No. 10: Sequence of the NDV F gene, Texas GB strain [0082]
  • SEQ ID No. 11: Oligonucleotide AB093 [0083]
  • SEQ ID No. 12: Oligonucleotide AB094 [0084]
  • SEQ ID No. 13: Sequence of the IBDV VP2 “gene”, Faragher strain [0085]
  • SEQ ID No. 14: Oligonucleotide AB095 [0086]
  • SEQ ID No. 15: Oligonucleotide PB096 [0087]
  • SEQ ID No. 16: Sequence of the IBV S gene, Massachusetts 41 strain [0088]
  • SEQ ID No. 17: Oligonucleotide AB097 [0089]
  • SEQ ID No. 18: Oligonucleotide AB098 [0090]
  • SEQ ID No. 19: Sequence of the IBV M gene, Massachusetts 41 strain [0091]
  • SEQ ID No. 20: Oligonucleotide AB099 [0092]
  • SEQ ID No. 21: Oligonucleotide AB100 [0093]
  • SEQ ID No. 22: Sequence of the IBV N gene, Massachusetts 41 strain [0094]
  • SEQ ID No. 23: Oligonucleotide CD064 [0095]
  • SEQ ID No. 24: Oligonucleotide CD065 [0096]
  • SEQ ID No. 25: Oligonucleotide CD066 [0097]
  • SEQ ID No. 26: Oligonucleotide AB105 [0098]
  • SEQ ID No. 27: Oligonucleotide AB140 [0099]
  • SEQ ID No. 28: Oligonucleotide AB141 [0100]
  • SEQ ID No. 29: Oligonucleotide AB164 [0101]
  • SEQ ID No. 30: Oligonucleotide AB165 [0102]
  • SEQ ID No. 31: Oligonucleotide AB160 [0103]
  • SEQ ID No. 32: Oligonucleotide AB161 [0104]
  • SEQ ID No. 33: Oligonucleotide AB150 [0105]
  • SEQ ID No. 34: Oligonucleotide AB151 [0106]
  • SEQ ID No. 35: Oligonucleotide AB152 [0107]
  • SEQ ID No. 36: Oligonucleotide AB153 [0108]
  • SEQ ID No. 37: Oligonucleotide AB142 [0109]
  • SEQ ID No. 38: Oligonucleotide AB143 [0110]
  • SEQ ID No. 39: Oligonucleotide AB144 [0111]
  • SEQ ID No. 40: Oligonucleotide AB145 [0112]
  • SEQ ID No. 41: Oligonucleotide AB156 [0113]
  • SEQ ID No. 42: Oligonucleotide AB158 [0114]
  • SEQ ID No. 43: Oligonucleotide AB146 [0115]
  • SEQ ID No. 44: Oligonucleotide AB147 [0116]
  • EXAMPLES Example 1
  • Culture of the Viruses [0117]
  • The viruses are cultured on the appropriate cellular system until a cytopathic effect is obtained. The cellular systems to be used for each virus are well known to persons skilled in the art. Briefly, the cells sensitive to the virus used, which are cultured in Eagle's minimum essential medium (MEM medium) or another appropriate medium, are inoculated with the viral strain studied using a multiplicity of infection of 1. The infected cells are then incubated at 37° C. for the time necessary for the appearance of a complete cytopathic effect (on average 36 hours). [0118]
  • Example 2
  • Extraction of the Viral Genomic DNAs [0119]
  • After culturing, the supernatant and the lysed cells are harvested and the entire viral suspension is centrifuged at 1000 g for 10 minutes at +4° C. so as to remove the cellular debris. The viral particles are then harvested by ultracentrifugation at 400,000 g for 1 hour at +4° C. The pellet is taken up in a minimum volume of buffer (10 mM Tris, 1 mM EDTA). This concentrated viral suspension is treated with proteinase K (100 μg/ml final) in the presence of sodium dodecyl sulphate (SDS) (0.5% final) for 2 hours at 37° C. The viral DNA is then extracted with a phenol/chloroform mixture and then precipitated with 2 volumes of absolute ethanol. After leaving overnight at −20° C., the DNA is centrifuged at 10,000 g for 15 minutes at +4° C. The DNA pellet is dried and then taken up in a minimum volume of sterile ultrapure water. It can then be digested with restriction enzymes. [0120]
  • Example 3
  • Isolation of the Viral Genomic RNAs [0121]
  • The RNA viruses were purified according to techniques well known to persons skilled in the art. The genomic viral RNA of each virus was then isolated using the “guanidium thiocyanate/phenol-chloroform” extraction technique described by P. Chromczynski and N. Sacchi (Anal. Biochem., 1987. 162, 156-159). [0122]
  • Example 4
  • Molecular Biology Techniques [0123]
  • All the constructions of plasmids were carried out using the standard molecular biology techniques described by J. Sambrook et al. ([0124] Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989). All the restriction fragments used for the present invention were isolated using the “Geneclean” kit (BIO 101 Inc. La Jolla, Calif.).
  • Example 5
  • RT-PCR Technique [0125]
  • Specific oligonucleotides (comprising restriction sites at their 5[0126] 40 ends to facilitate the cloning of the amplified fragments) were synthesized such that they completely cover the coding regions of the genes which are to be amplified (see specific examples). The reverse transcription (RT) reaction and the polymerase chain reaction (PCR) were carried out according to standard techniques (Sambrook J. et al., 1989). Each RT-PCR reaction was performed with a pair of specific amplimers and taking, as template, the viral genomic RNA extracted. The complementary DNA amplified was extracted with phenol/chloroform/isoamyl alcohol (25:24:1) before being digested with restriction enzymes.
  • Example 6
  • Plasmid pVR1012 [0127]
  • The plasmid pVR1012 (FIG. No. [0128] 1) was obtained from Vical Inc., San Diego, Calif., USA. Its construction has been described in J. Hartikka et al. (Human Gene Therapy, 1996, 7, 1205-1217).
  • Example 7
  • Construction of the Plasmid pAB045 (MDV gB Gene) [0129]
  • A PCR reaction was carried out with the Marek's disease virus (MDV) (RB[0130] 1B strain) (L. Ross et al., J. Gen. Virol., 1989, 70, 1789-1804) genomic DNA, prepared according to the technique in Example 2, and with the following oligonucleotides:
    AB062 (37 mer) (SEQ ID No.1)
    5′ AAAACTGCAGACTATGCACTATTTTAGGCGGAATTGC 3′
    AB063 (35 mer) (SEQ ID No.2)
    5′ GGAAGATCTTTACACAGCATCATCTTTCTGAGTCTG 3′
  • so as to isolate the gene encoding the gB glycoprotein from the MDV virus in the form of a PstI-BglII fragment. After purification, the 2613 bp PCR product was digested with PstI and BglI in order to isolate a 2602 bp PstI-BglII fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with PstI and BglII, to give the plasmid pAB045 (7455 bp) (FIG. No. [0131] 2).
  • Example 8
  • Construction of the Plasmid pAB080 (MDV gD Gene) [0132]
  • A PCR reaction was carried out with the Marek's disease virus (MDV) (RB1B strain) (L. Ross et al., J. Gen. Virol., 1989, 72, 949-954) genomic DNA, prepared according to the technique in Example 2, and with the following oligonucleotides: [0133]
    AB148 (29 mer) (SEQ ID No.3)
    5′ AAACTGCAGATGAAAGTATTTTTTTTTAG 3′
    AB149 (32 mer) (SEQ ID No.4)
    5′ GGAAGATCTTTATAGGCGGGAATATGCCCGTC 3′
  • so as to isolate the gene encoding the gD glycoprotein from the MDV virus in the form of a PstI-BglII fragment. After purification, the 1215 bp PCR product was digested with PstI and BglII in order to isolate a 1199 bp PstI-BglII fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with PstI and BglII, to give the plasmid pAB080 (6051 bp) (FIG. No. [0134] 3).
  • Example 9
  • Construction of the Plasmid pAB046 (NDV HN Gene) [0135]
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the Newcastle disease virus (NDV) (Texas GB strain) genomic RNA, prepared according to the technique of Example 3, and with the following oligonucleotides: [0136]
    AB072 (39 mer) (SEQ ID No.5)
    5′ AGAATGCGGCCGCGATGGGCTCCAGATCTTCTACCAG 3′
    AB094 (34 mer) (SEQ ID No.6)
    5′ CGCGGATCCTTAAATCCCATCATCCTTGAGAATC 3′
  • so as to isolate the gene encoding the HN glycoprotein from the NDV virus, Texas GB strain (FIG. No. [0137] 4 and SEQ ID No. 7) in the form of an NotI-BamHI fragment. After purification, the 1741 bp RT-PCR product was digested with NotI and BamHI in order to isolate a 1723 bp NotI-BamHI fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with NotI and BamHI, to give the plasmid pAB046 (6616 bp) (FIG. No. 5)
  • Example 10
  • Construction of the Plasmid pAB047 (NDV F Gene) [0138]
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the Newcastle disease virus (NDV) (Texas GB strain) genomic RNA, prepared according to the technique of Example 3, and with the following oligonucleotides: [0139]
    AB091 (37 mer) (SEQ ID No.8)
    5′ AGAATGCGGCCGCGATGGGCTCCAGATCTTCTACCAG 3′
    AB092 (34 mer) (SEQ ID No.9)
    5′ TGCTCTAGATCATATTTTTGTAGTGGCTCTCATC 3′
  • so as to isolate the gene encoding the F glycoprotein from the NDV virus, Texas GB strain (FIG. No. [0140] 6 and SEQ ID No. 10) in the form of an NotI-XbaI fragment. After purification, the 1684 bp RT-PCR product was digested with NotI and XbaI in order to isolate a 1669 bp NotI-XbaI fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with NotI and XbaI, to give the plasmid pAB047 (6578 bp) (FIG. No. 7).
  • Example 11
  • Construction of the Plasmid pAB048 (IBDV VP2 Gene) [0141]
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the infectious bursal disease virus (IBDV) (Faragher strain) genomic RNA, prepared according to the technique of Example 3, and with the following oligonucleotides: [0142]
    AB093 (33 mer) (SEQ ID No.11)
    5′ TCAGATATCGATGACAAACCTGCAAGATCAAAC 3′
    AB094 (38 mer) (SEQ ID No.12)
    5′ AGAATGCGGCCGCTTACCTCCTTATAGCCCGGATTATG 3′
  • so as to isolate the sequence encoding the VP2 protein from the IBDV virus, Faragher strain (FIG. No. [0143] 8 and SEQ ID No. 13) in the form of an EcoRV-NotI fragment. After purification, the 1384 bp RT-PCR product was digested with EcoRV and NotI in order to isolate a 1367 bp EcoRV-NotI fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with EcoRV and NotI, to give the plasmid pAB048 (6278 bp) (FIG. No. 9).
  • Example 12
  • Construction of the Plasmid pAB049 (IBV S1 Gene) [0144]
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the chicken infectious bronchitis virus (IBV) (Massachusetts 41 strain) genomic RNA, prepared according to the technique of Example 3, and with the following oligonucleotides: [0145]
    AB095 (32 mer) (SEQ ID No.14)
    5′ ACGCGTCGACATGTTGGTAACACCTCTTTTAC 3′
    AB096 (35 mer) (SEQ ID No.15)
    5′ GGAAGATCTTCATTAACGTCTAAAACGACGTGTTC 3′
  • so as to isolate the sequence encoding the S1 subunit of the S glycoprotein from the IBV virus, Massachusetts 41 strain (FIG. No. [0146] 10 and SEQ ID No. 16) in the form of a SalI-BglII fragment. After purification, the 1635 bp RT-PCR product was digested with SalI and BglII in order to isolate a 1622 bp SalI-BglII fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with SalI and BglII, to give the plasmid pAB049 (6485 bp) (FIG. No. 11).
  • Example 13
  • Construction of the Plasmid pAB050 (IBV M Gene) [0147]
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the chicken infectious bronchitis virus (IBV) (Massachusetts 41 strain) genomic RNA, prepared according to the technique of Example 3, and with the following oligonucleotides: [0148]
    AB097 (37 mer) (SEQ ID No.17)
    5′ ATAAGAATGCGGCCGCATGTCCAACGAGACAAATTGTAC 3′
    AB098 (38 mer) (SEQ ID No.18)
    5′ ATAAGAATGCGGCCGCTTTAGGTGTAAAGACTACTCCC 3′
  • so as to isolate the gene encoding the M glycoprotein from the IBV virus, Massachusetts 41 strain (FIG. No. [0149] 12 and SEQ ID No. 19) in the form of a NotI-NotI fragment. After purification, the 710 bp RT-PCR product was digested with NotI in order to isolate a 686 bp NotI-NotI fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with NotI, to give the plasmid pAB050 (5602 bp) which contains the IBV M gene in the correct orientation relative to the promoter (FIG. No. 13).
  • FIG. 14
  • Construction of the Plasmid pAB051 (IBV N gene) [0150]
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the chicken infectious bronchitis virus (IBV) (Massachusetts 41 strain) genomic RNA, prepared according to the technique of Example 3, and with the following oligonucleotides: [0151]
    AB099 (34 mer) (SEQ ID No.20)
    5′ AAAACTGCAGTCATGGCAAGCGGTAAGGCAACTG 3′
    AB100 (33 mer) (SEQ ID No.21)
    5′ CGCGGATCCTCAAAGTTCATTCTCTCCTAGGGC 3′
  • so as to isolate the gene encoding the N protein from the IBV virus, Massachusetts 41 strain (FIG. No. [0152] 14 and SEQ ID No. 22) in the form of a PstI-BamHI fragment. After purification, the 1250 bp RT-PCR product was digested with PstI and BamHI in order to isolate a 1233 bp PstI-BamHI fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with PstI and BamHI, to give the plasmid pAB051 (6092 bp) (FIG. No. 15).
  • Example 15
  • Construction of the Plasmid pAB054 (VAC VP1 Gene) [0153]
  • A PCR reaction was carried out with the chicken anaemia virus (CAV) (Cuxhaven-1 strain) genomic DNA (B. Meehan et al., Arch. Virol., 1992, 124, 301-319), prepared according to the technique of Example 2, and with the following oligonucleotides: [0154]
    CD064 (39 mer) (SEQ ID No.23)
    5′ TTCTTGCGGCCGCCATGGCAAGACGAGCTCGCAGACCGA 3′
    CD065 (38 mer) (SEQ ID No.24)
    5′ TTCTTGCGGCCGCTCAGGGCTGCGTCCCCCAGTACATG 3′
  • so as to isolate the gene encoding the CAV VP1 capsid protein in the form of an NotI-NotI fragment. After purification, the 1377 bp PCR product was digested with NotI in order to isolate a 1359 bp NotI-NotI fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with NotI, to give the plasmid pAB054 (6274 bp) which contains the CAV VP1 gene in the correct orientation relative to the promoter (FIG. No. [0155] 16).
  • Example 17
  • Construction of the Plasmid pAB055 (CAV VP2 Gene) [0156]
  • A PCR reaction was carried out with the chicken anaemia virus (CAV) (Cuxhaven-1 strain) genomic DNA (B. Meehan et al., Arch. Virol., 1992, 124, 301-319), prepared according to the technique of Example 2, and with the following oligonucleotides: [0157]
    CD066 (39 mer) (SEQ ID No.25)
    5′ TTCTTGCGGCCGCCATGCACGGGAACGGCGGAACCGG 3′
    AB105 (32 mer) (SEQ ID No.26)
    5′ CGCGGATCCTCACACTATACGTACCGGGCGG 3′
  • so as to isolate the gene encoding the CAV virus VP2 protein in the form of an NotI-BamHI fragment. After purification, the 674 bp PCR product was digested with NotI and BamHI in order to isolate a 659 bp NotI-BamHI fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with NotI and BamHI, to give the plasmid pAB055 (5551 bp) (FIG. No. [0158] 17).
  • Example 18
  • Construction of the Plasmid pAB076 (ILTV gB Gene) [0159]
  • A PCR reaction was carried out with the chicken infectious laryngotracheitis virus (ILTV) (SA-2 strain) genomic DNA (K. Kongsuwan et al., Virology, 1991, 184, 404-410), prepared according to the technique of Example 2, and with the following oligonucleotides: [0160]
    AB140 (38 mer) (SEQ ID No.27)
    5′ TTCTTGCGGCCGCATGTCTTGAAAATGCTGATC 3′
    AB141 (36 mer) (SEQ ID No.28)
    5′ TTCTTGCGGCCGCTTATTCGTCTTCGCTTTCTTCTG 3′
  • so as to isolate the gene encoding the ILTV virus gB glycoprotein in the form of an NotI-NotI fragment. After purification, the 2649 bp PCR product was digested with NotI in order to isolate a 2631 bp NotI-NotI fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with NotI, to give the plasmid pAB076 (7546 bp) which contains the ILTV gB gene in the correct orientation relative to the promoter (FIG. No. [0161] 18).
  • Example 20
  • Construction of the Plasmid pAB089 (ILTV gD Gene) [0162]
  • A PCR reaction was carried out with the chicken infectious laryngotracheitis virus (ILTV) (SA-2 strain) genomic DNA (M. Johnson et al., 1994, Genbank sequence accession No. =L31965), prepared according to the technique of Example 2, and with the following oligonucleotides: [0163]
    AB164 (33 mer) (SEQ ID No.29)
    5′ CCGGTCGACATGGACCGCCATTTATTTTTGAGG 3′
    AB165 (33 mer) (SEQ ID No.30)
    5′ GGAAGATCTTTACGATGCTCCAAACCAGTAGCC 3′
  • so as to isolate the gene encoding the ILTV virus gD glycoprotein in the form of an SalI-BglII fragment. After purification, the 1134 bp PCR product was digested with SalI and BglII in order to isolate a 1122 bp SalI-BglII fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with SalI-BglII, to give the plasmid pAB089 (5984 bp) (FIG. No. [0164] 19).
  • Example 21
  • Construction of the Plasmid pAB086 (AEV env Gene) [0165]
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the avian encephalomyelitis virus (AEV) (Type C) genomic RNA (E. Bieth et al., Nucleic Acids Res., 1992, 20, 367), prepared according to the technique of Example 3, and with the following oligonucleotides: [0166]
    AB160 (54 mer)
    5′ TTTGATATCATGGAAGCCGTCATTAAGGCATTTCTGACTGGATACCCTGGGAAG 3′ (SEQ ID No.31)
    AB161 (31 mer)
    5′ TTTGGATCCTTATACTATTCTGCTTTCAGGC 3′ (SEQ ID No.32)
  • so as to isolate the sequence encoding the AEV virus Env glycoprotein in the form of an EcoRV-BamHI fragment. After purification, the 1836 bp RT-PCR product was digested with EcoRV and BamHI in order to isolate a 1825 bp EcoRV-BamHI fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with EcoRV and BamHI, to give the plasmid pAB086 (6712 bp) (FIG. No. [0167] 20).
  • Example 22
  • Construction of the Plasmid pAB081 (AEV gag/Pro Gene) [0168]
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the avian encephalomyelitis virus (AEV) (Type C) genomic RNA (E. Bieth et al., Nucleic Acids Res., 1992, 20, 367), prepared according to the technique of Example 3, and with the following oligonucleotides: [0169]
    AB150 (31 mer) (SEQ ID No.33)
    5′ ACGCGTCGACATGGAAGCCGTCATTAAGGTG 3′
    AB151 (32 mer) (SEQ ID No.34)
    5′ TGCTCTAGACTATAAATTTGTCAAGCGGAGCC 3′
  • so as to isolate the sequence encoding the AEV virus Gag and Pro proteins in the form of an SalI-XbaI fragment. After purification, the 2125 bp RT-PCR product was digested with SalI-XbaI in order to isolate a 2111 bp SalI-XbaI fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with SalI and XbaI, to give the plasmid pAB081 (6996 bp) (FIG. No. [0170] 21).
  • Example 23
  • Construction of the plasmid pAB082 (Pneumovirus G Gene) [0171]
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the turkey rhinotracheitis virus (TRV) (2119 strain) genomic RNA (K. Juhasz et al., J. Gen. Virol., 1994, 75. 2873-2880), prepared according to the technique of Example 3, and with the following oligonucleotides: [0172]
    AB152 (32 mer) (SEQ ID No.35)
    5′ AAACTGCAGAGATGGGGTCAGAGCTCTACATC 3′
    AB153 (31 mer) (SEQ ID No.36)
    5′ CGAAGATCTTTATTGACTAGTACAGCACCAC 3′
  • so as to isolate the gene encoding the TRV virus G glycoprotein in the form of a PstI-BglII fragment. After purification, the 2165 bp RT-PCR product was digested with PstI and BglII in order to isolate a 1249 bp PstI-BglII fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with PstI and BglII, to give the plasmid pAB082 (6101 bp) (FIG. No. [0173] 22).
  • Example 24
  • Construction of the Plasmid pAB077 (Avian Plague HA Gene, H2N2 Strain) [0174]
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the avian plague virus (AIV) (H2N2 Postdam strain) genomic RNA (J. Schäfer et al., Virology, 1993, 194, 781-788), prepared according to the technique of Example 3, and with the following oligonucleotides: [0175]
    AB142 (33 mer) (SEQ ID No.37)
    5′ AAACTGCAGCAATGGCCATCATTTATCTAATTC 3′
    AB143 (31 mer) (SEQ ID No.38)
    5′ CGAAGATCTTCATATGCAGATTCTGCATTGC 3′
  • so as to isolate the gene encoding the HA glycoprotein from the avian plague virus (H2N2 strain) in the form of a PstI-BglII fragment. After purification, the 1709 bp RT-PCR product was digested with PstI and BglII in order to isolate a 1693 bp PstI-BglII fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with PstI and BglII, to give the plasmid pAB077 (6545 bp) (FIG. No. [0176] 23).
  • Example 25
  • Construction of the Plasmid pAB078 (Avian Plague HA Gene, H7N7 Strain) [0177]
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the avian plague virus (AIV) (H7N7 Leipzig strain) genomic RNA (C. Rohm et al., Virology, 1995, 209, 664-670), prepared according to the technique of Example 3, and with the following oligonucleotides: [0178]
    AB144 (31 mer) (SEQ ID No.39)
    5′ AAACTGCAGATGAACACTCAAATCCTGATAC 3′
    AB145 (31 mer) (SEQ ID No.40)
    5′ TTTGGATCCTTATATACAAATAGTGCACCGC 3′
  • so as to isolate the gene encoding the HA glycoprotein from the avian plague virus (H7N7 strain) in the form of a PstI-BamHI fragment. After purification, the 1707 bp RT-PCR product was digested with PstI and BamHI in order to isolate a 1691 bp PstI-BamHI fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with PstI and BamHI, to give the plasmid pAB078 (6549 bp) (FIG. No. [0179] 24).
  • Example 26
  • Construction of the Plasmid pAB088 (Avian Plague NP gene, H1N1 strain) [0180]
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the avian influenza virus (AIV) (H1N1 Bavaria strain) genomic RNA (M. Gammelin et al., Virology, 1989, 170, 71-80), prepared according to the technique of Example 3, and with the following oligonucleotides: [0181]
    AB156 (32 mer) (SEQ ID No.41)
    5′ CCGGTCGACATGGCGTCTCAAGGCACCAAACG 3′
    AB158 (30 mer) (SEQ ID No.42)
    5′ CGCGGATCCTTAATTGTCATACTCCTCTGC 3′
  • so as to isolate the gene encoding the avian influenza virus NP nucleoprotein in the form of a SalI-BamHI fragment. After purification, the 1515 bp RT-PCR product was digested with SalI and BamHI in order to isolate a 1503 bp SalI-BamHI fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with SalI and BamHI, to give the plasmid pAB088 (6371 bp) (FIG. No. [0182] 25).
  • Example 27
  • Construction of the Plasmid pAB079 (Avian Plague N Gene, H7N1 Strain) [0183]
  • An RT-PCR reaction according to the technique of Example 5 was carried out with the avian plague virus (AIV) (H7N1 Rostock strain) genomic RNA (J. McCauley, 1990, Genbank sequence accession No. =X52226), prepared according to the technique of Example 3, and with the following oligonucleotides: [0184]
    AB146 (35 mer) (SEQ ID No.43)
    5′ CGCGTCGACATGAATCCAAATCAGAAAATAATAAC 3′
    AB147 (31 mer) (SEQ ID No.44)
    5′ GGAAGATCTCTACTTGTCAATGGTGAATGGC 3′
  • so as to isolate the gene encoding the N glycoprotein from the avian plague virus (H7N1 strain) in the form of an SalI-BglII fragment. After purification, the 1361 bp RT-PCR -product was digested with SalI and BglII in order to isolate a 1350 bp SalI-BglII fragment. This fragment was ligated with the vector pVR1012 (Example 6), previously digested with SalII and BglII, to give the plasmid pAB079 (6212 bp) (FIG. No. [0185] 26).
  • Example 28
  • Preparation and Purification of the Plasmids [0186]
  • For the preparation of the plasmids intended for the vaccination of animals, any technique may be used which makes it possible to obtain a suspension of purified plasmids predominantly in the supercoiled form. These techniques are well known to persons skilled in the art. There may be mentioned in particular the alkaline lysis technique followed by two successive ultracentrifugations on a caesium chloride gradient in the presence of ethidium bromide as described in J. Sambrook et al. ([0187] Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989). Reference may also be made to patent applications PCT WO 95/21250 and PCT WO 96/02658 which describe methods for producing, on an industrial scale, plasmids which can be used for vaccination. For the purposes of the manufacture of vaccines (see Example 17), the purified plasmids are resuspended so as to obtain solutions at a high concentration (>2 mg/ml) which are compatible with storage. To do this the plasmids are resuspended either in ultrapure water or in TE buffer (10 mM Tris-HCl; 1 mM EDTA, pH 8.0).
  • Example 29
  • Manufacture of the Associated Vaccines [0188]
  • The various plasmids necessary for the manufacture of an associated vaccine are mixed starting with their concentrated solutions (Example 16). The mixtures are prepared such that the final concentration of each plasmid corresponds to the effective dose of each plasmid. The solutions which can be used to adjust the final concentration of the vaccine may be either a 0.9% NaCl solution, or PBS buffer. [0189]
  • Specific formulations such as liposomes, cationic lipids, may also be used for the manufacture of the vaccines. [0190]
  • Example 30
  • Vaccination of Chickens [0191]
  • The chickens are vaccinated with doses of 10, 50 or 100 μg per plasmid. The injections can be performed with a needle by the intramuscular route. The sites of injection are the carina (for chickens more than 2 weeks old) and the thigh (for 1-day-old or older chickens). In this case, the vaccinal doses are administered in the volume of 0.1 to 0.3 ml. [0192]
  • In adult chickens (more than 20 weeks old) the injections are also performed by the intramuscular route using a liquid jet injection apparatus (with no needle) which has been specially designed for the vaccination of chickens (for example AVIJET apparatus). In this case, the injected volume is 0.3 ml. The injection may be performed in the carina or at the level of the thigh. Likewise, in adult chickens, the injections may be performed with a needle by the intramuscular route, in the carina or in the thigh, in a volume of 0.3 ml. The injection of the plasmid vaccines can also be done in ovo. In this case, special formulations as mentioned in Example 29 may be used. The volume injected into the 18-day embryonated egg is between 50 μl and 200 μl. [0193]
  • 1 44 1 37 DNA Marek′s disease gammaherpesvirus MKT-1 1 aaaactgcag actatgcact attttaggcg gaattgc 37 2 35 DNA Marek′s disease gammaherpesvirus MKT-1 2 ggaagatctt tacacagcat catcttctga gtctg 35 3 29 DNA Marek′s disease gammaherpesvirus MKT-1 3 aaactgcaga tgaaagtatt tttttttag 29 4 32 DNA Marek′s disease gammaherpesvirus MKT-1 4 ggaagatctt tataggcggg aatatgcccg tc 32 5 39 DNA Newcastle disease virus 5 ataagaatgc ggccgccatg gaccgtgcag ttagcagag 39 6 34 DNA Newcastle disease virus 6 cgcggatcct taaatcccat catccttgag aatc 34 7 1716 DNA Newcastle disease virus 7 atggaccgtg cagttagcag agttgcgcta gagaatgaag aaagagaagc aaagaataca 60 tggcgctttg tattccggat tgcaatctta cttttaatag taacaacctt agccatctct 120 gcaaccgccc tggtatatag catggaggct agcacgcctg gcgaccttgt tggcataccg 180 actatgatct ctaaggcaga agaaaagatt acatctgcac tcagttctaa tcaagatgta 240 gtagatagga tatataagca ggtggccctt gagtctccat tggcgttgct aaacactgaa 300 tctgtaatta tgaatgcaat aacgtctctc tcttatcaaa tcaatggagc tgcaaataat 360 agcgggtgtg gggcacctgt tcatgaccca gattatatcg gggggatagg caaagaactt 420 attgtggatg acgctagtga tgtcacatca ttctatccct ctgcgttcca agaacacctg 480 aactttatcc cggcacctac tacaggatca ggttgcactc ggataccctc attcgacata 540 agcgctaccc actactgtta cactcacaat gtgatattat ctggttgcag agatcactca 600 cactcatatc agtacttagc acttggcgtg cttcggacat ctgcaacagg gagggtattc 660 ttttctactc tgcgttccat caatttggat gacagccaaa atcggaagtc ttgcagtgtg 720 agtgcaactc ccttaggttg tgatatgctg tgctctaaaa tcacagagac tgaggaagag 780 gattatagtt caattacgcc tacatcgatg gtgcacggaa ggttagggtt tgacggtcaa 840 taccatgaga aggacttaga cgtcataact ttatttaagg attgggtggc aaattaccca 900 ggagtggggg gtgggtcttt tattaacaac cgcgtatggt tcccagtcta cggagggcta 960 aaacccaatt cgcctagtga caccgcacaa gaagggagat atgtaatata caagcgctac 1020 aatgacacat gcccagatga acaagattac cagattcgga tggctaagtc ttcatataag 1080 cctgggcggt ttggtggaaa acgcgtacag caggccatct tatctatcaa ggtgtcaaca 1140 tctttgggcg aggacccggt gctgactgta ccgcctaata caatcacact catgggggcc 1200 gaacggagag ttctcacagt agggacatct catttcttgt accagcgagg gtcttcatac 1260 ttctctcctg ctttattata ccctatgaca gtcaacaaca aaacggctac tcttcatagt 1320 ccttacacat tcaatgcttt cactaggcca ggtagtgtcc cttgtcaggc atcagcaaga 1380 tgccccaact catgtgtcac tggagtttat actgatccgt atcccttagt cttccatagg 1440 aaccatacct tgcggggggt attcgggaca atgcttgatg atgaacaagc aagacttaac 1500 cctgtatctg cagtatttga taacatatcc cgcagtcgca taacccgggt aagttcaagc 1560 cgtactaagg cagcatacac gacatcgaca tgttttaaag ttgtcaagac caataaaaca 1620 tattgcctca gcattgcaga aatatccaat accctcttcg gggaattcag gatcgttcct 1680 ttactagttg agattctcaa ggatgatggg atttaa 1716 8 37 DNA Newcastle disease virus 8 agaatgcggc cgcgatgggc tccagatctt ctaccag 37 9 34 DNA Newcastle disease virus 9 tgctctagat catatttttg tagtggctct catc 34 10 1662 DNA Newcastle disease virus 10 atgggctcca gatcttctac caggatcccg gtacctctaa tgctgatcat ccgaaccgcg 60 ctgacactga gctgtatccg tctgacaagc tctcttgatg gcaggcctct tgcggctgca 120 gggatcgtgg taacaggaga taaagcagtc aacatataca cctcatccca gacagggtca 180 atcatagtta agttactccc gaatatgccc aaggacaaag aggtgtgtgc aaaagcccca 240 ttggaggcat acaacaggac actgactact ttactcaccc cccttggtga ttctatccgc 300 aggatacaag agtctgtgac tacttccgga ggaaggagac agagacgctt tataggtgcc 360 attatcggca gtgtagctct tggggttgcg acagctgcac agataacagc agcttcggcc 420 ctgatacaag ccaaccagaa tgctgccaac atcctccggc ttaaagagag cattgctgca 480 accaatgaag ctgtgcacga ggtcactgac ggattatcac aactagcagt ggcagtaggg 540 aagatgcaac agtttgtcaa tgaccagttc aataatacag cgcaagaatt ggactgtata 600 aaaattgcac agcaggtcgg tgtagaactc aacttgtacc taactgaatt gactacagta 660 tttgggccac aaatcacttc ccctgcctta actcagctga ctatccaagc gctttacaat 720 ctagctggtg gtaatatgga ttacttgctg actaagttag gtgtagggaa caaccaactc 780 agctcattaa ttggtagcgg cttgatcacc ggcaacccta ttctgtacga ctcacagact 840 cagatcttgg gtatacaggt aactttgcct tcagttggga acctgaataa tatgcgtgcc 900 acctacctgg agaccttatc tgtaagcaca accaagggat ttgcctcagc acttgtccca 960 aaagtggtga cacaggtcgg ttccgtgata gaagaacttg acacctcata ctgtataggg 1020 accgacttgg atttatactg tacaagaata gtgacattcc ctatgtctcc tggtatttat 1080 tcttgtctga gcggtaatac atcggcttgc atgtattcaa agactgaagg cgcacttact 1140 acgccatata tggctctcaa aggctcagtt attgccaatt gcaagctgac aacatgtaga 1200 tgtgcagatc ccccaggtat catatcgcaa aattatggag aagctgtgtc cttaatagat 1260 aggcactcat gcaacgtctt atccttagac gggataactc tgaggctcag tggggaattt 1320 gatgcaacct atcaaaagaa tatctctata ctagattctc aagttatagt gacaggcaat 1380 cttgatatat caactgagct tgggaatgtc aacaactcaa taagtaatgc cctgaataag 1440 ttagaggaaa gcaacagcaa actagacaaa gtcaatgtca aactgaccag cacatctgct 1500 ctcattacct acatcgtttt aactgtcata tctcttgttt ttggtgtact tagcctggtt 1560 ctagcatgct acctgatgta caagcaaaag gcacaacaaa agaccttgtt atggcttggg 1620 aataataccc ttgatcagat gagagccact acaaaaatat ga 1662 11 33 DNA Infectious bursal disease virus 11 tcagatatcg atgacaaacc tgcaagatca aac 33 12 38 DNA Infectious bursal disease virus 12 agaatgcggc cgcttacctc cttatagccc ggattatg 38 13 1362 DNA Infectious bursal disease virus 13 atgacaaacc tgcaagatca aacccaacag attgttccgt tcatacggag ccttctgatg 60 ccaacaaccg gaccggcgtc cattccggac gacaccctgg agaagcacac tctcaggtca 120 gagacctcga cctacaattt gactgtgggg gacacagggt cagggctaat tgtctttttc 180 cctggattcc ctggctcaat tgtgggtgct cactacacac tgcagagcaa tgggaactac 240 aagttcgatc agatgctcct gactgcccag aacctaccgg ccagctacaa ctactgcaga 300 ctagtgagtc ggagtctcac agtgaggtca agcacactcc ctggtggcgt ttatgcacta 360 aacggcacca taaacgccgt gaccttccaa ggaagcctga gtgaactgac agatgttagc 420 tacaatgggt tgatgtctgc aacagccaac atcaacgaca aaattgggaa tgtcctggta 480 ggggaagggg tcactgtcct cagcctaccc acatcatatg atcttgggta tgtgaggctt 540 ggtgacccca ttcccgctat agggcttgac ccaaaaatgg tagctacatg cgacagcagt 600 gacaggccca gagtctacac cataactgca gccgatgatt accaattctc atcacagtac 660 caaccaggtg gggtaacaat cacactgttc tcagccaaca ttgatgctat cacaagcctc 720 agcattgggg gagagctcgt gtttcaaaca agcgtccaag gccttgtact gggcgccacc 780 atctacctta taggctttga tgggactgcg gtaatcacca gagctgtagc cgcagataat 840 gggctgacgg ccggcaccga caatcttatg ccattcaatc ttgtcattcc aaccaatgag 900 ataacccagc caatcacatc catcaaactg gagatagtga cctccaaaag tggtggtcag 960 gcaggggatc agatgtcatg gtcggcaagt gggagcctag cagtgacgat ccatggtggc 1020 aactatccag gggccctccg tcccgtcaca ctagtagcct acgaaagagt ggcaacagga 1080 tccgtcgtta cggtcgctgg ggtgagtaac ttcgagctga ttccaaatcc tgaactagca 1140 aagaacctgg ttacagaata cggccgattt gacccaggag ccatgaacta cacaaaattg 1200 atactgagtg agagggaccg tcttggcatc aagaccgtct ggccaacaag ggagtacact 1260 gattttcgtg agtacttcat ggaggtggcc gacctcaact ctcccctgaa gattgcagga 1320 gcatttggct tcaaagacat aatccgggct ataaggaggt aa 1362 14 32 DNA chicken infectious bronchitis virus 14 acgcgtcgac atgttggtaa cacctctttt ac 32 15 35 DNA chicken infectious bronchitis virus 15 ggaagatctt cattaacgtc taaaacgacg tgttc 35 16 1614 DNA chicken infectious bronchitis virus 16 atgttggtaa cacctctttt actagtgact cttttgtgtg tactatgtag tgctgctttg 60 tatgacagta gttcttacgt ttactactac caaagtgcct ttagaccacc taatggttgg 120 catttacacg ggggtgctta tgcggtagtt aatatttcta gcgaatctaa taatgcaggc 180 tcttcacctg ggtgtattgt tggtactatt catggtggtc gtgttgttaa tgcttcttct 240 atagctatga cggcaccgtc atcaggtatg gcttggtcta gcagtcagtt ttgtactgca 300 cactgtaact tttcagatac tacagtgttt gttacacatt gttataaata tgatgggtgt 360 cctataactg gcatgcttca aaagaatttt ttacgtgttt ctgctatgaa aaatggccag 420 cttttctata atttaacagt tagtgtagct aagtacccta cttttaaatc atttcagtgt 480 gttaataatt taacatccgt atatttaaat ggtgatcttg tttacacctc taatgagacc 540 acagatgtta catctgcagg tgtttatttt aaagctggtg gacctataac ttataaagtt 600 atgagagaag ttaaagccct ggcttatttt gttaatggta ctgcacaaga tgttattttg 660 tgtgatggat cacctagagg cttgttagca tgccagtata atactggcaa tttttcagat 720 ggcttttatc cttttattaa tagtagttta gttaagcaga agtttattgt ctatcgtgaa 780 aatagtgtta atactacttt tacgttacac aatttcactt ttcataatga gactggcgcc 840 aaccctaatc ctagtggtgt tcagaatatt ctaacttacc aaacacaaac agctcagagt 900 ggttattata attttaattt ttcctttctg agtagttttg tttataagga gtctaatttt 960 atgtatggat cttatcaccc aagttgtaat tttagactag aaactattaa taatggcttg 1020 tggtttaatt cactttcagt ttcaattgct tacggtcctc ttcaaggtgg ttgcaagcaa 1080 tctgtcttta gtggtagagc aacttgttgt tatgcttatt catatggagg tccttcgctg 1140 tgtaaaggtg tttattcagg tgagttagct cttaattttg aatgtggact gttagtttat 1200 gttactaaga gcggtggctc tcgtatacaa acagccactg aaccgccagt tataactcga 1260 cacaattata ataatattac tttaaatact tgtgttgatt ataatatata tggcagaact 1320 ggccaaggtt ttattactaa tgtaaccgac tcagctgtta gttataatta tctagcagac 1380 gcaggtttgg ctattttaga tacatctggt tccatagaca tctttgttgt acaaggtgaa 1440 tatggtctta cttattataa ggttaaccct tgcgaagatg tcaaccagca gtttgtagtt 1500 tctggtggta aattagtagg tattcttact tcacgtaatg agactggttc tcagcttctt 1560 gagaaccagt tttacattaa aatcactaat ggaacacgtc gttttagacg ttaa 1614 17 39 DNA chicken infectious bronchitis virus 17 ataagaatgc ggccgcatgt ccaacgagac aaattgtac 39 18 38 DNA chicken infectious bronchitis virus 18 ataagaatgc ggccgcttta ggtgtaaaga ctactccc 38 19 678 DNA chicken infectious bronchitis virus 19 atgtccaacg agacaaattg tactcttgac tttgaacagt cagttgagct ttttaaagag 60 tataatttat ttataactgc attcttgttg ttcttaacca taatacttca gtatggctat 120 gcaacaagaa gtaagtttat ttatatactg aaaatgatag tgttatggtg cttttggccc 180 cttaacattg cagtaggtgt aatttcatgt atatacccac caaacacagg aggtcttgtc 240 gcagcgataa tacttacagt gtttgcgtgt ctgtcttttg taggttattg gatccagagt 300 attagactct ttaagcggtg taggtcatgg tggtcattta acccagaatc taatgccgta 360 ggttcaatac tcctaactaa tggtcaacaa tgtaattttg ctatagagag tgtgccaatg 420 gtgctttctc caattataaa gaatggtgtt ctttattgtg agggtcagtg gcttgctaag 480 tgtgaaccag accacttgcc taaagatata tttgtttgta caccggatag acgtaatatc 540 taccgtatgg tgcagaaata tactggtgac caaagcggaa ataagaaacg gtttgctacg 600 tttgtctatg caaagcagtc agtagatact ggcgagctag aaagtgtagc aacaggaggg 660 agtagtcttt acacctaa 678 20 34 DNA chicken infectious bronchitis virus 20 aaaactgcag tcatggcaag cggtaaggca actg 34 21 33 DNA chicken infectious bronchitis virus 21 cgcggatcct caaagttcat tctctcctag ggc 33 22 1230 DNA chicken infectious bronchitis virus 22 atggcaagcg gtaaggcaac tggaaagaca gacgccccag ctccagtcat caaactagga 60 ggaccaaagc cacctaaagt tggttcttct ggaaatgtat cttggtttca agcaataaaa 120 gccaagaagt taaattcacc tccgcctaag tttgaaggta gcggtgttcc tgataatgaa 180 aatctaaaac caagtcagca gcatggatat tggagacgcc aagctaggtt taagccaggt 240 aaaggtggaa gaaaaccagt cccagatgct tggtattttt actatactgg aacaggacca 300 gccgctaacc tgaattgggg tgatagccaa gatggtatag tgtgggttgc tggtaagggt 360 gctgatacta aatttagatc taatcagggt actcgtgact ctgacaagtt tgaccaatat 420 ccgctacggt tttcagacgg aggacctgat ggtaatttcc gttgggattt cattcctctg 480 aatcgtggca ggagtgggag atcaacagca gcttcatcag cggcatctag tagagcacca 540 tcacgtgaag tttcgcgtgg tcgcaggagt ggttctgaag atgatcttat tgctcgtgca 600 gcaaggataa ttcaggatca gcagaagaag ggttctcgca ttacaaaggc taaggctgat 660 gaaatggctc accgccggta ttgcaagcgc actattccac ctaattataa ggttgatcaa 720 gtgtttggtc cccgtactaa aggtaaggag ggaaattttg gtgatgacaa gatgaatgag 780 gaaggtatta aggatgggcg cgttacagca atgctcaacc tagttcctag cagccatgct 840 tgtcttttcg gaagtagagt gacgcccaga cttcaaccag atgggctgca cttgaaattt 900 gaatttacta ctgtggtccc acgtgatgat ccgcagtttg ataattatgt aaaaatttgt 960 gatcagtgtg ttgatggtgt aggaacacgt ccaacagatg atgaaccaag accaaagtca 1020 cgctcaagtt caaaacctgc aacaagagga aattctccag cgccaagaca gcagcgccct 1080 aagaaggaga aaaagccaaa gaagcaggat gatgaagtgg ataaagcatt gacctcagat 1140 gaggagagga acaatgcaca gctggaattt gatgatgaac ccaaggtaat taactggggg 1200 gattcagccc taggagagaa tgaactttga 1230 23 39 DNA Chicken anemia virus 23 ttcttgcggc cgccatggca agacgagctc gcagaccga 39 24 38 DNA Chicken anemia virus 24 ttcttgcggc cgctcagggc tgcgtccccc agtacatg 38 25 39 DNA Chicken anemia virus 25 ttcttgcggc cgccatgcac gggaacggcg gacaaccgg 39 26 32 DNA Chicken anemia virus 26 cgcggatcct cacactatac gtaccggggc gg 32 27 38 DNA chicken infectious laryngotracheitis virus 27 ttcttgcggc cgccatggct agcttgaaaa tgctgatc 38 28 36 DNA chicken infectious laryngotracheitis virus 28 ttcttgcggc cgcttattcg tcttcgcttt cttctg 36 29 33 DNA chicken infectious laryngotracheitis virus 29 ccggtcgaca tggaccgcca tttatttttg agg 33 30 33 DNA chicken infectious laryngotracheitis virus 30 ggaagatctt tacgatgctc caaaccagta gcc 33 31 54 DNA avian encephalomyelitis virus 31 tttgatatca tggaagccgt cattaaggca tttctgactg gataccctgg gaag 54 32 31 DNA avian encephalomyelitis virus 32 tttggatcct tatactattc tgctttcagg c 31 33 31 DNA avian encephalomyelitis virus 33 acgcgtcgac atggaagccg tcattaaggt g 31 34 32 DNA avian encephalomyelitis virus 34 tgctctagac tataaatttg tcaagcggag cc 32 35 32 DNA Turkey rhinotracheitis virus 35 aaactgcaga gatggggtca gagctctaca tc 32 36 31 DNA Turkey rhinotracheitis virus 36 cgaagatctt tattgactag tacagcacca c 31 37 33 DNA avian plague virus 37 aaactgcagc aatggccatc atttatctaa ttc 33 38 31 DNA avian plague virus 38 cgaagatctt catatgcaga ttctgcattg c 31 39 31 DNA avian plague virus 39 aaactgcaga tgaacactca aatcctgata c 31 40 31 DNA avian plague virus 40 tttggatcct tatatacaaa tagtgcaccg c 31 41 32 DNA Avian influenza virus 41 ccggtcgaca tggcgtctca aggcaccaaa cg 32 42 30 DNA Avian influenza virus 42 cgcggatcct taattgtcat actcctctgc 30 43 35 DNA avian plague virus 43 cgcgtcgaca tgaatccaaa tcagaaaata ataac 35 44 31 DNA avian plague virus 44 ggaagatctc tacttgtcaa tggtgaatgg c 31

Claims (14)

1. Avian vaccine formula, comprising at least three polynucleotide vaccine valencies each comprising a plasmid integrating, so as to express it in vivo in the host cells, a gene with one avian pathogen valency, these valencies being selected from the group consisting of Marek's disease virus, Newcastle disease virus, infectious bursal disease virus, infectious anaemia virus, the plasmids comprising, for each valency, one or more of the genes selected from the group consisting of gB and gD for the Marek's disease virus, HN and F for the Newcastle disease virus, VP2 for the infectious bursal disease virus, C+NS1 for the infectious anaemia virus.
2. Vaccine formula according to claim 1, wherein, for the valency of the Marek's disease virus, it comprises the gB gene alone.
3. Formula according to claim 1, which comprises the Newcastle disease virus HN and F genes in the same plasmid or in different plasmids.
4. Vaccine formula according to claim 1, wherein the plasmid for the infectious anaemia virus comprises C+NS1 in the same plasmid.
5. Vaccine formula according to any one of claims 1 to 4, which comprises, in addition, at least one valency selected from the group consisting of infectious bronchitis virus, infectious laryngotracheitis virus, encephalomyelitis virus, pneumovirosis virus, and avian plague virus, the plasmids comprising, for these valencies, one or more of the genes selected from the group consisting of S, M and N for the infectious bronchitis virus, gB and gD for the infectious laryngotracheitis virus, env and gag/pro for the encephalomyelitis virus, F and G for the pneumovirosis virus and HA, N and NP for the avian plague virus.
6. Vaccine formula according to claim 5, wherein for the infectious bronchitis virus valency, it comprises the S gene alone.
7. Vaccine formula according to claim 5, wherein for the laryngotracheitis valency, the formula comprises the gB gene alone.
8. Vaccine formula according to claim 5, wherein for the pneumovirosis valency, the formula comprises the two F and G genes in different plasmids or in one and the same plasmid.
9. Vaccine formula according to claim 5, wherein, for the avian plague valency, the formula comprises the HA gene alone.
10. Vaccine formula according to claim 5, wherein for the encephalomyelitis valency, the vaccine formula comprises the env gene.
11. Vaccine formula according to any one of claims 1 to 10, which comprises from 10 ng to 1 mg, preferably from 100 ng to 500 μg, still more preferably from 0.1 μg to 50 μg of each plasmid.
12. Use of one or more plasmids as described in any one of claims 1 to 11, for the manufacture of an avian vaccine intended to vaccinate animals first vaccinated by means of a first vaccine selected from the group consisting of a live whole vaccine, an inactivated whole vaccine, a subunit vaccine, a recombinant vaccine, this first vaccine having the antigen(s) encoded by the plasmid(s) or antigen(s) providing cross-protection.
13. Vaccination kit grouping together a vaccine formula according to any one of claims 1 to 11, and an avian vaccine selected from the group consisting of a live whole vaccine, an inactivated whole vaccine, a subunit vaccine, a recombinant vaccine, this first vaccine having the antigen encoded by the polynucleotide vaccine or an antigen providing cross-protection, for an administration of the latter in first vaccination or as booster with the vaccine formula.
14. Vaccine formula according to any one of claims 1 to 11, accompanied by a leaflet indicating that this formula can be used as booster for a first avian vaccine selected from the group consisting of a live whole vaccine, an inactivated whole vaccine, a subunit vaccine, a recombinant vaccine, this first vaccine having the antigen encoded by the polynucleotide vaccine or an antigen providing cross-protection.
US10/229,412 1996-07-19 2002-08-28 Avian polynucleotide vaccine formula Abandoned US20030124145A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/229,412 US20030124145A1 (en) 1996-07-19 2002-08-28 Avian polynucleotide vaccine formula

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR9609339A FR2751225B1 (en) 1996-07-19 1996-07-19 AVIAN POLYNUCLEOTIDE VACCINE FORMULA
FR96/09339 1996-07-19
PCT/FR1997/001326 WO1998003659A1 (en) 1996-07-19 1997-07-16 Avian polynucleotide vaccine formula
US09/232,479 US6221362B1 (en) 1996-07-19 1999-01-15 Avian polynucleotide formula
US09/784,990 US6464984B2 (en) 1996-07-19 2001-02-16 Avian polynucleotide vaccine formula
US10/229,412 US20030124145A1 (en) 1996-07-19 2002-08-28 Avian polynucleotide vaccine formula

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/784,990 Division US6464984B2 (en) 1996-07-19 2001-02-16 Avian polynucleotide vaccine formula

Publications (1)

Publication Number Publication Date
US20030124145A1 true US20030124145A1 (en) 2003-07-03

Family

ID=9494451

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/232,479 Expired - Lifetime US6221362B1 (en) 1996-07-19 1999-01-15 Avian polynucleotide formula
US09/784,990 Expired - Lifetime US6464984B2 (en) 1996-07-19 2001-02-16 Avian polynucleotide vaccine formula
US10/229,412 Abandoned US20030124145A1 (en) 1996-07-19 2002-08-28 Avian polynucleotide vaccine formula

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/232,479 Expired - Lifetime US6221362B1 (en) 1996-07-19 1999-01-15 Avian polynucleotide formula
US09/784,990 Expired - Lifetime US6464984B2 (en) 1996-07-19 2001-02-16 Avian polynucleotide vaccine formula

Country Status (19)

Country Link
US (3) US6221362B1 (en)
EP (2) EP0914442B1 (en)
JP (2) JP2001503019A (en)
KR (1) KR20000065258A (en)
CN (2) CN1225685A (en)
AR (1) AR013063A1 (en)
AU (1) AU735184B2 (en)
BR (1) BR9710495A (en)
CA (1) CA2261343A1 (en)
CO (1) CO4700304A1 (en)
DE (1) DE69730839T2 (en)
ES (1) ES2232876T3 (en)
FR (1) FR2751225B1 (en)
HU (1) HU224830B1 (en)
ID (1) ID19475A (en)
MA (1) MA24268A1 (en)
NZ (1) NZ333779A (en)
TN (1) TNSN97120A1 (en)
WO (1) WO1998003659A1 (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751225B1 (en) * 1996-07-19 1998-11-27 Rhone Merieux AVIAN POLYNUCLEOTIDE VACCINE FORMULA
ZA978434B (en) * 1996-09-27 1998-03-26 Akzo Nobel Nv Inactivated vaccines.
US6468984B1 (en) * 1999-06-08 2002-10-22 Innovo Biotechnologies Ltd. DNA vaccine for protecting an avian against infectious bursal disease virus
WO2000077218A1 (en) * 1999-06-10 2000-12-21 Agricultural Research Council Vaccine for newcastle disease virus
AR031405A1 (en) * 2000-11-21 2003-09-24 Wyeth Corp METHODS AND VACCINES TO CONFERENCE PROTECTION IN OVO AGAINST TURKEY'S RHINOTRACHISIS
FR2823222B1 (en) 2001-04-06 2004-02-06 Merial Sas VACCINE AGAINST NILE FEVER VIRUS
US7615209B2 (en) 2001-09-12 2009-11-10 Yissum Research Development Company Of The Hebrew University Of Jerusalem Compositions of NDV and methods of use thereof for treatment of cancer
IL145397A0 (en) * 2001-09-12 2002-06-30 Yissum Res Dev Co Compositions and methods for treatment of cancer
US7029681B2 (en) * 2002-03-08 2006-04-18 Schweitzer Chemical Corporation Multiple and multivalent DNA vaccines in ovo
US7037506B2 (en) * 2002-03-08 2006-05-02 Schweltzer Chemical Corporation Ltd. Vaccine accelerator factor (VAF) for improvement of vaccinations in poultry
WO2003086453A1 (en) * 2002-04-12 2003-10-23 Ilaria Capua Purified subfragment codifying for neuroaminidase, recombinant neuroaminidase and its use in zooprophylaxis
CA2500429C (en) 2002-10-15 2012-06-12 Wyeth Assay methods for detection of a virus in an avian tissue sample
EP1606419A1 (en) 2003-03-18 2005-12-21 Quantum Genetics Ireland Limited Systems and methods for improving protein and milk production of dairy herds
US7468273B2 (en) 2003-05-01 2008-12-23 Meial Limited Canine GHRH gene, polypeptides and methods of use
CA2545886A1 (en) 2003-11-13 2005-06-02 University Of Georgia Research Foundation, Inc. Methods of characterizing infectious bursal disease virus
US20050202484A1 (en) 2004-02-19 2005-09-15 The Governors Of The University Of Alberta Leptin promoter polymorphisms and uses thereof
ATE461710T1 (en) 2005-04-25 2010-04-15 Merial Ltd NIPAH VIRUS VACCINES
US20080241184A1 (en) 2005-08-25 2008-10-02 Jules Maarten Minke Canine influenza vaccines
DE102005040812A1 (en) * 2005-08-27 2007-03-15 Few Fahrzeugelektrikwerk Gmbh & Co. Kg Electrical connection and method for its connection to the window of a motor vehicle
EP3147296A1 (en) 2005-11-14 2017-03-29 Merial, Inc. Gene therapy for renal failure
US7771995B2 (en) 2005-11-14 2010-08-10 Merial Limited Plasmid encoding human BMP-7
US7862821B2 (en) 2006-06-01 2011-01-04 Merial Limited Recombinant vaccine against bluetongue virus
UA100692C2 (en) 2007-05-02 2013-01-25 Мериал Лимитед Dna-plasmids having increased expression and stability
US20080274137A1 (en) * 2007-05-02 2008-11-06 Jean Christophe Francis Audonnet DNA plasmids having improved expression and stability
WO2009148097A1 (en) * 2008-06-03 2009-12-10 旭硝子株式会社 Method for producing core-shell particle, core-shell particle, method for producing hollow particle, paint composition and article
MY159543A (en) 2008-11-28 2017-01-13 Merial Inc Recombinant avian influenza vaccine and uses thereof
CN102428099B (en) 2009-04-03 2016-03-16 梅里亚有限公司 The epiornitic seedling of delivery Avian pneumo-encephalitis virus
EP3213766A1 (en) 2009-12-28 2017-09-06 Merial Ltd. Recombinant ndv antigen and uses thereof
US20130197612A1 (en) 2010-02-26 2013-08-01 Jack W. Lasersohn Electromagnetic Radiation Therapy
CA2792117C (en) 2010-03-12 2016-09-20 Merial Limited Foot and mouth disease virus recombinant vaccines and uses thereof
MX344103B (en) 2010-08-31 2016-12-05 Merial Ltd Newcastle disease virus vectored herpesvirus vaccines.
WO2012090073A2 (en) 2010-12-30 2012-07-05 The Netherlands Cancer Institute Methods and compositions for predicting chemotherapy sensitivity
EP2694678A2 (en) 2011-04-04 2014-02-12 Netherland Cancer Institute Methods and compositions for predicting resistance to anticancer treatment
EP2694677A2 (en) 2011-04-04 2014-02-12 Netherland Cancer Institute Methods and compositions for predicting resistance to anticancer treatment with protein kinase inhibitors
WO2012145577A1 (en) 2011-04-20 2012-10-26 Merial Limited Adjuvanted rabies vaccine with improved viscosity profile
KR102007444B1 (en) 2011-04-25 2019-08-06 어드밴스드 바이오사이언스 라보라토리즈, 인코포레이티드 Truncated hiv envelope proteins(env), methods and compositions related thereto
MX361804B (en) 2011-05-27 2018-12-17 Boehringer Ingelheim Animal Health Usa Inc Genetic vaccines against hendra virus and nipah virus.
CA2837375C (en) 2011-06-01 2019-07-16 Merial Limited Needle-free administration of prrsv vaccines
ES2626297T3 (en) 2011-08-12 2017-07-24 Merial, Inc. Vacuum assisted preservation of biological products, particularly vaccines
PT2785374T (en) * 2011-11-30 2019-05-09 Merial Ltd Recombinant gallid herpesvirus 3 (mdv serotype 2) vectors expressing antigens of avian pathogens and uses thereof
WO2013093629A2 (en) 2011-12-20 2013-06-27 Netherlands Cancer Institute Modular vaccines, methods and compositions related thereto
HUE033858T2 (en) 2012-02-14 2018-01-29 Merial Inc Rotavirus subunit vaccines and methods of making and use thereof
NZ628270A (en) 2012-02-14 2016-09-30 Merial Inc Recombinant poxviral vectors expressing both rabies and ox40 proteins, and vaccines made therefrom
WO2013138776A1 (en) 2012-03-16 2013-09-19 Merial Limited Novel methods for providing long-term protective immunity against rabies in animals, based upon administration of replication-deficient flavivirus expressing rabies g
MA37749B1 (en) 2012-06-13 2017-05-31 Merial Ltd Vaccines against bluetongue and African horse sickness virus
CN102719567A (en) * 2012-07-05 2012-10-10 广东温氏食品集团有限公司 PCR (Polymerase Chain Reaction) detection primer and method for H120 strain of avian infectious bronchitis virus
EP2968514A1 (en) 2013-03-12 2016-01-20 Merial, Inc. Reverse genetics schmallenberg virus vaccine compositions, and methods of use thereof
NZ727221A (en) 2014-05-19 2018-05-25 Merial Inc Method and device for conditional in ovo injection
IL241841B (en) * 2014-09-30 2019-09-26 Univ Free State Production of polypeptides relevant to human and animal health using yarrowia lipolytica
MX2017005687A (en) 2014-11-03 2017-08-21 Merial Inc Methods of using microneedle vaccine formulations to elicit in animals protective immunity against rabies virus.
CN104881148B (en) * 2015-05-15 2017-12-15 苏州达方电子有限公司 Keyboard and its control method
EP3313864B1 (en) 2015-06-23 2021-07-28 Boehringer Ingelheim Animal Health USA Inc. Prrsv minor protein-containing recombinant viral vectors and methods of making and use thereof
NZ740551A (en) 2015-08-20 2019-10-25 Boehringer Ingelheim Animal Health Usa Inc Fcv recombinant vaccines and uses thereof
EP4286002A3 (en) 2015-09-29 2024-02-28 Boehringer Ingelheim Animal Health USA Inc. Canine parvovirus (cpv) virus-like particle (vlp) vaccines and uses thereof
KR102153303B1 (en) 2015-11-23 2020-09-09 뵈링거 잉겔하임 애니멀 헬스 유에스에이 인코포레이티드 FMDV and E2 fusion proteins and uses thereof
TWI760322B (en) 2016-01-29 2022-04-11 美商百靈佳殷格翰動物保健美國有限公司 Recombinant adenovirus vectored fmdv vaccines and uses thereof
CN107099513B (en) * 2017-06-22 2020-07-14 北京邦卓生物科技有限公司 Construction and application of HVT co-expressing NDV HN and IBDV VP2 genes
US20210138064A1 (en) * 2018-01-26 2021-05-13 National Federation Of Agricultural Cooperative Associations Antigen-surface-coupled liposome vaccine for non-human animals
CN110777122A (en) * 2019-10-21 2020-02-11 青岛易邦生物工程有限公司 Recombinant Marek's disease virus I for expressing VP2 protein of IBDV (infectious bursal disease Virus)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468984B1 (en) * 1999-06-08 2002-10-22 Innovo Biotechnologies Ltd. DNA vaccine for protecting an avian against infectious bursal disease virus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU643216B2 (en) * 1989-05-30 1993-11-11 Commonwealth Scientific And Industrial Research Organisation Production of IBDV VP2 in highly immunogenic form
JPH06509235A (en) * 1991-07-26 1994-10-20 ヴァイロジェネティクス コーポレイション Infectious Bursal Disease Virus Recombinant Poxvirus Vaccine
FR2697534A1 (en) * 1992-11-02 1994-05-06 Rhone Merieux Recombinant turkey herpes virus for the production of Gumboro disease vaccine, its preparation process and vaccine obtained.
IL108915A0 (en) * 1993-03-18 1994-06-24 Merck & Co Inc Polynucleotide vaccine against influenza virus
EP0690912B1 (en) * 1993-04-14 2008-03-05 Commonwealth Scientific And Industrial Research Organisation Recombinant avian adenovirus vector
DE69536091D1 (en) * 1994-01-27 2010-09-09 Univ Massachusetts Medical Immunization by vaccination of DNA transcription unit
JPH08116976A (en) * 1994-10-20 1996-05-14 Chemo Sero Therapeut Res Inst Nucleic acid preparation for immunization and immunizing method using the acid
US5736524A (en) * 1994-11-14 1998-04-07 Merck & Co.,. Inc. Polynucleotide tuberculosis vaccine
FR2728794B1 (en) * 1994-12-30 1997-03-21 Rhone Merieux AVIAN RECOMBINANT VACCINE BASED ON AVIAN HERPES VIRUS, PARTICULARLY AGAINST GUMBORO DISEASE
AU4489896A (en) * 1994-12-30 1996-07-24 Rhone Merieux Avian recombinant live vaccine
FR2751225B1 (en) * 1996-07-19 1998-11-27 Rhone Merieux AVIAN POLYNUCLEOTIDE VACCINE FORMULA
US5916879A (en) 1996-11-12 1999-06-29 St. Jude Children's Research Hospital DNA transcription unit vaccines that protect against avian influenza viruses and methods of use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468984B1 (en) * 1999-06-08 2002-10-22 Innovo Biotechnologies Ltd. DNA vaccine for protecting an avian against infectious bursal disease virus

Also Published As

Publication number Publication date
EP1523992A1 (en) 2005-04-20
US6221362B1 (en) 2001-04-24
ID19475A (en) 1998-07-16
WO1998003659A1 (en) 1998-01-29
TNSN97120A1 (en) 2005-03-15
CA2261343A1 (en) 1998-01-29
HU224830B1 (en) 2006-02-28
JP2009149608A (en) 2009-07-09
HUP9902790A2 (en) 1999-12-28
KR20000065258A (en) 2000-11-06
AU3773697A (en) 1998-02-10
CN1701788A (en) 2005-11-30
BR9710495A (en) 1999-08-17
CN1225685A (en) 1999-08-11
JP2001503019A (en) 2001-03-06
US20020037292A1 (en) 2002-03-28
FR2751225A1 (en) 1998-01-23
NZ333779A (en) 2000-07-28
AU735184B2 (en) 2001-07-05
MA24268A1 (en) 1998-04-01
US6464984B2 (en) 2002-10-15
ES2232876T3 (en) 2005-06-01
EP0914442B1 (en) 2004-09-22
DE69730839D1 (en) 2004-10-28
FR2751225B1 (en) 1998-11-27
DE69730839T2 (en) 2005-09-29
HUP9902790A3 (en) 2000-03-28
EP0914442A1 (en) 1999-05-12
AR013063A1 (en) 2000-12-13
CO4700304A1 (en) 1998-12-29

Similar Documents

Publication Publication Date Title
US6221362B1 (en) Avian polynucleotide formula
US6228846B1 (en) Polynucleotide vaccine formula against canine pathologies
US6348196B1 (en) Feline polynucleotide vaccine formula
US6207165B1 (en) Polynucleotide formula against porcine reproductive and respiratory pathologies
US6558674B1 (en) Polynucleotide vaccine formulation against pathologies of the horse
US6376473B1 (en) Polynucleotide vaccine formula in particular against bovine respiratory pathology
PT1066055E (en) Horse dna vaccines containing the adjuvant acrylic acid, methacrylic acid or ema (r)
US7029681B2 (en) Multiple and multivalent DNA vaccines in ovo
ES2219658T3 (en) VACCINE AGAINST PAPERAS CONTAINED BY A JERYL-LYNN VIRUS strain.
AU2004210602B2 (en) Avian polynucleotide vaccine formula
AU777623B2 (en) Avian polynucleotide vaccine formula
AU2004205140B2 (en) Feline polynucleotide vaccine formula
AU773266B2 (en) Feline polynucleotide vaccine formula
AU2007202367A1 (en) Avian polynucleotide vaccine formula
AU2008203549A1 (en) Feline polynucleotide vaccine formula
EP1626694A2 (en) Vaccine accelerator factor (vaf) for improvement of vaccinations in poultry
Motamed An Overview of Future Development Methods of Infectious Bronchitis Vaccines
NZ506427A (en) A canidae vaccine comprising the rabies G gene under the control of the CMV-IE promoter

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION