Connect public, paid and private patent data with Google Patents Public Datasets

Surgical tool system with components that perform inductive data transfer

Download PDF

Info

Publication number
US20030093103A1
US20030093103A1 US10214937 US21493702A US2003093103A1 US 20030093103 A1 US20030093103 A1 US 20030093103A1 US 10214937 US10214937 US 10214937 US 21493702 A US21493702 A US 21493702A US 2003093103 A1 US2003093103 A1 US 2003093103A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
accessory
handpiece
cutting
data
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10214937
Inventor
Don Malackowski
Wenjie Deng
Jose de la Barrera
James Rains
Mark Wasserman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stryker Corp
Original Assignee
Stryker Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8875Screwdrivers, spanners or wrenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1626Control means; Display units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1688Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the sinus or nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/98Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/162Chucks or tool parts which are to be held in a chuck
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00221Electrical control of surgical instruments with wireless transmission of data, e.g. by infrared radiation or radiowaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00464Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable for use with different instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • A61B2017/00482Coupling with a code
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • A61B2034/256User interfaces for surgical systems having a database of accessory information, e.g. including context sensitive help or scientific articles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0804Counting number of instruments used; Instrument detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/007Auxiliary appliance with irrigation system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/40Apparatus fixed or close to patients specially adapted for providing an aseptic surgical environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of the preceding main groups, e.g. automatic card files incorporating conveying and reading operations
    • G06K2017/0035Aspects not covered by other subgroups
    • G06K2017/009Aspects not covered by other subgroups for use in medical applications

Abstract

A surgical tool system with a handpiece that has an internal power generating unit used to actuate an accessory attached to the handpiece. Power to actuate the handpiece comes from a control console. Internal to the accessory there is an identification chip that describes the operating and/or physical characteristics of the accessory. Complementary coils in the handpiece and accessory facilitate the reading by inductive coupling of the data in the accessory. The data in the accessory are inductively read by the control console through the handpiece. Based on the read data, the control console actuates the handpiece in an appropriate manner for the attached accessory. The accessory data and data inductively read from an implant the accessory is used to set are supplied to a surgical navigation unit. The surgical navigation unit, based on these data, tracks and indicates the position of the implant as it fitted in the patient.

Description

    RELATIONSHIP TO EARLIER FILED APPLICATION
  • [0001]
    This Application claims priority from the Applicant's U.S. Patent Application Ser. No. 60/310,957, SURGICAL TOOL SYSTEM WITH A CUTTING ACCESSORY THAT CONTAINS A MEMORY WITH DATA THAT DESCRIBES THE OPERATING CHARACTERISTICS OF THE CUTTING ACCESSORY, filed Aug. 8, 2001.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The Applicant's Assignee's U.S. Pat. No. 6,017,354, entitled INTEGRATED SYSTEM FOR POWERED SURGICAL TOOLS, issued Jan. 25, 2000, and incorporated herein by reference, describes a surgical tool system with a handpiece that is removably attached to a control console. Internal to the handpiece is a memory, a NOVRAM. The NOVRAM contains data that describes the operating characteristics of the handpiece. For example, if the handpiece includes a motor, its NOVRAM includes data indicating the maximum speed at which the motor should run and, for given speeds, the maximum torque the motor is allowed to develop. Each time a new handpiece is attached to the control console, the data in the handpiece NOVRAM is read by a complementary processor in the control console. The control console, based on the handpiece NOVRAM data, then supplies the appropriate energizaton signal to the handpiece motor.
  • [0003]
    An advantage of the foregoing system is that it allows a single control console to be used to supply the energizaton signals that are applied to the handpiece that have different power consuming units, such as motors. Thus, a single control console can be used to operate a first handpiece with a motor that rotates at speeds under 3,000 RPM and requires 350 Watts or more of power, a second handpiece that has a motor that operates at speeds over 70,000 RPM and that requires approximately 150 Watts of power and a third handpiece that operates at speeds between 10,000 to 40,000 RPM and that requires only 40 Watts of power.
  • [0004]
    In most surgical systems, the handpiece is not the actual component that is applied to the surgical site in order to accomplish a surgical task. These components are, what are referred to as cutting accessories.
  • [0005]
    Typically, a single handpiece is used to actuate a number of different types of cutting accessories. For example, a handpiece designed to perform some forms of ear, nose and throat surgery is designed to actuate both burrs and cutters. Burrs are cutting accessories designed to selectively shape and remove hard tissue, bone. Cutters are cutting accessories that are employed to selectively shape and remove soft tissue such as sinus membrane tissue.
  • [0006]
    While a single handpiece is designed to actuate different types of cutting accessories, the accessories themselves often have different operating characteristics. For example, some burrs may have a preferred operating speed of 6,000 RPM and may be designed to operate at speeds of up to 10,000 RPM. In contrast, some cutters may have a preferred operating speed of 2,000 RPM and may be designed to operate at a maximum speed of 5,000 RPM. Moreover, some cutting accessories are operated in a different manner than other cutting accessories. For example, a burr is driven, rotated, in a single direction. A cutter is typically oscillated. In other words, when a cutter is actuated, it is typically rotated through an arc of X degrees in a first direction and then rotated in the opposite direction through the same arc. Once this first rotation cycle is complete, the motor driving the cutter repeats this rotational pattern.
  • [0007]
    Often, during the course of a single surgical procedure, the surgeon will want to apply two or more different cutting accessories to the surgical site in order to accomplish the procedure. Typically, the surgeon will use a single handpiece to actuate these different cutting accessories. Each time the surgeon attaches a different type of cutting accessory to the handpiece, it may be necessary for the surgeon or other operating room personnel to reconfigure the surgical system used to drive the cutting accessory to set it for the specific characteristics of that accessory. When surgical personnel have to do this during the course of a surgical procedure, it can increase the overall time it takes for the procedure to be performed. This is contrary to one of the goals of modern surgery which is that it is desirable to perform a surgical procedure as quickly as possible in order to hold the overall time a patient is kept under anesthesia to a minimum.
  • [0008]
    Moreover, having to have an individual in the operating room set the surgical system to the operating characteristics of the cutting accessory that the system is being used to operate introduces the possibility that, due to human error, these characteristics will be improperly entered.
  • [0009]
    There have been some efforts at providing cutting accessories with type-identifying indicators, typically magnets. The handpieces to which these accessories are attached are provided with sensors. These sensors detect the presence/absence of the magnets and generate signals representative of what was sensed back to the control console. The processor in the control console, based on the signals from the handpiece sensors, then configures the system.
  • [0010]
    The above system, while of some utility, only provides a limited amount of data about the cutting accessory attached to the system handpiece. This is because, due to space considerations, only a limited number of indicators can be mounted to a cutting accessory and only a limited number of sensors can be fitted in the head end of the handpiece designed to actuate the accessory. For example, known commercial systems of this design have handpieces with two sensors. Each sensor is designed to detect the presence/absence of a separate cutting accessory-mounted magnet. Thus, these systems simply provide 2 bits of data. Even if it were possible for the number of magnets in the cutting accessories and the number of complementary handpiece sensors to be doubled, the resultant system would only be able to provide 4 bits of accessory specific data.
  • [0011]
    Thus, in the current systems, the indicators mounted to a cutting accessory are only employed to provide data that describes a basic operating characteristic of the accessory or that describes its type. For example, the indicator may be employed to describe basic speed and torque ranges of the cutting accessory or, for example, that the accessory is a burr. Regardless of the specific nature of this data, the control console processor, uses the data to reference complementary control data in a look-up table or other circuitry internal to the control console. The actual regulation of the handpiece is controlled by reference to this previously stored characteristic-data.
  • [0012]
    Thus, in the foregoing cutting accessory recognition system, the actual control of the handpiece is based on operating parameters that have been previously loaded into the control console. If a new accessory is provided that has operating characteristics different than those that have been loaded into the control console, the console will not automatically configure itself to operate the handpiece in accordance with those parameters. In order for this control to be accomplished, the control console has to be loaded with the new operating characteristic data. Moreover, given the limited amount of data that can be read from the indicators of the current systems, these data may be insufficient to provide all the information a control console could use to regulate its operation based on the characteristics of the attached cutting accessory.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0013]
    [0013]FIG. 1 depicts the basic system of this invention;
  • [0014]
    [0014]FIG. 2 is a cross-sectional diagram of a cutting accessory seated in the distal end of a handpiece of this invention;
  • [0015]
    [0015]FIG. 3 is a block diagram of the circuitry internal to the control console, the handpiece, and the cutting accessory that is used to store and read data from the accessory that describes the characteristics of the cutting accessory;
  • [0016]
    [0016]FIG. 4 depicts the contents of the memory internal to the cutting accessory;
  • [0017]
    [0017]FIG. 5 is a block diagram of how the control console periodically reads the contents of the memory of the cutting accessory and reconfigures the operation of the system based on the retrieved data;
  • [0018]
    [0018]FIG. 6 depicts how the control console periodically determines whether or not a particular cutting accessory attached to the handpiece has been used for a time period equal to the useful lifetime of the handpiece;
  • [0019]
    [0019]FIG. 7 is a cross-sectional view of an alternative handpiece and cutting accessory of this invention;
  • [0020]
    [0020]FIG. 8 is a cross-sectional view of locking collet of the handpiece of FIG. 7;
  • [0021]
    [0021]FIG. 9 is a plan view of the hub of the cutting accessory of FIG. 7;
  • [0022]
    [0022]FIG. 10 is a cross-sectional view of the coil seal of the cutting accessory of FIG. 7;
  • [0023]
    [0023]FIG. 11 is a perspective view of the coil seal of the cutting accessory of FIG. 7;
  • [0024]
    [0024]FIG. 11A is a perspective view of the cutting accessory tag assembly;
  • [0025]
    [0025]FIG. 12 is a perspective view of a partially assembled alternative handpiece of this invention in which a cutting accessory hub is shown coupled to the handpiece;
  • [0026]
    [0026]FIG. 13 is a front view of the handpiece and cutting accessory hub of FIG. 12;
  • [0027]
    [0027]FIG. 14 is a cross sectional view of the handpiece and cutting accessory hub taken along line 14-14 of FIG. 13;
  • [0028]
    [0028]FIGS. 15A and 15B are, respectively, perspective and cross sectional views of the handpiece coil housing;
  • [0029]
    [0029]FIG. 16 is a plan view of one coil assembly of this invention;
  • [0030]
    FIGS. 17 is a plan view of the outer hub of FIG. 12;
  • [0031]
    [0031]FIG. 18 is a cross sectional view of the outer hub taken along line 18-18 of FIG. 17;
  • [0032]
    [0032]FIG. 19 is a perspective view of a chip-and-coil subassembly, a tag, of this invention;
  • [0033]
    [0033]FIG. 20 is a block diagram view of an alternative version of this invention;
  • [0034]
    [0034]FIG. 21 is a block diagram depiction of how this invention may be integrated in a surgical navigation system; and
  • [0035]
    [0035]FIG. 22 is a cross sectional view of a cutting accessory of the version of this invention depicted in FIG. 21;
  • [0036]
    [0036]FIG. 23 is a flow chart depicting how the control console determines the extent to which a particular cutting accessory is worn;
  • [0037]
    [0037]FIG. 24 is a block diagram of the inside of the control console depicting how separate controllers regulate the actuating of handpieces and the reading of data from the NOVRAMs integral with the cutting accessories attached to the handpieces;
  • [0038]
    [0038]FIG. 25 is flow chart depicting an alternative process by which data in a cutting accessory NOVRAM are read;
  • [0039]
    [0039]FIG. 26 is a flow chart depicting an alternative process by which data in a cutting accessory NOVRAM are read and the control console configured to energize the handpiece to which the cutting accessory is attached;
  • [0040]
    [0040]FIG. 27 is a flow chart depicting how the integrated cutting accessory and implant recognition system of this invention can be used to facilitate the performance of image guided surgery;
  • [0041]
    [0041]FIG. 28 is a diagrammatic illustration of a case, such as a sterilization case or a trial case, in which components used to facilitate the performance of a surgical procedure are held;
  • [0042]
    [0042]FIG. 29 is a flow chart depicting how the integrated cutting accessory and implant recognition system of this invention can be used to facilitate the inventory of components used during the performance of a surgical procedure; and
  • [0043]
    [0043]FIG. 30 is a block diagram of how the information generated by the integrated cutting accessory and implant recognition system of this invention are transferred to other components of a medical facility data information network.
  • [0044]
    [0044]FIG. 31 is a block diagram of the circuitry internal to a cordless powered surgical tool and a cutting accessory that is used therewith.
  • DETAILED DESCRIPTION
  • [0045]
    [0045]FIG. 1 depicts the surgical system 20 of this invention. System 20 includes a surgical handpiece 22 that is used to actuate a cutting accessory 24 that is removably attached to the handpiece. Internal to the handpiece is a motor 26 (FIG. 2) that is actuated to drive the cutting accessory 24. The handpiece 22 is removably attached to a control console 28 by a flexible cable 30. The control console 28 contains circuitry that is used to supply energization signals to the handpiece motor 26. The regulation of these energization signals is controlled by a microprocessor, controller 70 (FIG. 3), internal to the control console 28. Internal to the handpiece 22 or the cable 30 is a NOVRAM 32. (When the NOVRAM 32 is in the cable 30, the cable is integrally attached to the handpiece 22.) The NOVRAM 32 contains data that describes the operating characteristics of the handpiece 22. These data include: information that identifies the type of handpiece; information that describes the operating characteristics of the handpiece motor; the identification of the type of output signals provided by any sensors internal to the handpiece; and information useful for correcting the signals produced by the handpiece sensors to correct for their individual calibration characteristics. More information on the types of data contained in the handpiece NOVRAM 32 and how this information is used to regulate the operation of the handpiece 22 by the system 20 is found in U.S. Pat. No. 6,017,354, which is, again, incorporated herein by reference.
  • [0046]
    [0046]FIG. 1 further includes disposable tubing set 31. The tubing set 31 includes tubing 33 and a cartridge 35. A portion of the tubing 33 extends through and is secured to the cartridge 35. The cartridge includes an identification chip 37.
  • [0047]
    A first end of the tubing 33 is secured to and receives irrigation fluid, such as saline from an IV bag 39. The cartridge 35 is mounted onto the control console 28. A positive displacement pump (not shown) of the control console pumps the solution to a second distal end of the tubing 33 to irrigate a surgical site. The tubing 33 is adjacent an irrigation/cutting handpiece 41. A flexible cable 30 a connects the handpiece 41 to the control console 28. The tubing 33 is positioned adjacent to the entire length of the cable 30 a. A cutting saw 43 is located at a distal end of the handpiece 41. Other cutting elements can be utilized in place of the saw 43.
  • [0048]
    The cartridge 35 can be any structure designed for securement to the control console. In some embodiments, the tubing set 31 comprises only tubing 31 and an identification chip 37. In this instance, the tubing 33 is secured to the control console 28 so that the pump can pump irrigation fluid to the distal end of the tubing.
  • [0049]
    In operation, the user of the irrigation/cutting handpiece 41 actuates the cutting saw 43. Power is supplied to the cutting saw via cable 30 a. When the cutting saw 43 is actuated, tubing 33 provides irrigation fluid to the surgical site.
  • [0050]
    When the cartridge 35 is installed onto the console 28, a coil (not shown) mounted on the console adjacent the cartridge reads data from the identification chip 37. The data provides the diameter, size and any other relevant properties for the tubing 33. The control console 28 then controls the positive displacement pump to provide a proper flow rate for the irrigation fluid being applied to the surgical site during cutting. Thus, a user need not manually set specific control values for the pump.
  • [0051]
    Since the tubing set 31 is disposable, typically only data is read from the identification chip 37. However, in some embodiments data is sent to the chip 37 indicating that the tubing set has been used and must be disposed of.
  • [0052]
    In some embodiments, no cartridge 35 is present. The tubing 33 is wrapped or otherwise configured to the pump, which is preferably mounted onto the control console 28. In this instance the identification chip 37 is mounted directly to the tubing 33, which comprises of itself, the tubing set 31. However, the identification chip 37 must be positioned adjacent a detector coil connected to the control console 28.
  • [0053]
    [0053]FIG. 2 illustrates the distal end of the handpiece 22 and the proximal end of the cutting accessory 24 of this invention. (In this application, “distal” is used to refer to a portion of a component located away from a surgeon/towards a surgical site; “proximal” refers to a portion of a component located towards the surgeon/away from the surgical site.)
  • [0054]
    The handpiece 22 has a housing 34. Motor 26 is disposed in the housing 34. The motor 26 has a rotated-sleeve shaped shaft 36 to which a number of magnets 38 are attached. Motor 26 also includes a set of windings 40 that are secured to the inner wall of housing 34 that surround magnets 38. The distal end of housing 34 is open and dimensioned to receive the proximal end of cutting accessory 24.
  • [0055]
    The cutting accessory 24 includes an outer hub 44 formed of plastic. Outer hub 44 is formed with tabs 46. Tabs 46 seat in complementary notches 48 formed in handpiece housing 34 so as to hold the hub in one place in the housing. A locking mechanism integral with the handpiece, (not illustrated) has members designed to engage the outer hub 44 so as to releasably secure the cutting accessory to the handpiece. For example, some handpieces are provided with a set of ball bearings that are releasesably pressed against an opposed outer surface of the outer hub. The Applicant's Assignee's U.S. Pat. No. 6,312,441, POWERED SURGICAL HANDPIECE FOR PERFORMING ENDOSCOPIC PROCEDURES, issued Nov. 6, 2001 and incorporated herein by reference discloses how one such locking assembly works. Alternatively, spring arms may be releaseably held against the outer hub. The Applicant's Assignee's U.S. Pat. No. 5,192,292, SURGICAL APPARATUS FOR ARTHROSCOPIC SURGERY, issued Mar. 9, 1993 and incorporated herein by reference discloses one version of this type of locking assembly. Thus, the actual type of handpiece locking assembly that holds the cutting accessory to the 24 to the handpiece 22 and complementary outer hub geometry may vary.
  • [0056]
    An outer tube 50 extends distally forward from the outer hub 44 away from the handpiece 22. The cutting accessory 24 also includes an inner tube 52 that is disposed inside the outer tube 50. The distal head end of the inner tube 52, (end not illustrated) is provided with some type of cutting member to selectively shape and/or remove the tissue to which it is applied. The inner tube 52 extends through both the outer tube 52 and the outer hub 44. The proximal end of the inner tube is attached to an inner hub 56, sometimes referred to as a drive coupling, that is located against the proximal facing face of the outer hub 44.
  • [0057]
    When the cutting accessory 24 is fitted in the handpiece, inner hub 56 is located inside a cavity located in the distal end of the handpiece housing 34. The proximal end of the inner tube 52 and inner hub 56 is seated over the open distal end of handpiece shaft 36. Complementary teeth on the shaft 36 and the inner hub 56 releasably hold the inner hub to the shaft so that the inner hub will rotate in unison with the shaft 36 (teeth not illustrated).
  • [0058]
    An identification sleeve 60 is fitted over the outer hub 44. Sleeve 60 is formed of plastic and may provide some of the structural strength of the outer hub 44. Internal to sleeve 60 is a small semiconductor that functions as an identification chip 62. Also disposed inside sleeve 44 is a coil 64. In the depicted version of the invention, coil 64 extends annularly around sleeve 60. The ends of coil 64 are, as described below, connected to components internal to identification chip 62.
  • [0059]
    The distal end, the head end, of handpiece housing 34 is provided with a separate annular coil 66. The opposed ends of coil 66 are connected by conductors 63 (one shown) and cable 30 to circuitry internal to the control console 28. Collectively, the handpiece 22 and cutting accessory 24 are shaped so that coils 64 and 66 are in such proximity to each other that they will collectively inductively transfer signals from/to the circuit internal to the control console to/from the circuit internal to the identification chip 62. Typically, the handpiece housing 34 is formed of metal. Accordingly, in the illustrated versions of the invention, coil 66 is disposed in a ring 67 formed from a plastic that can be subjected to medical sterilization wherein the handpiece is autoclaved at 270° F., subjected to saturated water vapor at 30 psi. One suitable plastic from which ring 67 may be formed is a polyetherimide and glass filed plastic sold by the General Electric Company under the trademark ULTEM. Ring 67 is fitted in a notch, not identified, formed in an interior wall of handpiece housing 34. The inner surface of ring 67 thus defines part of the cavity in which the proximal end of the cutting accessory 24 is seated. The fitting of handpiece coil 66 in ring 67 facilitates the inductive signal transfer between the handpiece coil and the coil 64 integral with the cutting accessory.
  • [0060]
    [0060]FIG. 3 depicts, in block diagram, electrical components internal to control console 28 of system 20 of this invention. The control console 28 includes a controller (CNTRLR) 70 that controls the overall operation of the system 20. Memories, represented by a single memory 69, are also contained in the control console. These memories contain the permanent operating instructions that are executed by controller 70 to control the system and regulate the actuation of the handpiece 22 and the cutting accessory 24. The memories also temporarily store the data that is read from the handpiece NOVRAM 32. As part of its control of system 20, controller 70 generates energization control signals to a driver 72. The driver 72, based in part on the energization control signals, generates energization signals that are applied to the handpiece motor 26. Controller 70 is connected to the handpiece NOVRAM 32 to receive from the NOVRAM the data that describes the operating characteristics of the motor. The control console 28 also includes a touch screen display 71. Controller 70 causes information regarding the state of the system 20 to be presented on the display 71. Controller 70 also causes images of buttons to be presented on the display 71. Operating room personnel regulate the operation of the system 20 by selectively depressing these buttons.
  • [0061]
    Control console 28 is also connected to a modulator (MOD) 74. Modulator 74 modulates digital signals output by controller 70 so they can be inductively transferred to cutting accessory identification chip 62. In one preferred version of the invention, modulator 74 receives a fixed-frequency signal from an oscillator 76 internal to the control console 28. In one version of the invention, the signal produced by the oscillator 76 is at a frequency of 125 Khz. In another preferred version of the invention, the carrier signal produced by oscillator 76 is at 13.56 MHz.
  • [0062]
    Modulator 74, based on the bit stream produced by the controller 70, engages in selective amplitude shift keying (ASK) of the carrier signal. In one form of amplitude shift keying, based on the 1's and 0's pattern that forms the bit stream, the modulator 74 selectively transmits/stops transmitting the carrier signal so as to produce a set of variable length rectangular pulses. The amplitude shift keyed signal generated by modulator 74 is amplified by an amplifier 78 internal to the control console 28. The output signal from amplifier 78 is applied to one end of handpiece coil 66.
  • [0063]
    The end of handpiece coil 66 opposite the end to which amplifier 78 is connected is tied to a demodulator (DEMOD) 80 internal to the control console. Demodulator 80 receives the signal that is coupled to handpiece coil 66, demodulates the signal, and applies the output bit stream to controller 70. A typical demodulator may include a product detector to which the carrier signal is applied from oscillator 76. The output from the detector, which is a multiplication of the signal from the oscillator 76 and the coil 66, is applied to a low-pass filter, also part of the demodulator 80. The output signal from the low pass filter is a bit stream that is applied to the controller 70.
  • [0064]
    In FIG. 3 oscillator 76 is also shown as connected to controller 70. This is because the signal produced by the oscillator is also used to regulate the writing out of the bit stream that is applied to the modulator 74 and the reading in of the bit stream generated by the demodulator 80.
  • [0065]
    The identification chip 62 includes a small controller and an electronically programmable memory (μC&MEM) 84. Controller/memory 84 is capable of storing approximately 1 k bits of data. The controller integral with controller/memory 84 is capable of controlling the writing of data into its complementary memory section and the writing out of the contents of the memory. There is also a modulator/demodulator (MOD DEM) 86 fabricated integrally into chip 62. Modulator/demodulator 86 contains the components necessary to demodulate the ASK signal coupled to coil 64 and apply the resultant bit stream to controller/memory 84. Modulator/demodulator 86 also accepts the bit stream output from the controller/memory 84 and produces an ASK modulated signal based on this bit stream. A clock 88 fabricated into chip 62 produces a clock signal that the modulator/demodulator 86 uses as a basis for producing a carrier signal produced an ASK modulated signal.
  • [0066]
    A capacitor 83 is also fabricated integrally with chip 62. More particularly, chip 62 is designed so that coil 64 is connected across the opposed ends of capacitor 83. When a signal is applied to chip 62 through coil 64, the energy in the high portion of the signal is stored in capacitor 83. This energy is applied directly to a power regulator 89 to function as an energization signal. The power regulator 89 supplies this energization signal to the other sub-circuits internal to the chip 62. (Connections between power regulator 89 and other components of chip 62 not shown.)
  • [0067]
    In FIG. 3, coil 64 is shown as being integrally part of chip 62. This is one option for the invention. However, as discussed above, it is anticipated that in many versions of the invention, chip 62 and coil 64 will be separate components.
  • [0068]
    [0068]FIG. 4 illustrates some of the different types of data stored in the tag controller/memory 84. These data include a serial number specific to the cutting accessory 24 with which tag 62 is integral, field 90. This number may also include a special authorization code, the purpose of which is described hereinafter. There is also a field with data that indicates cutting accessory's 24 type, field 92. For example, the data in field 92 may indicate that the cutting accessory is a burr that has a head with a particular diameter. Field 94 within controller/memory 84 contains data indicating a preferred speed at which the cutting accessory should be operated. Data indicating the maximum speed at which the cutting accessory should operate is contained in field 96. The maximum operating torque the cutting accessory should develop is indicated by data in field 98.
  • [0069]
    Field 102 contains data that indicates the preferred mode of operation of the cutting accessory. For example, if the cutting accessory 24 is a cutter, the most common mode of its operation is oscillatory. Alternatively, if the cutting accessory 24 is a burr, the preferred mode of operation is unidirectional. Stopping torque data is contained within a field 104. The stopping torque data is data used to regulate the deceleration of the handpiece motor 26.
  • [0070]
    Controller/memory 84 also contains data fields that are written to by the control console controller 70. One of these data fields is a date/time used field 106. Field 106 is used to store data indicating if and when the cutting accessory 24 was previously used. Specifically, during loading of basic information into the controller/memory 84, field 106 is loaded with flag data indicating that it has not been previously used. As described below, once the cutting accessory 24 is used, the controller 70 writes into field 106 an indication of when the use occurs.
  • [0071]
    A set of data indicating for how long the cutting accessory can be used is loaded into a MAX USE TIME data field 108 in controller/memory 84. This particular data represents how long a surgeon can expect to use the cutting accessory 24 before the cutting surfaces become worn to the level at which they may not efficiently cut tissue. The length of time contained in field 108 may be based on empirical studies indicating how long an accessory can be used before its cutting surfaces become excessively worn. The MAX USE TIME field 108 is loaded with data specifying this time period when the other permanent accessory-describing data are loaded into controller/memory 84. The controller/memory 84 also includes a TIME USED field 110. Data representative of the amount of time the cutting accessory has been used is stored in TIME USED field 110 by control console controller 70. A WEAR PROFILE field 112 contains data indicating the extent to which the cutting accessory has been worn during its use.
  • [0072]
    The system 20 of this invention is initially configured for operation by connecting the handpiece 22 to the control console 28. Controller 70 reads the data in the handpiece NOVRAM 32, stores these data in memory 69 and initially configures the system 20 to operate based on the data contained in the NOVRAM. Handpiece NOVRAM 32 also contains a data field, (not illustrated), that indicates whether or not the cutting accessories attached to the handpiece 22 may contain an identification chip 62. If this data indicates no such chip may be present, system 20 controls the actuation of the handpiece 22 based on the configuration data contained in NOVRAM 32.
  • [0073]
    If, however, NOVRAM 32 indicates that the cutting accessory may contain a chip 62, controller 70 executes a read request, step 120 in FIG. 5, in which it reads the data in the chip controller/memory 84. In step 120, controller 70 generates a read request to chip 62. This request is converted into an ASK signal by modulator 74 and applied to the chip through coils 64 and 66. If a chip 62 is attached to cutting accessory 24, the chip, in response to the read request, writes out the stored data in its controller/memory 84 through coils 64 and 69 and demodulator 80 to controller 70. Controller 70 stores this data in appropriate fields within control console memory 69.
  • [0074]
    If the cutting accessory 24 does not include a chip 62, controller 70 does not receive any data in response to its read request. If this event occurs, controller 70 regulates the operation of the handpiece based on the data contained in NOVRAM 32, step not shown.
  • [0075]
    If cutting accessory chip 62 writes data to control console controller 70, the first thing the controller does is compare the serial number stored in chip 62 to the serial number stored from the last cutting accessory attached to the handpiece, step 122. If this is the first cutting accessory attached to the handpiece 22, the serial number the controller 70 has stored will be a set of flag data indicating that, previously, there was no attached cutting accessory with chip.
  • [0076]
    Once it has been determined that a new cutting accessory has been attached to the handpiece 22, step 122 may also include the sub-step of, determining based on the identification number, if the appropriate authorization code is present. If this code is not present the control console 70 may prevent further operation of the system with the attached cutting accessory 24 and/or generate a message on display 71 indicating that an unauthorized accessory is attached. (The sub-steps of this code determination and the steps executed when the code is not present are not illustrated.)
  • [0077]
    If the comparison of step 122 indicates that this is the first cutting accessory attached to the handpiece or, as discussed below, there has been a change in the cutting accessory attached to the handpiece, controller 70 reads and reviews the data read from the tag data/time used field 106. Specifically, in step 123, this data is reviewed to determine whether or not the cutting accessory was previously used and, if so, did the use occur at a date and time significantly before the current data and time. The data in chip 62 may indicate that there was no previous use of the cutting accessory. Alternatively, if the data indicates that the use of the cutting accessory was relatively recent, within, for example, 24 hours, controller 70 interprets this data as indicating that the use was in association with the current surgical procedure. Controller 70 interprets either of these two states as being ones in which use of the cutting accessory can continue normally.
  • [0078]
    However, in step 123, controller 70, based on the data read from field 108, may determine that the cutting accessory 26 was previously used at a time other than during the current surgical procedure. If this determination is made, controller 70 generates a warning message indicating this information on the console touch screen display 71, step 124. This provides the surgeon with an indication that the cutting accessory was used. In step 124, the controller presents a button on display 71 the surgeon must depress to acknowledge the used state of the cutting accessory before it allows the surgeon to actuate the handpiece 22.
  • [0079]
    Once it is determined that the cutting accessory 24 was not previously used, or the surgeon has acknowledged the previous use, controller 70 reconfigures the operation of the system, step 126. In step 126, based on the data read from the controller/memory 84 integral with the cutting accessory 24, controller 70 configures the system for operation with the cutting accessory. Specifically, the system 20 is set so that at least initially the handpiece motor will operate at the speed indicated by the data in preferred speed field 94. The forward/reverse/oscillate mode of the motor is set to that specified in operating mode field 102. Thus, in step 126, the data from the cutting accessory chip 62 is used to override data that supersedes the data in handpiece NOVRAM 32 that describes how the system should be configured. Not illustrated is the memory integral with controller 70 in which the data from chip 62 are stored and used as reference data to control the operation of the system 20.
  • [0080]
    In step 126, based on the data contained in the accessory type field 92, controller 70 causes console display 71 to present an indication of the accessory's type. Controller 70 further configures the system to prevent the surgeon for generating commands that allow the handpiece motor to be actuated at a speed greater than that specified in the maximum speed field 96. (Alternatively, controller 70 may simply require the surgeon to acknowledge a warning before allowing the surgeon to operate the handpiece above the maximum speed for the associated accessory 24.) System 20 is further configured by controller 70 to prevent the generation of energization signals from being applied to the handpiece motor that would cause the cutting accessory 24 to develop more torque than it is allowed to develop according to the data in maximum torque field 98. The system is further configured so that during deceleration of the handpiece motor, the motor will not be subjected to torque in excess of the braking torque specified in stopping torque field 106.
  • [0081]
    Controller 70 also updates the data in the controller/memory 84 of the cutting accessory 24, step 128. More particularly, in step 126, the date and time the cutting accessory 24 was attached to the handpiece 22 are written into the date/time used field 106.
  • [0082]
    Once steps 126 and 128 are executed, the system is ready for operation. The control console will, based on commands entered by the surgeon, apply energization signals to the handpiece motor 26 so that it will run in the appropriate mode and in appropriate speed for that attached cutting accessory 24. This operation of the system is represented by continued operation step 130 of FIG. 4.
  • [0083]
    Throughout the operation of the system 20, controller 70 will periodically execute read request/data read and serial number comparison steps 120 and 122, respectively. In some versions of the system, steps 120 and 122 are reexecuted once every 0.2 to 1.0 seconds during periods of time the handpiece is not being actuated. If the serial number comparison step 122 indicates that serial number associated with the cutting accessory 24 is unchanged, controller 70 recognizes this state as indicating that the same cutting accessory remains attached to the handpiece 22. If this condition is detected, controller continues to allow the system to operate in accordance with its current configuration; step 130 is continually executed.
  • [0084]
    However, serial number comparison step 122 may indicate that there has been a change in cutting accessory serial numbers since the step was previously executed. This condition is recognized by controller 70 as indicating that a different cutting accessory 24 is attached to the handpiece 22. If this is the detected system state, controller 70 reexecutes steps 123, 126 and 128, and, if necessary, step, 124, before reexecuting step continued operation step 128. When continuing operation step 128 is reexecuted, the system 20 has been reconfigured to actuate the handpiece in accordance with the characteristics of the newly attached cutting accessory 24.
  • [0085]
    Controller 70 also monitors the amount of time the cutting accessory 24 is actuated. Specifically, controller 70 maintains an internal timer in which a time count is maintained indicating how long the cutting accessory attached to the handpiece 22 is actuated. In some versions of the invention, after each time the motor is deactivated, step 138 of FIG. 6, the controller 70 performs this monitoring. Specifically, after the motor is deactivated, controller 70 performs a step 140 in which the controller writes into the TIME USED field 110 of the cutting accessory controller/memory 84 data indicating the total time the cutting accessory has been used. These data are determined based on the data read from the TIME USED field 110 when the cutting accessory was first attached to the handpiece as well as the elapsed time of use for the accessory stored by the controller 70. This step 140 may be integrated into the first reexecution of step 120 after the motor is deactivated. Alternatively, step 140 may be executed as a separate write data step after the motor is deactivated. As part of step 140, the elapsed time count held by the internal timer is zeroed out.
  • [0086]
    Controller 70 then determines if the total time the cutting accessory has been used is less than the time period specified in the MAX USE TIME field 108 of the cutting accessory 24, step 142. In some versions of the invention, it is believed the useful lifetime for a cutting accessory will be between, for example, 30 and 120 minutes. If the total use time is less than the maximum recommended use time, controller 70 allows the system to operate as before, step 144. If, however, the total time of use is greater than the specified maximum recommended use time, controller 70 presents a warning notice and an acknowledgement button on the touch screen display, step 146. The surgeon must acknowledge that the cutting accessory 24 has been used for a time greater than its specified maximum use before the controller allows the system to continue to actuate the cutting accessory 24.
  • [0087]
    Chip 64 of cutting accessory 24 of this invention contains a significant amount of data that describes the operating characteristics and state of the cutting accessory. The control console 28 of this system automatically both reads this data and periodically updates it. The control console 28, based on the data read from chip 64, configures the system so it will operate in an appropriate manner given the specific characteristics of the specific attached cutting accessory. Specifically, the control console controller 70 configures the system so that, at least initially the handpiece motor will run at the preferred speed and in the preferred mode for the cutting accessory. The system is also configured to prevent the cutting accessory from being driven above its specific maximum operating speed, from developing torque beyond its design limit and from being subjected to excessive braking torque. This configuration of the system occurs without human intervention. Consequently, the possibility that human error could result in the incorrect configuration of the system 20 for the cutting accessory 24 attached to it is substantially eliminated.
  • [0088]
    The system of this invention provides the surgeon with an indication of whether or not the cutting accessory attached to it was previously used. This provides the surgeon with an indication that the cutting accessory may be worn and, therefore, will not be able to satisfactorily perform the intended surgical procedure.
  • [0089]
    System 20 of this invention also, during the surgical procedure, provides the surgeon an indication that a cutting accessory has been used for a period equal to its intended lifetime. This information is supplied to the surgeon to inform him/her that the cutting accessory, even if new when installed, may be worn to the level of reduced efficiency. Thus, the surgeon, upon receiving this information, can decide whether or not to continue using the current accessory or replace it with a new one.
  • [0090]
    Moreover, the handpiece 22 of this invention is constructed so that ring 67, which functions as the inner wall in which coil 66 is contained is plastic and the handpiece housing 34, which forms the outer containment wall for the coil, is formed of metal. As a result of this construction, the inductive field generated by coil 66 is localized within the cavity in the distal end of the housing 34 in which cutting accessory 24 is seated. The inductive field generated by coil 66 does not extend beyond the surface of housing 34. This substantially eliminates the possibility that if the handpiece of this invention was placed on a surface next to a cutting accessory that is provided with an identification chip 64, the handpiece coil 66 will not establish an inductively coupled circuit so as to provide the control console 28 with a false indication that the handpiece is actually connected to the adjacent cutting accessory.
  • [0091]
    It should be recognized that the foregoing description has been limited to one preferred version of the invention. Other versions of the invention may vary from what has been described. For example, in some versions of the invention, the coils integral with the cutting accessory and handpiece may not extend circumferentially around the longitudinal axis of these components. Instead, these coils may be positioned to be aligned longitudinally with the longitudinal axes of the cutting accessory and handpiece.
  • [0092]
    Also, in some versions of the invention, the handpiece may be constructed so that the material in which coil 66 is encased is metal. Thus, in these versions of the invention, the presence of coil 66 does not require the handpiece to have a non-metallic component that is directly exposed to the rigors of sterilization.
  • [0093]
    Moreover, the data contained within the chip 62 of the handpiece may vary from what has been described. For instance, in some versions of the invention, the handpiece of the invention may not include a NOVRAM. In these versions of the invention, chip 62 contains all, or substantially all, of the handpiece characteristic data that was otherwise stored in the handpiece NOVRAM. This data is, however, specific to the operating characteristics of the cutting accessory 24 with which the chip 62 is integral. Once the cutting accessory 24 is attached to the handpiece 22, controller 70 configures the system based on the data read from the chip 62.
  • [0094]
    Also, in some versions of the invention, it may not be possible for the cutting accessory to overwrite new data into any data field. In these versions of the invention, the chip 62 has empty data fields when it is installed in the cutting accessory 24. Then, during operation of the system 20, controller 70 writes the new data that needs to be written into chip 62 into the previously empty controller/memory data fields. During the read out of the contents of the controller/memory 84, step 120, all the data are read out. The controller is configured to recognize the last data in a set of data fields, for example in a set of time used fields, as being the most current version of the data.
  • [0095]
    [0095]FIG. 7 depicts an alternative handpiece 150 and cutting accessory 152 constructed in accordance with this invention. Specifically, the handpiece 150 has a metal body 154 to which a plastic locking collet 156 is attached. Internal to the body is a motor, not illustrated, from which a drive shaft 158 extends. The cutting accessory 152 has a static hub 160 that is releasably held to the handpiece 150 by a locking assembly mounted in the locking collet 156. The locking assembly, while not fully illustrated, includes a tongue 157 that is releasably seated in a recessed surface of hub 160. A tubular housing or outer tube 162 extends from hub 160. Located proximal to hub 160 and within the handpiece 150 is a drive coupler 164. Drive coupler 164 has a proximal end designed to engage a coupling member integral with drive shaft 158 so that the shaft and coupler rotate in unison. A drive shaft, or inner tube 166 is secured and extends distally from the drive coupler 164. The drive shaft 166 extends through hub 160 and into housing 162.
  • [0096]
    An RFID chip 170 (FIG. 11A) is secured to hub 160. A coil 172 is connected to chip 170. A coil 174 is mounted to handpiece body 154 with chip 170 through coil 172.
  • [0097]
    Handpiece body 154 is generally elongated in shape and has elongated bore 177. Bore 177 is the space in which the handpiece motor as well as the proximal end of the cutting accessory 152 are seated. The distal end of body 154 is shaped to have a ring shaped head 178 that defines a counterbore 180 that opens into bore 177. Counterbore 180 opens into a main bore in the body in which the motor is housed. A suction bore 182 branches off of bore 177. Suction is drawn through the cutting accessory 152 through the suction bore 182. Partially seen in FIG. 7 is a valve bore 184 that interests the suction bore. A valve (not illustrated,) is disposed in the valve bore 184, for regulating the suction flow through the cutting accessory 152 and the handpiece 150.
  • [0098]
    Handpiece body 154 is further formed so that the distal end portion of the inner wall of head 178 has an inwardly directed step 186. Coil 174 is disposed in the space defined by step 186. In some versions of the invention, coil 174 is in the helical wrap of wire. The wire may be wrapped around a thin film of polyamide material that supports the wire. In alternative versions of the invention, coil 174 is formed on flex circuit. The flex circuit is placed in the space adjacent step 186.
  • [0099]
    Conductors 188 that connect coil 174 to downline components in the handpiece 150 are seated in a separate bore 189 formed in the housing body 154. Specifically, internal to the handpiece is an impedance matching circuit that establishes the impedance of the circuit internal to the handpiece to 50 Ohms to facilitate the exchange of the signals between control console 28 and coil 174 over a 50 Ohm impedance coaxial cable.
  • [0100]
    Locking collet 156, seen best by reference to FIG. 8, has a tubular base 190. Extending distally from base 190, collet 156 is shaped to have a head 192 that has a larger outer diameter to base 190. The moving components of the locking assembly that engage hub 160 are mounted in base 190.
  • [0101]
    When the handpiece 150 is assembled, collet base 190 is fitted in counterbore 180 so that the outer wall of the base abuts the inner wall of body proximal to step 186. An O-ring 194 is located around the interface where the proximal end of collet base 190 abuts the handpiece body 154. Specifically, the collet base 190 is formed to define a groove 196 that extends circumferentially around the distal end of the outer perimeter of the proximal end of the base 190. In order to provide structural strength for the collet, it will be observed that the proximal end is located inwardly of the more distal sections of the base. The handpiece body is shaped to define an annular stepped surface 198. The stepped surface is the surface from which the body head 178 extends. Stepped surface 198 is the surface against which the proximal facing end of collet base 190 extends. Housing body 154 is further formed so that there is a small grooved surface 202 within stepped surface 198. Specifically, grooved surface 202 extends annularly around stepped surface 198 adjacent the outer perimeter of the stepped surface. The O-ring 194 is thus seated in the grooved surface 202 of the handpiece body 154 and groove 196 of collet 156.
  • [0102]
    Locking collet 156 is further formed to have a generally cylindrical outer ring 204 that extends proximally from head 192. Outer ring 204 thus extends circumferentially around and is spaced away from the distal end of locking collet base 190.
  • [0103]
    When the handpiece 150 is assembled, coil 174 is seated in the annular space between the outer wall of collet base 190 and the inner wall of outer ring 204. In other words, this annular space forms an enclosure for holding coil 174. The collet 156 is fitted to body 154 so that the outer surface of collet outer ring 204 is disposed against the inner wall of the base head 178.
  • [0104]
    As part of the process of assembling the handpiece 150, an adhesive, such as a silicone adhesive, is placed between the opposed surfaces of the body head 178 and collet outer ring 204. A fraction of this adhesive collects in two annular channels 210 formed in the handpiece body head 178. Upon the curing of this adhesive in the channels, the adhesive forms two O-rings 211 between the body 154 and collet 156. These O-rings 211 thus prevent fluid flow from outside the handpiece 150 to coil 174.
  • [0105]
    Hub 160, which is formed of rigid plastic, is now described by reference to FIGS. 9, 10 and 11. The hub 160 is constructed to have a sleeve-shaped base 220. The base 220, it will be observed, is formed with two diametrically opposed, generally rectangularly shaped openings 221. Extending forward from base 220 and formed integrally therewith is a substantially solid head 222. While head 222 is substantially solid, the hub 160 is formed so that a bore 224 extends axially through the head. Housing 162 is mounted in bore 224 in any conventional manner to extend forward from head 222.
  • [0106]
    A generally tube-shaped coil seal 226 is disposed in hub base 220. Coil seal 226 is formed from flexible sterilizable material. In one version of the invention, coil seal 226 is formed from a silicon rubber that has 55 Shore A durometer hardness. The coil seal 226 is shaped so as to have a first distal end section 228 that has a constant outer diameter and inner diameter. Extending proximally from the distal end section 228, the coil seal 226 has a main section 230. Main section 230 has the same inner diameter as distal end section 228 and a smaller outer diameter. The coil seal is further formed so as to define a generally rectangular recess 232 in the outer surface of main section 230. Located proximal to main section 230, the coil seal 226 has a locking section 234. The inner and outer diameters of locking section 234 are the same as those of the distal end section 228.
  • [0107]
    The locking section 234 of the coil seal is further formed to have two diametrically opposed lock tabs 236. Each lock tab 236 extends radially outwardly from the outer surface of the locking section 234. The locking section also has two diametrically opposed stop tabs 238 that extend inwardly from the inner wall of the lock section. In the depicted version of the invention, each stop tab 238 is radially aligned with a separate one of the lock tabs 236.
  • [0108]
    Coil seal 226 is further formed to have a tail section 240 that extends rearwardly from the locking section and that forms the proximal end of the seal. The tail section 240 is formed to define two annular spaced apart ribs 242 and 244 that extend circumferentially around coil seal 226. Both ribs 242 and 244 extend beyond the outer diameter of the seal locking section 234. In the depicted version of the invention, the diameter of the circle subtended by the more proximal of the two ribs, rib 244, is less than the diameter subtended by the other rib, rib 242. Tail section 240 is further formed to have an inner wall that is outwardly flared.
  • [0109]
    When a cutting accessory 152 of this version of the invention is assembled, the RFID chip 170 is seated in seal recess 232. Coil 172 is wound over the reduced diameter outer surface of seal main section 230. In some versions of the invention, seen in FIG. 11A, the chip 170 is mounted on a small flex circuit 171; the coil 172 is a conductive trace formed on the flex circuit 171. After manufacture of the flex circuit 171, the flex circuit, with the chip 170 mounted thereon, is wrapped in cylinder over seal main section 230.
  • [0110]
    The RFID chip-coil-and-seal assembly is fitted in hub base 220. Thus both the RFID chip 170 and coil 172 are disposed between the inner wall of the hub base and the outer surface of coil seal 226. Owing to the relative dimensions of hub 160 and coil seal 226, the outer surfaces of the seal distal end and locking sections 228 and 234, respectively, press against the inner wall of the hub base 220. This contact forms a seal around chip 170 and coil 172. Thus, in most preferred versions of the invention, there is no need to employ an adhesive or other chemical to provide a moisture barrier around the chip 170 and coil 172.
  • [0111]
    As part of the insertion of the coil seal 226 into the hub 160, lock tabs 236 are seated in hub base openings 221. The seating of the lock tabs 236 in openings 221 serves to hold the coil seal 226 to the hub 160.
  • [0112]
    When the coil seal 226 is so attached to hub 160, tail section ribs 242 and 244 are located proximal to the proximal end of the hub. When the assembled cutting accessory 152 is fitted in the handpiece 150, ribs 242 and 244 abut the inwardly flared surface of the handpiece collet base 190. The ribs thus function as a seal that prevents leakage from the suction channel to the coil cavity or the outside environment.
  • [0113]
    It will further be observed that the distal end of driver coupler 164 is formed with a head 245 that has a relatively large outer diameter. When cutting accessory 152 is assembled, the driver coupler and rotating shaft subassembly is moved past coil seal 226 in hub bore 224. Owing to the dimensioning of the components, the drive coupler head 245 abuts the coil seal stop tabs 238. Owing to the compressibility of the material from which the coil seal is formed, a small amount of force will compress the stop tabs 238 to allow the complete insertion of the drive coupler and rotating shaft. After assembly, if the cutting accessory 152 is held vertically, the drive coupler head 245 abuts the stop tabs 238. Thus, the stop tabs prevent gravity, without any additional force, from causing the driver coupler and rotating shaft to drop out of hub 160.
  • [0114]
    [0114]FIGS. 12, 13 and 14 illustrate an alternative handpiece 250 and cutting accessory hub 252 of this invention. The handpiece 250, shown in cross-section in FIG. 14, includes an elongated body 254 that has an axially extending bore 256. The center and proximal end sections of bore 256 serve as the space in which the motor and cable connecter integral with the handpiece 250 are housed, (motor and cable connector not shown). The distal end section of bore 256 is the space internal to the handpiece in which the cutting accessory hub and drive coupler are received, (drive coupler not shown).
  • [0115]
    This particular handpiece has a motor with a cannulated rotor. Thus, suction is drawn axially from the distal end of the rotating shaft of the attached cutting accessory, through the drive coupler and the motor rotor by the suction pump attached to the handpiece. Irrigation fluid is supplied to an opening in the hub 252. The irrigation fluid can also be directed through the rotating shaft. A valve in the proximal end of body bore 256 selectively connects the rotating shaft to either the suction pump or the source of irrigating fluid. This valve is set by a control tab, (not illustrated), that is positioned above a stepped surface 258 formed in the outside of body 254. The control tab displaces a linkage rod (not illustrated), that is seated in a rod bore 259 formed in the body 254. The Applicant's Assignee's U.S. patent application, SYSTEM AND METHOD FOR PERFORMING IRRIGATED NOSE AND THROAT SURGERY Ser. No. 60/395 881, filed on Jul. 13, 2002, now U.S. Pat. No. ______, and incorporated herein by reference, provides further details of the above features of this handpiece.
  • [0116]
    A coil 260 is disposed in the distal end of body bore 256, immediately inside the distal end opening of bore 260. Coil 260, shown in FIG. 14 as a wrap of wires, is contained in a coil housing 262, now described by reference to FIGS. 15A and 15B. The coil housing 262 is formed from a plastic cable to withstand sterilizaton such as PEEK plastic and is generally ring-shaped. Coil housing 262 is further formed to define a rectangular groove 264 that extends circumferentially around the outside of the housing. Groove 264 is the space in which coil 260 is seated. The proximal facing end of the coil housing 262 is formed to have an annular lip 266 that extends substantially circumferentially around the housing. Lip 266 has an outer diameter substantially equal to the outer diameter of the more distal portions of the coil housing. The inner diameter of lip 266 is greater than that of the rest of the housing 262.
  • [0117]
    Coil housing 262 is further formed to have a slot 268 that is defined by opposed spaced apart ends of lip 266. The wires forming coil 260 extend proximally into the handpiece body through slot 268.
  • [0118]
    When handpiece 250 is assembled, coil 260 is seated in housing groove 264. The coil-and-housing assembly is seated in the distal end of body bore 256. In some versions of the invention, the coil housing 262 is adhesively secured to a lock nut 270 disposed in body bore 256. Alternatively, coil housing 262 may be provided with feet that press fit, snap fit or key-in-key hole slot fit into the lock nut. In some versions of the invention, the coil housing 262 may even press fit into body bore 256.
  • [0119]
    The conductors connected to coil 260 are disposed in a bore, signal conduit 259, formed in the handpiece body 254. Signal conduit 259, it is observed from FIG. 14, extends generally parallel to bore 256. The distal end of signal conduit 259 extends diagonally into the section of bore 256 in which coil housing lip 266 is seated.
  • [0120]
    In one version of the invention, the conductors that extend to coil 260, as well as the conductors that actually form the coil, are formed on a flex circuit 272 now described by reference to FIG. 16. Flex circuit 272 is formed of polyamide or any other material that can serve as a structural substrate for conductors and electrical components. Generally, the depicted flex circuit 272 is L-shaped. Conductive traces 274, 276 and 278 are formed on the flex circuit 272. Two traces, traces 274 and 276 are parallel and are located on a vertical section 273 of the flex circuit in FIG. 16. An integrated circuit 280 is shown attached to trace 276. Circuit 280 is an impedance matching circuit to bring the impedance of the circuit on the trace to 50 Ohms. While not illustrated, it should be recognized that trace 274 is also attached to the integrated circuit 280. Trace 274 also terminates a short distance above integrated circuit 280.
  • [0121]
    Trace 278 extends from integrated circuit 280 and is the conductive trace formed on the generally horizontal portion 284 of flex circuit 272 in FIG. 16. The flex circuit 272 is further formed to have a small branch section 286 that extends diagonally downward from the end of the horizontal section 284 opposite vertical section 273. The free end of trace 278 is formed over the branch section 286.
  • [0122]
    When a version of the invention incorporating flex circuit 272 is assembled, section 284 of the flex circuit is wrapped in a circular pattern at least once in coil housing groove 264. More specifically, the flex circuit 272 is wound around the coil housing 262 so that flex circuit branch section 286 extends over section 273. Then, the free end of trace 278 is soldered or otherwise conductively connected to the free end of trace 274. Thus trace 278 forms the handpiece coil.
  • [0123]
    The cutting accessory hub 252, now described by reference to FIGS. 17 and 18, is formed from two plastic pieces, base 290 and head 292. Base 290 is formed to have a proximal section 296 that has a multisection axial bore 298. It should be understood that bore 298 is dimensioned to receive the drive coupler and proximal end of the rotating shaft of the cutting accessory with which hub 252 is integral. Base 290 also has a distal section 302 integrally formed with and located forward of proximal section 296. Base distal section 302 is formed to have a counterbore 304 that has a diameter that is larger than the diameter of the adjacent section of bore 298.
  • [0124]
    The hub head 292 is formed to have an axially extending through bore 308. Bore 308 is dimensioned to receive the associated rotating shaft. The hub head is shaped to have a generally cylindrical, proximally located stem section 310. Collectively the components forming hub 252 are shaped so that stem section 310 has an outer diameter that is appreciably less than the inner diameter of base distal end section 302.
  • [0125]
    When hub 252 is assembled, head stem section 310 is seated in base counterbore 304. Owing to the relative dimensions of the base 290 and head 292, when these components are so assembled an annular coil space 312 is formed between stem section 310 and the adjacent end wall of base distal end section 302. An RFID chip 314 and coil 316, now described by reference to FIG. 19 are seated in this space. Specifically, the chip 314 and coil 316 are assembled as a single unit on a flexible substrate 318. Often this assembly is referred to as a tag. A chip from the Philips Semiconductor of Netherlands i.Code family of chips can be employed as the chip 314. Conductive traces that form coil 316 are formed on substrate 318. As part of the hub assembly process, prior to the insertion of head 292 over base 290, substrate 318 is wrapped into a cylindrical shape and inserted in base counterbore 304. The head stem section 310 is then seated in counterbore 304. It will be understood that the base 290 and head 292 are dimensioned so that the proximal end of the head stem section abuts the step within base 290 that defines the base of counterbore 304.
  • [0126]
    Adhesives hold the base 290 and head 292 together. The adhesives also create a seal around coil space 312. In some versions of the invention, base 290 and head 292 may be provided with tongue-and-slot members to further facilitate the mechanical connection of these components.
  • [0127]
    When hub 252 is seated in handpiece 250, coil 316 is aligned with the handpiece coil 260. Consequently, signals are inductively transmitted between the coils. In preferred versions of the invention, the voltage across the handpiece coil is approximately 5 to 25 volts, the current through the handpiece coil is approximately 25 to 125 m Amps. Given this strength of signal, and the fact that handpiece body 254 is metal, in preferred versions of the invention, the inductive field established by the handpiece coil does not extend more than 2 cm beyond the coil. In more preferred versions of the invention, this inductive field extends a maximum of 1 cm beyond the coil. Thus, the inductive field is sufficient to engage in signal transfer with the coil 316 of the hub inserted in the handpiece 250, but not the coil integral with a cutting accessory that may be located next to the handpiece.
  • [0128]
    It should likewise be understood that the system of this invention may have power-consuming devices other than motors. For example, in alternative versions of the invention, the handpiece power-consuming device may be some sort of heat generating device, light generating device or sound/mechanical-vibration generating device. The energy generated by these power-consuming devices are applied to surgical sites through removable accessories different from what has been described. The accessories of these versions of the system of this invention are provided with tags that have memories in which data describing the individual operating characteristics of the accessories are stored. Clearly, different data are contained in cutting accessories that are actuated by devices other than motors. Also, the chip may be installed in accessories that are not actuated. One such device is a pointer that is attached to a tracker that is used to facilitate the performance of surgical navigation.
  • [0129]
    It should likewise be understood that this invention may do more than simply provide data or write data to a cutting accessory attached to a handpiece. For example, some surgical tool systems include intermediate attachments 320, one shown diagrammatically in FIG. 20. These attachments 320 serve as mechanical, optical or electrical linkages between the power generating unit internal to the handpiece 22 a and a cutting accessory 24 a. In these versions of the invention, an RFID chip 322 is mounted in a non-metallic ring integral with the attachment (ring not illustrated). Upon connection of the attachment 320 to the handpiece, a coil 324 integral with the attachment is in close enough proximity to the handpiece coil 66 a that there is an inductive signal transfer between these components. Based on the data read from the attachment, the control console 28 applies energization signals to the handpiece power generating unit so that it operates in a manner appropriate to the associated attachment and cutting accessories. For example, if the handpiece power generating unit is a motor, based on the data read from the attachment connected to the handpiece, the power generating unit can establish a maximum speed for the motor and/or determine the maximum torque the motor should be allowed to develop.
  • [0130]
    In the above versions of the invention, the attachment may, as depicted in FIG. 20, have its own coil 326 for inductive coupling to the RFID chip 62 integral with the associated cutting accessory 24 a. In this version of the invention, the processor internal to the control console engages in the following data reading protocol. First, an interrogation signal is sent asking for data from an attachment RFID chip 322. Integral with this signal is data indicating the type of RFID chip, an attachment chip, that is supposed to respond to the interrogation. Based on these data, only the attachment chip 322 responds. After the data in the attachment RFID chip 322 are read, the control console generates a second interrogation signal. Embedded in this signal are data indicating that an accessory chip 62 is supposed to respond to the interrogation. Based on this interrogation signal, only the accessory RFID chip 62 writes out data back to the processor. Thus, the energizaton of the handpiece power generating unit is based on data in the attachment and/or any overriding data in the cutting accessory.
  • [0131]
    Also, as depicted in FIG. 21, in some versions of the invention, an RFID chip may be placed in an implantable device 330 that is fitted into a patient, represented by bone section 332. Such devices include screws, reamers that are used to bore holes for implants, or implants themselves. Specifically the head of the device 330 is provided with a plastic ring in which an RFID chip 336 and complementary coil 338 are seated. The data in chip 336 include such information as the preferred and suggested maximum speeds for driving the implant into the patient. These data also describe the physical characteristics of the implant. For example, if the implant is a screw, the data describes: the implantable length of the screw; the diameter of the screw; and the size of the exposed head.
  • [0132]
    In this version of the invention, the accessory 340 used to set the implant, as seen in FIG. 22, is provided with a coil 342. Here, the accessory 340 is a screw driving shaft. The accessory has a shaft 344 formed of metal. Immediately proximal to the distal end, shaft 344 is formed to have a circumferentially extending groove 346. Coil 342 is disposed in a plastic or other non-metallic housing 347 seated in groove 346. Conductors, represented by a single conductor 348, extend through a conduit 349 that extends longitudinally through shaft 344. The conductors 348 are connected to a coil 64 b disposed in the distal end hub 44 b of the accessory 340. Distal end hub 44 b, in addition to including coil 64 b also includes an RFID chip 62 b that contains data describing the characteristics of the accessory 340.
  • [0133]
    When the system of FIG. 21 is used, control console 28 is inductively coupled to both accessory chip 62 b and implant chip 336. This coupling occurs immediately after the surgeon has depressed a control member associated with the system to actuate the handpiece 22 b. This is because, at this time, the surgeon has typically already pressed the distal end head of the cutting accessory 340 against the adjacent head of the implant 330. Thus, at this time the data from the implant chip 336 can be read. The data in these chips are read by the control console 28. Based on these data, the control console regulates the application of energization signals to the handpiece 22 b to ensure that the accessory 340 is driven at an appropriate speed for the complementary implant 330.
  • [0134]
    As part of this process, the control console 28 first verifies that the accessory 340 is an appropriate type of accessory for driving the implant. This verification may be performed by, first, determining the type of implant from the data read from the implant chip 336. Then, based on data contained in the memory internal to the control console 28, the control console determines if the accessory 340 can drive the implant. Alternatively, the data in the implant chip 336 contains a list of the types of accessories 340 that are appropriate for driving the implant. If initially, the control console 28, based on the determination of the type of accessory and the type of implant, determines that the accessory is inappropriate, the control console either provides a warning message that the surgeon must acknowledge this fact or prevents actuation of the handpiece 22 b.
  • [0135]
    If the accessory 340 is an appropriate accessory for driving the implant, control console 28 configures the system so that energization signals are applied to the handpiece 22 b that will cause the accessory to be driven at the preferred speed. If the surgeon attempts to drive the accessory above an appropriate maximum speed for the implant 330 or the accessory 340, at a minimum, the control console presents a warning the surgeon must acknowledge before the procedure is allowed to proceed.
  • [0136]
    Control console 28 also forwards the data regarding the characteristics of the implant 330 and the driving accessory 340 to a surgical navigation unit 350. Prior to this part of the procedure, the surgical navigation unit was provided with data that describes the physical dimensions of the portion of the patient on which the procedure is being performed. A tracker, not shown is attached to the handpiece 22 b. The surgical navigation unit 350 monitors the position of the tracker. When the surgical procedure is being performed, the surgical navigation unit has the following data: position of the tracker; data regarding the physical characteristics of the handpiece 22 a and accessory 340; and, from the implant chip 336, data regarding the physical characteristics of the implant 330. Based on these data and the stored image of the patient, the surgical navigation unit 350 is able to determine the position of the implant 330 as it is driven into the body of the patient 332. This information is presented on a monitor 352.
  • [0137]
    Also, the surgical navigation unit 350 determines, based on the stored data regarding the implant 330 and patient 332, if it appears that there is a possibility that the implant is being inappropriately positioned in the patient. For example, if the implant is a screw that is supposed to only be driven into bone to a certain depth, the surgical navigation unit monitors the extent to which the implant is driven into the bone. If it appears that continued driving of the implant into the bone is inappropriate, the surgical navigation unit 350 causes a warning to be presented. The surgical navigation unit 350 also inhibits the control console 28 for supplying energization signals to the handpiece 22 b until the warning is acknowledged.
  • [0138]
    Also, as mentioned above with respect to the data stored in chip controller/memory 84, this component may contain data that indicates the extent to which the cutting accessory is worn. One means of determining cutting accessory wear is now described by reference to FIG. 23. Specifically, controller 70, in addition to monitoring the amount of time a cutting accessory is actuated monitors the voltage applied to the handpiece that actuates the cutting accessory as well as the current drawn by the handpiece, step 370. When the handpiece motor is actuated, controller 70 performs step 372, a power consumed calculation for the handpiece. In step 372, based on the voltage applied to the handpiece, the current drawn and the time the handpiece was used, controller 70 determines the Watts minutes of power consumed by the handpiece.
  • [0139]
    Then, once the handpiece motor is turned off, in step 374, data representative of the power consumed by the handpiece is then written by the controller 70 into the WEAR PROFILE data field 112 of controller memory 84.
  • [0140]
    It should be understood that the data in the WEAR PROFILE data field 112 are used in the same generally manner as the data in the TIME USED field 110 are used. Specifically, these data are read by controller 70. During the use of the cutting accessory, in a location within the memory integral with control console 28 data representative of the cumulative watt minutes of power consumed in actuating the cutting accessory are stored. These data are based on the data read from the WEAR PROFILE field 112 as well as the data generated as a result of the periodic execution of steps 370 and 372 when the handpiece motor is actuated. These data representative of total cutting accessory wear are compared to a reference value. This reference value may be from data read from chip 62, (data storage field not shown) from the handpiece or a set value in the control console memory 69. If this comparison indicates that the total amount of power employed to drive the cutting accessory exceeds the reference value, a warning message is generated on the console display 71. This provides the surgeon with an indication that the cutting accessory may be worn to a level that the efficiency of the accessory has appreciably diminished.
  • [0141]
    [0141]FIG. 24 depicts in block diagram components internal to a control console to which plural handpieces may be simultaneously attached. Specifically, there is a first processor, main controller 380, and a second processor, accessory interrogator 382. The main controller 380 is the processor that has primary responsibility for generating the command signals to the drivers internal to the control console that supply the energization signals to the individual handpieces 22 a, 22 b and 22 c, (drivers not shown). The input signals into main controller 380 include the characteristics of the individual handpieces as well as the surgeon-originating command signals that indicate the rate at which the handpieces are to be actuated.
  • [0142]
    The input signals into main controller 380 also include the data read from the identification chips 62 integral with the cutting accessories 24 attached to the individual handpiece 22 a, 22 b, and 22 c. These data are retrieved by the accessory integrator 382. Once the accessory interrogator 382 retrieves these data, the interrogator forwards these data to the main controller 380. The main controller 380, in turn, generates command signals to the drivers to cause each handpiece 22 a, 22 b and 22 c to be actuated appropriately for the attached cutting accessory 24.
  • [0143]
    [0143]FIG. 25 depicts one protocol for retrieving data from the cutting accessory identification chips. Specifically, after the main controller 380 determines that a handpiece 22 a, 22 b or 22 c is connected to one of the control console 28 connections, the main controller instructs the accessory interrogator 382, to initiate an interrogation sequence for that handpiece, (step not shown). Initially, the interrogation sequence consists of accessory interrogator 382 generating a request that any attached accessory write back one specific type of data. This request, represented by step 388, is performed so that the accessory interrogator 382 can determine whether or not an accessory is even attached to the handpiece 22 a, 22 b or 22 c. The accessory interrogator 382 performs this write request and waits for data step continually, as long as there is an attached handpiece. In one version of the invention, the specific data the accessory interrogator 382 requests is the cutting accessory serial number.
  • [0144]
    Upon attachment of a cutting accessory 24 to a handpiece 22 a, 22 b or 22 c, the identification chip in the accessory will, in response to the write request, read out the serial number. Upon receipt of these data, accessory interrogator requests that all the data in the accessory identification chip 64 be written back. This write request and the subsequent data write out, are represented by step 390. In step 392 the identification chip data used to control operation of the cutting accessory 24 are forwarded to the main controller 380. The main controller, as discussed previously with regard to step 126, configures the system so that energization signals will be supplied to the handpiece 22 a, 22 b or 22 c that will cause the appropriate energization of the attached cutting accessory 24.
  • [0145]
    After the data are read from the accessory identification chip 62, the accessory interrogator 382 continually generates a read request for the serial number of the accessory. This serial number is continuously compared to the serial number originally read for the cutting accessory. The read-request, data write and comparison steps collectively represented as step 394. These steps are performed in order to ensure that the same cutting accessory 24 remains attached to the handpiece 22 a, 22 b or 22 c. As long as the same cutting accessory is attached to the particular handpiece, there is no change in the overall operation of the system.
  • [0146]
    If, however, the serial number is different, or no serial number is returned, the accessory interrogator 382 interprets the response indicating the accessory was removed or switched. Accessory interrogator 382 then proceeds to step 396. In step 396, the accessory interrogator generates a message to the main controller 380 informing the main controller of the disconnect of the cutting accessory. The main controller 380, in a step not shown, then regulates the energization of the associated handpiece as is appropriate for a cutting accessory not being attached. This particular regulation may, for example, consist of the inhibiting of the actuation of the handpiece.
  • [0147]
    The accessory interrogator 382 then reexecutes step 388. Step 388 is again repetitively reexcuted until it receives a serial number indicating a cutting accessory 24 has again been attached to the handpiece.
  • [0148]
    An advantage of the above arrangement is that, the majority of read requests generated by the accessory interrogator and subsequent data writes by the accessory NOVRAMs 32 are for relatively small amounts of data. This makes it possible for the accessory interrogator to, in a relatively short amount of time, monitor whether or not accessories 24 are attached to each of the handpieces 22 a, 22 b and 22 c. Thus, in the event there is a removal or replacement of the cutting accessory attached to any one of the handpiece 22 a, 22 b or 22 c, the accessory interrogator will detect this change, typically within 50 msec. or less of the event. Main controller 380 is then promptly informed of this state change so as to substantially eliminate the likelihood that a handpiece will be actuated even though there is no attached accessory, or actuated in an inappropriate manner for the attached handpiece.
  • [0149]
    An alternative protocol for reading data from a cutting accessory identification chip 62 is now described by reference to FIG. 26. Here an accessory present read-request and receive written data step 402, identical to step 388, is performed as before whenever a handpiece 22 a, 22 b or 22 c is connected to a control console 28. However, if the accessory interrogator 382 does not provide the main controller 380 with a data from accessory identification chip 62, in step 404, the main controller sets the control console to energize the handpiece 22 a, 22 b or 22 c based on default setting for the handpiece. These settings are based on data in the handpiece NOVRAM. Accessory interrogator 382 and main controller 380 repetitively reexcute steps 402 and 404, respectively, until data are returned by an accessory identification chip 62.
  • [0150]
    Once data, again typically a serial number, are returned by the identification chip 62 of a newly installed cutting accessory 24, the accessory interrogator requests all the data in the chip, represented by step 406. These data are forwarded by the accessory interrogator 382 to the main controller 380, step not illustrated. Based on these data, in step 408, the main controller resets the data used to control the handpiece so that the handpiece 22 a, 22 b or 22 c is energized appropriately for the attached cutting accessory 24. As before, even when the handpiece 22 a, 22 b or 22 c is energized, the accessory interrogator 382 continues to request the serial number information from the accessory identification chip 62 to determine whether or not it has changed, step 410.
  • [0151]
    If, in step 410, it is determined that there has been a change in the cutting accessory 24 attached to the handpiece step 402 is again executed. Depending on the results of the inquiry performed in step 402 either step 404 or step 406 is again executed.
  • [0152]
    An advantage of this method of operation is that there may be some handpieces that are used primarily with one particular type of cutting accessory. The cutting accessory with which the handpiece is most often used is not provided with an identification chip. The handpiece NOVRAM 32 contains data setting the handpiece to operate in accordance with the characteristics of this particular cutting accessory. Thus, in this version of the invention, the cost of providing the most often used cutting accessory with an identification chip is eliminated.
  • [0153]
    A more detailed explanation of how the cutting accessory and implant recognition system of this invention can be used in combination with a surgical navigation unit 350 is now described by reference to FIG. 27. Specifically, this invention can be used to facilitate the placement of an implant in a patient. As represented by step 420, initially the surgical navigation unit 350 is employed to measure the portion of the body of the patient to which the implant is to be fitted. Then, as represented by step 422, as part of the procedure, the surgical navigation unit generates a message prompting the surgeon to select an implant, or a particular component of an implant, for fitting to the patient.
  • [0154]
    The surgeon then identifies the implant 330, as represented by step 424. In this step, the surgeon identifies the specific implant by placing the handpiece 22 or cutting accessory 24 in close proximity to the implant so that the data in the implant chip 336 can be inductively written to the control console 28. In some versions of the invention, a passive surgical instrument, like a pointer with a built in coil, may be used to perform this data read-request and receive the written out data.
  • [0155]
    The data identifying the implant are written to the surgical navigation unit 350. The surgical navigation unit 350, in turn, based on input variables such as the dimensions of the implant and the measurements of the patient's body, determines whether or not the implant is appropriate for the procedure being performed, verify implant step 426. If, in step 426, the surgical navigation unit 350 determines that the implant might be inappropriate for the procedure, for example, the size appears inappropriate for the position in the body in which it is to be placed, the surgical navigation unit generates a warning to the surgeon, step not shown.
  • [0156]
    The next step in the procedure is the prompting by the surgical navigation unit 350 of the accessory that is to be used to fit the implant, step 428. The surgical navigation unit, in step 430, verifies that the accessory is the appropriate accessory for driving the implant. If an inappropriate accessory is selected, an appropriate warning is presented, warning step not shown.
  • [0157]
    In step 432 the surgical navigation unit 350 determines whether or not the accessory and implant are ready for the fitting of the implant. This step is performed by determine whether or not the signal transferred to the accessory coil 342 indicates the implant 330 is fitted to the accessory. Once the accessory and implant are ready for implant installation, the surgical navigation unit, in step 434, presents on monitor 352 information about the exact surgical sub procedure that is performed to fit the implant. This information may include an image of the site where the implant is to be fitted. This information may also include textual commentary regarding aspects of the procedure.
  • [0158]
    Thus, the integrated system of this invention provides guidance and prompts to the surgeon to facilitate the execution of the surgical procedure. This can minimize the time the patient is held under anesthesia which is one of the goals of modern surgery. Also, the implant and accessory verification steps serve to reduce the likelihood that an inadvertent oversight causes a surgeon to attempt to use a less than optimal component during a surgical procedure.
  • [0159]
    The cutting accessory and implant recognition system of this invention is also used to assist in the inventory of components used during a surgical procedure. As seen by reference to FIG. 28, components 440 a, 440 b, . . . 440 f used to perform the procedure are kept in a case 442. For example, certain instruments may be held in a sterilization case. Alternatively trial implant components are held in a trial case.
  • [0160]
    As part of the procedure, the control console 28, in step 444, determines when a component is used. This determination occurs when an accessory is fitted to a handpiece or another device, for example an implant or an implant trial unit, is fitted in place with the handpiece or cutting accessory. As discussed above, the data in the chip integral with this instrument or implant is inductively read.
  • [0161]
    As a consequence of this component used determination, a local inventory of used components is updated, step 446. A database in which these information is stored, a local inventory database 480, is connected to the control console as discussed below with respect to FIG. 30. Data are written to and read from this database 480 by a dedicated processor, not shown.
  • [0162]
    Eventually, there is a point in the procedure in which it is time to inventory the used components to ensure that their whereabouts are known and they are properly stored. Typically this point is near the end of the procedure. At this time, the processor associated with the local inventory database 480 identifies a component that needs for which accounting is required, step 448. The identity of this component is sent to either the control console 28 or the surgical navigation unit 350. The device that receives this information, in step 450, requests the surgical personnel to locate this component. In response to this request, also part of step 450 in FIG. 29, the personnel return the component 440 a, 440 b . . . or 440 f to the case 442 in which the component is stored and inductively read the stored identifying information for the component.
  • [0163]
    Data indicating that the component has been properly returned to the case 442 are forwarded to the processor associated with the local inventory database 480. This processor, in step 452, updates the inventory for the particular case 442. The local inventory database processor then reexecutes step 448. If there are still missing components, step 450 is reexcuted and one of the remaining missing components is again identified. However, in step 448 it may be determined that all the components are accounted for. If the local inventory database processor makes this determination, this processor causes the control console 28 or navigation unit 350 to display a message indicating that the inventory is complete, step 454.
  • [0164]
    The above aspect of this invention facilitates the checking of equipment used during surgery to ensure the whereabouts of this equipment is known.
  • [0165]
    As mentioned above, and now described by reference to FIG. 30, the information generated by the accessory and implant recognition system of this invention may be employed by components other than the control console that drive the handpieces used to actuate the accessories. Specifically, as seen in this Figure, the control console that reads the accessory and implant identify data may be attached to a local area network to which other equipment both in the operating room and elsewhere in the medical facility are attached. In one version of a network it is contemplated that this data transfer be over a serial bus in accordance with the IEEE-1394 data transfer protocol.
  • [0166]
    Three devices attached this network are the control console 28, the surgical navigation unit 350 and the local inventory database 480.
  • [0167]
    The facility's billing processor, represented by node 482 is also attached to this network. The billing processor receives data packets identifying the patient-chargeable components identified by the control console that are used during the procedure. This facilitates the accurate charging of the patient for the equipment used during the surgical procedure.
  • [0168]
    The records of components used are also forwarded to facility's primary inventory control database, node 484. This allows the processor that monitors inventory levels of the accessories and implants to determine when the additional equipment needs to be shipped, represented by supplier ship node 486. Also, some suppliers only bill the facility when the equipment is actually used. The inventory control database, upon receiving an indication that some equipment has been used, through a supplier bill node 488 informs the supplier's processor of this event. This arrangement thus makes it possible to ensure that a facility is only billed for equipment when the equipment is used.
  • [0169]
    Also the database in the facility that maintains patient records, represented by node 490, receives an indication of the cutting accessories, trial components, and implants fitted during the surgical procedure. Thus, medical personnel do not, during the procedure have to spend time documenting what specific components where used during the procedure. Since the use of these components can readily be data stamped, the personnel likewise do not have to document when these components were used.
  • [0170]
    Also, there is no reason that in all versions of the invention the tags be inductively coupled to the complementary handpieces in which their accessories are inserted. In some versions of the invention, there may be physical connections between the exposed contacts that are part of the handpiece and accessory. These contacts, upon physical abutment, establish the connection between the accessory tag and the conductors in the handpiece that extend to the control console.
  • [0171]
    Furthermore, in some versions of the invention, the coil that inductively couples the signal to the cutting accessory may not be in the handpiece. In some versions of the invention, this coil may be located in the control console. Whenever a new cutting accessory is attached to the handpiece, information about this event is sensed by a device internal to the handpiece and a signal representative of this event is forwarded to the control console. The control console then generates a message directing the surgeon to place the handpiece and cutting accessory sub-assembly adjacent a particular location on the control console to facilitate the inductive transfer of signals between the console and the accessory tag. An advantage of this version of the invention is that it eliminates the need to provide additional conductors in the cable that extends to the handpiece.
  • [0172]
    Another embodiment of the invention is shown in FIG. 31. In this embodiment, no cable connects the handpiece or cordless powered surgical tool to a control console. The Applicant's Assignee's U.S. patent application, CORDLESS, POWERED SURGICAL TOOL Ser. No. ______, filed on Aug. 1, 2002, now U.S. Pat. No. ______, and incorporated herein by reference, provides details of a physical structure of a cordless powered surgical tool. Likewise Applicant's Assignee's U.S. Pat. No. 5,747,953 entitled CORDLESS, BATTERY OPERATED SURGICAL TOOL, issued May 5, 1998, and incorporated herein by reference, describes a surgical tool that may be modified to include the circuit arrangement shown in FIG. 31.
  • [0173]
    As shown in FIG. 31, the cutting or operating end of the cordless surgical tool 522 is provided with an annular coil 566. Collectively, the cordless surgical tool 522 and cutting accessory 524 are shaped so that coils 564 and 566 are in such proximity to each other that they will collectively inductively transfer signals from/to the circuit internal to the surgical tool 522 to/from the circuit internal to the identification chip 562. Typically, the housing of the surgical tool 522 is formed of materials discussed in Applicant's above patent documents.
  • [0174]
    The surgical tool 522 includes a battery 590 that supplies power, as necessary, to the circuit elements therein (connections not shown). A controller 570 controls the overall operation of the system. Memory 569 in the surgical tool 522 contains the permanent operating instructions that are executed by controller 570 to control the system and regulate the actuation of the surgical tool 522 and the cutting accessory 524. Controller 570 generates energization control signals to a driver 572. The energization control signals are based on the cutting accessory 524 identified and the value selected by a manual actuator device 549. The manual actuator device 549 can be a trigger type push button controlling the output from a variable resistor or any other type of device providing a variable signal output. The driver 572, based on the value of the output from the manual actuator device 549 and the cutting accessory 524 identified, generates the energization signals that are applied to the surgical tool motor 526.
  • [0175]
    The surgical tool 522 can also include a touch screen display 571 or other type of indicator/input system. Controller 570 causes information regarding the state of the system to be presented on the display 571. Controller 570 can also cause images of buttons to be presented on the display 571. An operator regulates the operation of the system by selectively depressing these buttons. In other embodiments, no indicator or display is present. The system automatically controls the cutting accessory 524 based on the accessory identified. For example, the maximum operating speed of the cutting accessory 524 can be varied depending of the accessory identified.
  • [0176]
    The surgical tool 522 also includes a modulator (MOD) 574 that modulates digital signals output by controller 570 so they can be inductively transferred to cutting accessory identification chip 562. In one preferred version of the invention, modulator 574 receives a fixed-frequency signal from an oscillator 576 internal to the surgical tool 522.
  • [0177]
    Modulator 574 produces an amplitude shift keyed signal generated by modulator 574 that is amplified by an amplifier 578. The output signal from amplifier 578 is applied to one end of coil 566.
  • [0178]
    Demodulator 580 receives a signal that is coupled to coil 566, demodulates the signal, and applies the output bit stream to controller 570.
  • [0179]
    The identification chip 562 can include a small controller and an electronically programmable memory (μC&MEM) 584. The controller integral with controller/memory 584 controls the writing of data into its complementary memory section and the reading out of the contents of the memory. Modulator/demodulator (MOD DEM) 586, clock 588, capacitor 583 and power regulator 589 function in substantially the same manner as described for the embodiment in FIG. 3.
  • [0180]
    In FIG. 31, coil 564 is shown as being integrally part of chip 562. This is one option for the invention. However, as discussed above, it is anticipated that in many versions of the invention, chip 62 and coil 564 will be separate components.
  • [0181]
    Some of the different types of data stored in the tag controller/memory 584 include a serial number specific to the cutting accessory 524 with which tag 562 is integral. This number may also include a special authorization code. There is also stored data that indicates the type of cutting accessory 524. For example, the cutting accessory 524 may be a drill, saw, burr, linkage assembly for converting rotary movement to a back-and-forth movement, or other types of elements. In cases where a linkage assembly is utilized, an identification tag may be provided on the linkage assembly as well as a cutting element secured to the linkage assembly. The linkage assembly can function as an intermediate attachment between the surgical tool 522 and the cutting accessory 524 in a manner similar to the arrangement shown in FIG. 20.
  • [0182]
    The stored data can include the size, diameter, physical materials, and type of cutting accessory 524. The data can also include the preferred operating speed, maximum operating speed, maximum operating torque, stopping torque, or other type of information regarding operation of the cutting accessory 524. The mode of operation of the cutting accessory 524, such as oscillatory or unidirectional can also be provided with the data.
  • [0183]
    Data indicating if and when the cutting accessory 524 was previously used, and for how long can be read and written to the chip 562. Data indicating how long a surgeon can expect to use the cutting accessory 524 before the cutting/drilling surfaces become worn to the level at which they may not efficiently cut tissue can be read/stored.
  • [0184]
    The cordless surgical tool 522 of FIG. 31 operates in a similar manner to the handpieces connected by cables 30 in embodiments discussed above.
  • [0185]
    In another embodiment, the accessory 524 comprises an implant device, such as a screw or other element that is directly implanted into the body of a patient using the surgical tool 522. In this instance, the characteristics of the accessory element are provided to the surgical tool 522 regarding desired torque, operating speed, etc. for implanting the implant device.
  • [0186]
    Therefore, it is an object of the appended claims to cover all such variations and modifications that come within the true spirit and scope of this invention.

Claims (42)

What is claimed is:
1. A powered surgical handpiece, said handpiece including:
a body shaped to have opposed distal and proximal ends and to have an opening in the distal end for receiving an accessory;
a power generating unit disposed in said body for actuating the accessory;
a coupling assembly attached to said body, said coupling assembly having a moveable member for releasably engaging the accessory to hold the accessory in the body opening; and
a coil disposed in said body adjacent the opening and positioned to inductively exchange signals with a complementary coil integral with the accessory.
2. The surgical handpiece of claim 1 wherein:
said body is formed of metal; and
a non-metallic sheath is attached to said body and disposed over said coil so that said sheath covers an inner side of said coil where said sheath has an inner wall that partially defines the body opening in which the accessory is seated.
3. The handpiece of claim 2, wherein said sheath is a ring, said ring having an inner surface and an outer surface and is shaped to have an annular groove in the outer surface, said coil is disposed in the ring groove and said ring is disposed in the body opening so that the outer surface of said ring is located against a wall of said body and the inner surface of said ring partially defines the opening in which the accessory is seated.
4. The handpiece of claim 1, wherein:
said body is formed of metal; and
a non-metallic collet is disposed over the distal end of said body, said collet forming a distal end of said handpiece, said collet having a ring section that extends into said body so as to partially define the opening in which the cutting accessory is seated; and
said coil is seated in said collet ring section.
5. The handpiece of claim 4, wherein said coupling assembly is at least partially disposed in said collet.
6. The handpiece of claim 1, wherein said coil is a conductive trace formed on a substrate.
7. The handpiece of claim 1, wherein said coil is a conductive trace formed on a substrate and said substrate has:
a first section that is wound in a circular pattern and fitted into the distal end opening of said body so that the conductive trace on said substrate functions as said coil; and
a second section that extends from said first section towards the proximal end of said body wherein conductive traces on said second section function as conductors through which signals are transferred to and from said coil.
8. The handpiece of claim 7 further including an impedance matching circuit attached to said substrate.
9. A cutting accessory for attachment to a powered surgical tool, said cutting accessory including:
a drive coupling configured to attachment with a drive shaft internal to the surgical tool so that said drive coupling rotates upon rotation of the tool drive shaft;
a rotating shaft attached to said drive coupling that extends forward from said drive coupling, said rotating shaft having a distal end opposite the drive coupling and a tissue working member integral with the distal end;
a hub disposed over said rotating shaft and located adjacent said drive coupling, said hub being formed with at least one recessed surface for receiving a coupling member associated with the surgical tool; and
an identification chip and a coil connected to said identification chip disposed in said hub, said identification chip containing data including: a preferred speed for driving said drive coupling; and a maximum speed for driving said coupling; the identity of the type of said cutting accessory, wherein said identification chip and said coil are both contained in said hub so as to be sealed from the ambient environment.
10. The cutting accessory of claim 9, wherein said hub is formed with an annular sealed enclosure and said identification chip and said coil are disposed within said sealed enclosure.
11. The cutting accessory of claim 9, wherein:
said hub includes a body made of rigid non-metallic material, said body defining a bore in which said drive coupling is disposed and having an inner wall that defines the bore;
said identification chip and said coil are disposed against the inner wall of said hub; and
a coil seal formed of flexible non-metallic material is disposed against and circumferentially surrounds the inner wall of said hub, said coil seal having spaced apart circumferential ribs that are located on opposed sides of said identification chip bearing against the inner wall of said hub so that the inner wall of said hub and said coil seal enclose said identification chip and said coil.
12. The cutting accessory of claim 9, wherein said identification chip is mounted on a flexible substrate and said coil comprises at least one conductive trace formed on said substrate.
13. A method for energizing a cutting accessory to perform a surgical procedure, said method including the steps of:
attaching a surgical handpiece with a power generating unit to a control console, said handpiece including: a memory that contains data describing the operating characteristics of the handpiece; and a coil;
reading from the surgical handpiece into the control console the data in the surgical handpiece memory;
attaching a removably attachable cutting accessory to the surgical handpiece, wherein at least one cutting accessory that can be attached to the surgical handpiece has a memory that contains data describing the operating characteristics of the cutting accessory;
generating a read request by the control console to the cutting accessory, wherein in said read request step, the control console causes the handpiece coil to inductively forward a signal to the cutting accessory;
determining if, in response to said read request, the cutting accessory responds and, if the cutting accessory memory, in response to said read request, reads out data, inductively transferring the data through the cutting accessory coil and the handpiece coil to the control console;
if, the cutting accessory does not respond to said read request, providing an energization signal to the power generating unit in the surgical handpiece based on operating characteristics data read from the handpiece memory; and
if the cutting accessory memory reads out data in response to said read request, providing an energization signal to the power generating unit in the surgical handpiece based on the data in the cutting accessory memory and the handpiece memory wherein the operating characteristics data read from the cutting accessory memory overrides the operating characteristics data read from the handpiece memory.
14. The method of energizing a cutting accessory of claim 13, wherein:
the cutting accessory memory includes data indicating a unique identifier for the cutting accessory;
after the cutting accessory is attached to the handpiece, the control console, in subsequent read request steps, repetitively reading the data in the cutting accessory;
after each said data read of the cutting accessory memory, the control console compares the read identifier with the identifier read in response to the initial read request to the cutting accessory;
if said comparison determines that the initially read identifier and the later read identifier are identical, the control console continues to energize the handpiece power generating unit based on the cutting accessory operating characteristics data read in response to the initial rear request step; and
if said comparison determines that the initially read identifier and the later read identifier are different, the control console energizes the handpiece power generating unit based on the cutting accessory operating characteristics data read in response to the subsequent read request step.
15. A method of determining the position of a surgical implant within a patient, said method including the steps of:
with a surgical navigation unit, obtaining a profile of the portion of the patient in which an implant is to be fitted;
mating an implant to a surgical handpiece that positions the implant in the patient, the implant having attached thereto a memory with data describing the physical characteristics of the implant and a coil that is connected to the memory;
with a coil associated with the surgical handpiece, by inductive signal transfer, reading the data stored in the implant memory and supplying the physical characteristics data of the implant to the surgical navigation unit;
with the surgical navigation unit, tracking the position of the surgical handpiece relative to the patient; and
with the surgical navigation unit, based upon the position of the handpiece and the physical characteristics of the implant determining the position of the implant relative to the portion of the patient in which the implant is to be fitted.
16. A method of performing surgery, said method including the steps of:
obtaining measurements of a portion of a patient body in which an implant is to be fitted and providing the measurements to a surgical navigation unit;
selecting an implant for implantation into the patient, the implant having a memory in which data describing the characteristics of the implant are stored;
reading from the memory of the selected implant data describing the characteristics of the implant, said reading step being performed by a handpiece attached to a control console that is capable of actuating handpieces wherein, in said reading step data are read by inductive signal transfer between the implant memory and the handpiece;
transferring, from the control console to the surgical navigation unit, the data describing the characteristics of the implant;
actuating a handpiece with said control console to position the implant in the body,
monitoring the position of the handpiece being actuated with the surgical navigation unit,
determining, with the surgical navigation unit, the position of the implant relative to the body portion in which the implant is being fitted based on, the measurements of the body portion, the position of the handpiece and the characteristics of the implant and displaying an indication of the position.
17. The method of performing surgery of claim 16, wherein the handpiece used to perform said step of reading data from the memory of the implant and the handpiece used to perform said step of positioning the implant in the body are the same handpiece.
18. The method of performing surgery of claim 16, wherein said step of reading data from the memory of the implant is performed by a cutting accessory that is removabley attached to the handpiece used to perform said step.
19. A method of taking inventory of surgical components, said method including the steps of:
determining the components used to perform a surgical procedure on a patient, wherein each said determination includes the step of reading inductively from a component used data identifying the component;
based on said determination of components used to perform the surgical procedure, maintaining an inventory of the components used;
after a component is used during the surgical procedure, placing the component in defined storage location;
determining when a component used during the surgical procedure is placed in the defined storage location by inductively reading identification data from the component when the component is placed in the defined storage location;
based on said inventory of components used and said determination of components stored, determining if all used components are stored;
if all used components are not stored, generating a message requesting the storage of a used component not stored and returning to said steps of: placing the used component in the defined storage location; determining if the component is placed in the defined storage location; and determining if all used components are stored; and
if all used components are stored, generating a message indicating the storage of the components.
20. The method of taking inventory of surgical components of claim 19, wherein:
said steps of determining the components used during the surgical procedure and said components returned to the defined storage locations are performed by a handpiece attached to a control console, said control console being configured to provide energization signals to handpieces; and
said steps of maintaining an inventory of components used during the surgical procedure and if all components are stored are performed by an inventory processor that is physically removed from said control console and said control console and said inventory processor are connected together wherein said control console provides data to said inventory processor to identify components used during the surgical procedure and components placed in the defined storage location.
21. A method for energizing a cutting accessory to perform a surgical procedure, said method including the steps of:
attaching a surgical handpiece to a control console, the handpiece having a power generating unit a coupling assembly for removably receiving a cutting accessory and a coil for inductively exchanging signals with a memory in the cutting accessory;
with said control console, generating a read-request to a cutting accessory through the handpiece coil, the read-request comprising a request to that a cutting accessory memory write out selected data in the memory, the selected data being less than all the data stored in the cutting accessory memory;
if, in response to said read-request step, no data are written out to the control console, repeating said read-request step,
if, in response to said read-request step, the selected data are written out to the control console, said control console, through said handpiece coil, generating a read-request for additional data in the cutting accessory memory;
the cutting accessory memory, in response to said read-request for additional data, writing out through the handpiece coil the additionally requested data; and
said control console, in response to the cutting accessory memory additional data, providing energization signals to the handpiece to control the actuation of the handpiece and the cutting accessory based on the data read out from the cutting accessory memory.
22. The method of performing surgery of claim 21, wherein:
the cutting accessory memory includes data indicating a identifier specific to the cutting accessory and data indicating the operating characteristics of the cutting accessory;
in said step of generating a read-request to a cutting accessory memory for selected data, said control console requests the identifier for the cutting accessory;
in said step of generating a read-request for additional data, said control console requests the operating characteristics for the cutting accessory.
23. A method for providing irrigation to perform a surgical procedure, said method including the steps of:
attaching a surgical handpiece to a control console, the handpiece including a coupling assembly for removably receiving a cutting accessory;
attaching a tubing set to a pump device, the tubing set including a memory device;
securing a first end of a tubing of the tubing set to an irrigation fluid container;
securing a second end of the tubing to the surgical handpiece;
generating a read-request to the memory device from the control console, the read-request comprising a request that the memory write out selected data;
receiving the selected data in the control console;
said control console, in response to the selected data, operating the pump device to control the flow rate of irrigation fluid supplied to a surgical site from the second end of the tubing.
24. The method for providing irrigation of claim 23 including simultaneously operating a cutting accessory, wherein the surgical handpiece includes a power generating unit and a coil for inductively exchanging signals with a cutting accessory memory in the cutting accessory, the method including the steps of:
with said control console, generating a read-request to a cutting accessory through the handpiece coil, the read-request comprising a request that the cutting accessory memory write out selected data, the selected data being less than all the data stored in the cutting accessory memory;
if, in response to said read-request step, no data are written out to the control console, repeating said read-request step, if, in response to said read-request step, the selected data are written out to the control console, said control console, through said handpiece coil, generating a read-request for additional data in the cutting accessory memory;
the cutting accessory memory, in response to said read-request for additional data, writing out through the handpiece coil the additionally requested data;
the control console, in response to the cutting accessory memory additional data, providing energization signals to the handpiece to control the actuation of the handpiece and the cutting accessory based on the data read out from the cutting accessory memory; and,
the control console, in response to the selected data, controlling the flow rate of the irrigation fluid substantially simultaneously with the operation of the cutting accessory.
25. The method of performing surgery of claim 23, including the step of disabling the pump device for providing the flow of the irrigation fluid to the surgical site when the presence of the memory device is not detected.
26. The method of performing surgery of claim 23, wherein the tubing set includes a cartridge supporting the memory device, the cartridge being removably attached to the control console, and wherein the step of generating the read-request to the memory device from the control console includes a coil for inductively providing power to and receiving the selected data from the memory device in the cartridge, the memory device comprising a radio frequency inductive device.
27. The method of performing surgery of claim 23, wherein the tubing set comprises only the tubing having the memory device attached thereto.
28. The method of performing surgery of claim 23, wherein the control console generates and sends a write-request signal to the memory device for storing an indication that the tubing set has been used so that, if the tubing set is improperly reinstalled, the control console provides an indication and/or disables operation of the pump device.
29. A cordless powered surgical tool, said tool including:
a body shaped to have opposed distal and proximal ends and to have an opening in the distal end for receiving an accessory;
a coupling assembly attached to said body, said coupling assembly having a moveable member for releasably engaging the accessory to hold the accessory in the body opening;
a coil disposed in said body adjacent the opening and positioned to inductively receive data signals from a complementary coil integral with the accessory;
a controller for reading the signals provided by said coil and for controlling the driving properties of a motor of the surgical tool in response to the data signals when said motor is manually actuated by a user; and
a battery located in the body for providing power to said coil, said controller and said motor,
wherein said motor powers said accessory in response to manually actuation.
30. The cordless powered surgical tool of claim 29, wherein said controller, in response to the data signals, limits the maximum speed of said motor.
31. The cordless powered surgical tool of claim 29, wherein said data signals include a time of use for the accessory and said controller writes data signals to said accessory via said coils to store an updated time of use.
32. The cordless powered surgical tool of claim 29, said surgical tool including an indicator connected to said controller an powered by said battery, wherein the data signals include a time of use for the accessory and, when said time of use exceeds a predetermined time, said controller provides an indicator signal so that said indicator provides an alarm.
33. The cordless powered surgical tool of claim 32, said surgical tool including an indicator connected to said controller an powered by said battery, wherein the data signals include a time of use for the accessory and, when said time of use exceeds a predetermined time, said controller provides an indicator signal so that said indicator provides an alarm or provides controlled shutdown of said motor of said powered surgical tool after the alarm operates for a predetermined alarm time.
34. The cordless powered surgical tool of claim 29, wherein said accessory comprises an implant device.
35. A method of maintaining an inventory of medical components, said method including the steps of:
detecting the presence of components, wherein each said determination includes the step of reading inductively identification data stored in the individual components and identifying the individual components;
based on said determination of components, maintaining an inventory of the location, condition, and/or status of the components, wherein the inventory is maintained on a computer network;
providing access to records of the inventory at multiple sites; and
providing apparatus for detecting the presence of the components at multiple locations.
36. The method of detecting the presence/absence or status of medical components of claim 35, said method including the steps of:
determining the components used to perform a surgical procedure on a patient;
based on said determination of components used to perform the surgical procedure, maintaining an inventory of the components used;
determining when a component used during the surgical procedure is placed in a defined storage location by inductively reading identification data from the component when the component is placed in the defined storage location;
based on said inventory of components actually used and said determination of components to be used, determining if all used components are stored;
if all used components are not stored, generating a message requesting the storage of a used component not stored; and
if all used components are stored, generating a message indicating the storage of the components.
37. The method of maintaining an inventory of claim 36, wherein the step of determining when a component used during the surgical procedure is placed in the defined storage location includes writing identification data to the component indicating the component is not sterilized.
38. The method of maintaining an inventory of claim 35, including the step of determining when a component is utilized and no longer sterilized, including writing data to the component and the computer network indicating the component is not sterilized.
39. The method of maintaining an inventory of claim 38, including the step of determining when a component is sterilized and writing data to the component indicating the component is sterilized.
40. The method of maintaining an inventory of claim 35, including the steps of:
determining when a component is disposed of; and
automatically reordering the component.
41. The method of maintaining an inventory of claim 35, including the steps of:
determining when a component is disposed of; and
automatically billing for the component.
42. The method of maintaining an inventory of claim 35, including the steps of:
updating and storing the location of the components in the computer network for tracking purposes;
storing the condition of the components in the computer network for reordering purposes; and
maintaining the sterilization status of the components.
US10214937 2001-08-08 2002-08-08 Surgical tool system with components that perform inductive data transfer Abandoned US20030093103A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US31095701 true 2001-08-08 2001-08-08
US10214937 US20030093103A1 (en) 2001-08-08 2002-08-08 Surgical tool system with components that perform inductive data transfer

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US10214937 US20030093103A1 (en) 2001-08-08 2002-08-08 Surgical tool system with components that perform inductive data transfer
US10319300 US7237990B2 (en) 2002-08-08 2002-12-13 Surgical tool system with quick release coupling assembly
US10782374 US7887559B2 (en) 2002-08-08 2004-02-19 Surgical cutting accessory with encapsulated RFID chip
US10901478 US8035487B2 (en) 2001-08-08 2004-07-28 Method for assembling, identifying and controlling a powered surgical tool assembly assembled from multiple components
US11807942 US8500769B2 (en) 2002-08-08 2007-05-30 Surgical tool system with quick release coupling assembly
US12493826 US8535342B2 (en) 2001-08-08 2009-06-29 Powered surgical handpiece with an antenna for reading data from a memory integral with a cutting accessory attached to the handpiece
US12928521 US8157826B2 (en) 2002-08-08 2010-12-14 Surgical cutting accessory with encapsulated RFID chip
US13940913 US20130296910A1 (en) 2002-08-08 2013-07-12 Surgical tool system with quick release coupling assembly
US14014807 US9707026B2 (en) 2001-08-08 2013-08-30 Surgical tool system including a navigation unit that receives information about implant the system is to implant and that responds to the received information
US15644869 US20170303984A1 (en) 2001-08-08 2017-07-10 Method of managing the inventory of equipment used during a surgical procedure by inductively reading data from the equipment used in the procedure

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10319300 Continuation-In-Part US7237990B2 (en) 2001-08-08 2002-12-13 Surgical tool system with quick release coupling assembly
US10901478 Continuation US8035487B2 (en) 2001-08-08 2004-07-28 Method for assembling, identifying and controlling a powered surgical tool assembly assembled from multiple components
US12493826 Division US8535342B2 (en) 2001-08-08 2009-06-29 Powered surgical handpiece with an antenna for reading data from a memory integral with a cutting accessory attached to the handpiece

Publications (1)

Publication Number Publication Date
US20030093103A1 true true US20030093103A1 (en) 2003-05-15

Family

ID=23204777

Family Applications (5)

Application Number Title Priority Date Filing Date
US10214937 Abandoned US20030093103A1 (en) 2001-08-08 2002-08-08 Surgical tool system with components that perform inductive data transfer
US10901478 Active 2026-09-25 US8035487B2 (en) 2001-08-08 2004-07-28 Method for assembling, identifying and controlling a powered surgical tool assembly assembled from multiple components
US12493826 Active 2023-04-10 US8535342B2 (en) 2001-08-08 2009-06-29 Powered surgical handpiece with an antenna for reading data from a memory integral with a cutting accessory attached to the handpiece
US14014807 Active 2024-02-04 US9707026B2 (en) 2001-08-08 2013-08-30 Surgical tool system including a navigation unit that receives information about implant the system is to implant and that responds to the received information
US15644869 Pending US20170303984A1 (en) 2001-08-08 2017-07-10 Method of managing the inventory of equipment used during a surgical procedure by inductively reading data from the equipment used in the procedure

Family Applications After (4)

Application Number Title Priority Date Filing Date
US10901478 Active 2026-09-25 US8035487B2 (en) 2001-08-08 2004-07-28 Method for assembling, identifying and controlling a powered surgical tool assembly assembled from multiple components
US12493826 Active 2023-04-10 US8535342B2 (en) 2001-08-08 2009-06-29 Powered surgical handpiece with an antenna for reading data from a memory integral with a cutting accessory attached to the handpiece
US14014807 Active 2024-02-04 US9707026B2 (en) 2001-08-08 2013-08-30 Surgical tool system including a navigation unit that receives information about implant the system is to implant and that responds to the received information
US15644869 Pending US20170303984A1 (en) 2001-08-08 2017-07-10 Method of managing the inventory of equipment used during a surgical procedure by inductively reading data from the equipment used in the procedure

Country Status (6)

Country Link
US (5) US20030093103A1 (en)
JP (3) JP4215162B2 (en)
CA (1) CA2456424C (en)
DE (1) DE60239812D1 (en)
EP (4) EP2314233B1 (en)
WO (1) WO2003013372A3 (en)

Cited By (212)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040059197A1 (en) * 2002-07-15 2004-03-25 J. Morita Manufacturing Corporation Connection assembly having communication function and medical apparatus using the connection assembly
US20040092991A1 (en) * 2002-08-08 2004-05-13 Wenjie Deng Surgical tool system with quick release coupling assembly
US20040133189A1 (en) * 2002-12-27 2004-07-08 Olympus Corporation Surgical operation apparatus and control method thereof
US20040193015A1 (en) * 2002-02-07 2004-09-30 Olympus Optical Co., Ltd, Electric bending endoscope
US20040220602A1 (en) * 2002-08-08 2004-11-04 Wenjie Deng Surgical cutting accessory with encapsulated RFID chip
US20040255409A1 (en) * 2001-12-04 2004-12-23 Alexander Hilscher Dental cleaning device
US20040267297A1 (en) * 2001-08-08 2004-12-30 Don Malackowski System and method for assembling and identifying a surgical tool assembly assembled from multiple components
US20050000044A1 (en) * 2001-03-14 2005-01-06 Braun Gmbh Method and device for cleaning teeth
US20050011025A1 (en) * 2000-03-17 2005-01-20 Braun Gmbh Dental cleaning device
US20050131415A1 (en) * 2002-04-24 2005-06-16 Hearn Trevor C. Adaptive apparatus for driving a threaded device into material such as a biological tissue
US20050145257A1 (en) * 2003-12-19 2005-07-07 Barrera Jose Luis Moctezuma D.L. Reactive workflow system and method
US20050187539A1 (en) * 2002-10-23 2005-08-25 Olympus Corporation Electric operation system
US20050245909A1 (en) * 2004-04-29 2005-11-03 Mccary Brian D Embedded data chip in a surgical handpiece
US20050267553A1 (en) * 2004-05-05 2005-12-01 Doug Staunton System and method for controlling electrical stimulation and radiofrequency output for use in an electrosurgical procedure
US20060058616A1 (en) * 2003-02-04 2006-03-16 Joel Marquart Interactive computer-assisted surgery system and method
US20060073048A1 (en) * 2004-09-28 2006-04-06 Don Malackowski Surgical tool system with integrated pump
US20060116667A1 (en) * 2004-11-01 2006-06-01 Hamel Andrew J Apparatus and method for synchronizing a wireless remote control to a central control unit so as to allow remote control of a medical device over a secure wireless connection
WO2006063156A1 (en) * 2004-12-09 2006-06-15 Stryker Corporation Wireless system for providing instrument and implant data to a surgical navigation unit
EP1685504A2 (en) * 2003-11-05 2006-08-02 Scican, a division of Lux and Zwingenberger Ltd. System for management of processed instruments
US20060234617A1 (en) * 2005-03-25 2006-10-19 Black & Decker Inc. Power tool accessory identification system
US20060244652A1 (en) * 2005-04-28 2006-11-02 Sdgi Holdings, Inc. Method and apparatus for surgical instrument identification
WO2006128595A1 (en) * 2005-06-02 2006-12-07 Wavelight Laser Technologie Ag Microkeratome system
WO2007016101A1 (en) * 2005-07-29 2007-02-08 Alcon, Inc. Method and system for configuring and data populating a surgical device
US20070085496A1 (en) * 2005-06-28 2007-04-19 Christopher Philipp Powered surgical tool with control module that contains a sensor for remotely monitoring the tool power generating unit
US20070250098A1 (en) * 2004-09-29 2007-10-25 Don Malackowski Motorized surgical handpiece and controller for regulating the handpiece motor based on the inductively sensed determination of motor rotor position
US20080132882A1 (en) * 2006-11-30 2008-06-05 Howmedica Osteonics Corp. Orthopedic instruments with RFID
US20080167736A1 (en) * 2007-01-10 2008-07-10 Swayze Jeffrey S Post-sterilization programming of surgical instruments
US20080167644A1 (en) * 2007-01-10 2008-07-10 Shelton Frederick E Surgical instrument with enhanced battery performance
US20080167670A1 (en) * 2007-01-10 2008-07-10 Shelton Frederick E Interlock and surgical instrument including same
US20080167671A1 (en) * 2007-01-10 2008-07-10 Giordano James R Surgical instrument with elements to communicate between control unit and end effector
EP1950870A2 (en) * 2007-01-29 2008-07-30 Schunk GmbH & Co. KG Spann- und Greiftechnik Electrical motor system and construction kit therefore
US20090005807A1 (en) * 2007-06-29 2009-01-01 Hess Christopher J Surgical staple having a slidable crown
US20090085718A1 (en) * 2007-09-28 2009-04-02 Stryker Corporation Wireless hand-control of a device by means of a wirelss button
US20090088737A1 (en) * 2000-12-28 2009-04-02 Senorx, Inc. Electrosurgical medical system and method
US20090267765A1 (en) * 2008-04-29 2009-10-29 Jack Greene Rfid to prevent reprocessing
US20090270899A1 (en) * 2002-07-13 2009-10-29 Steven Carusillo Surgical tool system
US20090275940A1 (en) * 2008-05-05 2009-11-05 Malackowski Donald W Surgical tool system including a tool and a control console, the console capable of reading data from a memory internal to the tool over the conductors over which power is sourced to the tool
DE102008024438A1 (en) * 2008-05-14 2009-11-19 Aesculap Ag Surgical drive assembly, and surgical instrument drive system
EP1943957A3 (en) * 2007-01-10 2009-12-02 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US20100019910A1 (en) * 2005-03-08 2010-01-28 Koninklijke Philips Electronics N.V. Clinical monitoring network
US7721931B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Prevention of cartridge reuse in a surgical instrument
US7799039B2 (en) 2005-11-09 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument having a hydraulically actuated end effector
US20100241129A1 (en) * 2009-03-18 2010-09-23 Integrated Spinal Concepts, Inc. Image-Guided Minimal-Step Placement Of Screw Into Bone
EP2233103A2 (en) 2009-03-26 2010-09-29 W & H Dentalwerk Bürmoos GmbH Medical, in particular dental tool holder
US20100262139A1 (en) * 2007-12-12 2010-10-14 Beller Juergen Device for contactless communication and use of a memory device
US20100299856A1 (en) * 2007-05-15 2010-12-02 Rudolf Majthan Toothbrush attachment and method for the production thereof
EP2282070A1 (en) * 2009-08-06 2011-02-09 ECP Entwicklungsgesellschaft mbH Catheter device with a coupling device for a drive device
EP2324779A1 (en) * 2009-11-09 2011-05-25 Jean-Pierre Py Surgical device
US20110122987A1 (en) * 2004-12-23 2011-05-26 Braun Gmbh Replaceable Accessory for a Small Electrical Appliance and Method of Monitoring the Usage of the Accessory
US20110174860A1 (en) * 2006-01-31 2011-07-21 Ethicon Endo-Surgery, Inc. Surgical instrument with force-feedback capabilities
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
EP2327370A3 (en) * 2009-11-25 2011-12-28 W & H Dentalwerk Bürmoos GmbH Coupling device for a medical, in particular dental, handpiece
US8113410B2 (en) 2008-02-14 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features
US20120071787A1 (en) * 2004-07-09 2012-03-22 Bard Peripheral Vascular, Inc. Length detection system for biopsy device
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20120116266A1 (en) * 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with modular end effector and detection feature
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8196795B2 (en) 2008-02-14 2012-06-12 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8197501B2 (en) 2008-03-20 2012-06-12 Medtronic Xomed, Inc. Control for a powered surgical instrument
US8196796B2 (en) 2007-06-04 2012-06-12 Ethicon Endo-Surgery, Inc. Shaft based rotary drive system for surgical instruments
US20120203269A1 (en) * 2011-02-03 2012-08-09 Terumo Kabushiki Kaisha Medical manipulator system
US20120215232A1 (en) * 2011-02-18 2012-08-23 Olsen Russell G Surgical fastener and associated systems and methods
US8317070B2 (en) 2005-08-31 2012-11-27 Ethicon Endo-Surgery, Inc. Surgical stapling devices that produce formed staples having different lengths
US8348131B2 (en) 2006-09-29 2013-01-08 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical indicator to show levels of tissue compression
DE102011051754A1 (en) * 2011-07-12 2013-01-17 Sycotec Gmbh & Co. Kg drive unit
WO2013009252A2 (en) 2011-07-11 2013-01-17 Medical Vision Research & Development Ab Status control for electrically powered surgical tool systems
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8424740B2 (en) 2007-06-04 2013-04-23 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US8443476B2 (en) 2001-12-04 2013-05-21 Braun Gmbh Dental cleaning device
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8464923B2 (en) 2005-08-31 2013-06-18 Ethicon Endo-Surgery, Inc. Surgical stapling devices for forming staples with different formed heights
US8479969B2 (en) 2007-01-10 2013-07-09 Ethicon Endo-Surgery, Inc. Drive interface for operably coupling a manipulatable surgical tool to a robot
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US8567656B2 (en) 2005-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8573461B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with cam-driven staple deployment arrangements
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US8602288B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery. Inc. Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US8602287B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery, Inc. Motor driven surgical cutting instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8616431B2 (en) 2007-06-04 2013-12-31 Ethicon Endo-Surgery, Inc. Shiftable drive interface for robotically-controlled surgical tool
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8631532B2 (en) 2011-07-25 2014-01-21 Braun Gmbh Oral hygiene device
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
EP2460485A3 (en) * 2005-08-16 2014-03-19 Synthes GmbH Headless compression screw with integrated reduction-compression instrument
US8702621B2 (en) 2005-01-31 2014-04-22 C.R. Bard, Inc. Quick cycle biopsy system
US8708930B2 (en) 2009-04-15 2014-04-29 Bard Peripheral Vascular, Inc. Biopsy apparatus having integrated fluid management
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US8783541B2 (en) 2003-05-20 2014-07-22 Frederick E. Shelton, IV Robotically-controlled surgical end effector system
US8789741B2 (en) 2010-09-24 2014-07-29 Ethicon Endo-Surgery, Inc. Surgical instrument with trigger assembly for generating multiple actuation motions
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US8808197B2 (en) 2009-10-29 2014-08-19 Bard Peripheral Vascular, Inc. Biopsy driver assembly having a control circuit for conserving battery power
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
DE202013102373U1 (en) * 2013-05-31 2014-09-03 Somnomedics Gmbh Technical Medical diagnostic system with diagnostic signal transmitters / receivers
US8844789B2 (en) 2006-01-31 2014-09-30 Ethicon Endo-Surgery, Inc. Automated end effector component reloading system for use with a robotic system
US8858463B2 (en) 2007-12-20 2014-10-14 C. R. Bard, Inc. Biopsy device
US8858571B2 (en) 2005-11-09 2014-10-14 Ethicon Endo-Surgery, Inc. Hydraulically and electrically actuated articulation joints for surgical instruments
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US20140364883A1 (en) * 2012-03-20 2014-12-11 Cardiovascular Systems, Inc. Controller for an atherectomy device
US8911471B2 (en) 2006-03-23 2014-12-16 Ethicon Endo-Surgery, Inc. Articulatable surgical device
US8951208B2 (en) 2006-08-21 2015-02-10 C. R. Bard, Inc. Self-contained handheld biopsy needle
US8951209B2 (en) 2002-03-19 2015-02-10 C. R. Bard, Inc. Biopsy device and insertable biopsy needle module
US8961430B2 (en) 2005-08-10 2015-02-24 C.R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US8978954B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjustable distal portion
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9028519B2 (en) 2008-09-23 2015-05-12 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9072502B2 (en) 2002-03-19 2015-07-07 C. R. Bard, Inc. Disposable biopsy unit
US9099939B2 (en) 2011-07-25 2015-08-04 Braun Gmbh Linear electro-polymer motors and devices having the same
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9138225B2 (en) 2007-06-22 2015-09-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US9173641B2 (en) 2009-08-12 2015-11-03 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9226808B2 (en) 2011-07-25 2016-01-05 Braun Gmbh Attachment section for an oral hygiene device
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US9265551B2 (en) 2013-07-19 2016-02-23 Pro-Dex, Inc. Torque-limiting screwdrivers
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9282949B2 (en) 2009-09-01 2016-03-15 Bard Peripheral Vascular, Inc. Charging station for battery powered biopsy apparatus
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9320521B2 (en) 2006-06-27 2016-04-26 Ethicon Endo-Surgery, Llc Surgical instrument
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9393015B2 (en) 2009-02-06 2016-07-19 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with cutting member reversing mechanism
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9408664B2 (en) 2000-12-28 2016-08-09 Senorx, Inc. Electrosurgical medical system and method
US9452014B2 (en) 2012-11-30 2016-09-27 Gyrus Acmi, Inc. Integrated blade assembly and identification circuit
US9486214B2 (en) 2009-02-06 2016-11-08 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US9492237B2 (en) 2006-05-19 2016-11-15 Mako Surgical Corp. Method and apparatus for controlling a haptic device
US9526559B2 (en) 2009-03-17 2016-12-27 Stryker Corporation Method and system for adjusting source impedance and maximizing output by RF generator
US9546662B2 (en) 2012-11-20 2017-01-17 Smith & Nephew, Inc. Medical pump
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9566045B2 (en) 2006-10-06 2017-02-14 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US9592053B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc Staple cartridge comprising multiple regions
US9597075B2 (en) 2010-07-30 2017-03-21 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9655688B2 (en) 2013-11-04 2017-05-23 L & K Dental Instruments Dental instrument
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9730695B2 (en) 2014-03-26 2017-08-15 Ethicon Endo-Surgery, Llc Power management through segmented circuit
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US9743928B2 (en) 2006-01-31 2017-08-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US9756402B2 (en) 2015-05-04 2017-09-05 Milwaukee Electric Tool Corporation Power tool and method for wireless communication
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US9782214B2 (en) 2010-11-05 2017-10-10 Ethicon Llc Surgical instrument with sensor and powered control
RU2633225C2 (en) * 2012-07-20 2017-10-11 Эскулап Аг Actuator control device and method of actuator control for surgical motor system
US9788836B2 (en) 2014-09-05 2017-10-17 Ethicon Llc Multiple motor control for powered medical device
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US9801686B2 (en) 2003-03-06 2017-10-31 Mako Surgical Corp. Neural monitor-based dynamic haptics
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US9872682B2 (en) 2016-03-14 2018-01-23 Ethicon Llc Surgical stapling instrument having a releasable buttress material

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8723936B2 (en) 2002-03-12 2014-05-13 Karl Storz Imaging, Inc. Wireless camera coupling with rotatable coupling
US8194122B2 (en) * 2002-03-12 2012-06-05 Karl Storz Imaging, Inc. Universal scope reader
US9510740B2 (en) * 2002-03-12 2016-12-06 Karl Storz Endovision, Inc. Auto recognition of a shaver blade for medical use
US8599250B2 (en) * 2002-03-12 2013-12-03 Karl Storz Imaging, Inc. Wireless camera coupling
US6641039B2 (en) * 2002-03-21 2003-11-04 Alcon, Inc. Surgical procedure identification system
EP1524946B1 (en) 2002-07-25 2012-10-17 Covidien AG Electrosurgical pencil with drag sensing capability
US7244257B2 (en) 2002-11-05 2007-07-17 Sherwood Services Ag Electrosurgical pencil having a single button variable control
WO2004073753A3 (en) 2003-02-20 2004-10-07 Sherwood Serv Ag Motion detector for controlling electrosurgical output
EP1617895A4 (en) * 2003-04-30 2008-04-09 Insulet Corp Rf medical device
US7218232B2 (en) * 2003-07-11 2007-05-15 Depuy Products, Inc. Orthopaedic components with data storage element
US20050085723A1 (en) * 2003-10-04 2005-04-21 Joel Huebner Radiolucent medical devices with radiopaque markers
US7879033B2 (en) 2003-11-20 2011-02-01 Covidien Ag Electrosurgical pencil with advanced ES controls
US7156842B2 (en) 2003-11-20 2007-01-02 Sherwood Services Ag Electrosurgical pencil with improved controls
US7503917B2 (en) * 2003-11-20 2009-03-17 Covidien Ag Electrosurgical pencil with improved controls
DE102004004626A1 (en) * 2004-01-29 2005-08-25 Siemens Ag Apparatus and method for receiving a high-energy image
CN101060815B (en) * 2004-06-07 2012-07-18 芯赛斯公司 Orthopaedic implant with sensors
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US7644016B2 (en) * 2004-08-25 2010-01-05 Warsaw Orthopedic, Inc. Automated pass-through surgical instrument tray reader
JP2008514363A (en) * 2004-09-30 2008-05-08 ボストン サイエンティフィック リミテッドBoston Scientific Limited Multifunctional endoscopic system for use in electrosurgery applications
JP2006122654A (en) * 2004-09-30 2006-05-18 Nidek Co Ltd Corneal surgical apparatus and blade unit attached to corneal surgical apparatus
US7492261B2 (en) * 2004-11-22 2009-02-17 Warsaw Orthopedic, Inc. Control system for an RFID-based system for assembling and verifying outbound surgical equipment corresponding to a particular surgery
US7227469B2 (en) * 2004-11-22 2007-06-05 Sdgi Holdings, Inc. Surgical instrument tray shipping tote identification system and methods of using same
US7492257B2 (en) * 2004-11-22 2009-02-17 Warsaw Orthopedic, Inc. Systems and methods for processing surgical instrument tray shipping totes
US7268684B2 (en) * 2004-12-08 2007-09-11 Sdgi Holdings, Inc. Workstation RFID reader for surgical instruments and surgical instrument trays and methods of using same
US7568619B2 (en) * 2004-12-15 2009-08-04 Alcon, Inc. System and method for identifying and controlling ophthalmic surgical devices and components
FR2881341B1 (en) * 2005-02-02 2007-05-11 Satelec Sa dental treatment device has automatic recognition insert
US9838836B2 (en) 2005-03-29 2017-12-05 Stryker Corporation Patient support apparatus communication systems
WO2006111173A1 (en) 2005-04-16 2006-10-26 Aesculap Ag & Co. Kg Surgical machine and method for controlling and/or regulating the same
US7474223B2 (en) * 2005-04-18 2009-01-06 Warsaw Orthopedic, Inc. Method and apparatus for implant identification
US7362228B2 (en) * 2005-04-28 2008-04-22 Warsaw Orthepedic, Inc. Smart instrument tray RFID reader
US7500974B2 (en) 2005-06-28 2009-03-10 Covidien Ag Electrode with rotatably deployable sheath
US7959050B2 (en) * 2005-07-26 2011-06-14 Ethicon Endo-Surgery, Inc Electrically self-powered surgical instrument with manual release
US8579176B2 (en) 2005-07-26 2013-11-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device and method for using the device
US9554803B2 (en) 2005-07-26 2017-01-31 Ethicon Endo-Surgery, Llc Electrically self-powered surgical instrument with manual release
US9662116B2 (en) 2006-05-19 2017-05-30 Ethicon, Llc Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
EP1912570B1 (en) 2005-07-27 2014-10-08 Covidien LP Shaft, e.g., for an electro-mechanical surgical device
US7828794B2 (en) 2005-08-25 2010-11-09 Covidien Ag Handheld electrosurgical apparatus for controlling operating room equipment
US8011905B2 (en) 2005-11-17 2011-09-06 Novartis Ag Surgical cassette
US8518025B2 (en) * 2005-11-26 2013-08-27 Dräger Medical GmbH System for clearing modes of operation on a multicomponent medical instrument
US7524284B2 (en) * 2006-02-06 2009-04-28 Olympus Medical Systems Corp. Endoscopy system
WO2007110886A1 (en) * 2006-03-27 2007-10-04 Francesco Peluso Modular expandable multifunction machine with automatic recognition of actuators for aesthetic and/or rehabilitative treatments
US20070260240A1 (en) 2006-05-05 2007-11-08 Sherwood Services Ag Soft tissue RF transection and resection device
US7479608B2 (en) 2006-05-19 2009-01-20 Ethicon Endo-Surgery, Inc. Force switch
US8038046B2 (en) 2006-05-19 2011-10-18 Ethicon Endo-Surgery, Inc. Electrical surgical instrument with optimized power supply and drive
US8627995B2 (en) * 2006-05-19 2014-01-14 Ethicon Endo-Sugery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US7443296B2 (en) 2006-07-21 2008-10-28 Alcon, Inc. Smart connector system for surgical machine
CN1931103A (en) * 2006-09-30 2007-03-21 梁雄 Multifunctional orthopedic operation equipment and its automatic control method
WO2008061225A3 (en) * 2006-11-16 2008-07-17 Hu Friedy Mfg Co Inc Tip - based computer controlled system for a hand-held dental delivery device
US8600478B2 (en) * 2007-02-19 2013-12-03 Medtronic Navigation, Inc. Automatic identification of instruments used with a surgical navigation system
US9179984B2 (en) * 2007-02-19 2015-11-10 Medtronic Navigation, Inc. Multi-configuration tracking array and related method
US8233963B2 (en) * 2007-02-19 2012-07-31 Medtronic Navigation, Inc. Automatic identification of tracked surgical devices using an electromagnetic localization system
RU2501533C2 (en) * 2007-06-25 2013-12-20 Лазер Абразив Текноложес, Ллс System and method used in dentistry comprising no optical connectors on panel, and also nozzle assembly for given system
JP5115088B2 (en) 2007-08-10 2013-01-09 セイコーエプソン株式会社 Surgical tool
US8506565B2 (en) 2007-08-23 2013-08-13 Covidien Lp Electrosurgical device with LED adapter
US9055943B2 (en) 2007-09-21 2015-06-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US8235987B2 (en) 2007-12-05 2012-08-07 Tyco Healthcare Group Lp Thermal penetration and arc length controllable electrosurgical pencil
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US8663219B2 (en) 2008-03-31 2014-03-04 Covidien Lp Electrosurgical pencil including improved controls
US8597292B2 (en) 2008-03-31 2013-12-03 Covidien Lp Electrosurgical pencil including improved controls
US8636733B2 (en) 2008-03-31 2014-01-28 Covidien Lp Electrosurgical pencil including improved controls
US8246614B2 (en) 2008-04-17 2012-08-21 Vivant Medical, Inc. High-strength microwave antenna coupling
US8162937B2 (en) 2008-06-27 2012-04-24 Tyco Healthcare Group Lp High volume fluid seal for electrosurgical handpiece
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US8269608B2 (en) * 2008-11-13 2012-09-18 Ncr Corporation Device and method of coupling a processor to an RFID tag
US8231620B2 (en) 2009-02-10 2012-07-31 Tyco Healthcare Group Lp Extension cutting blade
DE102009018143A1 (en) 2009-04-08 2010-10-14 Aesculap Ag Surgical motor control and / or -regelungsvorrichtung surgical drive system and method for controlling and / or regulating a surgical drive assembly
US8308043B2 (en) * 2009-05-19 2012-11-13 Covidien Lp Recognition of interchangeable component of a device
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
RU2576069C2 (en) 2010-02-11 2016-02-27 Медела Холдинг Аг Device and method for detecting allowed connections of two elements of system
US8517241B2 (en) 2010-04-16 2013-08-27 Covidien Lp Hand-held surgical devices
US8961536B2 (en) * 2010-04-22 2015-02-24 Blue Belt Technologies, Inc. Navigated freehand surgical tool and kit
US8840609B2 (en) 2010-07-23 2014-09-23 Conmed Corporation Tissue fusion system and method of performing a functional verification test
EP2420203A3 (en) 2010-08-19 2017-05-17 Braun GmbH Resonant motor unit and electric device with resonant motor unit
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
JP5734631B2 (en) * 2010-12-02 2015-06-17 オリンパス株式会社 Operation support system
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US9549758B2 (en) 2011-03-23 2017-01-24 Covidien Lp Surgical access assembly with adapter
US9326785B2 (en) * 2011-05-12 2016-05-03 Microline Surgical, Inc. Connector for a laparoscopic surgical system
US9107663B2 (en) 2011-09-06 2015-08-18 Ethicon Endo-Surgery, Inc. Stapling instrument comprising resettable staple drivers
US9492146B2 (en) 2011-10-25 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US9480492B2 (en) 2011-10-25 2016-11-01 Covidien Lp Apparatus for endoscopic procedures
DE102011120067A1 (en) * 2011-12-05 2013-06-06 Ifm Electronic Gmbh Sensor e.g. capacitive sensor for proximity switch, has sealing lip portion that is arranged such that angle between longitudinal axis and outer surface of sealing lip portion with specific shore hardness range is set to preset degree
WO2013116303A1 (en) * 2012-01-30 2013-08-08 Black & Decker Inc. Power tool
US9486271B2 (en) 2012-03-05 2016-11-08 Covidien Lp Method and apparatus for identification using capacitive elements
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9737954B2 (en) * 2012-04-04 2017-08-22 Hypertherm, Inc. Automatically sensing consumable components in thermal processing systems
US9672460B2 (en) * 2012-04-04 2017-06-06 Hypertherm, Inc. Configuring signal devices in thermal processing systems
US9597104B2 (en) 2012-06-01 2017-03-21 Covidien Lp Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9868198B2 (en) 2012-06-01 2018-01-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
US9839480B2 (en) 2012-07-09 2017-12-12 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
JP6043439B2 (en) * 2013-02-26 2016-12-14 ジャイラス エーシーエムアイ インク Replaceable tips and arrangement determining method comprising a stylet and blade module
US9782187B2 (en) 2013-01-18 2017-10-10 Covidien Lp Adapter load button lockout
EP2948078A4 (en) * 2013-01-23 2017-03-15 Eca Medical Instr Fortified plastic disposable torque devices
WO2014116484A1 (en) 2013-01-23 2014-07-31 Eca Medical Instruments Fortified plastic connector mount for disposable devices
CA2899033A1 (en) * 2013-01-23 2014-07-31 Eca Medical Instruments In-line disposable torque limiting device suitable for power drive
US20140207125A1 (en) * 2013-01-24 2014-07-24 Covidien Lp Intelligent adapter assembly for use with an electromechanical surgical system
CN105025835A (en) 2013-03-13 2015-11-04 史赛克公司 System for arranging objects in an operating room in preparation for surgical procedures
US9492189B2 (en) 2013-03-13 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US9775610B2 (en) 2013-04-09 2017-10-03 Covidien Lp Apparatus for endoscopic procedures
US9700318B2 (en) 2013-04-09 2017-07-11 Covidien Lp Apparatus for endoscopic procedures
US9801646B2 (en) 2013-05-30 2017-10-31 Covidien Lp Adapter load button decoupled from loading unit sensor
US9797486B2 (en) 2013-06-20 2017-10-24 Covidien Lp Adapter direct drive with manual retraction, lockout and connection mechanisms
US9629633B2 (en) 2013-07-09 2017-04-25 Covidien Lp Surgical device, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
US9750526B2 (en) 2013-07-25 2017-09-05 Cardiovascular Systems, Inc. Rotational atherectomy device with exchangeable drive shaft and meshing gears
US20150073447A1 (en) 2013-07-25 2015-03-12 Cardiovascular Systems, Inc. Rotational atherectomy device with exchangeable drive shaft and meshing gears
US20150133974A1 (en) * 2013-07-25 2015-05-14 Cardiovascular Systems, Inc. Rotational atherectomy device with exchangeable drive shaft and meshing gears
US9724123B2 (en) 2013-07-25 2017-08-08 Cardiovascular Systems, Inc. Rotational atherectomy device with exchangeable drive shaft and meshing gears
US9439674B2 (en) 2013-07-25 2016-09-13 Cardiovascular Systems, Inc. Rotational atherectomy device with exchangeable drive shaft and meshing gears
US9643273B2 (en) 2013-10-14 2017-05-09 Hypertherm, Inc. Systems and methods for configuring a cutting or welding delivery device
US9808245B2 (en) 2013-12-13 2017-11-07 Covidien Lp Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9763662B2 (en) 2013-12-23 2017-09-19 Ethicon Llc Fastener cartridge comprising a firing member configured to directly engage and eject fasteners from the fastener cartridge
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9839424B2 (en) 2014-01-17 2017-12-12 Covidien Lp Electromechanical surgical assembly
US9706674B2 (en) * 2014-02-04 2017-07-11 Covidien Lp Authentication system for reusable surgical instruments
EP3119315A4 (en) * 2014-03-17 2017-11-08 Intuitive Surgical Operations Surgical cannulas and related systems and methods of identifying surgical cannulas
US20150265360A1 (en) * 2014-03-18 2015-09-24 Ricoh Company, Ltd. Medical apparatus with ic chip, and medical apparatus management system
US20150272608A1 (en) * 2014-03-27 2015-10-01 Medtronic Xomed, Inc. Powered surgical handpiece having a surgical tool with an rfid tag
US20150303996A1 (en) * 2014-04-17 2015-10-22 Covidien Lp Non-contact surgical adapter electrical interface
US9713466B2 (en) 2014-05-16 2017-07-25 Covidien Lp Adaptor for surgical instrument for converting rotary input to linear output
US9687257B2 (en) 2014-06-04 2017-06-27 Zimmer Surgical, Inc. Pin wire driver device
US9839425B2 (en) 2014-06-26 2017-12-12 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9763661B2 (en) 2014-06-26 2017-09-19 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US20160249915A1 (en) * 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
WO2016203466A1 (en) * 2015-06-15 2016-12-22 Human Extensions Ltd. Adaptor or adaptor system for rendering medical devices functionally sterile
US20170168187A1 (en) * 2015-12-14 2017-06-15 Covidien Lp Surgical adapter assemblies and wireless detection of surgical loading units

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090802A (en) * 1976-12-27 1978-05-23 Otto Bilz Werkzeugfabrik Radio detector for detecting dull and broken tools
US4355977A (en) * 1979-10-08 1982-10-26 Kabushiki Kaisha Morita Seisakusho Cordless handpiece for dental treatment
US4588335A (en) * 1984-09-14 1986-05-13 Pearson Jr Claude C Quick change tool retention device for power operated mechanism
US4605348A (en) * 1982-10-29 1986-08-12 Textron Inc. Quick release adapter
US4705038A (en) * 1985-01-23 1987-11-10 Dyonics, Inc. Surgical system for powered instruments
US4887929A (en) * 1988-04-25 1989-12-19 Electric Eel Manufacturing Co., Inc. Cable coupler
US5176143A (en) * 1991-06-17 1993-01-05 Colin Electronics Company, Ltd. Tonometer transducer positioning system
US5192292A (en) * 1990-11-02 1993-03-09 Stryker Corporation Surgical apparatus useable for arthroscopic surgery
US5248229A (en) * 1992-04-14 1993-09-28 Otto Bilz, Werkzeugfabrick Gmbh & Co. Chuck for tool, especially drilling tool
US5383874A (en) * 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
US5400267A (en) * 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5443082A (en) * 1990-03-30 1995-08-22 British Technology Group Ltd. Controlling articles of equipment during surgery
US5460490A (en) * 1994-05-19 1995-10-24 Linvatec Corporation Multi-purpose irrigation/aspiration pump system
US5628731A (en) * 1993-01-12 1997-05-13 Minnesota Mining And Manufacturing Company Irrigation system with tubing cassette
US5632759A (en) * 1987-02-18 1997-05-27 Linvatec Corporation Cutting blade assembly for an arthroscopic surgical instrument drive system
US5747953A (en) * 1996-03-29 1998-05-05 Stryker Corporation Cordless, battery operated surical tool
US5810770A (en) * 1996-12-13 1998-09-22 Stryker Corporation Fluid management pump system for surgical procedures
US6017354A (en) * 1996-08-15 2000-01-25 Stryker Corporation Integrated system for powered surgical tools
US6019745A (en) * 1993-05-04 2000-02-01 Zeneca Limited Syringes and syringe pumps
US6092722A (en) * 1996-07-23 2000-07-25 Richard Wolf Gmbh Method and device for the automatic identification of components of medical apparatus systems
US6126670A (en) * 1998-12-16 2000-10-03 Medtronic, Inc. Cordless surgical handpiece with disposable battery; and method
US6223633B1 (en) * 1999-10-29 2001-05-01 Chen Chien-Chich Screwdriver with control portion for selectively retaining tips therein
US6312441B1 (en) * 1999-03-04 2001-11-06 Stryker Corporation Powered handpiece for performing endoscopic surgical procedures
US6315060B1 (en) * 1999-08-13 2001-11-13 Wilton Tool Company, Llc Collet assembly for power tools
US6604744B2 (en) * 2001-01-16 2003-08-12 Newfrey Llc Rapid load drill bit adapter
US6626862B1 (en) * 2000-04-04 2003-09-30 Acist Medical Systems, Inc. Fluid management and component detection system
US6688611B2 (en) * 1997-12-12 2004-02-10 Black & Decker Inc. Removable chuck
US6960894B2 (en) * 2002-08-01 2005-11-01 Stryker Corporation Cordless, powered surgical tool

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266494A (en) * 1963-08-26 1966-08-16 Possis Machine Corp Powered forceps
DE3046485C2 (en) 1980-12-10 1986-11-13 Otto Bilz, Werkzeugfabrik, 7302 Ostfildern, De
USRE34556E (en) 1985-01-23 1994-03-01 Smith & Nephew Dyonics Inc. Surgical system for powered instruments
US5211129A (en) * 1986-02-25 1993-05-18 Destron/Idi, Inc. Syringe-implantable identification transponder
US5180363A (en) * 1989-04-27 1993-01-19 Sumitomo Bakelite Company Company Limited Operation device
DE3917876A1 (en) * 1989-06-01 1990-12-06 Aesculap Ag System for loading surgical instrument sets - has control unit connected to reader of bar codes on instruments and holder
WO1993005719A1 (en) * 1991-09-23 1993-04-01 Visionary Medical, Inc. Microsurgical cutting device
DE4420707C2 (en) * 1993-06-14 2002-01-24 Maquet Ag A method and system for monitoring material flow during the preparation of sterile
JPH07178107A (en) * 1993-12-22 1995-07-18 Dainippon Printing Co Ltd Operational instrument
US5569256A (en) * 1995-02-10 1996-10-29 Midas Rex Pneumatic Tools, Inc. Surgical resection tool with a double quick release
US5617857A (en) * 1995-06-06 1997-04-08 Image Guided Technologies, Inc. Imaging system having interactive medical instruments and methods
NL1001018C2 (en) * 1995-08-22 1997-02-25 Wentzel Peetenbosch Holding B Process, instrument and apparatus for making manageable instruments.
WO1998037926A1 (en) * 1997-02-26 1998-09-03 Alfred E. Mann Foundation For Scientific Research Battery-powered patient implantable device
US5822652A (en) * 1997-03-28 1998-10-13 Xerox Corporation Compact design for combination of an electrical circuit with a segmented electrode development roll
US5978696A (en) * 1997-10-06 1999-11-02 General Electric Company Real-time image-guided placement of anchor devices
US5935171A (en) * 1997-11-17 1999-08-10 John E. Schneider Apparatus for, and method of, detecting dislocations and material wear in hip replacements
US6068627A (en) * 1997-12-10 2000-05-30 Valleylab, Inc. Smart recognition apparatus and method
JP2000000318A (en) * 1998-04-24 2000-01-07 Indigo Medical Inc Energy impressing apparatus having ancillary information exchange capacity
US6602227B1 (en) * 1998-09-25 2003-08-05 Sherwood Services Ag Surgical system console
WO2000024318A1 (en) * 1998-10-27 2000-05-04 Boston Scientific Limited Catheter parameter storage and transmission
US6235038B1 (en) * 1999-10-28 2001-05-22 Medtronic Surgical Navigation Technologies System for translation of electromagnetic and optical localization systems
US6356780B1 (en) * 1999-12-22 2002-03-12 General Electric Company Method and apparatus for managing peripheral devices in a medical imaging system
US7086111B2 (en) 2001-03-16 2006-08-08 Braun Gmbh Electric dental cleaning device
US20020193685A1 (en) * 2001-06-08 2002-12-19 Calypso Medical, Inc. Guided Radiation Therapy System
US7237990B2 (en) 2002-08-08 2007-07-03 Stryker Corporation Surgical tool system with quick release coupling assembly
EP2314233B1 (en) * 2001-08-08 2013-06-12 Stryker Corporation A surgical tool system with an intermediate attachment located between the handpiece and an accessory or an implant, the attachment able to transmit energy from the handpiece to the accessory or the implant and the transmission of data signals from the accessory or implant to the handpiece
US7887559B2 (en) * 2002-08-08 2011-02-15 Stryker Corporation Surgical cutting accessory with encapsulated RFID chip
US6654629B2 (en) * 2002-01-23 2003-11-25 Valentino Montegrande Implantable biomarker and method of use
US6958071B2 (en) 2002-07-13 2005-10-25 Stryker Corporation Surgical tool system
US7318831B2 (en) 2002-07-13 2008-01-15 Stryker Corporation System and method for performing irrigated nose and throat surgery

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090802A (en) * 1976-12-27 1978-05-23 Otto Bilz Werkzeugfabrik Radio detector for detecting dull and broken tools
US4355977A (en) * 1979-10-08 1982-10-26 Kabushiki Kaisha Morita Seisakusho Cordless handpiece for dental treatment
US4605348A (en) * 1982-10-29 1986-08-12 Textron Inc. Quick release adapter
US4588335A (en) * 1984-09-14 1986-05-13 Pearson Jr Claude C Quick change tool retention device for power operated mechanism
US4705038A (en) * 1985-01-23 1987-11-10 Dyonics, Inc. Surgical system for powered instruments
US5632759A (en) * 1987-02-18 1997-05-27 Linvatec Corporation Cutting blade assembly for an arthroscopic surgical instrument drive system
US4887929A (en) * 1988-04-25 1989-12-19 Electric Eel Manufacturing Co., Inc. Cable coupler
US5443082A (en) * 1990-03-30 1995-08-22 British Technology Group Ltd. Controlling articles of equipment during surgery
US5192292A (en) * 1990-11-02 1993-03-09 Stryker Corporation Surgical apparatus useable for arthroscopic surgery
US5176143A (en) * 1991-06-17 1993-01-05 Colin Electronics Company, Ltd. Tonometer transducer positioning system
US5383874A (en) * 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
US5248229A (en) * 1992-04-14 1993-09-28 Otto Bilz, Werkzeugfabrick Gmbh & Co. Chuck for tool, especially drilling tool
US5400267A (en) * 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5628731A (en) * 1993-01-12 1997-05-13 Minnesota Mining And Manufacturing Company Irrigation system with tubing cassette
US6019745A (en) * 1993-05-04 2000-02-01 Zeneca Limited Syringes and syringe pumps
US5460490A (en) * 1994-05-19 1995-10-24 Linvatec Corporation Multi-purpose irrigation/aspiration pump system
US5747953A (en) * 1996-03-29 1998-05-05 Stryker Corporation Cordless, battery operated surical tool
US6092722A (en) * 1996-07-23 2000-07-25 Richard Wolf Gmbh Method and device for the automatic identification of components of medical apparatus systems
US6017354A (en) * 1996-08-15 2000-01-25 Stryker Corporation Integrated system for powered surgical tools
US5810770A (en) * 1996-12-13 1998-09-22 Stryker Corporation Fluid management pump system for surgical procedures
US6688611B2 (en) * 1997-12-12 2004-02-10 Black & Decker Inc. Removable chuck
US6126670A (en) * 1998-12-16 2000-10-03 Medtronic, Inc. Cordless surgical handpiece with disposable battery; and method
US6312441B1 (en) * 1999-03-04 2001-11-06 Stryker Corporation Powered handpiece for performing endoscopic surgical procedures
US6315060B1 (en) * 1999-08-13 2001-11-13 Wilton Tool Company, Llc Collet assembly for power tools
US6223633B1 (en) * 1999-10-29 2001-05-01 Chen Chien-Chich Screwdriver with control portion for selectively retaining tips therein
US6626862B1 (en) * 2000-04-04 2003-09-30 Acist Medical Systems, Inc. Fluid management and component detection system
US6604744B2 (en) * 2001-01-16 2003-08-12 Newfrey Llc Rapid load drill bit adapter
US6960894B2 (en) * 2002-08-01 2005-11-01 Stryker Corporation Cordless, powered surgical tool

Cited By (494)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050011025A1 (en) * 2000-03-17 2005-01-20 Braun Gmbh Dental cleaning device
US7979939B2 (en) 2000-03-17 2011-07-19 Braun Gmbh Dental cleaning device
US9408664B2 (en) 2000-12-28 2016-08-09 Senorx, Inc. Electrosurgical medical system and method
US8882760B2 (en) 2000-12-28 2014-11-11 Senorx, Inc. Electrosurgical medical system and method
US20090088737A1 (en) * 2000-12-28 2009-04-02 Senorx, Inc. Electrosurgical medical system and method
US9750558B2 (en) 2000-12-28 2017-09-05 Senorx, Inc. Electrosurgical medical system and method
US7987545B2 (en) 2001-03-14 2011-08-02 Braun Gmbh Method and device for cleaning teeth
US20050000044A1 (en) * 2001-03-14 2005-01-06 Braun Gmbh Method and device for cleaning teeth
US7861349B2 (en) 2001-03-14 2011-01-04 Braun Gmbh Method and device for cleaning teeth
US20080010771A1 (en) * 2001-03-14 2008-01-17 The Gillette Company Method and device for cleaning teeth
US7770251B2 (en) 2001-03-14 2010-08-10 Braun Gmbh Method and device for cleaning teeth
US7774886B2 (en) 2001-03-14 2010-08-17 Braun Gmbh Method and device for cleaning teeth
US7673360B2 (en) 2001-03-14 2010-03-09 Braun Gmbh Dental cleaning device
US8443475B2 (en) 2001-03-14 2013-05-21 Braun Gmbh Method and device for cleaning teeth
US7661172B2 (en) 2001-03-14 2010-02-16 Braun Gmbh Dental cleaning device
US20080022469A1 (en) * 2001-03-14 2008-01-31 Alexander Hilscher Dental cleaning device
US20080022471A1 (en) * 2001-03-14 2008-01-31 Alexander Hilscher Dental cleaning device
US20060096046A1 (en) * 2001-03-14 2006-05-11 Alexander Hilscher Method and device for cleaning teeth
US20080020352A1 (en) * 2001-03-14 2008-01-24 Alexander Hilscher Method and device for cleaning teeth
US8671493B2 (en) 2001-03-14 2014-03-18 Braun Gmbh Dental cleaning device
US20100325822A1 (en) * 2001-03-14 2010-12-30 Alexander Hilscher Method and Device for Cleaning Teeth
US20070234493A1 (en) * 2001-03-14 2007-10-11 Braun Gmbh, A Germany Corporation Dental Cleaning Device
US8035487B2 (en) 2001-08-08 2011-10-11 Stryker Corporation Method for assembling, identifying and controlling a powered surgical tool assembly assembled from multiple components
US20140031831A1 (en) * 2001-08-08 2014-01-30 Stryker Corporation Surgical tool system including a navigation unit that receives information about implant the system is to implant and that responds to the received information
US8535342B2 (en) 2001-08-08 2013-09-17 Stryker Corporation Powered surgical handpiece with an antenna for reading data from a memory integral with a cutting accessory attached to the handpiece
US20040267297A1 (en) * 2001-08-08 2004-12-30 Don Malackowski System and method for assembling and identifying a surgical tool assembly assembled from multiple components
US9707026B2 (en) * 2001-08-08 2017-07-18 Stryker Corporation Surgical tool system including a navigation unit that receives information about implant the system is to implant and that responds to the received information
US20090292304A1 (en) * 2001-08-08 2009-11-26 Don Malackowski Powered surgical handpiece with an antenna for reading data from a memory integral with a cutting accessory attached to the handpiece
US8181301B2 (en) 2001-12-04 2012-05-22 Braun Gmbh Dental cleaning device
US20040255409A1 (en) * 2001-12-04 2004-12-23 Alexander Hilscher Dental cleaning device
US9113976B2 (en) 2001-12-04 2015-08-25 DePuy Synthes Products, Inc. Headless compression screw with integrated reduction-compression instrument
US8683637B2 (en) 2001-12-04 2014-04-01 Braun Gmbh Dental cleaning device
US7985073B2 (en) 2001-12-04 2011-07-26 Braun Gmbh Method and device for cleaning teeth
US8443476B2 (en) 2001-12-04 2013-05-21 Braun Gmbh Dental cleaning device
US20100281637A1 (en) * 2001-12-04 2010-11-11 Braun Gmbh Dental Cleaning Device
US20100316975A1 (en) * 2001-12-04 2010-12-16 Alexander Hilscher Method And Device For Cleaning Teeth
US7918790B2 (en) 2002-02-07 2011-04-05 Olympus Corporation Electric bending endoscope
US20040193015A1 (en) * 2002-02-07 2004-09-30 Olympus Optical Co., Ltd, Electric bending endoscope
US9072502B2 (en) 2002-03-19 2015-07-07 C. R. Bard, Inc. Disposable biopsy unit
US8951209B2 (en) 2002-03-19 2015-02-10 C. R. Bard, Inc. Biopsy device and insertable biopsy needle module
US9439631B2 (en) 2002-03-19 2016-09-13 C. R. Bard, Inc. Biopsy device and insertable biopsy needle module
US9421002B2 (en) 2002-03-19 2016-08-23 C. R. Bard, Inc. Disposable biopsy unit
US20050131415A1 (en) * 2002-04-24 2005-06-16 Hearn Trevor C. Adaptive apparatus for driving a threaded device into material such as a biological tissue
US20090270899A1 (en) * 2002-07-13 2009-10-29 Steven Carusillo Surgical tool system
US20040059197A1 (en) * 2002-07-15 2004-03-25 J. Morita Manufacturing Corporation Connection assembly having communication function and medical apparatus using the connection assembly
US7887559B2 (en) 2002-08-08 2011-02-15 Stryker Corporation Surgical cutting accessory with encapsulated RFID chip
US20040220602A1 (en) * 2002-08-08 2004-11-04 Wenjie Deng Surgical cutting accessory with encapsulated RFID chip
US8157826B2 (en) 2002-08-08 2012-04-17 Stryker Corporation Surgical cutting accessory with encapsulated RFID chip
US20040092991A1 (en) * 2002-08-08 2004-05-13 Wenjie Deng Surgical tool system with quick release coupling assembly
US20110089248A1 (en) * 2002-08-08 2011-04-21 Stryker Corporation Surgical cutting accessory with encapsulated RFID chip
US8500769B2 (en) 2002-08-08 2013-08-06 Stryker Corporation Surgical tool system with quick release coupling assembly
US7237990B2 (en) 2002-08-08 2007-07-03 Stryker Corporation Surgical tool system with quick release coupling assembly
US20090171351A1 (en) * 2002-10-23 2009-07-02 Olympus Corporation Electric operation system
US8668685B2 (en) 2002-10-23 2014-03-11 Olympus Corporation Electric operation system
US20050187539A1 (en) * 2002-10-23 2005-08-25 Olympus Corporation Electric operation system
US20040133189A1 (en) * 2002-12-27 2004-07-08 Olympus Corporation Surgical operation apparatus and control method thereof
US20060058616A1 (en) * 2003-02-04 2006-03-16 Joel Marquart Interactive computer-assisted surgery system and method
US7813784B2 (en) * 2003-02-04 2010-10-12 Mako Surgical Corp. Interactive computer-assisted surgery system and method
US9801686B2 (en) 2003-03-06 2017-10-31 Mako Surgical Corp. Neural monitor-based dynamic haptics
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US8783541B2 (en) 2003-05-20 2014-07-22 Frederick E. Shelton, IV Robotically-controlled surgical end effector system
EP1685504A2 (en) * 2003-11-05 2006-08-02 Scican, a division of Lux and Zwingenberger Ltd. System for management of processed instruments
US20070094303A1 (en) * 2003-11-05 2007-04-26 Arthur Zwingenberger System for management of processed instruments
US8548822B2 (en) * 2003-12-19 2013-10-01 Stryker Leibinger Gmbh & Co., Kg Reactive workflow system and method
US20050145257A1 (en) * 2003-12-19 2005-07-07 Barrera Jose Luis Moctezuma D.L. Reactive workflow system and method
US20140006049A1 (en) * 2003-12-19 2014-01-02 Stryker Leibinger Gmbh & Co. Kg Reactive Workflow System and Method
US20050245909A1 (en) * 2004-04-29 2005-11-03 Mccary Brian D Embedded data chip in a surgical handpiece
WO2005110303A1 (en) * 2004-04-29 2005-11-24 Bausch & Lomb Incorporated Embedded data chip in a surgical handpiece
US20050267553A1 (en) * 2004-05-05 2005-12-01 Doug Staunton System and method for controlling electrical stimulation and radiofrequency output for use in an electrosurgical procedure
US8864680B2 (en) 2004-07-09 2014-10-21 Bard Peripheral Vascular, Inc. Transport system for biopsy device
US8992440B2 (en) * 2004-07-09 2015-03-31 Bard Peripheral Vascular, Inc. Length detection system for biopsy device
US20120071787A1 (en) * 2004-07-09 2012-03-22 Bard Peripheral Vascular, Inc. Length detection system for biopsy device
US20150238174A1 (en) * 2004-07-09 2015-08-27 Bard Peripheral Vascular, Inc Length detection system for biopsy device
US8926527B2 (en) 2004-07-09 2015-01-06 Bard Peripheral Vascular, Inc. Tissue sample flushing system for biopsy device
US9456809B2 (en) 2004-07-09 2016-10-04 Bard Peripheral Vascular, Inc. Tissue sample flushing system for biopsy device
US9345458B2 (en) 2004-07-09 2016-05-24 Bard Peripheral Vascular, Inc. Transport system for biopsy device
US9510830B2 (en) 2004-07-28 2016-12-06 Ethicon Endo-Surgery, Llc Staple cartridge
US9844379B2 (en) 2004-07-28 2017-12-19 Ethicon Llc Surgical stapling instrument having a clearanced opening
US9282966B2 (en) 2004-07-28 2016-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US9737303B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US9737302B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Surgical stapling instrument having a restraining member
US9585663B2 (en) 2004-07-28 2017-03-07 Ethicon Endo-Surgery, Llc Surgical stapling instrument configured to apply a compressive pressure to tissue
US20060073048A1 (en) * 2004-09-28 2006-04-06 Don Malackowski Surgical tool system with integrated pump
US7753880B2 (en) 2004-09-28 2010-07-13 Stryker Corporation Method of operating a surgical irrigation pump capable of performing a priming operation
US20070250098A1 (en) * 2004-09-29 2007-10-25 Don Malackowski Motorized surgical handpiece and controller for regulating the handpiece motor based on the inductively sensed determination of motor rotor position
US7422582B2 (en) 2004-09-29 2008-09-09 Stryker Corporation Control console to which powered surgical handpieces are connected, the console configured to simultaneously energize more than one and less than all of the handpieces
EP2335616A1 (en) 2004-09-29 2011-06-22 Stryker Corporation Powered surgical tool and method of applying energization signals thereto
KR101215233B1 (en) 2004-11-01 2012-12-24 스트리커 코포레이션 Secure transmission of the radio network controller to the central portion
US7846150B2 (en) * 2004-11-01 2010-12-07 Stryker Corporation Apparatus and method for synchronizing a wireless remote control to a central control unit so as to allow remote control of a medical device over a secure wireless connection
US20060116667A1 (en) * 2004-11-01 2006-06-01 Hamel Andrew J Apparatus and method for synchronizing a wireless remote control to a central control unit so as to allow remote control of a medical device over a secure wireless connection
US20060142656A1 (en) * 2004-12-09 2006-06-29 Don Malackowski Wireless system for providing instrument and implant data to a surgical navigation unit
WO2006063156A1 (en) * 2004-12-09 2006-06-15 Stryker Corporation Wireless system for providing instrument and implant data to a surgical navigation unit
US20110122987A1 (en) * 2004-12-23 2011-05-26 Braun Gmbh Replaceable Accessory for a Small Electrical Appliance and Method of Monitoring the Usage of the Accessory
US8218711B2 (en) 2004-12-23 2012-07-10 Braun Gmbh Replaceable accessory for a small electrical appliance and method of monitoring the usage of the accessory
US9161743B2 (en) 2005-01-31 2015-10-20 C. R. Bard, Inc. Quick cycle biopsy system
US8702621B2 (en) 2005-01-31 2014-04-22 C.R. Bard, Inc. Quick cycle biopsy system
US8702622B2 (en) 2005-01-31 2014-04-22 C.R. Bard, Inc. Quick cycle biopsy system
US20100019910A1 (en) * 2005-03-08 2010-01-28 Koninklijke Philips Electronics N.V. Clinical monitoring network
US9514277B2 (en) * 2005-03-08 2016-12-06 Koninklijke Philips N.V. Clinical monitoring network
US20060234617A1 (en) * 2005-03-25 2006-10-19 Black & Decker Inc. Power tool accessory identification system
US8454613B2 (en) * 2005-04-28 2013-06-04 Warsaw Orthopedic, Inc. Method and apparatus for surgical instrument identification
US20100176925A1 (en) * 2005-04-28 2010-07-15 Warsaw Orthopedic, Inc. Method and Apparatus for Surgical Instrument Identification
US7837694B2 (en) * 2005-04-28 2010-11-23 Warsaw Orthopedic, Inc. Method and apparatus for surgical instrument identification
US20060244652A1 (en) * 2005-04-28 2006-11-02 Sdgi Holdings, Inc. Method and apparatus for surgical instrument identification
WO2006128595A1 (en) * 2005-06-02 2006-12-07 Wavelight Laser Technologie Ag Microkeratome system
US20100061181A1 (en) * 2005-06-28 2010-03-11 Don Malackowski Motorized bone cement mixer capable of monitoring the state of the cement as it is mixed
EP2449986A1 (en) 2005-06-28 2012-05-09 Stryker Corporation Method of mixing medical surgical cement with a power tool that includes monitoring the current drawn by the power tool during the mixing process
US20070085496A1 (en) * 2005-06-28 2007-04-19 Christopher Philipp Powered surgical tool with control module that contains a sensor for remotely monitoring the tool power generating unit
US7638958B2 (en) 2005-06-28 2009-12-29 Stryker Corporation Powered surgical tool with control module that contains a sensor for remotely monitoring the tool power generating unit
US8657482B2 (en) 2005-06-28 2014-02-25 Stryker Corporation Method of mixing bone cement with a power tool including monitoring the mixing of the cement based on data regarding characteristics of components forming the cement and the current drawn by the power tool
US9559624B2 (en) 2005-06-28 2017-01-31 Stryker Corporation Control module for a motorized surgical tool, the module including a trigger sensor, a motor rotor sensor and a control circuit that are sealed from the ambient environment
EP2241270A2 (en) 2005-06-28 2010-10-20 Stryker Corporation Control assembly for a motorized surgical tool that contains a sensor that monitors the state of the motor rotor
WO2007016101A1 (en) * 2005-07-29 2007-02-08 Alcon, Inc. Method and system for configuring and data populating a surgical device
US8961430B2 (en) 2005-08-10 2015-02-24 C.R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
EP2460485A3 (en) * 2005-08-16 2014-03-19 Synthes GmbH Headless compression screw with integrated reduction-compression instrument
US9326768B2 (en) 2005-08-31 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9561032B2 (en) 2005-08-31 2017-02-07 Ethicon Endo-Surgery, Llc Staple cartridge comprising a staple driver arrangement
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US8464923B2 (en) 2005-08-31 2013-06-18 Ethicon Endo-Surgery, Inc. Surgical stapling devices for forming staples with different formed heights
US9307988B2 (en) 2005-08-31 2016-04-12 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9592052B2 (en) 2005-08-31 2017-03-14 Ethicon Endo-Surgery, Llc Stapling assembly for forming different formed staple heights
US8317070B2 (en) 2005-08-31 2012-11-27 Ethicon Endo-Surgery, Inc. Surgical stapling devices that produce formed staples having different lengths
US8567656B2 (en) 2005-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US9839427B2 (en) 2005-08-31 2017-12-12 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement
US9844373B2 (en) 2005-08-31 2017-12-19 Ethicon Llc Fastener cartridge assembly comprising a driver row arrangement
US9848873B2 (en) 2005-08-31 2017-12-26 Ethicon Llc Fastener cartridge assembly comprising a driver and staple cavity arrangement
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US8636187B2 (en) 2005-08-31 2014-01-28 Ethicon Endo-Surgery, Inc. Surgical stapling systems that produce formed staples having different lengths
US8858571B2 (en) 2005-11-09 2014-10-14 Ethicon Endo-Surgery, Inc. Hydraulically and electrically actuated articulation joints for surgical instruments
US7799039B2 (en) 2005-11-09 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument having a hydraulically actuated end effector
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8292155B2 (en) 2006-01-31 2012-10-23 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9113874B2 (en) 2006-01-31 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical instrument system
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8172124B2 (en) 2006-01-31 2012-05-08 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US8752747B2 (en) 2006-01-31 2014-06-17 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8167185B2 (en) 2006-01-31 2012-05-01 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8746529B2 (en) 2006-01-31 2014-06-10 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8157153B2 (en) 2006-01-31 2012-04-17 Ethicon Endo-Surgery, Inc. Surgical instrument with force-feedback capabilities
US9320520B2 (en) 2006-01-31 2016-04-26 Ethicon Endo-Surgery, Inc. Surgical instrument system
US9439649B2 (en) 2006-01-31 2016-09-13 Ethicon Endo-Surgery, Llc Surgical instrument having force feedback capabilities
US20110174860A1 (en) * 2006-01-31 2011-07-21 Ethicon Endo-Surgery, Inc. Surgical instrument with force-feedback capabilities
US9326769B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US9370358B2 (en) 2006-01-31 2016-06-21 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9451958B2 (en) 2006-01-31 2016-09-27 Ethicon Endo-Surgery, Llc Surgical instrument with firing actuator lockout
US8820605B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instruments
US9517068B2 (en) 2006-01-31 2016-12-13 Ethicon Endo-Surgery, Llc Surgical instrument with automatically-returned firing member
US9743928B2 (en) 2006-01-31 2017-08-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8844789B2 (en) 2006-01-31 2014-09-30 Ethicon Endo-Surgery, Inc. Automated end effector component reloading system for use with a robotic system
US9326770B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US9402626B2 (en) 2006-03-23 2016-08-02 Ethicon Endo-Surgery, Llc Rotary actuatable surgical fastener and cutter
US9301759B2 (en) 2006-03-23 2016-04-05 Ethicon Endo-Surgery, Llc Robotically-controlled surgical instrument with selectively articulatable end effector
US9492167B2 (en) 2006-03-23 2016-11-15 Ethicon Endo-Surgery, Llc Articulatable surgical device with rotary driven cutting member
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US9149274B2 (en) 2006-03-23 2015-10-06 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8911471B2 (en) 2006-03-23 2014-12-16 Ethicon Endo-Surgery, Inc. Articulatable surgical device
US9724165B2 (en) 2006-05-19 2017-08-08 Mako Surgical Corp. System and method for verifying calibration of a surgical device
US9492237B2 (en) 2006-05-19 2016-11-15 Mako Surgical Corp. Method and apparatus for controlling a haptic device
US9320521B2 (en) 2006-06-27 2016-04-26 Ethicon Endo-Surgery, Llc Surgical instrument
US9439632B2 (en) 2006-08-21 2016-09-13 C. R. Bard, Inc. Self-contained handheld biopsy needle
US8951208B2 (en) 2006-08-21 2015-02-10 C. R. Bard, Inc. Self-contained handheld biopsy needle
US8973804B2 (en) 2006-09-29 2015-03-10 Ethicon Endo-Surgery, Inc. Cartridge assembly having a buttressing member
US8365976B2 (en) 2006-09-29 2013-02-05 Ethicon Endo-Surgery, Inc. Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US8899465B2 (en) 2006-09-29 2014-12-02 Ethicon Endo-Surgery, Inc. Staple cartridge comprising drivers for deploying a plurality of staples
US8808325B2 (en) 2006-09-29 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with staples having crown features for increasing formed staple footprint
US9603595B2 (en) 2006-09-29 2017-03-28 Ethicon Endo-Surgery, Llc Surgical instrument comprising an adjustable system configured to accommodate different jaw heights
US8348131B2 (en) 2006-09-29 2013-01-08 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US8763875B2 (en) 2006-09-29 2014-07-01 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US9408604B2 (en) 2006-09-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instrument comprising a firing system including a compliant portion
US9179911B2 (en) 2006-09-29 2015-11-10 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US9706991B2 (en) 2006-09-29 2017-07-18 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples including a lateral base
US8499993B2 (en) 2006-09-29 2013-08-06 Ethicon Endo-Surgery, Inc. Surgical staple cartridge
US8360297B2 (en) 2006-09-29 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling instrument with self adjusting anvil
US9566045B2 (en) 2006-10-06 2017-02-14 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
US20080132882A1 (en) * 2006-11-30 2008-06-05 Howmedica Osteonics Corp. Orthopedic instruments with RFID
US7954682B2 (en) 2007-01-10 2011-06-07 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US20080167644A1 (en) * 2007-01-10 2008-07-10 Shelton Frederick E Surgical instrument with enhanced battery performance
US8632535B2 (en) 2007-01-10 2014-01-21 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
EP2526878A1 (en) * 2007-01-10 2012-11-28 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US7738971B2 (en) 2007-01-10 2010-06-15 Ethicon Endo-Surgery, Inc. Post-sterilization programming of surgical instruments
US8746530B2 (en) 2007-01-10 2014-06-10 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8479969B2 (en) 2007-01-10 2013-07-09 Ethicon Endo-Surgery, Inc. Drive interface for operably coupling a manipulatable surgical tool to a robot
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US7900805B2 (en) 2007-01-10 2011-03-08 Ethicon Endo-Surgery, Inc. Surgical instrument with enhanced battery performance
US9757123B2 (en) 2007-01-10 2017-09-12 Ethicon Llc Powered surgical instrument having a transmission system
US20080167736A1 (en) * 2007-01-10 2008-07-10 Swayze Jeffrey S Post-sterilization programming of surgical instruments
EP1943957A3 (en) * 2007-01-10 2009-12-02 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8517243B2 (en) 2007-01-10 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US7721931B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Prevention of cartridge reuse in a surgical instrument
EP1943958A1 (en) * 2007-01-10 2008-07-16 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
EP2356949A3 (en) * 2007-01-10 2012-05-30 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US20080167671A1 (en) * 2007-01-10 2008-07-10 Giordano James R Surgical instrument with elements to communicate between control unit and end effector
US20150090761A1 (en) * 2007-01-10 2015-04-02 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US20080167670A1 (en) * 2007-01-10 2008-07-10 Shelton Frederick E Interlock and surgical instrument including same
US8840603B2 (en) 2007-01-10 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US7721936B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
US9603598B2 (en) 2007-01-11 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling device with a curved end effector
US9775613B2 (en) 2007-01-11 2017-10-03 Ethicon Llc Surgical stapling device with a curved end effector
US9675355B2 (en) 2007-01-11 2017-06-13 Ethicon Llc Surgical stapling device with a curved end effector
US9750501B2 (en) 2007-01-11 2017-09-05 Ethicon Endo-Surgery, Llc Surgical stapling devices having laterally movable anvils
US9700321B2 (en) 2007-01-11 2017-07-11 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US9730692B2 (en) 2007-01-11 2017-08-15 Ethicon Llc Surgical stapling device with a curved staple cartridge
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US9655624B2 (en) 2007-01-11 2017-05-23 Ethicon Llc Surgical stapling device with a curved end effector
US9724091B2 (en) 2007-01-11 2017-08-08 Ethicon Llc Surgical stapling device
EP1950870A2 (en) * 2007-01-29 2008-07-30 Schunk GmbH & Co. KG Spann- und Greiftechnik Electrical motor system and construction kit therefore
EP1950870A3 (en) * 2007-01-29 2008-11-26 Schunk GmbH & Co. KG Spann- und Greiftechnik Electrical motor system and construction kit therefore
US9757130B2 (en) 2007-02-28 2017-09-12 Ethicon Llc Stapling assembly for forming different formed staple heights
US20100299856A1 (en) * 2007-05-15 2010-12-02 Rudolf Majthan Toothbrush attachment and method for the production thereof
US8424740B2 (en) 2007-06-04 2013-04-23 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US8616431B2 (en) 2007-06-04 2013-12-31 Ethicon Endo-Surgery, Inc. Shiftable drive interface for robotically-controlled surgical tool
US9585658B2 (en) 2007-06-04 2017-03-07 Ethicon Endo-Surgery, Llc Stapling systems
US9795381B2 (en) 2007-06-04 2017-10-24 Ethicon Endo-Surgery, Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US9186143B2 (en) 2007-06-04 2015-11-17 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US9750498B2 (en) 2007-06-04 2017-09-05 Ethicon Endo Surgery, Llc Drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8196796B2 (en) 2007-06-04 2012-06-12 Ethicon Endo-Surgery, Inc. Shaft based rotary drive system for surgical instruments
US9138225B2 (en) 2007-06-22 2015-09-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US9662110B2 (en) 2007-06-22 2017-05-30 Ethicon Endo-Surgery, Llc Surgical stapling instrument with an articulatable end effector
US8991676B2 (en) 2007-06-29 2015-03-31 Ethicon Endo-Surgery, Inc. Surgical staple having a slidable crown
US8672208B2 (en) 2007-06-29 2014-03-18 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a releasable buttress material
US20090005807A1 (en) * 2007-06-29 2009-01-01 Hess Christopher J Surgical staple having a slidable crown
US9289206B2 (en) 2007-06-29 2016-03-22 Ethicon Endo-Surgery, Llc Lateral securement members for surgical staple cartridges
US8186560B2 (en) 2007-06-29 2012-05-29 Ethicon Endo-Surgery, Inc. Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US8590762B2 (en) 2007-06-29 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US8925788B2 (en) 2007-06-29 2015-01-06 Ethicon Endo-Surgery, Inc. End effectors for surgical stapling instruments
US8668130B2 (en) 2007-06-29 2014-03-11 Ethicon Endo-Surgery, Inc. Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US20090085718A1 (en) * 2007-09-28 2009-04-02 Stryker Corporation Wireless hand-control of a device by means of a wirelss button
US8638191B2 (en) * 2007-09-28 2014-01-28 Stryker Corporation Wireless hand-control of device by means of wireless button
US9622808B2 (en) * 2007-12-12 2017-04-18 Erbe Elektromedizin Gmbh Device for contactless communication and use of a memory device
US20100262139A1 (en) * 2007-12-12 2010-10-14 Beller Juergen Device for contactless communication and use of a memory device
US9775588B2 (en) 2007-12-20 2017-10-03 C. R. Bard, Inc. Biopsy device
US8858463B2 (en) 2007-12-20 2014-10-14 C. R. Bard, Inc. Biopsy device
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US9072515B2 (en) 2008-02-14 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US8573461B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with cam-driven staple deployment arrangements
US9084601B2 (en) 2008-02-14 2015-07-21 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US9498219B2 (en) 2008-02-14 2016-11-22 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US8998058B2 (en) 2008-02-14 2015-04-07 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US9095339B2 (en) 2008-02-14 2015-08-04 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8657178B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8196795B2 (en) 2008-02-14 2012-06-12 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US9867618B2 (en) 2008-02-14 2018-01-16 Ethicon Llc Surgical stapling apparatus including firing force regulation
US8113410B2 (en) 2008-02-14 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8540130B2 (en) 2008-02-14 2013-09-24 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US9522029B2 (en) 2008-02-14 2016-12-20 Ethicon Endo-Surgery, Llc Motorized surgical cutting and fastening instrument having handle based power source
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US8991677B2 (en) 2008-02-14 2015-03-31 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US9211121B2 (en) 2008-02-14 2015-12-15 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US8197501B2 (en) 2008-03-20 2012-06-12 Medtronic Xomed, Inc. Control for a powered surgical instrument
US8545527B2 (en) 2008-03-20 2013-10-01 Medtronic Xomed, Inc. Control for a powered surgical instrument
US20090267765A1 (en) * 2008-04-29 2009-10-29 Jack Greene Rfid to prevent reprocessing
US9463061B2 (en) 2008-05-05 2016-10-11 Stryker Corporation Power console for a surgical tool capable of receiving memory data over which power signals are sourced to the tool
WO2009137421A1 (en) * 2008-05-05 2009-11-12 Stryker Corporation Surgical tool system including a tool and a console, the console capable of reading data from a memory integral with the tool over the conductors over which power is sourced to the tool
EP2502595A3 (en) * 2008-05-05 2012-10-31 Stryker Corporation Control console for a surgical tool, the console capable of reading data from a memory integral with the tool from the console terminals over which power is sourced to the tool
US20090275940A1 (en) * 2008-05-05 2009-11-05 Malackowski Donald W Surgical tool system including a tool and a control console, the console capable of reading data from a memory internal to the tool over the conductors over which power is sourced to the tool
US8784415B2 (en) 2008-05-05 2014-07-22 Stryker Corporation Powered surgical tool with an isolation circuit connected between the tool power terminals and the memory internal to the tool
US9084586B2 (en) 2008-05-14 2015-07-21 Aesculap Ag Surgical drive unit, surgical instrument and surgical drive system
DE102008024438A1 (en) * 2008-05-14 2009-11-19 Aesculap Ag Surgical drive assembly, and surgical instrument drive system
US20110208170A1 (en) * 2008-05-14 2011-08-25 Aesculap Ag Surgical drive unit, surgical instrument and surgical drive system
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8602288B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery. Inc. Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9655614B2 (en) 2008-09-23 2017-05-23 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument with an end effector
US9028519B2 (en) 2008-09-23 2015-05-12 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8602287B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery, Inc. Motor driven surgical cutting instrument
US9549732B2 (en) 2008-09-23 2017-01-24 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US9370364B2 (en) 2008-10-10 2016-06-21 Ethicon Endo-Surgery, Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US9393015B2 (en) 2009-02-06 2016-07-19 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with cutting member reversing mechanism
US9486214B2 (en) 2009-02-06 2016-11-08 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US9526559B2 (en) 2009-03-17 2016-12-27 Stryker Corporation Method and system for adjusting source impedance and maximizing output by RF generator
US9216048B2 (en) 2009-03-18 2015-12-22 Integrated Spinal Concepts, Inc. Image-guided minimal-step placement of screw into bone
US8366719B2 (en) 2009-03-18 2013-02-05 Integrated Spinal Concepts, Inc. Image-guided minimal-step placement of screw into bone
US20100241129A1 (en) * 2009-03-18 2010-09-23 Integrated Spinal Concepts, Inc. Image-Guided Minimal-Step Placement Of Screw Into Bone
US9687306B2 (en) 2009-03-18 2017-06-27 Integrated Spinal Concepts, Inc. Image-guided minimal-step placement of screw into bone
US20100248177A1 (en) * 2009-03-26 2010-09-30 W&H Dentalwerk Bürmoos GmbH Medical or dental handpiece with inductive coupling
EP2233103A3 (en) * 2009-03-26 2014-01-08 W & H Dentalwerk Bürmoos GmbH Medical, in particular dental tool holder
US9730765B2 (en) * 2009-03-26 2017-08-15 W&H Dentalwerk Bürmoos GmbH Medical or dental handpiece with inductive coupling
EP2233103A2 (en) 2009-03-26 2010-09-29 W & H Dentalwerk Bürmoos GmbH Medical, in particular dental tool holder
US8708928B2 (en) 2009-04-15 2014-04-29 Bard Peripheral Vascular, Inc. Biopsy apparatus having integrated fluid management
US8708930B2 (en) 2009-04-15 2014-04-29 Bard Peripheral Vascular, Inc. Biopsy apparatus having integrated fluid management
US8708929B2 (en) 2009-04-15 2014-04-29 Bard Peripheral Vascular, Inc. Biopsy apparatus having integrated fluid management
EP2282070A1 (en) * 2009-08-06 2011-02-09 ECP Entwicklungsgesellschaft mbH Catheter device with a coupling device for a drive device
WO2011015262A1 (en) * 2009-08-06 2011-02-10 Ecp Entwicklungsgesellschaft Mbh Catheter device having a coupling device for a drive device
US9655599B2 (en) 2009-08-12 2017-05-23 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US9173641B2 (en) 2009-08-12 2015-11-03 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US9282949B2 (en) 2009-09-01 2016-03-15 Bard Peripheral Vascular, Inc. Charging station for battery powered biopsy apparatus
US8808197B2 (en) 2009-10-29 2014-08-19 Bard Peripheral Vascular, Inc. Biopsy driver assembly having a control circuit for conserving battery power
EP2324779A1 (en) * 2009-11-09 2011-05-25 Jean-Pierre Py Surgical device
EP2327370A3 (en) * 2009-11-25 2011-12-28 W & H Dentalwerk Bürmoos GmbH Coupling device for a medical, in particular dental, handpiece
US9597075B2 (en) 2010-07-30 2017-03-21 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8789741B2 (en) 2010-09-24 2014-07-29 Ethicon Endo-Surgery, Inc. Surgical instrument with trigger assembly for generating multiple actuation motions
US9480476B2 (en) 2010-09-30 2016-11-01 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising resilient members
US9345477B2 (en) 2010-09-30 2016-05-24 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US9307965B2 (en) 2010-09-30 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-microbial agent
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9592050B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc End effector comprising a distal tissue abutment member
US9592053B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc Staple cartridge comprising multiple regions
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9572574B2 (en) 2010-09-30 2017-02-21 Ethicon Endo-Surgery, Llc Tissue thickness compensators comprising therapeutic agents
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9566061B2 (en) 2010-09-30 2017-02-14 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasably attached tissue thickness compensator
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9861361B2 (en) 2010-09-30 2018-01-09 Ethicon Llc Releasable tissue thickness compensator and fastener cartridge having the same
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9277919B2 (en) 2010-09-30 2016-03-08 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising fibers to produce a resilient load
US9844372B2 (en) 2010-09-30 2017-12-19 Ethicon Llc Retainer assembly including a tissue thickness compensator
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US8978954B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjustable distal portion
US9833238B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Retainer assembly including a tissue thickness compensator
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9848875B2 (en) 2010-09-30 2017-12-26 Ethicon Llc Anvil layer attached to a proximal end of an end effector
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9833242B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Tissue thickness compensators
US9833236B2 (en) 2010-09-30 2017-12-05 Ethicon Llc Tissue thickness compensator for surgical staplers
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9808247B2 (en) 2010-09-30 2017-11-07 Ethicon Llc Stapling system comprising implantable layers
US9801634B2 (en) 2010-09-30 2017-10-31 Ethicon Llc Tissue thickness compensator for a surgical stapler
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9320518B2 (en) 2010-09-30 2016-04-26 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an oxygen generating agent
US9795383B2 (en) 2010-09-30 2017-10-24 Ethicon Llc Tissue thickness compensator comprising resilient members
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US9597143B2 (en) 2010-11-05 2017-03-21 Ethicon Endo-Surgery, Llc Sterile medical instrument charging device
US9782215B2 (en) 2010-11-05 2017-10-10 Ethicon Endo-Surgery, Llc Surgical instrument with ultrasonic transducer having integral switches
US9421062B2 (en) 2010-11-05 2016-08-23 Ethicon Endo-Surgery, Llc Surgical instrument shaft with resiliently biased coupling to handpiece
US9510895B2 (en) 2010-11-05 2016-12-06 Ethicon Endo-Surgery, Llc Surgical instrument with modular shaft and end effector
WO2012061720A1 (en) * 2010-11-05 2012-05-10 Ethicon Endo- Surgery, Inc. Surgical instrument with modular end effector and detection feature
US9095346B2 (en) 2010-11-05 2015-08-04 Ethicon Endo-Surgery, Inc. Medical device usage data processing
US9381058B2 (en) 2010-11-05 2016-07-05 Ethicon Endo-Surgery, Llc Recharge system for medical devices
US9782214B2 (en) 2010-11-05 2017-10-10 Ethicon Llc Surgical instrument with sensor and powered control
US8998939B2 (en) 2010-11-05 2015-04-07 Ethicon Endo-Surgery, Inc. Surgical instrument with modular end effector
US9089338B2 (en) 2010-11-05 2015-07-28 Ethicon Endo-Surgery, Inc. Medical device packaging with window for insertion of reusable component
US9526921B2 (en) 2010-11-05 2016-12-27 Ethicon Endo-Surgery, Llc User feedback through end effector of surgical instrument
US9649150B2 (en) 2010-11-05 2017-05-16 Ethicon Endo-Surgery, Llc Selective activation of electronic components in medical device
US20120116266A1 (en) * 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with modular end effector and detection feature
US9161803B2 (en) 2010-11-05 2015-10-20 Ethicon Endo-Surgery, Inc. Motor driven electrosurgical device with mechanical and electrical feedback
US9375255B2 (en) 2010-11-05 2016-06-28 Ethicon Endo-Surgery, Llc Surgical instrument handpiece with resiliently biased coupling to modular shaft and end effector
US9039720B2 (en) 2010-11-05 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical instrument with ratcheting rotatable shaft
US9247986B2 (en) 2010-11-05 2016-02-02 Ethicon Endo-Surgery, Llc Surgical instrument with ultrasonic transducer having integral switches
US9308009B2 (en) 2010-11-05 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument with modular shaft and transducer
US9192428B2 (en) 2010-11-05 2015-11-24 Ethicon Endo-Surgery, Inc. Surgical instrument with modular clamp pad
US9364279B2 (en) 2010-11-05 2016-06-14 Ethicon Endo-Surgery, Llc User feedback through handpiece of surgical instrument
US9011427B2 (en) 2010-11-05 2015-04-21 Ethicon Endo-Surgery, Inc. Surgical instrument safety glasses
US9011471B2 (en) 2010-11-05 2015-04-21 Ethicon Endo-Surgery, Inc. Surgical instrument with pivoting coupling to modular shaft and end effector
US9017849B2 (en) 2010-11-05 2015-04-28 Ethicon Endo-Surgery, Inc. Power source management for medical device
US9017851B2 (en) 2010-11-05 2015-04-28 Ethicon Endo-Surgery, Inc. Sterile housing for non-sterile medical device component
US9000720B2 (en) 2010-11-05 2015-04-07 Ethicon Endo-Surgery, Inc. Medical device packaging with charging interface
US9072523B2 (en) 2010-11-05 2015-07-07 Ethicon Endo-Surgery, Inc. Medical device with feature for sterile acceptance of non-sterile reusable component
US9730717B2 (en) * 2011-02-03 2017-08-15 Karl Storz Gmbh & Co. Kg Medical manipulator system
US20120203269A1 (en) * 2011-02-03 2012-08-09 Terumo Kabushiki Kaisha Medical manipulator system
US20120215232A1 (en) * 2011-02-18 2012-08-23 Olsen Russell G Surgical fastener and associated systems and methods
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US9775614B2 (en) 2011-05-27 2017-10-03 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotatable staple deployment arrangements
US9271799B2 (en) 2011-05-27 2016-03-01 Ethicon Endo-Surgery, Llc Robotic surgical system with removable motor housing
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
WO2013009252A2 (en) 2011-07-11 2013-01-17 Medical Vision Research & Development Ab Status control for electrically powered surgical tool systems
DE102011051754A1 (en) * 2011-07-12 2013-01-17 Sycotec Gmbh & Co. Kg drive unit
US8631532B2 (en) 2011-07-25 2014-01-21 Braun Gmbh Oral hygiene device
US9226808B2 (en) 2011-07-25 2016-01-05 Braun Gmbh Attachment section for an oral hygiene device
US9099939B2 (en) 2011-07-25 2015-08-04 Braun Gmbh Linear electro-polymer motors and devices having the same
US9387059B2 (en) 2011-07-25 2016-07-12 Braun Gmbh Oral cleaning tool for an oral hygiene device
US9592054B2 (en) 2011-09-23 2017-03-14 Ethicon Endo-Surgery, Llc Surgical stapler with stationary staple drivers
US9687237B2 (en) 2011-09-23 2017-06-27 Ethicon Endo-Surgery, Llc Staple cartridge including collapsible deck arrangement
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9216019B2 (en) 2011-09-23 2015-12-22 Ethicon Endo-Surgery, Inc. Surgical stapler with stationary staple drivers
US9730697B2 (en) 2012-02-13 2017-08-15 Ethicon Endo-Surgery, Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US20140364883A1 (en) * 2012-03-20 2014-12-11 Cardiovascular Systems, Inc. Controller for an atherectomy device
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9314247B2 (en) 2012-03-28 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating a hydrophilic agent
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
RU2633225C2 (en) * 2012-07-20 2017-10-11 Эскулап Аг Actuator control device and method of actuator control for surgical motor system
US9546662B2 (en) 2012-11-20 2017-01-17 Smith & Nephew, Inc. Medical pump
US9452014B2 (en) 2012-11-30 2016-09-27 Gyrus Acmi, Inc. Integrated blade assembly and identification circuit
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9326767B2 (en) 2013-03-01 2016-05-03 Ethicon Endo-Surgery, Llc Joystick switch assemblies for surgical instruments
US9468438B2 (en) 2013-03-01 2016-10-18 Eticon Endo-Surgery, LLC Sensor straightened end effector during removal through trocar
US9554794B2 (en) 2013-03-01 2017-01-31 Ethicon Endo-Surgery, Llc Multiple processor motor control for modular surgical instruments
US9700309B2 (en) 2013-03-01 2017-07-11 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US9358003B2 (en) 2013-03-01 2016-06-07 Ethicon Endo-Surgery, Llc Electromechanical surgical device with signal relay arrangement
US9782169B2 (en) 2013-03-01 2017-10-10 Ethicon Llc Rotary powered articulation joints for surgical instruments
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9398911B2 (en) 2013-03-01 2016-07-26 Ethicon Endo-Surgery, Llc Rotary powered surgical instruments with multiple degrees of freedom
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9629623B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgery, Llc Drive system lockout arrangements for modular surgical instruments
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US9814460B2 (en) 2013-04-16 2017-11-14 Ethicon Llc Modular motor driven surgical instruments with status indication arrangements
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9826976B2 (en) 2013-04-16 2017-11-28 Ethicon Llc Motor driven surgical instruments with lockable dual drive shafts
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
DE202013102373U1 (en) * 2013-05-31 2014-09-03 Somnomedics Gmbh Technical Medical diagnostic system with diagnostic signal transmitters / receivers
US9265551B2 (en) 2013-07-19 2016-02-23 Pro-Dex, Inc. Torque-limiting screwdrivers
US9775609B2 (en) 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack
US9445813B2 (en) 2013-08-23 2016-09-20 Ethicon Endo-Surgery, Llc Closure indicator systems for surgical instruments
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
US9510828B2 (en) 2013-08-23 2016-12-06 Ethicon Endo-Surgery, Llc Conductor arrangements for electrically powered surgical instruments with rotatable end effectors
US9655688B2 (en) 2013-11-04 2017-05-23 L & K Dental Instruments Dental instrument
US9839423B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9757124B2 (en) 2014-02-24 2017-09-12 Ethicon Llc Implantable layer assemblies
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
US9775608B2 (en) 2014-02-24 2017-10-03 Ethicon Llc Fastening system comprising a firing member lockout
US9730695B2 (en) 2014-03-26 2017-08-15 Ethicon Endo-Surgery, Llc Power management through segmented circuit
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US9788836B2 (en) 2014-09-05 2017-10-17 Ethicon Llc Multiple motor control for powered medical device
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9872672B2 (en) * 2015-03-13 2018-01-23 Bard Peripheral Vascular, Inc. Length detection system for biopsy device
US9756402B2 (en) 2015-05-04 2017-09-05 Milwaukee Electric Tool Corporation Power tool and method for wireless communication
US9872684B2 (en) 2015-06-26 2018-01-23 Ethicon Llc Surgical stapling apparatus including firing force regulation
US9872682B2 (en) 2016-03-14 2018-01-23 Ethicon Llc Surgical stapling instrument having a releasable buttress material

Also Published As

Publication number Publication date Type
WO2003013372A2 (en) 2003-02-20 application
US8535342B2 (en) 2013-09-17 grant
US20040267297A1 (en) 2004-12-30 application
EP1424944A2 (en) 2004-06-09 application
JP4215162B2 (en) 2009-01-28 grant
EP2305143B1 (en) 2016-11-09 grant
EP1424944B1 (en) 2011-04-20 grant
US20170303984A1 (en) 2017-10-26 application
US20140031831A1 (en) 2014-01-30 application
EP2308395A1 (en) 2011-04-13 application
EP2314233A1 (en) 2011-04-27 application
CA2456424C (en) 2011-09-27 grant
EP2314233B1 (en) 2013-06-12 grant
JP4332141B2 (en) 2009-09-16 grant
DE60239812D1 (en) 2011-06-01 grant
JP2005324060A (en) 2005-11-24 application
US8035487B2 (en) 2011-10-11 grant
US9707026B2 (en) 2017-07-18 grant
EP2305143A1 (en) 2011-04-06 application
JP2009153989A (en) 2009-07-16 application
US20090292304A1 (en) 2009-11-26 application
WO2003013372A3 (en) 2003-09-25 application
JP4920713B2 (en) 2012-04-18 grant
CA2456424A1 (en) 2003-02-20 application
JP2004537367A (en) 2004-12-16 application

Similar Documents

Publication Publication Date Title
US6761698B2 (en) Ultrasonic operation system
US6162194A (en) Surgical irrigation apparatus and methods for use
US4768496A (en) Handpiece interlock and logic control for ultrasonic surgical system
US6511454B1 (en) Irrigation/aspiration apparatus and irrigation/aspiration cassette therefore
US5804936A (en) Motor controlled surgical system
US6021343A (en) Image guided awl/tap/screwdriver
US20040092991A1 (en) Surgical tool system with quick release coupling assembly
EP1293171A2 (en) Intelligent selection system for electrosurgical instrument
US20090118751A1 (en) Apparatus and method for alerting generator functions in an ultrasonic surgical system
US7510534B2 (en) Method for operating biopsy device
US5217478A (en) Arthroscopic surgical instrument drive system
US20020026126A1 (en) Calibration method for an automated surgical biopsy device
US20090264940A1 (en) Surgical tool
US5749885A (en) Surgical instrument with embedded coding element
US20060217729A1 (en) Surgical apparatus and tools for same
US20040133189A1 (en) Surgical operation apparatus and control method thereof
US6641039B2 (en) Surgical procedure identification system
US6036458A (en) Automated phaco pack bar code reader identification
US20030208196A1 (en) Control system for limited-use device
US20030165794A1 (en) Identification type instrument assembly, identification type adapter, identification type tube, and medical apparatus using them
US4705038A (en) Surgical system for powered instruments
US20050032017A1 (en) Ultrasonic dental tool having a light source
US7704254B2 (en) Surgical sagittal saw with indexing head and toolless blade coupling assembly for actuating an oscillating tip saw blade
US6503081B1 (en) Ultrasonic control apparatus and method
EP0947167A1 (en) Methods and apparatus to recognize surgical apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: STRYKER CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MALACKOWSKI, DON;DENG, WENJIE;DE LA BARERRA, JOSE LUIS MOCTEZUMA;AND OTHERS;REEL/FRAME:013671/0655

Effective date: 20021216

AS Assignment

Owner name: STRYKER CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MALACKOWSKI, DON;DENG, WENJIE;MOCTEZUMA DE LA BARRERA, JOSE LUIS;AND OTHERS;REEL/FRAME:014173/0083

Effective date: 20021216