US20030012705A1 - High solids, high space-time yield slurry polymerization - Google Patents
High solids, high space-time yield slurry polymerization Download PDFInfo
- Publication number
- US20030012705A1 US20030012705A1 US10/177,624 US17762402A US2003012705A1 US 20030012705 A1 US20030012705 A1 US 20030012705A1 US 17762402 A US17762402 A US 17762402A US 2003012705 A1 US2003012705 A1 US 2003012705A1
- Authority
- US
- United States
- Prior art keywords
- reactor
- slurry
- diluent
- continuous
- flash chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/005—Separating solid material from the gas/liquid stream
- B01J8/007—Separating solid material from the gas/liquid stream by sedimentation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
- B01J19/1812—Tubular reactors
- B01J19/1837—Loop-type reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/008—Feed or outlet control devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/0015—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
- B01J8/003—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/005—Separating solid material from the gas/liquid stream
- B01J8/0055—Separating solid material from the gas/liquid stream using cyclones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/008—Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F6/00—Post-polymerisation treatments
- C08F6/001—Removal of residual monomers by physical means
- C08F6/003—Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00002—Chemical plants
- B01J2219/00004—Scale aspects
- B01J2219/00006—Large-scale industrial plants
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
Definitions
- This invention relates to the polymerization of olefin monomers in a liquid diluent.
- an olefin polymerization process is carried out at a higher reactor solids concentration by means of continuous withdrawal of product slurry.
- a loop reactor olefin polymerization process is carried out by operating at a higher circulation velocity for a given reactor pipe diameter.
- a loop polymerization apparatus having an elongated hollow appendage at a downstream end of one of the longitudinal segments of the loop, the hollow appendage being in direct fluid communication with a heated flash line and thus being adapted for continuous removal of product slurry.
- FIG. 1 is a schematic perspective view of a loop reactor and polymer recovery system
- FIG. 2 is cross section along line 2 - 2 of FIG. 1 showing a continuous take off appendage
- FIG. 3 is a cross section along line 3 - 3 of FIG. 2 showing a ram valve arrangement in the continuous take off assembly
- FIG. 4 is a cross section of a tangential location for the continuous take off assembly
- FIG. 5 is a side view of an elbow of the loop reactor showing both a settling let and continuous take off assemblies
- FIG. 6 is a cross section across line 6 - 6 of FIG. 5 showing the orientation of two of the continuous take off assemblies
- FIG. 1 is a schematic perspective view of a loop reactor and polymer recovery system
- FIG. 2 is cross section along line 2 - 2 of FIG. 1 showing a continuous take off appendage
- FIG. 3 is a cross section along line 3 - 3 of FIG. 2 showing a ram valve arrangement in the continuous take off assembly
- FIG. 4 is a cross section of
- FIG. 7 is a side view showing another orientation for the continuous take off assembly;
- FIG. 8 is a cross sectional view of the impeller mechanism;
- FIG. 9 is a schematic view showing another configuration for the loops wherein the upper segments 14 a are 180 degree half circles and wherein the vertical segments are at least twice as long as the horizontal segments and
- FIG. 10 is a schematic view showing the longer axis disposed horizontally.
- the present invention is applicable to any olefin polymerization in a loop reactor utilizing a diluent so as to produce a product slurry of polymer and diluent.
- Suitable olefin monomers are 1-olefins having up to 8 carbon atoms per molecule and no branching nearer the double bond than the 4-position.
- the invention is particularly suitable for the homopolymerization of ethylene and the copolymerization of ethylene and a higher 1-olefin such as butene, 1-pentene, 1-hexene, 1-octene or 1-decene.
- sufficient comonomer can be used to give the above-described amounts of comonomer incorporation in the polymer.
- Suitable diluents are well known in the art and include hydrocarbons which are inert and liquid under reaction conditions. Suitable hydrocarbons include isobutane, propane, n-pentane, i-pentane, neopentane and n-hexane, with isobutane being especially preferred.
- Suitable catalysts are well known in the art. Particularly suitable is chromium oxide on a support such as silica as broadly disclosed, for instance, in Hogan and Banks, U.S. Pat. No. 2,285,721 (March 1958), the disclosure of which is hereby incorporated by reference.
- FIG. 1 a loop reactor 10 having vertical segments 12 , upper horizontal segments 14 and lower horizontal segments 16 . These upper and lower horizontal segments define upper and lower zones of horizontal flow.
- the reactor is cooled my means of two pipe heat exchangers formed by pipe 12 and jacket 18 . Each segment is connected to the next segment by a smooth bend or elbow 20 thus providing a continuous flow path substantially free from internal obstructions.
- the polymerization mixture is circulated by means of impeller 22 (shown in FIG. 8) driven by motor 24 .
- Monomer, comonomer, if any, and make up diluent are introduced via lines 26 and 28 respectively which can enter the reactor directly at one or a plurality of locations or can combine with condensed diluent recycle line 30 as shown.
- Catalyst is introduced via catalyst introduction means 32 which provides a zone (location) for catalyst introduction.
- the elongated hollow appendage for continuously taking off an intermediate product slurry is designated broadly by reference character 34 .
- Continuous take off mechanism 34 is located in or adjacent to a downstream end of one of the lower horizontal reactor loop sections 16 and adjacent or on a connecting elbow 20 .
- the continuous takeoff appendage is shown at the downstream end of a lower horizontal segment of the loop reactor which is the preferred location.
- the location can be in an area near the last point in the loop where flow turns upward before the catalyst introduction point so as to allow fresh catalyst the maximum possible time in the reactor before it first passes a take off point.
- the continuous take off appendage can be located on any segment or any elbow.
- the segment of the reactor to which the continuous take off appendage is attached can be of larger diameter to slow down the flow and hence further allow stratification of the flow so that the product coming off can have an even greater concentration of solids.
- Conduit 36 includes a surrounding conduit 40 which is provided with a heated fluid which provides indirect heating to the slurry material in flash line conduit 36 .
- Vaporized diluent exits the flash chamber 38 via conduit 42 for further processing which includes condensation by simple heat exchange using recycle condenser 50 , and return to the system, without the necessity for compression, via recycle diluent line 30 .
- Recycle condenser 50 can utilized any suitable heat exchange fluid known in the art under any conditions known in the art. However preferably a fluid at a temperature that can be economically provided is used. A suitable temperature range for this fluid is 40 degrees F to 130 degrees F.
- Polymer particles are withdrawn from high pressure flash chamber 38 via line 44 for further processing using techniques known in the art. Preferably they are passed to low pressure flash chamber 46 and thereafter recovered as polymer product via line 48 . Separated diluent passes through compressor 47 to line 42 .
- This high pressure flash design is broadly disclosed in Hanson and Sherk, U.S. Pat. No. 4,424,341 (Jan. 3, 1984), the disclosure of which is hereby incorporated by reference. Surprisingly, it has been found that the continuous take off not only allows for higher solids concentration upstream in the reactor, but also allows better operation of the high pressure flash, thus allowing the majority of the withdrawn diluent to be flashed off and recycled with no compression.
- 70 to 90 percent of the diluent can generally be recovered in this manner. This is because of several factors. First of all, because the flow is continuous instead of intermittent, the flash line heaters work better. Also, the pressure drop after the proportional control valve that regulates the rate of continuous flow out of the reactor has a lower pressure which means when it flashes it drops the temperature lower thus further giving more efficient use of the flash line heaters.
- the continuous take off mechanism comprises a take off cylinder 52 , a slurry withdrawal line 54 , an emergency shut off valve 55 , a proportional motor valve 58 to regulate flow and a flush line 60 .
- the reactor is run “liquid” fill. Because of dissolved monomer the liquid has slight compressibility, thus allowing pressure control of the liquid fill system with a valve. Diluent input is generally held constant, the proportional motor valve 58 being used to control the rate of continuous withdrawal to maintain the total reactor pressure within designated set points.
- FIG. 3 which is taken along section line 3 - 3 of FIG. 2, there is shown the smooth curve or elbow 20 having associated therewith the continuous take off mechanism 34 in greater detail, the elbow 20 thus being an appendage-carrying elbow.
- the mechanism comprises a take off cylinder 52 attached, in this instance, at a right angle to a tangent to the outer surface of the elbow.
- slurry withdrawal line 54 is Disposed within the take off cylinder 52 .
- a ram valve 62 Disposed within the take off cylinder 52 is a ram valve 62 which serves two purposes. First it provides a simple and reliable clean-out mechanism for the take off cylinder if it should ever become fouled with polymer. Second, it can serve as a simple and reliable shut-off valve for the entire continuous take off assembly.
- FIG. 4 shows a preferred attachment orientation for the take off cylinder 52 wherein it is affixed tangentially to the curvature of elbow 20 and at a point just prior to the slurry flow turning upward. This opening is elliptical to the inside surface. Further enlargement could be done to improve solids take off.
- FIG. 5 shows four things. First, it shows an angled orientation of the take off cylinder 52 .
- the take off cylinder is shown at an angle, alpha, to a plane that is (1) perpendicular to the centerline of the horizontal segment 16 and (2) located at the downstream end of the horizontal segment 16. The angle with this plane is taken in the downstream direction from the plane.
- the apex for the angle is the center point of the elbow radius as shown in FIG. 5.
- the plane can be described as the horizontal segment cross sectional plane. Here the angle depicted is about 24 degrees.
- the continuous take off cylinders are much smaller than the conventional settling legs. Yet three 2-inch ID continuous take off appendages can remove as much product slurry as 14 8-inch ID settling legs. This is significant because with current large commercial loop reactors of 15,000-18000 gallon capacity, six eight inch settling legs are required. It is not desirable to increase the size of the settling legs because of the difficulty of making reliable valves for larger diameters. As noted previously, doubling the diameter of the pipe increases the volume four-fold and there simply in not enough room for four times as many settling legs to be easily positioned. Hence the invention makes feasible the operation of larger, more efficient reactors. Reactors of 30,000 gallons or greater are made possible by this invention. Generally the continuous take off cylinders will have a nominal internal diameter within the range of 1 inch to less than 8 inches. Preferably they will be about 2-3 inches internal diameter.
- FIG. 6 is taken along section line 6-6 of FIG. 5 and shows take off cylinder 34 a attached at a place that is oriented at an angle, beta, to a vertical plane containing the center line of the reactor.
- This plane can be referred to as the vertical center plane of the reactor.
- This angle can be taken from either side of the plane or from both sides if it is not zero.
- the apex of the angle is located at the reactor center line.
- the angle is contained in a plane perpendicular to the reactor center line as shown in FIG. 6.
- First is the attachment orientation, i.e. tangential as in FIG. 4 and perpendicular as in FIG. 2 or 7 or any angle between these two limits of 0 and 90 degrees.
- Second is the orientation relative to how far up the curve of the elbow the attachment is as represented by angle alpha (FIG. 5). This can be anything from 0 to 60 degrees but is preferably 0 to 40 degrees, more preferably 0 to 20 degrees.
- Third is the angle, beta, from the center plane of the longitudinal segment (FIG. 6). This angle can be from 0 to 60 degrees, preferably 0 to 45 degrees, more preferably 0-20 degrees.
- FIG. 7 shows an embodiment where the continuous take off cylinder 52 has an attachment orientation of perpendicular, an alpha orientation of 0 (inherent since it is at the end, but still on, the straight section), and a beta orientation of 0, i.e. it is right on the vertical centerline plane of the lower horizontal segment 16 .
- FIG. 8 shows in detail the impeller means 22 for continuously moving the slurry along its flow path.
- the impeller is in a slightly enlarged section of pipe which serves as the propulsion zone for the circulating reactants.
- the system is operated so as to generate a pressure differential of at least 18 psig preferably at least 20 psig, more preferably at least 22 psig between the upstream and downstream ends of the propulsion zone in a nominal two foot diameter reactor with total flow path length of about 950 feet using isobutane to make predominantly ethylene polymers. As much as 50 psig or more is possible.
- This higher pressure differential can also be produced by the use of at least one additional pump.
- the system is operated so as to generate a pressure differential, expressed as a loss of pressure per unit length of reactor, of at least 0.07, generally 0.07 to 0. 15 foot pressure drop per foot of reactor length for a nominal 24 inch diameter reactor.
- this pressure drop per unit length is 0.09 to 0.11 for a 24 inch diameter reactor.
- the units for the pressure are ft/ft which cancel out. This assumes the density of the slurry which generally is about 0.5-0.6.
- the upper segments are shown as 180 degree half circles which is the which is the preferred configuration.
- the vertical segments are at least twice the length, generally about seven to eight times the length of the horizontal segments.
- the vertical flow path can be 190-225 feet and the horizontal segments 25-30 feet in flow path length. Any number of loops can be employed in addition to the four depicted here and the eight depicted in FIG. 1, but generally four or six are used.
- Reference to nominal two foot diameter means an internal diameter of about 21.9 inches.
- Flow length is generally greater than 500 feet, generally greater than 900 feet, with about 940 to 1,350 feet being quite satisfactory.
- Reactor Solids 39 45 53 Concentration, wt % Polymer Production 40.1 40.7 39.9 Rate, mlbs/hr Reactor Circulation 430 691 753 Pump Power, kw Circulation Pump 14.3 22.4 23.7 Pressure Diff, psi Circulation Pump 61.8 92.5 92.4 Head, ft Reactor Slurry Flow 39 46 45 Rate, mGPM Reactor Slurry Density, 0.534 0.558 0.592 gm/cc Reactor Temperature, F 215.6 218.3 217.0 Ethylene 4.43 3.67 4.9 Concentration, wt % Hexene-1 0.22 0.17 0.14 Concentration, wt % Reactor Heat Transfer 270 262 241 Coefficient Reactor Inside 22.0625 22.0625 22.0625 Diameter, inches Reactor Volume, gal 18700 18700 18700 Reactor Length, ft 941 941 941 Pressure Drop per Foot 0.066 0.098 0.098 of Rea
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Dispersion Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Treatment Of Sludge (AREA)
Abstract
An olefin polymerization process wherein monomer, at least one olefin comonomer different from the olefin monomer, diluent and catalyst are circulated in a continuous loop reactor and product slurry is recovered by means of a continuous product take off. The continuous product allows operating the reaction at significantly higher solids content in the circulating slurry. The polymerization process operates at a space-time yield of at least 2.18 lb/hr-gal.
Description
- This invention relates to the polymerization of olefin monomers in a liquid diluent.
- Addition polymerizations are frequently carried out in a liquid which is a solvent for the resulting polymer. When high density (linear) ethylene polymers first became commercially available in the 1950's this was the method used. It was soon discovered that a more efficient way to produce such polymers was to carry out the polymerization under slurry conditions. More specifically, the polymerization technique of choice became continuous slurry polymerization in a pipe loop reactor with the product being taken off by means of settling legs which operated on a batch principle to recover product. This technique has enjoyed international success with billions of pounds of ethylene polymers being so produced annually. With this success has come the desirability of building a smaller number of large reactors as opposed to a larger number of small reactors for a given plant capacity.
- Settling legs, however, do present two problems. First, they represent the imposition of a “batch” technique onto a basic continuous process. Each time a settling leg reaches the stage where it “dumps” or “fires” accumulated polymer slurry it causes an interference with the flow of slurry in the loop reactor upstream and the recovery system downstream. Also the valve mechanism essential to periodically seal off the settling legs from the reactor upstream and the recovery system downstream requires frequent maintenance due to the difficulty in maintaining a tight seal with the large diameter valves needed for sealing the legs.
- Secondly, as reactors have gotten larger, logistic problems are presented by the settling legs. If a pipe diameter is doubled the volume of the reactor goes up four-fold. However, because of the valve mechanisms involved, the size of the settling legs cannot easily be increased further. Hence the number of legs required begins to exceed the physical space available.
- In spite of these limitations, settling legs have continued to be employed where olefin polymers are formed as a slurry in a liquid diluent. This is because, unlike bulk slurry polymerizations (i.e. where the monomer is the diluent) where solids concentrations of better than 60 percent are routinely obtained, olefin polymer slurries in a diluent are generally limited to no more than 37 to 40 weight percent solids. Hence settling legs have been believed to be necessary to give a final slurry product at the exit to the settling legs of greater than 37-40 percent. This is because, as the name implies, settling occurs in the legs to thus increase the solids concentration of the slurry finally recovered as product slurry.
- Another factor affecting maximum practical reactor solids is circulation velocity, with a higher velocity for a given reactor diameter allowing for higher solids since a limiting factor in the operation is reactor fouling due to polymer build up in the reactor.
- It is an object of this invention to produce olefin polymers as a slurry in a liquid diluent utilizing continuous product slurry takeoff;
- It is a further object of this invention to operate a slurry olefin polymerization process in a diluent at a reactor solids concentration high enough to make direct continuous product takeoff commercially viable;
- It is a further object of this invention to operate a slurry olefin polymerization process in a diluent at higher circulation velocities.
- It is yet a further object of this invention to operate a slurry olefin polymerization process in a diluent in a reaction zone of greater than 30,000 gallons; and
- It is still yet a further object of this invention to provide a loop reactor apparatus having a capacity of greater than 30,000 gallons and having a continuous take off means.
- In accordance with one aspect of this invention, an olefin polymerization process is carried out at a higher reactor solids concentration by means of continuous withdrawal of product slurry.
- In accordance with another aspect of this invention, a loop reactor olefin polymerization process is carried out by operating at a higher circulation velocity for a given reactor pipe diameter.
- In accordance with another aspect of this invention, a loop polymerization apparatus is provided having an elongated hollow appendage at a downstream end of one of the longitudinal segments of the loop, the hollow appendage being in direct fluid communication with a heated flash line and thus being adapted for continuous removal of product slurry.
- In the drawings, forming a part hereof, FIG. 1 is a schematic perspective view of a loop reactor and polymer recovery system; FIG. 2 is cross section along line2-2 of FIG. 1 showing a continuous take off appendage; FIG. 3 is a cross section along line 3-3 of FIG. 2 showing a ram valve arrangement in the continuous take off assembly; FIG. 4 is a cross section of a tangential location for the continuous take off assembly; FIG. 5 is a side view of an elbow of the loop reactor showing both a settling let and continuous take off assemblies; FIG. 6 is a cross section across line 6-6 of FIG. 5 showing the orientation of two of the continuous take off assemblies; FIG. 7 is a side view showing another orientation for the continuous take off assembly; FIG. 8 is a cross sectional view of the impeller mechanism; FIG. 9 is a schematic view showing another configuration for the loops wherein the
upper segments 14 a are 180 degree half circles and wherein the vertical segments are at least twice as long as the horizontal segments and FIG. 10 is a schematic view showing the longer axis disposed horizontally. - Surprisingly, it has been found that continuous take off of product slurry in an olefin polymerization reaction carried out in a loop reactor in the presence of an inert diluent allows operation of the reactor at a much higher solids concentration. Commercial production of predominantly ethylene polymers in isobutane diluent has generally been limited to a maximum solids concentration in the reactor of 37-40 weight percent. However, the continuous take off has been found to allow significant increases in solids concentration. Furthermore, the continuous take off itself brings about some additional increase in solids content as compared with the content in the reactor from which it takes off product because of the placement of the continuous take off appendage which selectively removes a slurry from a stratum where the solids are more concentrated. Hence concentrations of greater than 40 weight percent are possible in accordance with this invention.
- Throughout this application, the weight of catalyst is disregarded since the productivity, particularly with chromium oxide on silica, is extremely high.
- Also surprisingly, it has been found that more aggressive circulation (with its attendant higher solids concentration) can be employed. Indeed more aggressive circulation in combination with the continuous take off, solids concentrations of greater than 50 weight percent can be removed from the reactor by the continuous take off. For instance, the continuous take off can easily allow operating at 5-6 percentage points higher; i.e., the reactor can be adjusted to easily raise solids by 10 percent; and the more aggressive circulation can easily add another 7-9 percentage points which puts the reactor above 50 percent. But, because the continuous take off is positioned to take off slurry from a stratum in the stream which has a higher than average concentration of solids, the product actually recovered has about 3 percentage points(or greater) higher concentration than the reactor slurry average. Thus the operation can approach an effective slurry concentration of 55 weight percent or more, i.e. 52 percent average in the reactor and the removal of a component which is actually 55 percent (i.e. 3 percentage points) higher.
- It must be emphasized that in a commercial operation as little as a one percentage point increase in solids concentration is of major significance. Therefore going from 37-40 average percent solids concentration in the reactor to even 41 is important; thus going to greater than 50 is truly remarkable.
- The present invention is applicable to any olefin polymerization in a loop reactor utilizing a diluent so as to produce a product slurry of polymer and diluent. Suitable olefin monomers are 1-olefins having up to 8 carbon atoms per molecule and no branching nearer the double bond than the 4-position. The invention is particularly suitable for the homopolymerization of ethylene and the copolymerization of ethylene and a higher 1-olefin such as butene, 1-pentene, 1-hexene, 1-octene or 1-decene. Especially preferred is ethylene and 0.01 to 10, preferably 0.01 to 5, most preferably 0.1 to 4 weight percent higher olefin based on the total weight of ethylene and comonomer. Alternatively sufficient comonomer can be used to give the above-described amounts of comonomer incorporation in the polymer.
- Suitable diluents (as opposed to solvents or monomers) are well known in the art and include hydrocarbons which are inert and liquid under reaction conditions. Suitable hydrocarbons include isobutane, propane, n-pentane, i-pentane, neopentane and n-hexane, with isobutane being especially preferred.
- Suitable catalysts are well known in the art. Particularly suitable is chromium oxide on a support such as silica as broadly disclosed, for instance, in Hogan and Banks, U.S. Pat. No. 2,285,721 (March 1958), the disclosure of which is hereby incorporated by reference.
- Referring now to the drawings, there is shown in FIG. 1 a
loop reactor 10 havingvertical segments 12, upperhorizontal segments 14 and lowerhorizontal segments 16. These upper and lower horizontal segments define upper and lower zones of horizontal flow. The reactor is cooled my means of two pipe heat exchangers formed bypipe 12 andjacket 18. Each segment is connected to the next segment by a smooth bend orelbow 20 thus providing a continuous flow path substantially free from internal obstructions. The polymerization mixture is circulated by means of impeller 22 (shown in FIG. 8) driven bymotor 24. Monomer, comonomer, if any, and make up diluent are introduced via lines 26 and 28 respectively which can enter the reactor directly at one or a plurality of locations or can combine with condenseddiluent recycle line 30 as shown. Catalyst is introduced via catalyst introduction means 32 which provides a zone (location) for catalyst introduction. The elongated hollow appendage for continuously taking off an intermediate product slurry is designated broadly byreference character 34. Continuous take offmechanism 34 is located in or adjacent to a downstream end of one of the lower horizontalreactor loop sections 16 and adjacent or on a connectingelbow 20. - The continuous takeoff appendage is shown at the downstream end of a lower horizontal segment of the loop reactor which is the preferred location. The location can be in an area near the last point in the loop where flow turns upward before the catalyst introduction point so as to allow fresh catalyst the maximum possible time in the reactor before it first passes a take off point. However, the continuous take off appendage can be located on any segment or any elbow.
- Also, the segment of the reactor to which the continuous take off appendage is attached can be of larger diameter to slow down the flow and hence further allow stratification of the flow so that the product coming off can have an even greater concentration of solids.
- The continuously withdrawn intermediate product slurry is passed via
conduit 36 into a highpressure flash chamber 38.Conduit 36 includes a surroundingconduit 40 which is provided with a heated fluid which provides indirect heating to the slurry material inflash line conduit 36. Vaporized diluent exits theflash chamber 38 viaconduit 42 for further processing which includes condensation by simple heat exchange usingrecycle condenser 50, and return to the system, without the necessity for compression, viarecycle diluent line 30. Recyclecondenser 50 can utilized any suitable heat exchange fluid known in the art under any conditions known in the art. However preferably a fluid at a temperature that can be economically provided is used. A suitable temperature range for this fluid is 40 degrees F to 130 degrees F. Polymer particles are withdrawn from highpressure flash chamber 38 vialine 44 for further processing using techniques known in the art. Preferably they are passed to lowpressure flash chamber 46 and thereafter recovered as polymer product vialine 48. Separated diluent passes throughcompressor 47 toline 42. This high pressure flash design is broadly disclosed in Hanson and Sherk, U.S. Pat. No. 4,424,341 (Jan. 3, 1984), the disclosure of which is hereby incorporated by reference. Surprisingly, it has been found that the continuous take off not only allows for higher solids concentration upstream in the reactor, but also allows better operation of the high pressure flash, thus allowing the majority of the withdrawn diluent to be flashed off and recycled with no compression. Indeed, 70 to 90 percent of the diluent can generally be recovered in this manner. This is because of several factors. First of all, because the flow is continuous instead of intermittent, the flash line heaters work better. Also, the pressure drop after the proportional control valve that regulates the rate of continuous flow out of the reactor has a lower pressure which means when it flashes it drops the temperature lower thus further giving more efficient use of the flash line heaters. - Referring now to FIG. 2, there is shown
elbow 20 with continuous take offmechanism 34 in greater detail. The continuous take off mechanism comprises a take offcylinder 52, aslurry withdrawal line 54, an emergency shut offvalve 55, aproportional motor valve 58 to regulate flow and aflush line 60. The reactor is run “liquid” fill. Because of dissolved monomer the liquid has slight compressibility, thus allowing pressure control of the liquid fill system with a valve. Diluent input is generally held constant, theproportional motor valve 58 being used to control the rate of continuous withdrawal to maintain the total reactor pressure within designated set points. - Referring now to FIG. 3, which is taken along section line3-3 of FIG. 2, there is shown the smooth curve or
elbow 20 having associated therewith the continuous take offmechanism 34 in greater detail, theelbow 20 thus being an appendage-carrying elbow. As shown, the mechanism comprises a take offcylinder 52 attached, in this instance, at a right angle to a tangent to the outer surface of the elbow. Coming offcylinder 52 isslurry withdrawal line 54. Disposed within the take offcylinder 52 is aram valve 62 which serves two purposes. First it provides a simple and reliable clean-out mechanism for the take off cylinder if it should ever become fouled with polymer. Second, it can serve as a simple and reliable shut-off valve for the entire continuous take off assembly. - FIG. 4 shows a preferred attachment orientation for the take off
cylinder 52 wherein it is affixed tangentially to the curvature ofelbow 20 and at a point just prior to the slurry flow turning upward. This opening is elliptical to the inside surface. Further enlargement could be done to improve solids take off. - FIG. 5 shows four things. First, it shows an angled orientation of the take off
cylinder 52. The take off cylinder is shown at an angle, alpha, to a plane that is (1) perpendicular to the centerline of thehorizontal segment 16 and (2) located at the downstream end of thehorizontal segment 16. The angle with this plane is taken in the downstream direction from the plane. The apex for the angle is the center point of the elbow radius as shown in FIG. 5. The plane can be described as the horizontal segment cross sectional plane. Here the angle depicted is about 24 degrees. Second, it shows a plurality of continuous take off appendages, 34 and 34 a. Third, it shows one appendage, 34 oriented on a vertical center line plane oflower segment 16, and the other, 34 a, located at an angle to such a plane as will be shown in more detail in FIG. 6. Finally, it shows the combination of continuous take offappendages 34 and aconventional settling leg 64 for batch removal, if desired. - As can be seen from the relative sizes, the continuous take off cylinders are much smaller than the conventional settling legs. Yet three 2-inch ID continuous take off appendages can remove as much product slurry as 14 8-inch ID settling legs. This is significant because with current large commercial loop reactors of 15,000-18000 gallon capacity, six eight inch settling legs are required. It is not desirable to increase the size of the settling legs because of the difficulty of making reliable valves for larger diameters. As noted previously, doubling the diameter of the pipe increases the volume four-fold and there simply in not enough room for four times as many settling legs to be easily positioned. Hence the invention makes feasible the operation of larger, more efficient reactors. Reactors of 30,000 gallons or greater are made possible by this invention. Generally the continuous take off cylinders will have a nominal internal diameter within the range of 1 inch to less than 8 inches. Preferably they will be about 2-3 inches internal diameter.
- FIG. 6 is taken along section line 6-6 of FIG. 5 and shows take off cylinder34 a attached at a place that is oriented at an angle, beta, to a vertical plane containing the center line of the reactor. This plane can be referred to as the vertical center plane of the reactor. This angle can be taken from either side of the plane or from both sides if it is not zero. The apex of the angle is located at the reactor center line. The angle is contained in a plane perpendicular to the reactor center line as shown in FIG. 6.
- It is noted that there are three orientation concepts here. First is the attachment orientation, i.e. tangential as in FIG. 4 and perpendicular as in FIG. 2 or 7 or any angle between these two limits of 0 and 90 degrees. Second is the orientation relative to how far up the curve of the elbow the attachment is as represented by angle alpha (FIG. 5). This can be anything from 0 to 60 degrees but is preferably 0 to 40 degrees, more preferably 0 to 20 degrees. Third is the angle, beta, from the center plane of the longitudinal segment (FIG. 6). This angle can be from 0 to 60 degrees, preferably 0 to 45 degrees, more preferably 0-20 degrees.
- FIG. 7 shows an embodiment where the continuous take off
cylinder 52 has an attachment orientation of perpendicular, an alpha orientation of 0 (inherent since it is at the end, but still on, the straight section), and a beta orientation of 0, i.e. it is right on the vertical centerline plane of the lowerhorizontal segment 16. - FIG. 8 shows in detail the impeller means22 for continuously moving the slurry along its flow path. As can be seen in this embodiment the impeller is in a slightly enlarged section of pipe which serves as the propulsion zone for the circulating reactants. Preferably the system is operated so as to generate a pressure differential of at least 18 psig preferably at least 20 psig, more preferably at least 22 psig between the upstream and downstream ends of the propulsion zone in a nominal two foot diameter reactor with total flow path length of about 950 feet using isobutane to make predominantly ethylene polymers. As much as 50 psig or more is possible. This can be done by controlling the speed of rotation of the impeller, reducing the clearance between the impeller and the inside wall of the pump housing or by using a more aggressive impeller design as is known in the art. This higher pressure differential can also be produced by the use of at least one additional pump.
- Generally the system is operated so as to generate a pressure differential, expressed as a loss of pressure per unit length of reactor, of at least 0.07, generally 0.07 to 0. 15 foot pressure drop per foot of reactor length for a nominal 24 inch diameter reactor. Preferably, this pressure drop per unit length is 0.09 to 0.11 for a 24 inch diameter reactor. For larger diameters, a higher slurry velocity and a higher pressure drop per unit length of reactor is needed. The units for the pressure are ft/ft which cancel out. This assumes the density of the slurry which generally is about 0.5-0.6.
- Referring now to FIG. 9 the upper segments are shown as 180 degree half circles which is the which is the preferred configuration. The vertical segments are at least twice the length, generally about seven to eight times the length of the horizontal segments. For instance, the vertical flow path can be 190-225 feet and the horizontal segments 25-30 feet in flow path length. Any number of loops can be employed in addition to the four depicted here and the eight depicted in FIG. 1, but generally four or six are used. Reference to nominal two foot diameter means an internal diameter of about 21.9 inches. Flow length is generally greater than 500 feet, generally greater than 900 feet, with about 940 to 1,350 feet being quite satisfactory.
- Commercial pumps for utilities such as circulating the reactants in a closed loop reactor are routinely tested by their manufacturers and the necessary pressures to avoid cavitation are easily and routinely determined.
- A four vertical leg polymerization reactor using a 26 inch Lawrence Pumps Inc. pump impeller D51795/81-281 in a M151879/FAB casing was used to polymerize ethylene and hexene-1. This pump was compared with a 24 inch pump which gave less aggressive circulation (0.66 ft of pressure drop vs 0.98). This was then compared with the same more aggressive circulation and a continuous take off assembly of the type shown by
reference character 34 of FIG. 5. The results are shown below.DATA TABLE 26 in Pump + Description 24 in Pump 26 in Pump CTO Date of Operation Oct. 4-9, May 24-28, Nov. 15-18, 1994 1995 1996 Avg. Reactor Solids 39 45 53 Concentration, wt % Polymer Production 40.1 40.7 39.9 Rate, mlbs/hr Reactor Circulation 430 691 753 Pump Power, kw Circulation Pump 14.3 22.4 23.7 Pressure Diff, psi Circulation Pump 61.8 92.5 92.4 Head, ft Reactor Slurry Flow 39 46 45 Rate, mGPM Reactor Slurry Density, 0.534 0.558 0.592 gm/cc Reactor Temperature, F 215.6 218.3 217.0 Ethylene 4.43 3.67 4.9 Concentration, wt % Hexene-1 0.22 0.17 0.14 Concentration, wt % Reactor Heat Transfer 270 262 241 Coefficient Reactor Inside 22.0625 22.0625 22.0625 Diameter, inches Reactor Volume, gal 18700 18700 18700 Reactor Length, ft 941 941 941 Pressure Drop per Foot 0.066 0.098 0.098 of Reactor, ft/ft - While this invention has been described in detail for the purpose of illustration, it is not to be construed as limited thereby, but is intended to cover all changes within the spirit and scope thereof.
Claims (2)
1. A polymerization process comprising:
polymerizing, in a loop reaction zone, at least one olefin monomer in a liquid diluent to produce a first fluid slurry comprising liquid diluent and solid olefin polymer particles, said polymerizing step being operated at a space-time yield of at least 2.18 lb/hr-gal;
maintaining an average concentration of solid olefin polymer particles in said first slurry in said zone of at least 40 weight percent based on the weight of said polymer particles and the weight of said liquid diluent;
continuously withdrawing said first slurry comprising withdrawn liquid diluent and withdrawn solid polymer particles, as an intermediate product of said process.
2. The process according to claim 1 , further comprising:
passing the intermediate product into a high pressure flash chamber;
separating vaporized diluent from the intermediate product in said high pressure flash chamber;
withdrawing polymer particles from said high pressure flash chamber to a low pressure flash chamber;
separating vaporized diluent from the intermediate product in said low pressure flash chamber; and
recovering a polymer product from said low pressure flash chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/177,624 US20030012705A1 (en) | 1997-07-15 | 2002-06-20 | High solids, high space-time yield slurry polymerization |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/893,200 US6239235B1 (en) | 1997-07-15 | 1997-07-15 | High solids slurry polymerization |
US58637000A | 2000-06-02 | 2000-06-02 | |
US10/177,624 US20030012705A1 (en) | 1997-07-15 | 2002-06-20 | High solids, high space-time yield slurry polymerization |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US58637000A Continuation | 1997-07-15 | 2000-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030012705A1 true US20030012705A1 (en) | 2003-01-16 |
Family
ID=25401189
Family Applications (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/893,200 Expired - Lifetime US6239235B1 (en) | 1997-07-15 | 1997-07-15 | High solids slurry polymerization |
US10/177,624 Abandoned US20030012705A1 (en) | 1997-07-15 | 2002-06-20 | High solids, high space-time yield slurry polymerization |
US10/176,201 Abandoned US20020187081A1 (en) | 1997-07-15 | 2002-06-20 | High solids, high ethylene slurry polymerization |
US10/176,204 Abandoned US20030023010A1 (en) | 1997-07-15 | 2002-06-20 | High polymer solids slurry polymerization |
US10/177,615 Abandoned US20030027944A1 (en) | 1997-07-15 | 2002-06-20 | Pumped high solids slurry polymerization |
US10/176,289 Expired - Lifetime US6806324B2 (en) | 1997-07-15 | 2002-06-20 | High solids slurry polymerization using heat exchange to condense the flashed diluent |
US10/176,247 Expired - Lifetime US6743869B2 (en) | 1997-07-15 | 2002-06-20 | High polymer solids slurry polymerization employing 1-olefin comonomer |
US10/228,833 Abandoned US20030050409A1 (en) | 1997-07-15 | 2002-08-26 | High solids slurry polymerization |
US10/301,281 Abandoned US20030092856A1 (en) | 1997-07-15 | 2002-11-20 | High solids slurry polymerization |
US10/849,393 Abandoned US20040192860A1 (en) | 1997-07-15 | 2004-05-19 | Method and apparatus for high solids slurry polymerization |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/893,200 Expired - Lifetime US6239235B1 (en) | 1997-07-15 | 1997-07-15 | High solids slurry polymerization |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/176,201 Abandoned US20020187081A1 (en) | 1997-07-15 | 2002-06-20 | High solids, high ethylene slurry polymerization |
US10/176,204 Abandoned US20030023010A1 (en) | 1997-07-15 | 2002-06-20 | High polymer solids slurry polymerization |
US10/177,615 Abandoned US20030027944A1 (en) | 1997-07-15 | 2002-06-20 | Pumped high solids slurry polymerization |
US10/176,289 Expired - Lifetime US6806324B2 (en) | 1997-07-15 | 2002-06-20 | High solids slurry polymerization using heat exchange to condense the flashed diluent |
US10/176,247 Expired - Lifetime US6743869B2 (en) | 1997-07-15 | 2002-06-20 | High polymer solids slurry polymerization employing 1-olefin comonomer |
US10/228,833 Abandoned US20030050409A1 (en) | 1997-07-15 | 2002-08-26 | High solids slurry polymerization |
US10/301,281 Abandoned US20030092856A1 (en) | 1997-07-15 | 2002-11-20 | High solids slurry polymerization |
US10/849,393 Abandoned US20040192860A1 (en) | 1997-07-15 | 2004-05-19 | Method and apparatus for high solids slurry polymerization |
Country Status (19)
Country | Link |
---|---|
US (10) | US6239235B1 (en) |
EP (1) | EP0891990B2 (en) |
JP (1) | JPH1180210A (en) |
KR (1) | KR100513212B1 (en) |
CN (1) | CN1205237C (en) |
AT (1) | ATE276282T1 (en) |
BR (1) | BR9802445A (en) |
CA (1) | CA2243250C (en) |
DE (1) | DE69826190D1 (en) |
DK (1) | DK0891990T3 (en) |
ES (1) | ES2229423T5 (en) |
HU (1) | HUP9801569A3 (en) |
NO (1) | NO319091B1 (en) |
RU (1) | RU2221812C2 (en) |
SG (1) | SG72838A1 (en) |
TR (1) | TR199801363A2 (en) |
TW (1) | TW515808B (en) |
YU (1) | YU49229B (en) |
ZA (1) | ZA986097B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070078237A1 (en) * | 2005-10-05 | 2007-04-05 | Chevron Phillips Chemical Company, Lp | Apparatus and method for removing polymer solids from slurry loop reactor |
US20080132655A1 (en) * | 2004-11-26 | 2008-06-05 | Stephen Kevin Lee | Slurry Phase Polymerisation Process |
US20080132656A1 (en) * | 2004-11-26 | 2008-06-05 | Stephen Kevin Lee | Slurry Phase Polymerisation Process |
US20080262171A1 (en) * | 2004-11-26 | 2008-10-23 | Ineos Manufacturing Belgium Nv | Slurry Phase Polymerisation Process |
US8344078B2 (en) | 2010-05-21 | 2013-01-01 | Chevron Phillips Chemical Company Lp | Continuous take off technique and pressure control of polymerization reactors |
WO2013172950A1 (en) | 2012-05-18 | 2013-11-21 | Union Carbide Chemicals And Plastics Technology Llc | Process for preparing catalysts and catalysts made thereby |
US8703063B2 (en) | 2010-06-21 | 2014-04-22 | Chevron Phillips Chemical Company Lp | System and method for closed relief of a polyolefin loop reactor system |
US9163564B2 (en) | 2010-06-21 | 2015-10-20 | Chevron Phillips Chemical Company Lp | Method and system for energy generation in a chemical plant by utilizing flare gas |
US10029230B1 (en) | 2017-01-24 | 2018-07-24 | Chevron Phillips Chemical Company Lp | Flow in a slurry loop reactor |
US11894144B2 (en) | 2013-08-27 | 2024-02-06 | Whiskers Worldwide, LLC | Animal health decision support system and methods |
Families Citing this family (458)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6239235B1 (en) | 1997-07-15 | 2001-05-29 | Phillips Petroleum Company | High solids slurry polymerization |
US6815511B2 (en) * | 1997-07-15 | 2004-11-09 | Chevron Phillips Chemical Company, Lp | Continuous withdrawal from high solids slurry polymerization |
US7033545B2 (en) * | 1997-07-15 | 2006-04-25 | Chevon Phillips Chemical Company, Lp | Slurry polymerization reactor having large length/diameter ratio |
WO1999047251A1 (en) | 1998-03-20 | 1999-09-23 | Exxon Chemical Patents Inc. | Continuous slurry polymerization volatile removal |
KR100531628B1 (en) * | 1998-03-20 | 2005-11-29 | 엑손모빌 케미칼 패턴츠 인코포레이티드 | Continuous slurry polymerization volatile removal |
US7268194B2 (en) * | 1998-03-20 | 2007-09-11 | Exxonmobil Chemical Patents Inc. | Continuous slurry polymerization process and apparatus |
US6281300B1 (en) | 1998-03-20 | 2001-08-28 | Exxon Chemical Patents, Inc. | Continuous slurry polymerization volatile removal |
US20020111441A1 (en) | 1998-03-20 | 2002-08-15 | Kendrick James Austin | Continuous slurry polymerization volatile removal |
AU755016B2 (en) * | 1998-05-18 | 2002-11-28 | Chevron Phillips Chemical Company Lp | Continuous slurry polymerization volatile removal |
US6262191B1 (en) * | 1999-03-09 | 2001-07-17 | Phillips Petroleum Company | Diluent slip stream to give catalyst wetting agent |
US6559247B2 (en) | 1999-03-09 | 2003-05-06 | Chevron Phillips Chemical Company, Lp | Direct recycle fractionation method using a swing column |
HUP0202409A2 (en) * | 1999-07-15 | 2002-10-28 | Phillips Petroleum Co | Slotted slurry take off |
US6420497B1 (en) * | 1999-12-03 | 2002-07-16 | Phillips Petroleum Company | Solids concentration in slurry polymerization |
BE1013235A4 (en) | 2000-01-18 | 2001-11-06 | Solvay | Method of composition olefin polymers. |
BE1013236A3 (en) * | 2000-01-18 | 2001-11-06 | Solvay | Polymers manufacturing method of olefins. |
US6566460B1 (en) | 2000-08-04 | 2003-05-20 | Equistar Chemicals, Lp | Continuous recovery of polymer from a slurry loop reactor |
US20040077081A1 (en) * | 2001-02-07 | 2004-04-22 | Egbert Oosterwijk | Hybridoma cell line g250 and its use for producing monoclonal antibodies |
EP1310295B1 (en) | 2001-10-30 | 2007-07-18 | Borealis Technology Oy | Polymerisation reactor |
DE60142531D1 (en) * | 2001-11-06 | 2010-08-19 | Chevron Phillips Chemical Co | CONTINUOUS REMOVAL OF SUSPENSION FROM POLYMERIZATION PROCESS |
CN100443868C (en) * | 2001-11-09 | 2008-12-17 | 埃克森美孚化学专利公司 | On-line measurement and control of polymer properties by Raman spectroscopy |
JP2005517768A (en) * | 2002-02-19 | 2005-06-16 | エクソンモービル・ケミカル・パテンツ・インク | Continuous slurry polymerization using a loop reactor. |
AU2002240549A1 (en) * | 2002-02-28 | 2003-09-16 | Exxonmobile Chemical Patents Inc. _____________________________G | Continuous slurry polymerization process in a loop reactor |
JP5408833B2 (en) * | 2002-07-01 | 2014-02-05 | ヴィレックス アクチェンゲゼルシャフト | Antitumor agent containing CG250 and IL-2 or IFN-α for treating renal cell tumor |
CN1332985C (en) * | 2002-09-13 | 2007-08-22 | 切夫里昂菲利普化学有限责任公司 | Loop reactor apparatus and polymerization processes with multiple feed points for olefins and catalysts |
BRPI0314282C8 (en) * | 2002-09-13 | 2017-05-23 | Chevron Phillips Chemical Co Lp | loop reactor and multi-feed polymerization processes for olefins and catalysts |
AU2003270594A1 (en) * | 2002-09-13 | 2004-04-30 | Chevron Phillips Chemical Company Lp | Process and apparatus for reducing take-off valve plugging in a polymerization process |
EP2275452B1 (en) | 2002-09-17 | 2016-06-08 | Chevron Phillips Chemical Company LP | Improved pumping apparatus and process for slurry polymerization in loop reactors |
CA2498766C (en) * | 2002-09-17 | 2009-11-24 | Chevron Phillips Chemical Company Lp | Improved pumping apparatus and process for slurry polymerization in loop reactors |
CN100475851C (en) * | 2002-09-17 | 2009-04-08 | 切夫里昂菲利普化学有限责任公司 | Pumping apparatus and process for slurry polymerization in loop reactors |
WO2004026463A1 (en) * | 2002-09-23 | 2004-04-01 | Total Petrochemicals Research Feluy | Slurry loop polyolefin reactor |
EA009717B1 (en) * | 2002-10-15 | 2008-02-28 | Эксонмобил Кемикэл Пейтентс Инк. | On-line measurement and control of polymer properties by raman spectroscopy |
GB0229133D0 (en) * | 2002-12-13 | 2003-01-15 | Solvay | Particulate flow control process |
AU2003302739A1 (en) * | 2003-01-06 | 2004-08-10 | Exxonmobil Chemical Patents Inc. | On-line measurement and control of polymer product properties by raman spectroscopy |
SA04250276B1 (en) * | 2003-09-24 | 2009-02-07 | باسيل بوليوليفين جي ام بي اتش | Suspension polymerization with high solids concentrations in a loop reactor |
CA2538900A1 (en) | 2003-09-24 | 2005-03-31 | Basell Polyolefine Gmbh | Loop reactor with varying diameter for olefin polymerization |
DE10344500A1 (en) * | 2003-09-24 | 2005-05-19 | Basell Polyolefine Gmbh | Loop reactor olefinic polymerization of e.g. ethylene includes reactor tube having diameter that varies based on predetermined reactor tube diameter and has widening and narrowing in a region other than that of axial pump |
US20050095176A1 (en) * | 2003-10-31 | 2005-05-05 | Hottovy John D. | Method and apparatus for reducing reactor fines |
EP1563899A1 (en) * | 2004-02-13 | 2005-08-17 | Total Petrochemicals Research Feluy | Device and method for the optimization of the injection of reactants into a reactor |
EP1564228A1 (en) * | 2004-02-13 | 2005-08-17 | Total Petrochemicals Research Feluy | Olefin polymerization process with sequential discharging. |
ATE489409T1 (en) * | 2004-02-13 | 2010-12-15 | Total Petrochemicals Res Feluy | METHOD FOR IMPROVING THE COPOLYMERIZATION OF ETHYLENE AND AN OLEFIN COMONOMER IN A LOOP POLYMERIZATION REACTOR |
US7307133B2 (en) * | 2004-04-22 | 2007-12-11 | Chevron Phillips Chemical Company Lp | Polymers having broad molecular weight distributions and methods of making the same |
CA2708417C (en) | 2004-04-22 | 2014-01-21 | Max P. Mcdaniel | Polymers having broad molecular weight distribution and methods of making the same |
US7112643B2 (en) * | 2004-04-22 | 2006-09-26 | Chevron Phillips Chemical Company Lp | Polymers having low levels of long chain branching and methods of making the same |
US7214642B2 (en) * | 2004-04-22 | 2007-05-08 | Chevron Phillips Chemical Company Lp | Methods of preparing active chromium/alumina catalysts via treatment with sulfate |
EP2374537A3 (en) | 2004-04-22 | 2011-11-02 | Chevron Phillips Chemical Company LP | Methods of preparing active chromium/alumina catalysts via treatment with sulfate and polymers produced using the chromium/alumina catalysts |
US6977235B2 (en) * | 2004-04-22 | 2005-12-20 | Chevron Phillips Chemical Company, Lp | Catalyst systems comprising a calcined chromium catalyst and a non-transition metal cyclopentadienyl cocatalyst |
ATE331740T1 (en) * | 2004-04-29 | 2006-07-15 | Borealis Tech Oy | METHOD AND DEVICE FOR PRODUCING OLEFIN POLYMERS |
US7615510B2 (en) * | 2004-05-12 | 2009-11-10 | Chevron Phillips Chemical Company Lp | Methods of activating chromium catalysts |
WO2006009944A2 (en) * | 2004-06-21 | 2006-01-26 | Exxonmobil Chemical Patents Inc. | Polymerization process |
EP1765891A2 (en) * | 2004-06-21 | 2007-03-28 | ExxonMobil Chemical Patents Inc. | Polymerization process |
US7728084B2 (en) * | 2004-06-21 | 2010-06-01 | Exxonmobil Chemical Patents Inc. | Polymerization process |
EP1611948A1 (en) * | 2004-07-01 | 2006-01-04 | Total Petrochemicals Research Feluy | Polymerization reactors with a by-pass line |
EP1630178A1 (en) * | 2004-08-10 | 2006-03-01 | Innovene Manufacturing Belgium NV | Polymerisation process |
RU2007108795A (en) * | 2004-08-12 | 2008-09-20 | Е.И.Дюпон де Немур энд Компани (US) | DEVICE AND METHOD FOR PRODUCING LOW-MOLECULAR POLYMERS |
WO2006026493A1 (en) | 2004-08-27 | 2006-03-09 | Chevron Phillips Chemical Company Lp | Energy efficient polyolefin process |
US20060165566A1 (en) * | 2005-01-25 | 2006-07-27 | Fina Technology, Inc. | Loop reactor design |
WO2007018773A1 (en) | 2005-07-22 | 2007-02-15 | Exxonmobil Chemical Patents Inc. | On-line analysis of polymer properties for control of a solution phase reaction system |
US7505127B2 (en) * | 2005-07-22 | 2009-03-17 | Exxonmobil Chemical Patents Inc. | On-line raman analysis and control of a high pressure reaction system |
US7483129B2 (en) * | 2005-07-22 | 2009-01-27 | Exxonmobil Chemical Patents Inc. | On-line properties analysis of a molten polymer by raman spectroscopy for control of a mixing device |
US7625982B2 (en) * | 2005-08-22 | 2009-12-01 | Chevron Phillips Chemical Company Lp | Multimodal polyethylene compositions and pipe made from same |
US7420010B2 (en) * | 2005-11-02 | 2008-09-02 | Chevron Philips Chemical Company Lp | Polyethylene compositions |
EP1787712A1 (en) * | 2005-11-17 | 2007-05-23 | Sika Technology AG | Mixing device for liquids |
US7629421B2 (en) * | 2005-12-21 | 2009-12-08 | Chevron Phillips Chemical Company Lp | Monomer recovery by returning column overhead liquid to the reactor |
US7517939B2 (en) | 2006-02-02 | 2009-04-14 | Chevron Phillips Chemical Company, Lp | Polymerization catalysts for producing high molecular weight polymers with low levels of long chain branching |
US7589162B2 (en) * | 2006-02-22 | 2009-09-15 | Chevron Philips Chemical Company Lp | Polyethylene compositions and pipe made from same |
US7619047B2 (en) | 2006-02-22 | 2009-11-17 | Chevron Phillips Chemical Company, Lp | Dual metallocene catalysts for polymerization of bimodal polymers |
EP1839742A1 (en) * | 2006-03-30 | 2007-10-03 | Total Petrochemicals Research Feluy | Flushing in a multiple loop reactor |
US7718732B2 (en) | 2006-05-26 | 2010-05-18 | Ineos Manufacturing Belgium Nv | Loop type reactor for polymerization |
US7632907B2 (en) | 2006-06-28 | 2009-12-15 | Chevron Phillips Chemical Company Lp | Polyethylene film having improved mechanical and barrier properties and method of making same |
CN101116804B (en) * | 2006-07-31 | 2010-06-23 | 中国石油化工股份有限公司 | Integrated reacting and separating device |
US20080051535A1 (en) * | 2006-08-23 | 2008-02-28 | Fina Technology, Inc. | Promoter system for polymerization processes and polymers formed therefrom |
US20080114142A1 (en) * | 2006-11-10 | 2008-05-15 | Phillips Sumika Polypropylene Company | Ethylene-Propylene Copolymer Compositions and Methods of Making and Using Same |
US7897539B2 (en) * | 2007-05-16 | 2011-03-01 | Chevron Phillips Chemical Company Lp | Methods of preparing a polymerization catalyst |
US8058200B2 (en) * | 2007-05-17 | 2011-11-15 | Chevron Phillips Chemical Company, L.P. | Catalysts for olefin polymerization |
US7723446B2 (en) | 2007-07-19 | 2010-05-25 | Exxonmobil Chemical Patents Inc. | Polypropylene series reactor |
EP2030678A1 (en) * | 2007-08-31 | 2009-03-04 | Total Petrochemicals Research Feluy | Loop reactor suitable for olefin polymerization with improved product removal means |
EP2030994A1 (en) * | 2007-09-03 | 2009-03-04 | INEOS Manufacturing Belgium NV | Slurry phase polymerisation process |
US7700516B2 (en) * | 2007-09-26 | 2010-04-20 | Chevron Phillips Chemical Company Lp | Methods of preparing a polymerization catalyst |
US7799721B2 (en) * | 2007-09-28 | 2010-09-21 | Chevron Phillips Chemical Company Lp | Polymerization catalysts for producing polymers with high comonomer incorporation |
US8119553B2 (en) | 2007-09-28 | 2012-02-21 | Chevron Phillips Chemical Company Lp | Polymerization catalysts for producing polymers with low melt elasticity |
US7589044B2 (en) * | 2007-10-02 | 2009-09-15 | Chevron Phillips Chemical Company Lp | Methods of preparing a polymerization catalyst |
CN101821296B (en) | 2007-10-11 | 2015-12-02 | 尤尼威蒂恩技术有限公司 | Continuity additives and the application in polymerization technique thereof |
US7638456B2 (en) | 2007-12-18 | 2009-12-29 | Chevron Phillips Chemical Company Lp | Methods of preparing a polymerization catalyst |
US8183173B2 (en) | 2007-12-21 | 2012-05-22 | Chevron Phillips Chemical Company Lp | Fast activating catalyst |
US7863210B2 (en) * | 2007-12-28 | 2011-01-04 | Chevron Phillips Chemical Company Lp | Nano-linked metallocene catalyst compositions and their polymer products |
US8012900B2 (en) * | 2007-12-28 | 2011-09-06 | Chevron Phillips Chemical Company, L.P. | Nano-linked metallocene catalyst compositions and their polymer products |
US8080681B2 (en) | 2007-12-28 | 2011-12-20 | Chevron Phillips Chemical Company Lp | Nano-linked metallocene catalyst compositions and their polymer products |
US7884163B2 (en) | 2008-03-20 | 2011-02-08 | Chevron Phillips Chemical Company Lp | Silica-coated alumina activator-supports for metallocene catalyst compositions |
US11208514B2 (en) | 2008-03-20 | 2021-12-28 | Chevron Phillips Chemical Company Lp | Silica-coated alumina activator-supports for metallocene catalyst compositions |
EP2110173A1 (en) | 2008-04-16 | 2009-10-21 | INEOS Manufacturing Belgium NV | Polymer stream transfer |
US8211988B2 (en) * | 2008-04-30 | 2012-07-03 | Chevron Phillips Chemical Company Lp | Methods of preparing a polymerization catalyst |
EP2130859A1 (en) | 2008-06-02 | 2009-12-09 | Borealis AG | Polymer compositions having improved homogeneity and odour, a method for making them and pipes made thereof |
EP2130862A1 (en) | 2008-06-02 | 2009-12-09 | Borealis AG | Polymer compositions and pressure-resistant pipes made thereof |
EP2130863A1 (en) | 2008-06-02 | 2009-12-09 | Borealis AG | High density polymer compositions, a method for their preparation and pressure-resistant pipes made therefrom |
US7884165B2 (en) * | 2008-07-14 | 2011-02-08 | Chevron Phillips Chemical Company Lp | Half-metallocene catalyst compositions and their polymer products |
EP2182526A1 (en) | 2008-10-31 | 2010-05-05 | Borealis AG | Cable and polymer composition comprising an multimodal ethylene copolymer |
EP2182524A1 (en) | 2008-10-31 | 2010-05-05 | Borealis AG | Cable and Polymer composition comprising a multimodal ethylene copolymer |
EP2182525A1 (en) | 2008-10-31 | 2010-05-05 | Borealis AG | Cable and polymer composition comprising a multimodal ethylene copolymer |
US8765217B2 (en) | 2008-11-04 | 2014-07-01 | Entrotech, Inc. | Method for continuous production of (meth)acrylate syrup and adhesives therefrom |
ES2381849T3 (en) | 2008-11-17 | 2012-06-01 | Borealis Ag | Multi-stage procedure to produce polyethylene with reduced gel formation |
US8114946B2 (en) | 2008-12-18 | 2012-02-14 | Chevron Phillips Chemical Company Lp | Process for producing broader molecular weight distribution polymers with a reverse comonomer distribution and low levels of long chain branches |
US9365664B2 (en) | 2009-01-29 | 2016-06-14 | W. R. Grace & Co. -Conn. | Catalyst on silica clad alumina support |
KR20110110350A (en) | 2009-01-29 | 2011-10-06 | 더블유.알. 그레이스 앤드 캄파니-콘. | Catalyst on silica clad alumina support |
EP2228395A1 (en) | 2009-02-24 | 2010-09-15 | Borealis AG | Improved multi-stage process for producing multi-modal ethylene polymer composition |
EP2228394B1 (en) | 2009-02-24 | 2013-09-04 | Borealis AG | Multi-stage process for producing multi-modal linear low density polyethylene |
ATE529450T1 (en) | 2009-02-25 | 2011-11-15 | Borealis Ag | MULTIMODAL PROPYLENE POLYMER, COMPOSITION THEREOF AND METHOD FOR PRODUCING THEREOF |
EP2223944A1 (en) | 2009-02-26 | 2010-09-01 | Borealis AG | Process for producing semicrystalline propylene polymers |
BRPI1012232A2 (en) | 2009-02-27 | 2017-01-31 | Chevron Phillips Chemical Co Lp | polyethylene film with improved barrier properties and methods for its production |
US8852748B2 (en) * | 2009-02-27 | 2014-10-07 | Chevron Phillips Chemical Company Lp | Polyethylene film having improved barrier properties and methods of making same |
US7951881B2 (en) * | 2009-02-27 | 2011-05-31 | Chevron Phillips Chemical Company Lp | Polyethylene film having improved barrier properties and methods of making same |
US8309485B2 (en) * | 2009-03-09 | 2012-11-13 | Chevron Phillips Chemical Company Lp | Methods for producing metal-containing sulfated activator-supports |
US7910669B2 (en) * | 2009-03-17 | 2011-03-22 | Chevron Phillips Chemical Company Lp | Methods of preparing a polymerization catalyst |
US8329079B2 (en) | 2009-04-20 | 2012-12-11 | Entrochem, Inc. | Method and apparatus for continuous production of partially polymerized compositions and polymers therefrom |
EP2246372A1 (en) | 2009-04-30 | 2010-11-03 | Borealis AG | Improved multi-stage process for producing multi-modal linear low density polyethylene |
EP2246369B1 (en) | 2009-04-30 | 2012-09-05 | Borealis AG | Linear low density polyethylene with uniform or reversed comonomer composition distribution |
EP2246368A1 (en) | 2009-04-30 | 2010-11-03 | Borealis AG | Improved ethylene polymerization catalyst composition |
US8013177B2 (en) | 2009-05-14 | 2011-09-06 | Chevron Phillips Chemical Company Lp | Method and system for forming a precursor compound for non-bridged unsymmetric polyolefin polymerization catalyst |
PL2256158T3 (en) | 2009-05-26 | 2014-09-30 | Borealis Ag | Polymer composition for crosslinked articles |
EP2256159A1 (en) | 2009-05-26 | 2010-12-01 | Borealis AG | Polymer composition for crosslinked pipes |
US7919639B2 (en) * | 2009-06-23 | 2011-04-05 | Chevron Phillips Chemical Company Lp | Nano-linked heteronuclear metallocene catalyst compositions and their polymer products |
US9289739B2 (en) * | 2009-06-23 | 2016-03-22 | Chevron Philips Chemical Company Lp | Continuous preparation of calcined chemically-treated solid oxides |
BRPI1014662B1 (en) * | 2009-06-29 | 2021-06-29 | Chevron Phillips Chemical Company Lp | OLEFIN POLYMERIZATION PROCESS |
MX2012000254A (en) | 2009-06-29 | 2012-01-25 | Chevron Philips Chemical Company Lp | The use of hydrogen scavenging catalysts to control polymer molecular weight and hydrogen levels in a polymerization reactor. |
EP2289950B1 (en) | 2009-08-25 | 2014-03-05 | Borealis AG | Improved ethylene polymerization catalyst composition |
EP2316863A1 (en) | 2009-10-30 | 2011-05-04 | INEOS Manufacturing Belgium NV | Slurry phase polymerisation process |
US8603933B2 (en) | 2009-11-13 | 2013-12-10 | Borealis Ag | Process for recovering a transition metal compound |
EP2499168B1 (en) | 2009-11-13 | 2017-05-10 | Borealis AG | Process for recovering a transition metal compound |
WO2011058091A1 (en) | 2009-11-13 | 2011-05-19 | Borealis Ag | Process for olefin polymerization |
EP2322568B1 (en) | 2009-11-13 | 2013-05-15 | Borealis AG | Process for producing an olefin polymerization catalyst |
US9358515B2 (en) * | 2010-02-03 | 2016-06-07 | Chevron Phillips Chemical Company Lp | Compressible liquid diluent in polyolefin polymerization |
US8871886B1 (en) | 2013-05-03 | 2014-10-28 | Chevron Phillips Chemical Company Lp | Polymerization product pressures in olefin polymerization |
US8609068B2 (en) * | 2010-02-24 | 2013-12-17 | J.M. Huber Corporation | Continuous silica production process and silica product prepared from same |
EP2374823A1 (en) | 2010-04-07 | 2011-10-12 | Borealis AG | Production of alpha-olefin copolymers in a loop reactor with variable comonomer feed |
US8383754B2 (en) | 2010-04-19 | 2013-02-26 | Chevron Phillips Chemical Company Lp | Catalyst compositions for producing high Mz/Mw polyolefins |
EP2386352A1 (en) | 2010-05-12 | 2011-11-16 | Ineos Europe Limited | Reactor |
US9556283B2 (en) | 2010-05-21 | 2017-01-31 | Chevron Phillips Chemical Company, Lp | Polyethylene production with multiple polymerization reactors |
US20140171601A1 (en) * | 2012-12-13 | 2014-06-19 | Chevron Phillips Chemical Company, Lp | Polyethylene production with multiple polymerization reactors |
ES2624858T3 (en) | 2010-06-17 | 2017-07-17 | Borealis Ag | Control system for a gas phase reactor, a gas phase reactor for the catalytic production of polyolefins, a method for catalytic productions of polyolefins and a use of the control system |
EP2399943A1 (en) | 2010-06-28 | 2011-12-28 | Borealis AG | Process for producing polyethylene |
US8288487B2 (en) | 2010-07-06 | 2012-10-16 | Chevron Phillips Chemical Company Lp | Catalysts for producing broad molecular weight distribution polyolefins in the absence of added hydrogen |
US8476394B2 (en) | 2010-09-03 | 2013-07-02 | Chevron Philips Chemical Company Lp | Polymer resins having improved barrier properties and methods of making same |
US8932975B2 (en) | 2010-09-07 | 2015-01-13 | Chevron Phillips Chemical Company Lp | Catalyst systems and methods of making and using same |
EP2428526A1 (en) | 2010-09-13 | 2012-03-14 | Borealis AG | Process for producing polyethylene with improved homogeneity |
US8828529B2 (en) | 2010-09-24 | 2014-09-09 | Chevron Phillips Chemical Company Lp | Catalyst systems and polymer resins having improved barrier properties |
US8501651B2 (en) | 2010-09-24 | 2013-08-06 | Chevron Phillips Chemical Company Lp | Catalyst systems and polymer resins having improved barrier properties |
US8637616B2 (en) | 2010-10-07 | 2014-01-28 | Chevron Philips Chemical Company Lp | Bridged metallocene catalyst systems with switchable hydrogen and comonomer effects |
US8609793B2 (en) | 2010-10-07 | 2013-12-17 | Chevron Phillips Chemical Company Lp | Catalyst systems containing a bridged metallocene |
US8629292B2 (en) | 2010-10-07 | 2014-01-14 | Chevron Phillips Chemical Company Lp | Stereoselective synthesis of bridged metallocene complexes |
US9180405B2 (en) | 2010-10-15 | 2015-11-10 | Chevron Phillips Chemical Company Lp | Ethylene recovery by absorption |
US8410329B2 (en) | 2010-10-15 | 2013-04-02 | Chevron Phillips Chemical Company Lp | Ethylene separation |
US9108147B2 (en) | 2010-10-15 | 2015-08-18 | Chevron Phillips Chemical Company Lp | Component separations in polymerization |
EP2452957A1 (en) | 2010-11-12 | 2012-05-16 | Borealis AG | Improved process for producing heterophasic propylene copolymers |
EP2452976A1 (en) | 2010-11-12 | 2012-05-16 | Borealis AG | Heterophasic propylene copolymers with improved stiffness/impact/flowability balance |
EP2452959B1 (en) | 2010-11-12 | 2015-01-21 | Borealis AG | Process for producing propylene random copolymers and their use |
EP2452960B1 (en) | 2010-11-12 | 2015-01-07 | Borealis AG | Process for preparing propylene polymers with an ultra high melt flow rate |
RU2587080C2 (en) | 2010-11-30 | 2016-06-10 | Юнивейшн Текнолоджиз, Ллк | Methods for polymerisation of olefins using extracted metal carboxylates |
CN103298843B (en) | 2010-11-30 | 2015-08-19 | 尤尼威蒂恩技术有限责任公司 | There is catalyst composition of the flow performance of improvement and production and preparation method thereof |
US8309748B2 (en) | 2011-01-25 | 2012-11-13 | Chevron Phillips Chemical Company Lp | Half-metallocene compounds and catalyst compositions |
US8492498B2 (en) | 2011-02-21 | 2013-07-23 | Chevron Phillips Chemical Company Lp | Polymer compositions for rotational molding applications |
US8618229B2 (en) | 2011-03-08 | 2013-12-31 | Chevron Phillips Chemical Company Lp | Catalyst compositions containing transition metal complexes with thiolate ligands |
US8362161B2 (en) | 2011-04-12 | 2013-01-29 | Chevron Phillips Chemical Company Lp | System and method for processing reactor polymerization effluent |
US8907031B2 (en) | 2011-04-20 | 2014-12-09 | Chevron Phillips Chemical Company Lp | Imino carbene compounds and derivatives, and catalyst compositions made therefrom |
US8809472B2 (en) | 2011-04-26 | 2014-08-19 | Chevron Phillips Chemical Company Lp | Process of melt index control |
US8440772B2 (en) | 2011-04-28 | 2013-05-14 | Chevron Phillips Chemical Company Lp | Methods for terminating olefin polymerizations |
BR112013029135B1 (en) | 2011-05-13 | 2020-12-15 | Univation Technologies, Llc | COMPOSITION AND POLYMERIZATION PROCESS |
US8318883B1 (en) | 2011-06-08 | 2012-11-27 | Chevron Phillips Chemical Company Lp | Polymer compositions for blow molding applications |
ES2605429T3 (en) | 2011-06-15 | 2017-03-14 | Borealis Ag | Mixing the in situ reactor of a nucleated polypropylene catalyzed by Ziegler-Natta and a metallocene catalyzed polypropylene |
US8597582B2 (en) | 2011-06-30 | 2013-12-03 | Chevron Phillips Chemical Company Lp | Flashline heater system and method |
US8431729B2 (en) | 2011-08-04 | 2013-04-30 | Chevron Phillips Chemical Company Lp | High activity catalyst compositions containing silicon-bridged metallocenes with bulky substituents |
ES2791035T3 (en) | 2011-08-30 | 2020-10-30 | Chevron Phillips Chemical Co Lp | Hyperbranched Polymers and Methods of Making and Using The Same |
US9018329B2 (en) | 2011-09-02 | 2015-04-28 | Chevron Phillips Chemical Company Lp | Polymer compositions having improved barrier properties |
US9284391B2 (en) | 2011-09-02 | 2016-03-15 | Chevron Phillips Chemical Company Lp | Polymer compositions having improved barrier properties |
WO2013036581A1 (en) | 2011-09-09 | 2013-03-14 | Chevron Phillips Chemical Company Lp | Polyethylene additive compositions and articles made from same |
EP2570455A1 (en) | 2011-09-16 | 2013-03-20 | Borealis AG | Polyethylene composition with broad molecular weight distribution and improved homogeneity |
US9023967B2 (en) | 2011-11-30 | 2015-05-05 | Chevron Phillips Chemical Company Lp | Long chain branched polymers and methods of making same |
RU2612555C2 (en) | 2011-11-30 | 2017-03-09 | Юнивейшн Текнолоджиз, Ллк | Methods and systems for catalyst delivery |
US8487053B2 (en) | 2011-11-30 | 2013-07-16 | Chevron Phillips Chemical Company Lp | Methods for removing polymer skins from reactor walls |
EP2599828A1 (en) | 2011-12-01 | 2013-06-05 | Borealis AG | Multimodal polyethylene composition for the production of pipes with improved slow crack growth resistance |
US9096699B2 (en) | 2011-12-02 | 2015-08-04 | Chevron Phillips Chemical Company Lp | Methods of preparing a catalyst |
EP2607385B1 (en) * | 2011-12-19 | 2014-03-19 | Borealis AG | Loop reactor providing an advanced production split control |
US8501882B2 (en) | 2011-12-19 | 2013-08-06 | Chevron Phillips Chemical Company Lp | Use of hydrogen and an organozinc compound for polymerization and polymer property control |
EP2607389A1 (en) | 2011-12-20 | 2013-06-26 | Basell Polyolefine GmbH | Process for preparing olefin polymer by slurry loop polymerization having high powder density |
US8791217B2 (en) | 2011-12-28 | 2014-07-29 | Chevron Phillips Chemical Company Lp | Catalyst systems for production of alpha olefin oligomers and polymers |
US8785576B2 (en) | 2011-12-28 | 2014-07-22 | Chevron Phillips Chemical Company Lp | Catalyst compositions for the polymerization of olefins |
EP2617741B1 (en) | 2012-01-18 | 2016-01-13 | Borealis AG | Process for polymerizing olefin polymers in the presence of a catalyst system and a method of controlling the process |
US8703883B2 (en) | 2012-02-20 | 2014-04-22 | Chevron Phillips Chemical Company Lp | Systems and methods for real-time catalyst particle size control in a polymerization reactor |
WO2013151863A1 (en) | 2012-04-02 | 2013-10-10 | Chevron Phillips Chemical Company Lp | Catalyst systems containing a bridged metallocene reference to related application |
EP2836284A2 (en) | 2012-04-13 | 2015-02-18 | Chevron Phillips Chemical Company LP | Component separations in polymerization |
IN2014DN08511A (en) | 2012-04-13 | 2015-05-15 | Chevron Phillips Chemical Co | |
US20130319131A1 (en) | 2012-05-31 | 2013-12-05 | Chevron Phillips Chemical Company Lp | Controlling Melt Fracture in Bimodal Resin Pipe |
US10273315B2 (en) | 2012-06-20 | 2019-04-30 | Chevron Phillips Chemical Company Lp | Methods for terminating olefin polymerizations |
US8916494B2 (en) | 2012-08-27 | 2014-12-23 | Chevron Phillips Chemical Company Lp | Vapor phase preparation of fluorided solid oxides |
US8940842B2 (en) | 2012-09-24 | 2015-01-27 | Chevron Phillips Chemical Company Lp | Methods for controlling dual catalyst olefin polymerizations |
US8865846B2 (en) | 2012-09-25 | 2014-10-21 | Chevron Phillips Chemical Company Lp | Metallocene and half sandwich dual catalyst systems for producing broad molecular weight distribution polymers |
US8821800B2 (en) | 2012-10-18 | 2014-09-02 | Chevron Phillips Chemical Company Lp | System and method for catalyst preparation |
US8937139B2 (en) | 2012-10-25 | 2015-01-20 | Chevron Phillips Chemical Company Lp | Catalyst compositions and methods of making and using same |
US8895679B2 (en) | 2012-10-25 | 2014-11-25 | Chevron Phillips Chemical Company Lp | Catalyst compositions and methods of making and using same |
US8921498B2 (en) | 2012-10-31 | 2014-12-30 | Chevron Phillips Chemical Company Lp | Pressure management for slurry polymerization |
US9238698B2 (en) | 2012-10-31 | 2016-01-19 | Chevron Phillips Chemical Company Lp | Pressure management for slurry polymerization |
EP2917267B1 (en) | 2012-11-07 | 2016-09-07 | Chevron Phillips Chemical Company LP | Low density polyolefin resins ad films made therefrom |
CN103804556B (en) * | 2012-11-07 | 2016-09-14 | 中国石油化工股份有限公司 | Olefine polymerizing process and ethene polymers and preparation method thereof |
ES2604934T3 (en) | 2012-11-09 | 2017-03-10 | Abu Dhabi Polymers Company Limited (Borouge) | Polymeric composition comprising a mixture of a multimodal polyethylene and an additional ethylene polymer suitable for the manufacture of a drip irrigation tube |
ES2613070T3 (en) | 2012-11-09 | 2017-05-22 | Abu Dhabi Polymers Company Limited (Borouge) | Drip irrigation pipe comprising a polymer composition comprising a multimodal polyethylene base resin |
CN104781628B (en) | 2012-11-12 | 2017-07-07 | 尤尼威蒂恩技术有限责任公司 | For the recycling gas cooler system of gas phase polymerization process |
US20140140894A1 (en) | 2012-11-20 | 2014-05-22 | Chevron Phillips Chemical Company, Lp | Polyolefin production with multiple polymerization reactors |
EP2740761B1 (en) | 2012-12-05 | 2016-10-19 | Borealis AG | Polyethylene composition with improved balance of slow crack growth resistance, impact performance and pipe pressure resistance for pipe applications |
US8912285B2 (en) | 2012-12-06 | 2014-12-16 | Chevron Phillips Chemical Company Lp | Catalyst system with three metallocenes for producing broad molecular weight distribution polymers |
EP2740748B1 (en) | 2012-12-07 | 2015-06-10 | Borealis AG | Method of polymerizing olefins in slurry reactors |
US9340629B2 (en) | 2012-12-13 | 2016-05-17 | Chevron Phillips Chemical Company Lp | Polyethylene production with multiple polymerization reactors |
US8987390B2 (en) | 2012-12-18 | 2015-03-24 | Chevron Phillips Chemical Company, Lp | Chain transfer agent removal between polyolefin polymerization reactors |
EP2749580B1 (en) | 2012-12-28 | 2016-09-14 | Borealis AG | Process for producing copolymers of propylene |
US9765165B2 (en) | 2013-01-22 | 2017-09-19 | Total Research & Technology Feluy | Olefin polymerization process with continuous discharging |
KR102151295B1 (en) | 2013-01-22 | 2020-09-03 | 토탈 리서치 앤드 테크놀로지 펠루이 | Olefin polymerization process with continuous transfer |
US8957148B2 (en) | 2013-01-29 | 2015-02-17 | Chevron Phillips Chemical Company Lp | Polymer compositions having improved barrier properties |
US8877672B2 (en) | 2013-01-29 | 2014-11-04 | Chevron Phillips Chemical Company Lp | Catalyst compositions and methods of making and using same |
US9034991B2 (en) | 2013-01-29 | 2015-05-19 | Chevron Phillips Chemical Company Lp | Polymer compositions and methods of making and using same |
US8680218B1 (en) | 2013-01-30 | 2014-03-25 | Chevron Phillips Chemical Company Lp | Methods for controlling dual catalyst olefin polymerizations with an organozinc compound |
BR112015018250B1 (en) | 2013-01-30 | 2021-02-23 | Univation Technologies, Llc | process to produce a catalyst composition and polymerization process |
US8703886B1 (en) | 2013-02-27 | 2014-04-22 | Chevron Phillips Chemical Company Lp | Dual activator-support catalyst systems |
US8815357B1 (en) | 2013-02-27 | 2014-08-26 | Chevron Phillips Chemical Company Lp | Polymer resins with improved processability and melt fracture characteristics |
US8623973B1 (en) | 2013-03-08 | 2014-01-07 | Chevron Phillips Chemical Company Lp | Activator supports impregnated with group VIII transition metals for polymer property control |
US9181369B2 (en) | 2013-03-11 | 2015-11-10 | Chevron Phillips Chemical Company Lp | Polymer films having improved heat sealing properties |
US9840570B2 (en) | 2013-03-11 | 2017-12-12 | Chevron Phillips Chemical Company, Lp | Medium density polyethylene compositions |
US9376511B2 (en) | 2013-03-13 | 2016-06-28 | Chevron Phillips Chemical Company Lp | Polymerization catalysts and polymers |
US10654948B2 (en) | 2013-03-13 | 2020-05-19 | Chevron Phillips Chemical Company Lp | Radically coupled resins and methods of making and using same |
US9068027B2 (en) | 2013-03-13 | 2015-06-30 | Chevron Phillips Chemical Company Lp | Methods of preparing a polymerization catalyst |
US10577440B2 (en) | 2013-03-13 | 2020-03-03 | Chevron Phillips Chemical Company Lp | Radically coupled resins and methods of making and using same |
EP2796474B1 (en) | 2013-04-22 | 2018-01-10 | Borealis AG | Multistage process for producing polypropylene compositions |
ES2632593T3 (en) | 2013-04-22 | 2017-09-14 | Borealis Ag | Two-stage process of producing polypropylene compositions |
PL2796498T3 (en) | 2013-04-22 | 2019-03-29 | Abu Dhabi Polymers Company Limited (Borouge) | Multimodal polypropylene composition for pipe applications |
PL2796501T3 (en) | 2013-04-22 | 2017-01-31 | Abu Dhabi Polymers Company Limited (Borouge) | Multimodal polypropylene composition for pipe applications |
EP2796499B1 (en) | 2013-04-22 | 2018-05-30 | Abu Dhabi Polymers Company Limited (Borouge) | Polypropylene composition with improved impact resistance for pipe applications |
EP2796500B1 (en) | 2013-04-22 | 2018-04-18 | Abu Dhabi Polymers Company Limited (Borouge) | Propylene random copolymer composition for pipe applications |
ES2628082T3 (en) | 2013-04-22 | 2017-08-01 | Borealis Ag | Multi-stage process to produce low temperature resistant polypropylene compositions |
US9822193B2 (en) | 2013-04-29 | 2017-11-21 | Chevron Phillips Chemical Company Lp | Unified cooling for multiple polyolefin polymerization reactors |
US9346897B2 (en) | 2013-05-14 | 2016-05-24 | Chevron Phillips Chemical Company Lp | Peroxide treated metallocene-based polyolefins with improved melt strength |
US9023959B2 (en) | 2013-07-15 | 2015-05-05 | Chevron Phillips Chemical Company Lp | Methods for producing fluorided-chlorided silica-coated alumina activator-supports and catalyst systems containing the same |
US8957168B1 (en) | 2013-08-09 | 2015-02-17 | Chevron Phillips Chemical Company Lp | Methods for controlling dual catalyst olefin polymerizations with an alcohol compound |
US9540467B2 (en) * | 2013-08-14 | 2017-01-10 | Ineos Europe Ag | Polymerization process |
US9102768B2 (en) | 2013-08-14 | 2015-08-11 | Chevron Phillips Chemical Company Lp | Cyclobutylidene-bridged metallocenes and catalyst systems containing the same |
US9156970B2 (en) | 2013-09-05 | 2015-10-13 | Chevron Phillips Chemical Company Lp | Higher density polyolefins with improved stress crack resistance |
US9295964B2 (en) | 2013-09-19 | 2016-03-29 | Chevron Phillips Chemical Company, Lp | Pressure relief for multiple polyolefin polymerization reactors |
EP2853562A1 (en) | 2013-09-27 | 2015-04-01 | Borealis AG | Two-stage process for producing polypropylene compositions |
EP2860200B1 (en) | 2013-10-10 | 2017-08-02 | Borealis AG | Polyethylene composition for pipe and pipe coating applications |
PL2860202T3 (en) | 2013-10-10 | 2018-11-30 | Borealis Ag | High temperature resistant polyethylene and process for the production thereof |
EP2860203B1 (en) | 2013-10-10 | 2016-12-14 | Borealis AG | Multistage process for producing polyethylene compositions |
EP2860201A1 (en) | 2013-10-10 | 2015-04-15 | Borealis AG | High temperature resistant polyethylene and process for the production thereof |
EP2860204B1 (en) | 2013-10-10 | 2018-08-01 | Borealis AG | Polyethylene composition for pipe applications |
US9181370B2 (en) | 2013-11-06 | 2015-11-10 | Chevron Phillips Chemical Company Lp | Low density polyolefin resins with low molecular weight and high molecular weight components, and films made therefrom |
US9217049B2 (en) | 2013-11-19 | 2015-12-22 | Chevron Phillips Chemical Company Lp | Dual catalyst systems for producing polymers with a broad molecular weight distribution and a uniform short chain branch distribution |
US9540465B2 (en) | 2013-11-19 | 2017-01-10 | Chevron Phillips Chemical Company Lp | Boron-bridged metallocene catalyst systems and polymers produced therefrom |
CN105849138A (en) | 2013-11-19 | 2016-08-10 | 切弗朗菲利浦化学公司 | Catalyst systems containing boron-bridged cyclopentadienyl-fluorenyl metallocene compounds with an alkenyl substituent |
WO2015077100A2 (en) | 2013-11-19 | 2015-05-28 | Chevron Phillips Chemical Company Lp | Boron-bridged bis-indenyl metallocene catalyst systems and polymers produced therefrom |
EP2883887A1 (en) | 2013-12-13 | 2015-06-17 | Borealis AG | Multistage process for producing polyethylene compositions |
EP2883885A1 (en) | 2013-12-13 | 2015-06-17 | Borealis AG | Multistage process for producing polyethylene compositions |
US10246528B2 (en) | 2014-01-09 | 2019-04-02 | Chevron Phillips Chemical Company Lp | Chromium (III) catalyst systems with activator-supports |
US9163098B2 (en) | 2014-01-10 | 2015-10-20 | Chevron Phillips Chemical Company Lp | Processes for preparing metallocene-based catalyst systems |
US9096694B1 (en) | 2014-01-20 | 2015-08-04 | Chevron Phillips Chemical Company Lp | Monomer/diluent recovery |
EP2907829B1 (en) | 2014-02-13 | 2020-08-19 | Borealis AG | Disentangled high or ultrahigh molecular weight polyethylene prepared with Ziegler-Natta catalyst |
US9169337B2 (en) | 2014-03-12 | 2015-10-27 | Chevron Phillips Chemical Company Lp | Polymers with improved ESCR for blow molding applications |
US9273170B2 (en) | 2014-03-12 | 2016-03-01 | Chevron Phillips Chemical Company Lp | Polymers with improved toughness and ESCR for large-part blow molding applications |
EP3747913B1 (en) | 2014-04-02 | 2024-04-17 | Univation Technologies, LLC | Continuity compositions and olefin polymerisation method using the same |
US20150322184A1 (en) | 2014-05-07 | 2015-11-12 | Chevron Phillips Chemical Company Lp | High Performance Moisture Barrier Films at Lower Densities |
US9394387B2 (en) | 2014-05-15 | 2016-07-19 | Chevron Phillips Chemical Company Lp | Synthesis of aryl coupled bis phenoxides and their use in olefin polymerization catalyst systems with activator-supports |
US9340627B1 (en) | 2014-05-21 | 2016-05-17 | Chevron Phillips Chemical Company, Lp | Elbow and horizontal configurations in a loop reactor |
WO2015179628A1 (en) | 2014-05-22 | 2015-11-26 | Chevron Phillips Chemical Company Lp | Dual catalyst systems for producing polymers with a broad molecular weight distribution and a uniform short chain branch distribution |
US9079993B1 (en) | 2014-05-22 | 2015-07-14 | Chevron Phillips Chemical Company Lp | High clarity low haze compositions |
US9789463B2 (en) | 2014-06-24 | 2017-10-17 | Chevron Phillips Chemical Company Lp | Heat transfer in a polymerization reactor |
US9284389B2 (en) | 2014-07-29 | 2016-03-15 | Chevron Phillips Chemical Company Lp | Bimodal resins having good film processability |
US9126878B1 (en) | 2014-08-01 | 2015-09-08 | Chevron Phillips Chemical Company Lp | Ethylene separation with temperature swing adsorption |
WO2016048986A1 (en) | 2014-09-22 | 2016-03-31 | Chevron Phillips Chemical Company Lp | Pressure management for slurry polymerization |
BR112017006060B1 (en) | 2014-09-30 | 2021-09-08 | Borealis Ag | PROCESS FOR THE POLYMERIZATION OF ETHYLENE IN THE PRESENCE OF AN OLEFIN POLYMERIZATION CATALYST |
US9441063B2 (en) | 2014-10-09 | 2016-09-13 | Chevron Phillips Chemical Company Lp | Titanium phosphinimide and titanium iminoimidazolidide catalyst systems with activator-supports |
US9303106B1 (en) | 2014-10-17 | 2016-04-05 | Chevron Phillips Chemical Company Lp | Processes for preparing solid metallocene-based catalyst systems |
US9828451B2 (en) | 2014-10-24 | 2017-11-28 | Chevron Phillips Chemical Company Lp | Polymers with improved processability for pipe applications |
US9108891B1 (en) | 2014-11-21 | 2015-08-18 | Chevron Phillips Chemical Company | Ethylene separation with pressure swing adsorption |
CN106715067A (en) | 2014-12-08 | 2017-05-24 | 博里利斯股份公司 | Process for producing pellets of copolymers of propylene |
EP3037436B2 (en) | 2014-12-22 | 2020-11-18 | Borealis AG | Process for producing multimodal polyethylene in-situ blends including ultra-high molecular weight fractions |
EP3037471B1 (en) | 2014-12-22 | 2019-05-01 | Borealis AG | Process for producing multimodal polyethylene compositions |
US9579619B2 (en) | 2015-01-28 | 2017-02-28 | Chevron Phillips Chemical Company Lp | Temperature control for polymerizing particulate polyolefin |
EP3253807B1 (en) | 2015-02-05 | 2023-04-26 | Borealis AG | Process for producing polyethylene |
CN107406645A (en) | 2015-02-20 | 2017-11-28 | 北欧化工股份公司 | The method for preparing heterophasic propylene copolymers |
WO2016141041A1 (en) * | 2015-03-02 | 2016-09-09 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Glass forming mold of adjustable shape |
CN107428875B (en) | 2015-03-10 | 2021-02-26 | 尤尼威蒂恩技术有限责任公司 | Spray-dried catalyst composition, method of preparation and use in olefin polymerization processes |
US10252967B2 (en) | 2015-04-20 | 2019-04-09 | Univation Technologies, Llc | Bridged bi-aromatic ligands and transition metal compounds prepared therefrom |
SG11201708410UA (en) | 2015-04-20 | 2017-11-29 | Univation Tech Llc | Bridged bi-aromatic ligands and olefin polymerization catalysts prepared therefrom |
US10519256B2 (en) | 2015-04-27 | 2019-12-31 | Univation Technologies, Llc | Supported catalyst compositions having improved flow properties and preparation thereof |
US9587048B2 (en) | 2015-04-29 | 2017-03-07 | Chevron Phillips Chemical Company Lp | Methods of preparing a catalyst |
US9708426B2 (en) | 2015-06-01 | 2017-07-18 | Chevron Phillips Chemical Company Lp | Liquid-solid sampling system for a loop slurry reactor |
CN108137830B (en) | 2015-06-10 | 2021-02-26 | 博里利斯股份公司 | Multimodal polyethylene copolymer |
WO2016198273A1 (en) | 2015-06-10 | 2016-12-15 | Borealis Ag | Multimodal copolymer of ethylene and at least two alpha-olefin comonomers and final articles made thereof |
US9289748B1 (en) | 2015-06-11 | 2016-03-22 | Chevron Phillips Chemical Company Lp | Treater regeneration |
US9861955B2 (en) | 2015-06-11 | 2018-01-09 | Chevron Phillips Chemical Company, Lp | Treater regeneration |
ES2707391T3 (en) | 2015-06-23 | 2019-04-03 | Borealis Ag | Procedure for the production of LLDPE resins |
US9481749B1 (en) | 2015-06-26 | 2016-11-01 | Chevron Phillips Chemical Company Lp | Processes for preparing metallocene-based catalyst systems in cyclohexene |
US10131725B2 (en) | 2015-06-26 | 2018-11-20 | Chevron Phillips Chemical Company Lp | Production of high haze films using metallocene-based catalyst systems in cyclohexene |
BR112017026907B1 (en) | 2015-07-08 | 2022-04-26 | Chevron Phillips Chemical Company Lp | Ethylene copolymer, article of manufacture, process for producing a catalyst composition, and olefin polymerization process |
US9970869B2 (en) | 2015-07-24 | 2018-05-15 | Chevron Phillips Chemical Company Lp | Use of turbidimeter for measurement of solid catalyst system component in a reactor feed |
US9650459B2 (en) | 2015-09-09 | 2017-05-16 | Chevron Phillips Chemical Company Lp | Methods for controlling die swell in dual catalyst olefin polymerization systems |
US9493589B1 (en) | 2015-09-09 | 2016-11-15 | Chevron Phillips Chemical Company Lp | Polymers with improved ESCR for blow molding applications |
US10213766B2 (en) | 2015-09-18 | 2019-02-26 | Chevron Phillips Chemical Company Lp | Methods of preparing a catalyst |
US9758599B2 (en) | 2015-09-24 | 2017-09-12 | Chevron Phillips Chemical Company Lp | Heterogeneous Ziegler-Natta catalysts with fluorided silica-coated alumina |
US9540457B1 (en) | 2015-09-24 | 2017-01-10 | Chevron Phillips Chemical Company Lp | Ziegler-natta—metallocene dual catalyst systems with activator-supports |
US9845367B2 (en) | 2015-09-24 | 2017-12-19 | Chevron Phillips Chemical Company Lp | Heterogeneous Ziegler-Natta catalysts with fluorided silica-coated alumina |
WO2017078974A1 (en) | 2015-11-05 | 2017-05-11 | Chevron Phillips Chemical Company Lp | Radically coupled resins and methods of making and using same |
US9645131B1 (en) | 2015-12-04 | 2017-05-09 | Chevron Phillips Chemical Company Lp | Polymer compositions having improved processability and methods of making and using same |
US9645066B1 (en) | 2015-12-04 | 2017-05-09 | Chevron Phillips Chemical Company Lp | Polymer compositions having improved processability and methods of making and using same |
EP3178853B1 (en) | 2015-12-07 | 2018-07-25 | Borealis AG | Process for polymerising alpha-olefin monomers |
US10883197B2 (en) | 2016-01-12 | 2021-01-05 | Chevron Phillips Chemical Company Lp | High melt flow polypropylene homopolymers for fiber applications |
US9505856B1 (en) | 2016-01-13 | 2016-11-29 | Chevron Phillips Chemical Company Lp | Methods for making fluorided chromium (VI) catalysts, and polymerization processes using the same |
US9840571B2 (en) | 2016-02-04 | 2017-12-12 | Chevron Phillips Chemical Company Lp | Inert stripping of volatile organic compounds from polymer melts |
EP3238938A1 (en) | 2016-04-29 | 2017-11-01 | Borealis AG | Machine direction oriented films comprising multimodal copolymer of ethylene and at least two alpha-olefin comonomers |
US9593189B1 (en) | 2016-04-29 | 2017-03-14 | Chevron Phillips Chemical Company Lp | Pressure control to reduce pump power fluctuations |
US9758540B1 (en) | 2016-05-25 | 2017-09-12 | Chevron Phillips Chemical Company Lp | Bicyclic bridged metallocene compounds and polymers produced therefrom |
US9758600B1 (en) | 2016-05-25 | 2017-09-12 | Chevron Phillips Chemical Company Lp | Bicyclic bridged metallocene compounds and polymers produced therefrom |
EP3252085B1 (en) | 2016-05-31 | 2022-11-09 | Borealis AG | Jacket with improved properties |
EP3464457B1 (en) | 2016-05-31 | 2021-09-01 | Borealis AG | Polymer composition and a process for production of the polymer composition |
US10005861B2 (en) | 2016-06-09 | 2018-06-26 | Chevron Phillips Chemical Company Lp | Methods for increasing polymer production rates with halogenated hydrocarbon compounds |
EP3475313B1 (en) | 2016-06-22 | 2024-03-20 | Borealis AG | Composition comprising three polyethylenes and a process for production of the polymer composition |
US9714204B1 (en) | 2016-07-28 | 2017-07-25 | Chevron Phillips Chemical Company Lp | Process for purifying ethylene produced from a methanol-to-olefins facility |
US9988468B2 (en) | 2016-09-30 | 2018-06-05 | Chevron Phillips Chemical Company Lp | Methods of preparing a catalyst |
US10000594B2 (en) | 2016-11-08 | 2018-06-19 | Chevron Phillips Chemical Company Lp | Dual catalyst system for producing LLDPE copolymers with a narrow molecular weight distribution and improved processability |
CA3036991C (en) | 2016-11-25 | 2021-01-12 | Borealis Ag | Polymer composition comprising very high molecular weight, low molecularweight, and high molecular weight polyethylene fractions |
RU2750076C2 (en) | 2016-12-15 | 2021-06-21 | ШЕВРОН ФИЛЛИПС КЕМИКАЛ КОМПАНИ ЭлПи | Combination of membrane method and adsorption with alternating pressure in isobutane and nitrogen recovery unit |
US20200369803A1 (en) | 2016-12-29 | 2020-11-26 | Chevron Phillips Chemical Company Lp | Methods of Preparing a Catalyst |
US10654953B2 (en) | 2016-12-29 | 2020-05-19 | Chevron Phillips Chemical Company Lp | Methods of preparing a catalyst |
US11267914B2 (en) | 2016-12-29 | 2022-03-08 | Chevron Phillips Chemical Company Lp | Methods of preparing a catalyst |
US10221258B2 (en) | 2017-03-17 | 2019-03-05 | Chevron Phillips Chemical Company Lp | Methods for restoring metallocene solids exposed to air |
US10428091B2 (en) | 2017-04-07 | 2019-10-01 | Chevron Phillips Chemical Company Lp | Catalyst systems containing low valent titanium-aluminum complexes and polymers produced therefrom |
US10005865B1 (en) | 2017-04-07 | 2018-06-26 | Chevron Phillips Chemical Company Lp | Methods for controlling molecular weight and molecular weight distribution |
US10000595B1 (en) | 2017-04-07 | 2018-06-19 | Chevron Phillips Chemical Company Lp | Catalyst systems containing low valent titanium compounds and polymers produced therefrom |
US10435488B2 (en) | 2017-04-17 | 2019-10-08 | Chevron Phillips Chemical Company Lp | System and method for processing polymerization reactor effluent |
US9975976B1 (en) | 2017-04-17 | 2018-05-22 | Chevron Phillips Chemical Company Lp | Polyethylene compositions and methods of making and using same |
US10550252B2 (en) | 2017-04-20 | 2020-02-04 | Chevron Phillips Chemical Company Lp | Bimodal PE resins with improved melt strength |
US10287369B2 (en) | 2017-04-24 | 2019-05-14 | Chevron Phillips Chemical Company Lp | Methods of preparing a catalyst |
CN110621388B (en) | 2017-05-03 | 2021-10-29 | 切弗朗菲利浦化学公司 | Regenerating desiccant in an off-line processor of a polyolefin production process |
US10179826B2 (en) | 2017-05-05 | 2019-01-15 | Chevron Phillips Chemical Company Lp | Polymerization catalyst delivery |
KR102632722B1 (en) | 2017-05-25 | 2024-02-01 | 셰브론 필립스 케미컬 컴퍼니 엘피 | Methods for Improving Color Stability in Polyethylene Resins |
US10864494B2 (en) | 2017-06-07 | 2020-12-15 | Chevron Phillips Chemical Company Lp | Rotary feeder with cleaning nozzles |
EP3418330B2 (en) | 2017-06-21 | 2023-07-19 | Borealis AG | Polymer composition and a process for production of the polymer composition |
CN109135067A (en) | 2017-06-27 | 2019-01-04 | 阿布扎比聚合物有限责任公司(博禄) | For manufacturing the polypropene composition of high-voltage tube |
EP3648879A1 (en) | 2017-07-07 | 2020-05-13 | Johnson Matthey Process Technologies, Inc. | Withdrawal system |
US10697889B2 (en) | 2017-07-21 | 2020-06-30 | Chevron Phillips Chemical Company Lp | Methods for determining transition metal compound concentrations in multicomponent liquid systems |
US10030086B1 (en) | 2017-07-21 | 2018-07-24 | Chevron Phillips Chemical Company Lp | Methods for determining transition metal compound concentrations in multicomponent liquid systems |
US10358506B2 (en) | 2017-10-03 | 2019-07-23 | Chevron Phillips Chemical Company Lp | Dual catalyst system for producing LLDPE copolymers with improved processability |
EP3479896A1 (en) | 2017-11-03 | 2019-05-08 | Borealis AG | Polymerization reactor system comprising at least one withdrawal valve |
US10323109B2 (en) | 2017-11-17 | 2019-06-18 | Chevron Phillips Chemical Company Lp | Methods of preparing a catalyst utilizing hydrated reagents |
US10513570B2 (en) | 2017-11-17 | 2019-12-24 | Chevron Phillips Chemical Company Lp | Methods of preparing a catalyst |
US10300460B1 (en) | 2017-11-17 | 2019-05-28 | Chevron Phillips Chemical Company L.P. | Aqueous methods for titanating a chromium/silica catalyst |
US10259893B1 (en) | 2018-02-20 | 2019-04-16 | Chevron Phillips Chemical Company Lp | Reinforcement of a chromium/silica catalyst with silicate oligomers |
US11098139B2 (en) | 2018-02-28 | 2021-08-24 | Chevron Phillips Chemical Company Lp | Advanced quality control tools for manufacturing bimodal and multimodal polyethylene resins |
US10590213B2 (en) | 2018-03-13 | 2020-03-17 | Chevron Phillips Chemical Company Lp | Bimodal polyethylene resins and pipes produced therefrom |
CN111770940A (en) | 2018-03-23 | 2020-10-13 | 尤尼威蒂恩技术有限责任公司 | Catalyst formulations |
US10507445B2 (en) | 2018-03-29 | 2019-12-17 | Chevron Phillips Chemical Company Lp | Methods for determining transition metal compound concentrations in multicomponent liquid systems |
US10679734B2 (en) | 2018-03-29 | 2020-06-09 | Chevron Phillips Chemical Company Lp | Methods for determining transition metal compound concentrations in multicomponent liquid systems |
US10543480B2 (en) | 2018-04-16 | 2020-01-28 | Chevron Phillips Chemical Company Lp | Methods of preparing a catalyst utilizing hydrated reagents |
US10722874B2 (en) | 2018-04-16 | 2020-07-28 | Chevron Phillips Chemical Company Lp | Methods of preparing a catalyst utilizing hydrated reagents |
US11266976B2 (en) | 2018-04-16 | 2022-03-08 | Chevron Phillips Chemical Company Lp | Methods of preparing a catalyst with low HRVOC emissions |
CN110385099B (en) * | 2018-04-20 | 2024-05-24 | 中国科学院过程工程研究所 | Loop reactor and control method thereof |
US10792609B2 (en) | 2018-05-07 | 2020-10-06 | Chevron Phillips Chemical Company Lp | Nitrogen conservation in polymerization processes |
PL3567061T3 (en) | 2018-05-09 | 2024-02-26 | Borealis Ag | Polypropylene pipe composition |
KR20210016573A (en) | 2018-05-30 | 2021-02-16 | 보레알리스 아게 | Method of making multimode high density polyethylene |
CN112638958B (en) | 2018-07-19 | 2023-06-02 | 博里利斯股份公司 | Process for preparing UHMWPE homopolymers |
CN112638954A (en) | 2018-09-17 | 2021-04-09 | 切弗朗菲利浦化学公司 | Light treatment of chromium catalysts and related catalyst preparation systems and polymerization processes |
CN112673032B (en) | 2018-09-24 | 2024-03-15 | 切弗朗菲利浦化学公司 | Method for preparing supported chromium catalysts with enhanced polymerization activity |
US11149098B2 (en) | 2018-09-25 | 2021-10-19 | Chevron Phillips Chemical Company Lp | Rapid activation process and activation treatments for chromium catalysts for producing high melt index polyethylenes |
MX2021003372A (en) | 2018-09-27 | 2021-05-27 | Chevron Phillips Chemical Co Lp | Processes for producing fluorided solid oxides and uses thereof in metallocene-based catalyst systems. |
KR102593922B1 (en) | 2018-10-31 | 2023-10-25 | 보레알리스 아게 | Polyethylene composition for high pressure resistant pipes with improved homogeneity |
EP3647645A1 (en) | 2018-10-31 | 2020-05-06 | Borealis AG | Polyethylene composition for high pressure resistant pipes |
EP3880722A1 (en) | 2018-11-15 | 2021-09-22 | Borealis AG | Propylene butene copolymer |
CN113195623B (en) | 2018-11-15 | 2024-02-06 | 博里利斯股份公司 | Composition and method for producing the same |
WO2020099566A1 (en) | 2018-11-15 | 2020-05-22 | Borealis Ag | Propylene butene copolymer |
EP3887410A1 (en) | 2018-11-28 | 2021-10-06 | Abu Dhabi Polymers Co. Ltd (Borouge) L.L.C. | Polyethylene composition for film applications |
US10961331B2 (en) | 2018-12-19 | 2021-03-30 | Chevron Phillips Chemical Company Lp | Ethylene homopolymers with a reverse short chain branch distribution |
US10774161B2 (en) | 2019-01-31 | 2020-09-15 | Chevron Phillips Chemical Company Lp | Systems and methods for polyethylene recovery with low volatile content |
US20200339780A1 (en) | 2019-04-29 | 2020-10-29 | Chevron Phillips Chemical Company Lp | Additive Systems Containing an Antioxidant and a Glycerol Stearate for Improved Color in Polyethylene Resins |
US11014997B2 (en) | 2019-05-16 | 2021-05-25 | Chevron Phillips Chemical Company Lp | Dual catalyst system for producing high density polyethylenes with long chain branching |
US11186656B2 (en) | 2019-05-24 | 2021-11-30 | Chevron Phillips Chemical Company Lp | Preparation of large pore silicas and uses thereof in chromium catalysts for olefin polymerization |
US10889664B2 (en) | 2019-06-12 | 2021-01-12 | Chevron Phillips Chemical Company Lp | Surfactant as titanation ligand |
US10858456B1 (en) | 2019-06-12 | 2020-12-08 | Chevron Phillips Chemical Company Lp | Aqueous titanation of Cr/silica catalysts by the use of acetylacetonate and another ligand |
US11242416B2 (en) | 2019-06-12 | 2022-02-08 | Chevron Phillips Chemical Company Lp | Amino acid chelates of titanium and use thereof in aqueous titanation of polymerization catalysts |
US11478781B2 (en) | 2019-06-19 | 2022-10-25 | Chevron Phillips Chemical Company Lp | Ziegler-Natta catalysts prepared from solid alkoxymagnesium halide supports |
CN114144440B (en) | 2019-07-22 | 2023-07-21 | 阿布扎比聚合物有限公司(博禄) | Single site catalysed multimodal polyethylene composition |
US11377541B2 (en) | 2019-07-26 | 2022-07-05 | Chevron Phillips Chemical Company Lp | Blow molding polymers with improved cycle time, processability, and surface quality |
US11028258B2 (en) | 2019-08-19 | 2021-06-08 | Chevron Phillips Chemical Company Lp | Metallocene catalyst system for producing LLDPE copolymers with tear resistance and low haze |
WO2021045889A1 (en) | 2019-09-05 | 2021-03-11 | Exxonmobil Chemical Patents Inc. | Processes for producing polyolefins and impact copolymers with broad molecular weight distribution and high stiffness |
EP4031518B1 (en) | 2019-09-16 | 2024-07-24 | Chevron Phillips Chemical Company LP | Chromium-catalyzed production of alcohols from hydrocarbons |
WO2021055184A1 (en) | 2019-09-16 | 2021-03-25 | Chevron Phillips Chemical Company Lp | Chromium-based catalysts and processes for converting alkanes into higher and lower aliphatic hydrocarbons |
US11667777B2 (en) | 2019-10-04 | 2023-06-06 | Chevron Phillips Chemical Company Lp | Bimodal polyethylene copolymers |
KR20220120608A (en) * | 2019-12-19 | 2022-08-30 | 디에스엠 아이피 어셋츠 비.브이. | Continuous solid-state polymerization process and reactor column for use therein |
US20230056312A1 (en) | 2020-01-24 | 2023-02-23 | Exxonmobil Chemical Patents Inc. | Methods for producing bimodal polyolefins and impact copolymers |
MY196880A (en) | 2020-01-28 | 2023-05-08 | Chevron Phillips Chemical Co Lp | Methods of preparing a catalyst utilizing hydrated reagents |
CN115135681A (en) | 2020-02-17 | 2022-09-30 | 埃克森美孚化学专利公司 | Propylene-based polymer composition with high molecular weight tail |
ES2928002T3 (en) | 2020-03-24 | 2022-11-14 | Borealis Ag | rigid blown film |
US11339279B2 (en) | 2020-04-01 | 2022-05-24 | Chevron Phillips Chemical Company Lp | Dual catalyst system for producing LLDPE and MDPE copolymers with long chain branching for film applications |
US11267919B2 (en) | 2020-06-11 | 2022-03-08 | Chevron Phillips Chemical Company Lp | Dual catalyst system for producing polyethylene with long chain branching for blow molding applications |
WO2022056146A1 (en) | 2020-09-14 | 2022-03-17 | Chevron Phillips Chemical Company Lp | Transition metal-catalyzed production of alcohol and carbonyl compounds from hydrocarbons |
US11674023B2 (en) | 2020-10-15 | 2023-06-13 | Chevron Phillips Chemical Company Lp | Polymer composition and methods of making and using same |
US11578156B2 (en) | 2020-10-20 | 2023-02-14 | Chevron Phillips Chemical Company Lp | Dual metallocene polyethylene with improved processability for lightweight blow molded products |
US11124586B1 (en) | 2020-11-09 | 2021-09-21 | Chevron Phillips Chemical Company Lp | Particle size control of metallocene catalyst systems in loop slurry polymerization reactors |
CN116547313A (en) | 2020-11-23 | 2023-08-04 | 博里利斯股份公司 | In situ reactor blends of Ziegler-Natta catalyzed nucleated polypropylene and metallocene catalyzed polypropylene |
CN116601177A (en) | 2020-11-27 | 2023-08-15 | 博里利斯股份公司 | Process for producing a solid-state image sensor |
WO2022125581A2 (en) | 2020-12-08 | 2022-06-16 | Chevron Phillips Chemical Company Lp | Particle size control of supported chromium catalysts in loop slurry polymerization reactors |
EP4019583B1 (en) | 2020-12-28 | 2024-04-10 | ABU DHABI POLYMERS CO. LTD (BOROUGE) - Sole Proprietorship L.L.C. | Polyethylene composition for film applications with improved toughness and stiffness |
US11125680B1 (en) | 2021-01-14 | 2021-09-21 | Chevron Phillips Chemical Company Lp | Methods for determining the activity of an activated chemically-treated solid oxide in olefin polymerizations |
EP4029914A1 (en) | 2021-01-14 | 2022-07-20 | Borealis AG | Heterophasic polyolefin composition |
CA3210180A1 (en) | 2021-01-28 | 2022-08-04 | Chevron Phillips Chemical Company Lp | Bimodal polyethylene copolymers |
US11584806B2 (en) | 2021-02-19 | 2023-02-21 | Chevron Phillips Chemical Company Lp | Methods for chromium catalyst activation using oxygen-enriched fluidization gas |
US11505630B2 (en) | 2021-03-15 | 2022-11-22 | Chevron Phillips Chemical Company Lp | Peroxide treated blow molding polymers with increased weight swell and constant die swell |
KR20240017932A (en) | 2021-06-10 | 2024-02-08 | 다우 글로벌 테크놀로지스 엘엘씨 | Catalyst compositions with modified activity and their manufacturing processes |
US20240287217A1 (en) | 2021-06-24 | 2024-08-29 | Borealis Ag | Process for polymerising olefins having narrow particle size distribution |
US20240301104A1 (en) | 2021-06-24 | 2024-09-12 | Borealis Ag | Use of a swelling agent in multi-stage polyolefin production |
CN117561286A (en) | 2021-06-24 | 2024-02-13 | 博里利斯股份公司 | Catalyst performance improvement in multi-stage polyolefin production |
US20240294682A1 (en) | 2021-06-24 | 2024-09-05 | Borealis Ag | Process for producing polyethylene polymers |
WO2022268960A1 (en) | 2021-06-24 | 2022-12-29 | Borealis Ag | Utilization of 1-hexene in multi-stage polyolefin production |
US11845826B2 (en) | 2021-08-26 | 2023-12-19 | Chevron Phillips Chemical Company Lp | Processes for preparing metallocene-based catalyst systems for the control of long chain branch content |
MX2024003133A (en) | 2021-09-13 | 2024-06-19 | Chevron Phillips Chemical Co Lp | Hydrocyclone modification of catalyst system components for use in olefin polymerizations. |
WO2023044092A1 (en) | 2021-09-20 | 2023-03-23 | Dow Global Technologies Llc | Process of making catalytically-active prepolymer composition and compositions made thereby |
EP4151677A1 (en) | 2021-09-21 | 2023-03-22 | Borealis AG | Biaxially oriented film |
CN117897414A (en) | 2021-09-23 | 2024-04-16 | 博里利斯股份公司 | Process for producing propylene copolymer |
EP4155328A1 (en) | 2021-09-23 | 2023-03-29 | Borealis AG | Propylene-butene random copolymer composition with low extractable content |
EP4163323B1 (en) | 2021-10-07 | 2024-05-29 | Borealis AG | Biaxially oriented film |
EP4163309A1 (en) | 2021-10-07 | 2023-04-12 | Borealis AG | Hdpe |
US11549748B1 (en) * | 2021-10-26 | 2023-01-10 | Chevron Phillips Chemical Company Lp | Emission free fluff transfer system and integrated nitrogen cycle |
US12077616B2 (en) | 2021-12-15 | 2024-09-03 | Chevron Phillips Chemical Company Lp | Production of polyethylene and ethylene oligomers from ethanol and the use of biomass and waste streams as feedstocks to produce the ethanol |
CA3240862A1 (en) | 2021-12-16 | 2023-06-22 | Chevron Phillips Chemical Company Lp | Modifications of sulfated bentonites and uses thereof in metallocene catalyst systems for olefin polymerization |
US11802865B2 (en) | 2021-12-27 | 2023-10-31 | Chevron Phillips Chemical Company Lp | Utilizing aTREF data with chemometric analysis for determining the types of polyethylene present in polymer blends and multilayer films |
US20230227592A1 (en) | 2022-01-14 | 2023-07-20 | Chevron Phillips Chemical Company Lp | Dual metallocene bimodal hdpe resins with improved stress crack resistance |
US11845814B2 (en) | 2022-02-01 | 2023-12-19 | Chevron Phillips Chemical Company Lp | Ethylene polymerization processes and reactor systems for the production of multimodal polymers using combinations of a loop reactor and a fluidized bed reactor |
EP4239014A1 (en) | 2022-03-02 | 2023-09-06 | Borealis AG | Film comprising a polyethylene composition |
EP4239015B1 (en) | 2022-03-02 | 2024-05-22 | Borealis AG | Monoaxially oriented film comprising a polyethylene composition |
EP4245805B1 (en) | 2022-03-18 | 2024-09-18 | Borealis AG | Polyethylene blend for a film layer |
EP4257640B1 (en) | 2022-04-04 | 2024-08-28 | Borealis AG | Pipe comprising a polypropylene composition |
US20230331875A1 (en) | 2022-04-19 | 2023-10-19 | Chevron Phillips Chemical Company Lp | Loop slurry periodogram control to prevent reactor fouling and reactor shutdowns |
US20230340166A1 (en) | 2022-04-26 | 2023-10-26 | Chevron Phillips Chemical Company Lp | Aqueous methods for titanating a chromium/silica catalyst with an alkali metal |
US12077627B2 (en) | 2022-04-26 | 2024-09-03 | Chevron Phillips Chemical Company Lp | Aqueous methods for titanating a chromium/silica catalyst with an alkali metal |
WO2023217750A1 (en) | 2022-05-12 | 2023-11-16 | Borealis Ag | Polyethylene copolymer for a film layer |
WO2023217751A1 (en) | 2022-05-12 | 2023-11-16 | Borealis Ag | Composition for a film layer |
EP4275889B1 (en) | 2022-05-12 | 2024-10-16 | Borealis AG | Oriented multilayered film |
WO2023235799A1 (en) | 2022-06-02 | 2023-12-07 | Chevron Phillips Chemical Company Lp | High porosity fluorided silica-coated alumina activator-supports and uses thereof in metallocene-based catalyst systems for olefin polymerization |
US12025351B2 (en) | 2022-06-08 | 2024-07-02 | Chevron Phillips Chemical Company Lp | Geothermal cooling of a coolant used in a heat exchange equipment |
EP4296289A1 (en) | 2022-06-23 | 2023-12-27 | Borealis AG | Polyethylene copolymer for a film layer |
US11753488B1 (en) | 2022-06-24 | 2023-09-12 | Chevron Phillips Chemical Company Lp | Processes for preparing metallocene-based catalyst systems with an alcohol compound |
WO2024003206A1 (en) | 2022-07-01 | 2024-01-04 | Borealis Ag | Polyethylene copolymer for a film layer |
EP4306442A1 (en) | 2022-07-14 | 2024-01-17 | Borealis AG | Composition |
EP4306444A1 (en) | 2022-07-14 | 2024-01-17 | Borealis AG | Composition |
WO2024025741A1 (en) | 2022-07-27 | 2024-02-01 | Exxonmobil Chemical Patents Inc. | Polypropylene compositions with enhanced strain hardening and methods of producing same |
EP4386046A1 (en) | 2022-12-16 | 2024-06-19 | Borealis AG | Composition |
EP4389819A1 (en) | 2022-12-20 | 2024-06-26 | Borealis AG | Polyolefin composition with excellent balance of properties |
EP4389786A1 (en) | 2022-12-20 | 2024-06-26 | Borealis AG | Heterophasic polypropylene composition |
EP4389776A1 (en) | 2022-12-20 | 2024-06-26 | Borealis AG | Process |
EP4389820A1 (en) | 2022-12-21 | 2024-06-26 | Borealis AG | Polypropylene random copolymer compositions with improved impact resistance for pipe applications |
WO2024133044A1 (en) | 2022-12-23 | 2024-06-27 | Borealis Ag | Process for producing a polypropylene homo- or copolymer |
WO2024133045A1 (en) | 2022-12-23 | 2024-06-27 | Borealis Ag | Process for producing a high-flow polypropylene homopolymer |
WO2024133046A1 (en) | 2022-12-23 | 2024-06-27 | Borealis Ag | Process for producing a polypropylene copolymer |
EP4417629A1 (en) | 2023-02-14 | 2024-08-21 | Borealis AG | Polyethylene blend for a film layer |
US20240301099A1 (en) | 2023-03-09 | 2024-09-12 | Chevron Phillips Chemical Company Lp | Dual metallocene polyethylene with improved escr for rotomolded, injection molded, and related products |
EP4431552A1 (en) | 2023-03-14 | 2024-09-18 | Borealis AG | Biaxially oriented polyethylene film with improved stiffness |
Family Cites Families (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3152872A (en) | 1964-10-13 | figure | ||
US3001978A (en) | 1961-09-26 | figure | ||
US2982763A (en) | 1961-05-02 | mcleod | ||
GB590595A (en) | 1944-03-14 | 1947-07-23 | Standard Oil Dev Co | Improved process and apparatus for the polymerisation of iso-olefins |
US3172737A (en) | 1965-03-09 | Coolant | ||
CA857386A (en) | 1970-12-01 | Bloyaert Felix | Process and apparatus for withdrawal of a suspension of olefinic polymers from a continuously operating reactor | |
US359356A (en) * | 1887-03-15 | Charles a | ||
US2952671A (en) | 1960-09-13 | Recovery of olefin polymers from solution | ||
US1693786A (en) | 1924-09-17 | 1928-12-04 | Krystal As | Process for the crystallization of solid substances in a coarse granular form from solutions |
FR647754A (en) | 1926-12-31 | 1928-11-30 | Improvements in processes for separating, from a stream of substances, materials entrained by it and being in suspension therein | |
US2770295A (en) | 1952-12-05 | 1956-11-13 | Jr Louis N Allen | Concentrating process and apparatus |
DE1051004B (en) | 1953-01-27 | 1959-02-19 | Phillips Petroleum Company, Bartlesville, OkIa. (V. St. A.) | Process for the production of high molecular weight olefin polymers or olefin copolymers |
US2915513A (en) | 1954-05-21 | 1959-12-01 | Phillips Petroleum Co | Polymerization process |
GB790547A (en) | 1954-10-22 | 1958-02-12 | British Petroleum Co | Improvements relating to the production of motor fuel |
LU34024A1 (en) | 1954-11-08 | |||
LU33991A1 (en) | 1954-12-03 | |||
NL95969C (en) | 1955-08-04 | |||
US2988527A (en) | 1957-03-22 | 1961-06-13 | Exxon Research Engineering Co | Process for modifying an isoolefin polymer |
GB887707A (en) | 1957-03-22 | 1962-01-24 | Montedison Spa | Process for preparing high molecular weight polymers of ?-olefins |
IT598975A (en) | 1957-11-20 | |||
GB863055A (en) | 1958-01-21 | 1961-03-15 | Union Carbide Corp | Suspension polymerization and apparatus therefor |
BE581437A (en) | 1958-08-11 | |||
DE1800935U (en) | 1959-05-16 | 1959-11-26 | Walter Knoll | RECORD LIFTER. |
NL258535A (en) | 1959-12-01 | |||
US3242150A (en) | 1960-03-31 | 1966-03-22 | Phillips Petroleum Co | Method and apparatus for the recovery of solid olefin polymer from a continuous path reaction zone |
US3257363A (en) † | 1961-05-22 | 1966-06-21 | Phillips Petroleum Co | Control of the composition of a reaction mixture |
US3203766A (en) † | 1961-07-06 | 1965-08-31 | Phillips Petroleum Co | Apparatus for the recovery of solids from pressure vessels |
US3451785A (en) * | 1961-07-06 | 1969-06-24 | Phillips Petroleum Co | Pressure relief system for pressure vessels |
US3248179A (en) | 1962-02-26 | 1966-04-26 | Phillips Petroleum Co | Method and apparatus for the production of solid polymers of olefins |
US3285899A (en) | 1962-08-30 | 1966-11-15 | Phillips Petroleum Co | Method for continuously discharging the contents of a pressurized vessel |
US3293000A (en) | 1962-10-05 | 1966-12-20 | Phillips Petroleum Co | Withdrawal of solids from a flowing stream comprising a slurry of same |
US3262922A (en) | 1963-02-08 | 1966-07-26 | Phillips Petroleum Co | Polymerization process |
US3639374A (en) * | 1963-04-11 | 1972-02-01 | Rexall Drug Chemical | Process for flashing propylene diluent from polypropylene in cyclone separator |
US3318857A (en) | 1963-05-24 | 1967-05-09 | Phillips Petroleum Co | Polymerization zone effluent treatment |
US3309350A (en) | 1963-07-31 | 1967-03-14 | Rexall Drug Chemical | Process for polymerizing ethylene |
US3324093A (en) | 1963-10-21 | 1967-06-06 | Phillips Petroleum Co | Loop reactor |
US3374211A (en) * | 1964-07-27 | 1968-03-19 | Phillips Petroleum Co | Solids recovery from a flowing stream |
US3418305A (en) | 1964-11-25 | 1968-12-24 | Phillips Petroleum Co | Polymer drying process |
US3428619A (en) * | 1965-05-27 | 1969-02-18 | Phillips Petroleum Co | Suspension handling |
GB1147019A (en) | 1967-03-20 | 1969-04-02 | Solvay | Process and apparatus for polymerisation of olefins |
BE695770A (en) | 1967-03-20 | 1967-09-20 | ||
US3594356A (en) | 1967-04-24 | 1971-07-20 | Phillips Petroleum Co | Polymer recovery process and apparatus |
FR1550146A (en) | 1967-08-01 | 1968-12-20 | ||
US3640980A (en) | 1967-10-04 | 1972-02-08 | Nat Distillers Chem Corp | Continuous process for the production of alfin polymers by polymerization of alfin monomers in an organic solvent and for recovering and recycling solvent |
FR1585028A (en) | 1968-05-14 | 1970-01-09 | ||
US3527363A (en) * | 1968-08-26 | 1970-09-08 | Kelso Marine Inc | Apparatus for rotating structural shapes |
US3642731A (en) | 1969-07-18 | 1972-02-15 | Exxon Research Engineering Co | Novel process for solvent purification and recovery |
PL82848A6 (en) | 1971-02-23 | 1975-10-31 | ||
BE786661A (en) † | 1971-07-27 | 1973-01-24 | Nat Petro Chem | PROCESS FOR THE PRODUCTION OF ETHYLENE / BUTENE-1 COPOLYMERS AND ETHYLENE HOMOPOLYMERS |
GB1400438A (en) | 1971-11-22 | 1975-07-16 | Ici Ltd | Polymerisation process |
DE2212611B2 (en) | 1972-03-16 | 1977-08-04 | BUhler-Miag GmbH, 3300 Braunschweig | DEVICE FOR CONTINUOUS FORMATION OF GOOD PORTIONS AND INTRODUCING THEM INTO A PNEUMATIC CONVEYOR LINE |
US3816383A (en) | 1972-05-01 | 1974-06-11 | Nat Petro Chem | Separation of olefin polymers |
US3956061A (en) | 1974-02-19 | 1976-05-11 | Ozark-Mahoning Company | Multi-stage processing and concentration of solutions |
DE2409839C2 (en) | 1974-03-01 | 1982-11-18 | Basf Ag, 6700 Ludwigshafen | Process for producing small-particle olefin polymers |
US3912701A (en) | 1974-03-25 | 1975-10-14 | Dart Ind Inc | Olefin polymerization process |
NL7509293A (en) * | 1975-08-05 | 1977-02-08 | Stamicarbon | DEVICE FOR PREPARING POLYMERS WITH A WIDE MOLECULAR WEIGHT DISTRIBUTION. |
US3956257A (en) | 1975-08-14 | 1976-05-11 | Phillips Petroleum Company | Hydrocarbylaluminum hydrocarbyloxide antifouling agent in olefin polymerization process |
US4099335A (en) | 1976-11-19 | 1978-07-11 | Standard Oil Company (Indiana) | Drying and finishing operations in slurry or bulk phase polymerization processes |
US4121029A (en) | 1976-12-06 | 1978-10-17 | Phillips Petroleum Company | Polyolefin reactor system |
DE2815700C3 (en) | 1978-04-12 | 1982-04-08 | Dr. C. Otto & Comp. Gmbh, 4630 Bochum | Pressure vessel for the continuous separation of sulfur from an aqueous sulfur suspension |
DE2735355A1 (en) | 1977-08-05 | 1979-02-15 | Basf Ag | PROCESS FOR PREPARING HOMOPOLYMERIZED AND COPOLYMERIZED PRODUCTS OF ETHYLENE |
US4395523A (en) * | 1978-03-16 | 1983-07-26 | Chemplex Company | Method of making and recovering olefin polymer particles |
US4199546A (en) | 1978-03-16 | 1980-04-22 | Chemplex Company | Manufacture and recovery of olefin polymer particles |
US4126743A (en) | 1978-03-31 | 1978-11-21 | Mitsui Toatsu Chemicals, Incorporated | Method for continuous transfer of polymer slurries |
US4439601A (en) | 1979-03-30 | 1984-03-27 | Cosden Technology, Inc. | Multiple stage devolatilization process for mass processable polymers |
US4383972A (en) | 1979-03-30 | 1983-05-17 | Polymer Research, Inc. | Apparatus for the multiple stage devolatilization of mass processable polymers |
DE2925191C2 (en) * | 1979-06-22 | 1982-11-11 | BURDOSA Ing. Herwig Burgert, 6305 Buseck | Loop reactor |
US4372758A (en) | 1980-09-02 | 1983-02-08 | Union Carbide Corporation | Degassing process for removing unpolymerized monomers from olefin polymers |
US4461889A (en) | 1980-09-17 | 1984-07-24 | Phillips Petroleum Company | Separation of solid polymers and liquid diluent |
US4737280A (en) | 1980-09-17 | 1988-04-12 | Phillips Petroleum Company | Separation of solid polymers and liquid diluent |
US4424341A (en) | 1981-09-21 | 1984-01-03 | Phillips Petroleum Company | Separation of solid polymers and liquid diluent |
US4501885A (en) | 1981-10-14 | 1985-02-26 | Phillips Petroleum Company | Diluent and inert gas recovery from a polymerization process |
US4436902A (en) | 1982-02-12 | 1984-03-13 | Phillips Petroleum Company | Removal of contaminants in liquid purification |
US4543399A (en) | 1982-03-24 | 1985-09-24 | Union Carbide Corporation | Fluidized bed reaction systems |
DE3215624A1 (en) | 1982-04-27 | 1983-10-27 | Wacker-Chemie GmbH, 8000 München | METHOD AND DEVICE FOR PRODUCING VINYL CHLORIDE POLYMERISATS |
US4499263A (en) | 1983-05-17 | 1985-02-12 | Phillips Petroleum Company | Vapor recovery from particles containing same |
US4832915A (en) | 1983-05-17 | 1989-05-23 | Phillips Petroleum Company | Vapor recovery from particles containing same |
US4690804A (en) | 1983-07-15 | 1987-09-01 | Phillips Petroleum Company | Catalyst feed system |
US4589957A (en) | 1983-08-25 | 1986-05-20 | Phillips Petroleum Company | Monomer and diluent recovery |
JPS60219205A (en) | 1984-04-16 | 1985-11-01 | Mitsui Toatsu Chem Inc | Continuous discharge of slurry |
US4613484A (en) | 1984-11-30 | 1986-09-23 | Phillips Petroleum Company | Loop reactor settling leg system for separation of solid polymers and liquid diluent |
DE3612376A1 (en) | 1986-04-12 | 1987-10-15 | Basf Ag | METHOD FOR PRODUCING SMALL-PIECE HOMO- AND COPOLYMERISATES OF ETHENS USING A LIQUID ALKANE AS A REACTION MEDIUM |
US5183866A (en) * | 1989-08-30 | 1993-02-02 | Phillips Petroleum Company | Polymer recovery process |
CA2023745A1 (en) * | 1989-11-27 | 1991-05-28 | Kelly E. Tormaschy | Control of polymerization reaction |
US5272236A (en) | 1991-10-15 | 1993-12-21 | The Dow Chemical Company | Elastic substantially linear olefin polymers |
US5371158A (en) | 1990-07-05 | 1994-12-06 | Hoechst Aktiengesellschaft | Bulk polymerization using specific metallocene catalysts for the preparation of cycloolefin polymers |
US5565175A (en) | 1990-10-01 | 1996-10-15 | Phillips Petroleum Company | Apparatus and method for producing ethylene polymer |
FI86867C (en) | 1990-12-28 | 1992-10-26 | Neste Oy | FLERSTEGSPROCESS FOR FRAMSTAELLNING AV POLYETEN |
US5575979A (en) * | 1991-03-04 | 1996-11-19 | Phillips Petroleum Company | Process and apparatus for separating diluents from solid polymers utilizing a two-stage flash and a cyclone separator |
DE4112789A1 (en) | 1991-04-19 | 1992-10-22 | Bayer Ag | METHOD FOR REPROCESSING STABILIZED ABS POLYMERISATES WITH RECOVERY OF UNACTIVATED MONOMERS |
US5207929A (en) | 1991-08-02 | 1993-05-04 | Quantum Chemical Corporation | Method for removing hydrocarbons from polymer slurries |
US5278272A (en) | 1991-10-15 | 1994-01-11 | The Dow Chemical Company | Elastic substantialy linear olefin polymers |
US5314579A (en) | 1992-01-13 | 1994-05-24 | Quantum Chemical Corporation | Process for removing hydrocarbons from polymer slurries |
JP2514386Y2 (en) | 1992-04-23 | 1996-10-16 | 古河電気工業株式会社 | Cable laminated winding structure |
JP3026686B2 (en) | 1992-09-22 | 2000-03-27 | 三洋電機株式会社 | Video tape recorder |
US5292863A (en) | 1992-11-02 | 1994-03-08 | Union Carbide Chemicals | Process for removing unpolymerized gaseous monomers from olefin polymers |
US5276115A (en) | 1992-12-14 | 1994-01-04 | Phillips Petroleum Company | Mono-1-olefin polymerization in the presence of hydrogen and a cyclopentadienyl compound |
US5387659A (en) | 1993-02-08 | 1995-02-07 | Phillips Petroleum Company | Flash gas sampling for polymerization reactions |
US6042790A (en) | 1993-02-08 | 2000-03-28 | Phillips Petroleum Company | Apparatus for maintaining unreacted monomer concentration in a polymerization reactor |
BE1007653A3 (en) | 1993-10-26 | 1995-09-05 | Fina Research | Polyethylene production process with broad molecular weight distribution. |
GB9322967D0 (en) * | 1993-11-08 | 1994-01-05 | Gbe International Plc | A process and apparatus for treating a hygroscopic material |
US5416179A (en) | 1994-03-16 | 1995-05-16 | Phillips Petroleum Company | Catalyst compositions and olefin polymerization |
US5554100A (en) * | 1994-03-24 | 1996-09-10 | United States Surgical Corporation | Arthroscope with shim for angularly orienting illumination fibers |
US5436212A (en) | 1994-04-15 | 1995-07-25 | Phillips Petroleum Company | Organoaluminoxy product, preparation, and use |
US5473020A (en) | 1994-06-30 | 1995-12-05 | Phillips Petroleum Company | Polymer bound ligands, polymer bound metallocenes, catalyst systems, preparation, and use |
US5455314A (en) | 1994-07-27 | 1995-10-03 | Phillips Petroleum Company | Method for controlling removal of polymerization reaction effluent |
US5744555A (en) | 1994-11-25 | 1998-04-28 | Eastman Chemical Company | Process for the synthesis of elastomeric polypropylene |
KR19980702645A (en) * | 1995-03-08 | 1998-08-05 | 알베르투스 빌헬무스 요아네스 쩨스트라텐 | The bridged bis-amido Group 4 metal compounds in the catalyst composition |
US5712365A (en) | 1995-03-27 | 1998-01-27 | Tosoh Corporation | Process for producing ethylene alpha-olefin copolymer |
FI952098A (en) | 1995-05-02 | 1996-11-03 | Borealis As | Method of manufacturing LLDPE polymers |
US5959044A (en) | 1996-07-08 | 1999-09-28 | Villar; Juan Carlos | Method of controlling continuous ethylene-limited metallocene-catalyzed copolymerization systems |
EP0824116A1 (en) | 1996-08-13 | 1998-02-18 | Bp Chemicals S.N.C. | Polymerisation process |
EP0824115A1 (en) | 1996-08-13 | 1998-02-18 | Bp Chemicals S.N.C. | Polymerisation process |
US5747407A (en) | 1996-08-29 | 1998-05-05 | Phillips Petroleum Company | Method of making a Ziegler-Natta olefin polymerization catalyst |
US6239235B1 (en) | 1997-07-15 | 2001-05-29 | Phillips Petroleum Company | High solids slurry polymerization |
US6281300B1 (en) | 1998-03-20 | 2001-08-28 | Exxon Chemical Patents, Inc. | Continuous slurry polymerization volatile removal |
WO1999047251A1 (en) | 1998-03-20 | 1999-09-23 | Exxon Chemical Patents Inc. | Continuous slurry polymerization volatile removal |
KR100531628B1 (en) | 1998-03-20 | 2005-11-29 | 엑손모빌 케미칼 패턴츠 인코포레이티드 | Continuous slurry polymerization volatile removal |
US20020111441A1 (en) | 1998-03-20 | 2002-08-15 | Kendrick James Austin | Continuous slurry polymerization volatile removal |
AU755016B2 (en) | 1998-05-18 | 2002-11-28 | Chevron Phillips Chemical Company Lp | Continuous slurry polymerization volatile removal |
US6045661A (en) | 1998-05-20 | 2000-04-04 | Phillips Petroleum Company | Process and apparatus for recovering diluent, monomer, and comonomer from a polymerization reactor effluent |
EP1020481A1 (en) | 1999-01-18 | 2000-07-19 | Fina Research S.A. | Production of polyethylene |
HUP0202409A2 (en) | 1999-07-15 | 2002-10-28 | Phillips Petroleum Co | Slotted slurry take off |
US6566460B1 (en) * | 2000-08-04 | 2003-05-20 | Equistar Chemicals, Lp | Continuous recovery of polymer from a slurry loop reactor |
JP3084014U (en) | 2001-08-09 | 2002-02-28 | 日東製網株式会社 | Aseptic purified cold seawater production equipment |
-
1997
- 1997-07-15 US US08/893,200 patent/US6239235B1/en not_active Expired - Lifetime
-
1998
- 1998-06-29 SG SG1998001542A patent/SG72838A1/en unknown
- 1998-07-07 KR KR1019980027296A patent/KR100513212B1/en not_active IP Right Cessation
- 1998-07-09 ZA ZA986097A patent/ZA986097B/en unknown
- 1998-07-10 JP JP10195888A patent/JPH1180210A/en active Pending
- 1998-07-14 EP EP98113059.4A patent/EP0891990B2/en not_active Expired - Lifetime
- 1998-07-14 CN CNB981160484A patent/CN1205237C/en not_active Expired - Lifetime
- 1998-07-14 HU HU9801569A patent/HUP9801569A3/en unknown
- 1998-07-14 DK DK98113059T patent/DK0891990T3/en active
- 1998-07-14 TW TW087111414A patent/TW515808B/en not_active IP Right Cessation
- 1998-07-14 AT AT98113059T patent/ATE276282T1/en not_active IP Right Cessation
- 1998-07-14 TR TR1998/01363A patent/TR199801363A2/en unknown
- 1998-07-14 RU RU98113720/04A patent/RU2221812C2/en active
- 1998-07-14 DE DE69826190T patent/DE69826190D1/en not_active Expired - Lifetime
- 1998-07-14 YU YU29398A patent/YU49229B/en unknown
- 1998-07-14 ES ES98113059.4T patent/ES2229423T5/en not_active Expired - Lifetime
- 1998-07-15 NO NO19983277A patent/NO319091B1/en not_active IP Right Cessation
- 1998-07-15 CA CA002243250A patent/CA2243250C/en not_active Expired - Lifetime
- 1998-12-16 BR BR9802445A patent/BR9802445A/en not_active IP Right Cessation
-
2002
- 2002-06-20 US US10/177,624 patent/US20030012705A1/en not_active Abandoned
- 2002-06-20 US US10/176,201 patent/US20020187081A1/en not_active Abandoned
- 2002-06-20 US US10/176,204 patent/US20030023010A1/en not_active Abandoned
- 2002-06-20 US US10/177,615 patent/US20030027944A1/en not_active Abandoned
- 2002-06-20 US US10/176,289 patent/US6806324B2/en not_active Expired - Lifetime
- 2002-06-20 US US10/176,247 patent/US6743869B2/en not_active Expired - Lifetime
- 2002-08-26 US US10/228,833 patent/US20030050409A1/en not_active Abandoned
- 2002-11-20 US US10/301,281 patent/US20030092856A1/en not_active Abandoned
-
2004
- 2004-05-19 US US10/849,393 patent/US20040192860A1/en not_active Abandoned
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8101692B2 (en) | 2004-11-26 | 2012-01-24 | Ineos Manufacturing Belgium Nv | Slurry phase polymerisation process |
US8580202B2 (en) | 2004-11-26 | 2013-11-12 | Ineos Manufacturing Belgium Nv | Slurry phase polymerisation process |
US9567408B2 (en) | 2004-11-26 | 2017-02-14 | Ineos Manufacturing Belgium Nv | Slurry phase polymerisation process |
US20080262171A1 (en) * | 2004-11-26 | 2008-10-23 | Ineos Manufacturing Belgium Nv | Slurry Phase Polymerisation Process |
US9212242B2 (en) | 2004-11-26 | 2015-12-15 | Ineos Manufacturing Belgium Nv | Slurry phase polymerisation process |
US7572866B2 (en) | 2004-11-26 | 2009-08-11 | Ineos Manufacturing Belgium Nv | Slurry phase polymerisation process |
US20090209702A1 (en) * | 2004-11-26 | 2009-08-20 | Ineos Manufacturing Belgium Nv | Slurry phase polymerisation process |
US8927665B2 (en) | 2004-11-26 | 2015-01-06 | Ineos Manufacturing Belgium Nv | Slurry phase polymerisation process |
US7781546B2 (en) | 2004-11-26 | 2010-08-24 | Ineos Manufacturing Belgium Nv | Slurry phase polymerisation process |
US7790119B2 (en) | 2004-11-26 | 2010-09-07 | Ineos Manufacturing Belgium Nv | Slurry phase polymerisation process |
US7820116B2 (en) | 2004-11-26 | 2010-10-26 | Ineos Manufacturing Belgium Nv | Slurry phase polymerisation process |
US20100329934A1 (en) * | 2004-11-26 | 2010-12-30 | Ineos Manufacturing Belgium Nv | Slurry phase polymerisation process |
US20080132656A1 (en) * | 2004-11-26 | 2008-06-05 | Stephen Kevin Lee | Slurry Phase Polymerisation Process |
US20080132655A1 (en) * | 2004-11-26 | 2008-06-05 | Stephen Kevin Lee | Slurry Phase Polymerisation Process |
US7632899B2 (en) | 2004-11-26 | 2009-12-15 | Ineos Manufacturing Belgium Nv | Slurry phase polymerisation process |
US7547750B2 (en) * | 2005-10-05 | 2009-06-16 | Chevron Phillips Chemical Company Lp | Apparatus and method for removing polymer solids from slurry loop reactor |
US20070078237A1 (en) * | 2005-10-05 | 2007-04-05 | Chevron Phillips Chemical Company, Lp | Apparatus and method for removing polymer solids from slurry loop reactor |
US8816024B2 (en) | 2010-05-21 | 2014-08-26 | Chevron Phillips Chemical Company Lp | Continuous take off technique and pressure control of polymerization reactors |
US8344078B2 (en) | 2010-05-21 | 2013-01-01 | Chevron Phillips Chemical Company Lp | Continuous take off technique and pressure control of polymerization reactors |
US8703063B2 (en) | 2010-06-21 | 2014-04-22 | Chevron Phillips Chemical Company Lp | System and method for closed relief of a polyolefin loop reactor system |
US9163564B2 (en) | 2010-06-21 | 2015-10-20 | Chevron Phillips Chemical Company Lp | Method and system for energy generation in a chemical plant by utilizing flare gas |
US9447264B2 (en) | 2010-06-21 | 2016-09-20 | Chevron Phillips Chemical Company Lp | System and method for closed relief of a polyolefin loop reactor system |
WO2013172950A1 (en) | 2012-05-18 | 2013-11-21 | Union Carbide Chemicals And Plastics Technology Llc | Process for preparing catalysts and catalysts made thereby |
US11894144B2 (en) | 2013-08-27 | 2024-02-06 | Whiskers Worldwide, LLC | Animal health decision support system and methods |
US10029230B1 (en) | 2017-01-24 | 2018-07-24 | Chevron Phillips Chemical Company Lp | Flow in a slurry loop reactor |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6743869B2 (en) | High polymer solids slurry polymerization employing 1-olefin comonomer | |
EP1543041B1 (en) | Polymerization reactior having large length/diameter ratio | |
EP2993193B1 (en) | Separation of polymer particles and vaporized diluent in a cyclone | |
AU760970B2 (en) | Slotted slurry take off | |
US6420497B1 (en) | Solids concentration in slurry polymerization | |
EP1549680B1 (en) | Improved pumping apparatus and process for slurry polymerization in loop reactors | |
EP2275452B1 (en) | Improved pumping apparatus and process for slurry polymerization in loop reactors | |
MXPA98005503A (en) | Olefi polymerization process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |