US20030012679A1 - Gold alloys and master alloys for obtaining them - Google Patents

Gold alloys and master alloys for obtaining them Download PDF

Info

Publication number
US20030012679A1
US20030012679A1 US10/156,386 US15638602A US2003012679A1 US 20030012679 A1 US20030012679 A1 US 20030012679A1 US 15638602 A US15638602 A US 15638602A US 2003012679 A1 US2003012679 A1 US 2003012679A1
Authority
US
United States
Prior art keywords
gold
alloy
weight
silicon
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/156,386
Inventor
Massimo Poliero
Andrea Basso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEG OR Srl
Original Assignee
LEG OR Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8184548&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030012679(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by LEG OR Srl filed Critical LEG OR Srl
Assigned to LEG.OR S.R.L. reassignment LEG.OR S.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BASSO, ANDREA, POLIERO, MASSIMO
Publication of US20030012679A1 publication Critical patent/US20030012679A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold

Definitions

  • the present invention relates to gold alloys and to master alloys for obtaining them, mainly for the manufacturing of precious items such as jewellery and gold works, coins and medals.
  • One of the fundamental goals in jewelry is to obtain gold alloys exhibiting good fluidity (i.e. a good ability to fill and replicate wax patterns) at the moment of casting, and finished articles which have a bright outer surface and a good mechanical properties.
  • Silicon deoxidized alloys are widely used for investment casting in jewelry manufacturing.
  • the main advantages of silicon are primarily related to its strong affinity with oxygen, thus preventing zinc and copper oxidation.
  • Such inclusions can appear on the surface of the finished piece after the final work process, entailing either the rework of the piece, or its discarding.
  • the main disadvantages related to the aforementioned invention are related to the inability of germanium to produce bright and oxidation free castings especially when melting and casting processes are carried out in presence of small amounts of oxygen. It must be pointed out how, even in high quality undervacuum casting equipments used for jewelry manufacturing, the oxygen presence in small amounts cannot be removed completely.
  • the technical task constituting the basis of the present invention is to provide gold alloys and master alloys for obtaining them which overcome the aforementioned drawbacks.
  • the technical task of the present invention is to provide gold alloys and master alloys for obtaining them, which exhibit excellent fluidity in the molten state, brightness and mechanical resistance.
  • Germanium in the percentage of employment described in the present invention, possesses a remarkable ability to increase fluidity, this to be considered similar or superior to silicon. As described below, this property can be highlighted in comparative melting tests between silicon based alloys and germanium based alloys, the latter described in the present invention.
  • germanium and silicon allows at the same time to combine the positive effect of the silicon on brightness of the jewels and the high fluidity of the alloy provided by the germanium.
  • germanium concentrations varying between 0.05% and 2% by weight have led to an increasing of fluidity deemed to be similar or even greater than silicon. Furthermore, on the basis of our studies, germanium does not show any effect on grain enlargement, even when used at significantly higher concentrations in comparison to silicon.
  • Germanium based alloys show an improvement on ductility.
  • Germanium and Phosphorus allows to reduce the minimum silicon amount to be added in order to obtain bright and oxidation free castings.
  • germanium or germanium and phosphorus with small quantities of silicon allows to obtain “clean and shiny” castings, with no degradation of mechanical properties as can be observed in traditional based alloys where the sole silicon in larger amounts is employed.
  • FIG. 1 shows in graph form the effect of different elements and compounds on the grain size of a gold alloy
  • FIG. 2 shows in graph form the effect of the quantity of silicon and germanium on the grain size of the gold alloy
  • FIG. 3 shows in graph form the effect of the elements and compounds of FIG. 1 on the tensile strength of the gold alloy obtained therewith;
  • a first gold alloy of the present invention comprises at least the following elements:
  • germanium Ge ⁇ 2%
  • a second gold alloy further comprises silicon: 0.015% ⁇ Si ⁇ 0.3%, with reference to the total weight of the alloy.
  • the gold alloy can contain (with percentages expressed in weight):
  • nickel Ni ⁇ 20%
  • the alloy can also contain, in a proportion not exceeding 4% by weight, at least one of the elements of the group constituted by cobalt, manganese, tin and indium.
  • one ore more deoxidizing elements such as magnesium, silicon, boron and lithium can also be added, each in a proportion not exceeding 0.15% by weight.
  • the alloy can also comprise refining elements such as ruthenium, rhenium and platinum in a suitable quantity and preferably not exceeding 0.4% by weight.
  • a first preferred range is the one associated with obtaining 18 carat gold, in which the quantity of gold present in the alloy is between 74% and 77% by weight.
  • a second preferred range is the one associated with obtaining 14 carat gold, in which the quantity of gold present in the alloy is between 57% and 60% by weight.
  • a third preferred range is the one associated with obtaining 8 carat gold, in which the quantity of gold present in the alloy is between 33% and 35% by weight.
  • a fourth preferred range is the one associated with obtaining 9 carat gold, in which the quantity of gold present in the alloy is between 37% and 39% by weight.
  • a fifth preferred range is the one associated with obtaining 10 carat gold, in which the quantity of gold present in the alloy is between 40% and 43% by weight.
  • master alloys for obtaining the above gold alloys they are composed at least by:
  • Germanium Ge ⁇ 4%
  • the master alloy can also comprise, as a weight percentage relative to the total weight of the master alloy:
  • nickel Ni ⁇ 41%
  • the master alloy can include, in quantities not exceeding 8% by weight, at least one of the elements of the group constituted by cobalt, manganese, tin and indium.
  • the master alloy can further include, in quantities not exceeding 0.56% by weight, at least one of the deoxidizing elements of the group constituted by magnesium, silicon, boron and lithium.
  • At least one of the refining elements of the group constituted by ruthenium, rhenium and platinum can be inserted in the master alloy, in quantities not exceeding 0.96% by weight.
  • a 14 carat yellow gold alloy whose composition in terms of weight percentage is as follows: Gold 58.5 with master alloy comprising (as a percentage on the weight of the gold alloy): Silver 8.0 Zinc 6.0 Iridium 0.01 Germanium 0.4 Phosphorus: 0.01 Silicon 0.06 Copper, sufficient to reach 100.
  • a 18 carat yellow gold alloy whose composition in terms of weight percentage is as follows: Gold 75.0 with master alloy comprising (as a percentage on the weight of the gold alloy): Silver 15.0 Iridium 0.01 Germanium 0.2 Phosphorus: 0.01 Copper sufficient to reach 100.
  • a 18 carat yellow gold alloy whose composition in terms of weight percentage is as follows: Gold 75.0 with master alloy comprising (as a percentage on the weight of the gold alloy): Silver 12.5 Zinc 0.5 Germanium 0.25 Silicon 0.04 Copper sufficient to reach 100 (in this specific case 11.71%).
  • a 14 carat white gold alloy whose composition in terms of weight percentage is as follows: Gold 58.5 with master alloy comprising (as a percentage on the weight of the gold alloy): Nickel 8.5 Zinc 8.0 Iridium 0.01 Germanium 0.4 Phosphorus: 0.01 Copper sufficient to reach 100.
  • a 18 carat white gold alloy whose composition in terms of weight percentage is as follows: Gold 75.0 with master alloy comprising (as a percentage on the weight of the gold alloy): Nickel 7.5 Zinc 3.5 Iridium 0.01 Germanium 0.25 Phosphorus: 0.01 Copper sufficient to reach 100.
  • a 8 carat yellow gold alloy whose composition in terms of weight percentage Gold 33.3 with master alloy comprising (as a percentage on the weight of the gold alloy): Silver 13.0 Zinc 10.0 Germanium 0.4 Silicon 0.2 Iridium 0.02 Copper sufficient to reach 100 (in this specific case 43.08%).
  • a 10 carat yellow gold alloy whose composition in terms of weight percentage is as follows: Gold 41.7 with master alloy comprising (as a percentage on the weight of the gold alloy): Silver 11.0 Zinc 8.7 Germanium 0.3 Silicon 0.15 Iridium 0.017 Copper sufficient to reach 100 (in this specific case 38.13%
  • a preferential process comprises the following phases:
  • a preferential process comprises the following phases:
  • FIG. 1 shows the variation in the dimensions of the crystal grain of the alloy as a result of the addition, thereto, of the elements and compounds indicated in the x-coordinate. It is evident that the influence of only silicon (Si) on the increase in grain size is considerably higher than the influence of germanium (Ge).
  • FIG. 2 shows the effect of the concentration of silicon and germanium alone, on the grain dimension of the gold alloy.
  • a low concentration of silicon in the graph from 0 to 300 ppm, entails a considerable increase in crystal grain size, even exceeding the size increase caused by additions of germanium in concentrations that are 10 times greater.
  • FIG. 3 shows the (positive or negative) variation of the maximum load bearable by the alloy, following the addition to the alloy of equal quantities of the different elements or compounds indicated in the x-coordinate (good both germanium alone, and germanium plus Copper plus silicon).
  • germanium instead of, or together with, silicon also yielded positive effects on the percent of lengthening of the alloy following the tensile test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Contacts (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Adornments (AREA)

Abstract

Gold alloy comprising, by weight, at least Gold Au≧33%, Iridium Ir≦0.4%, germanium Ge≦2%, 0.015% ≦silicon ≦0.3%, Phosphorus ≦0.02% and Copper Cu≦66%. The alloy can also comprise, in percentage by weight, Silver Ag≦34%, nickel Ni≦20% and Zinc Zn≦25%. In some variations the gold alloy can further comprise no more than 4% of at least one of the elements of the group constituted by cobalt, manganese, tin and indium, and no more than 0.15% of at least one of the deoxidizing elements of the group constituted by magnesium, silicon, boron and lithium. To the alloy can also be added at least one of the refining elements of the group constituted by ruthenium, rhenium and platinum in quantities not exceeding 0.4% by weight. The invention further relates to a master alloy for obtaining said gold alloy.

Description

    TECHNICAL FIELD
  • The present invention relates to gold alloys and to master alloys for obtaining them, mainly for the manufacturing of precious items such as jewellery and gold works, coins and medals. [0001]
  • BACKGROUND OF THE INVENTION
  • One of the fundamental goals in jewelry is to obtain gold alloys exhibiting good fluidity (i.e. a good ability to fill and replicate wax patterns) at the moment of casting, and finished articles which have a bright outer surface and a good mechanical properties. [0002]
  • Silicon deoxidized alloys are widely used for investment casting in jewelry manufacturing. The main advantages of silicon are primarily related to its strong affinity with oxygen, thus preventing zinc and copper oxidation. [0003]
  • This gives rise to a protective ability of the silicon, which is manifested either during the production of grains, or the investment casting process. [0004]
  • However, a considerable drawback of silicon when added to gold alloys is the effect on the enlargement of grain size, leading to brittleness and mechanical failures, with degradation of the mechanical properties (especially in the case of 18 carat gold alloys). [0005]
  • In order to reduce the grain enlargement due to silicon additions, the addition of a suitable quantity of grain refiners elements such as iridium, ruthenium, cobalt, nickel and rhenium, is nowadays widely used. [0006]
  • However, this solution too is not totally free of drawbacks. [0007]
  • It is well known the unique ability of silicon to combine with the refining elements commonly used giving rise to the formation of silicides with consequent formation of high melting intermetallic silicide inclusions commonly known as “hard spots”. [0008]
  • Such inclusions can appear on the surface of the finished piece after the final work process, entailing either the rework of the piece, or its discarding. [0009]
  • Another solution is proposed in the patent U.S. Pat. No. 5,384,089, where gold alloys substantially silicon-free are disclosed. In this patent, the addition of germanium as a deoxidizing element for production of yellow gold alloys is disclosed. [0010]
  • The main disadvantages related to the aforementioned invention are related to the inability of germanium to produce bright and oxidation free castings especially when melting and casting processes are carried out in presence of small amounts of oxygen. It must be pointed out how, even in high quality undervacuum casting equipments used for jewelry manufacturing, the oxygen presence in small amounts cannot be removed completely. [0011]
  • This drawback emerges dramatically when “stone in place casting” has to be carried out. Articles produced in this way require a casting process able to produce oxidation free surfaces. In fact, brown oxidized casting can be result difficult in polishing treatments, with an impairment of reflectivity properties of gemstones. The aforementioned invention does not allow to obtain completely deoxidized surfaces. [0012]
  • Furthermore, another drawback of the known alloys, is connected to the fact that during the casting process part of the alloy must be re-melt many times. In fact, in accordance with the known alloys, at each smelting it is necessary to add a new amount of deoxidizing elements, since the old one are combined with the oxygen. [0013]
  • SUMMARY OF THE INVENTION
  • In this situation the technical task constituting the basis of the present invention is to provide gold alloys and master alloys for obtaining them which overcome the aforementioned drawbacks. [0014]
  • In particular the technical task of the present invention is to provide gold alloys and master alloys for obtaining them, which exhibit excellent fluidity in the molten state, brightness and mechanical resistance. [0015]
  • The specified technical task and the indicated aims are substantially achieved by gold alloys and master alloys for obtaining them, as described in the accompanying claims. [0016]
  • Germanium, in the percentage of employment described in the present invention, possesses a remarkable ability to increase fluidity, this to be considered similar or superior to silicon. As described below, this property can be highlighted in comparative melting tests between silicon based alloys and germanium based alloys, the latter described in the present invention. [0017]
  • In addition, the use of germanium and silicon allows at the same time to combine the positive effect of the silicon on brightness of the jewels and the high fluidity of the alloy provided by the germanium. [0018]
  • Furthermore, the addition of phosphorus to an alloy comprising germanium and silicon, or only germanium, increases deoxidizing properties and reduces the amount of silicon and germanium removed by oxidation at every cycle of scrap re-use, this due to the higher affinity for oxygen of phosphorus, in comparison to silicon and germanium. As a consequence, the addition of new deoxidizing elements to the scraps to be recycled is largely reduced. [0019]
  • Moreover, it has also been verified that germanium concentrations varying between 0.05% and 2% by weight have led to an increasing of fluidity deemed to be similar or even greater than silicon. Furthermore, on the basis of our studies, germanium does not show any effect on grain enlargement, even when used at significantly higher concentrations in comparison to silicon. [0020]
  • Hence, in the case of germanium alloys, with low or no silicon content, mechanical properties of alloys are significantly improved as well, as can be observed from the data illustrated below. [0021]
  • More precisely, Germanium based alloys show an improvement on ductility. [0022]
  • Furthermore, the addition of Germanium and Phosphorus allows to reduce the minimum silicon amount to be added in order to obtain bright and oxidation free castings. As a consequence, the combined use of germanium or germanium and phosphorus with small quantities of silicon allows to obtain “clean and shiny” castings, with no degradation of mechanical properties as can be observed in traditional based alloys where the sole silicon in larger amounts is employed. [0023]
  • Finally, low silicon contents reduce the possibility for hard spots formation. [0024]
  • The ameliorative effect of germanium on mechanical properties can also be exhibited in nickel based white alloys, as is evident from the formulations described hereafter.[0025]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further characteristics and the advantages of the present invention shall become more readily evident from the detailed description of some preferred, but not exclusive, embodiments of gold alloys and master alloys for obtaining them, and from the accompanying figures, in which: [0026]
  • FIG. 1 shows in graph form the effect of different elements and compounds on the grain size of a gold alloy; [0027]
  • FIG. 2 shows in graph form the effect of the quantity of silicon and germanium on the grain size of the gold alloy; [0028]
  • FIG. 3 shows in graph form the effect of the elements and compounds of FIG. 1 on the tensile strength of the gold alloy obtained therewith;[0029]
  • DETAILED DESCRIPTION OF THE INVENTION
  • A first gold alloy of the present invention comprises at least the following elements: [0030]
  • gold: Au≧33%; [0031]
  • iridium: Ir≦0,4%; [0032]
  • germanium: Ge≦2%; [0033]
  • phosphorus: P≦0.02%; [0034]
  • copper: Cu sufficient to reach 100, [0035]
  • in the indicated quantities, with reference to the total weight of the alloy. [0036]
  • A second gold alloy further comprises silicon: 0.015% ≦Si≦0.3%, with reference to the total weight of the alloy. [0037]
  • In order to better meet specific requirements, to complete the alloy several other chemical elements can also be used. [0038]
  • More precisely, depending on requirements, the gold alloy can contain (with percentages expressed in weight): [0039]
  • silver: Ag≦34%; [0040]
  • nickel: Ni≦20%; [0041]
  • zinc: Zn≦15%, [0042]
  • which can be present simultaneously, or otherwise, without thereby departing from the scope of the present invention. [0043]
  • In particular, the addition of nickel (or other elements having similar properties, and equivalent thereto) in suitable quantity, allows to obtain alloys of so-called white gold. [0044]
  • Secondarily, the alloy can also contain, in a proportion not exceeding 4% by weight, at least one of the elements of the group constituted by cobalt, manganese, tin and indium. [0045]
  • To improve the qualities of the alloy, one ore more deoxidizing elements such as magnesium, silicon, boron and lithium can also be added, each in a proportion not exceeding 0.15% by weight. [0046]
  • Note that, even when silicon is added to the alloy, it is added only in small quantities (in particular not exceeding 0.05% by weight in 18 carat alloys, and not exceeding 0.15% by weight in 14 carat alloys) solely in order to guarantee the protection of the alloy against the formation of oxides, and not to improve its fluidity. [0047]
  • Due to particular productive requirements in which a particularly reduced grain size is required, the alloy can also comprise refining elements such as ruthenium, rhenium and platinum in a suitable quantity and preferably not exceeding 0.4% by weight. [0048]
  • For the production of precious objects, moreover, there are five preferential ranges for the quantity of gold present in the alloy. [0049]
  • A first preferred range is the one associated with obtaining 18 carat gold, in which the quantity of gold present in the alloy is between 74% and 77% by weight. [0050]
  • A second preferred range is the one associated with obtaining 14 carat gold, in which the quantity of gold present in the alloy is between 57% and 60% by weight. [0051]
  • A third preferred range is the one associated with obtaining 8 carat gold, in which the quantity of gold present in the alloy is between 33% and 35% by weight. [0052]
  • A fourth preferred range is the one associated with obtaining 9 carat gold, in which the quantity of gold present in the alloy is between 37% and 39% by weight. [0053]
  • A fifth preferred range is the one associated with obtaining 10 carat gold, in which the quantity of gold present in the alloy is between 40% and 43% by weight. [0054]
  • In regard to master alloys for obtaining the above gold alloys, they are composed at least by: [0055]
  • Iridium: Ir≦0.4%; [0056]
  • Germanium: Ge≦4%; [0057]
  • Silicon: 0.03≦Si≦1.2%; [0058]
  • Phosphorus: P≦0.1%; [0059]
  • Copper: Cu sufficient to reach 100, [0060]
  • in the indicated quantities, with reference to the total weight of the master alloy. [0061]
  • Moreover, as stated, the master alloy can also comprise, as a weight percentage relative to the total weight of the master alloy: [0062]
  • silver: Ag≦72%; [0063]
  • nickel: Ni≦41%; [0064]
  • zinc: Zn≦25%. [0065]
  • Additionally, the master alloy can include, in quantities not exceeding 8% by weight, at least one of the elements of the group constituted by cobalt, manganese, tin and indium. [0066]
  • The master alloy can further include, in quantities not exceeding 0.56% by weight, at least one of the deoxidizing elements of the group constituted by magnesium, silicon, boron and lithium. [0067]
  • Advantageously, in some applications, at least one of the refining elements of the group constituted by ruthenium, rhenium and platinum can be inserted in the master alloy, in quantities not exceeding 0.96% by weight. [0068]
  • EXAMPLES
  • Some examples of gold alloys which can be obtained with a composition in accordance with the present invention are set out below. [0069]
  • Example A
  • A 14 carat yellow gold alloy whose composition in terms of weight percentage is as follows: [0070]
    Gold 58.5
    with master alloy comprising (as a percentage
    on the weight of the gold alloy):
    Silver 8.0
    Zinc 6.0
    Iridium 0.01
    Germanium 0.4
    Phosphorus: 0.01
    Silicon 0.06
    Copper, sufficient to reach 100.
  • Example B
  • A 18 carat yellow gold alloy whose composition in terms of weight percentage is as follows: [0071]
    Gold 75.0
    with master alloy comprising (as a percentage
    on the weight of the gold alloy):
    Silver 15.0
    Iridium 0.01
    Germanium 0.2
    Phosphorus: 0.01
    Copper sufficient to reach 100.
  • Example C
  • A 18 carat yellow gold alloy whose composition in terms of weight percentage is as follows: [0072]
    Gold 75.0
    with master alloy comprising (as a percentage
    on the weight of the gold alloy):
    Silver 12.5
    Zinc 0.5
    Germanium 0.25
    Silicon 0.04
    Copper sufficient to reach 100 (in this
    specific case 11.71%).
  • Example D
  • A 14 carat white gold alloy whose composition in terms of weight percentage is as follows: [0073]
    Gold 58.5
    with master alloy comprising (as a percentage
    on the weight of the gold alloy):
    Nickel 8.5
    Zinc 8.0
    Iridium 0.01
    Germanium 0.4
    Phosphorus: 0.01
    Copper sufficient to reach 100.
  • Example E
  • A 18 carat white gold alloy whose composition in terms of weight percentage is as follows: [0074]
    Gold 75.0
    with master alloy comprising (as a percentage
    on the weight of the gold alloy):
    Nickel 7.5
    Zinc 3.5
    Iridium 0.01
    Germanium 0.25
    Phosphorus: 0.01
    Copper sufficient to reach 100.
  • Example F
  • A 8 carat yellow gold alloy whose composition in terms of weight percentage [0075]
    Gold 33.3
    with master alloy comprising (as a percentage
    on the weight of the gold alloy):
    Silver 13.0
    Zinc 10.0
    Germanium 0.4
    Silicon 0.2
    Iridium 0.02
    Copper sufficient to reach 100 (in this
    specific case 43.08%).
  • Example G
  • A 10 carat yellow gold alloy whose composition in terms of weight percentage is as follows: [0076]
    Gold 41.7
    with master alloy comprising (as a percentage
    on the weight of the gold alloy):
    Silver 11.0
    Zinc 8.7
    Germanium 0.3
    Silicon 0.15
    Iridium 0.017
    Copper sufficient to reach 100 (in this
    specific case 38.13%
  • To obtain the five yellow gold alloys described in examples A, B, C, F and G, set out above, a preferential process comprises the following phases: [0077]
  • melting in controlled atmosphere or in an inert gas such as argon, of the elements in the respective doses, inside graphite or ceramic crucibles at a temperature ranging between 880 and 940° C.; [0078]
  • subsequent heating to a temperature ranging between 970 and 1030° C. before proceeding with casting; [0079]
  • casting the material in appropriate dies; [0080]
  • cooling the die in air; [0081]
  • subsequent cooling of the die in water. [0082]
  • To obtain instead the two white gold alloys described in examples D and E, set out above, a preferential process comprises the following phases: [0083]
  • melting in controlled atmosphere or in an inert gas such as argon, of the elements in the respective doses, inside graphite or ceramic crucibles at a temperature ranging between 890 and 970° C.; [0084]
  • subsequent heating to a temperature ranging between 980 and 1100° C. before proceeding with casting; [0085]
  • casting the material in appropriate dies; [0086]
  • cooling the die in air; [0087]
  • subsequent cooling of the die in water. [0088]
  • The present invention achieves important advantages. [0089]
  • In the first place, laboratory tests conducted by the Applicant have shown that use of germanium in weight concentrations ranging between 0.05% and 2% leads to an increase in the fluidity of the alloy in the molten state that is even greater than the one brought about by the use of silicon alone in normal usage concentrations. [0090]
  • Moreover, the increase in grain size consequent to the use of germanium was lesser than the one that takes place in traditional alloys containing silicon alone, as shown in FIGS. 1 and 2. [0091]
  • FIG. 1 shows the variation in the dimensions of the crystal grain of the alloy as a result of the addition, thereto, of the elements and compounds indicated in the x-coordinate. It is evident that the influence of only silicon (Si) on the increase in grain size is considerably higher than the influence of germanium (Ge). [0092]
  • FIG. 2 shows the effect of the concentration of silicon and germanium alone, on the grain dimension of the gold alloy. In this case, too, it is evident that a low concentration of silicon, in the graph from 0 to 300 ppm, entails a considerable increase in crystal grain size, even exceeding the size increase caused by additions of germanium in concentrations that are 10 times greater. [0093]
  • This has positive repercussions on the mechanical behavior of the alloy, as can be seen in FIG. 3, which shows the (positive or negative) variation of the maximum load bearable by the alloy, following the addition to the alloy of equal quantities of the different elements or compounds indicated in the x-coordinate (good both germanium alone, and germanium plus Copper plus silicon). [0094]
  • The use of germanium instead of, or together with, silicon also yielded positive effects on the percent of lengthening of the alloy following the tensile test. [0095]
  • In regard to the combined use of germanium and silicon, respectively to improve the fluidity and decrease the oxidation of the alloy, very encouraging results were obtained. [0096]
  • The combined use of these two elements gave rise to deoxidized alloys which at the same time show a very good mechanical behavior, generally better than the one exhibited by the alloys in which silicon is used both as a fluidizing element, and as a deoxidizing element. [0097]
  • Then the use of Phosphorus together with germanium (alone or combined also with silicon) gives the possibility to maintain the level of germanium and silicon substantially constant for more successive fusions. [0098]
  • In fact, if scrap amounts of alloys are molten together with new amount of alloys (generally 50% each one), phosphorus reaction with oxygen reduces the formation of silicon and germanium oxides. As a consequence, silicon and germanium content in alloys decreases less drastically during the re-cycling operations. [0099]
  • In any case, where the use of refining elements becomes necessary to obtain even smaller grain dimensions, the formation of silicides does not take place, thanks to the small amounts of silicon (or in some cases its absence). [0100]
  • It should further be noted that the present invention is relatively easy to implement and that also the cost connected to the implementation of the invention remains within the standards of the industry. [0101]
  • The invention thus conceived can be subject to numerous modifications and variations, without thereby departing from the scope of the inventive concept that characterizes it. [0102]

Claims (24)

What is claimed is:
1. A Gold alloy comprising, in terms of weight, at least:
Gold: Au≧33%;
Iridium: Ir≦0.4%;
Germanium: Ge≦2%;
Silicon: 0.015% ≦Si≦0.3%;
Phosphorus: P≦0.02%;
Copper: Cu sufficient to reach 100.
2. A Gold alloy as claimed in claim 1, comprising in terms of weight, at least:
Gold: Au≧51%;
Iridium: Ir≦0.2%;
Germanium: Ge≦2%;
Silicon: 0.015% ≦Si≦0.2%;
Phosphorus: P≦0.02%;
Copper: Cu sufficient to reach 100.
3. A Gold alloy as claimed in claim 2 characterized in that it further comprises silver with a percentage by weight of: Ag≦34%.
4. A Gold alloy as claimed in claim 1 characterized in that it further comprises Nickel with a percentage by weight of: Ni≦20%.
5. A Gold alloy as claimed in claim 1 characterized in that it further comprises Zinc with a percentage by weight of: Zn≦15%.
6. A Gold alloy as claimed in claim 1 characterized in that it comprises Gold with a percentage by weight of: 74≦Au≦77%.
7. A Gold alloy as claimed in claim 1 characterized in that it comprises Gold with a percentage by weight of: 57≦Au≦60%.
8. A Gold alloy as claimed in claim 1, characterized in that it comprises Gold with a percentage by weight of: 33≦Au≦3 5%.
9. A Gold alloy as claimed in claim 1 characterized in that it comprises Gold with a percentage by weight of: 37≦Au≦39%.
10. A Gold alloy as claimed in claim 1, characterized in that it comprises Gold with a percentage by weight of: 40≦Au≦43%.
11. A Gold alloy as claimed in claim 1 characterized in that it further comprises no more than 4% by weight of at least one of the elements of the group constituted by cobalt, manganese, tin and indium.
12. A Gold alloy as claimed in claim 1 characterized in that it further comprises no more than 0.15% by weight of at least one of the elements of the group constituted by magnesium, silicon, boron and lithium.
13. A Gold alloy as claimed in claim 1 characterized in that it further comprises no more than 0.4% by weight of at least one of the elements of the group constituted by ruthenium, rhenium and platinum.
14. A Gold alloy comprising, in terms of weight, at least:
Gold: Au≧33%;
Iridium: Ir≦0.4%
Germanium: Ge≦2%;
Phosphorus: 0.003≦P≦0.02%;
Copper: Cu sufficient to reach 100.
15. A Gold alloy as claimed in claim 14, comprising in terms of weight, at least:
Gold: Au≧74%;
Iridium: 0.005≦Ir≦0.02%;
Germanium: 0.05≦Ge≦0.2%;
Phosphorus: 0.003≦P≦0.02%;
Zinc: Zn≦5%;
Silver: 1≦Ag≦20%
Copper: Cu sufficient to reach 100.
16. A master alloy for obtaining gold alloys as claimed in any of the claims from 1 to 13 characterized in that it comprises, by weight, at least:
Iridium: Ir≦0.4%
Germanium: Ge≦4%;
Silicon: 0.03≦Si≦1.2%;
Phosphorus: P≦0.1%
Copper: Cu sufficient to reach 100.
17. Master alloy as claimed in claim 16 characterized in that it further comprises Silver with a percentage by weight of Ag≦72%.
18. Master alloy as claimed in claim 16 characterized in that it further comprises nickel with a percentage by weight of Ni≦41%.
19. Master alloy as claimed in claim 16 characterized in that it further comprises Zinc with a percentage by weight of: Zn≦25%.
20. Master alloy as claimed in claim 16 characterized in that it further comprises no more than 8% of at least one of the elements of the group constituted by cobalt, manganese, tin and indium.
21. Master alloy as claimed in claim 16 characterized in that it further comprises no more than 0.56% of at least one of the elements of the group constituted by magnesium, silicon, boron and lithium.
22. Master alloy as claimed in claim 16 characterized in that it further comprises no more than 0.96% by weight of at least one of the elements of the group constituted by ruthenium, rhenium and platinum.
23. Master alloy for obtaining gold alloys as claimed in any of the claims 14 and 15 comprising, in terms of weight, at least:
Iridium: Ir≦0.4%
Germanium: Ge≦4%
Phosphorus: 0. 01≦P≦0.1%
Copper: Cu sufficient to reach 100.
24. Master alloy as claimed in claim 23, comprising in terms of weight, at least:
Iridium: 0.02≦Ir≦0.08%;
germanium: 0.2≦Ge≦0.8%;
Phosphorus: 0.012≦P≦0.08%;
Zinc: Zn≦20%;
Silver: 4≦Ag≦80%
Copper: Cu sufficient to reach 100.
US10/156,386 2001-05-30 2002-05-29 Gold alloys and master alloys for obtaining them Abandoned US20030012679A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EPEP-01830349.5 2001-05-30
EP01830349A EP1266974B1 (en) 2001-05-30 2001-05-30 Gold alloys and master alloys for obtaining them

Publications (1)

Publication Number Publication Date
US20030012679A1 true US20030012679A1 (en) 2003-01-16

Family

ID=8184548

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/156,386 Abandoned US20030012679A1 (en) 2001-05-30 2002-05-29 Gold alloys and master alloys for obtaining them

Country Status (5)

Country Link
US (1) US20030012679A1 (en)
EP (1) EP1266974B1 (en)
AT (1) ATE278045T1 (en)
DE (1) DE60105987D1 (en)
ES (1) ES2227106T3 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050100471A1 (en) * 2002-09-13 2005-05-12 Taylor Arthur D. White gold alloy
US20080206091A1 (en) * 2007-02-26 2008-08-28 Guner Kuyumculuk Kalip Makina Sanayi Ve Ticaret Limited Sirketi Novelty in the Method for the Combination of Gold and the Other Minerals
US20080297363A1 (en) * 2007-05-30 2008-12-04 Yasushi Fukushige Domestic electric appliance notification system, portable terminal apparatus, domestic electric appliance, and operation completion notifying method
US20090317291A1 (en) * 2008-06-20 2009-12-24 Annette Gertge Variable karat gold alloys
US20090317292A1 (en) * 2008-06-20 2009-12-24 Gertge Annette T Variable karat gold alloys
US20100322818A1 (en) * 2009-05-12 2010-12-23 Todd Cleabert Bridgeman Gold alloys
CN102386545A (en) * 2011-03-11 2012-03-21 清华大学深圳研究生院 Manufacturing process of sliding electric contact material containing rare earth element
RU2507284C1 (en) * 2012-12-13 2014-02-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Gold-based alloy modifying method
ITVI20130118A1 (en) * 2013-04-24 2014-10-25 Progold S P A METHOD FOR THE PRODUCTION OF D¿ORO BIANCO WHITE FOR THE PRODUCTION OF PRODUCTS IN PRECIOUS MATERIAL
US9005522B2 (en) 2012-08-30 2015-04-14 Jostens, Inc. Silver alloy
IT202100017651A1 (en) * 2021-07-05 2023-01-05 Metaltech S R L Master alloy for making alloys of a precious metal, method of producing the master alloy and gold alloy including the master alloy

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2418432A (en) * 2004-09-23 2006-03-29 Middlesex Silver Co Ltd Silver alloy and its production using a master metal
GB2434376A (en) * 2006-01-23 2007-07-25 Middlesex Silver Co Ltd Making boron containing gold alloys using a master alloy
RU2476615C1 (en) * 2012-03-07 2013-02-27 Юлия Алексеевна Щепочкина Gold-based alloy
ITPD20130002A1 (en) * 2013-01-11 2014-07-12 Legor Group S P A COMPOSITION OF LEGA MADRE FOR THE PRODUCTION OF WHITE GOLD AND ALLOY WHITE GOLD ALLOYS.
ITPD20130003A1 (en) 2013-01-11 2014-07-12 Legor Group S P A COMPOSITION OF LEGA MOTHER FOR THE PRODUCTION OF GOLD ALLOYS WITH INNOVATIVE SYSTEM OF REFINERS AND GOLD LEAGUE OBTAINED THROUGH SUCH COMPOSITION OF LEGA MOTHER
WO2015193659A2 (en) * 2014-06-16 2015-12-23 Allied Gold Limited Alloy compositions
CN107208186A (en) * 2014-11-28 2017-09-26 迭戈·佩雷蒂 Foundry alloy for manufacturing White gold alloy
RU2604145C1 (en) * 2015-07-17 2016-12-10 Сергей Алексеевич Костин Gold-based alloy, hardened with intermetallides containing cobalt, (versions)
RU2626260C1 (en) * 2016-08-17 2017-07-25 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Method of manufacture of bimetallic wire from precious metals
RU2652900C1 (en) * 2016-12-06 2018-05-03 Юлия Алексеевна Щепочкина Alloy based on gold
CN116917549A (en) * 2021-02-23 2023-10-20 意大利菲美特有限公司 Method for electroplating electrodeposition and related electroplating cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841921A (en) * 1973-03-02 1974-10-15 Olin Corp Process for treating copper alloys to improve creep resistance
US3956027A (en) * 1975-04-09 1976-05-11 Olin Corporation Processing copper base alloys
US4780275A (en) * 1984-08-25 1988-10-25 William Prym-Werke Gmbh. & Co. Kg. Corrosion-resistant copper alloy and article containing the same
US6471792B1 (en) * 1998-11-16 2002-10-29 Olin Corporation Stress relaxation resistant brass

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3019277A1 (en) * 1980-05-21 1981-11-26 Fa. Dr. Th. Wieland, 7530 Pforzheim Gold alloy contg. no copper, and used for dental applications - contain gold, silver, palladium, zinc and germanium, providing optimum combination of properties and cost
JPS63169347A (en) * 1986-12-29 1988-07-13 Tokuriki Honten Co Ltd Ornamental white au alloy
EP0381994B1 (en) * 1989-02-09 1995-09-27 C. HAFNER GmbH & Co. Alloy with a high gold content for ornamental uses
JPH06330206A (en) * 1993-05-19 1994-11-29 Nippon Steel Corp Au-ge alloy brazing filler metal consisting of fine crystal grains
DE4320928C1 (en) * 1993-06-24 1994-03-17 Heraeus Kulzer Gmbh Jewelry alloy - comprises gold@, silver@, manganese@, gallium@ and/or germanium, zinc@, tin@, copper@ etc
JP3317434B2 (en) * 1995-12-01 2002-08-26 住友金属鉱山株式会社 Gold alloy and method for producing the same
JPH11792A (en) * 1997-06-11 1999-01-06 Sumitomo Metal Mining Co Ltd High grade gold solder material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841921A (en) * 1973-03-02 1974-10-15 Olin Corp Process for treating copper alloys to improve creep resistance
US3956027A (en) * 1975-04-09 1976-05-11 Olin Corporation Processing copper base alloys
US4780275A (en) * 1984-08-25 1988-10-25 William Prym-Werke Gmbh. & Co. Kg. Corrosion-resistant copper alloy and article containing the same
US6471792B1 (en) * 1998-11-16 2002-10-29 Olin Corporation Stress relaxation resistant brass

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050100471A1 (en) * 2002-09-13 2005-05-12 Taylor Arthur D. White gold alloy
US20080206091A1 (en) * 2007-02-26 2008-08-28 Guner Kuyumculuk Kalip Makina Sanayi Ve Ticaret Limited Sirketi Novelty in the Method for the Combination of Gold and the Other Minerals
US20080297363A1 (en) * 2007-05-30 2008-12-04 Yasushi Fukushige Domestic electric appliance notification system, portable terminal apparatus, domestic electric appliance, and operation completion notifying method
US20110171059A1 (en) * 2008-06-20 2011-07-14 Annette Gertge Variable karat gold alloys
US20110226091A1 (en) * 2008-06-20 2011-09-22 Annette Gertge Variable karat gold alloys
US20090317292A1 (en) * 2008-06-20 2009-12-24 Gertge Annette T Variable karat gold alloys
US20110171060A1 (en) * 2008-06-20 2011-07-14 Annette Gertge Variable karat gold alloys
US20110171061A1 (en) * 2008-06-20 2011-07-14 Annette Gertge Variable karat gold alloys
US20090317291A1 (en) * 2008-06-20 2009-12-24 Annette Gertge Variable karat gold alloys
US20110176956A1 (en) * 2008-06-20 2011-07-21 Gertge Annette T Variable karat gold alloys
US20100322818A1 (en) * 2009-05-12 2010-12-23 Todd Cleabert Bridgeman Gold alloys
US9428821B2 (en) * 2009-05-12 2016-08-30 Jostens, Inc. Gold alloys
CN102386545A (en) * 2011-03-11 2012-03-21 清华大学深圳研究生院 Manufacturing process of sliding electric contact material containing rare earth element
US9005522B2 (en) 2012-08-30 2015-04-14 Jostens, Inc. Silver alloy
RU2507284C1 (en) * 2012-12-13 2014-02-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Gold-based alloy modifying method
ITVI20130118A1 (en) * 2013-04-24 2014-10-25 Progold S P A METHOD FOR THE PRODUCTION OF D¿ORO BIANCO WHITE FOR THE PRODUCTION OF PRODUCTS IN PRECIOUS MATERIAL
IT202100017651A1 (en) * 2021-07-05 2023-01-05 Metaltech S R L Master alloy for making alloys of a precious metal, method of producing the master alloy and gold alloy including the master alloy

Also Published As

Publication number Publication date
DE60105987D1 (en) 2004-11-04
EP1266974A1 (en) 2002-12-18
ATE278045T1 (en) 2004-10-15
ES2227106T3 (en) 2005-04-01
EP1266974B1 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
US20030012679A1 (en) Gold alloys and master alloys for obtaining them
US5039479A (en) Silver alloy compositions, and master alloy compositions therefor
US5340529A (en) Gold jewelry alloy
US6342182B1 (en) Nickel-free grey gold alloy
US5882441A (en) Silver colored alloy with low percentage copper
CN102549179A (en) White gold alloy free of nickel and copper
US20080166260A1 (en) Silver Alloy Compositions
US4446102A (en) Yellow gold jewelry alloy
US20140003992A1 (en) Tarnish-resistant sterling silver alloys
US5384089A (en) Yellow karat gold casting alloys
US20080069722A1 (en) Metal alloy manufacturing
KR19980703643A (en) High Purity Hardened Gold Alloy and Manufacturing Method Thereof
US20100047618A1 (en) Precious metal composition, method and article of jewelry comprising same
EP2453028A1 (en) Alloy for investment casting
US9738951B1 (en) 18K palladium and platinum containing age hardenable white gold alloy
US7118707B2 (en) Silver-platinum alloy and methods of manufacturing same
US4396578A (en) White gold jewelry alloy
EP1877590A1 (en) Silver alloy compositions
NL193947C (en) Copper based metal alloy including magnesium, phosphorus and calcium for the construction of electrical components and process for their preparation.
JPH03130332A (en) White gold alloy for ornament
US7128792B2 (en) Sterling silver manganese alloy compositions
US6576187B2 (en) 18 carat grey gold alloy, without nickel and without palladium, for jewellery
US4370164A (en) Yellow metal alloy
JPH03130334A (en) White gold alloy for ornament
JP3347665B2 (en) Silver alloy for ornaments

Legal Events

Date Code Title Description
AS Assignment

Owner name: LEG.OR S.R.L., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POLIERO, MASSIMO;BASSO, ANDREA;REEL/FRAME:013152/0009

Effective date: 20020510

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION