US20030010580A1 - Disc brake caliper assembly - Google Patents

Disc brake caliper assembly Download PDF

Info

Publication number
US20030010580A1
US20030010580A1 US09/903,860 US90386001A US2003010580A1 US 20030010580 A1 US20030010580 A1 US 20030010580A1 US 90386001 A US90386001 A US 90386001A US 2003010580 A1 US2003010580 A1 US 2003010580A1
Authority
US
United States
Prior art keywords
disc brake
brake caliper
assembly according
caliper assembly
cylinder portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/903,860
Other versions
US6510926B1 (en
Inventor
Yasushi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimano Inc
Original Assignee
Shimano Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimano Inc filed Critical Shimano Inc
Priority to US09/903,860 priority Critical patent/US6510926B1/en
Assigned to SHIMANO INC. reassignment SHIMANO INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAKAMURA, YASUSHI
Priority to TW091108236A priority patent/TWI241261B/en
Priority to CNB021203288A priority patent/CN1246180C/en
Priority to JP2002175800A priority patent/JP3994030B2/en
Priority to EP02013718A priority patent/EP1275578B1/en
Priority to DE60209834T priority patent/DE60209834T2/en
Priority to CZ20022275A priority patent/CZ20022275A3/en
Publication of US20030010580A1 publication Critical patent/US20030010580A1/en
Publication of US6510926B1 publication Critical patent/US6510926B1/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/228Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a separate actuating member for each side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L1/00Brakes; Arrangements thereof
    • B62L1/005Brakes; Arrangements thereof constructional features of brake elements, e.g. fastening of brake blocks in their holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • F16D55/226Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D2055/0004Parts or details of disc brakes
    • F16D2055/0008Brake supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D2055/0004Parts or details of disc brakes
    • F16D2055/0016Brake calipers
    • F16D2055/002Brake calipers assembled from a plurality of parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0023Shaping by pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0061Joining
    • F16D2250/0076Welding, brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0084Assembly or disassembly

Definitions

  • This invention generally relates to a disc brake assembly for a bicycle. More specifically, the present invention relates a disc brake assembly having a caliper housing that is primary constructed of deformed sheet material.
  • Bicycling is becoming an increasingly popular form of recreation as well as a means of transportation. Moreover, bicycling has become a very popular competitive sport. Whether the bicycle is used for recreation, transportation or competition, the bicycle industry is constantly improving their components.
  • bicycle brake devices There are several types of bicycle brake devices, which are currently available on the market. Examples of some types of common bicycle brake devices include rim brakes, caliper brakes and disc brakes. If a rider wants a very high performance brake system, then the rider typically wants a disc brake system. Disc brake systems provide a substantial braking power in relationship to the amount of braking force applied to the brake lever. Moreover, disc brake systems typically provide a high level of consistency in all types of weather and riding conditions. However, one problem with disc brakes is that they can be complicated and expensive to manufacture and assemble.
  • these prior art disc brakes are typically constructed of several parts with each part constructed of die cast metallic material. Alternatively, these parts can be machined, or both die cast and subsequently machined. These processes can be time consuming and expensive. The parts are usually connected via numerous bolts and utilize sealing members to prevent leakage of the hydraulic or actuating fluid. Thus, these prior disc brakes are somewhat complicated. Some prior disc brakes utilize dual pistons and/or opposing single pistons to move the friction member(s) to engage the brake rotor and apply a stopping force. Thus, these prior art disc brakes can require internal fluid passageways and can be somewhat intricate internally. Moreover, these prior disc brakes can be quite heavy.
  • One object of the present invention is to provide a disc brake, which is relatively simple and inexpensive to manufacture and assemble.
  • Another object of the present invention is to provide disc brake, which is relatively lightweight.
  • Another object of the present invention is to provide disc brake, which provides efficient and reliable stopping power.
  • a disc brake caliper assembly comprising a caliper housing, first and second friction members, and a first piston.
  • the caliper housing includes a support portion and a first cylinder portion coupled to the support portion.
  • the first cylinder portion has a first piston chamber with a first fluid inlet opening fluidly coupled to the first piston chamber and a first piston receiving opening.
  • the first cylinder portion is an independent component from the support portion.
  • the first and second friction members are coupled to the caliper housing to form a rotor receiving slot therebetween. At least the first friction member is movably coupled to the caliper housing.
  • the first piston is movably coupled in the first piston chamber of the caliper housing to move the first friction member between a release position and a braking position.
  • a disc brake caliper assembly comprising a caliper housing, first and second friction members, and a first piston.
  • the caliper housing includes a support portion and a first cylinder portion coupled to the support portion.
  • the first cylinder portion is formed of deformed sheet material.
  • the first cylinder portion has a first piston chamber with a first fluid inlet opening fluidly coupled to the first piston chamber and a first piston receiving opening.
  • the first and second friction members are coupled to the caliper housing to form a rotor receiving slot therebetween. At least the first friction member is movably coupled to the caliper housing.
  • the first piston is movably coupled in the first piston chamber of the caliper housing to move the first friction member between a release position and a braking position.
  • FIG. 1 is a diagrammatic elevational view of a bicycle disc brake with a disc brake caliper assembly in accordance with a first embodiment of the present invention
  • FIG. 2 is an enlarged outside elevational view of the disc brake caliper assembly illustrated in FIG. 1, with portions of the disc brake rotor cut away;
  • FIG. 3 is a partially exploded view of the disc brake caliper assembly illustrated in FIG. 2, with the front fork removed from the front wheel for the purpose of illustration;
  • FIG. 4 is an end elevational view of the front hub of the front bicycle wheel illustrated in FIGS. 1 and 2, with portions broken away to show the attachment between the disc brake rotor and the hub body;
  • FIG. 5 is an end elevational view of the disc brake caliper assembly illustrated in FIGS. 1 - 3 , with the disc brake caliper assembly removed from the front fork;
  • FIG. 6 is a partial, cross-sectional view of the disc brake caliper assembly illustrated in FIGS. 1 - 3 and 5 , as viewed along section line 6 - 6 of FIG. 2;
  • FIG. 7 is an end elevational view of a first housing part of the disc brake caliper assembly illustrated in FIGS. 1 - 3 , 5 and 6 ;
  • FIG. 8 is an inside elevational view of the first housing part illustrated in FIG. 7;
  • FIG. 9 is a bottom view of the first housing part illustrated in FIGS. 7 and 8;
  • FIG. 10 is an outside elevational view of the first housing part illustrated in FIGS. 7 - 9 ;
  • FIG. 11 is a cross-sectional view of the first housing part illustrated in FIGS. 7 - 10 , as viewed along section line 11 - 11 in FIG. 10;
  • FIG. 12 is an end elevational view of a second housing part of the disc brake caliper assembly illustrated in FIGS. 1 - 3 , 5 and 6 ;
  • FIG. 13 is an inside elevational view of the second housing part illustrated in FIG. 12;
  • FIG. 14 is an outside elevational view of the second housing part illustrated in FIGS. 12 and 13;
  • FIG. 15 is a cross-sectional view of the second housing part illustrated in FIGS. 12 - 14 , as viewed along section line 15 - 15 of FIG. 14;
  • FIG. 16 is an end elevational view of a cylinder portion of the disc brake caliper assembly illustrated in FIGS. 1 - 3 , 5 and 6 ;
  • FIG. 17 is an inside elevational view of the cylinder portion illustrated in FIG. 16;
  • FIG. 18 is an outside elevational view of the cylinder portion illustrated in FIGS. 16 and 17;
  • FIG. 19 is a cross-sectional view of the cylinder portion illustrated in FIGS. 16 - 18 , as viewed along section line 19 - 19 of FIG. 18;
  • FIG. 20 is an end elevational view of a mounting member of the disc brake caliper assembly illustrated in FIGS. 1 - 3 , 5 and 6 ;
  • FIG. 21 is an inside elevational view of the mounting member illustrated in FIG. 20;
  • FIG. 22 is a transverse end elevational view of the mounting member illustrated in FIGS. 21 and 22;
  • FIG. 23 is an end elevational view of a piston of the disc brake caliper assembly illustrated in FIGS. 1 - 3 , 5 and 6 ;
  • FIG. 24 is an inside elevational view of the piston illustrated in FIG. 23;
  • FIG. 25 is an outside elevational view of the piston illustrated in FIGS. 23 and 24;
  • FIG. 26 is a cross-sectional view of the piston illustrated in FIGS. 23 - 25 , as viewed along section line 26 - 26 of FIG. 25;
  • FIG. 27 is an end elevational view of a first friction member of the disc brake caliper assembly illustrated in FIGS. 1 - 3 , 5 and 6 ;
  • FIG. 28 is an inside elevational view of the first friction member illustrated in FIG. 27;
  • FIG. 29 is an outside elevational view of the first friction member illustrated in FIGS. 27 and 28;
  • FIG. 30 is a cross-sectional view of the first friction member illustrated in FIGS. 27 - 29 , as viewed along section line 30 - 30 of FIG. 29;
  • FIG. 31 is an enlarged outside elevational view of a disc brake caliper assembly in accordance with a second embodiment of the present invention.
  • FIG. 32 is a partial cross-sectional view of the disc brake caliper assembly illustrated in FIG. 31, as viewed along section line 32 - 32 of FIG. 31;
  • FIG. 33 is an outside elevational view of a first housing part of the disc brake caliper assembly illustrated in FIGS. 31 and 32;
  • FIG. 34 is an end elevational view of the first housing part illustrated in FIG. 33;
  • FIG. 35 is an end elevational view of the first housing part illustrated in FIGS. 33 and 34, as viewed along arrow A in FIG. 33;
  • FIG. 36 is an end elevational view of the first housing part illustrated in FIGS. 33 - 35 as viewed along arrow B in FIG. 33;
  • FIG. 37 is a cross-sectional view of the first housing part illustrated in FIGS. 33 - 36 , as viewed along section line 37 - 37 in FIG. 33;
  • FIG. 38 is an end elevational view of a second housing part of the disc brake caliper assembly illustrated in FIGS. 31 and 32;
  • FIG. 39 is an inside elevational view of the second housing part illustrated in FIG. 38;
  • FIG. 40 is an outside elevational view of the second housing part illustrated in FIGS. 38 and 39;
  • FIG. 41 is a cross-sectional view of the second housing part illustrated in FIGS. 38 - 40 , as viewed along section line 41 - 41 of FIG. 40;
  • FIG. 42 is a side elevational view of a spacer of the disc brake caliper assembly illustrated in FIGS. 31 and 32;
  • FIG. 43 is an end elevational view of the spacer illustrated in FIG. 42;
  • FIG. 44 is an end elevational view of a cylinder portion of the disc brake caliper assembly illustrated in FIGS. 31 and 32;
  • FIG. 45 is an inside elevational view of the first cylinder portion illustrated in FIG. 44;
  • FIG. 46 is an outside elevational view of the first cylinder portion illustrated in FIGS. 44 and 45;
  • FIG. 47 is a cross-sectional view of the first cylinder portion illustrated in FIGS. 44 - 46 , as viewed along section lines 47 - 47 of FIG. 44;
  • FIG. 48 is a partial, cross-sectional view of a disc brake caliper assembly in accordance with a third embodiment of the present invention.
  • FIG. 1 a front portion of a bicycle is illustrated with a disc brake assembly 12 coupled thereto in accordance with one embodiment of the present invention.
  • Bicycles are well known in the art, and thus, the bicycle and its various components will not be discussed or illustrated in detail herein. Rather, it will be apparent to those skilled in the art that the bicycle can be any type of bicycle, e.g., mountain bike, a hybrid bike, downhill bike or a road bike.
  • the bicycle basically includes a conventional bicycle frame with a handle bar 14 , front and rear forks 16 (only a portion of the front fork shown), front and rear wheels 18 (only a portion of the front wheel shown) and a drive train (not shown).
  • the disc brake assembly 12 basically includes a disc brake caliper assembly 20 , a disc brake rotor 22 and a brake operating mechanism 24 .
  • the disc brake caliper assembly 20 is mounted on front fork 16 of the bicycle adjacent the disc brake rotor 22 .
  • the disc brake rotor 22 is fixedly coupled to front wheel 18 for rotation therewith in a conventional manner.
  • the brake operating mechanism 24 is preferably fixedly mounted on handle bar 14 adjacent the hand portion of handle bar 14 .
  • the brake operating mechanism 24 is operated such that at least one friction member of the disc brake caliper assembly 20 moves from a release position to a braking position. In the release position, the bicycle wheel 18 and the disc brake rotor 22 are free to rotate, while in the braking position a braking force is applied against the disc brake rotor 22 to stop rotation of the bicycle wheel 18 and the disc brake rotor 22 .
  • the disc brake caliper assembly 20 basically includes a caliper housing 26 with a pair (first and second) of friction members 28 a and 28 b coupled to the caliper housing 26 .
  • the (second) friction member 28 b is fixedly coupled to the caliper housing 26
  • the other (first) friction member 28 a is movable coupled to the caliper housing 26 .
  • a rotor receiving slot is formed between friction members 28 a and 28 b to receive the disc brake rotor 22 .
  • the movable friction member 28 a (first friction member) is moved by a piston mechanism 30 in response to movement of the brake operating mechanism 24 to apply a braking force on the disc brake rotor 22 , as discussed in more detail below.
  • the caliper housing 26 basically includes a support portion 32 and a first cylinder portion 34 coupled to the support portion 32 .
  • the caliper housing 26 also preferably includes a mounting portion 36 for coupling with the support portion 32 and the cylinder portion 34 to the front fork 16 .
  • the support portion 32 , the cylinder portion 34 and the mounting portion 36 are each formed of one or more pieces of deformed sheet material such as press formed sheet metal. The various pieces are preferably fixedly coupled together by welding and/or brazing and/or bolted together as discussed below in more detail.
  • each of the support portion 32 , the cylinder portion 34 and the mounting portion 36 are preferably formed by one or more independent members that are subsequently fixedly coupled together to form the caliper housing 26 .
  • the cylinder portion 34 is at least an independent member from the support portion 32 such that the cylinder portion 34 can be primarily formed of deformed sheet material.
  • the support portion 32 basically includes a first housing part 38 a and a second housing part 38 b fixedly coupled together.
  • the first and second housing parts 38 a and 38 b are fixedly coupled together by a pair of bolts 39 a with a pair of nuts 39 b threadedly coupled to the bolts 39 a .
  • the first housing part 38 a is preferably constructed of a single piece of deformed sheet material such as press formed sheet metal.
  • the second housing part 38 b is also preferably formed of a single piece of deformed sheet material such as press formed sheet metal.
  • the cylinder portion 34 is preferably fixedly coupled to the first housing part 38 a by welding or brazing to form a rigid unitary body with the first housing part 38 a .
  • each part of the caliper housing 26 is of deformed sheet material, except for the fastening elements (the welds, the bolts and the nuts).
  • the first housing part 38 a basically includes an (first) attachment plate 40 and a pair (first and second) of side plates 42 .
  • the first housing part 38 a is preferably constructed of a single piece of deformed sheet material such press formed sheet metal.
  • the attachment plate 40 has a pair of attachment holes 41 formed therein to receive the bolts 39 a .
  • Each of the side plates 42 is preferably a substantially L-shaped plate member. More specifically, each of the side plates 43 is preferably a curved L-shaped member (or J-shaped member), and includes a cylinder support flange 43 formed at a free end thereof. The cylinder support flanges 43 extend at substantially right angles relative to the side plates 42 , and extend toward each other.
  • the support flanges 43 are configured to support an end of the cylinder portion 34 of the caliper housing 26 .
  • the side plates 42 are also configured to support the mounting portion 36 , as discussed below in more detail.
  • the attachment plate 40 is preferably a substantially flat rectangular-shaped member that is designed to contact a portion of the second housing part 38 b.
  • the second housing part 38 b basically includes an (second) attachment plate 44 and a reinforcing flange 46 .
  • the second housing part 38 b is preferably constructed of a single piece of deformed sheet material such press formed sheet metal.
  • the attachment plate 44 has a pair of attachment holes 45 formed therein to receive the bolts 39 a .
  • the reinforcing flange 46 is a substantially U-shaped flange extending from one side of the attachment plate 44 .
  • the second friction member 28 b is attached to the opposite side of the attachment plate 44 from the reinforcing flange 46 at a free end of the attachment plate 44 .
  • the second friction member 28 b is fixedly coupled to the attachment plate 44 via adhesive or glue.
  • the reinforcing flange 46 preferably extends at substantially a right angle relative to the attachment plate 44 , and includes a transverse section 48 and a pair of longitudinal sections 49 .
  • the longitudinal sections 49 are tapered toward the attachment plate 44 as the longitudinal sections 49 extend away from the transverse section 48 .
  • the longitudinal sections 49 extend completely to the free end of the attachment plate 44 such that a lightweight, rigid member is formed.
  • the (first) cylinder portion 34 basically includes an enlarged section 50 integrally formed with a reduced diameter section 52 .
  • the cylinder portion 34 is preferably a tubular member that isconstructed of a single piece of deformed sheet material such as press formed sheet metal.
  • the cylinder portion 34 is an independent member from the support portion 32 (the first and second housing parts 38 a and 38 b ).
  • the enlarged section 50 and the reduced section 52 are preferably cylindrical sections that have a circular-shaped cross section.
  • An end plate 54 connects the enlarged section 50 with the reduced section 52 to form a one-piece unitary member.
  • the internal surface of the end plate 54 forms an abutment surface for the piston mechanism 30
  • the external surface of the end plate 54 forms an attachment surface configured to be supported by the cylinder support flanges 43 of the first housing part 38 a .
  • the cylinder support flanges 43 are fixedly coupled to the end plate 54 of the cylinder portion 34 by welding or brazing such that the cylinder portion 34 is fixedly coupled to the first housing part 38 a.
  • the cylinder portion 34 includes a (first) piston chamber 56 with a (first) fluid inlet opening 57 fluidly coupled to the piston chamber 56 and a (first) piston receiving opening 59 .
  • the piston mechanism 30 is at least partially received in the piston chamber 56 .
  • the enlarged section 50 of the cylinder portion 34 includes an annular groove 51 designed to engage a portion of the piston mechanism 30 , as discussed below in more detail.
  • the open end of the reduced diameter section 52 forms the fluid inlet opening 57 of the cylinder portion 34 .
  • the fluid inlet opening 57 is designed to be directly fixedly coupled to a fluid supply hose 60 , as also discussed in more detail below.
  • the mounting portion 36 is preferably a plate-shaped strap member constructed of a single piece of deformed sheet material such as press formed sheet metal.
  • the mounting portion 36 basically includes a curved cylinder support section 62 with a pair of mounting sections 64 extending from opposite ends of the curved cylinder support section 62 .
  • Each of the mounting sections 64 includes a mounting hole 65 .
  • the mounting sections 64 are utilized to fixedly couple the disc brake caliper assembly 20 to the front fork 16 of the bicycle in a relatively conventional manner.
  • the mounting portion 36 is preferably fixedly coupled to both the cylinder portion 34 and the first housing part 38 a by welding or brazing. More specifically, the curved cylinder support section 62 is preferably coupled to the external surface of the enlarged section 50 of the cylinder portion 34 . Also, the curved cylinder support section 62 is preferably coupled to the inner edges of the side plates 42 of the first housing part 38 a . In other words, the mounting portion 36 is preferably fixedly coupled to and arranged between the cylinder portion 34 and the first housing part 38 a . Preferably, these members are coupled together by welding or brazing.
  • the mounting portion 36 is formed as a one-piece unitary member that is separate from the cylinder portion 34 and the support portion 32 (first housing part 38 a and second housing part 38 b ).
  • mounting portion 36 could be integrally formed with the first housing part 38 a , as discussed below in reference to another preferred embodiment of the present invention.
  • the piston mechanism 30 basically includes a (first) piston 70 movably coupled in the piston chamber 56 and a friction member support portion 72 coupled to the piston 70 .
  • the piston 70 is that can be constructed of any suitable material.
  • the piston 70 can be constructed of machined metallic material such as machined aluminum or a resin with heat resistant characteristics.
  • the piston 70 preferably has a step-shaped configuration.
  • the friction member support portion 72 is also preferably constructed of a machined metallic material such as machined steel.
  • the friction member support portion 72 is releasably coupled to the piston 72 to move with the piston 70 during actuation.
  • the piston 70 is normally biased toward a release position from a braking position. The piston 70 is moved from the release position to the braking position via fluid pressure supplied by the brake operating mechanism 24 in a conventional manner.
  • the piston 70 basically includes a seal portion 74 (first enlarged end) with a central protrusion 76 (second reduced end) extending axially therefrom.
  • the seal portion 74 has a plurality of arc-shaped projections 75 extending axially from the opposite side from the central protrusion 76 .
  • the projections 75 contact the internal contact surface of the end plate 54 of the cylinder portion 34 when the piston 70 is in the release position.
  • the projections 75 aid in the transmission of hydraulic pressure. While the projections 75 are illustrated as arc-shaped, it will be apparent to those skilled in the art that other shapes could be utilized if needed and/or desired.
  • An annular groove 78 is formed in the external surface of the seal portion 74 .
  • An O-ring 79 is mounted in the groove 78 to form a fluid tight seal.
  • a biasing member (e.g., a cone spring or a coil spring or Belleville washers) 80 is mounted on the central protrusion 76 of the piston 70 .
  • One end of the biasing member 80 is arranged to contact the seal portion 74 of the piston 70 , while the other end of the biasing member 80 is arranged to contact an annular abutment ring 82 .
  • the annular ring 82 is preferably a snap ring that is mounted in the annular groove 51 formed in the enlarged section 50 of the cylinder portion 34 to retain the piston 70 within the piston chamber 56 .
  • the friction member support portion 72 is also preferably a step shaped member. More specifically, the friction member support portion 72 includes a central stump 84 extending from a base portion 86 .
  • the central stump 84 includes an annular groove 85 with an O-ring received therein.
  • the central protrusion 76 of the piston 70 includes a stepped bore 88 that is sized and configured to retain the central stump 84 with the O-ring therein.
  • the friction member support portion 72 is releasable coupled to the piston 70 .
  • the base portion 86 contacts an opposite end of the annular ring 82 .
  • the friction member support portion 72 has the first friction member 28 a fixedly coupled thereto via adhesive or glue.
  • first friction member 28 a could be coupled to the friction member support portion in any conventional manner if needed and/or desired.
  • first friction member 28 a could be integrally formed with friction member support portion 72 if needed and/or desired.
  • the piston 70 and/or the friction member support portion 72 could be constructed of other materials as needed and/or desired.
  • the piston 70 and/or the friction member support portion 72 could be constructed of a heat resistant material such as resin, molded plastic or the like, if needed and/or desired.
  • the fluid supply hose 60 is fixedly coupled to the reduced diameter section 52 of the cylinder portion 34 by brazing or welding.
  • the fluid supply hose 60 is preferably constructed of rigid metallic material with one end of the fluid supply hose received in the fluid inlet opening 57 of the cylinder portion 34 , and welded or brazed thereto.
  • the opposite end of the fluid supply hose 60 is preferably fixedly coupled to a metal connection member 61 by welding or brazing.
  • the connection member 61 is fluidly coupled to the brake operating mechanism 24 in a conventional manner such that actuating fluid is supplied to the disc brake caliper assembly 20 .
  • the brake operating mechanism 24 is designed to actuate the disc brake caliper assembly 20 to apply a forcible gripping action on the brake disc 22 to stop rotation of the front wheel 18 .
  • the brake operating mechanism 24 basically includes a brake lever 90 , a hydraulic or master cylinder 91 , a hydraulic or master piston 92 , and an actuation fluid reservoir 93 .
  • the brake operating mechanism 24 is a single unit, which is mounted on the handlebar 14 .
  • the brake lever 90 includes a mounting portion 94 and a lever portion 95 .
  • the mounting portion 94 is designed to be clamped onto the handle bar 14 in a conventional manner.
  • the mounting portion 94 is integrally formed with the master cylinder 91 such that the master cylinder 91 , the master piston 92 and the actuation fluid reservoir 93 are all supported on the mounting portion 94 of the brake lever 90 .
  • the lever portion 95 is pivotally coupled to the mounting portion 94 for movement between a release position and a braking position. Normally, the lever portion 94 is maintained in the release position in a conventional manner.
  • the master piston 92 is movably mounted within the master cylinder 91 in a conventional manner. More specifically, the actuation fluid reservoir 93 is mounted on the master cylinder 92 and in fluid communication with the interior bore of the master cylinder 91 for supplying the actuation fluid thereto.
  • the master piston 92 is connected at one end to the lever portion 95 for axially moving the master piston 92 within the master cylinder 91 . Accordingly, actuation of the lever portion 95 causes the master piston 92 to move axially within the master cylinder 91 .
  • This movement of the master piston 92 within the master cylinder 91 directs fluid pressure through a hydraulic line 96 , which is coupled to the disc brake caliper assembly 20 .
  • the pressurized actuation fluid causes the piston 70 and the friction member 28 a to move so as to engage the disc brake rotor 22 between the friction members 28 a and 28 b to stop rotation of wheel 18 .
  • a disc brake caliper assembly 120 is illustrated in accordance with a second embodiment of the present invention.
  • Disc brake caliper assembly 120 of this second embodiment is substantially identical to the disc brake caliper assembly 20 of the first embodiment, except that a modified caliper housing 126 is utilized.
  • this second embodiment will not be discussed or illustrated in detail herein. Rather, the following description will focus mainly on the differences. However, it will be apparent to those skilled in the art that most of the descriptions of the disc brake caliper assembly 20 of the first embodiment also apply to the disc brake caliper assembly 120 of this second embodiment.
  • the disc brake caliper assembly 120 is designed to be used with the brake operating mechanism 24 of the first embodiment, and basically includes the caliper housing 126 , a pair (first and second) of friction members 128 a and 128 b , and a piston mechanism 130 .
  • the friction members 128 a and 128 b are identical to the friction members 28 a and 28 b of the first embodiment.
  • the piston mechanism 130 is identical to the piston mechanism 30 of the first embodiment.
  • the caliper housing 126 is a modified version of the caliper housing 26 of the first embodiment.
  • the caliper housing 126 includes a support portion 132 , a cylinder portion 134 and a mounting portion 136 .
  • the support portion 132 includes a first housing part 138 a , a spacer 138 b and a second housing part 138 c .
  • the first and second housing parts 138 a and 138 c are fixedly coupled together by a pair of bolts 139 with the spacer 138 b located therebetween.
  • the mounting portion 136 basically includes first and second mounting sections 162 , which are integrally formed with the first housing part 138 a .
  • the first housing part 138 a includes an attachment plate 140 with a pair of attachment holes 141 and a pair of side plates 142 a and 142 b .
  • the mounting sections 162 extend from the side plates 142 a and 142 b .
  • a cylinder support opening 143 is formed in the attachment plate 140 .
  • the first housing part 138 a is integrally formed with the mounting sections 162 to form the mounting portion 136 of the caliper housing 126 .
  • the second housing part 138 c includes an attachment plate 144 with a pair of threaded bores 145 formed therein.
  • the second friction member 128 b is fixedly coupled to the attachment plate 144 .
  • Two reinforcing flanges 146 extend in a generally longitudinal direction relative to attachment plate 144 and are substantially perpendicular to the attachment plate 144 .
  • the threaded holes 145 of the attachment plate 144 eliminate the need for the nuts 39 b (of the first embodiment).
  • the spacer 138 b includes a pair of mounting holes formed therein for receiving the bolts 139 .
  • the cylinder portion 134 is a modified version of the cylinder portion 34 of the first embodiment. Specifically, the cylinder portion 134 includes and enlarged section 150 , a reduced diameter section 152 and an end plate 154 .
  • a piston chamber 156 is formed within the cylinder portion 134 and includes a fluid inlet opening 157 fluidly coupled to the piston chamber 156 and a piston receiving opening 159 arranged at an opposite end of the piston chamber 156 from the fluid inlet opening 157 .
  • a pair of flanges 151 are formed adjacent the piston receiving opening 159 and extend substantially perpendicularly from the enlarged section 150 . Two cutouts or notches 161 are formed on opposite sides of the flanges 151 . The flanges contact the attachment plate 144 .
  • the caliper housing assembly 120 of this second embodiment is constructed and assembled in a manner identical to the first embodiment, except that the specific structure of some of the parts have been modified.
  • the cylinder portion 134 is preferably constructed of a single piece of deformed sheet material such as press formed sheet metal.
  • the first housing part 138 a is preferably constructed of a single piece of deformed sheet material such as press formed sheet metal.
  • the first cylinder portion 134 is preferably fixedly coupled to the first housing part 138 a by welding or brazing.
  • the second housing part 138 b is also preferably constructed of a single piece of deformed sheet material such as press formed sheet metal.
  • a disc brake caliper assembly 220 is illustrated in accordance with a third embodiment of the present invention.
  • the disc brake caliper assembly 220 of this third embodiment is substantially identical to the disc brake caliper assembly 120 of the second embodiment, except that the disc brake caliper assembly 220 is designed to utilize a pair of modified piston mechanisms 230 . Since the disc brake caliper assembly 220 is substantially identical to the disc brake caliper assembly 120 , the disc brake caliper assembly 220 will not be discussed and/or illustrated in detail herein. Rather, the following description will focus mainly on the differences of the disc brake caliper assembly 220 from the prior embodiments. However, it will be apparent to those skilled in the art from this disclosure that most of the descriptions of the disc brake caliper assemblies 20 and 120 also apply to the disc brake caliper assembly 220 .
  • the disc brake caliper assembly 220 is designed to be used with the brake operating mechanism 24 of the first embodiment, and basically includes a caliper housing 226 , a pair (first and second) of friction members 128 a and 128 b , and a pair of piston mechanisms 230 .
  • the friction members 228 a and 228 b are identical to the friction members of the first embodiment.
  • each of the piston mechanisms 230 is substantially identical to the piston mechanism 130 of the second embodiment.
  • the caliper housing 226 includes a support portion 232 , a pair (first and second) of cylinder portions 234 and a mounting portion 236 .
  • the support portion 232 includes a first housing part 238 a , a spacer 238 b and a second housing part 238 c .
  • the first and second housing parts 238 a and 238 c are fixedly coupled together by a pair of bolts 239 with the spacer 238 b located therebetween.
  • the mounting portion 236 is basically identically to the mounting portion 136 , and thus, is integrally formed with the first housing part 238 a .
  • the first housing part 238 a is basically identically to the first housing part 138 , and thus, has a cylinder support opening 243 for supporting one of the cylinder portions 234 .
  • the second housing part 238 c is basically identical to the second housing part 138 c of the second embodiment, except that the attachment plate 244 has a cylinder support opening 245 for supporting one of the cylinder portions 234 and the two reinforcing flanges 246 (only one shown) are longer.
  • Each of the piston mechanisms 230 basically includes a piston 270 movably coupled in the piston chamber 256 of the corresponding cylinder portion 234 and a friction member support portion 272 coupled to the piston 270 .
  • the pistons 270 are moved from the release positions to the braking positions via fluid pressure supplied by the brake operating mechanism 24 in a conventional manner.
  • Each of the pistons 270 basically includes a seal portion 274 (first enlarged end) with a central protrusion 276 (second reduced end) extending axially therefrom.
  • the seal portion 274 has a plurality of arc-shaped projections 275 extending axially from the opposite side from the central protrusion 276 .
  • the projections 275 contact the internal contact surface of the cylinder portion 234 when the piston 270 is in the release position.
  • the projections 275 aid in the transmission of hydraulic pressure.
  • the projections 275 are preferably arc-shaped as in the prior embodiments, but longer in the axial direction.
  • An annular groove 278 is formed in the external surface of the seal portion 274 .
  • An O-ring 279 is mounted in the groove 278 to form a fluid tight seal.
  • a biasing member (e.g., Belleville washers) 280 is mounted on the central protrusion 276 of each of the pistons 270 .
  • the first and second pistons 270 are normally biased toward their release positions by the first and second biasing members 280 , respectively.
  • Each biasing member 280 in this embodiment is shorter in the axial direction than in the prior embodiments, since there are two piston mechanisms 230 with one biasing member 280 for each piston 270 .
  • One end of the biasing member 280 is arranged to contact the seal portion 274 of the piston 270 , while the other end of the biasing member 280 is arranged to contact an annular abutment ring 282 .
  • the friction member support portions 272 have the friction members 228 a and 228 b fixedly coupled thereto via adhesive or glue.
  • the cylinder portions 234 are identical and fluidly connected by a conduit or fluid connection hose 284 .
  • the cylinder portions 234 are fixedly coupled to one of the housing parts 238 a and 238 c .
  • Each of the cylinder portions 234 forms a piston chamber with a pair of inlet/outlet ports or fluid inlet/outlet openings 257 and 258 .
  • the cylinder portions 234 are identical to the cylinder portion 134 , except that inlet/outlet ports 258 are provided to receive fittings of the fluid connection hose 284 .
  • the piston chambers of the cylinder portions 234 are interconnected by the fluid connection hose 284 so that both pistons 270 move simultaneously. More specifically, one of the cylinder portions 234 has the port 257 (first fluid inlet opening) fixedly coupled to the fluid supply hose 260 and the port 258 (first fluid outlet opening) in fluid communication with the port 258 (second fluid inlet opening) of the other cylinder portion 234 via the fluid connection hose 284 .
  • the other cylinder portion 234 has a sealing cap 267 mounted in the port 257 (access opening).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

A disc brake includes a caliper housing, a pair of friction members, and a piston. The caliper housing includes a support portion and a cylinder portion coupled to the support portion. The cylinder portion has a piston chamber with a fluid inlet opening. The cylinder portion is an independent component from the support portion. Preferably, the caliper housing includes parts constructed of deformed sheet material such as press formed sheet metal. The parts are preferably fixedly coupled together by welding, brazing and bolts. The friction members are coupled to the caliper housing to form a rotor slot. The piston is mounted in the piston chamber to move one friction member between a release position and a braking position. In one embodiment, an integrated mounting member and a flanged cylinder is provided. In another embodiment, a pair of flanged cylinders with a pair of movable pistons is provided.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention generally relates to a disc brake assembly for a bicycle. More specifically, the present invention relates a disc brake assembly having a caliper housing that is primary constructed of deformed sheet material. [0002]
  • 2. Background Information [0003]
  • Bicycling is becoming an increasingly popular form of recreation as well as a means of transportation. Moreover, bicycling has become a very popular competitive sport. Whether the bicycle is used for recreation, transportation or competition, the bicycle industry is constantly improving their components. One particular component of the bicycle, which has been extensively redesigned over the past years, is the braking systems of bicycles. [0004]
  • There are several types of bicycle brake devices, which are currently available on the market. Examples of some types of common bicycle brake devices include rim brakes, caliper brakes and disc brakes. If a rider wants a very high performance brake system, then the rider typically wants a disc brake system. Disc brake systems provide a substantial braking power in relationship to the amount of braking force applied to the brake lever. Moreover, disc brake systems typically provide a high level of consistency in all types of weather and riding conditions. However, one problem with disc brakes is that they can be complicated and expensive to manufacture and assemble. [0005]
  • Specifically, these prior art disc brakes are typically constructed of several parts with each part constructed of die cast metallic material. Alternatively, these parts can be machined, or both die cast and subsequently machined. These processes can be time consuming and expensive. The parts are usually connected via numerous bolts and utilize sealing members to prevent leakage of the hydraulic or actuating fluid. Thus, these prior disc brakes are somewhat complicated. Some prior disc brakes utilize dual pistons and/or opposing single pistons to move the friction member(s) to engage the brake rotor and apply a stopping force. Thus, these prior art disc brakes can require internal fluid passageways and can be somewhat intricate internally. Moreover, these prior disc brakes can be quite heavy. [0006]
  • In view of the above, there exists a need for a disc brake for a bicycle which overcomes the above mentioned problems in the prior art. This invention addresses this need in the prior art as well as other needs, which will become apparent to those skilled in the art from this disclosure. [0007]
  • SUMMARY OF THE INVENTION
  • One object of the present invention is to provide a disc brake, which is relatively simple and inexpensive to manufacture and assemble. [0008]
  • Another object of the present invention is to provide disc brake, which is relatively lightweight. [0009]
  • Another object of the present invention is to provide disc brake, which provides efficient and reliable stopping power. [0010]
  • The foregoing objects can basically be achieved by providing a disc brake caliper assembly comprising a caliper housing, first and second friction members, and a first piston. The caliper housing includes a support portion and a first cylinder portion coupled to the support portion. The first cylinder portion has a first piston chamber with a first fluid inlet opening fluidly coupled to the first piston chamber and a first piston receiving opening. The first cylinder portion is an independent component from the support portion. The first and second friction members are coupled to the caliper housing to form a rotor receiving slot therebetween. At least the first friction member is movably coupled to the caliper housing. The first piston is movably coupled in the first piston chamber of the caliper housing to move the first friction member between a release position and a braking position. [0011]
  • The foregoing objects can also basically be achieved by providing a a disc brake caliper assembly comprising a caliper housing, first and second friction members, and a first piston. The caliper housing includes a support portion and a first cylinder portion coupled to the support portion. The first cylinder portion is formed of deformed sheet material. The first cylinder portion has a first piston chamber with a first fluid inlet opening fluidly coupled to the first piston chamber and a first piston receiving opening. The first and second friction members are coupled to the caliper housing to form a rotor receiving slot therebetween. At least the first friction member is movably coupled to the caliper housing. The first piston is movably coupled in the first piston chamber of the caliper housing to move the first friction member between a release position and a braking position. [0012]
  • These and other objects, features, aspects and advantages of the present invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses preferred embodiments of the present invention.[0013]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Referring now to the attached drawings which form a part of this original disclosure: [0014]
  • FIG. 1 is a diagrammatic elevational view of a bicycle disc brake with a disc brake caliper assembly in accordance with a first embodiment of the present invention; [0015]
  • FIG. 2 is an enlarged outside elevational view of the disc brake caliper assembly illustrated in FIG. 1, with portions of the disc brake rotor cut away; [0016]
  • FIG. 3 is a partially exploded view of the disc brake caliper assembly illustrated in FIG. 2, with the front fork removed from the front wheel for the purpose of illustration; [0017]
  • FIG. 4 is an end elevational view of the front hub of the front bicycle wheel illustrated in FIGS. 1 and 2, with portions broken away to show the attachment between the disc brake rotor and the hub body; [0018]
  • FIG. 5 is an end elevational view of the disc brake caliper assembly illustrated in FIGS. [0019] 1-3, with the disc brake caliper assembly removed from the front fork;
  • FIG. 6 is a partial, cross-sectional view of the disc brake caliper assembly illustrated in FIGS. [0020] 1-3 and 5, as viewed along section line 6-6 of FIG. 2;
  • FIG. 7 is an end elevational view of a first housing part of the disc brake caliper assembly illustrated in FIGS. [0021] 1-3, 5 and 6;
  • FIG. 8 is an inside elevational view of the first housing part illustrated in FIG. 7; [0022]
  • FIG. 9 is a bottom view of the first housing part illustrated in FIGS. 7 and 8; [0023]
  • FIG. 10 is an outside elevational view of the first housing part illustrated in FIGS. [0024] 7-9;
  • FIG. 11 is a cross-sectional view of the first housing part illustrated in FIGS. [0025] 7-10, as viewed along section line 11-11 in FIG. 10;
  • FIG. 12 is an end elevational view of a second housing part of the disc brake caliper assembly illustrated in FIGS. [0026] 1-3, 5 and 6;
  • FIG. 13 is an inside elevational view of the second housing part illustrated in FIG. 12; [0027]
  • FIG. 14 is an outside elevational view of the second housing part illustrated in FIGS. 12 and 13; [0028]
  • FIG. 15 is a cross-sectional view of the second housing part illustrated in FIGS. [0029] 12-14, as viewed along section line 15-15 of FIG. 14;
  • FIG. 16 is an end elevational view of a cylinder portion of the disc brake caliper assembly illustrated in FIGS. [0030] 1-3, 5 and 6;
  • FIG. 17 is an inside elevational view of the cylinder portion illustrated in FIG. 16; [0031]
  • FIG. 18 is an outside elevational view of the cylinder portion illustrated in FIGS. 16 and 17; [0032]
  • FIG. 19 is a cross-sectional view of the cylinder portion illustrated in FIGS. [0033] 16-18, as viewed along section line 19-19 of FIG. 18;
  • FIG. 20 is an end elevational view of a mounting member of the disc brake caliper assembly illustrated in FIGS. [0034] 1-3, 5 and 6;
  • FIG. 21 is an inside elevational view of the mounting member illustrated in FIG. 20; [0035]
  • FIG. 22 is a transverse end elevational view of the mounting member illustrated in FIGS. 21 and 22; [0036]
  • FIG. 23 is an end elevational view of a piston of the disc brake caliper assembly illustrated in FIGS. [0037] 1-3, 5 and 6;
  • FIG. 24 is an inside elevational view of the piston illustrated in FIG. 23; [0038]
  • FIG. 25 is an outside elevational view of the piston illustrated in FIGS. 23 and 24; [0039]
  • FIG. 26 is a cross-sectional view of the piston illustrated in FIGS. [0040] 23-25, as viewed along section line 26-26 of FIG. 25;
  • FIG. 27 is an end elevational view of a first friction member of the disc brake caliper assembly illustrated in FIGS. [0041] 1-3, 5 and 6;
  • FIG. 28 is an inside elevational view of the first friction member illustrated in FIG. 27; [0042]
  • FIG. 29 is an outside elevational view of the first friction member illustrated in FIGS. 27 and 28; [0043]
  • FIG. 30 is a cross-sectional view of the first friction member illustrated in FIGS. [0044] 27-29, as viewed along section line 30-30 of FIG. 29;
  • FIG. 31 is an enlarged outside elevational view of a disc brake caliper assembly in accordance with a second embodiment of the present invention; [0045]
  • FIG. 32 is a partial cross-sectional view of the disc brake caliper assembly illustrated in FIG. 31, as viewed along section line [0046] 32-32 of FIG. 31;
  • FIG. 33 is an outside elevational view of a first housing part of the disc brake caliper assembly illustrated in FIGS. 31 and 32; [0047]
  • FIG. 34 is an end elevational view of the first housing part illustrated in FIG. 33; [0048]
  • FIG. 35 is an end elevational view of the first housing part illustrated in FIGS. 33 and 34, as viewed along arrow A in FIG. 33; [0049]
  • FIG. 36 is an end elevational view of the first housing part illustrated in FIGS. [0050] 33-35 as viewed along arrow B in FIG. 33;
  • FIG. 37 is a cross-sectional view of the first housing part illustrated in FIGS. [0051] 33-36, as viewed along section line 37-37 in FIG. 33;
  • FIG. 38 is an end elevational view of a second housing part of the disc brake caliper assembly illustrated in FIGS. 31 and 32; [0052]
  • FIG. 39 is an inside elevational view of the second housing part illustrated in FIG. 38; [0053]
  • FIG. 40 is an outside elevational view of the second housing part illustrated in FIGS. 38 and 39; [0054]
  • FIG. 41 is a cross-sectional view of the second housing part illustrated in FIGS. [0055] 38-40, as viewed along section line 41-41 of FIG. 40;
  • FIG. 42 is a side elevational view of a spacer of the disc brake caliper assembly illustrated in FIGS. 31 and 32; [0056]
  • FIG. 43 is an end elevational view of the spacer illustrated in FIG. 42; [0057]
  • FIG. 44 is an end elevational view of a cylinder portion of the disc brake caliper assembly illustrated in FIGS. 31 and 32; [0058]
  • FIG. 45 is an inside elevational view of the first cylinder portion illustrated in FIG. 44; [0059]
  • FIG. 46 is an outside elevational view of the first cylinder portion illustrated in FIGS. 44 and 45; [0060]
  • FIG. 47 is a cross-sectional view of the first cylinder portion illustrated in FIGS. [0061] 44-46, as viewed along section lines 47-47 of FIG. 44; and
  • FIG. 48 is a partial, cross-sectional view of a disc brake caliper assembly in accordance with a third embodiment of the present invention.[0062]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring initially to FIG. 1, a front portion of a bicycle is illustrated with a [0063] disc brake assembly 12 coupled thereto in accordance with one embodiment of the present invention. Bicycles are well known in the art, and thus, the bicycle and its various components will not be discussed or illustrated in detail herein. Rather, it will be apparent to those skilled in the art that the bicycle can be any type of bicycle, e.g., mountain bike, a hybrid bike, downhill bike or a road bike. The bicycle basically includes a conventional bicycle frame with a handle bar 14, front and rear forks 16 (only a portion of the front fork shown), front and rear wheels 18 (only a portion of the front wheel shown) and a drive train (not shown).
  • Only the front portion of the bicycle (front fork [0064] 16) is illustrated as having the disc brake assembly 12. However, it will be apparent to those skilled in the art from this disclosure that a second disc brake assembly 12 can be utilized for stopping the rear wheel of the bicycle. Moreover, it will also be apparent to those skilled in the art from this disclosure that various changes and modifications can be made from the embodiments disclosed herein without departing from the scope of the invention as defined in the appended claims.
  • Referring to FIGS. [0065] 2-6, the disc brake assembly 12 basically includes a disc brake caliper assembly 20, a disc brake rotor 22 and a brake operating mechanism 24. The disc brake caliper assembly 20 is mounted on front fork 16 of the bicycle adjacent the disc brake rotor 22. The disc brake rotor 22 is fixedly coupled to front wheel 18 for rotation therewith in a conventional manner. The brake operating mechanism 24 is preferably fixedly mounted on handle bar 14 adjacent the hand portion of handle bar 14. The brake operating mechanism 24 is operated such that at least one friction member of the disc brake caliper assembly 20 moves from a release position to a braking position. In the release position, the bicycle wheel 18 and the disc brake rotor 22 are free to rotate, while in the braking position a braking force is applied against the disc brake rotor 22 to stop rotation of the bicycle wheel 18 and the disc brake rotor 22.
  • As best seen in FIGS. 5 and 6, the disc [0066] brake caliper assembly 20 basically includes a caliper housing 26 with a pair (first and second) of friction members 28 a and 28 b coupled to the caliper housing 26. In the illustrated embodiment, the (second) friction member 28 b is fixedly coupled to the caliper housing 26, while the other (first) friction member 28 a is movable coupled to the caliper housing 26. A rotor receiving slot is formed between friction members 28 a and 28 b to receive the disc brake rotor 22. The movable friction member 28 a (first friction member) is moved by a piston mechanism 30 in response to movement of the brake operating mechanism 24 to apply a braking force on the disc brake rotor 22, as discussed in more detail below.
  • The [0067] caliper housing 26 basically includes a support portion 32 and a first cylinder portion 34 coupled to the support portion 32. The caliper housing 26 also preferably includes a mounting portion 36 for coupling with the support portion 32 and the cylinder portion 34 to the front fork 16. Preferably, the support portion 32, the cylinder portion 34 and the mounting portion 36 are each formed of one or more pieces of deformed sheet material such as press formed sheet metal. The various pieces are preferably fixedly coupled together by welding and/or brazing and/or bolted together as discussed below in more detail. In other words, each of the support portion 32, the cylinder portion 34 and the mounting portion 36 are preferably formed by one or more independent members that are subsequently fixedly coupled together to form the caliper housing 26. In any event, preferably the cylinder portion 34 is at least an independent member from the support portion 32 such that the cylinder portion 34 can be primarily formed of deformed sheet material.
  • The [0068] support portion 32 basically includes a first housing part 38 a and a second housing part 38 b fixedly coupled together. Preferably, the first and second housing parts38 a and 38 b are fixedly coupled together by a pair of bolts 39 a with a pair of nuts 39 b threadedly coupled to the bolts 39 a. The first housing part 38 a is preferably constructed of a single piece of deformed sheet material such as press formed sheet metal. Likewise, the second housing part 38 b is also preferably formed of a single piece of deformed sheet material such as press formed sheet metal. The cylinder portion 34 is preferably fixedly coupled to the first housing part 38 a by welding or brazing to form a rigid unitary body with the first housing part 38 a. Likewise, the mounting portion 36 is also preferably fixedly coupled with the first housing part 38 a and the cylinder portion 34 by welding or brazing to form the rigid unitary body with the cylinder portion 34 and the first housing part 38 a. Accordingly, each part of the caliper housing 26 is of deformed sheet material, except for the fastening elements (the welds, the bolts and the nuts).
  • Referring to FIGS. [0069] 7-11, the first housing part 38 a basically includes an (first) attachment plate 40 and a pair (first and second) of side plates 42. The first housing part 38 a is preferably constructed of a single piece of deformed sheet material such press formed sheet metal. The attachment plate 40 has a pair of attachment holes 41 formed therein to receive the bolts 39 a. Each of the side plates 42 is preferably a substantially L-shaped plate member. More specifically, each of the side plates 43 is preferably a curved L-shaped member (or J-shaped member), and includes a cylinder support flange 43 formed at a free end thereof. The cylinder support flanges 43 extend at substantially right angles relative to the side plates 42, and extend toward each other. The support flanges 43 are configured to support an end of the cylinder portion 34 of the caliper housing 26. The side plates 42 are also configured to support the mounting portion 36, as discussed below in more detail. The attachment plate 40 is preferably a substantially flat rectangular-shaped member that is designed to contact a portion of the second housing part 38 b.
  • Referring to FIGS. [0070] 12-15, the second housing part 38 b basically includes an (second) attachment plate 44 and a reinforcing flange 46. The second housing part 38 b is preferably constructed of a single piece of deformed sheet material such press formed sheet metal. The attachment plate 44 has a pair of attachment holes 45 formed therein to receive the bolts 39 a. When the second housing part 38 b is coupled to the first housing part 38 a via the bolts 39 a and the nuts 39 b, a portion of the (second) attachment plate 44 contacts the (first) attachment plate 40 of the first housing part 38. In other words, the attachment holes 45 are aligned with the attachment holes 41 such that bolts 39 a can be mounted therein. The reinforcing flange 46 is a substantially U-shaped flange extending from one side of the attachment plate 44. The second friction member 28 b is attached to the opposite side of the attachment plate 44 from the reinforcing flange 46 at a free end of the attachment plate 44.
  • Preferably, the [0071] second friction member 28 b is fixedly coupled to the attachment plate 44 via adhesive or glue. Of course, it will be apparent to those skilled in the art that the second friction member 28 b could be fixedly coupled to the second housing part 38 b utilizing any suitable technique as needed and/or desired. The reinforcing flange 46 preferably extends at substantially a right angle relative to the attachment plate 44, and includes a transverse section 48 and a pair of longitudinal sections 49. The longitudinal sections 49 are tapered toward the attachment plate 44 as the longitudinal sections 49 extend away from the transverse section 48. Preferably, the longitudinal sections 49 extend completely to the free end of the attachment plate 44 such that a lightweight, rigid member is formed.
  • Referring to FIGS. [0072] 16-19, the (first) cylinder portion 34 basically includes an enlarged section 50 integrally formed with a reduced diameter section 52. The cylinder portion 34 is preferably a tubular member that isconstructed of a single piece of deformed sheet material such as press formed sheet metal. In other words, the cylinder portion 34 is an independent member from the support portion 32 (the first and second housing parts 38 a and 38 b).
  • The [0073] enlarged section 50 and the reduced section 52 are preferably cylindrical sections that have a circular-shaped cross section. An end plate 54 connects the enlarged section 50 with the reduced section 52 to form a one-piece unitary member. The internal surface of the end plate 54 forms an abutment surface for the piston mechanism 30, while the external surface of the end plate 54 forms an attachment surface configured to be supported by the cylinder support flanges 43 of the first housing part 38 a. Preferably, the cylinder support flanges 43 are fixedly coupled to the end plate 54 of the cylinder portion 34 by welding or brazing such that the cylinder portion 34 is fixedly coupled to the first housing part 38 a.
  • The [0074] cylinder portion 34 includes a (first) piston chamber 56 with a (first) fluid inlet opening 57 fluidly coupled to the piston chamber 56 and a (first) piston receiving opening 59. The piston mechanism 30 is at least partially received in the piston chamber 56. The enlarged section 50 of the cylinder portion 34 includes an annular groove 51 designed to engage a portion of the piston mechanism 30, as discussed below in more detail. Preferably, the open end of the reduced diameter section 52 forms the fluid inlet opening 57 of the cylinder portion 34. The fluid inlet opening 57 is designed to be directly fixedly coupled to a fluid supply hose 60, as also discussed in more detail below.
  • Referring to FIGS. [0075] 19-22, the mounting portion 36 is preferably a plate-shaped strap member constructed of a single piece of deformed sheet material such as press formed sheet metal. The mounting portion 36 basically includes a curved cylinder support section 62 with a pair of mounting sections 64 extending from opposite ends of the curved cylinder support section 62. Each of the mounting sections 64 includes a mounting hole 65. The mounting sections 64 are utilized to fixedly couple the disc brake caliper assembly 20 to the front fork 16 of the bicycle in a relatively conventional manner.
  • The mounting [0076] portion 36 is preferably fixedly coupled to both the cylinder portion 34 and the first housing part 38 a by welding or brazing. More specifically, the curved cylinder support section 62 is preferably coupled to the external surface of the enlarged section 50 of the cylinder portion 34. Also, the curved cylinder support section 62 is preferably coupled to the inner edges of the side plates 42 of the first housing part 38 a. In other words, the mounting portion 36 is preferably fixedly coupled to and arranged between the cylinder portion 34 and the first housing part 38 a. Preferably, these members are coupled together by welding or brazing.
  • As discussed above, preferably the mounting [0077] portion 36 is formed as a one-piece unitary member that is separate from the cylinder portion 34 and the support portion 32 (first housing part 38 a and second housing part 38 b). However, it will be apparent to those skilled in the art that mounting portion 36 could be integrally formed with the first housing part 38 a, as discussed below in reference to another preferred embodiment of the present invention.
  • Referring to FIGS. 6 and 23-[0078] 30, the piston mechanism 30 basically includes a (first) piston 70 movably coupled in the piston chamber 56 and a friction member support portion 72 coupled to the piston 70. The piston 70 is that can be constructed of any suitable material. For example, the piston 70 can be constructed of machined metallic material such as machined aluminum or a resin with heat resistant characteristics. The piston 70 preferably has a step-shaped configuration. The friction member support portion 72 is also preferably constructed of a machined metallic material such as machined steel. The friction member support portion 72 is releasably coupled to the piston 72 to move with the piston 70 during actuation. The piston 70 is normally biased toward a release position from a braking position. The piston 70 is moved from the release position to the braking position via fluid pressure supplied by the brake operating mechanism 24 in a conventional manner.
  • The [0079] piston 70 basically includes a seal portion 74 (first enlarged end) with a central protrusion 76 (second reduced end) extending axially therefrom. The seal portion 74 has a plurality of arc-shaped projections 75 extending axially from the opposite side from the central protrusion 76. The projections 75 contact the internal contact surface of the end plate 54 of the cylinder portion 34 when the piston 70 is in the release position. The projections 75 aid in the transmission of hydraulic pressure. While the projections 75 are illustrated as arc-shaped, it will be apparent to those skilled in the art that other shapes could be utilized if needed and/or desired. An annular groove 78 is formed in the external surface of the seal portion 74. An O-ring 79 is mounted in the groove 78 to form a fluid tight seal. A biasing member (e.g., a cone spring or a coil spring or Belleville washers) 80 is mounted on the central protrusion 76 of the piston 70. One end of the biasing member 80 is arranged to contact the seal portion 74 of the piston 70, while the other end of the biasing member 80 is arranged to contact an annular abutment ring 82.
  • The [0080] annular ring 82 is preferably a snap ring that is mounted in the annular groove 51 formed in the enlarged section 50 of the cylinder portion 34 to retain the piston 70 within the piston chamber 56. The friction member support portion 72 is also preferably a step shaped member. More specifically, the friction member support portion 72 includes a central stump 84 extending from a base portion 86. The central stump 84 includes an annular groove 85 with an O-ring received therein. The central protrusion 76 of the piston 70 includes a stepped bore 88 that is sized and configured to retain the central stump 84 with the O-ring therein. Thus, the friction member support portion 72 is releasable coupled to the piston 70. When the piston 70 is in the release position, the base portion 86 contacts an opposite end of the annular ring 82.
  • In the illustrated embodiment, the friction [0081] member support portion 72 has the first friction member 28 a fixedly coupled thereto via adhesive or glue. Of course, it will be apparent to those skilled in the art that the first friction member 28 a could be coupled to the friction member support portion in any conventional manner if needed and/or desired. Moreover, it will be apparent to those skilled in the art that the first friction member 28 a could be integrally formed with friction member support portion 72 if needed and/or desired. Furthermore, it will be apparent to those skilled in the art from this disclosure that the piston 70 and/or the friction member support portion 72 could be constructed of other materials as needed and/or desired. For example, the piston 70 and/or the friction member support portion 72 could be constructed of a heat resistant material such as resin, molded plastic or the like, if needed and/or desired.
  • Referring again to FIG. 3, the [0082] fluid supply hose 60 is fixedly coupled to the reduced diameter section 52 of the cylinder portion 34 by brazing or welding. Specifically, the fluid supply hose 60 is preferably constructed of rigid metallic material with one end of the fluid supply hose received in the fluid inlet opening 57 of the cylinder portion 34, and welded or brazed thereto. The opposite end of the fluid supply hose 60 is preferably fixedly coupled to a metal connection member 61 by welding or brazing. The connection member 61 is fluidly coupled to the brake operating mechanism 24 in a conventional manner such that actuating fluid is supplied to the disc brake caliper assembly 20.
  • Referring again to FIG. 1, the [0083] brake operating mechanism 24 will now be described in more detail. Basically, the brake operating mechanism 24 is designed to actuate the disc brake caliper assembly 20 to apply a forcible gripping action on the brake disc 22 to stop rotation of the front wheel 18. The brake operating mechanism 24 basically includes a brake lever 90, a hydraulic or master cylinder 91, a hydraulic or master piston 92, and an actuation fluid reservoir 93.
  • Preferably, the [0084] brake operating mechanism 24 is a single unit, which is mounted on the handlebar 14. In particular, the brake lever 90 includes a mounting portion 94 and a lever portion 95. The mounting portion 94 is designed to be clamped onto the handle bar 14 in a conventional manner. The mounting portion 94 is integrally formed with the master cylinder 91 such that the master cylinder 91, the master piston 92 and the actuation fluid reservoir 93 are all supported on the mounting portion 94 of the brake lever 90. The lever portion 95 is pivotally coupled to the mounting portion 94 for movement between a release position and a braking position. Normally, the lever portion 94 is maintained in the release position in a conventional manner.
  • The master piston [0085] 92 is movably mounted within the master cylinder 91 in a conventional manner. More specifically, the actuation fluid reservoir 93 is mounted on the master cylinder 92 and in fluid communication with the interior bore of the master cylinder 91 for supplying the actuation fluid thereto. The master piston 92 is connected at one end to the lever portion 95 for axially moving the master piston 92 within the master cylinder 91. Accordingly, actuation of the lever portion 95 causes the master piston 92 to move axially within the master cylinder 91. This movement of the master piston 92 within the master cylinder 91 directs fluid pressure through a hydraulic line 96, which is coupled to the disc brake caliper assembly 20. Thus, the pressurized actuation fluid causes the piston 70 and the friction member 28 a to move so as to engage the disc brake rotor 22 between the friction members 28 a and 28 b to stop rotation of wheel 18.
  • Second Embodiment
  • Referring to FIGS. [0086] 31-47, a disc brake caliper assembly 120 is illustrated in accordance with a second embodiment of the present invention. Disc brake caliper assembly 120 of this second embodiment is substantially identical to the disc brake caliper assembly 20 of the first embodiment, except that a modified caliper housing 126 is utilized. Thus, this second embodiment will not be discussed or illustrated in detail herein. Rather, the following description will focus mainly on the differences. However, it will be apparent to those skilled in the art that most of the descriptions of the disc brake caliper assembly 20 of the first embodiment also apply to the disc brake caliper assembly 120 of this second embodiment.
  • The disc [0087] brake caliper assembly 120 is designed to be used with the brake operating mechanism 24 of the first embodiment, and basically includes the caliper housing 126, a pair (first and second) of friction members 128 a and 128 b, and a piston mechanism 130. The friction members 128 a and 128 b are identical to the friction members 28 a and 28 b of the first embodiment. Additionally, the piston mechanism 130 is identical to the piston mechanism 30 of the first embodiment. On the other hand, the caliper housing 126 is a modified version of the caliper housing 26 of the first embodiment.
  • Specifically, the [0088] caliper housing 126 includes a support portion 132, a cylinder portion 134 and a mounting portion 136. The support portion 132 includes a first housing part 138 a, a spacer 138 b and a second housing part 138 c. The first and second housing parts 138 a and 138 c are fixedly coupled together by a pair of bolts 139 with the spacer 138 b located therebetween. The mounting portion 136 basically includes first and second mounting sections 162, which are integrally formed with the first housing part 138 a. The first housing part 138 a includes an attachment plate 140 with a pair of attachment holes 141 and a pair of side plates 142 a and 142 b. The mounting sections 162 extend from the side plates 142 a and 142 b. A cylinder support opening 143 is formed in the attachment plate 140. In other words, the first housing part 138 a is integrally formed with the mounting sections 162 to form the mounting portion 136 of the caliper housing 126.
  • The [0089] second housing part 138 c includes an attachment plate 144 with a pair of threaded bores 145 formed therein. The second friction member 128 b is fixedly coupled to the attachment plate 144. Two reinforcing flanges 146 extend in a generally longitudinal direction relative to attachment plate 144 and are substantially perpendicular to the attachment plate 144. The threaded holes 145 of the attachment plate 144 eliminate the need for the nuts 39 b (of the first embodiment). The spacer 138 b includes a pair of mounting holes formed therein for receiving the bolts 139.
  • The [0090] cylinder portion 134 is a modified version of the cylinder portion 34 of the first embodiment. Specifically, the cylinder portion 134 includes and enlarged section 150, a reduced diameter section 152 and an end plate 154. A piston chamber 156 is formed within the cylinder portion 134 and includes a fluid inlet opening 157 fluidly coupled to the piston chamber 156 and a piston receiving opening 159 arranged at an opposite end of the piston chamber 156 from the fluid inlet opening 157. A pair of flanges 151 are formed adjacent the piston receiving opening 159 and extend substantially perpendicularly from the enlarged section 150. Two cutouts or notches 161 are formed on opposite sides of the flanges 151. The flanges contact the attachment plate 144.
  • Preferably, the [0091] caliper housing assembly 120 of this second embodiment is constructed and assembled in a manner identical to the first embodiment, except that the specific structure of some of the parts have been modified. In other words, the cylinder portion 134 is preferably constructed of a single piece of deformed sheet material such as press formed sheet metal. Also, the first housing part 138 a is preferably constructed of a single piece of deformed sheet material such as press formed sheet metal. The first cylinder portion 134 is preferably fixedly coupled to the first housing part 138 a by welding or brazing. The second housing part 138 b is also preferably constructed of a single piece of deformed sheet material such as press formed sheet metal.
  • Third Embodiment
  • Referring now to FIG. 48, a disc [0092] brake caliper assembly 220 is illustrated in accordance with a third embodiment of the present invention. The disc brake caliper assembly 220 of this third embodiment is substantially identical to the disc brake caliper assembly 120 of the second embodiment, except that the disc brake caliper assembly 220 is designed to utilize a pair of modified piston mechanisms 230. Since the disc brake caliper assembly 220 is substantially identical to the disc brake caliper assembly 120, the disc brake caliper assembly 220 will not be discussed and/or illustrated in detail herein. Rather, the following description will focus mainly on the differences of the disc brake caliper assembly 220 from the prior embodiments. However, it will be apparent to those skilled in the art from this disclosure that most of the descriptions of the disc brake caliper assemblies 20 and 120 also apply to the disc brake caliper assembly 220.
  • The disc [0093] brake caliper assembly 220 is designed to be used with the brake operating mechanism 24 of the first embodiment, and basically includes a caliper housing 226, a pair (first and second) of friction members 128 a and 128 b, and a pair of piston mechanisms 230. The friction members 228 a and 228 b are identical to the friction members of the first embodiment. Additionally, each of the piston mechanisms 230 is substantially identical to the piston mechanism 130 of the second embodiment.
  • Specifically, the [0094] caliper housing 226 includes a support portion 232, a pair (first and second) of cylinder portions 234 and a mounting portion 236. The support portion 232 includes a first housing part 238 a, a spacer 238 b and a second housing part 238 c. The first and second housing parts 238 a and 238 c are fixedly coupled together by a pair of bolts 239 with the spacer 238 b located therebetween. The mounting portion 236 is basically identically to the mounting portion 136, and thus, is integrally formed with the first housing part 238 a. The first housing part 238 a is basically identically to the first housing part 138, and thus, has a cylinder support opening 243 for supporting one of the cylinder portions 234.
  • The second housing part [0095] 238 c is basically identical to the second housing part 138 c of the second embodiment, except that the attachment plate 244 has a cylinder support opening 245 for supporting one of the cylinder portions 234 and the two reinforcing flanges 246 (only one shown) are longer.
  • Each of the [0096] piston mechanisms 230 basically includes a piston 270 movably coupled in the piston chamber 256 of the corresponding cylinder portion 234 and a friction member support portion 272 coupled to the piston 270. The pistons 270 are moved from the release positions to the braking positions via fluid pressure supplied by the brake operating mechanism 24 in a conventional manner.
  • Each of the [0097] pistons 270 basically includes a seal portion 274 (first enlarged end) with a central protrusion 276 (second reduced end) extending axially therefrom. The seal portion 274 has a plurality of arc-shaped projections 275 extending axially from the opposite side from the central protrusion 276. The projections 275 contact the internal contact surface of the cylinder portion 234 when the piston 270 is in the release position. The projections 275 aid in the transmission of hydraulic pressure. The projections 275 are preferably arc-shaped as in the prior embodiments, but longer in the axial direction. An annular groove 278 is formed in the external surface of the seal portion 274. An O-ring 279 is mounted in the groove 278 to form a fluid tight seal. A biasing member (e.g., Belleville washers) 280 is mounted on the central protrusion 276 of each of the pistons 270. The first and second pistons 270 are normally biased toward their release positions by the first and second biasing members 280, respectively. Each biasing member 280 in this embodiment is shorter in the axial direction than in the prior embodiments, since there are two piston mechanisms 230 with one biasing member 280 for each piston 270. One end of the biasing member 280 is arranged to contact the seal portion 274 of the piston 270, while the other end of the biasing member 280 is arranged to contact an annular abutment ring 282. In the illustrated embodiment, the friction member support portions 272 have the friction members 228 a and 228 b fixedly coupled thereto via adhesive or glue.
  • The [0098] cylinder portions 234 are identical and fluidly connected by a conduit or fluid connection hose 284. The cylinder portions 234 are fixedly coupled to one of the housing parts 238 a and 238 c. Each of the cylinder portions 234 forms a piston chamber with a pair of inlet/outlet ports or fluid inlet/ outlet openings 257 and 258. Thus, the cylinder portions 234 are identical to the cylinder portion 134, except that inlet/outlet ports 258 are provided to receive fittings of the fluid connection hose 284.
  • The piston chambers of the [0099] cylinder portions 234 are interconnected by the fluid connection hose 284 so that both pistons 270 move simultaneously. More specifically, one of the cylinder portions 234 has the port 257 (first fluid inlet opening) fixedly coupled to the fluid supply hose 260 and the port 258 (first fluid outlet opening) in fluid communication with the port 258 (second fluid inlet opening) of the other cylinder portion 234 via the fluid connection hose 284. The other cylinder portion 234 has a sealing cap 267 mounted in the port 257 (access opening).
  • The terms of degree such as “substantially”, “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. These terms should be construed as including a deviation of at least ±5% of the modified term if this deviation would not negate the meaning of the word it modifies. [0100]
  • While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. Furthermore, the foregoing description of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents. [0101]

Claims (44)

What is claimed is:
1. A disc brake caliper assembly comprising:
a caliper housing including a support portion and a first cylinder portion coupled to said support portion, said first cylinder portion having a first piston chamber with a first fluid inlet opening fluidly coupled to said first piston chamber and a first piston receiving opening, said first cylinder portion being an independent component from said support portion;
first and second friction members coupled to said caliper housing to form a rotor receiving slot therebetween, at least said first friction member being movably coupled to said caliper housing; and
a first piston movably coupled in said first piston chamber of said caliper housing to move said first friction member between a release position and a braking position.
2. The disc brake caliper assembly according to claim 1, wherein
said first cylinder portion is constructed of deformed sheet material.
3. The disc brake caliper assembly according to claim 2, wherein
said first cylinder portion is constructed of press formed sheet metal.
4. The disc brake caliper assembly according to claim 1, wherein
said support portion is at least partially formed of metal and said first cylinder portion is fixedly coupled to said support portion by welding or brazing.
5. The disc brake caliper assembly according to claim 1, wherein
said support portion includes a first housing part with said first cylinder portion fixedly coupled thereto and a second housing part coupled to said first housing part and supporting said second friction member.
6. The disc brake caliper assembly according to claim 5, wherein
said first and second housing parts are formed of deformed sheet material.
7. The disc brake caliper assembly according to claim 6, wherein
said first cylinder portion is constructed of deformed sheet material.
8. The disc brake caliper assembly according to claim 7, wherein
said support portion includes a mounting portion fixedly coupled with said first housing part and said first cylinder portion.
9. The disc brake caliper assembly according to claim 8, wherein
said mounting portion is a strap member with a pair of mounting sections.
10. The disc brake caliper assembly according to claim 9, wherein
said strap member is constructed of deformed sheet material.
11. The disc brake caliper assembly according to claim 10, wherein
said first cylinder portion, said first housing part and said strap member are constructed of press formed sheet metal and are fixedly coupled together by welding or brazing.
12. The disc brake caliper assembly according to claim 6, wherein
said first and second housing parts are fixedly coupled together with a spacer coupled between said first and second housing parts.
13. The disc brake caliper assembly according to claim 5, wherein
said support portion includes a mounting portion fixedly coupled with said first housing part and said first cylinder portion.
14. The disc brake caliper assembly according to claim 13, wherein
said mounting portion is a strap member with a pair of mounting sections.
15. The disc brake caliper assembly according to claim 5, wherein
said first housing part includes a pair of mounting sections integrally formed therewith.
16. The disc brake caliper assembly according to claim 5, wherein
said first and second housing parts are fixedly coupled together with a spacer coupled between said first and second housing parts.
17. The disc brake caliper assembly according to claim 5, wherein
said second friction member is fixedly coupled to said second housing part.
18. The disc brake caliper assembly according to claim 5, wherein
said first and second housing parts are constructed of press formed sheet metal.
19. The disc brake caliper assembly according to claim 5, wherein
said second friction part is movably coupled to said second housing part to move said second friction member between a release position and a braking position.
20. The disc brake caliper assembly according to claim 19, wherein
said caliper housing includes a second cylinder portion fixedly coupled to said second housing part, said second cylinder portion having a second piston chamber a second fluid inlet opening fluidly coupled to said second piston chamber and a second piston receiving opening with a second piston movably coupled therein to move said second friction member between said release position and said braking position.
21. The disc brake caliper assembly according to claim 20, wherein
said first fluid inlet opening of said first cylinder portion is fixedly coupled to a fluid supply hose.
22. The disc brake caliper assembly according to claim 21, wherein
said first cylinder portion includes a first fluid outlet opening in fluid communication with said first piston chamber and said second fluid inlet opening of said second cylinder portion.
23. The disc brake caliper assembly according to claim 22, wherein
said first fluid outlet opening of said first cylinder portion and said second fluid inlet opening of said second cylinder portion are fixedly coupled to opposite ends of a fluid connection hose.
24. The disc brake caliper assembly according to claim 23, wherein
said second cylinder portion includes an access opening formed at a free end thereof with a sealing cap mounted in said access opening.
25. The disc brake caliper assembly according to claim 24, wherein
said second cylinder portion is identical to said first cylinder portion.
26. The disc brake caliper assembly according to claim 20, wherein
said first and second pistons are normally biased toward said release positions by first and second biasing members, respectively.
27. The disc brake caliper assembly according to claim 26, wherein
said first and second biasing members are cone springs.
28. The disc brake caliper assembly according to claim 1, wherein
said first fluid inlet opening of said first cylinder portion is fixedly coupled to a fluid supply hose.
29. The disc brake caliper assembly according to claim 28, wherein
said first cylinder portion and said fluid supply hose are constructed metal and are fixedly coupled together by welding or brazing.
30. The disc brake caliper assembly according to claim 1, wherein
said first piston is normally biased toward said release position by a first biasing member.
31. The disc brake caliper assembly according to claim 30, wherein
said first biasing member is a cone spring.
32. The disc brake caliper assembly according to claim 30, wherein
said first cylinder portion includes an abutment ring coupled therein to engage one end of said biasing member and the first piston includes a contact surface arranged to engage the other end of said biasing member.
33. The disc brake caliper assembly according to claim 32, wherein
said first piston is a step shaped member with a first enlarged end arranged adjacent said first fluid inlet opening to form said contact surface and a second reduced end arranged adjacent said first friction member.
34. The disc brake caliper assembly according to claim 33, wherein
said enlarged end includes an annular external groove with an O-ring received therein to form a fluid tight seal with an interior wall of said first cylinder portion.
35. The disc brake caliper assembly according to claim 33, wherein
said enlarged end includes a plurality of protrusions extending axially therefrom to form a free end of said first piston.
36. The disc brake caliper assembly according to claim 35, wherein
each of said protrusions is arc-shaped.
37. The disc brake caliper assembly according to claim 33, wherein
said first friction member is coupled to said reduced end and arranged to contact said abutment ring when said first piston is in said release position.
38. The disc brake caliper assembly according to claim 37, wherein
said reduced end has an opening formed in a free end thereof and said first friction member includes a projection coupled within said opening.
39. The disc brake caliper assembly according to claim 1, wherein
said support portion includes a first housing part with an attachment plate and a first side plate extending from said attachment plate to support said first cylinder portion.
40. The disc brake caliper assembly according to claim 39, wherein
said first housing part includes a second side plate extending from said attachment plate to form a substantially U-shaped member.
41. The disc brake caliper assembly according to claim 40, wherein
each of said first and second side plates includes a cylinder support flange arranged to contact an end plate of said first cylinder portion.
42. The disc brake caliper assembly according to claim 40, wherein
each of said first and second side plates is a substantially L-shaped member.
43. The disc brake caliper assembly according to claim 39, wherein
said support portion includes a second housing part coupled to said attachment plate.
44. A disc brake caliper assembly comprising:
a caliper housing including a support portion and a first cylinder portion coupled to said support portion, said first cylinder portion being formed of deformed sheet material, said first cylinder portion having a first piston chamber with a first fluid inlet opening fluidly coupled to said first piston chamber and a first piston receiving opening;
first and second friction members coupled to said caliper housing to form a rotor receiving slot therebetween, at least said first friction member being movably coupled to said caliper housing; and
a first piston movably coupled in said first piston chamber of said caliper housing to move said first friction member between a release position and a braking position.
US09/903,860 2001-07-13 2001-07-13 Disc brake caliper assembly Expired - Lifetime US6510926B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09/903,860 US6510926B1 (en) 2001-07-13 2001-07-13 Disc brake caliper assembly
TW091108236A TWI241261B (en) 2001-07-13 2002-04-22 Disc brake caliper assembly
CNB021203288A CN1246180C (en) 2001-07-13 2002-05-23 Disk brake calipers assembly
JP2002175800A JP3994030B2 (en) 2001-07-13 2002-06-17 Disc brake caliper assembly
EP02013718A EP1275578B1 (en) 2001-07-13 2002-06-20 Disc brake caliper assembly
DE60209834T DE60209834T2 (en) 2001-07-13 2002-06-20 Disc brake caliper
CZ20022275A CZ20022275A3 (en) 2001-07-13 2002-06-28 Disc brake caliper assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/903,860 US6510926B1 (en) 2001-07-13 2001-07-13 Disc brake caliper assembly

Publications (2)

Publication Number Publication Date
US20030010580A1 true US20030010580A1 (en) 2003-01-16
US6510926B1 US6510926B1 (en) 2003-01-28

Family

ID=25418175

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/903,860 Expired - Lifetime US6510926B1 (en) 2001-07-13 2001-07-13 Disc brake caliper assembly

Country Status (7)

Country Link
US (1) US6510926B1 (en)
EP (1) EP1275578B1 (en)
JP (1) JP3994030B2 (en)
CN (1) CN1246180C (en)
CZ (1) CZ20022275A3 (en)
DE (1) DE60209834T2 (en)
TW (1) TWI241261B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8162354B2 (en) 2008-07-25 2012-04-24 Shimano Inc. Twistable hydraulic brake hose unit
CN104249797A (en) * 2013-06-28 2014-12-31 株式会社岛野 Bicycle brake caliper assembly
EP2848513A1 (en) * 2011-04-19 2015-03-18 Gustav Magenwirth GmbH & Co. KG Brake and method for installing same
US9334909B2 (en) 2012-04-20 2016-05-10 Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh Disc brake for vehicles
CN106043575A (en) * 2016-07-12 2016-10-26 温芫鋐 Disc protective cover
US9533733B2 (en) 2013-06-28 2017-01-03 Shimano Inc. Disc brake caliper and disc brake caliper assembly
US20180290707A1 (en) * 2017-04-10 2018-10-11 Shimano Inc. Bicycle disc brake caliper assembly

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6761251B1 (en) * 2003-05-22 2004-07-13 Chun Te Wen Hydraulic brake device for a bicycle
WO2005123491A1 (en) * 2004-06-21 2005-12-29 Freni Brembo S.P.A. Disc brake caliper
DE102005061903A1 (en) * 2005-12-23 2007-06-28 Gustav Magenwirth Gmbh & Co. Kg Connecting piece for hydraulic lead to a brake fork, a brake fork and a hydraulic brake, has catch extending sideways to the plane of ring-forming region
DE102006001133A1 (en) * 2006-01-09 2007-07-12 Robert Bosch Gmbh Electromechanical friction brake
CN101498346A (en) * 2008-01-31 2009-08-05 温芫鋐 Disc type brake buffering mechanism
US20090211854A1 (en) * 2008-02-25 2009-08-27 Wen Yuan-Hung Buffer device of disk brake
US8813936B2 (en) * 2008-07-25 2014-08-26 Eaton Corporation Force transmitting assembly
US20130048444A1 (en) * 2011-08-25 2013-02-28 Shimano Inc. Bicycle disc brake caliper
US9365260B2 (en) * 2012-04-18 2016-06-14 Shimano Inc. Bicycle hydraulic operating device
RU2508219C1 (en) * 2012-10-24 2014-02-27 Общество с ограниченной ответственностью "Трейд-Импорт" Bicycle disc brake
CN103122956A (en) * 2013-01-22 2013-05-29 陈政文 Double-push disc type braking structure
DE102013109861B3 (en) * 2013-09-10 2014-11-27 GEDIA Gebrüder Dingerkus GmbH Brake caliper for disc brakes of motor vehicles
US9457868B2 (en) 2014-08-06 2016-10-04 Shimano Inc. Bicycle hydraulic quick-release apparatus and bicycle frame
US9752633B2 (en) * 2016-01-18 2017-09-05 Shimano Inc. Bicycle disc brake rotor
IT201700046888A1 (en) * 2017-05-02 2018-11-02 Campagnolo Srl Bicycle brake disc assembly
DE102019106706A1 (en) * 2019-03-15 2020-09-17 Ingenieurbüro für Automatisierungstechnik Schubert GbR ( vertretungsberechtigter Gesellschafter: Mike Schubert, 09465 Sehmatal-Sehma) Hydraulic brake and vehicle
IT202100026324A1 (en) * 2021-10-14 2023-04-14 Raicam Driveline S R L BRAKE PADS WITH BASE IN PLASTIC MATERIAL

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE24996E (en) * 1957-02-25 1961-06-06 Disc brakes
DE2308909A1 (en) * 1973-02-23 1974-08-29 Fichtel & Sachs Ag DISC BRAKE FOR BICYCLES
US4031986A (en) * 1974-03-25 1977-06-28 Thompson Tom H Disk brake construction having stamped support
US4370918A (en) * 1980-03-24 1983-02-01 Pringle William L Fluid cylinder assembly
US5282521A (en) * 1992-10-02 1994-02-01 General Motors Corporation Shell disc brake
JP3022187B2 (en) 1994-08-08 2000-03-15 トヨタ自動車株式会社 Disc brake split caliper
DE19810685C5 (en) * 1998-03-13 2008-04-30 Gustav Magenwirth Gmbh & Co. Kg disc brake
US6340074B1 (en) * 2000-04-06 2002-01-22 Avid Llc Pad wear compensator for a disc brake caliper

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8162354B2 (en) 2008-07-25 2012-04-24 Shimano Inc. Twistable hydraulic brake hose unit
EP2848513A1 (en) * 2011-04-19 2015-03-18 Gustav Magenwirth GmbH & Co. KG Brake and method for installing same
TWI637876B (en) * 2011-04-19 2018-10-11 古斯塔夫馬根威爾士兩合有限公司 Brake and method for the installation thereof
US9334909B2 (en) 2012-04-20 2016-05-10 Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh Disc brake for vehicles
US10266226B2 (en) 2013-06-28 2019-04-23 Shimano Inc. Disc brake caliper and disc brake caliper assembly
CN104249797A (en) * 2013-06-28 2014-12-31 株式会社岛野 Bicycle brake caliper assembly
US20150001014A1 (en) * 2013-06-28 2015-01-01 Shimano Inc. Bicycle brake caliper assembly
US9227691B2 (en) * 2013-06-28 2016-01-05 Shimano Inc. Bicycle brake caliper assembly
US9533733B2 (en) 2013-06-28 2017-01-03 Shimano Inc. Disc brake caliper and disc brake caliper assembly
US9908585B2 (en) 2013-06-28 2018-03-06 Shimano Inc. Bicycle brake caliper assembly
US10427751B2 (en) 2013-06-28 2019-10-01 Shimano Inc. Bicycle-brake-caliper attachment structure
CN106043575A (en) * 2016-07-12 2016-10-26 温芫鋐 Disc protective cover
US20180290707A1 (en) * 2017-04-10 2018-10-11 Shimano Inc. Bicycle disc brake caliper assembly
US10427750B2 (en) * 2017-04-10 2019-10-01 Shimano Inc. Bicycle disc brake caliper assembly

Also Published As

Publication number Publication date
TWI241261B (en) 2005-10-11
DE60209834D1 (en) 2006-05-11
DE60209834T2 (en) 2006-10-19
JP3994030B2 (en) 2007-10-17
CN1246180C (en) 2006-03-22
JP2003028209A (en) 2003-01-29
EP1275578A3 (en) 2003-12-17
CZ20022275A3 (en) 2003-03-12
US6510926B1 (en) 2003-01-28
EP1275578B1 (en) 2006-03-15
CN1397467A (en) 2003-02-19
EP1275578A2 (en) 2003-01-15

Similar Documents

Publication Publication Date Title
US6510926B1 (en) Disc brake caliper assembly
US6349800B1 (en) Bicycle disc brake assembly
US6401882B1 (en) Heat insulator for disc brake
EP0994269B1 (en) Disk brake assembly
US6347689B1 (en) Roll back seal for disc brake
US9551389B2 (en) Bicycle disc brake caliper
US6206151B1 (en) Ventilated pad for a bicycle disc brake
US10266226B2 (en) Disc brake caliper and disc brake caliper assembly
US9057395B2 (en) One piece hydraulic disc brake caliper with one way plumbing
US7055655B2 (en) Disc brake caliper assembly with shims
US10494053B2 (en) Operating device
EP1122161B1 (en) Bicycle disk brake
US9688348B2 (en) Hydraulic hose fitting and hydraulic device
TWI845080B (en) Flat mount brake caliper for bicycle
TW202340021A (en) Flat mount brake caliper for bicycle

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHIMANO INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAKAMURA, YASUSHI;REEL/FRAME:012156/0957

Effective date: 20010910

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12