US20020179933A1 - Vertical heterojunction bipolar transistor - Google Patents
Vertical heterojunction bipolar transistor Download PDFInfo
- Publication number
- US20020179933A1 US20020179933A1 US10/197,726 US19772602A US2002179933A1 US 20020179933 A1 US20020179933 A1 US 20020179933A1 US 19772602 A US19772602 A US 19772602A US 2002179933 A1 US2002179933 A1 US 2002179933A1
- Authority
- US
- United States
- Prior art keywords
- layer
- region
- emitter
- bipolar transistor
- heterojunction bipolar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical group [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229910005540 GaP Inorganic materials 0.000 claims abstract description 47
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims abstract description 42
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 39
- 239000010703 silicon Substances 0.000 claims abstract description 39
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 35
- 239000000758 substrate Substances 0.000 claims description 34
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 abstract description 29
- 238000012545 processing Methods 0.000 description 40
- 238000000034 method Methods 0.000 description 32
- 239000000463 material Substances 0.000 description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 238000005530 etching Methods 0.000 description 19
- 238000001465 metallisation Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 18
- 230000007547 defect Effects 0.000 description 16
- 230000008901 benefit Effects 0.000 description 15
- 238000009792 diffusion process Methods 0.000 description 15
- 239000002019 doping agent Substances 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- 238000002161 passivation Methods 0.000 description 9
- 230000005855 radiation Effects 0.000 description 9
- 229910052681 coesite Inorganic materials 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 8
- 229910052906 cristobalite Inorganic materials 0.000 description 8
- 229910052682 stishovite Inorganic materials 0.000 description 8
- 229910052905 tridymite Inorganic materials 0.000 description 8
- 239000000872 buffer Substances 0.000 description 7
- 238000005468 ion implantation Methods 0.000 description 7
- 238000002955 isolation Methods 0.000 description 7
- 238000000059 patterning Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 150000001875 compounds Chemical group 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 239000002470 thermal conductor Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 229910006990 Si1-xGex Inorganic materials 0.000 description 1
- 229910007020 Si1−xGex Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66848—Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
- H01L29/66856—Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
- H01L29/66863—Lateral single gate transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1004—Base region of bipolar transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/26—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
- H01L29/267—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66234—Bipolar junction transistors [BJT]
- H01L29/66242—Heterojunction transistors [HBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/73—Bipolar junction transistors
- H01L29/737—Hetero-junction transistors
- H01L29/7371—Vertical transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/73—Bipolar junction transistors
- H01L29/737—Hetero-junction transistors
- H01L29/7371—Vertical transistors
- H01L29/7378—Vertical transistors comprising lattice mismatched active layers, e.g. SiGe strained layer transistors
Definitions
- the present invention is a Continuation of: “Vertical Heterojunction Bipolar Transistor,” Ser. No. 09/441,576, issued on Jul. 23, 2002 as U.S. Pat. No. 6,423,990, which is a Continuation-In-Part of: “Method Of Forming Heterojunction Bipolar Transistor Having Wide Bandgap, Low Interdiffusion Base-Emitter Junction,” Ser. No. 09,267,252, filed on Mar. 12, 1999 and issued on Jan. 9, 2001 as U.S. Pat. No. 6,171,920, which is a Division of: “Heterojunction Bipolar Transistor Having Wide Bandgap, Low Interdiffusion Base-Emitter Junction,” Ser. No. 08/939,487, filed on Sep. 29, 1997, and issued on Jun. 15, 1999 as U.S. Pat. No. 5,912,481, all of which are incorporated herein by reference.
- the present invention relates generally to heterojunction bipolar transistors (HBTs).
- Heterojunction bipolar transistors theoretically provide advantages over conventional homojunction bipolar transistors by providing a heterojunction between a base and emitter of a transistor.
- a heterojunction is formed between two dissimilar semiconductor materials. Silicon (Si) exhibits a bandgap of around 1.12 eV, but a Si homojunction has no bandgap discontinuity at the junction.
- a bandgap discontinuity can occur at a junction by using dissimilar semiconductor materials on opposing sides of the junction. From the perspective of an NPN transistor, discontinuity in the valence band restricts hole flow from the base to the emitter, thus improving emitter injection efficiency and current gain.
- base region resistivity may be lowered (which lowers the base resistance) and emitter region resistivity may be raised (which lowers base-emitter junction capacitance) to create fast transistors without significantly compromising other device parameters.
- Such fast transistors would be useful for high-speed digital, microwave, and other integrated circuit and discrete transistor applications.
- HBT performance often falls far short of the theoretical expectations.
- One conventional Si-based HBT reduces the bandgap of the base region by creating a base material having a narrower bandgap than Si.
- a small amount of germanium (Ge) is mixed with Si in the base (Si 1 ⁇ x Ge x ), and the emitter is more purely Si.
- the amount of bandgap difference ( ⁇ Eg) for as much as 20% Ge content in the base is only about 0.15 eV. This small ⁇ Eg achieves only a small portion of the performance benefits that HBTs theoretically promise.
- SiC silicon carbide
- GaAs gallium arsenide
- GaP gallium phosphide
- SiC silicon carbide
- SiC silicon carbide
- GaAs gallium arsenide
- GaP gallium phosphide
- SiC has a thermal expansion coefficient of about 2.6 ⁇ 10 ⁇ 6 (°C.) ⁇ 1
- GaAs has a thermal expansion coefficient of around 6.7 ⁇ 10 ⁇ 6 (°C.) ⁇ 1
- GaP has a thermal expansion coefficient of around 5.91 ⁇ 10 ⁇ 6 (°C.) ⁇ 1 . Because of these differences, only thin layers of these materials have been successfully grown on Si without the formation of significant defects. The maximum thickness for a low defect layer of SiC grown on Si is only a few angstroms ( ⁇ ), and for GaAs grown on Si is less than 200 ⁇ .
- strain which is caused by lattice mismatch, is contained by lattice stretching rather than crystal defects.
- Thinner, low-defect thicknesses of these materials do not possess a sufficient thickness to protect the base-emitter junction from shorting due to diffusion of metal from the emitter contact region.
- Thicker, high-defect thicknesses of these materials exhibit degraded junction performance due to an excessive number of defects.
- a Si substrate is desirable for mechanical stability and because a manufacturing infrastructure exists for reliably mass producing rugged Si wafers at relatively low cost.
- the Si substrate is typically an extrinsic part of the photoelectric semiconductor not used in forming intrinsic photoelectric semiconductor junctions.
- Such buffer layers tend to incrementally shift lattice constants and thermal expansion coefficients so that the intrinsic direct gap photoelectric semiconductor materials may then be grown with fewer defects.
- Such applications often form relatively thick buffer layers which themselves may have numerous defects, at least closer to a Si interface, that are of little consequence to the intrinsic photoelectric semiconductor. Needless to say, such buffer layers are not used in forming semiconductor junctions.
- Speed and radiation tolerance characteristics can both be enhanced by using an improved substrate in which, or on which, an intrinsic transistor is formed.
- Conventional techniques apply a silicon on insulator (SOI) technology.
- SOI silicon on insulator
- an intrinsic transistor is formed over an SiO 2 layer rather than over a semiconductor, such as Si.
- the SiO 2 layer does not produce the electron disturbances that are characteristic of a semiconductor, leading to radiation tolerance improvements.
- the insulative SiO 2 layer lowers capacitance, which leads to improvements in speed.
- SiO 2 is not a particularly good thermal conductor. Consequently, less heat is conducted away from the intrinsic transistor, fewer transistors can be placed near one another on an integrated circuit, and higher power devices are not practical.
- one conventional SOI technique forms a crystalline layer (e.g., Si) used in the formation of intrinsic transistors over the SiO 2 layer. Since Sio 2 is a porous material, not a crystalline material, the overlying crystalline layer often exhibits defects that cannot be cured by annealing. Accordingly, poor yields result.
- Another conventional SOI technique forms a single Si crystal, then implants oxygen (O 2 ) under high energy deep into the Si crystal and anneals to form a deep SiO 2 layer. Unfortunately, getting complete and uniform SiO 2 formation within an existing Si layer is extremely difficult. Consequently, this SOI technique is characterized by incomplete oxidation, which leads to a poor quality SiO 2 layer and only marginal speed and radiation tolerance improvements.
- HBT heterojunction bipolar transistor
- Another advantage is that an HBT having a multilayer emitter is provided.
- HBT has a wide bandgap emitter along with a base-emitter junction that is substantially free of interdiffusion.
- an HBT is provided with a Si base region that forms a junction with a multilayer emitter having a thin GaAs layer proximate the base region and a distal GaP layer.
- Another advantage is that an HBT is provided that exhibits performance that more closely meets theoretical expectations than conventional HBTs.
- HBT is provided which uses a Si substrate and a substantially insulative crystalline layer grown thereon.
- Another advantage is that an intrinsic HBT is formed in and on a substantially insulative layer that is also a good thermal conductor.
- a vertical heterojunction bipolar transistor which includes a gallium phosphide layer (GaP) configured to exhibit a first conductivity type.
- the GaP layer forms a first portion of a multilayer emitter.
- a gallium arsenide (GaAs) layer is formed in contact with the GaP layer.
- the GaAs layer forms a second portion of the multilayer emitter.
- a silicon (Si) base region of a second conductivity type is formed in contact with the GaAs layer.
- a Si collector region of the first conductivity type is formed adjacent to the Si base region.
- FIGS. 1 - 10 show sectional views of a first embodiment of an HBT at first through tenth processing stages, respectively;
- FIG. 11 shows a schematic, zero biased, band diagram of a composite emitter HBT according to a preferred embodiment of the present invention.
- FIGS. 12 - 18 show sectional views of a second embodiment of an HBT at first through seventh processing stages, respectively.
- FIGS. 1 - 10 show sectional views of a heterojunction bipolar transistor (HBT) 20 configured in accordance with the present invention at first through tenth processing stages, respectively.
- HBT heterojunction bipolar transistor
- FIG. 1 illustrates a first processing stage in which a buried region 22 is formed in a silicon (Si) substrate 24 .
- substrate 24 is lightly doped P-type conductivity
- buried region 22 is heavily doped through a standard ion implantation process to exhibit N-type conductivity for this NPN implementation.
- FIG. 2 illustrates a second processing stage that follows the first processing stage depicted in FIG. 1.
- a collector layer 26 is epitaxially grown on substrate 24 . Buried region 22 is now diffused into both collector layer 26 and substrate 24 .
- Collector layer 26 is a lightly doped N-type conductivity. Phosphorous, antimony, or arsenic N-type dopants are used through conventional techniques, such as ion implantation or diffusion, to achieve the desired conductivity type. Buried region 22 allows collector layer 26 to exhibit a low resistance while controlling the breakdown voltage of HBT 20 .
- the thickness of collector layer 26 is selected to achieve application-specific goals. For example, collector layer 26 is desirably thinner to increase the speed of HBT 20 and thicker to increase the breakdown voltage of HBT 20 .
- FIG. 3 illustrates a third processing stage that follows the second processing stage depicted in FIG. 2.
- FIG. 3 shows several independent diffusion areas formed in collector layer 26 .
- a highly doped P-type conductivity isolation diffusion area 28 is made to surround a collector region 30 , which provides proper isolation for the final HBT 20 .
- Collector region 30 will eventually serve as the collector of HBT 20 .
- Diffusion area 28 desirably refrains from overlying any portion of buried region 22 .
- a highly doped N-type conductivity contact-enabling diffusion area 32 is made at a location within collector region 30 where a metallization layer will eventually make an electrical collector contact. This location desirably overlies a portion of buried layer 22 .
- a base region 34 is another diffusion area that is also formed within collector region 30 .
- Base region 34 will eventually serve as the base of HBT 20 .
- Base region 34 is doped to exhibit P-type conductivity for this NPN implementation.
- base region 34 is heavily doped so that the base of HBT 20 will exhibit an unusually low resistance.
- Diffusion areas 28 , 32 , and 34 are formed using conventional ion implantation or other techniques. Isolation and contact-enabling diffusion areas 28 and 32 are desirably formed using a much higher acceleration voltage than base region 34 to drive diffusion areas 28 and 32 deeper into collector layer 26 than base region 34 .
- a small amount of germanium (Ge) is mixed with the Si of base region 34 to lower the bandgap of the base of HBT 20 when compared to the bandgap of a base formed using more pure Si. This mixing is desirably performed during the second stage depicted in FIG. 2. Small amounts of Ge (e.g., around 10%) with a P+ type doping can be mixed with the Si during only the later portion of epitaxial growth for collector layer 26 to form the base.
- FIG. 4 illustrates a fourth processing stage that follows the third processing stage depicted in FIG. 3.
- FIG. 4 illustrates heat being applied to further drive diffusion areas 28 , 32 , and 34 deeper into collector layer 26 .
- Isolation diffusion area 28 is desirably driven through collector layer 26 to substrate 24 .
- Contact-enabling diffusion area 32 is desirably driven through collector region 30 to buried region 22 .
- base region 34 is desirably driven only a shallow depth into collector layer 26 . Desirably, base region 34 is around 1000 ⁇ deep. However, the resulting base of HBT 20 will be shallower than this depth due to subsequent etching steps. This shallow depth of base region 34 leads to a low transit time, which increases the high current gain cut-off frequency (Ft) and high power gain cut-off frequency (Fmax) parameters for HBT 20 .
- Ft current gain cut-off frequency
- Fmax high power gain cut-off frequency
- HBT 20 heat in excess of 800° C. may be applied to HBT 20 for extended periods of time. However, after this stage the temperature of HBT 20 is desirably maintained below 800° C. to prevent diffusion of non-silicon layers that will be grown over collector layer 26 .
- FIG. 5 illustrates a fifth processing stage that follows the fourth processing stage depicted in FIG. 4.
- FIG. 5 actually illustrates two epitaxial growth processes.
- the first epitaxial growth process grows a wide bandgap, non-silicon semiconductor, preferably gallium arsenide (GaAs), over and in contact with collector layer 26 to form a first emitter layer 36 of a multilayer emitter 38 (see FIG. 6).
- First emitter layer 36 may be of N-type conductivity for this NPN implementation or may not be intentionally doped, but is desirably configured so as not to exhibit P-type conductivity.
- a function of first emitter layer 36 is a diffusion barrier to provide a stable interface with the Si of base region 34 .
- the second epitaxial growth process grows a second non-silicon, wide bandgap semiconductor, preferably gallium phosphide (GaP), over and in contact with first emitter layer 36 to form a second emitter layer 40 of multilayer emitter 38 .
- second emitter layer 40 is degeneratively doped with a suitable N-type conductivity material for this NPN implementation, such as Si, to values in excess of 10 ⁇ 1020/cm 3 to provide a very low emitter contact resistance where a metallization layer will eventually make an electrical emitter contact.
- doping gradually increases as second emitter layer 40 builds away from first emitter layer 36 to reach the maximum value at the distal surface from first emitter layer 36 .
- the function of second emitter layer 40 is to provide maximum valence band discontinuity with minimum lattice mismatch and minimal thermal expansion mismatch with respect to Si.
- GaAs is a desirable material for use as an interface with Si because it can form an interface substantially free from interdiffusion, particularly when compared to the interdiffusion that results from forming a GaP layer on Si.
- an atomically abrupt interface forms between GaAs first emitter layer 36 and base region 34 .
- first emitter layer 36 is epitaxially grown using conventional techniques but at a relatively low temperature (e.g., 400-600° C.) to keep the Si—GaAs junction as free from interdiffusion as possible.
- Alternative cycles of even lower temperatures e.g., 150-250° C.
- first emitter layer 36 is limited in thickness so that first emitter layer 36 will be coherently strained between the Si of base region 34 and second emitter layer 40 . Thickness is limited in a manner understood to those skilled in the art by controlling the time over which first emitter layer 36 is grown.
- a coherently strained layer is a layer so thin that lattice constant mismatches do not result in lattice mismatch crystal defects but are contained by lattice stretching.
- the thickness of second emitter layer 40 is desirably much greater than the thickness of first emitter layer 36 .
- Second emitter layer 40 is desirably at least 500 ⁇ thick, and preferably around 2000-3000 ⁇ thick. Less overall thickness is desired for multilayer emitter 38 . Less thickness leads to a smaller emitter resistance and a faster HBT 20 .
- the thickness of multilayer emitter 38 , and primarily second emitter layer 40 is balanced with a need to prevent the emitter and base of HBT 20 from shorting. Shorting can occur when metallization, discussed below, diffuses through multilayer emitter 38 to reach base region 34 . A sufficient thickness for second emitter layer 40 prevents metallization from diffusing therethrough.
- Second emitter layer 40 is desirably grown epitaxially using standard techniques at temperatures that generally remain in the 400-600° C. range to preserve the substantially interdiffusion-free interface between first emitter layer 36 and base region 34 .
- temperature may be lowered so that this portion of second emitter layer 40 becomes polycrystalline. Among other benefits, this lessens the time HBT 20 spends at elevated temperatures to further lessen risks of interdiffusion at the base-emitter junction.
- first emitter layer 36 provides an abrupt interface with Si base region 34
- second emitter layer 40 provides as great of a bandgap discontinuity as is practical.
- the bandgap characteristics of HBT 20 in the vicinity of the base-emitter junction are determined primarily by the bandgap differences between materials used for base region 34 and second emitter layer 40 .
- the abruptness of the base-emitter junction i.e., the congruence of the metallurgical and electrical junctions
- first emitter layer 36 Due to the thin, coherently strained nature of first emitter layer 36 , base region 34 exhibits few defects. Likewise, second emitter layer 40 , although relatively thick, exhibits few defects in part because first emitter layer 36 is sufficiently thin to be coherently strained. Accordingly, not only does first emitter layer 36 provide a clean, abrupt semiconductor junction at base region 34 , but first emitter layer 36 allows second emitter layer 40 to be epitaxially grown to a relatively thick width with few defects.
- FIG. 6 illustrates a sixth processing stage that follows the fifth processing stage depicted in FIG. 5.
- FIG. 6 shows a patterning and etching process. Conventional photolithographic techniques can be used to pattern HBT 20 , then etching is performed to remove portions of first and second emitter layers 36 and 40 that will not be used for multilayer emitter 38 .
- FIG. 7 illustrates a seventh processing stage that follows the sixth processing stage depicted in FIG. 6.
- FIG. 7 shows a passivation process.
- Conventional techniques are used to apply a passivation layer 42 over the entire surface of HBT 20 at this point. Silicon nitride, silicon dioxide, or other conventional passivation materials may be applied in a conventional manner, so long as temperatures generally remain below about 800° C.
- FIG. 8 illustrates an eighth processing stage that follows the seventh processing stage depicted in FIG. 7.
- FIG. 8 shows another patterning and etching process.
- Conventional photolithographic techniques can be used to pattern HBT 20 , then etching is performed to remove passivation layer 42 to form vias 44 in locations where a metallization layer will eventually make electrical contacts.
- FIG. 9 illustrates a ninth processing stage that follows the eighth processing stage depicted in FIG. 8.
- FIG. 9 shows a metallization process that uses conventional techniques to deposit a metallization layer 46 over the entire surface of HBT 20 .
- FIG. 10 illustrates a tenth processing stage that follows the ninth processing stage depicted in FIG. 9.
- FIG. 10 shows yet another patterning and etching process.
- Conventional photolithographic techniques can be used to pattern HBT 20 , and then etching is performed to remove metallization layer 46 where not wanted over the surface of HBT 20 .
- metallization layer 46 remains within and over vias 44 to form electrical contacts with the base, collector, and emitter regions of HBT 20 .
- FIG. 11 shows a schematic, zero biased, band diagram for HBT 20 .
- FIG. 11 depicts a conduction band (E c ) trace 48 and a valence band trace (E v ) 50 on vertically opposing sides of a Fermi level (E f ) 52 .
- the band diagram of FIG. 11 is horizontally partitioned into four sections 30 ′, 34 ′, 36 ′, and 40 ′ corresponding to collector region 30 , base region 34 , first emitter layer 36 , and second emitter layer 40 (FIG. 10), respectively.
- the bandgap energy equals E c ⁇ E v , or approximately 1.12 eV.
- the bandgap energy still equals approximately 1.12 eV. In other words, base region 34 has roughly the same bandgap as collector region 30 .
- the bandgap energy equals approximately 1.42 eV.
- This increase of roughly 0.3 eV from the bandgap of base region 34 and collector region 30 is due to the higher bandgap of GaAs compared to the bandgap of Si.
- substantially all of this 0.3 eV appears as a discontinuity 54 in the valence band E v .
- Very little of the increase in bandgap achieved by transitioning from Si to GaAs in first emitter layer 36 appears in conduction band E c .
- the bandgap equals approximately 2.24 eV. This represents an increase of roughly 0.8 eV from the bandgap in first emitter layer 36 . Accordingly, another discontinuity in the bandgap energy results. This discontinuity is divided between a valence band discontinuity 56 of approximately 0.5 eV and a conduction band discontinuity 58 of approximately 0.3 eV.
- the total bandgap discontinuity between second emitter layer 40 and base region 36 is approximately 1.1 eV, with the majority of the discontinuity appearing in the valence band E v .
- the majority of the discontinuity appearing in the valence band E v is desirable for NPN transistors because it is the parameter that characterizes the suppression of hole injection.
- first emitter layer 36 provides a stable, abrupt semiconductor junction at base region 34 and simultaneously allow second emitter layer 40 to be epitaxially grown with few defects, but first emitter layer 36 also causes a larger portion of the total bandgap discontinuity between multilayer emitter 38 and base region 34 to appear as a valence band discontinuity, which is particularly useful in suppressing hole injection.
- This relatively large valence band discontinuity significantly suppresses hole injection from base region 34 to multilayer emitter 38 , creating an HBT with greatly improved emitter injection efficiency compared to prior art HBTs.
- FIGS. 12 - 21 show sectional views of an HBT 60 at first through tenth processing stages, respectively.
- HBT 60 is an alternative embodiment to HBT 20 , discussed above.
- HBT 60 is an upside down implementation of HBT 20 , with an emitter region of the GaP layer being the bottom-most portion of the intrinsic transistor and being surrounded by a GaP region that is configured to be substantially insulative.
- HBT 60 operates substantially in accordance with the band diagram illustrated in FIG. 11.
- FIG. 12 illustrates a first processing stage in which a non-silicon semiconductor layer 62 , preferably gallium arsenide (GaAs) is epitaxially grown over and in contact with a silicon (Si) substrate 64 , and another non-silicon semiconductor layer 66 , preferably gallium phosphide (GaP) is then epitaxially grown over and in contact with layer 62 .
- substrate 64 is undoped and left to exhibit its intrinsic doping so that it will exhibit low conductivity for improved radiation tolerance and reduced capacitance with the intrinsic transistor, discussed below.
- layer 62 is limited in thickness so that it will be coherently strained between Si substrate 64 and layer 66 .
- layer 62 made from GaAs, a thickness of less than 200 ⁇ is preferred, with a thickness of less than 50 ⁇ being particularly desirable.
- Layer 62 is extrinsic to HBT 60 and serves primarily as a buffer between Si substrate 64 and the above-layer. However, layer 62 also substantially prevents interdiffusion at the boundary between substrate 64 and layer 62 , and the formation of a conductive region due to any interdiffusion.
- layer 62 may be omitted, and layer 66 grown to a greater thickness than would be needed when layer 62 is included.
- defects are likely to form in layer 66 near substrate 64 , but such defects are minimized as layer 66 becomes thicker.
- Layer 66 is preferably a wide bandgap semiconductor that exhibits or can be selectively made to exhibit good insulative qualities and exhibits good or can be made to exhibit good thermal conductivity qualities.
- GaP is used for layer 66 .
- layer 66 is grown to a large thickness, preferably greater than 5000 ⁇ when layer 62 is present, but this is not a requirement of the present invention. Standard techniques, as discussed above in connection with the first embodiment, may be used to grow layer 66 .
- layer 66 is divided into an undoped region 68 and a doped region 70 .
- layer 66 is desirably formed to exhibit insulative properties, such as the insulative properties demonstrated by GaP that exhibits only its intrinsic doping [GaP(i)].
- doped region 70 layer 66 is desirably doped to exhibit “N” type doping [GaP(n)] in this NPN example. Doping may be accomplished by adding a suitable dopant while growing doped region 70 of layer 66 . Layer 66 exhibits increased conductivity in doped region 70 due to the doping.
- doped region 70 will provide an outside layer, which also serves as a penultimate inside layer, of a multilayer emitter 72 for HBT 60 . Accordingly, doped region 70 is intrinsic to HBT 60 , but undoped region 68 is extrinsic to HBT 60 because it does not take a substantial part in the electrical activity of HBT 60 .
- the function of doped region 70 is similar to that of second emitter layer 40 , discussed above in connection with the first embodiment.
- the depth of doped region 70 in layer 66 desirably varies to achieve application goals. Generally, a high-speed transistor will benefit from doped region 70 being relatively shallow so that emitter resistivity is raised and base-emitter junction capacitance is lowered. Moreover, a greater thickness for insulative, undoped region 68 is desirable because it decreases capacitance with layers underlying the intrinsic transistor and improves radiation tolerance.
- FIG. 13 illustrates a second processing stage that follows the first processing stage depicted in FIG. 12.
- a third non-silicon, semiconductor layer 74 is grown over and in contact with layer 66 .
- Layer 74 has a function similar to that of layer 36 , discussed above.
- layer 74 provides an interdiffusion barrier between layer 66 and subsequent Si layers, discussed below, and layer 74 buffers between the different materials used for layer 66 in the subsequent Si layers.
- Layer 74 is desirably formed substantially of GaAs.
- Layer 74 is limited in thickness so that layer 74 will be coherently strained between layer 66 and subsequent Si layers. With layer 74 made from GaAs and layer 66 made from GaP, a thickness for layer 74 of less than 200 ⁇ is preferred, with a thickness of less than 50 ⁇ being more desirable. Layer 74 may be lightly N-type doped for this NPN implementation or may exhibit its intrinsic doping, but is preferably configured not to intentionally exhibit P-type conductivity. Layer 74 provides an inside layer, which also serves as a penultimate outside layer, of multilayer emitter 72 for HBT 60 , and is therefore an intrinsic part of HBT 60 .
- FIG. 14 illustrates a third processing stage that follows the second processing stage depicted in FIG. 13.
- a Si layer 76 is epitaxially grown over and in contact with layer 74 .
- layer 76 may be grown in a chamber separate from the chamber used to grow layers 62 , 66 , and 74 to minimize the risk of chamber contamination.
- a thin (e.g., 50 ⁇ ) Si layer (not shown) may be temporarily grown on layer 74 to protect the exposed surface of layer 74 , then this temporary layer removed through etching when the wafer has been moved into the new chamber.
- Layer 76 is preferably grown to exhibit three regions of differing conductivity type.
- a region 78 which will serve as the base of HBT 60 , is grown over and in contact with layer 74 .
- the boundary between layer 74 and base region 78 will serve as the base-emitter junction for HBT 60 . Since layers 66 and 74 are non-silicon layers and base 78 is a silicon layer, a heterojunction results.
- Si layer 76 and subsequent processing stages are desirably grown while keeping temperatures below 800° C. to preserve an abrupt base-emitter junction.
- Base 78 is heavily doped to exhibit P-type conductivity [Si(p+)] for this NPN implementation by adding a suitable dopant while growing base 78 of layer 66 .
- base 78 is heavily doped so that the base of HBT 60 will exhibit an unusually low resistance.
- a small amount of Ge may be mixed with the Si of base 78 to lower the bandgap of the base of HBT 60 when compared to the bandgap of a base formed using more pure Si.
- base 78 is grown to a thickness greater than 1000 ⁇ , with a thinner base 78 being more desirable for higher speed characteristics.
- Si layer 76 is grown to include a collector region 80 over and in contact with base 78 .
- Collector 80 may be grown to a thickness of greater than 2000 ⁇ , with less thickness being more desirable in lower voltage applications. As a minimum, layer 76 needs to be sufficiently thick so that subsequent metallization does not diffuse through collector 80 to short with base 78 .
- Collector 80 is lightly doped to exhibit N-type conductivity [Si(n ⁇ )] for this NPN implementation by adding a suitable dopant while growing collector 80 .
- Si layer 76 is also grown to include a collector-contact-enabling region 82 over and in contact with collector region 80 .
- Region 82 may have a thickness in the range of 1000-4000 ⁇ .
- Region 82 differs from region 80 in that region 82 is highly doped [Si(n+)] to enable an interface with a metal contact, to be applied later. Regions 80 and 82 will be collectively referred to below simply as collector 80 .
- FIG. 15 illustrates a fourth processing stage that follows the third processing stage depicted in FIG. 14.
- FIG. 15 shows a patterning and etching process.
- Conventional photolithographic techniques can be used to pattern HBT 60 , then etching is performed to remove a portion of regions 82 and 80 from Si layer 76 so that only the feature that will be used as collector 80 for HBT 60 remains. Desirably, etching is stopped below heavily doped contact-enabling region 82 and somewhere in the middle of the lightly doped region 80 . The precise location for stopping the etching process is not a critical parameter.
- FIG. 15 illustrates HBT 60 following the removal of a mask used in this etching process. Collector 80 will be centrally located in HBT 60 .
- FIG. 16 illustrates a fifth processing stage that follows the fourth processing stage depicted in FIG. 15.
- FIG. 16 shows a masking and ion implantation process.
- Conventional photolithographic and etching techniques can be used to pattern and etch HBT 60 to form a suitable mask 84 (e.g., Si 3 N 4 ), then ion implantation is performed in base-contact-enabling areas 86 .
- Implantation energies are adjusted to that a highly conductive P-type dopant (p+) for this NPN example is driven through the remaining portion of lightly doped Si(n ⁇ ) region 80 into, but not through, base 78 at base-contact-enabling areas 86 .
- the highly conductive p+ dopant overwhelms the lightly conductive n ⁇ dopant to result in areas 86 being Si(p+).
- Implantation may occur in two steps, with a higher energy implantation step followed by a lower energy implantation step.
- the higher energy step causes the dopant to be driven to a large depth and the lower energy step causes the dopant to be driven only to a small depth so that base-contact-enabling areas 86 are continuous Si(p+) regions from the exposed surface down into base 78 .
- FIG. 17 illustrates a sixth processing stage that follows the fifth processing stage depicted in FIG. 16.
- mask 84 is removed, and conventional photolithographic and etching techniques have been performed to remove remaining portions of Si layers 78 and 80 not needed for base 78 or collector 80 .
- the removed portions are outside of base-contact-enabling areas 86 .
- the remaining portion of layer 76 forms base 78 and collector 80 .
- a masking and ion implantation process is performed to apply a suitable mask 88 (e.g., Si 3 N 4 ) which has openings in emitter-contact-enabling areas 90 .
- ion implantation is performed in emitter-contact-enabling areas 90 by driving a suitable highly conductive n+ dopant for this NPN example through GaAs layer 74 into doped region 70 of GaP layer 66 .
- FIG. 18 illustrates a seventh processing stage that follows the sixth processing stage depicted in FIG. 17.
- FIG. 18 shows isolation, passivation and metallization processes.
- FIG. 18 depicts etching of an isolation well 92 , the application of a passivation layer 94 , and then the application of a metallization layer 96 .
- a suitable mask is applied (not shown) and well 92 etched around the perimeter of HBT 60 to isolate HBT 60 from other transistors and devices (not shown) formed over substrate 64 .
- Well 92 is etched into insulative (undoped) region 68 in layer 66 , or deeper, for effective isolation. While the area surrounded by well 92 is not a critical parameter of the present invention, a smaller area is desirable for higher transistor density and faster performance.
- passivation layer 94 is applied over the entire surface of HBT 60 at this point.
- Silicon nitride, silicon dioxide, or other conventional passivation materials may be applied in a conventional manner, so long as temperatures generally remain below about 800° C.
- a patterning and etching process is performed in which conventional techniques may be used to pattern HBT 60 and remove selected portions of passivation layer 94 to form vias in locations where metallization layer 96 will eventually make electrical contacts with the emitter, base, and collector of HBT 60 .
- metallization layer 96 may be used to deposit metallization layer 96 over the entire surface of HBT 60 . After deposition of metallization layer 96 , another patterning and etching process removes metallization layer 96 where not wanted over the surface of HBT 60 . However, metallization layer 96 remains within and over the above-discussed vias to form an emitter contact 98 at emitter-contact-enabling areas 90 , a base contact 100 at base-contact-enabling areas 86 , and a collector contact 102 at collector 80 . Collector contact 102 is centrally located (i.e., innermost) within HBT 60 . Base contact 100 is intermediately located within HBT 60 and may substantially surround collector contact 102 .
- Emitter contact 98 is peripherally located (i.e., outermost) within HBT 60 and may substantially surround base contact 100 and collector contact 102 .
- the pattern of metallization is configured so that metallization layer 96 is routed to other circuits and/or pads to make HBT 60 usable in an electrical circuit.
- multilayer emitter 72 and base 78 exhibit few defects. Moreover, multilayer emitter 72 provides a clean, abrupt semiconductor junction at base layer 78 , and allows base 78 and collector 80 to be epitaxially grown to a relatively thick width with few defects.
- the band diagram depicted in FIG. 11 applies for HBT 60 as discussed above for HBT 20 .
- HBT 60 (FIG. 18) is upside down relative to HBT 20 (FIG. 10).
- a multilayer, non-silicon emitter forms a base-emitter junction with a Si base, and the collector, base, and emitter are arranged vertically.
- the emitter is on the top in HBT 20 (i.e., distally located relative to substrate 24 ), but on the bottom in HBT 60 (i.e., proximally located relative to substrate 64 ).
- GaP is used for the outermost emitter layer that is intrinsic to HBTs 20 and 60 .
- HBT 60 the intrinsic portion of GaP layer 66 is confined to doped region 70 .
- doped region 70 and the other features that are intrinsic to HBT 60 , are spaced apart from substrate 64 and from other HBTs 60 (not shown) which may be formed over the same substrate 64 by undoped region 68 of GaP layer 66 .
- undoped region 68 exhibits the good insulative properties and good thermal conductivity properties characteristic of undoped GaP. Accordingly, the insulative properties promote lower parasitic capacitance and improved speed along with less electron disturbance in the presence of radiation and improved radiation tolerance.
- the good thermal conductivity properties allow heat generated by the intrinsic portions of HBT 60 to be readily conducted to Si substrate 64 , which is also a good thermal conductor. Accordingly, a greater number of HBTs 60 may be formed on substrate 64 or higher power HBTs 60 may be formed.
- an improved HBT having a wide bandgap with a low interdiffusion base-emitter junction is provided along with methods for forming the HBT.
- the HBT uses a Si substrate, which is desirable because the use of a Si substrate takes advantage of the existing manufacturing infrastructure that reliably produces relatively rugged Si wafers at low cost.
- a multilayer emitter is provided in the HBT. This emitter exhibits a wide bandgap, and the resulting base-emiter junction is substantially free of interdiffusion.
- the HBT is provided with a Si base that forms a heterojunction with a multilayer emitter having a thin GaAs layer proximate the base and a distal GaP layer.
- the base-emitter junction and the wide bandgap multilayer emitter together allow an HBT configured in accordance with the present invention to exhibit performance more closely meeting theoretical expectations than does the performance of conventional HBTs.
- the HBT uses a Si substrate and a substantially insulative crystalline layer grown thereon, with the features intrinsic to the HBT formed in and above this insulative crystalline layer.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Bipolar Transistors (AREA)
Abstract
A heterojunction bipolar transistor (20, 60) is provided with a silicon (Si) base region (34, 74) that forms a semiconductor junction with a multilayer emitter (38) having a thin gallium arsenide (GaAs) emitter layer (36, 72) proximate the base region (34, 74) and a distal gallium phosphide (GaP) emitter layer (40, 66). The GaAs emitter layer (36, 72) is sufficiently thin, preferably less than 200 Å, so as to be coherently strained. In one embodiment, the GaP emitter layer includes a doped region (70) that serves as the emitter and an undoped region (68) on which the intrinsic portion of the transistor (60) is formed.
Description
- The present invention is a Continuation of: “Vertical Heterojunction Bipolar Transistor,” Ser. No. 09/441,576, issued on Jul. 23, 2002 as U.S. Pat. No. 6,423,990, which is a Continuation-In-Part of: “Method Of Forming Heterojunction Bipolar Transistor Having Wide Bandgap, Low Interdiffusion Base-Emitter Junction,” Ser. No. 09,267,252, filed on Mar. 12, 1999 and issued on Jan. 9, 2001 as U.S. Pat. No. 6,171,920, which is a Division of: “Heterojunction Bipolar Transistor Having Wide Bandgap, Low Interdiffusion Base-Emitter Junction,” Ser. No. 08/939,487, filed on Sep. 29, 1997, and issued on Jun. 15, 1999 as U.S. Pat. No. 5,912,481, all of which are incorporated herein by reference.
- The present invention relates generally to heterojunction bipolar transistors (HBTs).
- Heterojunction bipolar transistors (HBTs) theoretically provide advantages over conventional homojunction bipolar transistors by providing a heterojunction between a base and emitter of a transistor. A heterojunction is formed between two dissimilar semiconductor materials. Silicon (Si) exhibits a bandgap of around 1.12 eV, but a Si homojunction has no bandgap discontinuity at the junction. A bandgap discontinuity can occur at a junction by using dissimilar semiconductor materials on opposing sides of the junction. From the perspective of an NPN transistor, discontinuity in the valence band restricts hole flow from the base to the emitter, thus improving emitter injection efficiency and current gain. To the extent that injection efficiency and current gain improvements can be achieved, base region resistivity may be lowered (which lowers the base resistance) and emitter region resistivity may be raised (which lowers base-emitter junction capacitance) to create fast transistors without significantly compromising other device parameters. Such fast transistors would be useful for high-speed digital, microwave, and other integrated circuit and discrete transistor applications.
- In practice, HBT performance often falls far short of the theoretical expectations. One conventional Si-based HBT reduces the bandgap of the base region by creating a base material having a narrower bandgap than Si. In particular, a small amount of germanium (Ge) is mixed with Si in the base (Si1−xGex), and the emitter is more purely Si. Unfortunately, the amount of bandgap difference (ΔEg) for as much as 20% Ge content in the base is only about 0.15 eV. This small ΔEg achieves only a small portion of the performance benefits that HBTs theoretically promise.
- Slight improvements in HBT performance have been achieved by using materials other than Si for the emitter of an HBT. Three emitter materials which have been investigated for use in HBT transistors are silicon carbide (SiC), which has a bandgap of 2.93 eV, gallium arsenide (GaAs) which has a bandgap of 1.42 eV, and gallium phosphide (GaP), which has a bandgap of 2.24 eV. Unfortunately, such materials have lattice constants that differ from Si. For example, SiC has a 20% lattice mismatch, GaAs has a 4% lattice mismatch, and GaP has a 0.34% lattice mismatch. Likewise, such materials have thermal expansion coefficients that differ from Si. SiC has a thermal expansion coefficient of about 2.6×10−6(°C.)−1, while GaAs has a thermal expansion coefficient of around 6.7×10−6(°C.)−1, and GaP has a thermal expansion coefficient of around 5.91×10−6(°C.)−1. Because of these differences, only thin layers of these materials have been successfully grown on Si without the formation of significant defects. The maximum thickness for a low defect layer of SiC grown on Si is only a few angstroms (Å), and for GaAs grown on Si is less than 200 Å. At these thicknesses or less, strain, which is caused by lattice mismatch, is contained by lattice stretching rather than crystal defects. Thinner, low-defect thicknesses of these materials do not possess a sufficient thickness to protect the base-emitter junction from shorting due to diffusion of metal from the emitter contact region. Thicker, high-defect thicknesses of these materials exhibit degraded junction performance due to an excessive number of defects.
- The most successful HBT improvements to date are believed to have been achieved by forming a GaP layer over Si at the base-emitter junction. GaP is desirable because it has a relative large bandgap (i.e., about 2.24 eV) and little lattice mismatch with silicon (i.e., about 0.34%). Nevertheless, such conventional HBTs that use a GaP layer over Si still achieve only a small portion of the performance benefits that HBTs theoretically promise. The reason for this poor performance appears to be that a Si-GaP junction suffers from an unusually large amount of interdiffusion, where the Ga and P readily diffuse into the Si, and vice-versa. The interdiffusion between Si and GaP results in a poor semiconductor junction, with the metallurgical junction being displaced from the electrical junction. Accordingly, the performance gains that are suggested by the wide bandgap difference between a Si base and a GaP emitter are not achieved in practice because the resulting diffuse junction negates those potential gains.
- In the field of photoelectric semiconductors, it is desirable to form compound structures using a Si substrate and direct gap semiconductor materials. A Si substrate is desirable for mechanical stability and because a manufacturing infrastructure exists for reliably mass producing rugged Si wafers at relatively low cost. The Si substrate is typically an extrinsic part of the photoelectric semiconductor not used in forming intrinsic photoelectric semiconductor junctions.
- Compound structures using a Si substrate and direct gap semiconductor materials suffer from problems similar to those discussed above for HBTs. Namely, lattice constant and thermal expansion coefficients for direct gap semiconductors differ from Si. Consequently, in attempting to produce low-defect compound semiconductors having direct gap semiconductors and a Si substrate, conventional photoelectric semiconductors often include very thick, highly doped buffer layers between the Si substrate and direct gap materials. Such buffer layers may include indirect gap materials, such as GaP and others, but these indirect gap materials are unsuitable for intrinsic photoelectric semiconductors.
- Such buffer layers tend to incrementally shift lattice constants and thermal expansion coefficients so that the intrinsic direct gap photoelectric semiconductor materials may then be grown with fewer defects. Such applications often form relatively thick buffer layers which themselves may have numerous defects, at least closer to a Si interface, that are of little consequence to the intrinsic photoelectric semiconductor. Needless to say, such buffer layers are not used in forming semiconductor junctions.
- U.S. Pat. No. 5,912,481, which describes prior work of the inventors of the present invention, describes an HBT that goes a long way toward providing performance benefits that HBTs theoretically promise. However, further improvements in speed, radiation tolerance characteristics, and thermal dissipation would be desirable.
- Speed and radiation tolerance characteristics can both be enhanced by using an improved substrate in which, or on which, an intrinsic transistor is formed. Conventional techniques apply a silicon on insulator (SOI) technology. Typically, an intrinsic transistor is formed over an SiO2 layer rather than over a semiconductor, such as Si. When hit by radiation, the SiO2 layer does not produce the electron disturbances that are characteristic of a semiconductor, leading to radiation tolerance improvements. In addition, the insulative SiO2 layer lowers capacitance, which leads to improvements in speed. However, SiO2 is not a particularly good thermal conductor. Consequently, less heat is conducted away from the intrinsic transistor, fewer transistors can be placed near one another on an integrated circuit, and higher power devices are not practical.
- Moreover, one conventional SOI technique forms a crystalline layer (e.g., Si) used in the formation of intrinsic transistors over the SiO2 layer. Since Sio2 is a porous material, not a crystalline material, the overlying crystalline layer often exhibits defects that cannot be cured by annealing. Accordingly, poor yields result. Another conventional SOI technique forms a single Si crystal, then implants oxygen (O2) under high energy deep into the Si crystal and anneals to form a deep SiO2 layer. Unfortunately, getting complete and uniform SiO2 formation within an existing Si layer is extremely difficult. Consequently, this SOI technique is characterized by incomplete oxidation, which leads to a poor quality SiO2 layer and only marginal speed and radiation tolerance improvements.
- Accordingly, it is an advantage of the present invention that an improved heterojunction bipolar transistor (HBT) having a wide bandgap with low interdiffusion base-emitter junction and method therefor are provided.
- Another advantage is that an HBT having a multilayer emitter is provided.
- Another advantage is that an HBT is provided which has a wide bandgap emitter along with a base-emitter junction that is substantially free of interdiffusion.
- Another advantage is that an HBT is provided with a Si base region that forms a junction with a multilayer emitter having a thin GaAs layer proximate the base region and a distal GaP layer.
- Another advantage is that an HBT is provided that exhibits performance that more closely meets theoretical expectations than conventional HBTs.
- Another advantage is that an HBT is provided which uses a Si substrate and a substantially insulative crystalline layer grown thereon.
- Another advantage is that an intrinsic HBT is formed in and on a substantially insulative layer that is also a good thermal conductor.
- The above and other advantages of the present invention are carried out in one form by a vertical heterojunction bipolar transistor which includes a gallium phosphide layer (GaP) configured to exhibit a first conductivity type. The GaP layer forms a first portion of a multilayer emitter. A gallium arsenide (GaAs) layer is formed in contact with the GaP layer. The GaAs layer forms a second portion of the multilayer emitter. A silicon (Si) base region of a second conductivity type is formed in contact with the GaAs layer. In addition, a Si collector region of the first conductivity type is formed adjacent to the Si base region.
- A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in connection with the Figures, wherein like reference numbers refer to similar items throughout the Figures, and:
- FIGS.1-10 show sectional views of a first embodiment of an HBT at first through tenth processing stages, respectively;
- FIG. 11 shows a schematic, zero biased, band diagram of a composite emitter HBT according to a preferred embodiment of the present invention; and
- FIGS.12-18 show sectional views of a second embodiment of an HBT at first through seventh processing stages, respectively.
- FIGS.1-10 show sectional views of a heterojunction bipolar transistor (HBT) 20 configured in accordance with the present invention at first through tenth processing stages, respectively. The Figures illustrate an NPN implementation of the present invention, but those skilled in the art will realize that an equivalent PNP implementation is easily achieved by making routine substitutions well known to those skilled in the art.
- FIG. 1 illustrates a first processing stage in which a buried
region 22 is formed in a silicon (Si)substrate 24. Preferably,substrate 24 is lightly doped P-type conductivity, and buriedregion 22 is heavily doped through a standard ion implantation process to exhibit N-type conductivity for this NPN implementation. - FIG. 2 illustrates a second processing stage that follows the first processing stage depicted in FIG. 1. As illustrated in FIG. 2, a
collector layer 26 is epitaxially grown onsubstrate 24.Buried region 22 is now diffused into bothcollector layer 26 andsubstrate 24.Collector layer 26 is a lightly doped N-type conductivity. Phosphorous, antimony, or arsenic N-type dopants are used through conventional techniques, such as ion implantation or diffusion, to achieve the desired conductivity type.Buried region 22 allowscollector layer 26 to exhibit a low resistance while controlling the breakdown voltage ofHBT 20. As understood by those skilled in the art, the thickness ofcollector layer 26 is selected to achieve application-specific goals. For example,collector layer 26 is desirably thinner to increase the speed ofHBT 20 and thicker to increase the breakdown voltage ofHBT 20. - FIG. 3 illustrates a third processing stage that follows the second processing stage depicted in FIG. 2. FIG. 3 shows several independent diffusion areas formed in
collector layer 26. A highly doped P-type conductivityisolation diffusion area 28 is made to surround acollector region 30, which provides proper isolation for thefinal HBT 20.Collector region 30 will eventually serve as the collector ofHBT 20.Diffusion area 28 desirably refrains from overlying any portion of buriedregion 22. - A highly doped N-type conductivity contact-enabling
diffusion area 32 is made at a location withincollector region 30 where a metallization layer will eventually make an electrical collector contact. This location desirably overlies a portion of buriedlayer 22. - A
base region 34 is another diffusion area that is also formed withincollector region 30.Base region 34 will eventually serve as the base ofHBT 20.Base region 34 is doped to exhibit P-type conductivity for this NPN implementation. Desirably,base region 34 is heavily doped so that the base ofHBT 20 will exhibit an unusually low resistance.Diffusion areas diffusion areas base region 34 to drivediffusion areas collector layer 26 thanbase region 34. - In an alternative embodiment, a small amount of germanium (Ge) is mixed with the Si of
base region 34 to lower the bandgap of the base ofHBT 20 when compared to the bandgap of a base formed using more pure Si. This mixing is desirably performed during the second stage depicted in FIG. 2. Small amounts of Ge (e.g., around 10%) with a P+ type doping can be mixed with the Si during only the later portion of epitaxial growth forcollector layer 26 to form the base. - FIG. 4 illustrates a fourth processing stage that follows the third processing stage depicted in FIG. 3. FIG. 4 illustrates heat being applied to further
drive diffusion areas collector layer 26.Isolation diffusion area 28 is desirably driven throughcollector layer 26 tosubstrate 24. Contact-enablingdiffusion area 32 is desirably driven throughcollector region 30 to buriedregion 22. However,base region 34 is desirably driven only a shallow depth intocollector layer 26. Desirably,base region 34 is around 1000 Å deep. However, the resulting base ofHBT 20 will be shallower than this depth due to subsequent etching steps. This shallow depth ofbase region 34 leads to a low transit time, which increases the high current gain cut-off frequency (Ft) and high power gain cut-off frequency (Fmax) parameters forHBT 20. - During this fourth stage of processing, heat in excess of 800° C. may be applied to
HBT 20 for extended periods of time. However, after this stage the temperature ofHBT 20 is desirably maintained below 800° C. to prevent diffusion of non-silicon layers that will be grown overcollector layer 26. - FIG. 5 illustrates a fifth processing stage that follows the fourth processing stage depicted in FIG. 4. FIG. 5 actually illustrates two epitaxial growth processes. The first epitaxial growth process grows a wide bandgap, non-silicon semiconductor, preferably gallium arsenide (GaAs), over and in contact with
collector layer 26 to form afirst emitter layer 36 of a multilayer emitter 38 (see FIG. 6).First emitter layer 36 may be of N-type conductivity for this NPN implementation or may not be intentionally doped, but is desirably configured so as not to exhibit P-type conductivity. A function offirst emitter layer 36 is a diffusion barrier to provide a stable interface with the Si ofbase region 34. - The second epitaxial growth process grows a second non-silicon, wide bandgap semiconductor, preferably gallium phosphide (GaP), over and in contact with
first emitter layer 36 to form asecond emitter layer 40 ofmultilayer emitter 38. Desirably,second emitter layer 40 is degeneratively doped with a suitable N-type conductivity material for this NPN implementation, such as Si, to values in excess of 10×1020/cm3 to provide a very low emitter contact resistance where a metallization layer will eventually make an electrical emitter contact. Desirably, doping gradually increases assecond emitter layer 40 builds away fromfirst emitter layer 36 to reach the maximum value at the distal surface fromfirst emitter layer 36. The function ofsecond emitter layer 40 is to provide maximum valence band discontinuity with minimum lattice mismatch and minimal thermal expansion mismatch with respect to Si. - GaAs is a desirable material for use as an interface with Si because it can form an interface substantially free from interdiffusion, particularly when compared to the interdiffusion that results from forming a GaP layer on Si. In other words, an atomically abrupt interface forms between GaAs
first emitter layer 36 andbase region 34. Desirably,first emitter layer 36 is epitaxially grown using conventional techniques but at a relatively low temperature (e.g., 400-600° C.) to keep the Si—GaAs junction as free from interdiffusion as possible. Alternative cycles of even lower temperatures (e.g., 150-250° C.) may be applied during the growth process. This results in a substantially pure crystalline structure suitable for intrinsic semiconductor activity. - Moreover,
first emitter layer 36 is limited in thickness so thatfirst emitter layer 36 will be coherently strained between the Si ofbase region 34 andsecond emitter layer 40. Thickness is limited in a manner understood to those skilled in the art by controlling the time over whichfirst emitter layer 36 is grown. A coherently strained layer is a layer so thin that lattice constant mismatches do not result in lattice mismatch crystal defects but are contained by lattice stretching. Withfirst emitter layer 36 made from GaAs andsecond emitter layer 40 made from GaP, a thickness forfirst emitter layer 36 of less than 200 Å is preferred, with a thickness of less than 50 Å being particularly desirable. - The thickness of
second emitter layer 40 is desirably much greater than the thickness offirst emitter layer 36.Second emitter layer 40 is desirably at least 500 Å thick, and preferably around 2000-3000 Å thick. Less overall thickness is desired formultilayer emitter 38. Less thickness leads to a smaller emitter resistance and afaster HBT 20. However, the thickness ofmultilayer emitter 38, and primarilysecond emitter layer 40, is balanced with a need to prevent the emitter and base ofHBT 20 from shorting. Shorting can occur when metallization, discussed below, diffuses throughmultilayer emitter 38 to reachbase region 34. A sufficient thickness forsecond emitter layer 40 prevents metallization from diffusing therethrough. -
Second emitter layer 40 is desirably grown epitaxially using standard techniques at temperatures that generally remain in the 400-600° C. range to preserve the substantially interdiffusion-free interface betweenfirst emitter layer 36 andbase region 34. Although not shown, toward the upper regions ofsecond emitter layer 40, distally removed fromfirst emitter layer 36, temperature may be lowered so that this portion ofsecond emitter layer 40 becomes polycrystalline. Among other benefits, this lessens thetime HBT 20 spends at elevated temperatures to further lessen risks of interdiffusion at the base-emitter junction. - While
first emitter layer 36 provides an abrupt interface withSi base region 34,second emitter layer 40 provides as great of a bandgap discontinuity as is practical. Thus, the bandgap characteristics ofHBT 20 in the vicinity of the base-emitter junction are determined primarily by the bandgap differences between materials used forbase region 34 andsecond emitter layer 40. However, the abruptness of the base-emitter junction (i.e., the congruence of the metallurgical and electrical junctions) is determined primarily by materials used forbase region 34 andfirst emitter layer 36. - Due to the thin, coherently strained nature of
first emitter layer 36,base region 34 exhibits few defects. Likewise,second emitter layer 40, although relatively thick, exhibits few defects in part becausefirst emitter layer 36 is sufficiently thin to be coherently strained. Accordingly, not only doesfirst emitter layer 36 provide a clean, abrupt semiconductor junction atbase region 34, butfirst emitter layer 36 allowssecond emitter layer 40 to be epitaxially grown to a relatively thick width with few defects. - FIG. 6 illustrates a sixth processing stage that follows the fifth processing stage depicted in FIG. 5. FIG. 6 shows a patterning and etching process. Conventional photolithographic techniques can be used to
pattern HBT 20, then etching is performed to remove portions of first and second emitter layers 36 and 40 that will not be used formultilayer emitter 38. - FIG. 7 illustrates a seventh processing stage that follows the sixth processing stage depicted in FIG. 6. FIG. 7 shows a passivation process. Conventional techniques are used to apply a
passivation layer 42 over the entire surface ofHBT 20 at this point. Silicon nitride, silicon dioxide, or other conventional passivation materials may be applied in a conventional manner, so long as temperatures generally remain below about 800° C. - FIG. 8 illustrates an eighth processing stage that follows the seventh processing stage depicted in FIG. 7. FIG. 8 shows another patterning and etching process. Conventional photolithographic techniques can be used to
pattern HBT 20, then etching is performed to removepassivation layer 42 to formvias 44 in locations where a metallization layer will eventually make electrical contacts. - FIG. 9 illustrates a ninth processing stage that follows the eighth processing stage depicted in FIG. 8. FIG. 9 shows a metallization process that uses conventional techniques to deposit a
metallization layer 46 over the entire surface ofHBT 20. - FIG. 10 illustrates a tenth processing stage that follows the ninth processing stage depicted in FIG. 9. FIG. 10 shows yet another patterning and etching process. Conventional photolithographic techniques can be used to
pattern HBT 20, and then etching is performed to removemetallization layer 46 where not wanted over the surface ofHBT 20. However,metallization layer 46 remains within and overvias 44 to form electrical contacts with the base, collector, and emitter regions ofHBT 20. - FIG. 11 shows a schematic, zero biased, band diagram for
HBT 20. FIG. 11 depicts a conduction band (Ec)trace 48 and a valence band trace (Ev) 50 on vertically opposing sides of a Fermi level (Ef) 52. The band diagram of FIG. 11 is horizontally partitioned into foursections 30′, 34′, 36′, and 40′ corresponding tocollector region 30,base region 34,first emitter layer 36, and second emitter layer 40 (FIG. 10), respectively. - Referring to FIGS.10-11, in
collector region 30 the bandgap energy equals Ec−Ev, or approximately 1.12 eV. Inbase region 34 the bandgap energy still equals approximately 1.12 eV. In other words,base region 34 has roughly the same bandgap ascollector region 30. - In
first emitter layer 36, the bandgap energy equals approximately 1.42 eV. This increase of roughly 0.3 eV from the bandgap ofbase region 34 andcollector region 30 is due to the higher bandgap of GaAs compared to the bandgap of Si. Moreover, substantially all of this 0.3 eV appears as adiscontinuity 54 in the valence band Ev. Very little of the increase in bandgap achieved by transitioning from Si to GaAs infirst emitter layer 36 appears in conduction band Ec. - In
second emitter layer 40, the bandgap equals approximately 2.24 eV. This represents an increase of roughly 0.8 eV from the bandgap infirst emitter layer 36. Accordingly, another discontinuity in the bandgap energy results. This discontinuity is divided between avalence band discontinuity 56 of approximately 0.5 eV and aconduction band discontinuity 58 of approximately 0.3 eV. The total bandgap discontinuity betweensecond emitter layer 40 andbase region 36 is approximately 1.1 eV, with the majority of the discontinuity appearing in the valence band Ev. The majority of the discontinuity appearing in the valence band Ev is desirable for NPN transistors because it is the parameter that characterizes the suppression of hole injection. - Not only does
first emitter layer 36 provide a stable, abrupt semiconductor junction atbase region 34 and simultaneously allowsecond emitter layer 40 to be epitaxially grown with few defects, butfirst emitter layer 36 also causes a larger portion of the total bandgap discontinuity betweenmultilayer emitter 38 andbase region 34 to appear as a valence band discontinuity, which is particularly useful in suppressing hole injection. This relatively large valence band discontinuity significantly suppresses hole injection frombase region 34 tomultilayer emitter 38, creating an HBT with greatly improved emitter injection efficiency compared to prior art HBTs. - FIGS.12-21 show sectional views of an
HBT 60 at first through tenth processing stages, respectively.HBT 60 is an alternative embodiment toHBT 20, discussed above. In general,HBT 60 is an upside down implementation ofHBT 20, with an emitter region of the GaP layer being the bottom-most portion of the intrinsic transistor and being surrounded by a GaP region that is configured to be substantially insulative.HBT 60 operates substantially in accordance with the band diagram illustrated in FIG. 11. - FIG. 12 illustrates a first processing stage in which a
non-silicon semiconductor layer 62, preferably gallium arsenide (GaAs) is epitaxially grown over and in contact with a silicon (Si)substrate 64, and anothernon-silicon semiconductor layer 66, preferably gallium phosphide (GaP) is then epitaxially grown over and in contact withlayer 62. Preferably,substrate 64 is undoped and left to exhibit its intrinsic doping so that it will exhibit low conductivity for improved radiation tolerance and reduced capacitance with the intrinsic transistor, discussed below. - As with
first emitter layer 36, discussed above in connection with the first embodiment,layer 62 is limited in thickness so that it will be coherently strained betweenSi substrate 64 andlayer 66. Withlayer 62 made from GaAs, a thickness of less than 200 Å is preferred, with a thickness of less than 50 Å being particularly desirable.Layer 62 is extrinsic toHBT 60 and serves primarily as a buffer betweenSi substrate 64 and the above-layer. However,layer 62 also substantially prevents interdiffusion at the boundary betweensubstrate 64 andlayer 62, and the formation of a conductive region due to any interdiffusion. - In an alternative embodiment (not shown),
layer 62 may be omitted, andlayer 66 grown to a greater thickness than would be needed whenlayer 62 is included. In this embodiment, defects are likely to form inlayer 66 nearsubstrate 64, but such defects are minimized aslayer 66 becomes thicker. -
Layer 66 is preferably a wide bandgap semiconductor that exhibits or can be selectively made to exhibit good insulative qualities and exhibits good or can be made to exhibit good thermal conductivity qualities. Preferably, GaP is used forlayer 66. Desirably,layer 66 is grown to a large thickness, preferably greater than 5000 Å whenlayer 62 is present, but this is not a requirement of the present invention. Standard techniques, as discussed above in connection with the first embodiment, may be used to growlayer 66. - As indicated by a dotted line in FIG. 12,
layer 66 is divided into anundoped region 68 and a dopedregion 70. Inundoped region 68,layer 66 is desirably formed to exhibit insulative properties, such as the insulative properties demonstrated by GaP that exhibits only its intrinsic doping [GaP(i)]. Indoped region 70,layer 66 is desirably doped to exhibit “N” type doping [GaP(n)] in this NPN example. Doping may be accomplished by adding a suitable dopant while growing dopedregion 70 oflayer 66.Layer 66 exhibits increased conductivity in dopedregion 70 due to the doping. - In this embodiment, doped
region 70 will provide an outside layer, which also serves as a penultimate inside layer, of amultilayer emitter 72 forHBT 60. Accordingly, dopedregion 70 is intrinsic toHBT 60, butundoped region 68 is extrinsic toHBT 60 because it does not take a substantial part in the electrical activity ofHBT 60. The function of dopedregion 70 is similar to that ofsecond emitter layer 40, discussed above in connection with the first embodiment. - The depth of doped
region 70 inlayer 66 desirably varies to achieve application goals. Generally, a high-speed transistor will benefit from dopedregion 70 being relatively shallow so that emitter resistivity is raised and base-emitter junction capacitance is lowered. Moreover, a greater thickness for insulative,undoped region 68 is desirable because it decreases capacitance with layers underlying the intrinsic transistor and improves radiation tolerance. - FIG. 13 illustrates a second processing stage that follows the first processing stage depicted in FIG. 12. In this second stage, a third non-silicon,
semiconductor layer 74 is grown over and in contact withlayer 66.Layer 74 has a function similar to that oflayer 36, discussed above. In particular,layer 74 provides an interdiffusion barrier betweenlayer 66 and subsequent Si layers, discussed below, andlayer 74 buffers between the different materials used forlayer 66 in the subsequent Si layers.Layer 74 is desirably formed substantially of GaAs. -
Layer 74 is limited in thickness so thatlayer 74 will be coherently strained betweenlayer 66 and subsequent Si layers. Withlayer 74 made from GaAs andlayer 66 made from GaP, a thickness forlayer 74 of less than 200 Å is preferred, with a thickness of less than 50 Å being more desirable.Layer 74 may be lightly N-type doped for this NPN implementation or may exhibit its intrinsic doping, but is preferably configured not to intentionally exhibit P-type conductivity.Layer 74 provides an inside layer, which also serves as a penultimate outside layer, ofmultilayer emitter 72 forHBT 60, and is therefore an intrinsic part ofHBT 60. - FIG. 14 illustrates a third processing stage that follows the second processing stage depicted in FIG. 13. In this third stage, a
Si layer 76 is epitaxially grown over and in contact withlayer 74. In accordance with conventional processing techniques,layer 76 may be grown in a chamber separate from the chamber used to growlayers layer 74 to protect the exposed surface oflayer 74, then this temporary layer removed through etching when the wafer has been moved into the new chamber. -
Layer 76 is preferably grown to exhibit three regions of differing conductivity type. Aregion 78, which will serve as the base ofHBT 60, is grown over and in contact withlayer 74. The boundary betweenlayer 74 andbase region 78 will serve as the base-emitter junction forHBT 60. Sincelayers base 78 is a silicon layer, a heterojunction results. -
Si layer 76 and subsequent processing stages are desirably grown while keeping temperatures below 800° C. to preserve an abrupt base-emitter junction.Base 78 is heavily doped to exhibit P-type conductivity [Si(p+)] for this NPN implementation by adding a suitable dopant while growingbase 78 oflayer 66. Desirably,base 78 is heavily doped so that the base ofHBT 60 will exhibit an unusually low resistance. A small amount of Ge may be mixed with the Si ofbase 78 to lower the bandgap of the base ofHBT 60 when compared to the bandgap of a base formed using more pure Si. Desirably,base 78 is grown to a thickness greater than 1000 Å, with athinner base 78 being more desirable for higher speed characteristics. -
Si layer 76 is grown to include acollector region 80 over and in contact withbase 78.Collector 80 may be grown to a thickness of greater than 2000 Å, with less thickness being more desirable in lower voltage applications. As a minimum,layer 76 needs to be sufficiently thick so that subsequent metallization does not diffuse throughcollector 80 to short withbase 78.Collector 80 is lightly doped to exhibit N-type conductivity [Si(n−)] for this NPN implementation by adding a suitable dopant while growingcollector 80. -
Si layer 76 is also grown to include a collector-contact-enablingregion 82 over and in contact withcollector region 80.Region 82 may have a thickness in the range of 1000-4000 Å.Region 82 differs fromregion 80 in thatregion 82 is highly doped [Si(n+)] to enable an interface with a metal contact, to be applied later.Regions collector 80. - FIG. 15 illustrates a fourth processing stage that follows the third processing stage depicted in FIG. 14. FIG. 15 shows a patterning and etching process. Conventional photolithographic techniques can be used to
pattern HBT 60, then etching is performed to remove a portion ofregions Si layer 76 so that only the feature that will be used ascollector 80 forHBT 60 remains. Desirably, etching is stopped below heavily doped contact-enablingregion 82 and somewhere in the middle of the lightly dopedregion 80. The precise location for stopping the etching process is not a critical parameter. FIG. 15 illustratesHBT 60 following the removal of a mask used in this etching process.Collector 80 will be centrally located inHBT 60. - FIG. 16 illustrates a fifth processing stage that follows the fourth processing stage depicted in FIG. 15. FIG. 16 shows a masking and ion implantation process. Conventional photolithographic and etching techniques can be used to pattern and etch
HBT 60 to form a suitable mask 84 (e.g., Si3N4), then ion implantation is performed in base-contact-enablingareas 86. Implantation energies are adjusted to that a highly conductive P-type dopant (p+) for this NPN example is driven through the remaining portion of lightly doped Si(n−)region 80 into, but not through,base 78 at base-contact-enablingareas 86. The highly conductive p+ dopant overwhelms the lightly conductive n− dopant to result inareas 86 being Si(p+). Implantation may occur in two steps, with a higher energy implantation step followed by a lower energy implantation step. The higher energy step causes the dopant to be driven to a large depth and the lower energy step causes the dopant to be driven only to a small depth so that base-contact-enablingareas 86 are continuous Si(p+) regions from the exposed surface down intobase 78. - FIG. 17 illustrates a sixth processing stage that follows the fifth processing stage depicted in FIG. 16. Compared to the fifth processing stage of FIG. 16,
mask 84 is removed, and conventional photolithographic and etching techniques have been performed to remove remaining portions of Si layers 78 and 80 not needed forbase 78 orcollector 80. The removed portions are outside of base-contact-enablingareas 86. The remaining portion oflayer 76forms base 78 andcollector 80. After this patterning and etching step, a masking and ion implantation process is performed to apply a suitable mask 88 (e.g., Si3N4) which has openings in emitter-contact-enablingareas 90. Whenmask 88 has been applied, ion implantation is performed in emitter-contact-enablingareas 90 by driving a suitable highly conductive n+ dopant for this NPN example throughGaAs layer 74 into dopedregion 70 ofGaP layer 66. - FIG. 18 illustrates a seventh processing stage that follows the sixth processing stage depicted in FIG. 17. FIG. 18 shows isolation, passivation and metallization processes. In particular, FIG. 18 depicts etching of an isolation well92, the application of a
passivation layer 94, and then the application of ametallization layer 96. - First, a suitable mask is applied (not shown) and well92 etched around the perimeter of
HBT 60 to isolateHBT 60 from other transistors and devices (not shown) formed oversubstrate 64. Well 92 is etched into insulative (undoped)region 68 inlayer 66, or deeper, for effective isolation. While the area surrounded by well 92 is not a critical parameter of the present invention, a smaller area is desirable for higher transistor density and faster performance. - Next, conventional techniques are used to apply
passivation layer 94 over the entire surface ofHBT 60 at this point. Silicon nitride, silicon dioxide, or other conventional passivation materials may be applied in a conventional manner, so long as temperatures generally remain below about 800° C. Then, a patterning and etching process is performed in which conventional techniques may be used topattern HBT 60 and remove selected portions ofpassivation layer 94 to form vias in locations wheremetallization layer 96 will eventually make electrical contacts with the emitter, base, and collector ofHBT 60. - Finally, conventional techniques may be used to deposit
metallization layer 96 over the entire surface ofHBT 60. After deposition ofmetallization layer 96, another patterning and etching process removesmetallization layer 96 where not wanted over the surface ofHBT 60. However,metallization layer 96 remains within and over the above-discussed vias to form anemitter contact 98 at emitter-contact-enablingareas 90, abase contact 100 at base-contact-enablingareas 86, and acollector contact 102 atcollector 80.Collector contact 102 is centrally located (i.e., innermost) withinHBT 60.Base contact 100 is intermediately located withinHBT 60 and may substantially surroundcollector contact 102.Emitter contact 98 is peripherally located (i.e., outermost) withinHBT 60 and may substantially surroundbase contact 100 andcollector contact 102. In addition, the pattern of metallization is configured so thatmetallization layer 96 is routed to other circuits and/or pads to makeHBT 60 usable in an electrical circuit. - Due to the thin, coherently strained nature of
emitter layer 74,multilayer emitter 72 andbase 78 exhibit few defects. Moreover,multilayer emitter 72 provides a clean, abrupt semiconductor junction atbase layer 78, and allowsbase 78 andcollector 80 to be epitaxially grown to a relatively thick width with few defects. The band diagram depicted in FIG. 11 applies forHBT 60 as discussed above forHBT 20. - Referring to FIGS. 10 and 18, HBT60 (FIG. 18) is upside down relative to HBT 20 (FIG. 10). In both
HBT 20 and HBT 60 a multilayer, non-silicon emitter forms a base-emitter junction with a Si base, and the collector, base, and emitter are arranged vertically. The emitter is on the top in HBT 20 (i.e., distally located relative to substrate 24), but on the bottom in HBT 60 (i.e., proximally located relative to substrate 64). In the preferred embodiments, GaP is used for the outermost emitter layer that is intrinsic toHBTs - In HBT60 (FIG. 18), the intrinsic portion of
GaP layer 66 is confined to dopedregion 70. However, dopedregion 70, and the other features that are intrinsic toHBT 60, are spaced apart fromsubstrate 64 and from other HBTs 60 (not shown) which may be formed over thesame substrate 64 byundoped region 68 ofGaP layer 66. In the preferred embodiments,undoped region 68 exhibits the good insulative properties and good thermal conductivity properties characteristic of undoped GaP. Accordingly, the insulative properties promote lower parasitic capacitance and improved speed along with less electron disturbance in the presence of radiation and improved radiation tolerance. The good thermal conductivity properties allow heat generated by the intrinsic portions ofHBT 60 to be readily conducted toSi substrate 64, which is also a good thermal conductor. Accordingly, a greater number ofHBTs 60 may be formed onsubstrate 64 orhigher power HBTs 60 may be formed. - In summary, an improved HBT having a wide bandgap with a low interdiffusion base-emitter junction is provided along with methods for forming the HBT. The HBT uses a Si substrate, which is desirable because the use of a Si substrate takes advantage of the existing manufacturing infrastructure that reliably produces relatively rugged Si wafers at low cost.
- A multilayer emitter is provided in the HBT. This emitter exhibits a wide bandgap, and the resulting base-emiter junction is substantially free of interdiffusion. In a preferred embodiment, the HBT is provided with a Si base that forms a heterojunction with a multilayer emitter having a thin GaAs layer proximate the base and a distal GaP layer. The base-emitter junction and the wide bandgap multilayer emitter together allow an HBT configured in accordance with the present invention to exhibit performance more closely meeting theoretical expectations than does the performance of conventional HBTs. In one embodiment, the HBT uses a Si substrate and a substantially insulative crystalline layer grown thereon, with the features intrinsic to the HBT formed in and above this insulative crystalline layer.
- The present invention has been described above with reference to preferred embodiments. However, those skilled in the art will recognize that changes and modifications may be made in these preferred embodiments without departing from the scope of the present invention. For example, while the above-presented description discusses the formation of a single HBT, those skilled in the art will readily recognize that a multiplicity of HBTs may be simultaneously formed as described above, or in an equivalent manner, for integrated circuit or discrete transistor applications. These and other changes and modifications that are obvious to those skilled in the art are intended to be included within the scope of the present invention.
Claims (21)
1. A vertical heterojunction bipolar transistor comprising:
a gallium phosphide layer (GaP) configured to exhibit a first conductivity type, said GaP layer forming a first portion of a multilayer emitter;
a gallium arsenide (GaAs) layer formed in contact with said GaP layer, said GaAs layer forming a second portion of said multilayer emitter;
a silicon (Si) base region of a second conductivity type formed in contact with said GaAs layer; and
a Si collector region of said first conductivity type formed adjacent to said Si base region.
2. A vertical heterojunction bipolar transistor as claimed in claim 1 wherein said GaAs layer is less than 200 Å thick.
3. A vertical heterojunction bipolar transistor as claimed in claim 1 wherein said GaAs layer is sufficiently thin so as to be coherently strained.
4. A vertical heterojunction bipolar transistor as claimed in claim 1 wherein said GaAs layer is configured so as not to exhibit said second conductivity type.
5. A vertical heterojunction bipolar transistor as claimed in claim 1 wherein a base-emitter transistor junction located at an interface between said Si base region and said GaAs layer is substantially free of interdiffusion.
6. A vertical heterojunction bipolar transistor as claimed in claim 1 wherein said GaAs layer and said GaP layer are epitaxially grown.
7. A vertical heterojunction bipolar transistor as claimed in claim 1 wherein said transistor additionally comprises a Si substrate positioned underneath said GaP layer.
8. A vertical heterojunction bipolar transistor as claimed in claim 7 wherein said GaAs layer is a first GaAs layer and said transistor additionally comprises a second GaAs layer between said Si substrate and said GaP layer.
9. A vertical heterojunction bipolar transistor as claimed in claim 1 wherein:
said GaP layer is configured to have a first region doped to exhibit said first conductivity type, said first region of said GaP layer being in contact with said GaAs layer and forming said first portion of said multilayer emitter; and
said GaP layer is configured to have a second region in contact with said second GaAs layer, said second region being substantially undoped.
10. A vertical heterojunction bipolar transistor as claimed in claim 9 wherein said first GaP region is intrinsic to said heterojunction bipolar transistor and said second GaP layer is extrinsic to said heterojunction bipolar transistor.
11. A vertical heterojunction bipolar transistor as claimed in claim 1 wherein:
said GaP layer is configured to have a first region doped to exhibit said first conductivity type, said first region of said GaP layer being in contact with said GaAs layer and forming said first portion of said multilayer emitter; and
said GaP layer is configured to have a second region in contact with said second GaAs layer, said second region being substantially insulative.
12. A vertical heterojunction bipolar transistor as claimed in claim 1 wherein:
said GaAs layer is formed over said GaP layer;
said Si base region is formed over said GaAs layer; and
said Si collector region is formed over said Si base region.
13. A vertical heterojunction bipolar transistor as claimed in claim 1 additionally comprising an emitter contact coupled to one of said GaAs layer and said GaP layer, a base contact coupled to said Si base region, and a collector contact coupled to said Si collector region, wherein said emitter contact is an outermost one of said emitter, base, and collector contacts, and said collector contact in an innermost one of said emitter, base, and collector contacts.
14. A vertical heterojunction bipolar transistor comprising:
a first non-silicon layer exhibiting a first conductivity type and a bandgap wider than silicon, said first non-silicon layer forming a first layer of a multilayer emitter;
a second non-silicon layer in contact with said first non-silicon layer, said second non-silicon layer forming a second layer of said multilayer emitter;
a silicon (Si) base layer of a second conductivity type formed in contact with said second non-silicon layer, wherein an base-emitter transistor junction is formed at a boundary between said second non-silicon layer and said base layer and wherein said base-emitter transistor junction is substantially free of interdiffusion; and
a Si collector of said first conductivity type formed adjacent to said base layer.
15. A vertical heterojunction bipolar transistor as claimed in claim 14 wherein:
said first non-silicon layer is configured to have a first region doped to exhibit said first conductivity type, said first region being intrinsic to said heterojunction bipolar transistor; and
said first non-silicon layer is configured to have a second region which is substantially insulative, said second region being extrinsic to said heterojunction bipolar transistor.
16. A vertical heterojunction bipolar transistor as claimed in claim 14 wherein said second non-silicon layer is gallium arsenide (GaAs).
17. A vertical heterojunction bipolar transistor as claimed in claim 14 wherein said second non-silicon layer is coherently strained between said silicon base layer and said first non-silicon layer.
18. A vertical heterojunction bipolar transistor as claimed in claim 17 wherein said second non-silicon layer is gallium arsenide (GaAs) and has a thickness of less than 200 Å.
19. A vertical heterojunction bipolar transistor as claimed in claim 14 wherein said first non-silicon layer is gallium phosphide (GaP).
20. A vertical heterojunction bipolar transistor as claimed in claim 14 wherein said transistor additionally comprises a Si substrate, wherein said first non-silicon layer is formed over said Si substrate.
21. A vertical heterojunction bipolar transistor as claimed in claim 20 wherein:
said first non-silicon layer is formed substantially of gallium phosphide (GaP);
said first non-silicon layer is configured to have a first region doped to exhibit said first conductivity type, said first region being in contact with said second non-silicon layer; and
said first non-silicon layer is configured to have a second region proximate said Si substrate, said second region not being doped to exhibit said first conductivity type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/197,726 US20020179933A1 (en) | 1997-09-29 | 2002-07-17 | Vertical heterojunction bipolar transistor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/939,487 US5912481A (en) | 1997-09-29 | 1997-09-29 | Heterojunction bipolar transistor having wide bandgap, low interdiffusion base-emitter junction |
US09/267,252 US6171920B1 (en) | 1997-09-29 | 1999-03-12 | Method of forming heterojunction bipolar transistor having wide bandgap, low interdiffusion base-emitter junction |
US09/441,576 US6423990B1 (en) | 1997-09-29 | 1999-11-17 | Vertical heterojunction bipolar transistor |
US10/197,726 US20020179933A1 (en) | 1997-09-29 | 2002-07-17 | Vertical heterojunction bipolar transistor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/441,576 Continuation US6423990B1 (en) | 1997-09-29 | 1999-11-17 | Vertical heterojunction bipolar transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020179933A1 true US20020179933A1 (en) | 2002-12-05 |
Family
ID=23753441
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/441,576 Expired - Fee Related US6423990B1 (en) | 1997-09-29 | 1999-11-17 | Vertical heterojunction bipolar transistor |
US10/197,726 Abandoned US20020179933A1 (en) | 1997-09-29 | 2002-07-17 | Vertical heterojunction bipolar transistor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/441,576 Expired - Fee Related US6423990B1 (en) | 1997-09-29 | 1999-11-17 | Vertical heterojunction bipolar transistor |
Country Status (3)
Country | Link |
---|---|
US (2) | US6423990B1 (en) |
AU (1) | AU3793101A (en) |
WO (1) | WO2001037349A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007092019A2 (en) * | 2005-02-10 | 2007-08-16 | California Institute Of Technology | A method for advanced time-multiplexed etching |
US20070273006A1 (en) * | 2005-09-02 | 2007-11-29 | Intersil Americas Inc. | Bipolar method and structure having improved bvceo/rcs trade-off made with depletable collector columns |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19842106A1 (en) * | 1998-09-08 | 2000-03-09 | Inst Halbleiterphysik Gmbh | Vertical bipolar transistor and method for its manufacture |
JP3963068B2 (en) * | 2000-07-19 | 2007-08-22 | 豊田合成株式会社 | Method for producing group III nitride compound semiconductor device |
JP3812368B2 (en) * | 2001-06-06 | 2006-08-23 | 豊田合成株式会社 | Group III nitride compound semiconductor device and method for manufacturing the same |
US6903386B2 (en) * | 2002-06-14 | 2005-06-07 | Hewlett-Packard Development Company, L.P. | Transistor with means for providing a non-silicon-based emitter |
US7687886B2 (en) * | 2004-08-19 | 2010-03-30 | Microlink Devices, Inc. | High on-state breakdown heterojunction bipolar transistor |
US7651919B2 (en) * | 2005-11-04 | 2010-01-26 | Atmel Corporation | Bandgap and recombination engineered emitter layers for SiGe HBT performance optimization |
US7439558B2 (en) | 2005-11-04 | 2008-10-21 | Atmel Corporation | Method and system for controlled oxygen incorporation in compound semiconductor films for device performance enhancement |
US20070102729A1 (en) * | 2005-11-04 | 2007-05-10 | Enicks Darwin G | Method and system for providing a heterojunction bipolar transistor having SiGe extensions |
US7300849B2 (en) * | 2005-11-04 | 2007-11-27 | Atmel Corporation | Bandgap engineered mono-crystalline silicon cap layers for SiGe HBT performance enhancement |
DE102011004411B4 (en) * | 2011-02-18 | 2017-02-23 | Ihp Gmbh - Innovations For High Performance Microelectronics / Leibniz-Institut Für Innovative Mikroelektronik | Silicon-based heterobipolar transistor with a collector layer of a III-V semiconductor |
US8778703B2 (en) * | 2011-11-23 | 2014-07-15 | University Of Central Florida Research Foundation, Inc. | Extremely non-degenerate two photon absorption optical sensing method, apparatus and applications |
US10867834B2 (en) * | 2015-12-31 | 2020-12-15 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and manufacturing method thereof |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3984857A (en) | 1973-06-13 | 1976-10-05 | Harris Corporation | Heteroepitaxial displays |
JPS5440075A (en) | 1977-09-06 | 1979-03-28 | Futaba Denshi Kogyo Kk | Compound semiconductor wafer |
US4120706A (en) | 1977-09-16 | 1978-10-17 | Harris Corporation | Heteroepitaxial deposition of gap on silicon substrates |
US4180825A (en) | 1977-09-16 | 1979-12-25 | Harris Corporation | Heteroepitaxial deposition of GaP on silicon substrates |
US5091333A (en) | 1983-09-12 | 1992-02-25 | Massachusetts Institute Of Technology | Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth |
JPS60175450A (en) * | 1984-02-22 | 1985-09-09 | Toshiba Corp | Hetero junction bipolar semiconductor element |
US4588451A (en) | 1984-04-27 | 1986-05-13 | Advanced Energy Fund Limited Partnership | Metal organic chemical vapor deposition of 111-v compounds on silicon |
EP0214610B1 (en) | 1985-09-03 | 1990-12-05 | Daido Tokushuko Kabushiki Kaisha | Epitaxial gallium arsenide semiconductor wafer and method of producing the same |
JPH07113752B2 (en) * | 1986-02-01 | 1995-12-06 | コニカ株式会社 | Processing method of silver halide photographic light-sensitive material |
JPS6323992A (en) * | 1986-07-16 | 1988-02-01 | Kawasaki Heavy Ind Ltd | Production of highly concentrated coal/water slurry by wet process |
US4706100A (en) | 1986-08-01 | 1987-11-10 | Honeywell Inc. | High temperature hetero-epitaxial pressure sensor |
JPS63239922A (en) * | 1987-03-27 | 1988-10-05 | Masayoshi Umeno | Epitaxial growth crystal |
US4876210A (en) * | 1987-04-30 | 1989-10-24 | The University Of Delaware | Solution growth of lattice mismatched and solubility mismatched heterostructures |
US4983534A (en) | 1988-01-05 | 1991-01-08 | Nec Corporation | Semiconductor device and method of manufacturing the same |
JPH01207920A (en) | 1988-02-16 | 1989-08-21 | Oki Electric Ind Co Ltd | Manufacture of inp semiconductor thin film |
JPH0760791B2 (en) | 1988-11-04 | 1995-06-28 | シャープ株式会社 | Compound semiconductor substrate |
US5198689A (en) | 1988-11-30 | 1993-03-30 | Fujitsu Limited | Heterojunction bipolar transistor |
JPH02170413A (en) | 1988-12-22 | 1990-07-02 | Fujitsu Ltd | Compound semiconductor device |
JP2860138B2 (en) | 1989-03-29 | 1999-02-24 | キヤノン株式会社 | Semiconductor device and photoelectric conversion device using the same |
US4959702A (en) | 1989-10-05 | 1990-09-25 | Motorola, Inc. | Si-GaP-Si heterojunction bipolar transistor (HBT) on Si substrate |
JPH088214B2 (en) | 1990-01-19 | 1996-01-29 | 三菱電機株式会社 | Semiconductor device |
DE69109890T2 (en) | 1990-02-22 | 1995-11-02 | Canon Kk | Lateral heterojunction bipolar transistor. |
JP2817995B2 (en) | 1990-03-15 | 1998-10-30 | 富士通株式会社 | III-V compound semiconductor heterostructure substrate and III-V compound heterostructure semiconductor device |
US5281834A (en) | 1990-08-31 | 1994-01-25 | Motorola, Inc. | Non-silicon and silicon bonded structure and method of manufacture |
US5523243A (en) | 1992-12-21 | 1996-06-04 | International Business Machines Corporation | Method of fabricating a triple heterojunction bipolar transistor |
JP2590710B2 (en) | 1993-11-26 | 1997-03-12 | 日本電気株式会社 | Semiconductor device and manufacturing method thereof |
US5422502A (en) | 1993-12-09 | 1995-06-06 | Northern Telecom Limited | Lateral bipolar transistor |
US5485025A (en) * | 1994-12-02 | 1996-01-16 | Texas Instruments Incorporated | Depleted extrinsic emitter of collector-up heterojunction bipolar transistor |
JP2937253B2 (en) | 1996-01-17 | 1999-08-23 | 日本電気株式会社 | Semiconductor device and manufacturing method thereof |
US5912481A (en) * | 1997-09-29 | 1999-06-15 | National Scientific Corp. | Heterojunction bipolar transistor having wide bandgap, low interdiffusion base-emitter junction |
-
1999
- 1999-11-17 US US09/441,576 patent/US6423990B1/en not_active Expired - Fee Related
-
2000
- 2000-11-16 WO PCT/US2000/042206 patent/WO2001037349A1/en active Application Filing
- 2000-11-16 AU AU37931/01A patent/AU3793101A/en not_active Abandoned
-
2002
- 2002-07-17 US US10/197,726 patent/US20020179933A1/en not_active Abandoned
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007092019A2 (en) * | 2005-02-10 | 2007-08-16 | California Institute Of Technology | A method for advanced time-multiplexed etching |
WO2007092019A3 (en) * | 2005-02-10 | 2009-04-09 | California Inst Of Techn | A method for advanced time-multiplexed etching |
US20070273006A1 (en) * | 2005-09-02 | 2007-11-29 | Intersil Americas Inc. | Bipolar method and structure having improved bvceo/rcs trade-off made with depletable collector columns |
US7473983B2 (en) * | 2005-09-02 | 2009-01-06 | Intersil Americas Inc. | Bipolar method and structure having improved BVCEO/RCS trade-off made with depletable collector columns |
USRE43042E1 (en) | 2005-09-02 | 2011-12-27 | Intersil Americas Inc. | Bipolar method and structure having improved BVCEO/RCS trade-off made with depletable collector columns |
USRE44140E1 (en) | 2005-09-02 | 2013-04-09 | Intersil Americas Inc. | Bipolar method and structure having improved BVCEO/RCS trade-off made with depletable collector columns |
Also Published As
Publication number | Publication date |
---|---|
WO2001037349A1 (en) | 2001-05-25 |
AU3793101A (en) | 2001-05-30 |
US6423990B1 (en) | 2002-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5656514A (en) | Method for making heterojunction bipolar transistor with self-aligned retrograde emitter profile | |
KR100354118B1 (en) | Process for forming a silicon-germanium base of a heterojunction bipolar transistor | |
US4997776A (en) | Complementary bipolar transistor structure and method for manufacture | |
US5006912A (en) | Heterojunction bipolar transistor with SiGe | |
US4959702A (en) | Si-GaP-Si heterojunction bipolar transistor (HBT) on Si substrate | |
KR0180325B1 (en) | Current across thin base region and process of fabrication thereof | |
US5557118A (en) | Hetero-junction type bipolar transistor | |
EP1065728A2 (en) | Heterojunction bipolar transistor and method for fabricating the same | |
US7135721B2 (en) | Heterojunction bipolar transistor having reduced driving voltage requirements | |
US6423990B1 (en) | Vertical heterojunction bipolar transistor | |
US4829016A (en) | Bipolar transistor by selective and lateral epitaxial overgrowth | |
US5331186A (en) | Heterojunction bipolar transistor with base electrode having Schottky barrier contact to the emitter | |
US5089428A (en) | Method for forming a germanium layer and a heterojunction bipolar transistor | |
US4951115A (en) | Complementary transistor structure and method for manufacture | |
JPH05182980A (en) | Heterojunction bipolar transistor | |
US6861324B2 (en) | Method of forming a super self-aligned hetero-junction bipolar transistor | |
US6876060B2 (en) | Complimentary bipolar transistor | |
US6171920B1 (en) | Method of forming heterojunction bipolar transistor having wide bandgap, low interdiffusion base-emitter junction | |
US6573539B2 (en) | Heterojunction bipolar transistor with silicon-germanium base | |
EP0197424A2 (en) | Process of fabricating a heterojunction bipolar transistor | |
US5969402A (en) | Reduction of depletion spreading sideways utilizing slots | |
JP2728433B2 (en) | Method for manufacturing semiconductor device | |
JP2841380B2 (en) | Heterojunction bipolar transistor | |
JPH0744185B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2904981B2 (en) | Semiconductor integrated circuit device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |