US20020179199A1 - Highly heat dissipative and abrasion resistant brake disk for bicycles - Google Patents

Highly heat dissipative and abrasion resistant brake disk for bicycles Download PDF

Info

Publication number
US20020179199A1
US20020179199A1 US10/043,087 US4308702A US2002179199A1 US 20020179199 A1 US20020179199 A1 US 20020179199A1 US 4308702 A US4308702 A US 4308702A US 2002179199 A1 US2002179199 A1 US 2002179199A1
Authority
US
United States
Prior art keywords
brake disk
metal
ceramic particles
based composite
brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/043,087
Inventor
Wen-Pin Weng
Chuan-Cheng Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Loyalty Founder Enterprise Co Ltd
Original Assignee
Loyalty Founder Enterprise Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Loyalty Founder Enterprise Co Ltd filed Critical Loyalty Founder Enterprise Co Ltd
Assigned to LOYALTY FOUNDER ENTERPRISE CO., LTD. reassignment LOYALTY FOUNDER ENTERPRISE CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, CHUAN-CHENG, WENG, WEN-PIN
Publication of US20020179199A1 publication Critical patent/US20020179199A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/027Compositions based on metals or inorganic oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0026Non-ferro
    • F16D2200/003Light metals, e.g. aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles

Definitions

  • the present invention relates to a bicycle brake disk, and more particularly to a bicycle brake disk made of a metal-based composite material.
  • Stainless steel has high abrasion resistance therefore, bicycle brake disks are generally made of stainless steel. However, stainless steel disks' adherence is reduced when wet. This causes slippage in the interface between the brake disk and brake block in wet or rainy conditions, which in turn results in decreased braking force In addition, stainless steel has inferior heat dissipation. Thus, after several successive brakings, the temperature of stainless steel brake disks becomes relatively high. For mechanical braking, this high temperature causes the brake disk to become pliable and deformed, also resulting in inadequate braking force. For fluid pressure (fluid hydraulic) braking, this high temperature causes the braking fluid to expand and degrade, which also results in inadequate braking force
  • the object of the present invention is to solve the above-mentioned problems and to provide a bicycle brake disk with high heat dissipation and good abrasion resistance.
  • the highly heat dissipative and abrasion resistant bicycle brake disk of the present invention is made of a metal-based composite material, wherein the metal-based composite material includes a metal-containing material and 5% to 40% by volume of ceramic particles.
  • FIG. 1 shows a perspective view of a bicycle brake disk of a metal-based composite material according to the present invention.
  • the feature of the present invention is to use a metal-based composite material to manufacture a bicycle brake disk different from a conventional brake disk made of stainless steel.
  • the metal-based composite material includes a metal containing material and 5% to 40%, preferably 5% to 15% by volume, of ceramic particles.
  • Suitable ceramic particles can be particles of SiC, Al 2 O 3 , TiB, or B 4 C, preferably SiC particles or Al 2 O 3 particles.
  • the ceramic particles have a particle size of 5 to 100 ⁇ m.
  • the metal-containing material suitable for use in the present invention can be aluminium, aluminium alloy, magnesium, magnesium alloy, titanium, or titanium alloy, preferably aluminum or aluminum alloy.
  • the aluminum alloy include AlSi, AlSiCu, AlSiZn, AlSiMg, AlSiCuZn, AlZn, AlZnMg, AlGe, AlGeSi, AlCu, AlMn, AlMg, AlLi, AlSn, and AlPb, preferably AlMgSi.
  • a bicycle brake disk using the metal-based composite material to manufacture a bicycle brake disk has the following advantages: light weight, good heat dissipation, and good abrasion resistance, explained below.
  • the metal-containing material used in the present invention is preferably a metal or its alloy having a specific gravity of 1.7 to 4.6 g/cm 3 .
  • the brake disk thus manufactured is lightweight.
  • the specific gravity of the composite of aluminum or aluminum alloy combined with ceramic particles is approximately 2.8 g/cm 3 .
  • the specific gravity of stainless steel is approximately 7.8 g/cm 3 .
  • the bicycle brake disk made of the aluminum-based composite material of the present invention is approximately one third the weight of the conventional one of stainless steel.
  • the thermal conductivity of ceramic particles is about 100 cal/cm ⁇ s ⁇ ° C., about 1000 times the thermal conductivity of stainless steel (0.145 cal/cm ⁇ s ⁇ ° C.). Therefore, the metal-based composite material combined with ceramic particles of the present invention has a much higher thermal conductivity than stainless steel. Consequently, after several successive brakings, the bicycle brake disk of the aluminum-based composite material of the present invention has a temperature that is not too high For mechanical braking the brake disk better resists becoming pliable and deformed. For fluid pressure braking, the brake disk better resists exceeding an acceptable working temperature. After several successive brakings, the brake disk still provides a good braking effect.
  • the hardness of ceramic particles is Hv 2550, higher than that of stainless steel (Hv 400) by six times.
  • the brake disk of the present invention and a conventional bicycle brake disk were subjected to separate testing.
  • the tested brake disk of the present invention was made of aluminum-based composite material (the aluminum alloy AlMgSi, and ceramic particles SiC).
  • the conventional brake disk was made of stainless steel.
  • the brake disk was rubbed against a bicycle braking block to generate a braking force.
  • Testing methods included: (1) brake performance testing, (2) heat resistance testing, and (3) mechanical endurance testing.
  • the testing speed (V) in dry conditions was 12.5 km/hr.
  • the force applied on the brake lever was not larger than 180 N.
  • the running wheels were not allowed to lock up.
  • the average braking force (F) is the average value of the braking forces determined.
  • the mass (m) is 100 kg for calculation.
  • DIN 79100 Part II 5.6.4 requires that the braking deceleration in dry conditions not be less than 3.4 m/s 2 , and in wet conditions, not be less than 2.2 m/s 2 .
  • the abrasion resistance of the stainless steel brake disk is provided by its hardness.
  • the aluminum-based composite brake disk although the aluminum matrix is soft, once the ceramic particles are exposed to the surface, these ceramic particles can effectively withstand abrasion.
  • the measured abrasion resistance of the brake disc of either the aluminum-based composite or stainless steel is very close.
  • the stainless brake disc For braking testing in wet conditions, the stainless brake disc exhibits slippage in its interface with the braking block during braking. Thus, the braking force is low. The ceramic particles in the aluminum-based composite brake disc are much more easily exposed during the wet braking test. Thus, the aluminum-based composite brake disk exhibits higher braking force than a conventional stainless steel brake disk when the same force is applied to the brake lever.
  • the test period was 2 runs of 15 minutes.
  • the thermal conductivity of ceramic particles in the aluminum-based composite material-made brake disk is higher than that of stainless steel by 1000 times, allowing them to provide high heat dissipation. As shown in Table 3, during the heat resistance test period, the average temperature of the aluminum-based composite brake disk is lower than that of the stainless steel brake disk. TABLE 3 Brake disk type Temperature of brake disc Al-based composite material 58° C. stainless steel 72° C.
  • the testing speed (V) was 12.5 km/hr. Deceleration was 2.2 m/s 2 .
  • DIN 79100 Part II 5.6.4 requires that a braking system should pass 3000 brakings. After the test, the rims must withstand a force of 300 N applied to the brake lever and 1.5 times the maximum tire pressure.
  • the 3000 times endurance test can not only detect if the brake disk can withstand long period of abrasion, but also detect its working temperature.
  • the working temperature of the aluminum-based composite brake disk is only 68° C., and the disk suffers no abrasion after testing. This is because the ceramic particles provide superior abrasion resistance and heat dissipation. The hardness of the ceramic particles provides high abrasion resistance. Moreover, the ceramic particles dissipate frictional heat through radiation, thus providing good heat dissipation.
  • the allowable working temperature for a fluid pressure brake disk is 130° C.
  • the temperature exceeds 130° C.
  • the fluid in the brake expands and forms bubbles, compromising braking force.
  • the aluminum-based composite brake disk of the present invention maintains low working temperatures.
  • it is very suitable for use as a brake disk for a fluid pressure brake, and the braking force can be maintained.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Braking Arrangements (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The present invention provides a highly heat dissipative and abrasion resistant bicycle brake disk. The brake disk is of a metal-based composite material, wherein the metal-based composite material includes a metal-containing material and 5% to 40% by volume of ceramic particles.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a bicycle brake disk, and more particularly to a bicycle brake disk made of a metal-based composite material. [0002]
  • 2. Description of the Prior Art [0003]
  • Stainless steel has high abrasion resistance therefore, bicycle brake disks are generally made of stainless steel. However, stainless steel disks' adherence is reduced when wet. This causes slippage in the interface between the brake disk and brake block in wet or rainy conditions, which in turn results in decreased braking force In addition, stainless steel has inferior heat dissipation. Thus, after several successive brakings, the temperature of stainless steel brake disks becomes relatively high. For mechanical braking, this high temperature causes the brake disk to become pliable and deformed, also resulting in inadequate braking force. For fluid pressure (fluid hydraulic) braking, this high temperature causes the braking fluid to expand and degrade, which also results in inadequate braking force [0004]
  • SUMMARY OF THE INVENTION
  • Therefore, the object of the present invention is to solve the above-mentioned problems and to provide a bicycle brake disk with high heat dissipation and good abrasion resistance. [0005]
  • To achieve the above object, the highly heat dissipative and abrasion resistant bicycle brake disk of the present invention is made of a metal-based composite material, wherein the metal-based composite material includes a metal-containing material and 5% to 40% by volume of ceramic particles.[0006]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a perspective view of a bicycle brake disk of a metal-based composite material according to the present invention.[0007]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The feature of the present invention is to use a metal-based composite material to manufacture a bicycle brake disk different from a conventional brake disk made of stainless steel. [0008]
  • Refer to FIG. 1, showing a perspective view of a bicycle brake disk of a metal-based composite material according to the present invention, The metal-based composite material includes a metal containing material and 5% to 40%, preferably 5% to 15% by volume, of ceramic particles. Suitable ceramic particles can be particles of SiC, Al[0009] 2O3, TiB, or B4C, preferably SiC particles or Al2O3 particles. Preferably, the ceramic particles have a particle size of 5 to 100 μm.
  • The metal-containing material suitable for use in the present invention can be aluminium, aluminium alloy, magnesium, magnesium alloy, titanium, or titanium alloy, preferably aluminum or aluminum alloy. Representative examples of the aluminum alloy include AlSi, AlSiCu, AlSiZn, AlSiMg, AlSiCuZn, AlZn, AlZnMg, AlGe, AlGeSi, AlCu, AlMn, AlMg, AlLi, AlSn, and AlPb, preferably AlMgSi. [0010]
  • In the present invention, using the metal-based composite material to manufacture a bicycle brake disk has the following advantages: light weight, good heat dissipation, and good abrasion resistance, explained below. [0011]
  • The metal-containing material used in the present invention is preferably a metal or its alloy having a specific gravity of 1.7 to 4.6 g/cm[0012] 3. Thus, the brake disk thus manufactured is lightweight. For example, when the metal-containing material is aluminum or aluminum alloy, the specific gravity of the composite of aluminum or aluminum alloy combined with ceramic particles is approximately 2.8 g/cm3. The specific gravity of stainless steel is approximately 7.8 g/cm3. Thus, the bicycle brake disk made of the aluminum-based composite material of the present invention is approximately one third the weight of the conventional one of stainless steel.
  • The thermal conductivity of ceramic particles is about 100 cal/cm·s·° C., about 1000 times the thermal conductivity of stainless steel (0.145 cal/cm·s·° C.). Therefore, the metal-based composite material combined with ceramic particles of the present invention has a much higher thermal conductivity than stainless steel. Consequently, after several successive brakings, the bicycle brake disk of the aluminum-based composite material of the present invention has a temperature that is not too high For mechanical braking the brake disk better resists becoming pliable and deformed. For fluid pressure braking, the brake disk better resists exceeding an acceptable working temperature. After several successive brakings, the brake disk still provides a good braking effect. [0013]
  • The hardness of ceramic particles is Hv 2550, higher than that of stainless steel (Hv 400) by six times. When the bicycle brake disk made of the aluminum-based composite material of the present invention is rubbed against a braking block, the harder ceramic particles are exposed to the surface, providing the brake disk of the invention with enhanced abrasion resistance. [0014]
  • The following examples are intended to illustrate the process and the advantages of the present invention more fully without limiting its scope, since numerous modifications and variations will be apparent to those skilled in the art. [0015]
  • EXAMPLES
  • The following tests were taken according to DIN 79100 Part II 5.6.4 “Breaking performance test”. [0016]
  • The brake disk of the present invention and a conventional bicycle brake disk were subjected to separate testing. The tested brake disk of the present invention was made of aluminum-based composite material (the aluminum alloy AlMgSi, and ceramic particles SiC). The conventional brake disk was made of stainless steel. The brake disk was rubbed against a bicycle braking block to generate a braking force. Testing methods included: (1) brake performance testing, (2) heat resistance testing, and (3) mechanical endurance testing. [0017]
  • EXAMPLE 1
  • Brake Performance Testing [0018]
  • (1) Test Content: [0019]
  • The testing speed (V) in dry conditions was 12.5 km/hr. [0020]
  • Before any measurements were taken, 10 trials were performed in order to break in the brake blocks. [0021]
  • The force applied on the brake lever was not larger than 180 N. The running wheels were not allowed to lock up. [0022]
  • The average braking force (F) is the average value of the braking forces determined. The average braking deceleration (a) is calculated according to the formula: a=F/m. [0023]
  • The mass (m) is 100 kg for calculation. [0024]
  • (2) Test Requirement: [0025]
  • DIN 79100 Part II 5.6.4 requires that the braking deceleration in dry conditions not be less than 3.4 m/s[0026] 2, and in wet conditions, not be less than 2.2 m/s2.
  • (3) Test Results: [0027]
  • The test results are shown in Tables 1 and 2. [0028]
  • For the braking test in dry conditions, the abrasion resistance of the stainless steel brake disk is provided by its hardness. As to the aluminum-based composite brake disk, although the aluminum matrix is soft, once the ceramic particles are exposed to the surface, these ceramic particles can effectively withstand abrasion. Thus, the measured abrasion resistance of the brake disc of either the aluminum-based composite or stainless steel is very close. [0029]
  • For braking testing in wet conditions, the stainless brake disc exhibits slippage in its interface with the braking block during braking. Thus, the braking force is low. The ceramic particles in the aluminum-based composite brake disc are much more easily exposed during the wet braking test. Thus, the aluminum-based composite brake disk exhibits higher braking force than a conventional stainless steel brake disk when the same force is applied to the brake lever. [0030]
    TABLE 1
    Force Abrasion
    applied to Braking condition of
    the brake deceleration the brake disc
    Brake disk type lever (N) (m/s2) after test
    Al-based 80 3.59 no abrasion
    composite
    material
    Stainless steel 80 3.62 no abrasion
  • [0031]
    TABLE 2
    Force Abrasion
    Applied to Braking condition of
    the brake deceleration the brake disc
    Brake disk type lever (N) (m/s2) after test
    Al-based 60 2.59 no abrasion
    composite
    material
    Stainless steel 60 2.23 no abrasion
  • EXAMPLE 2
  • Heat Resistance Testing [0032]
  • (1) Test content: [0033]
  • Braking power =225 W. [0034]
  • The test period was 2 runs of 15 minutes. [0035]
  • 10 releases of the brake were allowed during each run, and the time of each release was not longer than 2 seconds. [0036]
  • Temperatures were determined during a total determination period of 30 minutes, and the average temperature was calculated. [0037]
  • (2) Test Requirement: [0038]
  • The temperature of the clamp was not allowed to exceed 100° C. during the heat resistance test. [0039]
  • (3) Test Results: [0040]
  • The results are shown in Table 3. [0041]
  • The thermal conductivity of ceramic particles in the aluminum-based composite material-made brake disk is higher than that of stainless steel by 1000 times, allowing them to provide high heat dissipation. As shown in Table 3, during the heat resistance test period, the average temperature of the aluminum-based composite brake disk is lower than that of the stainless steel brake disk. [0042]
    TABLE 3
    Brake disk type Temperature of brake disc
    Al-based composite material 58° C.
    stainless steel 72° C.
  • EXAMPLE 3
  • Mechanical Endurance Testing [0043]
  • (1) Test Content: [0044]
  • The testing speed (V) was 12.5 km/hr. Deceleration was 2.2 m/s[0045] 2.
  • The test braked 3000 times, and each braking lasted for 2.5 seconds. [0046]
  • Temperatures were regularly measured at an interval of 100 times in the entire testing period. Average temperature was calculated. [0047]
  • (2) Test Requirement: [0048]
  • DIN 79100 Part II 5.6.4 requires that a braking system should pass 3000 brakings. After the test, the rims must withstand a force of 300 N applied to the brake lever and 1.5 times the maximum tire pressure. [0049]
  • (3) Test Results: [0050]
  • The 3000 times endurance test can not only detect if the brake disk can withstand long period of abrasion, but also detect its working temperature. [0051]
  • As shown in Table 4, the working temperature of the aluminum-based composite brake disk is only 68° C., and the disk suffers no abrasion after testing. This is because the ceramic particles provide superior abrasion resistance and heat dissipation. The hardness of the ceramic particles provides high abrasion resistance. Moreover, the ceramic particles dissipate frictional heat through radiation, thus providing good heat dissipation. [0052]
  • The allowable working temperature for a fluid pressure brake disk is 130° C. When the temperature exceeds 130° C., the fluid in the brake expands and forms bubbles, compromising braking force. During the entire endurance test, the aluminum-based composite brake disk of the present invention maintains low working temperatures. Thus, it is very suitable for use as a brake disk for a fluid pressure brake, and the braking force can be maintained. [0053]
    TABLE 4
    Abrasion condition of
    Brake disk the brake disc after
    Brake disk type temperature test
    Al-based 68° C. no abrasion
    composite
    material
    stainless steel 95° C. no abrasion
  • The foregoing description of the preferred embodiments of the invention has been presented for purposes of illustration and description. Obvious modifications or variations are possible in light of the above teaching. The embodiments were chosen and described to provide the best illustration of the principles of this invention and its practical application to thereby enable those skilled in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the present invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled. [0054]

Claims (11)

What is claimed is:
1. A bicycle brake disk of a metal-based composite material, wherein the metal-based composite material includes a metal-containing material and 5% to 40% by volume of ceramic particles.
2. The brake disk as claimed in claim 1, wherein the ceramic particles are particles of a material selected from the group consisting of Sic, Al2O3, TiB, and B4C.
3. The brake disk as claimed in claim 2, wherein the ceramic particles are SiC particles or Al2O3 particles.
4. The brake disk as claimed in claim 3, wherein the ceramic particles are SiC particles.
5. The brake disk as claimed in claim 1, wherein the ceramic particles have a particle size of 5 to 100 μm.
6. The brake disk as claimed in claim 1, wherein the metal-containing material has a specific gravity of 1.7 to 4.6 g/cm3.
7. The brake disk as claimed in claim 1, wherein the metal-containing material is selected from the group consisting of aluminium, aluminium alloy, magnesium, magnesium alloy, titanium, and titanium alloy.
8. The brake disk as claimed in claim 7, wherein the metal-containing material is aluminum.
9. The brake disk as claimed in claim 7, wherein the metal-containing material is aluminum alloy.
10. The brake disk as claimed in claim 9, wherein the aluminum alloy is selected from the group consisting of AlSi, AlSiCu, AlSiZn, AlSiMg, AlSiCuZn, AlZn, AlZnMg, AlGe, AlGeSi, AlCu, AlMn, AlMg, AlLi, AlSn, and AlPb.
11. The brake disk as claimed in claim 10, wherein the aluminum alloy is AlMgSi.
US10/043,087 2001-03-21 2002-01-08 Highly heat dissipative and abrasion resistant brake disk for bicycles Abandoned US20020179199A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW90106578 2001-03-21
TW90106578 2001-03-21

Publications (1)

Publication Number Publication Date
US20020179199A1 true US20020179199A1 (en) 2002-12-05

Family

ID=21677702

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/043,087 Abandoned US20020179199A1 (en) 2001-03-21 2002-01-08 Highly heat dissipative and abrasion resistant brake disk for bicycles

Country Status (1)

Country Link
US (1) US20020179199A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080060891A1 (en) * 2006-08-11 2008-03-13 Metal Industries Research & Development Centre Brake disc structure with composite materials
EP1961987A1 (en) * 2007-02-23 2008-08-27 Sgl Carbon Ag Bicycle brake disc
US20130133997A1 (en) * 2011-11-24 2013-05-30 Shimano Inc. Bicycle disc brake rotor
CN107529590A (en) * 2016-06-22 2018-01-02 什拉姆有限责任公司 Heat dissipation type brake rotors
CN107760894A (en) * 2016-08-22 2018-03-06 上海交通大学 A kind of preparation method of aluminum matrix composite automobile brake disc
EP3715666A1 (en) * 2019-03-27 2020-09-30 TMD Friction Services GmbH Friction lining, method for its preparation and its use
CN114008347A (en) * 2019-06-27 2022-02-01 泰明顿服务责任有限公司 Friction lining for aluminium rotor disc

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080060891A1 (en) * 2006-08-11 2008-03-13 Metal Industries Research & Development Centre Brake disc structure with composite materials
EP1961987A1 (en) * 2007-02-23 2008-08-27 Sgl Carbon Ag Bicycle brake disc
US20080202867A1 (en) * 2007-02-23 2008-08-28 Sgl Carbon Ag Bicycle Disk Brake Rotor
US20130133997A1 (en) * 2011-11-24 2013-05-30 Shimano Inc. Bicycle disc brake rotor
US9725131B2 (en) * 2011-11-24 2017-08-08 Shimano Inc. Bicycle disc brake rotor
CN107529590A (en) * 2016-06-22 2018-01-02 什拉姆有限责任公司 Heat dissipation type brake rotors
US10480601B2 (en) 2016-06-22 2019-11-19 Sram, Llc Heat dissipating brake rotor
CN107760894A (en) * 2016-08-22 2018-03-06 上海交通大学 A kind of preparation method of aluminum matrix composite automobile brake disc
EP3715666A1 (en) * 2019-03-27 2020-09-30 TMD Friction Services GmbH Friction lining, method for its preparation and its use
CN111750014A (en) * 2019-03-27 2020-10-09 泰明顿服务责任有限公司 Friction lining, method for producing a friction lining and use of a friction lining
CN114008347A (en) * 2019-06-27 2022-02-01 泰明顿服务责任有限公司 Friction lining for aluminium rotor disc

Similar Documents

Publication Publication Date Title
Mackin et al. Thermal cracking in disc brakes
Lasa et al. Wear behaviour of eutectic and hypereutectic Al–Si–Cu–Mg casting alloys tested against a composite brake pad
US5028494A (en) Brake disk material for railroad vehicle
US20150096850A1 (en) Friction brake component and method for manufacturing the same
US20020179199A1 (en) Highly heat dissipative and abrasion resistant brake disk for bicycles
JPH08510003A (en) Friction material modified with porous copper powder
CN109278469A (en) Hub unit with the heat insulating coat for reducing the thermic load on wheel bearing
Hong et al. Effect of heat treatment on wear properties of extruded AZ91 alloy treated with yttrium
US3371756A (en) Heat dissipating brake
CN107299264B (en) Automobile chassis high-performance aluminium alloy proximate matter
NO312113B1 (en) Procedure for surface treatment of friction elements, as well as friction elements
JP4592979B2 (en) Fastening method of brake disks for railway vehicles
TW201928225A (en) Manufacturing method of composite material floating disk characterized in that the heat of floating disk can be efficiently released to the outside and the action of the floating disk is more stable and reliable
Hamid et al. Effect of brake pad design on friction and wear with hard particle present
JP2910366B2 (en) Brake pads for disc brakes
CN1381377A (en) Application of metal-base composition as braking disk of bicycle
JP3485817B2 (en) Brake discs for railway vehicles
JP3357949B2 (en) Brake disc material for high-speed railway vehicles
JPH0726204U (en) Bicycle rim
Kumar et al. Dry sliding tribological characterization and parameters optimization of aluminium hybrid metal matrix composite for automobile brake rotor applications
Girauldon The Evolution in the Design of Brakes Using Aluminum
Jambhale et al. Design Manufacturing and Analysis of Hydraulic Braking System with Floating Disc and Balance Bar
Sallit et al. Characterisation methodology and wear mechanisms of aluminium matrix composite and hypereutectic alloys with brake pads
JP3386322B2 (en) Method of manufacturing brake disk for railway vehicle
JP2005298852A (en) Rotating body for brake

Legal Events

Date Code Title Description
AS Assignment

Owner name: LOYALTY FOUNDER ENTERPRISE CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WENG, WEN-PIN;HUANG, CHUAN-CHENG;REEL/FRAME:012898/0652

Effective date: 20020429

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION