US20020177723A1 - Compounds and methods for the treatment of inflammatory and immune disorders - Google Patents

Compounds and methods for the treatment of inflammatory and immune disorders Download PDF

Info

Publication number
US20020177723A1
US20020177723A1 US09/547,941 US54794100A US2002177723A1 US 20020177723 A1 US20020177723 A1 US 20020177723A1 US 54794100 A US54794100 A US 54794100A US 2002177723 A1 US2002177723 A1 US 2002177723A1
Authority
US
United States
Prior art keywords
alkyl
lower alkyl
tetrahydrofuran
trimethoxyphenyl
methoxyphenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/547,941
Inventor
Xiong Cai
Sajjat Hussoin
San-Bao Hwang
David Killian
T.Y. Shen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Millennium Pharmaceuticals Inc
LeukoSite Inc
Original Assignee
Millennium Pharmaceuticals Inc
LeukoSite Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/912,788 external-priority patent/US5358938A/en
Priority claimed from US07/933,991 external-priority patent/US5434151A/en
Priority claimed from US08/062,391 external-priority patent/US5648486A/en
Application filed by Millennium Pharmaceuticals Inc, LeukoSite Inc filed Critical Millennium Pharmaceuticals Inc
Priority to US09/547,941 priority Critical patent/US20020177723A1/en
Assigned to LEUKOSITE, INC. reassignment LEUKOSITE, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: CYTOMED, INC.
Assigned to MILLENNIUM PHARMACEUTICALS, INC. reassignment MILLENNIUM PHARMACEUTICALS, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: LEUKOSITE, INC.
Publication of US20020177723A1 publication Critical patent/US20020177723A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/08Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon radicals, substituted by hetero atoms, attached to ring carbon atoms
    • C07D207/09Radicals substituted by nitrogen atoms, not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/10Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/12Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/10Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/14Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/16Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/18Radicals substituted by singly bound hetero atoms other than halogen by sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • This invention is in the area of pharmaceutical compositions and methods for the treatment of inflammatory and immune disorders, and specifically provides novel compounds that reduce damage arising from an inflammatory or immune response.
  • the compounds exhibit this biological activity by acting as PAF receptor antagonists, by inhibiting the enzyme 5-lipoxygenase, or by exhibiting dual activity, i. e., by acting as both a PAF receptor antagonist and inhibitor of 5-lipoxygenase.
  • Platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphorylcholine) is a potent inflammatory phospholipid mediator with a wide variety of biological activities.
  • PAF was initially identified as a water soluble compound released by immunoglobulin E (IgE)-sensitized rabbit basophils. It is now known that PAF is also generated and released by monocytes, macrophages, polymorphonuclear leukocytes (PMNs), eosinophils, neutrophils, natural killer lymphocytes, platelets and endothelial cells, as well as by renal and cardiac tissues under appropriate immunological and non-immunological stimulation.
  • IgE immunoglobulin E
  • PAF causes the aggregation and degranulation of platelets at very low concentrations.
  • the potency (active at 10 ⁇ 12 to 10 ⁇ 9 M), tissue level (picomoles) and short plasma half life (2-4 minutes) of PAF are similar to those of other lipid mediators such as thromboxane A 2 , prostaglandins, and leukotrienes.
  • PAF mediates biological responses by binding, to specific PAF receptors found in a wide variety of cells and tissues.
  • PAF mediates essential biological responses, it also appears to play a role in pathological immune and inflammatory responses.
  • Many published studies have provided evidence for the involvement of PAF in human diseases, including arthritis, acute inflammation, asthma, endotoxic shock, pain, psoriasis, ophthalmic inflammation, ischemia, gastrointestinal ulceration, myocardial infarction, inflammatory bowel diseases, and acute respiratory distress syndrome. Animal models also demonstrate that PAF is produced or increased in certain pathological states.
  • L-652,731 was found to be orally active, and to inhibit PAF-induced rat cutaneous vascular permeability at a dosage of 30 mg/kg body weight. The compound was found to have no effect on the enzyme 5-lipoxygenase.
  • trans-L-652,731 wherein the aryl groups at the 2 and 5 positions are on opposite sides of the plane of the tetrahydrofuran ring, is approximately 1000 times more potent than cis-L-652,73 1, wherein the 2 and 5 aryl substituents are on the same side of the plane of the tetrahydrofuran ring.
  • L-659,989 trans-2-(3-methoxy-4-propoxyphenyl-5-methylsulfonyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran
  • L-659,989 trans-2-(3-methoxy-4-propoxyphenyl-5-methylsulfonyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran
  • Leukotrienes like PAF, are potent local mediators, playing a major role in inflammatory and allergic responses, including arthritis, asthma, psoriasis, and thrombotic disease.
  • Leukotrienes are straight chain eicosanoids produced by the oxidation of arachidonic acid by lipoxygenases.
  • Arachidonic acid is oxidized by 5-lipoxygenase to the hydroperoxide 5-hydroperoxyeicosatetraenoic acid (5-HPETE), which is converted to leukotriene A 4 , which in turn can be converted to leukotriene B 4 , C 4 , or D 4 .
  • the slow-reacting substance of anaphylaxis is now known to be a mixture of leukotrienes C 4 , D 4 , and E 4 , all of which are potent bronchoconstrictors.
  • Leukotrienes are released simultaneously from leukocytes with PAF, possibly from a common phospholipid precursor such as 1-O-hexadecyl-2-arachidonyl-sn-glycero-phosphocholine, and upon cellular activation, act synergistically with PAF in many biological models.
  • PAF phospholipid precursor
  • L-652,731 trans-2,5-bis-(3,4,5-trimethoxyphenyl)tetrahydrothiophene
  • L-653,150 is a potent PAF antagonist and a moderate inhibitor of 5-lipoxygenase.
  • X is O, S, S(O), S(O) 2 , CR 9 , or NR ;
  • W is independently:
  • n and m are independently 1-4;
  • n 1 or 2;
  • m is 1. 2or 3;
  • p is 0 or 1
  • A is alkyl, alkenyl, alkynyl, alkaryl, aralkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, —C 1-10 alkyl(oxy)C 1-10 alkyl, —C 1-10 alkyl(thio)C 1-10 alkyl, —N(R 3 )C(O)alkyl, —N(R 3 )C(O)alkenyl, —N(R 3 )C(O)alkynyl, —N(R 3 )C(O)(alkyl)oxy(alkyl), —N(R 3 )C(O)(alkyl)thio(alkyl), —N(R 3 )C(O)N(alkyl), —N(R 3 )C(O)N(alkenyl), —N(R 3 )C(O)N(alkynyl), —N(R 3 )
  • M is hydrogen, a pharmaceutically acceptable cation, or a metabolically cleavable leaving group
  • Y is independently:
  • a heterocycle including but not limited to, pyrryl, furyl, pyridyl; 1,2,4-thiadiazolyl; pyrimidyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, pyrimidyl, quinolyl, isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, purinyl, carbazolyl, benzimidazolyl, and isoxazolyl, optionally substituted with a group described in Y section (b);
  • X′ is halo such as F, Cl, Br and I; —C(O)aryl; CF 3 ; OR 3 ; —NR 3 COR 3 ; —OC(O)NH 2 ; —CR 3 R 3 R 4 ; —C(O)R 3 ; —CH 2 OR 3 ; —CH 2 CO 2 R 3 ; —CH 2 OC(O)R 3 ; R 3 CH(R 3 )CH 2 SO 3 ; —NHCH 2 COOR 3 ; N+R 3 R 3 R 4 R 7 ; —NR 3 SO 2 R 3 ; COR 3 ; NO 2 ; or CN; or
  • R 13 , R 14 and R 15 independently represents:
  • B is —CH 2 -oxacyclopropyl, —CH 2 OR 3 , —CH 2 C(O)R 3 , —CH 2 CH(R 3 )R 3 , —CH 2 Aryl, —CH 2 CH(OH)—CH 2 OH; R 3 C(R 3 ) 2 CH 2 SO 2 ;
  • R 13 —R 14 or R 14 —R 5 are joined together to form a bridge such as —OCHR 2 CHR 2 —S(O) n wherein n is 0 to 3; or
  • X′ is halo, —C(O)aryl, —CF 3 , or —OR 3 ; —CH 2 OR 3 ; —CH 2 CO 2 R 3 ; —CH 2 C(O)R 3 ; —NHCH 2 COOR 3 ; or —N+R 3 R 3 R 4 R 7
  • R 1 and R 2 are independently hydrogen, or lower alkyl, specifically including lower alkyl of 1-6 carbon atoms, e.g., methyl, cyclopropylmethyl, ethyl, isopropyl, butyl, pentyl and hexyl, as well as C 3-8 cycloalkyl, for example, cyclopentyl; halo lower alkyl, especially C 1-6 haloalkyl, for example, tritluoromethyl; halo, especially fluoro; —COOH; —CONR 16 R 17 wherein R 16 and R 17 independently represent C 1-6 alkyl and hydrogen, —COOR 3 , lower alkenyl, especially C 2-6 alkenyl, e.g., vinyl, allyl, CH 3 CH ⁇ CH—CH 2 —CH 2 , and CH 3 CH 2 ) 3 —CH ⁇ CH—; —C(O)R 3 ; —CH 2 OR 3 ; lower alkyny
  • R 3 and R 4 are independently alkyl, alkenyl, alkynyl, aryl, aralkyl, alkaryl, hydrogen, C 1-6 alkoxy-C 1-10 alkyl, C 1-6 alkylthio-C 1-10 alkyl, and C 1-10 substituted alkyl (wherein the substituent is independently hydroxy or carbonyl, located on any of C 1-10 );
  • R 5 is lower alkyl, lower alkenyl, lower alkynyl, hydroxyl, hydrogen, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, aralkyl, or aryl;
  • R 6 is lower alkyl, lower alkenyl, lower alkynyl, aralkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, or aryl;
  • R 7 is an organic or inorganic anion
  • R 8 is halo alkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, lower alkenyl, lower alkynyl, aralkyl, or aryl;
  • R 9 is independently hydrogen, halogen, lower alkyl, halo lower alkyl, lower alkenyl, lower alkynyl, —CONR 3 R 4 , —C(O)R 5 , —CO 2 R 5 , —CH 2 OR 5 , —CH 2 NR 5 R 5 , —CH 2 SR 5 , ⁇ O, ⁇ NR 5 , —NR 3 R 4 , —NR 3 R 4 R 7 , or —OR 5 ;
  • R 10 is —R 3 , —R 8 , —C(O)N(OR 3 )R 3 , or —OR 3 .
  • R 11 is phenyl-S(O) g -lower alkyl-; (R 3 O) d -phenyl-S(O)g-lower alkyl-; (R 3 R 3 N) d -phenyl-S(O) g -lower alkyl-; (CNR) d -phenyl-S(O) g -lower alkyl-; (halo) d -phenyl-S(O) g -lower alkyl-; (R 3 COO) d -phenyl-S(O) g -lower alkyl-; (R 3 OCO) d -phenyl-S(O) g -lower alkyl-; (R 3 CO) d -phenyl-S(O) g -lower alkyl-; (R 3 CO) d -phenyl-S(O) g -lower alkyl-; (R 3 CO) d
  • R 12 is alkyl; substituted alkyl wherein the substituent is selected from the group consisting of hydroxy and amino; -lower alkyl-O-R 18 , wherein R 18 is —PO 2 (OH)-M+ or —PO 3 (M+) 2 , wherein M+ is a pharmaceutically acceptable cation; —C(O)(CH 2 ) 2 CO 2 — M+, or —SO 3 —M+; -lower alkylcarbonyl-lower alkyl; -carboxy lower alkyl; -lower alkylamino-lower alkyl; N,N-di-substituted amino lower alkyl-, wherein the substituents each independently represent lower alkyl; pyridyl-lower alkyl; imnidazolyl-lower alkyl; imidazolyl-Y-lower alkyl wherein Y is thio or amino; morpholinyl-lower alkyl wherein
  • R 19 is H, lower alkyl, or lower alkenyl
  • R 20 is H, halogen, lower alkoxy, or lower alkyl
  • X is O, S, S(O), S(O) 2 , or NR 10 ;
  • m is 1, 2, or 3;
  • t is 1, 2, 3, or 4;
  • Z is independently W or Y;
  • v is 0, 1, or 2;
  • Q is selected from the group consisting of substituted C 1 to C 12 alkyl wherein the substituent is selected from the group consisting of hydroxy and amino, alkylcarbonylalkyl, alkyl; lower alkyl S(O) m -lower alkyl in which m is 1 or 2; imidazolyl lower alkyl, morpholinyl lower alkyl, thiazolinyl lower alkyl, piperidinyl lower alkyl, imidazolylcarbonyl, morpholinyl carbonyl, amorpholinyl (lower alkyl) aminocarbonyl, N-pyrrylpyridinyl-lower alkyl; pyridylthio-lower alkyl; morpholinyl-lower alkyl; hydroxyphenylthio-lower alkyl; cyanophenylthio-lower alkyl; imidazolylthio-lower alkyl; triazolylthio-lower alkyl;
  • These compounds in general reduce the chemotaxis and respiratory burst leading to the formation of damaging oxygen radicals of polymorphonuclear leukocytes during an inflammatory or immune response.
  • the compounds exhibit this biological activity by acting as PAF receptor antagonists, by inhibiting the enzyme 5-lipoxygenase, or by exhibiting dual activity, i. e., by acting as both a PAF receptor antagonist and inhibitor of 5-lipoxygenase.
  • a method to treat disorders mediated by PAF or leukotrienes includes administering an effective amount of one or more of the above-identified compounds or a pharmaceutically acceptable salt thereof, optionally in a pharmaceutically acceptable carrier, to reduce formation of oxygen radicals.
  • the compounds disclosed herein can also be used as research tools to study the structure and location of PAF receptors as well as biological pathways involving leukotrienes.
  • FIGS. 1 a and 1 b provide a schematic illustration of a process for the preparation of trans-2-[5-(N′-methyl-N′-hydroxyureidylmethyl)-3-methoxy-4-p-chlorophenylthioethoxyphenyl]-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran.
  • alkyl refers to a saturated straight, branched, or cyclic hydrocarbon of C 1 to C 10 , and specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl.
  • lower alkyl refers to a C 1 to C 6 saturated straight, branched, or cyclic (in the case of C 5-6 ) hydrocarbon, and specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl.
  • alkenyl refers to a straight, branched, or cyclic (in the case of C 5-6 ) hydrocarbon of C 2 to C 10 with at least one double bond.
  • lower alkenyl refers to an alkenyl group of C 2 to C 6 , and specifically includes vinyl and allyl.
  • lower alkylamino refers to an amino group that has one or two lower alkyl substituents.
  • alkynyl refers to a C 2 to C 10 straight or branched hydrocarbon with at least one triple bond.
  • lower alkynyl refers to a C 2 to C 6 alkynyl group, specifically including acetylenyl and propynyl.
  • aryl refers to phenyl or substituted phenyl, wherein the substituent is halo or lower alkyl.
  • halo includes fluoro, chloro, bromo, and iodo.
  • halo refers to a (alkyl, alkenyl, or alkynyl) group in which at least one of the hydrogens in the group has been replaced with a halogen atom.
  • heterocycle or heteroaromatic refers to an aromatic moiety that includes at least one sulfur, oxygen, or nitrogen in the aromatic ring.
  • Non-limiting examples are pyrryl, furyl, pyridyl, 1,2,4-thiadiazolyl, pyrimidyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, pyrimidyl, quinolyl, isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, purinyl, carbazolyl, benzimidazolyl, and isoxazolyl.
  • aralkyl refers to an aryl group with an alkyl substituent.
  • alkaryl refers to an alkyl group that has an aryl substituent.
  • organic or inorganic anion refers to an organic or inorganic moiety that carries a negative charge and can be used as the negative portion of a salt.
  • pharmaceutically acceptable cation refers to an organic or inorganic moiety that carries a positive charge and that can be administered in association with a pharmaceutical agent, for example, as a countercation in a salt.
  • Pharmaceutically acceptable cations are known to those of skill in the art, and include but are not limited to sodium, potassium, and quatemary amine.
  • metabolically cleavable leaving group refers to a moiety that can be cleaved in vivo from the molecule to which it is attached, and includes but is not limited to an organic or inorganic anion, a pharmaceutically acceptable cation, acyl (for example (alkyl)C(O), including acetyl, propionyl, and butyryl), alkyl, phosphate, sulfate and sulfonate.
  • acyl for example (alkyl)C(O), including acetyl, propionyl, and butyryl
  • alkyl phosphate, sulfate and sulfonate.
  • enantiomerically enriched composition or compound refers to a composition or compound that includes at least 95% by weight of a single enantiomer of the compound.
  • PAF receptor antagonist refers to a compound that binds to a PAF receptor with a binding constant of 30 ⁇ M or lower.
  • 5-lipoxygenase inhibitor refers to a compound that inhibits the enzyme at 30 ⁇ M or lower in a broken cell system.
  • pharmaceutically active derivative refers to any compound that upon administration to the recipient, is capable of providing directly or indirectly, the compounds disclosed herein.
  • the 2,5-diaryl tetrahydrothiophenes, pyrrolidines, and tetrahydrofurans, 1,3-diaryl cyclopentanes, and the 2,4-diaryl tetrahydrothiophenes, pyrrolidines and tetrahydrofurans of the above-defined formulas exhibit PAF receptor antagonist activity or inhibit the enzyme 5-lipoxygenase, or have dual activity, and are thus useful in the treatment of humans who have immune and allergic disorders that are mediated by PAF or products of 5-lipoxygenase.
  • R groups in the active compounds described herein can likewise include chiral carbons, and thus, optically active centers.
  • one or more enantiomers of a biologically active compound is more active, and perhaps less toxic, than other enantiomers of the same compound.
  • Such enantiomerically enriched compounds are often preferred for pharmaceutical administration to humans.
  • trans-2,5-diaryl tetrahydrothiophene and trans-2,5-diaryl tetrahydrofuran are often more active PAF receptor antagonists than their cis counterparts.
  • chiral acids that form diastereomeric derivatives that may possess significantly different solubility properties.
  • Nonlimiting examples of chiral acids include malic acid, mandelic acid, dibenzoyl tartaric acid, 3-bromocamphor-8-sulfonic acid, 10-camphorsulfonic acid, and di-p-toluoyltartaric acid.
  • acylation of a free hydroxyl group with a chiral acid also results in the formation of diastereomeric derivatives whose physical properties may differ sufficiently to permit separation.
  • Enantiomerically pure or enriched compounds can be obtained by passing the racemic mixture through a chromatographic column that has been designed for chiral separations, including cyclodextrin bonded columns marketed by Rainin Corporation.
  • 1,3-Diaryl cyclopentanes can be prepared using the procedure of Graham, et al. (1,3-Diaryl Cyclopentanes: A New Class of Potent PAF Receptor Antagonists. 197 th ACS National Meeting, Dallas, Tex., Apr. 9-14, 1989, Division of Medicinal Chemistry, poster no. 25 (abstract)), or by other known methods.
  • 2,5-Diaryl pyrrolidines can be prepared by methods known to those skilled in the art including that described by Boekvall, et al. ( J. Org. Chem. 55, 826 (1990)).
  • 2,4-Diaryl tetrahydrofurans and tetrahydrothiophenes and 2,4-diaryl pyrrolidines can also be prepared by adaptations of methods described herein, or by other known methods.
  • a general procedure for preparing a hydroxyurea is:
  • R is a 2,5-diaryl tetrahydrothiophene, tetrahydrofuran, or pyrrolidine; 1,3-diaryl cyclopentane; or 2,4-diaryl tetrahydrothiophene, tetrahydrofuran or pyrrolidine; with or without a linking moiety, and R′ is a moiety as defined in detail above.
  • a general procedure for preparing a hydroxamic acid is:
  • a general procedure for preparing a reverse hydroxamic acid is:
  • a general procedure for preparing amidohydroxyurea moieties is:
  • Oxalkanes and thioalkanes can be prepared as described by Crawley, et al., J. Med. Chem., 35, 2600-2609 (1992), and illustrated below, by conversion of the desired moiety into a Grignard reagent or lithium salt, followed by reaction with the appropriate cyclic ketone.
  • trans-2-(3-Methoxy-4-methylsulfoxyethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran compound 108, FIG. 1.
  • trans-2-(3-methoxy-4hydroxyethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl) tetrahydrofuran 4.7 g, 8.87 mmol
  • dichloromethane 50 mL
  • methylsulfonyl chloride 3.05 g, 26.6 mmole
  • triethylamine (2.69 g, 26.60 mmol).
  • trans-2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran compound 109, FIG. 1
  • trans-2-(3-Methoxy-4-methylsulfoxyethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl) tetrahydrofuran 2.5 g, 4.11 mmol
  • 4-chlorothiophenol (1.19 g, 8.22 mmol) and triethylamine (0.831 g, 8.22 mmol).
  • trans-2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-cyanophenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran compound 110, FIG. 1
  • trans-2-(3-Methoxy-4p-chlorophenylthioethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl) tetrahydrofuran (2.35 g, 3.58 mmole) and CuCN (0.358 g, 4.30 mmole) in DMF (20 mL) were heated at 140° C. for 16 hours.
  • reaction mixture was cooled and quenched with water and extracted with ethyl acetate.
  • organic layer was washed with water and saturated NaCl solution, dried over MgSO 4 , filtered and evaporated in vacuo to oil which was purified by column chromatography (silica, 2:1 hexanelethyl acetate) (1.79 g, 90.0%).
  • trans 2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-aminomethylphenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran compound 111, FIG. 1.
  • trans-2-(3-methoxy-4-p-chlorophenylthioethoxy-5-cyanophenyl)-5-(3,4,5-trimethoxyphenyl tetrahydrofuran 300 mg, 0.5405 mmol
  • sodium borohydride 36.8 mg, 0.9729 mmol
  • boron trifluoride etherate (191.8 mg. 1.3512 mmol) dropwise.
  • reaction mixture was refluxed for 1 hour, cooled, and then treated with a few drops of 10% HCl.
  • the reaction mixture was poured into 10% K 2 CO 3 and extracted with ethyl acetate.
  • the organic layer was washed with water and saturated NaCl solution, dried over MgSO 4 , filtered and evaporated in vacuo to an oil which was purified by column chromatography (silica, 93:7 CH 2 Cl 2 /MeOH) 64 mg, 21.2%).
  • Humans, equine, canine, bovine and other animals, and in particular, mammals, suffering from inflammatory diseases, and in particular, disorders mediated by PAF or products of 5-lipoxygenase can be treated by administering to the patient an effective amount of one or more of the above-identified compounds or a pharmaceutically acceptable derivative or salt thereof in a pharmaceutically acceptable carrier or diluent to reduce formation of oxygen radicals.
  • the active materials can be administered by any appropriate route, for example, orally, parenterally, intravenously, intradermally, subcutaneously, or topically, in liquid, cream, gel or solid form.
  • salts or complexes refers to salts or complexes that retain the desired biological activity of the above-identified compounds and exhibit minimal undesired toxicological effects.
  • Nonlimiting examples of such salts are (a) acid addition salts formed with inorganic acids (for example, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, and the like), and salts formed with organic acids such as acetic acid, oxalic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, tannic acid, pamoic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid, and polygalacturonic acid; (b) base addition salts formed with metal cations such as zinc, calcium, bismuth, barium, magnesium, aluminum, copper, cobalt, nickel, cadmium, sodium, potassium, and
  • the compounds can also be administered as pharmaceutically acceptable quaternary salts known by those skilled in the art, which specifically include the quaternary ammonium salt of the formula —NR-Z—, wherein R is alkyl or benzyl, and Z is a counterion, including chloride, bromide, iodide, —O-alkyl, toluenesulfonate, methylsulfonate, sulfonate, phosphate, or carboxylate (such as benzoate, succinate, acetate, glycolate, maleate, malate, citrate, tartrate, ascorbate, benzoate, cinnamoate, mandeloate, benzyloate, and diphenylacetate.
  • quaternary ammonium salt of the formula —NR-Z— wherein R is alkyl or benzyl, and Z is a counterion, including chloride, bromide, iodide, —O-alkyl, tolu
  • the active compound is included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutically effective amount without causing serious toxic effects in the patient treated.
  • a preferred dose of the active compound for all of the above-mentioned conditions is in the range from about 0.01 to 300 mg/kg, preferably 0.1 to 100 mg/kg per day, more generally 0.5 to about 25 mg per kilogram body weight of the recipient per day.
  • a typical topical dosage will range from; 0.01-3% wt/wt in a suitable carrier.
  • the effective dosage range of the pharmaceutically acceptable derivatives can be calculated based on the weight of the parent compound to be delivered. If the derivative exhibits activity in itself, the effective dosage can be estimated as above using the weight of the derivative, or by other means known to those skilled in the art.
  • the compound is conveniently administered in any suitable unit dosage form, including but not limited to one containing 1 to 3000 mg, preferably 5 to 500 mg of active ingredient per unit dosage form.
  • a oral dosage of 25-250 mg is usually convenient.
  • the active ingredient should be administered to achieve peak plasma concentrations of the active compound of about 0.01-30 mM, preferably about 0.1-10 mM. This may be achieved, for example, by the intravenous injection of a solution or formulation of the active ingredient, optionally in saline, or an aqueous medium or administered as a bolus of the active ingredient.
  • the concentration of active compound in the drug composition will depend on absorption, distribution, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.
  • the active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.
  • Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
  • the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a dispersing agent such as alginic acid. Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
  • a binder such as microcrystalline cellulose, gum tragacanth or gelatin
  • an excipient such as starch or lactose, a dispersing agent such as alginic acid.
  • Primogel, or corn starch a lubricant such as magnesium stearate or Sterotes
  • a glidant such as colloidal silicon dioxide
  • dosage unit form When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil.
  • dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar, shellac, or enteric agents.
  • the active compound or pharmaceutically acceptable salt or derivative thereof can be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like.
  • a syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
  • the active compound or pharmaceutically acceptable derivatives or salts thereof can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antibiotics, antifungals, other antiinflammatories, or antiviral compounds.
  • Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite: chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose.
  • the parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
  • preferred carriers are physiological saline or phosphate buffered saline (PBS).
  • the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
  • a controlled release formulation including implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
  • the materials can also be obtained commercially from Alza Corporation (CA) and Scios Nova (Baltimore, Md.).
  • Liposomal suspensions may also be pharmaceutically acceptable carriers. These may be prepared-according to methods known to those skilled in the art, for example, as described in U.S. Pat. No.
  • liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container.
  • An aqueous solution of the active compound or its monophosphate, diphosphate, and/or triphosphate derivatives are then introduced into the container.
  • the container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.
  • a wide variety of biological assays have been used to evaluate the ability of a compound to act as a PAF receptor antagonist, including the ability of the compound to bind to PAF receptors, and the effect of the compound on various PAF mediated pathways. Any of these known assays can be used to evaluate the ability of the compounds disclosed herein to act as PAF receptor antagonists.
  • PAF is known to induce hemoconcentration and increased permeability of microcirculation leading to a decrease in plasma volume.
  • PAF mediated acute circulatory collapse can be used as the basis of an assay to evaluate the ability of a compound to act as a PAF antagonist, by analyzing the effect of the compound on PAF induced decreased plasma volume in an animal model such as mouse.
  • Endotoxemia causes the release of chemical mediators including eicosanoids, PAF, and tumor necrosis factor (TNF) that stimulate a variety of physiologic responses including fever, hypotension, leukocytosis, and disturbances in glucose and lipid metabolism. Endotoxemia can result in severe shock and death. Endotoxin-induced mouse mortality is a useful animal model to evaluate the pharmacological effect of compounds on endotoxic shock.
  • a wide variety of biological assays have also been used to evaluate the ability of a compound to inhibit the enzyme 5-lipoxygenase.
  • a cytosol 5-lipoxygenase of rat basophilic leukemia ceuls (RBL) has been widely utilized in studies on leukotriene biosynthesis.
  • Compounds that inhibit 5-lipoxygenase decrease the levels of leukotrienes.
  • Another biological assay used to evaluate the ability of a compound to inhibit the enzyme 5-lipoxygenase is based on the classic pharmacological model of inflammation induced by the topical application of arachidonic acid to the mouse ear.
  • arachidonic acid is converted by 5-lipoxygenase to various leukotrienes (and other mediators), which induce changes in blood flow, erythema, and increase vasodilation and vasopermeability.
  • the resulting edema is measured by comparing the thickness of the treated ear to a control ear.
  • Agents that inhibit 5-lipoxygenase reduce the edematous response, by lowering the amounts of biochemical mediators formed from arachidonic acid.
  • Human platelet membranes were prepared from platelet concentrates obtained from the American Red Cross Blood Services (Dedham, Mass.). After several washes with platelet wash solution (150 mM NaCl, 10 mM Tris, and 2 mM EDTA, pH 7.5), the platelet pellets were resuspended in 5 mM MgCl. 10 mM Tris, and 2 mM EDTA at pH 7.0. The cells were then quickly frozen with liquid nitrogen and thawed slowly at room temperature. The freezing and thawing procedure was repeated at least three times.
  • the lysed membrane suspension was layered over the top of a discontinuous sucrose density gradient of 0.25, 1.03, and 1.5 M sucrose prepared in 10 mM MgCl 2 , 10 mM Tris and 2 mM EDTA, pH 7.0, and centrifuged at 63,500 ⁇ g for 2 hr.
  • the membrane fractions banding between 0.25 and 1.03 M (membrane A) and between 1.03 and 1.5 M (membrane B) were collected separately.
  • the protein concentration of the membrane preparations was determined by Lowry's method with bovine serum albumin (BSA) as the standard.
  • BSA bovine serum albumin
  • Membrane protein 100 ⁇ g was added to a final 0.5 ml solution containing 0.15 pmol (0.3 nM concentration) of [ 3 H]PAF and a known amount of unlabeled PAF or PAF receptor antagonist in 10 mM MgCl 2 , 10 mM Tris and 0.25% BSA at pH 7.0. After incubation for four hours at 0° C., the bound and unbound [3H]PAF were separated through a Whatman GF/C glass fiber filter under vacuum.
  • the nonspecific binding was defined as the total binding in the presence of excess unlabeled PAF (1 mM) where no further displacement was found with higher concentrations of either unlabeled PAF or PAF analogs or PAF receptor antagonists.
  • the specific binding was defined as the difference between total binding and nonspecific binding.
  • [3H]PAF binding in the presence of inhibitors was normalized in terms of percent inhibition by assigning the total binding in the absence of inhibitors as 0% inhibition and the total binding in the presence of 1 mM unlabeled PAF as 100%.
  • the IC 50 was calculated as the concentration of the inhibitor necessary to obtain 50% inhibition of the specific [ 3 H]PAF binding and was calculated by a nonlinear regression computer software program, GraphPad Inplot, version 3.0 (GraphPad software, San Diego, Calif.). Tables 1 and 2 provide IC 50 values for a number of the disclosed compounds.
  • mice Female CD-1 mice, weighing 16-20 grams, were obtained from Charles River Laboratory (Wilmington, Mass.). Tap water and rodent laboratory chow (5001, Purina Mills, St. Louis, Mo.) were provided ad libitum. The mice were housed for an average of four days prior to use.
  • PAF (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine, Sigma Chemical Co.) was dissolved in 0.25% bovine serum albumin (BSA) in 0.9% NaCl solution. Except for dose-response studies, 10 ⁇ g (10 ml/kg) of PAF solution was injected into the tail vein. All test compounds were dissolved in 0.5 DMSO saline solution and intravenously injected at 3 mg/kg body weight 15 minutes prior to PAF challenge. Thirty to fifty ⁇ L blood was collected by cutting the tail end into a heparinized micro-hematocrit tube (O.D. 1.50 mm) 15 minutes after PAF administration.
  • BSA bovine serum albumin
  • Table 2 provides the mouse hematocrit response to varying concentration of PAF at 15 minutes after injection of PAF.
  • Tables 3 and 4 provide the effect of various test compounds on PAF-induced mouse hemoconcentration; the reference compound MK287 is trans-2-(3,4,5-trimethoxy)-5-(3-methoxy-4-oxyallyl-(2-hydroxyethylsulfonyl))-tetrahydrofuran. (Sahoo, et al., Bioorganic Medicinal Chem. Letters, (1991), 1, 327.)
  • Arachidonic acid was applied to both ears of mice in 0.025 ml of freshly prepared vehicle (acetone:pyridine:water) (97:2:1 v/v/v) and dried under a Sun-Lite Hitensity bulb. Except for dose-response studies, 0.5 mg of arachidonic acid was used for all applications. All test compounds were dissolved in 0.5% DMSO saline solution and intravenously injected at 3 mg/kg body weight 15 minutes prior to arachidonic acid treatment. Animals were sacrificed by cervical dislocation at 1 hour after topical application of arachidonic acid. A 7 mm-diameter disc of tissue was removed from each ear by means of a metal punch. Edema was measured by the average wet weight of the both ear tissues.
  • mice are obtained and treated as in Example 3 above.
  • Endotoxin E. coli serotype 0127:B8, lipopolysaccharide, Sigma Chemical Co. (St. Louis, Mo.) are freshly dissolved in 0.9% NaCl solution. Except for dose-response studies, endotoxin at 50 mg/kg is injected into the tail vein. All test compounds are dissolved in 0.5% DMSO saline solution and intravenously injected at 3 mg/kg body weight 15 minutes prior to PAF challenge. Death occurs typically within 12-36 hours. Mortality is recorded 48 hours after endotoxin challenge, as death rarely occurs after 48 hours.
  • Washed rat RBL cells (4 ⁇ 108) are suspended in 20 ml of 50 M potassium phosphate buffer at pH 7.4 containing 10% ethylene glycol/1 mM EDTA (Buffer A). The cell suspension is sonicated at 20 KHz for 30 seconds, and the sonicate is centrifuged at 10.000 ⁇ g for 10 minutes, followed by further centrifugation at 105,000 ⁇ g for 1 hr. The supernatant solution (cytosol fraction) containing 5-lipoxygenase is stored at ⁇ 70° C. Protein concentration is determined according to the procedure of Bradford (Bradford Dye Reagent) with bovine serum albumin as a standard.
  • the mixture contains 50 mM potassium phosphate buffer at pH 7.4, 2 mM CaCl 2 . 2 mM ATP, 25 M arachidonic acid (0.1 Ci) and enzyme (50-100 mg of protein) in a final volume of 200 L.
  • the reaction is carried out at 24° C. for 3 minutes.
  • the mixture is extracted with 0.2 ml of an ice-cold mixture of ethyl ether:methanol: 0.2 M citric acid (30:4:1).
  • the extract is subjected to thin-layer chromatography at ⁇ 10° C.

Abstract

2,5-Diaryl tetrahydrofurans, 2,5-diaryl tetrahydrothiophenes, 2,4-diaryl tetrahydrofurans, 2,4-diaryl tetrahydrothiophenes, 1,3-diaryl cyclopentanes, 2,4-diaryl pyrrolidines, and 2,5-diaryl pyrrolidines are disclosed that reduce the chemotaxis and respiratory burst leading to the formation of damaging oxygen radicals of polymorphonuclear leukocytes during an inflammatory or immune response. The compounds exhibit this biological activity by acting as PAF receptor antagonists, by inhibiting the enzyme 5-lipoxygenase, or by exhibiting dual activity, i. e., by acting as both a PAF receptor antagonist and inhibitor of 5-lipoxygenase.
A method to treat disorders mediated by PAF or leukotrienes is also disclosed, that includes administering an effective amount of one or more of the above-identified compounds or a pharmaceutically acceptable salt thereof, optionally in a pharmaceutically acceptable carrier.

Description

  • This application is a continuation-in-part of U.S. Ser. No. 07/933,991. filed on Aug. 24, 1992, by Xiong Cai, Sajjat Hussoin, San Bao Hwang, David Killian. and T. Y. Shen, which is a divisional application of U.S. Ser. No. 07/912,788, filed Jul. 13, 1992, by Xiong Cai, Sajjat Hussoin, San Bao Hwang, David Killian, and T. Y. Shen.[0001]
  • BACKGROUND OF THE INVENTION
  • This invention is in the area of pharmaceutical compositions and methods for the treatment of inflammatory and immune disorders, and specifically provides novel compounds that reduce damage arising from an inflammatory or immune response. The compounds exhibit this biological activity by acting as PAF receptor antagonists, by inhibiting the enzyme 5-lipoxygenase, or by exhibiting dual activity, i. e., by acting as both a PAF receptor antagonist and inhibitor of 5-lipoxygenase. [0002]
  • Platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphorylcholine) is a potent inflammatory phospholipid mediator with a wide variety of biological activities. PAF was initially identified as a water soluble compound released by immunoglobulin E (IgE)-sensitized rabbit basophils. It is now known that PAF is also generated and released by monocytes, macrophages, polymorphonuclear leukocytes (PMNs), eosinophils, neutrophils, natural killer lymphocytes, platelets and endothelial cells, as well as by renal and cardiac tissues under appropriate immunological and non-immunological stimulation. (Hwang, “Specific receptors of platelet-activating factor, receptor heterogeneity, and signal transduction mechanisms”, [0003] Journal of Lipid Mediators 92, 123 (1990)). PAF causes the aggregation and degranulation of platelets at very low concentrations. The potency (active at 10−12 to 10−9M), tissue level (picomoles) and short plasma half life (2-4 minutes) of PAF are similar to those of other lipid mediators such as thromboxane A2, prostaglandins, and leukotrienes. PAF mediates biological responses by binding, to specific PAF receptors found in a wide variety of cells and tissues. Structure-activity studies on PAF and its analogs indicate that the ability of PAF to bind to these receptors is highly structure specific and stereospecific. (Shen. et al., “The Chemical and Biological Properties of PAF Agonists, Antagonists, and Biosynthetic Inhibitors”, Platelet-Activating Factor and Related Lipid Mediators, F. Snyder, Ed. Plenum Press, New York, N.Y. 153 (1987)).
  • While PAF mediates essential biological responses, it also appears to play a role in pathological immune and inflammatory responses. Many published studies have provided evidence for the involvement of PAF in human diseases, including arthritis, acute inflammation, asthma, endotoxic shock, pain, psoriasis, ophthalmic inflammation, ischemia, gastrointestinal ulceration, myocardial infarction, inflammatory bowel diseases, and acute respiratory distress syndrome. Animal models also demonstrate that PAF is produced or increased in certain pathological states. [0004]
  • The involvement of PAF in pathological inflammatory and immune states has stimulated a substantial research effort to identify PAF receptor antagonists. In 1983, a phospholipid analog referred to as CV-3988 (rac-3-(N-n-octadecyl-carbamoyloxy-w-methoxypropy)-2-thiazolioethyl phosphate) was reported to have PAF receptor antagonist properties. (Terashita, et al., [0005] Life Sciences 32, 1975 (1983)). In other early work in this area, Shen, et al., (in Proc. Natl. Acad. Sci. USA 82, 672 (1985)), reported that kadsurenone, a neolignan derivative isolated from Piper futokadsura Sieb et Zucc (a Chinese herbal plant) was a potent, specific and competitive inhibitor of PAF activity at the receptor level. Hwang, et al., disclosed in 1985 that trans-2,5-bis-(3,4,5-trimethoxyphenyl) tetrahydrofuran (L-652,731) inhibits the binding of tritiated PAF to PAF receptor sites. (Hwang, et al., “Trans-2,5-bis-(3,4,5-trimethoxyphenyl)tetrahydrofuran”, Journal of Biological Chemistry 260, 15639 (1985).) L-652,731 was found to be orally active, and to inhibit PAF-induced rat cutaneous vascular permeability at a dosage of 30 mg/kg body weight. The compound was found to have no effect on the enzyme 5-lipoxygenase. Hwang, et al., also reported that trans-L-652,731, wherein the aryl groups at the 2 and 5 positions are on opposite sides of the plane of the tetrahydrofuran ring, is approximately 1000 times more potent than cis-L-652,73 1, wherein the 2 and 5 aryl substituents are on the same side of the plane of the tetrahydrofuran ring.
  • In 1988, Hwang, et al., reported that L-659,989 (trans-2-(3-methoxy-4-propoxyphenyl-5-methylsulfonyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran) is an orally active, potent, competitive PAF receptor antagonist, with an equilibrium inhibition constant 10 times greater than that of trans-L-652,731. (Hwang, et al., [0006] Pharmacol. Exp. Ther. 246, 534 (1988).)
  • U.S. Pat. Nos. 4,996,203, 5,001,123 and 4,539,332 to Biftu, et al. and European Patent Application Nos. 89202593.3, 90306235.4, and 90306234.7 disclose that a specific class of 2,5-diaryl tetrahydrofurans are PAF receptor antagonists. [0007]
  • Leukotrienes, like PAF, are potent local mediators, playing a major role in inflammatory and allergic responses, including arthritis, asthma, psoriasis, and thrombotic disease. Leukotrienes are straight chain eicosanoids produced by the oxidation of arachidonic acid by lipoxygenases. Arachidonic acid is oxidized by 5-lipoxygenase to the hydroperoxide 5-hydroperoxyeicosatetraenoic acid (5-HPETE), which is converted to leukotriene A[0008] 4, which in turn can be converted to leukotriene B4, C4, or D4. The slow-reacting substance of anaphylaxis is now known to be a mixture of leukotrienes C4, D4, and E4, all of which are potent bronchoconstrictors.
  • There has been a research effort to develop specific receptor antagonists or inhibitors of leukotriene biosynthesis, to prevent or minimize pathogenic inflammatory responses mediated by these compounds. [0009]
  • Leukotrienes are released simultaneously from leukocytes with PAF, possibly from a common phospholipid precursor such as 1-O-hexadecyl-2-arachidonyl-sn-glycero-phosphocholine, and upon cellular activation, act synergistically with PAF in many biological models. Recently, it was reported that the tetrahydrothiophene derivative of L-652,731, trans-2,5-bis-(3,4,5-trimethoxyphenyl)tetrahydrothiophene (L-653,150), is a potent PAF antagonist and a moderate inhibitor of 5-lipoxygenase. It has been disclosed that certain 2,5-diaryl tetrahydrothiophenes are PAF antagonists and leukotriene synthesis inhibitors. (Biftu, et al., [0010] Abstr, of 6th Int. Conf. on Prostaglandins and Related Compounds, Jun. 3-6, 1986, Florence, Italy: U.S. Pat. No. 4,757,084 to Biftu). European Patent Application Nos. 90117171.0 and 901170171.0 disclose indole, benzofuran, and benzothiophene lipoxygenase inhibiting compounds. Given the significant number of pathological immune and inflammatory responses that are mediated by PAF and leukotrienes, there remains a need to identify new compounds and compositions that exhibit PAF receptor antagonistic activity or inhibit the enzyme 5-lipoxygenase.
  • Therefore, it is an object of the present invention to provide compounds that reduce the chemotaxis and respiratory burst leading to the formation of damaging oxygen radicals during an inflammatory or immune response. [0011]
  • It is another object of the present invention to provide pharmaceutical compositions for the treatment of pathological immune or inflammatory disorders mediated by PAF or products of 5-lipoxygenase. [0012]
  • It is another object of the present invention to provide methods for the treatment of pathological immune or inflammatory disorders mediated by PAF or products of 5-lipoxygenase. [0013]
  • SUMMARY OF THE INVENTION
  • 2,5-Diaryl tetrahydrothiophenes, tetrahydrofurans, and pyrrolidines, 1,3-diaryl cyclopentanes, and 2,4-diaryl tetrahydrothiophenes, tetrahydrofurans and pyrrolidines for the treatment of pathological immune or inflammatory disorders are disclosed of the structures: [0014]
    Figure US20020177723A1-20021128-C00001
  • wherein: [0015]
  • X is O, S, S(O), S(O)[0016] 2, CR9, or NR;
  • W is independently: [0017]
  • (1) —AN(OM)C(O)N(R[0018] 3)R4, —AN(R3)C(O)N(OM)R4, —AN(OM)C(O)R4, —AC(O)N(OM)R4, —N(OM)C(O)N(R3)R4. —N(R3)C(O)N(OM)R4, —N(OM)C(O)R4, —C (O)N(OM)R4, —OR6N(R5)R6—(C5H4N)R6R7, —OR6N(COR5)R6—(C5H4N)R6R7, —OR6OC(O)N(COR5)R6—(C5H4N)R6R7, —OR6O(CO)N(CO2R6)R6(C5H4N)R6R7, —A(C5H4N)R6R7, or —OR6N(CO2R5)R6—(C5H4N)R6R7.
  • (2) an amidohydroxyurea of the formula: —N(R[0019] 19)C(O)C(R19)2N(OM)C(O)NHR20, —C(O)N(R19)C(R19)2N(OM)C(O)NHR20, —AN(R19)C(O)C(R19)2N(OM)C(O)NHR20, —AC(O)N(R19)C(R19)2N(OM)C(O)NHR20, —NHC(O)N(OM)C(R19)2C(O)N(R19)2; or —NHC(O)N(OM)C(R19)2N(R19)C(O)R19;
  • (3) an oxalkane of the structure: [0020]
    Figure US20020177723A1-20021128-C00002
  • wherein n and m are independently 1-4; [0021]  
  • (4) a thioalkane of the structure: [0022]
    Figure US20020177723A1-20021128-C00003
  • or (5) a quinolylmethoxy of the structure: [0023]
    Figure US20020177723A1-20021128-C00004
  • n is 1 or 2; [0024]
  • m is 1. 2or 3; [0025]
  • p is 0 or 1; [0026]
  • A is alkyl, alkenyl, alkynyl, alkaryl, aralkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, —C[0027] 1-10alkyl(oxy)C1-10alkyl, —C1-10alkyl(thio)C1-10alkyl, —N(R3)C(O)alkyl, —N(R3)C(O)alkenyl, —N(R3)C(O)alkynyl, —N(R3)C(O)(alkyl)oxy(alkyl), —N(R3)C(O)(alkyl)thio(alkyl), —N(R3)C(O)N(alkyl), —N(R3)C(O)N(alkenyl), —N(R3)C(O)N(alkynyl), —N(R3)C(O)N(alkyl)oxy(alkyl), —N(R3)C(O)N(alkyl)thio(alkyl), —N(R3)C(O2)alkyl, —N(R3)C(O2)alkenyl, —N(R3)C(O2)alkynyl, —N(R3)C(O2)(alkyl)oxy(alkyl), —N(R3)C(O2)(alkyl)thio(alkyl), —OC(O2)alkyl, —OC(O2)alkenyl, —OC(O2)alkynyl, —OC(O2)(alkyl)oxy(alkyl), —OC(O2)(alkyl)thio(alkyl), —N(R3)C(S)alkyl, —N(R3)C(S)alkenyl, —N(R3)C(S)alkynyl, —N(R3)C(S)(alkyl)oxy(alkyl), —N(R3)C(S)(alkyl)thio(alkyl), —N(R3)C (S)N(alkyl), —N(R3)C(S)N(alkenyl), —N(R3)C(S)N(alkynyl), —N(R3)C(S)N(alkyl)oxy(alkyl), —N(R3)C(S)N(alkyl)thio(alkyl), —N(R3)C(S)S(alkyl), —N(R3)C(S)S(alkenyl), —N(R3)C(S)S(alkynyl), —N(R3)C(S)S(alkyl)oxy(alkyl), —N(R3)C(S)S(alkyl)thio(alkyl), —SC(S)S(alkyl), —SC(S)S(alkenyl), —SC(S)S(alkynyl), —SC(S)S(alkyl)oxy(alkyl), and —SC(S)S(alkyl)thio(alkyl);
  • M is hydrogen, a pharmaceutically acceptable cation, or a metabolically cleavable leaving group; [0028]
  • Y is independently: [0029]
  • (a) hydrogen; [0030]
  • (b) R[0031] 1-6, R8, R10, —OR3, —OR11, —OR12, R3S—, R5S—, R3SO—, R5SO—, R3SO2—, R5SO2—, CF3O—, CF3S—, CF3SO—, —CF3SO2, —OCH2oxycyclopropyl, —OCH2C(O)OR3, —OCH2OR3, —OCH2C(O)R3, —OCH2C3-8cycloalkyl, —OCH2CH(R3)R3, —OCH2cyclopropyl, —OCH2-aryl, —OCH2CH(OH)CH2OH, aryl-CH2—SO—, (R3)2CHCH2SO2—, —CH2CH(OH)CH2OH, CF3SO2—, R3R4N—, —OCH2CO2R3, —NR3COR3, —OCONH2, —OCONR3R4, —CONH2, —CONR3R4, —CR3R3R4, —SO2NR3R4, —SONR3R4, —CH3OCH2NR3R6, —SNR3R4, —CO2R3, —NR3R4SO2R3, —NR3R4SOR3, —COR3, —CONR3, —NO2, —CN2N(R5)CONR3R4, —R6NR3R4, —OR6NR3R4, —O(O)CR5, —O(O)CNR3R4,
    Figure US20020177723A1-20021128-C00005
  • —SR[0032]   6NR3R4, —S(O)R6NR3R4, —SO2R6NR3R4,
    Figure US20020177723A1-20021128-C00006
  • —SR[0033]   6OH, —S(O)R6OH, —SO2R6OH, —OR6OC(O)N(CO2R6)R6; O-alkyl-N-(aryl)-C(O)-heterocycle;
    Figure US20020177723A1-20021128-C00007
  • (c) a heterocycle, including but not limited to, pyrryl, furyl, pyridyl; 1,2,4-thiadiazolyl; pyrimidyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, pyrimidyl, quinolyl, isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, purinyl, carbazolyl, benzimidazolyl, and isoxazolyl, optionally substituted with a group described in Y section (b); [0034]
  • (d) [0035]
    Figure US20020177723A1-20021128-C00008
  • wherein X′ is halo such as F, Cl, Br and I; —C(O)aryl; CF[0036]   3; OR3; —NR3COR3; —OC(O)NH2; —CR3R3R4; —C(O)R3; —CH2OR3; —CH2CO2R3; —CH2OC(O)R3; R3CH(R3)CH2SO3; —NHCH2COOR3; N+R3R3R4R7; —NR3SO2R3; COR3; NO2; or CN; or
    Figure US20020177723A1-20021128-C00009
  • wherein R[0037] 13, R14 and R15 independently represents:
  • BO— wherein B is —CH[0038] 2-oxacyclopropyl, —CH2OR3, —CH2C(O)R3, —CH2CH(R3)R3, —CH2Aryl, —CH2CH(OH)—CH2OH; R3C(R3)2CH2SO2;
  • or R[0039] 13—R14 or R14—R5 are joined together to form a bridge such as —OCHR2CHR2—S(O)n wherein n is 0 to 3; or
    Figure US20020177723A1-20021128-C00010
  • where X′ is halo, —C(O)aryl, —CF[0040]   3, or —OR3; —CH2OR3; —CH2CO2R3; —CH2C(O)R3; —NHCH2COOR3; or —N+R3R3R4R7
  • R[0041] 1 and R2 are independently hydrogen, or lower alkyl, specifically including lower alkyl of 1-6 carbon atoms, e.g., methyl, cyclopropylmethyl, ethyl, isopropyl, butyl, pentyl and hexyl, as well as C3-8 cycloalkyl, for example, cyclopentyl; halo lower alkyl, especially C1-6 haloalkyl, for example, tritluoromethyl; halo, especially fluoro; —COOH; —CONR16R17 wherein R16 and R17 independently represent C1-6 alkyl and hydrogen, —COOR3, lower alkenyl, especially C2-6 alkenyl, e.g., vinyl, allyl, CH3CH═CH—CH2—CH2, and CH3CH2)3—CH═CH—; —C(O)R3; —CH2OR3; lower alkynyl, especially C2-6 alkynyl, e.g., —C═CH; —CH2NR4R3; —CH2SR3; ═O; —OR3; or —NR3R4;
  • R[0042] 3 and R4 are independently alkyl, alkenyl, alkynyl, aryl, aralkyl, alkaryl, hydrogen, C1-6 alkoxy-C1-10 alkyl, C1-6 alkylthio-C1-10 alkyl, and C1-10 substituted alkyl (wherein the substituent is independently hydroxy or carbonyl, located on any of C1-10);
  • R[0043] 5 is lower alkyl, lower alkenyl, lower alkynyl, hydroxyl, hydrogen, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, aralkyl, or aryl;
  • R[0044] 6 is lower alkyl, lower alkenyl, lower alkynyl, aralkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, or aryl;
  • R[0045] 7 is an organic or inorganic anion;
  • R[0046] 8 is halo alkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, lower alkenyl, lower alkynyl, aralkyl, or aryl;
  • R[0047] 9 is independently hydrogen, halogen, lower alkyl, halo lower alkyl, lower alkenyl, lower alkynyl, —CONR3R4, —C(O)R5, —CO2R5, —CH2OR5, —CH2NR5R5, —CH2SR5, ═O, ═NR5, —NR3R4, —NR3R4R7, or —OR5;
  • R[0048] 10 is —R3, —R8, —C(O)N(OR3)R3, or —OR3.
  • R[0049] 11 is phenyl-S(O)g-lower alkyl-; (R3O)d-phenyl-S(O)g-lower alkyl-; (R3R3N)d-phenyl-S(O)g-lower alkyl-; (CNR)d-phenyl-S(O)g-lower alkyl-; (halo)d-phenyl-S(O)g-lower alkyl-; (R3COO)d-phenyl-S(O)g-lower alkyl-; (R3OCO)d-phenyl-S(O)g-lower alkyl-; (R3CO)d-phenyl-S(O)g-lower alkyl-; phenyl-O-lower alkyl-; (R3O)d-phenyl-O-lower alkyl-; (CN)d-phenyl-O-lower alkyl-; (halo)d-phenyl-O-lower alkyl-; (R3COO)d-phenyl-O-lower alkyl-; (R3OCO)d-phenyl-O-lower alkyl-; or (R3CO)d-phenyl-O-lower alkyl- where d is 1, 2, 3, 4 or 5; and g is 0, 1, or 2.
  • R[0050] 12 is alkyl; substituted alkyl wherein the substituent is selected from the group consisting of hydroxy and amino; -lower alkyl-O-R18, wherein R18 is —PO2(OH)-M+ or —PO3(M+)2, wherein M+ is a pharmaceutically acceptable cation; —C(O)(CH2)2CO2— M+, or —SO3—M+; -lower alkylcarbonyl-lower alkyl; -carboxy lower alkyl; -lower alkylamino-lower alkyl; N,N-di-substituted amino lower alkyl-, wherein the substituents each independently represent lower alkyl; pyridyl-lower alkyl; imnidazolyl-lower alkyl; imidazolyl-Y-lower alkyl wherein Y is thio or amino; morpholinyl-lower alkyl; pyrrolidinyl-lower alkyl; thiazolinyl-lower alkyl; piperidinyl-lower alkyl; morpholinyl-lower hydroxyalkyl; N-pyrryl; piperazinyl-lower alkyl; N-substituted piperazinyl-lower alkyl, wherein the substituent is lower alkyl; triazolyl-lower alkyl; tetrazolyl-lower alkyl; tetrazolylarnino-lower alkyl; or thiazolyl-lower alkyl;
  • R[0051] 19 is H, lower alkyl, or lower alkenyl; and
  • R[0052] 20 is H, halogen, lower alkoxy, or lower alkyl;
    Figure US20020177723A1-20021128-C00011
  • wherein: [0053]
  • X is O, S, S(O), S(O)[0054] 2, or NR10;
  • m is 1, 2, or 3; [0055]
  • t is 1, 2, 3, or 4; [0056]
  • Z is independently W or Y; and [0057]
    Figure US20020177723A1-20021128-C00012
  • v is 0, 1, or 2; and [0058]
  • Q is selected from the group consisting of substituted C[0059] 1 to C12 alkyl wherein the substituent is selected from the group consisting of hydroxy and amino, alkylcarbonylalkyl, alkyl; lower alkyl S(O)m-lower alkyl in which m is 1 or 2; imidazolyl lower alkyl, morpholinyl lower alkyl, thiazolinyl lower alkyl, piperidinyl lower alkyl, imidazolylcarbonyl, morpholinyl carbonyl, amorpholinyl (lower alkyl) aminocarbonyl, N-pyrrylpyridinyl-lower alkyl; pyridylthio-lower alkyl; morpholinyl-lower alkyl; hydroxyphenylthio-lower alkyl; cyanophenylthio-lower alkyl; imidazolylthio-lower alkyl; triazolylthio-lower alkyl; triazolylphenylthio-lower alkyl; tetrazolylthio-lower alkyl; tetrazolylphenylthio-lower alkyl; aminophenylthio-lower alkyl; N,N-di-substituted aminophenylthio-lower alkyl wherein the amine substituents each independently represent lower alkyl; amidinophenylthio-lower alkyl; phenylsulfinyl-lower alkyl; or phenylsulfonyl lower alkyl; -lower alkyl-O—R18, wherein R18 is —PO2(OH)−M+ or —PO3 (M+)2, wherein M+ is a pharmaceutically acceptable cation; —C(O)(CH2)2CO2— M+, or —SO3−M+; -lower alkylcarbonyl-lower alkyl; -carboxy lower alkyl; -lower alkylamino-lower alkyl; N,N-di-substituted amino lower alkyl, wherein the amine substituents each independently represent lower alkyl; pyridyl-lower alkyl; imidazolyl-lower alkyl; imidazolyl-Y-lower alkyl wherein Y is thio or amino; morpholinyl-lower alkyl; pyrrolidinyl-lower alkyl; thiazolinyl-lower alkyl; piperidinyl-lower alkyl; morpholinyl-lower hydroxyalkyl; N-pyrryl: piperazinyl-lower alkyl; N-substituted piperazinyl-lower alkyl, wherein the amine substituent is lower alkyl; triazolyl-lower alkyl; tetrazolyl-lower alkyl; tetrazolylamino-lower alkyl; or thiazolyl-lower alkyl.
  • These compounds in general reduce the chemotaxis and respiratory burst leading to the formation of damaging oxygen radicals of polymorphonuclear leukocytes during an inflammatory or immune response. The compounds exhibit this biological activity by acting as PAF receptor antagonists, by inhibiting the enzyme 5-lipoxygenase, or by exhibiting dual activity, i. e., by acting as both a PAF receptor antagonist and inhibitor of 5-lipoxygenase. [0060]
  • A method to treat disorders mediated by PAF or leukotrienes is also disclosed, that includes administering an effective amount of one or more of the above-identified compounds or a pharmaceutically acceptable salt thereof, optionally in a pharmaceutically acceptable carrier, to reduce formation of oxygen radicals. [0061]
  • The compounds disclosed herein can also be used as research tools to study the structure and location of PAF receptors as well as biological pathways involving leukotrienes.[0062]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1[0063] a and 1 b provide a schematic illustration of a process for the preparation of trans-2-[5-(N′-methyl-N′-hydroxyureidylmethyl)-3-methoxy-4-p-chlorophenylthioethoxyphenyl]-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran.
  • DETAILED DESCRIPTION OF THE INVENTION I. Description and Synthesis of the Compounds
  • A. Compounds [0064]
  • The term alkyl, as used herein, unless otherwise specified, refers to a saturated straight, branched, or cyclic hydrocarbon of C[0065] 1 to C10, and specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl.
  • The term lower alkyl, as used herein, and unless otherwise specified, refers to a C[0066] 1 to C6 saturated straight, branched, or cyclic (in the case of C5-6) hydrocarbon, and specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl.
  • The term alkenyl, as referred to herein, and unless otherwise specified, refers to a straight, branched, or cyclic (in the case of C[0067] 5-6) hydrocarbon of C2 to C10 with at least one double bond.
  • The term lower alkenyl, as referred to herein, and unless otherwise specified, refers to an alkenyl group of C[0068] 2 to C6, and specifically includes vinyl and allyl.
  • The term lower alkylamino refers to an amino group that has one or two lower alkyl substituents. [0069]
  • The term alkynyl, as referred to herein, and unless otherwise specified, refers to a C[0070] 2 to C10 straight or branched hydrocarbon with at least one triple bond.
  • The term lower alkynyl, as referred to herein, and unless otherwise specified, refers to a C[0071] 2 to C6 alkynyl group, specifically including acetylenyl and propynyl.
  • The term aryl, as used herein, and unless otherwise specified, refers to phenyl or substituted phenyl, wherein the substituent is halo or lower alkyl. [0072]
  • The term halo, as used herein, includes fluoro, chloro, bromo, and iodo. [0073]
  • The term halo (alkyl, alkenyl, or alkynyl) refers to a (alkyl, alkenyl, or alkynyl) group in which at least one of the hydrogens in the group has been replaced with a halogen atom. [0074]
  • The term heterocycle or heteroaromatic, as used herein, refers to an aromatic moiety that includes at least one sulfur, oxygen, or nitrogen in the aromatic ring. Non-limiting examples are pyrryl, furyl, pyridyl, 1,2,4-thiadiazolyl, pyrimidyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, pyrimidyl, quinolyl, isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, purinyl, carbazolyl, benzimidazolyl, and isoxazolyl. [0075]
  • The term aralkyl refers to an aryl group with an alkyl substituent. [0076]
  • The term alkaryl refers to an alkyl group that has an aryl substituent. [0077]
  • The term organic or inorganic anion refers to an organic or inorganic moiety that carries a negative charge and can be used as the negative portion of a salt. [0078]
  • The term “pharmaceutically acceptable cation” refers to an organic or inorganic moiety that carries a positive charge and that can be administered in association with a pharmaceutical agent, for example, as a countercation in a salt. Pharmaceutically acceptable cations are known to those of skill in the art, and include but are not limited to sodium, potassium, and quatemary amine. [0079]
  • The term “metabolically cleavable leaving group” refers to a moiety that can be cleaved in vivo from the molecule to which it is attached, and includes but is not limited to an organic or inorganic anion, a pharmaceutically acceptable cation, acyl (for example (alkyl)C(O), including acetyl, propionyl, and butyryl), alkyl, phosphate, sulfate and sulfonate. [0080]
  • The term “enantiomerically enriched composition or compound” refers to a composition or compound that includes at least 95% by weight of a single enantiomer of the compound. [0081]
  • The term PAF receptor antagonist refers to a compound that binds to a PAF receptor with a binding constant of 30 μM or lower. [0082]
  • The term 5-lipoxygenase inhibitor refers to a compound that inhibits the enzyme at 30 μM or lower in a broken cell system. [0083]
  • The term pharmaceutically active derivative refers to any compound that upon administration to the recipient, is capable of providing directly or indirectly, the compounds disclosed herein. [0084]
  • The 2,5-diaryl tetrahydrothiophenes, pyrrolidines, and tetrahydrofurans, 1,3-diaryl cyclopentanes, and the 2,4-diaryl tetrahydrothiophenes, pyrrolidines and tetrahydrofurans of the above-defined formulas exhibit PAF receptor antagonist activity or inhibit the enzyme 5-lipoxygenase, or have dual activity, and are thus useful in the treatment of humans who have immune and allergic disorders that are mediated by PAF or products of 5-lipoxygenase. [0085]
  • The following are nonlimiting examples of compounds that fall within Formulas I, II, and III. These examples are merely exemplary and are not intended to limit the scope of the invention. [0086]
  • Formula I Cis and Trans Isomers of the Following Compounds
  • N-Alkyl/arylhydroxyureas [0087]
  • 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0088]
  • 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trirethoxyphenyl)-tetrahydrofuran [0089]
  • 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0090]
  • 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0091]
  • 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0092]
  • 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trirnethoxyphenyl)-tetrahydrofuran [0093]
  • 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0094]
  • 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetralluorophenylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0095]
  • 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-bromophenysulfonylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0096]
  • 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylsulfonylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0097]
  • 2-[5-(N′-Hydroxy-N′-methylyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0098]
  • 2-[5-(N′-Hydroxy-N′-methylureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-5-( 3,4,5-trimethoxyphenyl)-tetrahydrofuran [0099]
  • 2-[5-(N′-Hydroxy-N′-methylureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trirnethoxyphenyl)tetrahydrofuran [0100]
  • 2-[5-(N′-Hydroxy-N′-methylureidyl)-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0101]
  • 2-[5-(N′-Hydroxy-N′-methylureidyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0102]
  • 2-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-p-fluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0103]
  • 2-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0104]
  • 2-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0105]
  • 2-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0106]
  • 2-[5-(N′-p-Chlorophenyl-N′-hydroxyureidyl)-4-(2-bromophenylsulfonylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0107]
  • 2-[5-(N′-p-Chlorophenyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trinethoxyphenyl)-tetrahydrofuran [0108]
  • 2-[5-(N′-tert-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0109]
  • 2-[5-(N′-tert-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0110]
  • 2-[5-(N′-tert-Butyl-N′-hydroxyureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0111]
  • 2-[5-(N′-Cyclohexyl-N′-hydroxyureidyl)-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0112]
  • 2-[5-(N′-Cyclohexyl-N′-hydroxyureidyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0113]
  • 2-[5-(N′-Cyclohexyl-N′-hydroxyureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0114]
  • 2-[5-(N′-Benzyl-N′-hydroxyureldyl)-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0115]
  • 2-[5-(N′-Benzyl-N′-hydroxyureidyt)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0116]
  • 2-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(p-bromophenylsulfonylethoxy)-3-methoxyphenyl]-5-(3,4,5-trethoxyphenyl)tetrahydrofuran [0117]
  • 2-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(2-bromophenylsulfonylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0118]
  • 2-[5-(N′-Hydroxy-N′-i-propylureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimnethoxyphenyl)-tetrahydrofuran [0119]
  • 2-[5-(N′-sec-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0120]
  • 2-[5-(N′-sec-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0121]
  • 2-[5-(N′-Hydroxy-N′-propylureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0122]
  • 2-[5-(N′-Hydroxy-N′-n-pentylureidyl)-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0123]
  • 2-[5-(N′-Hexyl-N′-hydroxyureldyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0124]
  • 2-[5-(N′-Hydroxy-N′-octylureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0125]
  • 2-[5-(N′-Hydroxy-methoxyethylureidyl)-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0126]
  • 2-[5-(N′-Decyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0127]
  • 2-[5-(N′-Hydroxy-N′-methylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0128]
  • 2-[5-(N′-Hydroxy-N′-i-propylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0129]
  • 2-[5-(N′-Butyl-N′-hydroxyureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0130]
  • 2-[5-(N′-Hydroxy-N′-propylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0131]
  • 2-[5-(N′-Ethyl-N′-hydroxyureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0132]
  • 2-[5-(N′-Hydroxy-N′-octylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0133]
  • 2-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(p-bromophenylsulfonylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene [0134]
  • 2-[-(N′-Benzyl-N′-hydroxyureidyl)-4-(2-bromophenylsulfonylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene [0135]
  • 2-[5-(N′-Hydroxy-N′-i-propylureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene [0136]
  • 2-[5-(N′-Hydroxyl-N′-otylureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene [0137]
  • 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene [0138]
  • 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene [0139]
  • 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene [0140]
  • 2-[5-(N′-Hydroxy-N′-methylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene [0141]
  • 2-[5-(N′-Hydroxy-N′-i-propylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene [0142]
  • 2-[5-(N′-Butyl-N′-hydroxyureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene [0143]
  • Triple Bonded Hydroxamates [0144]
  • 2-[5-[1-(N-Acetyl-N-hydroxyamino)propyn-3-yl]-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0145]
  • 2-[5-[1-(N-Hydroxy-N-propanoylamino)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0146]
  • 2-[5-[1-(N-Butanoyl-N-hydroxyamino)propyn-3-yl]-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0147]
  • 2-[5-[1-(N-Hydroxy-N-cyclohexanecarbonylamino)propyn-3-yl]-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0148]
  • 2-[5-[1-(N-Hydroxy-N-3-phenoxybenzoylamino)propyn-3-yl]-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0149]
  • 2-[5-[1-(N-Hydroxy-N-methoxybenzoylamino)propyn-3-yl]-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0150]
  • 2-[5-[1-(N-Hydroxy-N-hydroxybenzoylamino)propyn-3-yl]-4-(p-chlorophenylthioethoxy) -3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0151]
  • Triple Bonded Ureas [0152]
  • 2-[5-[1-(N′-Hydroxy-N′-methylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy) -3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0153]
  • 2-[5-[1-(N′-Ethyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0154]
  • 2-[5-[1-(N′-Hydroxy-N′-propylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0155]
  • 2-[5-[1-(N′-n-Butyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0156]
  • 2-[5-[1-(N′-Hydroxy-N′-i-propylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0157]
  • 2-[5-[1-(N′-tert-Butyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0158]
  • 2-[5-[1-(N′-Benzyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0159]
  • 2-[5-[1-(N′-Cyclopropylmethyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0160]
  • 2-[5-[1-(N-Allyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0161]
  • 2-[5-[1-(N′-Hydroxy-N′-hydroxyethylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0162]
  • Double Bonded Hydroxamates: Both Cis and Trans Isomers at the Tetrahydrofuran Ring [0163]
  • 2-[5-[trans-1-(N-Acetyl-N-hydroxyamino)propen-3-yl]-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0164]
  • 2-[5-[trans-1-(N-Hydroxy-N-propanoylamino)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0165]
  • 2-[5-[trans-1-(N-Butanoyl-N-hydroxyamino)propen-3-yl]-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0166]
  • 2-[5-[trans-1-(N-Hydroxy-N-cyclohexanecarbonylamino)propen-3-yl]-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0167]
  • 2-[5-[trans-1-(N-Hydroxy-N-phenoxybenzoylamino)propen-3-yl]-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0168]
  • 2-[5-[trans-1-(N-Hydroxy-N-methoxybenzoylamino)propen-3-yl]-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0169]
  • 2-[5-[trans-1-(N-Hydroxy-N-hydroxybenzoylamino)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0170]
  • Double Bonded Ureas: Both Cis and Trans Isomers at the Tetrahydrofuran Ring [0171]
  • 2-[5-[trans-1-(N′-Hydroxy-N′-methylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0172]
  • 2-[5-[trans-1-(N′-Ethyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0173]
  • 2-[5-[trans-1-(N′-Hydroxy-N′-propylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0174]
  • 2-[5-[trans-1-(N′-n-Butyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0175]
  • 2-[5-[trans-1-(N′-Hydroxy-N′-i-propylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0176]
  • 2-[5-[trans-1-(N′-tert-Butyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0177]
  • 2-[5-[trans-1-(N′-Benzyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0178]
  • 2-[5-[trans-1-(N′-Cyclopropylmethyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0179]
  • 2-[5-[trans-1-(N′-Allyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0180]
  • 2-[5-[trans-1-(N′-Hydroxy-N′-hydroxyethylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0181]
  • Formula II Cis and Trans Isomers of the Following Compounds N-Alkyl/arylhydroxyureas
  • 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0182]
  • 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0183]
  • 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxypheny)-tetrahydrofuran [0184]
  • 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(3,4,-dichlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0185]
  • 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0186]
  • 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0187]
  • 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0188]
  • 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0189]
  • 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylsulfonylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0190]
  • 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylsulfonylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0191]
  • 4-[5-(N′-Hydroxy-N′-methylureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0192]
  • 4-[5-(N′-Hydroxy-N′-methylureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimnethoxyphenyl)-tetrahydrofuran [0193]
  • 4-[5-(N′-Hydroxy-N′-methylureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0194]
  • 4-[5-(N′-Hydroxy-N′-methylureidyl)-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0195]
  • 4-[5-(N′-Hydroxy-N′-methylureidyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0196]
  • 4-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0197]
  • 4-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0198]
  • 4-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0199]
  • 4-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-(p-bromophenylsulfonylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0200]
  • 4-[5-(N′-p-Chlorophenyl-N′-hydroxyureidyl)-4-(2-bromophenylsultonylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0201]
  • 4-[5-(N′-p-Chlorophenyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0202]
  • 4-[5-(N′-tert-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0203]
  • 4-[5-(N′-tert-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0204]
  • 4-[5-(N′-tert-Butyl-N′-hydroxyureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0205]
  • 4-[5-(N′-Cyclohexyl-N′-hydroxyureidyl)-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0206]
  • 4-[5-(N′-Cyclohexyl-N′-hydroxyureidyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0207]
  • 4-[5-(N′-Cyclohexyl-N′-hydroxyureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0208]
  • 4-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0209]
  • 4-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0210]
  • 4-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(p-bromophenylsulfonylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0211]
  • 4-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(2-bromophenylsulfonylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0212]
  • 4-[5-(N′-Hydroxy-N′-i-propylureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0213]
  • 4-[5-(N′-sec-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trinethoxyphenyl)-tetrahydrofuran [0214]
  • 4-[5-(N′-sec-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0215]
  • 4-[5-(N′-Hydroxy-N′-propylureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0216]
  • 4-[5-(N′-Hydroxy-N′-n-pentylureidyl)-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0217]
  • 4-[5-(N′-Hexyl-N′-hydroxyureidyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0218]
  • 4-[5-(N′-Hydroxy-N′-octylureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0219]
  • 4-[5-(N′-Hydroxy-N′-methoxyethylureidyl)-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0220]
  • 4-[5-(N′-Decyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0221]
  • 4-[5-(N′-Hydroxy-N′-methylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0222]
  • 4-[5-(N′-Hydroxy-N′-i-propylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0223]
  • 4-[5-(N′-Butyl-N′-hydroxyureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0224]
  • 4-[5-(N′-Hydroxy-N′-propylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0225]
  • 4-[5-(N-Ethyl-N-hydroxyureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0226]
  • 4-[5-(N′-Hydroxy-N′-octylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0227]
  • 4-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(p-bromophenylsulfonylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0228]
  • 4-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(2-bromrophenyltsufonyethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0229]
  • 4-[5-(N′-Hydroxy-N′-i-propylureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0230]
  • 4-[5-(N′-Hydroxy-N′-octylureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0231]
  • 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0232]
  • 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0233]
  • 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0234]
  • 4-[5-(N′-Hydroxy-N′-methylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0235]
  • 4-[5-(N′-Hydroxy-N′-i-propylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0236]
  • 4-[5-(N′-Butyl-N′-hydroxyureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0237]
  • Triple Bonded Hydroxamates [0238]
  • 4-[5-[1-(N-Acetyl-N-hydroxyamino)propyn-3-yl]-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0239]
  • 4-[5-[1-(N-Hydroxy-N-propanoylamino)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0240]
  • 4-[5-[1-(N-Butanoyl-N-hydroxyamino)propyn-3-yl]-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0241]
  • 4-[5-[1-(N-Hydroxy-N-cyclohexanecarbonylamino)propyn-3-yl]-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0242]
  • 4-[5-[1-(N-Hydroxy-N-phenoxybenzoylamino)propyn-3-yl]-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0243]
  • 4-[5-[1-(N-Hydroxy-N-methoxybenzoylamino)propyn-3-yl]-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0244]
  • 4-[5-[1-(N-Hydroxy-N-hydroxybenzoylamino)propyn-3-yl]-4-(p-chlorophentylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0245]
  • Triple Bonded Ureas [0246]
  • 4-[5-[1-(N′-Hydroxy-N′-methylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0247]
  • 4-[5-[1-(N′-Ethyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0248]
  • 4-[5-[1-(N′-Hydroxy-N′-propylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0249]
  • 4-[5-[1-(N′-n-Butyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0250]
  • 4-[5-[1-(N′-Hydroxy-N′-i-propylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0251]
  • 4-[5-[1-(N′-tert-Butyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0252]
  • 4-[5-[1-(N′-Benzyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0253]
  • 4-[5-[1-(N′-Cyclopropylmethyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0254]
  • 4-[5-[1-(N′-Allyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0255]
  • 4-[5-[1-(N′-Hydroxy-N′-hydroxyethylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0256]
  • Double Bonded Hydroxamates: Both Cis and Trans Isomers at the Tetrahydrofuran Ring [0257]
  • 4-[5-[trans-1-(N-Acetyl-N-hydroxyamino)propen-3-yl]-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0258]
  • 4-[5-[trans-1-(N-Hydroxy-N-propanoylamino)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0259]
  • 4-[5-[trans-1-(N-Butanoyl-N-hydroxyamino)propen-3-yl]-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0260]
  • 4-[5-[trans-1-(N-Hydroxy-N-cyclohexanecarbonylamino)propen-3-yl]-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0261]
  • 4-[5-[trans-1-(N-Hydroxy-N-phenoxybenzoylamino)propen-3-yl]-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0262]
  • 4-[5-[trans-1-(N-Hydroxy-N-methoxybenzoylamino)propen-3-yl]-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0263]
  • 4-[5-[trans-1-(N-Hydroxy-N-hydroxybenzoylamino)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0264]
  • Double Bonded Ureas: Both Cis and Trans Isomers at the Tetrahydrofuran Ring [0265]
  • 4-[5-[trans-1-(N′-Hydroxy-N′-methylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0266]
  • 4-[5-[trans-1-(N′-Ethyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-tmethoxyphenyl)-tetrahydrofuran [0267]
  • 4-[5-[trans-1-(N′-Hydroxy-N′-propylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trinethoxyphenyl)-tetrahydrofuran [0268]
  • 4-[5-[trans-1-(N′-n-Butyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0269]
  • 4-[5-[trans-1-(N′-Hydroxy-N′-i-propylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0270]
  • 4-[5-[trans-1-(N′-tert-Butyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0271]
  • 4-[5-[trans-1-(N′-Benzyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0272]
  • 4-[5-[trans-1-(N′-Cyclopropyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0273]
  • 4-[5-[trans-1-(N′-Allyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0274]
  • 4-[5-[trans-1-(N′-Hydroxy-N′-hydroxyethylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0275]
  • Formula III Cis and Trans Isomers of the Following Compounds
  • 2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-N-methylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0276]
  • 2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-N-ethylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0277]
  • 2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-N,N-dipropylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0278]
  • 2-(3-Methoxy-4-p-bromophenylthioethoxy-5-N,N-dipropylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0279]
  • 2-(3-Methoxy-4-3,4-dichlorophenylthioethoxy-5-N,N-dipropylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0280]
  • 2-(3-Methoxy-4-p-fluorophenylthioethoxy-5-N,N-dipropylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0281]
  • 2-[3-Methoxy-4-(2,3,5,6-tetrafluorophenylthioethoxy)-5-N,N-dipropylaminophenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0282]
  • 2-[3-Methoxy-4-(2-bromophenylthioethoxy)-5-N,N-dipropylaminophenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0283]
  • 2-[3-Methoxy-4-p-chlorophenylthioethoxy-5-(1-pyrrolidinyl)phenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0284]
  • 2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-N,N-diethylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0285]
  • 2-[3-Methoxy-4-p-chlorophenylthioethoxy-5-(4-morpholinyl)phenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0286]
  • 2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-N,N-dibutylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran [0287]
  • B. Stereochemistry
  • The 2,5-diaryl tetrahydrofurans, tetrahydrothiophenes, and pyrrolidines. 1,3-cyclopentanes, and the 2,4-diaryl tetrahydrofurans, tetrahydrothiophenes, and pyrrolidines disclosed herein exhibit a number of stereochemical configurations. [0288] Carbon atoms 2 and 5 (or 2 and 4, in the compounds of Formula II) in the center ring are chiral, and thus the center ring exists at a minimum as a diastereomeric pair. Each diastereomer exists as a set of enantiomers. Therefore, based on the chiral C2 and C5 (or C2 and C4, in Formula II) atoms alone, the compound is a mixture of four enantiomers.
  • If nonhydrogen substituents are located on carbon atoms 3 and 4 in the center ring, (or carbon atoms 3 and 5, in Formula II compounds) then the C[0289] 3 and C4 atoms are also chiral, and can also exist as a diastereomeric pair, that is also a mixture of four enantiomers.
  • The R groups in the active compounds described herein can likewise include chiral carbons, and thus, optically active centers. [0290]
  • It is sometimes found that one or more enantiomers of a biologically active compound is more active, and perhaps less toxic, than other enantiomers of the same compound. Such enantiomerically enriched compounds are often preferred for pharmaceutical administration to humans. For example, it has been discovered that trans-2,5-diaryl tetrahydrothiophene and trans-2,5-diaryl tetrahydrofuran are often more active PAF receptor antagonists than their cis counterparts. [0291]
  • One of ordinary skill in the art can easily synthesize and separate the enantiomers of the disclosed compounds using chiral reagents and known procedures, and can evaluate the biological activity of the isolated enantiomer using methods disclosed herein or otherwise known. Through the use of chiral NMR shift reagents, polarimetry, or chiral HPLC, the optical enrichment of the compound can be determined. [0292]
  • Classical methods of resolution include a variety of physical and chemical techniques. Often the simplest and most efficient technique is repeated recrystallization. Recrystallization can be performed at any stage in the preparation of the compound, or the final enantiomeric product. If successful, this simple approach represents a method of choice. [0293]
  • When recrystallization fails to provide material of acceptable optical purity, other methods can be evaluated. If the compound is basic, one can use chiral acids that form diastereomeric derivatives that may possess significantly different solubility properties. Nonlimiting examples of chiral acids include malic acid, mandelic acid, dibenzoyl tartaric acid, 3-bromocamphor-8-sulfonic acid, 10-camphorsulfonic acid, and di-p-toluoyltartaric acid. Similarly, acylation of a free hydroxyl group with a chiral acid also results in the formation of diastereomeric derivatives whose physical properties may differ sufficiently to permit separation. [0294]
  • Enantiomerically pure or enriched compounds can be obtained by passing the racemic mixture through a chromatographic column that has been designed for chiral separations, including cyclodextrin bonded columns marketed by Rainin Corporation. [0295]
  • A variety of chemical reagents and experimental procedures have been developed in recent years to produce enantiomerically pure or enriched products. For example, individual 2S, 5S or 2R, 5R enantiomers of 2,5-diaryl tetrahydrofurans can be prepared by the method described by Corey et al. (Corey, E. J., et al., [0296] Tetrahedron Letters 29, 2899 (1988)).
  • C. Syntheses of Active Compounds [0297]
  • The 2,5-diaryl tetrahydrofurans and tetrahydrothiophenes disclosed herein can be prepared in a variety of ways known to those skilled in the art, including by methods disclosed in or obvious in view of methods disclosed in U.S. Pat. Nos. 4,539,332, 4,757,084, 4,996,203 and 5,001,123, and European Patent Application Nos. 90306234.7, 90306235.4, and 89202593.3. [0298]
  • 1,3-Diaryl cyclopentanes can be prepared using the procedure of Graham, et al. (1,3-Diaryl Cyclopentanes: A New Class of Potent PAF Receptor Antagonists. 197[0299] th ACS National Meeting, Dallas, Tex., Apr. 9-14, 1989, Division of Medicinal Chemistry, poster no. 25 (abstract)), or by other known methods.
  • 2,5-Diaryl pyrrolidines can be prepared by methods known to those skilled in the art including that described by Boekvall, et al. ([0300] J. Org. Chem. 55, 826 (1990)).
  • 2,4-Diaryl tetrahydrofurans and tetrahydrothiophenes and 2,4-diaryl pyrrolidines can also be prepared by adaptations of methods described herein, or by other known methods. [0301]
  • A general procedure for preparing a hydroxyurea is: [0302]
    Figure US20020177723A1-20021128-C00013
  • wherein R is a 2,5-diaryl tetrahydrothiophene, tetrahydrofuran, or pyrrolidine; 1,3-diaryl cyclopentane; or 2,4-diaryl tetrahydrothiophene, tetrahydrofuran or pyrrolidine; with or without a linking moiety, and R′ is a moiety as defined in detail above. [0303]
  • General procedures for preparing reverse hydroxyureas are: [0304]
    Figure US20020177723A1-20021128-C00014
  • A general procedure for preparing a hydroxamic acid is: [0305]
    Figure US20020177723A1-20021128-C00015
  • A general procedure for preparing a reverse hydroxamic acid is: [0306]
    Figure US20020177723A1-20021128-C00016
  • A general procedure for preparing amidohydroxyurea moieties is: [0307]
    Figure US20020177723A1-20021128-C00017
  • Oxalkanes and thioalkanes can be prepared as described by Crawley, et al., [0308] J. Med. Chem., 35, 2600-2609 (1992), and illustrated below, by conversion of the desired moiety into a Grignard reagent or lithium salt, followed by reaction with the appropriate cyclic ketone.
    Figure US20020177723A1-20021128-C00018
    Figure US20020177723A1-20021128-C00019
    Figure US20020177723A1-20021128-C00020
  • Quinolylmethoxy moieties can be prepared as described by Musser, et al., [0309] J. Med. Chem., 35, 2501-2524 (1992), and references cited therein, as illustrated below.
    Figure US20020177723A1-20021128-C00021
  • A method for the preparation of trans-2-[5-(N′-methyl-N′-hydroxyureidylmethyl)-3-methoxy-4-p-chlorophenylthioethoxyphenyl]-5-(3, 4, 5-trimethoxyphenyl)tetrahydrofuran is described in detail in the working example below. This example is merely illustrative, and not intended to limit the scope of the invention. [0310]
  • EXAMPLE 1 Preparation of trans-2-[5-(N′-methyl-N′-hydroxyureidylmethyl)-3-methoxy-4-p-chlorophenylthioethoxyphenyl]-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran (29, FIGS. 1 a and 1 b)
  • 3-(N,N-Dimethylamino)-1-(3,4,5-trimethoxyphenyl)-1-propanone ([0311] compound 101, FIG. 1). 3,4,5-Trimethoxyacetophenone (50 g, 237.8 mmole), paraformaldehyde (9.75 g, 304.7 mmole), dimethylamine hydrochloride (26.42 g, 324.0 mmole) and 5 mL conc. HCl were dissolved in 200 mL absolute ethanol and refluxed for 10 hours. Additional dimethylamine hydrochloride (13.21 g, 162.0 mmole) and paraformaldehyde (9.75 g, 304.7 mmole) were added and the solution returned to reflux. After 54 hours (total reaction time), 80 mL of 10% HCl and 500 mL of water were added and the solution was extracted with ethyl ether. The acidic aqueous layer was adjusted to pH 10 with 10% NaOH. The basic solution was extracted with ethyl acetate, dried over MgSO4, filtered and evaporated in vacuo to provide 57.5 g of a yellow oil (92%). 1H NMR (CDCl3): 2.30 (s, 6H); 2,74 (t, 2H); 3.11 (t, 3H); 3.91 (s, 9H); 7.23 (s, 1H); 7.32 (s, 1H).
  • 3-(N,N,N-Trimethylamino)-1-(3,4,5-trimethoxyphenyl)-1-propanone iodide ([0312] compound 102, FIG. 1). 3-(N,N-Dimethylamino)-1-(3,4,5-trimethoxyphenyl)-1-propanone (57 g, 213.5 mmole) was dissolved in 200 mL of anhydrous diethyl ether. To this solution was added methyl iodide (57.6 g, 405.7 mmole). A white precipitate formed immediately, and the reaction mixture was stirred at room temperature for an additional 2 hours. This product was isolated by suction filtration (83.8 g, 96%)
  • 3,4,5-Trimethoxyphenylvinylketone ([0313] compound 103, FIG. 1). 3-(N,N,N-Trimethylamino) -1-(3,4,5-trimethoxyphenyl)-1-propanone iodide (50 g, 120 mmole) was dissolved in H2O (500 mL) and ethyl acetate (500 mL) was added. The mixture was vigorously stirred at reflux for 3 hours. The reaction mixture was cooled and the layers were separated. To the aqueous phase was added ethyl acetate (400 mL). This was brought to reflux for 1.5 hours. The reaction mixture was cooled and separated. The combined organic layers were washed with saturated NaCl solution, dried over Na2SO4, filtered and concentrated in vacuo to an oil which was purified by flash column cbromatography using 3:1 hexane/ethyl acetate as solvent (14.7 g, 54%). 1H NMR (CDCl3): 3.92 (s, 9H); 5.92 (d, 1H); 6.44 (d, 1H); 7.12 (m, 1H); 7.22 (s, 2H).
  • 3-Methoxy-4-hydoxyethoxy-5-iodobenzaldehyde ([0314] compound 104, FIG. 1). 5-Iodovanillin (25 g, 90 mmol) in DMF (100 mL) was added to potassium carbonate (18.6 g, 135 mmol). The mixture was heated at 40° C. for 16 hours. The reaction mixture was allowed to cool to room temperature and quenched with water (500 mL) and extracted with ethyl acetate. The organic layer was washed with water and saturated NaCl solution, and dried over MgSO4, filtered and evaporated in vacuo to an oil, and then purified by column chromatography (silica, 2:1 hexane/ethyl acetate), to provide the product (16.6 g, 57%). 1H NMR (CDCl3): 2.70 (t, 1H); 3.92 (t, 2H); 3.92 (s, 3H); 3.94 (s, 3H); 4.29 (t, 2H); 7.44(s,1H); 7.87 (s, 1H); 9.85 (s, 1H).
  • 1-(3-Methoxy-4-hydroxyethoxy-5-iodophenyl)-4-(3,4,5-trimethoxyphenyl)-1,4-butanedione ([0315] compound 105, FIG. 1). 3,4,5-Trimethoxyphenylvinylketone (4.8 g, 21.6 mmol), 3-methoxy-4-hydroxyethoxy-5-iodobenzaldehyde (5.7 g, 17.8 mmol), and 3-benzyl-5-(2-hydroxyethyl)-4-methylthiazolium chloride (1.9 g, 7.0 mmol) were stirred in triethylamine (20 mL) at 60° C. for 16 hours. The reaction mixture was then acidified with 10% HCl, and extracted with dichloromethane. The organic layer was dried over MgSO4, filtered and evaporated in vacuo. The product was purified in column chromatography (silica. 1:1 hexane/ethyl acetate) as a solid (9.7 g, 51%). 1H NMR (CDCl3): 3.41 (m, 4H); 3.90 (m, 2H); 3.92 (s, 3H); 3.93 (s, 9H); 4.26 (t, 2H); 7.29 (s, 2H); 7.57 (d, 1H); 8.08 (d, 1H).
  • 1-(3-Methoxy-4-hydroxyethoxy-5-iodophenyl)-4-(3,4,5-trimethoxyphenyl) -1,4-butanediol ([0316] compound 106, FIG. 1). 1-(3-Methoxy-4-hydroxyethoxy-5-iodophenyl)-4-(3,4,5-trimethoxyphenyl)-1,4-butanedione (11.6 g, 21.3 mmol), was added to 120 mL tetrahydrofuran and 240 mL methanol. To this solution was added dropwise sodium borohydride (1.45 g, 38.4 mmol), in 60 mL water. The reaction mixture was stirred at room temperature for 2.5 hours, and then cooled, quenched with water, and the aqueous layer extracted with ethyl acetate. The organic layer was dried over MgSO4, filtered and evaporated in vacuo to provide the product (11.8 g, 98.8%). 1H NMR (CDCl3): 1.84 (m, 4H); 3.84 (m, 2H); 3.86 (s, 3H); 3.87 (s, 9H); 4.15 (t, 2H); 4.68 (m, 2H); 6.57 (s, 2H); 6.91 (s, 1H); 7.32 (s, 1H).
  • trans-2-(3-Methoxy-4-hydroxyethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran ([0317] compound 107, FIG. 1). To 1-(3-methoxy-4-hydroxyethoxy-5-iodophenyl)-4-(3,4,5-trimethoxyphenyl)-1,4-butanediol (11.8 g 21.5 mmol) in chloroform (100 mL) at 0° C. was added dropwise trifluoroacetic acid (9.82 g, 86.1 mmol) in chloroform (100 mL) over 30 minutes. The solution was stirred at 0° C. for 2 hours and then at room temperature for 1 hour. The reaction mixture was quenched with 1N NaOH and chloroform (100 mL) was added. The organic layer was washed with 1N NaOH solution, water and saturated NaCl solution, and then dried over MgSO4, filtered and evaporated in vacuo to an oil which was a cis and trans mixture. The trans isomer was isolated by column chromatography (silica, 1:1 hexane/ethyl acetate) (4.7 g, 41.4%) as the faster eluting isomer. 1H NMR (CDCl3): 1.99 (m, 2H); 2.47 (m, 2H); 3.83 (t, 2H); 3.84 (s, 3H); 3.87 (s, 3H); 3.89 (s, 6H); 4.16 (t, 2H); 5.18 (m, 2H); 6.62 (s, 2H); 6.96 (d, 1H); 7.39 (d, 1H).
  • trans-2-(3-Methoxy-4-methylsulfoxyethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran ([0318] compound 108, FIG. 1). To the solution of trans-2-(3-methoxy-4hydroxyethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl) tetrahydrofuran (4.7 g, 8.87 mmol) in dichloromethane (50 mL) at 0° C. was added methylsulfonyl chloride (3.05 g, 26.6 mmole) and triethylamine (2.69 g, 26.60 mmol). The reaction mixture was stirred at 0° C. for 2 hours and room temperature overnight. The solvent was evaporated in vacuo and the residue purified by column chromatography (silica, 1:1 hexanelethyl acetate) (4.17 g, 77.3%). 1H NMR (CDCl3): 1.98 (m, 2H); 2.45 (m, 2H); 3.15 (s, 3H); 3.84 (s, 3H); 3.88 (s, 9H); 4.26 (t, 2H); 4.61 (t, 2H); 5.17 (m, 2H); 6.62 (s, 2H); 6.96 (d, 1H); 7.38 (d, 1H).
  • trans-2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran ([0319] compound 109, FIG. 1), trans-2-(3-Methoxy-4-methylsulfoxyethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl) tetrahydrofuran (2.5 g, 4.11 mmol) was dissolved in 50 mL ethanol. To this solution was added 4-chlorothiophenol (1.19 g, 8.22 mmol) and triethylamine (0.831 g, 8.22 mmol). The reaction mixture was refluxed for 16 hours and then the solvent was removed in vacuo. The residue was purified by column chromatography (silica, 3:1 hexanelethyl acetate) (2.35 g, 87%). 1H NMR (CDCl3): 1.97 (m, 2H); 2.45 (m, 2H); 3.35 (t, 2H); 3.82 (s, 3H); 3.84 (s, 3H); 3.88 (s, 6H); 4.11 (t, 2H); 5.17 (m, 2H); 6.61 (s, 2H); 6.92 (s, 1H); 7.26 (d, 2H); 7.33 (d, 2H); 7.35 (s, 1H).
  • trans-2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-cyanophenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran ([0320] compound 110, FIG. 1), trans-2-(3-Methoxy-4p-chlorophenylthioethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl) tetrahydrofuran (2.35 g, 3.58 mmole) and CuCN (0.358 g, 4.30 mmole) in DMF (20 mL) were heated at 140° C. for 16 hours. The reaction mixture was cooled and quenched with water and extracted with ethyl acetate. The organic layer was washed with water and saturated NaCl solution, dried over MgSO4, filtered and evaporated in vacuo to oil which was purified by column chromatography (silica, 2:1 hexanelethyl acetate) (1.79 g, 90.0%). 1H NMR (CDCl3): 1.99 (m, 2H); 2.47 (m, 2H); 3.32 (t, 2H); 3.85 (s, 6H), 3.89 (s, 6H); 4.27 (t, 2H); 5.17 (m, 2H); 6.61 (s, 2H); 7.16 (s, 2H); 7.28 (d, 2H); 7.32 (d, 2H).
  • trans 2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-aminomethylphenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran ([0321] compound 111, FIG. 1). To trans-2-(3-methoxy-4-p-chlorophenylthioethoxy-5-cyanophenyl)-5-(3,4,5-trimethoxyphenyl tetrahydrofuran (300 mg, 0.5405 mmol) in THF (10 mL) was added sodium borohydride (36.8 mg, 0.9729 mmol) and boron trifluoride etherate (191.8 mg. 1.3512 mmol) dropwise. The reaction mixture was refluxed for 1 hour, cooled, and then treated with a few drops of 10% HCl. The reaction mixture was poured into 10% K2CO3 and extracted with ethyl acetate. The organic layer was washed with water and saturated NaCl solution, dried over MgSO4, filtered and evaporated in vacuo to an oil which was purified by column chromatography (silica, 93:7 CH2Cl2/MeOH) 64 mg, 21.2%). 1H NMR (CDCl3): 1.99 (m, 2H); 2.46 (m, 2H); 3.28 (t, 2H); 3.84 (s, 6H); 3.88 (s, 6H); 4.26 (t, 2H); 5.19 (m, 2H); 6.71 (s, 2H); 6.90 (s, 2H); 7.25 (d, 2H); 7.32 (d, 2H).
  • trans-2-[5-(N′-Methyl-N′-hydroxyureidylmethyl)-3-methoxy-4-p-chlorophenylthioethoxypenyl]-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran (29, FIG. 1), trans-2-(3-methoxy-4-p-chlorophenylthioethoxy-5-aminomethylphenyl) -5-(3,4,5-trimethoxyphenyl) tetrahydrofuran (54 mg, 0.0966 mmol) was dissolved in 4 mL dry dichloromethane. To this solution was added triphosgene (9.46 mg, 0.0319 mmol) and triethylamine (9.77 mg, 0.0966 mmol). The reaction mixture was refluxed for 2 hours and then cooled to room temperature. To this solution was then added triethylamine (35.2 mg, 0.3478 mmol) and methylhydroxyamine hydrochloride (24.2 mg. 0.2898 mmol). The reaction mixture was stirred at room temperature overnight, and then quenched with water and extracted with dichloromethane. The organic layer was washed with water and saturated NaCl solution, dried over MgSO[0322] 4, filtered and evaporated in vacuo. The product was purified by column chromatography (silica, ethyl acetate) (49 mg, 80.1%). 1H NMR (CDCl3): 1.97 (m, 2H); 2.43 (m, 2H); 3.08 (s, 3H); 3.27 (t, 2H); 3.82 (s, 3H); 3.83 (s, 3H); 3.87 (s, 6H); 4.15 (t, 2H); 4.39 (d, 2H); 5.17 (m, 2H); 6.41 (t, 1H); 6.51 (s, 2H); 6.78 (broad s, 1H); 6.90 (s, 2H); 7.24 (d, 2H); 7.31 (d, 2H).
  • II. Pharmaceutical Compositions
  • Humans, equine, canine, bovine and other animals, and in particular, mammals, suffering from inflammatory diseases, and in particular, disorders mediated by PAF or products of 5-lipoxygenase can be treated by administering to the patient an effective amount of one or more of the above-identified compounds or a pharmaceutically acceptable derivative or salt thereof in a pharmaceutically acceptable carrier or diluent to reduce formation of oxygen radicals. The active materials can be administered by any appropriate route, for example, orally, parenterally, intravenously, intradermally, subcutaneously, or topically, in liquid, cream, gel or solid form. [0323]
  • As used herein, the term pharmaceutically acceptable salts or complexes refers to salts or complexes that retain the desired biological activity of the above-identified compounds and exhibit minimal undesired toxicological effects. Nonlimiting examples of such salts are (a) acid addition salts formed with inorganic acids (for example, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, and the like), and salts formed with organic acids such as acetic acid, oxalic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, tannic acid, pamoic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid, and polygalacturonic acid; (b) base addition salts formed with metal cations such as zinc, calcium, bismuth, barium, magnesium, aluminum, copper, cobalt, nickel, cadmium, sodium, potassium, and the like, or with a cation formed from ammonia, N,N-dibenzylethylene-diamine, D-glucosamine, tetraethylammonium, or ethylenediamine; or (c) combinations of (a) and (b); e.g., a zinc tannate salt or the like. The compounds can also be administered as pharmaceutically acceptable quaternary salts known by those skilled in the art, which specifically include the quaternary ammonium salt of the formula —NR-Z—, wherein R is alkyl or benzyl, and Z is a counterion, including chloride, bromide, iodide, —O-alkyl, toluenesulfonate, methylsulfonate, sulfonate, phosphate, or carboxylate (such as benzoate, succinate, acetate, glycolate, maleate, malate, citrate, tartrate, ascorbate, benzoate, cinnamoate, mandeloate, benzyloate, and diphenylacetate. [0324]
  • The active compound is included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutically effective amount without causing serious toxic effects in the patient treated. A preferred dose of the active compound for all of the above-mentioned conditions is in the range from about 0.01 to 300 mg/kg, preferably 0.1 to 100 mg/kg per day, more generally 0.5 to about 25 mg per kilogram body weight of the recipient per day. A typical topical dosage will range from; 0.01-3% wt/wt in a suitable carrier. The effective dosage range of the pharmaceutically acceptable derivatives can be calculated based on the weight of the parent compound to be delivered. If the derivative exhibits activity in itself, the effective dosage can be estimated as above using the weight of the derivative, or by other means known to those skilled in the art. [0325]
  • The compound is conveniently administered in any suitable unit dosage form, including but not limited to one containing 1 to 3000 mg, preferably 5 to 500 mg of active ingredient per unit dosage form. A oral dosage of 25-250 mg is usually convenient. [0326]
  • The active ingredient should be administered to achieve peak plasma concentrations of the active compound of about 0.01-30 mM, preferably about 0.1-10 mM. This may be achieved, for example, by the intravenous injection of a solution or formulation of the active ingredient, optionally in saline, or an aqueous medium or administered as a bolus of the active ingredient. [0327]
  • The concentration of active compound in the drug composition will depend on absorption, distribution, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition. The active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time. [0328]
  • Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. [0329]
  • The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a dispersing agent such as alginic acid. Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring. When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil. In addition, dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar, shellac, or enteric agents. [0330]
  • The active compound or pharmaceutically acceptable salt or derivative thereof can be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors. [0331]
  • The active compound or pharmaceutically acceptable derivatives or salts thereof can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antibiotics, antifungals, other antiinflammatories, or antiviral compounds. [0332]
  • Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite: chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. [0333]
  • If administered intravenously, preferred carriers are physiological saline or phosphate buffered saline (PBS). [0334]
  • In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation (CA) and Scios Nova (Baltimore, Md.). Liposomal suspensions may also be pharmaceutically acceptable carriers. These may be prepared-according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811 (which is incorporated herein by reference in its entirety). For example, liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container. An aqueous solution of the active compound or its monophosphate, diphosphate, and/or triphosphate derivatives are then introduced into the container. The container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension. [0335]
  • III. Biological Activity
  • A wide variety of biological assays have been used to evaluate the ability of a compound to act as a PAF receptor antagonist, including the ability of the compound to bind to PAF receptors, and the effect of the compound on various PAF mediated pathways. Any of these known assays can be used to evaluate the ability of the compounds disclosed herein to act as PAF receptor antagonists. [0336]
  • For example, PAF is known to induce hemoconcentration and increased permeability of microcirculation leading to a decrease in plasma volume. PAF mediated acute circulatory collapse can be used as the basis of an assay to evaluate the ability of a compound to act as a PAF antagonist, by analyzing the effect of the compound on PAF induced decreased plasma volume in an animal model such as mouse. Endotoxemia causes the release of chemical mediators including eicosanoids, PAF, and tumor necrosis factor (TNF) that stimulate a variety of physiologic responses including fever, hypotension, leukocytosis, and disturbances in glucose and lipid metabolism. Endotoxemia can result in severe shock and death. Endotoxin-induced mouse mortality is a useful animal model to evaluate the pharmacological effect of compounds on endotoxic shock. [0337]
  • Two other common assays used to evaluate the ability of a compound to act as a PAF receptor antagonist are platelet aggregation in vitro and hypotension in rats (Shen, et al., “The Chemical and Biological Properties of PAF Agonists, Antagonists, and Biosynthetic Inhibitors”, [0338] Platelet-Activating Factor and Related Lipid Mediators, F. Snyder. Ed. Plenum Press, New York, N.Y. 153 (1987)).
  • A wide variety of biological assays have also been used to evaluate the ability of a compound to inhibit the enzyme 5-lipoxygenase. For example, a cytosol 5-lipoxygenase of rat basophilic leukemia ceuls (RBL) has been widely utilized in studies on leukotriene biosynthesis. Compounds that inhibit 5-lipoxygenase decrease the levels of leukotrienes. Another biological assay used to evaluate the ability of a compound to inhibit the enzyme 5-lipoxygenase is based on the classic pharmacological model of inflammation induced by the topical application of arachidonic acid to the mouse ear. On application, arachidonic acid is converted by 5-lipoxygenase to various leukotrienes (and other mediators), which induce changes in blood flow, erythema, and increase vasodilation and vasopermeability. The resulting edema is measured by comparing the thickness of the treated ear to a control ear. Agents that inhibit 5-lipoxygenase reduce the edematous response, by lowering the amounts of biochemical mediators formed from arachidonic acid. [0339]
  • EXAMPLE 2 Ability of Compound to Bind to PAF Receptors
  • a) Preparation of Human Platelet Membranes [0340]
  • Human platelet membranes were prepared from platelet concentrates obtained from the American Red Cross Blood Services (Dedham, Mass.). After several washes with platelet wash solution (150 mM NaCl, 10 mM Tris, and 2 mM EDTA, pH 7.5), the platelet pellets were resuspended in 5 mM MgCl. 10 mM Tris, and 2 mM EDTA at pH 7.0. The cells were then quickly frozen with liquid nitrogen and thawed slowly at room temperature. The freezing and thawing procedure was repeated at least three times. For further fractionation of membrane fragments, the lysed membrane suspension was layered over the top of a discontinuous sucrose density gradient of 0.25, 1.03, and 1.5 M sucrose prepared in 10 mM MgCl[0341] 2, 10 mM Tris and 2 mM EDTA, pH 7.0, and centrifuged at 63,500×g for 2 hr. The membrane fractions banding between 0.25 and 1.03 M (membrane A) and between 1.03 and 1.5 M (membrane B) were collected separately. The protein concentration of the membrane preparations was determined by Lowry's method with bovine serum albumin (BSA) as the standard. The membranes were then separated into smaller fractions (4 ml each) and stored at −80° C. and thawed before use.
  • b) [[0342] 3H]PAF Binding inhibition
  • The ability of [[0343] 3H]PAF to bind to specific receptors on human platelet membranes was evaluated at optimal conditions at pH 7.0 and in the presence of 10 mM MgCl2. Membrane protein (100 μg) was added to a final 0.5 ml solution containing 0.15 pmol (0.3 nM concentration) of [3H]PAF and a known amount of unlabeled PAF or PAF receptor antagonist in 10 mM MgCl2, 10 mM Tris and 0.25% BSA at pH 7.0. After incubation for four hours at 0° C., the bound and unbound [3H]PAF were separated through a Whatman GF/C glass fiber filter under vacuum. No degradation of filter bound [3H]PAF has been detected under this assay condition. The nonspecific binding was defined as the total binding in the presence of excess unlabeled PAF (1 mM) where no further displacement was found with higher concentrations of either unlabeled PAF or PAF analogs or PAF receptor antagonists. The specific binding was defined as the difference between total binding and nonspecific binding.
  • To determine the relative potency of tested compounds, [3H]PAF binding in the presence of inhibitors was normalized in terms of percent inhibition by assigning the total binding in the absence of inhibitors as 0% inhibition and the total binding in the presence of 1 mM unlabeled PAF as 100%. The percent inhibition by the compound can be calculated by the formula expressed below: [0344] % inhibition = [ ( Total binding - total binding in the presence of compound ) / nonspecific binding ] × 100 %
    Figure US20020177723A1-20021128-M00001
  • The IC[0345] 50 was calculated as the concentration of the inhibitor necessary to obtain 50% inhibition of the specific [3H]PAF binding and was calculated by a nonlinear regression computer software program, GraphPad Inplot, version 3.0 (GraphPad software, San Diego, Calif.). Tables 1 and 2 provide IC50 values for a number of the disclosed compounds.
    TABLE 1
    Figure US20020177723A1-20021128-C00022
    IC50(nM)
    Compounds A B PAF 5-LO
    1 S—Ph-p-Br* CH2CH2CH2CH3 20.9 18.7
    2 SO2—Ph-p-Br CH2CH2CH2CH3 38.3
    3 S—Ph-2-Br CH2CH2CH2CH3 23.0 33.0
    4 SO2—Ph-2-Br CH2CH2CH2CH3 25.0 161.0
    5 S—Ph-3-Br CH2CH2CH2CH3 16.0 43.3
    6 S—Ph-p-F CH2CH2CH2CH3 45.0 63.8
    7 S—Ph-2,3,5,6-F CH2CH2CH2CH3 2.2 118.4
    8 SO2—Ph-2,3,5,6-F CH2CH2CH2CH3 285.3 520.2
    9 O—Ph-2,3,5,6-F CH2CH2CH2CH3 55.3 132.8
    10 S—Ph-p-Cl CH2CH2CH2CH3 10.0 58.5
    11 S—Ph-3,4-Cl CH2CH2CH2CH3 45.0 17.4
    12 S—Ph-p-OH CH2CH2CH2CH3 5.53 180.0
    13 S—Ph-p-OCH3 CH2CH2CH2CH3 39.2 71.2
    14 S—Ph-p-CN CH2CH2CH2CH3 62.6 62.3
    15 SCH3 CH2CH2CH2CH3 13.5 190.0
    16 OCH3 CH2CH2CH2CH3 195.2
    17
    Figure US20020177723A1-20021128-C00023
    CH2CH2CH2CH3 281.0 87.0
    18
    Figure US20020177723A1-20021128-C00024
    CH2CH2CH2CH3 390.6
    19
    Figure US20020177723A1-20021128-C00025
    CH3 321.2 719.0
    20
    Figure US20020177723A1-20021128-C00026
    CH2Ph 622.7 900.9
    21
    Figure US20020177723A1-20021128-C00027
    CH2CH2CH2CH3 321.8 366.3
    22
    Figure US20020177723A1-20021128-C00028
    CH2CH2CH2CH3 16.3 479.0
    23
    Figure US20020177723A1-20021128-C00029
    CH2CH2CH2CH3 197.4
    24
    Figure US20020177723A1-20021128-C00030
    Ph-p-Cl 84.2
    25
    Figure US20020177723A1-20021128-C00031
    Ph-p-Cl 6285 670.0
    26 CH3 Ph-p-Cl 217.6 533.0
    27 S—Ph-p-OH Ph-p-Cl 26.9 3000
    28 SCH3 Ph-p-Cl 317.7 3000
  • [0346]
    TABLE 2
    Figure US20020177723A1-20021128-C00032
    IC50(nM)
    Compounds A B PAF 5-LO
    29 S—Ph-p-Cl CH2NHCON(OH)CH3 7.60 22.2
    30 S—Ph-p-Cl CH2N(CH2CH2CH3)CON(OH)CH3 7.40
    31 S—Ph-p-Cl CH2N(OH)CONH2 33.2 34.2
    32 S—Ph-p-Cl CH2N(OH)CON 06 185.0
    33 S—Ph-p-Cl NHCOCH2N(OH) 318.0
    34 S—Ph-p-Cl NHCOCH2N(OH)CONHCH3 3318.8
    35 O—Ph-p-F ≡—CH2N(OH)CONH2 73.9 828.2
    36 S—Ph-p-Cl ≡—CH2N(OH)CONH2 11.3
  • EXAMPLE 3 Effect of Compound on PAF-induced Hemoconcentration
  • a) Animals [0347]
  • Female CD-1 mice, weighing 16-20 grams, were obtained from Charles River Laboratory (Wilmington, Mass.). Tap water and rodent laboratory chow (5001, Purina Mills, St. Louis, Mo.) were provided ad libitum. The mice were housed for an average of four days prior to use. [0348]
  • b) Hematocrit Measurement [0349]
  • PAF (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine, Sigma Chemical Co.) was dissolved in 0.25% bovine serum albumin (BSA) in 0.9% NaCl solution. Except for dose-response studies, 10 μg (10 ml/kg) of PAF solution was injected into the tail vein. All test compounds were dissolved in 0.5 DMSO saline solution and intravenously injected at 3 mg/kg body weight 15 minutes prior to PAF challenge. Thirty to fifty μL blood was collected by cutting the tail end into a heparinized micro-hematocrit tube (O.D. 1.50 mm) 15 minutes after PAF administration. Table 2 provides the mouse hematocrit response to varying concentration of PAF at 15 minutes after injection of PAF. Tables 3 and 4 provide the effect of various test compounds on PAF-induced mouse hemoconcentration; the reference compound MK287 is trans-2-(3,4,5-trimethoxy)-5-(3-methoxy-4-oxyallyl-(2-hydroxyethylsulfonyl))-tetrahydrofuran. (Sahoo, et al., Bioorganic Medicinal Chem. Letters, (1991), 1, 327.) [0350]
  • EXAMPLE 4 Effect of 2,5-Diaryl Tetrahydrothiophenes and Tetrahydrofurans on Arachidonic Acid-induced Mouse Ear Edema
  • a) Animals [0351]
  • The animals were obtained and treated as in Example 3 above. [0352]
  • b) Edema Measurement [0353]
  • Arachidonic acid was applied to both ears of mice in 0.025 ml of freshly prepared vehicle (acetone:pyridine:water) (97:2:1 v/v/v) and dried under a Sun-Lite Hitensity bulb. Except for dose-response studies, 0.5 mg of arachidonic acid was used for all applications. All test compounds were dissolved in 0.5% DMSO saline solution and intravenously injected at 3 mg/kg body weight 15 minutes prior to arachidonic acid treatment. Animals were sacrificed by cervical dislocation at 1 hour after topical application of arachidonic acid. A 7 mm-diameter disc of tissue was removed from each ear by means of a metal punch. Edema was measured by the average wet weight of the both ear tissues. [0354]
  • Tables 3 and 4 provides the effect of various test compounds on arachidonic acid induced mouse ear edema. [0355]
    TABLE 3
    Figure US20020177723A1-20021128-C00033
    InH (%)*
    Compounds A B PAF-Htc AA-Ed
    1 S—Ph-p-Br CH2CH2CH2CH3 −10.5 −2.7
    2 SO2—Ph-p-Br CH2CH2CH2CH3 29.3 34.5
    3 S—Ph-2-Br CH2CH2CH2CH3 34.2 26.3
    4 SO2—Ph-2-Br CH2CH2CH2CH3 60.4 −9.1
    5 S—Ph-3-Br CH2CH2CH2CH3 28.2 40.2
    6 S—Ph-p-F CH2CH2CH2CH3 33.6
    7 S—Ph-2,3,5,6-F CH2CH2CH2CH3 58.8 30.4
    8 SO2—Ph-2,3,5,6-F CH2CH2CH2CH3 50.4 11.9
    9 O—Ph-2,3,5,6-F CH2CH2CH2CH3 59.1 29.2
    10 S—Ph-p-Cl CH2CH2CH2CH3 25.3 39.2
    11 S—Ph-3,4-Cl CH2CH2CH2CH3 26.1 26.3
    12 S—Ph-p-OH CH2CH2CH2CH3 33.5 49.9
    13 S—Ph-p-OCH3 CH2CH2CH2CH3 23.6 2.7
    14 S—Ph-p-CN CH2CH2CH2CH3 −12.4 46.5
    15 SCH3 CH2CH2CH2CH3 11.1 41.1
    16 OCH3 CH2CH2CH2CH3 11.2
    17
    Figure US20020177723A1-20021128-C00034
    CH2CH2CH2CH3 26.1 57.0
    19
    Figure US20020177723A1-20021128-C00035
    CH3 49.6 47.8
    20
    Figure US20020177723A1-20021128-C00036
    CH2Ph 63.1 49.9
    21
    Figure US20020177723A1-20021128-C00037
    CH2CH2CH2CH3 70.4 57.0
    26 CH3 Ph-p-Cl 23.7
  • [0356]
    TABLE 4
    Figure US20020177723A1-20021128-C00038
    InH (%)*
    Compounds A B PAF-Htc AA-Ed
    29 S—Ph-p-Cl CH2NHCON(OH)CH3 55.7 45.6
    31 S—Ph-p-Cl CH2N(OH)CONH2 57.9 23.6
    32 S—Ph-p-Cl CH2N(OH)CONHCH3 41.1 10.3
    33 S—Ph-p-Cl NHCOCH2N(OH)CONH2 2.1 51.1
    34 S—Ph-p-Cl NHCOCH2N(OH)CONHCH3 −9.8 31.0
    35 O—Ph-p-F ≡—CH2N(OH)CONH2 99.5 24.5
  • EXAMPLE 5 Effect of 2,5-Diaryl Tetrahydrothiophenes and Tetrahydrofurans on Endotoxin-induced Mouse Mortality
  • a) Animals [0357]
  • The mice are obtained and treated as in Example 3 above. [0358]
  • b) Mortality Measurement [0359]
  • Endotoxin ([0360] E. coli serotype 0127:B8, lipopolysaccharide, Sigma Chemical Co. (St. Louis, Mo.) are freshly dissolved in 0.9% NaCl solution. Except for dose-response studies, endotoxin at 50 mg/kg is injected into the tail vein. All test compounds are dissolved in 0.5% DMSO saline solution and intravenously injected at 3 mg/kg body weight 15 minutes prior to PAF challenge. Death occurs typically within 12-36 hours. Mortality is recorded 48 hours after endotoxin challenge, as death rarely occurs after 48 hours.
  • EXAMPLE 6 Effect of Compounds on Cytosol 5-Lipoxygenase of Rat Basophile Leukemia Cells
  • a) Enzyme Preparation [0361]
  • Washed rat RBL cells (4×108) are suspended in 20 ml of 50 M potassium phosphate buffer at pH 7.4 containing 10% ethylene glycol/1 mM EDTA (Buffer A). The cell suspension is sonicated at 20 KHz for 30 seconds, and the sonicate is centrifuged at 10.000×g for 10 minutes, followed by further centrifugation at 105,000×g for 1 hr. The supernatant solution (cytosol fraction) containing 5-lipoxygenase is stored at −70° C. Protein concentration is determined according to the procedure of Bradford (Bradford Dye Reagent) with bovine serum albumin as a standard. [0362]
  • b) Enzyme Assay [0363]
  • For routine assay of 5-LO the mixture contains 50 mM potassium phosphate buffer at pH 7.4, 2 mM CaCl[0364] 2. 2 mM ATP, 25 M arachidonic acid (0.1 Ci) and enzyme (50-100 mg of protein) in a final volume of 200 L. The reaction is carried out at 24° C. for 3 minutes. The mixture is extracted with 0.2 ml of an ice-cold mixture of ethyl ether:methanol: 0.2 M citric acid (30:4:1). The extract is subjected to thin-layer chromatography at −10° C. in a solvent system of petroleum ether:ethyl ether:acetic acid (15:85:0.1) The silica gel zones corresponding to authentic arachidonic acid and its metabolites are scraped into scintillation vials for counting. The enzyme activity is expressed in terms of the amount of arachidonic acid oxygenated for 3 minutes.
  • Modifications and variations of the present invention relating to compounds that reduce the formation of oxygen radicals during an inflammatory or immune response will be obvious to those skilled in the art from the foregoing detailed description of the invention. Such modifications and variations are intended to come within the scope of the appended claims. [0365]

Claims (25)

We claim:
1. A compound of the formula:
Figure US20020177723A1-20021128-C00039
wherein:
X is O, S, S(O), S(O)2, CR9, or NR10;
W is independently:
(1) —AN(OM)C(O)N(R3)R4, —AN(R3)C(O)N(OM)R4, —AN(OM)C(O)R4, —AC(O)N(OM)R4, —N(OM)C(O)N(R3)R4, —N(R3)C(O)N(OM)R4, —N(OM)C(O)R4, —C(O)N(OM)R4, —OR6N(R5)R6—(C5H4N)R6R7, —OR6N(COR5)R6—(C5H4N)R6R7, —OR6OC(O)N(COR5)R6—(C5H4N)R6R7, —OR6O(CO)N(CO2R6)R6(C5H4N)R6R7, —A(C5H4N)R6R7, or —OR6N(CO2R5)R6—(C5H4N)R6R7;
(2) an amidohydroxyurea of the formula: —N(R19)C(O)C(R19)2N(OM)C(O)NHR20, —C(O)N(R19)C(R19)2N(OM)C(O)NHR20, —AN(R19)C(O)C(R19)2N(OM)C(O)NHR20, —AC(O)N(R19)C(R19)2N(OM)C(O)NHR20, —NHC(O)N(OM)C(R19)2C(O)N(R19)2; or —NHC(O)N(OM)C(R19)2N(R19)C(O)R19;
(3) an oxalkane of the structure:
Figure US20020177723A1-20021128-C00040
 wherein n and m are independently 1-4;
(4) a thioalkane of the structure:
Figure US20020177723A1-20021128-C00041
 or (5) a quinolylinethoxy of the structure:
Figure US20020177723A1-20021128-C00042
n is 1 or 2;
m is 1, 2 or 3;
p is 0 or 1;
A is alkyl, alkenyl, alkynyl, alkyaryl, aralkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, —C1-10alkyl(oxy)C1-10alkyl, —C1-10alkyl(thio)C1-10alkyl, —N(R3)C(O)alkyl, —N(R3)C(O)alkenyl, —N(R3)C(O)alkynyl, —N(R3)C(O)(alkyl)oxy(alkyl), —N(R3)C(O)(alkyl)thio(alkyl), —N(R3)C(O)N(alkyl), —N(R3)C(O)N(alkenyl), —N(R3)C(O)N(alkynyl), —N(R3)C(O)N(alkyl)oxy(alkyl), —N(R3)C(O)N(alkyl)thio(alkyl), —N(R3)C(O2)alkyl, —N(R3)C(O2)alkenyl, —N(R3)C(O2)alkynyl, —N(R3)C(O2)(alkyl)oxy(alkyl), —N(R3)C(O2)(alkyl)thio(alkyl), —OC(O2)alkyl, —OC(O2)alkenyl, —OC(O2)alkynyl, —OC(O2)(alkyl)oxy(alkyl), —OC(O2)(alkyl)thio(alkyl), —N(R3)C(S)alkyl, —N(R3)C(S)alkenyl, —N(R3)C(S)alkynyl, —N(R3)C(S)(alkyl)oxy(alkyl), —N(R3)C(S)(alkyl)thio(alkyl), —N(R3)C(S)N(alkyl), —N(R3)C(S)N(alkenyl), —N(R3)C(S)N(alkynyl), —N(R3)C(S)N(alkyl)oxy(alkyl), —N(R3)C(S)N(alkyl)thio(alkyl), —N(R3)C(S)S(alkyl), —N(R3)C(S)S(alkenyl), —N(R3)C(S)S(alkynyl), —N(R3)C(S)S(alkyl)oxy(alkyl), —N(R3)C(S)S(alkyl)thio(alkyl), —SC(S)S(alkyl), —SC(S)S(alkenyl), —SC(S)S(alkynyl), —SC(S)S(alkyl)oxy(alkyl), and —SC(S)S(alkyl)thio(alkyl);
M is hydrogen, a pharmaceutically acceptable cation, or a metabolically cleavable leaving group;
Y is independently;
(a) hydrogen;
(b) R1-6, R8, R10, —OR3, —OR11, —OR12, R3S—, R5S, R3SO—, R5SO—, R3SO2—, R5SO2—, CF3O—, CF3S—, CF3SO—, —CF3SO2, —OCH2oxycyclopropyl, —OCH2C(O)OR3, —OCH2OR3, —OCH2C(O)R3, —OCH2C3-8cycloalkyl, —OCH2CH(R)R3, —OCH2cyclopropyl, —OCH2-aryl, —OCH2CH(OH)CH2OH, aryl-CH2—SO2—, (R3)2CHCH2SO2—, —CH2CH(OH)CH2OH, CF3SO2—, R3R4N—, —OCH2CO2R3, —NR3COR3, —OCONH2, —OCONR3R4, —CONH2, —CONR3R4, —CR3R3R4, —SO2NR3R4, —SONR3R4, CH3OCH2ONR3R6, —SNR3R4, —CO2R3, —NR3R4SO2R3, —NR3R4SOR, —COR3, —CONR3, —NO2, —CN, —N(R5)CONR3R4, —CH2N(R5)CONR3R4, —R6NR3R4, —OR6NR3R4, —O(O)CR5, —O(O)CNR3R4,
Figure US20020177723A1-20021128-C00043
 —SR6NR3R4, —S(O)R6NR3R4, —SO2R6NR3R4,
Figure US20020177723A1-20021128-C00044
 —SR6OH; —S(O)R6OH; —SO2R6OH; —OR6OC(O)N(CO2R6)R6; O-alkyl-N-(aryl)-C(O)-heterocycle;
Figure US20020177723A1-20021128-C00045
(c) a heterocycle, including but not limited to, pyrryl, furyl, pyridyl, 1,2,4-thiadiazolyl, pyrimidyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, pyrinidyl, quinolyl, isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, purinyl, carbozolyl, benzamidazolyl, and isoxazolyl, optionally substituted with a group described in Y section (b);
(d)
Figure US20020177723A1-20021128-C00046
 wherein X′ is halo, —C(O)aryl, CF3, or OR3; —NR3C(O)R3; —OC(O)NH2; —CR3R3R4; —C(O)R3; —CH2OR3; —CH2CO2R3; —CH2OC(O)R3; R3CH(R3)CH2SO3—; —NHCH2COOR3; halo such as F, Cl, Br and I; N+R3R3R4R7; —NR3SO2R3; —C(O)R3; NO2; or CN; or
Figure US20020177723A1-20021128-C00047
Figure US20020177723A1-20021128-C00048
 wherein R13, R14 and R15 independently represents: BO— wherein B is —CH2-oxacyclopropyl, —CH2OR3, —CH2C(O)R3, —CH2CH(R3)R3, —CH2Aryl, —CH2CH(OH)—CH2OH; R3C(R3)2CH2SO2; or R13—R14 or R14—R15 are joined together to form a bridge such as —OCHR2CHR2—S(O)2— wherein n is 0 to 3; or
Figure US20020177723A1-20021128-C00049
where X′ is halo, —C(O)aryl, CF3, or OR3; —CH2OR3; —CH2CO2R3; —CH2C(O)R3; —NHCH2COOR3; —N+R3R3R4R7.
R1 and R2 are independently hydrogen, halogen, or lower alkyl, halo lower alkyl, halo, —COOH, —CONR16R17 wherein R16 and R17 independently represent C1-6 alkyl and hydrogen, —COOR3, alkenyl, —C(O)R3; —CH2OR3; lower alkynyl, CH2NR4R3; —CH2SR3; ═O; —OR3; or —NR3R3;
R3 and R4 are independently cyclic and acyclic alkyl, alkenyl, alkynyl, aryl, aralkyl, alkyaryl, hydrogen, C1-6 alkoxy-C1-10 alkyl, C1-6 alkylthio-C1-10 alkyl, and C1-10 substituted alkyl (wherein the substituent is independently hydroxy or carbonyl, located on any of C1-10);
R5 is cyclic and acyclic lower alkyl, lower alkenyl, lower alkynyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, aralkyl, or aryl;
R6 is cyclic and acyclic lower alkyl, lower alkenyl, lower alkynyl, aralkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, or aryl;
R7 is an organic or inorganic anion;
R8 is halo alkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, lower alkenyl, lower alkynyl, aralkyl, or aryl;
R9 is independently hydrogen, halogen, lower alkyl, halo lower alkyl, lower alkenyl, lower alkynyl, —CONR3R4, —C(O)R5, —CO2R5, —CH2OR5, —CH2NR5R5, —CH2SR5, ═O, ═NR5, —NR3R4, —NR3R4R7, or —OR5;
R10 is —R3, —R8, —C(O)N(OR3)R3, or —OR3;
R11 is phenyl-S(O)g-lower alkyl-; (R3O)d-phenyl-S(O)g-lower alkyl-; (CN)d-phenyl-S(O)g-lower alkyl-; (halo)d-phenyl-S(O)g-lower alkyl-; (R3COO)d-phenyl-S(O)g-lower alkyl-; (R3OCO)d-phenyl-S(O)g-lower alkyl-; (R3CO)d-phenyl-S(O)g-lower alkyl-; phenyl-O-lower alkyl-; (R3O)d-phenyl-O-lower alkyl-; (CN)d-phenyl-O-lower alkyl-; (halo)d-phenyl-O-lower alkyl-; (R3COO)d-phenyl-O-lower alkyl-; (R3OCO)d-phenyl-O-lower alkyl-; (R3R3N)d-phenyl-S(O)g-lower alkyl-; or (R3CO)d-phenyl-O-lower alkyl- where d is 1, 2, 3, 4 or 5; and g is 0, 1, or 2;
R12 is selected from the group consisting of: alkyl; substituted alkyl wherein the substituent is selected from the group consisting of hydroxy and amino; -lower alkyl-O-R18, wherein R18 is —PO2(OH)—M+ or —PO3(M+)2, wherein M+ is a pharmaceutically acceptable cation; —C(O)(CH2)2CO2—M+, or —SO3—M+; -lower alkylcarbonyl-lower alkyl; -carboxy lower alkyl; -lower alkylamino-lower alkyl; N,N-di-substituted amino lower alkyl-, wherein the substituents each independently represent lower alkyl; pyridyl-lower alkyl; imidazolyl-lower alkyl; imidazolyl-Y-lower alkyl wherein Y is thio or amino; morpholinyl-lower alkyl; pyrrolidinyl-lower alkyl; thiazolinyl-lower alkyl; piperidinyl-lower alkyl; morpholinyl-lower hydroxyalkyl; N-pyrryl; piperazinyl-lower alkyl; N-substituted piperazinyl-lower alkyl, wherein the substituent is lower alkyl; triazolyl-lower alkyl; tetrazolyl-lower alkyl; tetrazolylamino-lower alkyl; or thiazolyl-lower alkyl;
R19 is H, lower alkyl, or lower alkenyl; and
R20 is H, halogen, lower alkoxy, or lower alkyl.
2. A compound of the formula:
Figure US20020177723A1-20021128-C00050
wherein:
X is O, S, S(O), S(O)2, or NR10;
t is 1, 2, 3, or 4;
m is 1, 2, or 3;
Z is independently W or Y; and
all of the R groups are as defined in claim 1.
3. A compound of the formula:
Figure US20020177723A1-20021128-C00051
wherein Ar5 is:
Figure US20020177723A1-20021128-C00052
wherein Ar6 is:
Figure US20020177723A1-20021128-C00053
 wherein:
v is 0, 1, or 2;
all R groups, t, m, and n are as defined in claims 1 and 2; and
Q is selected from the group consisting of substituted C1 to C12 alkyl wherein the substituent is selected from the group consisting of hydroxy and amino, alkylcarbonylalkyl, alkyl; lower alkyl S(O)m-lower alkyl in which m is 1 or 2; imidazolyl lower alkyl, morpholinyl lower alkyl, thiazolinyl lower alkyl, piperidinyl ower alkyl, imidazolylcarbonyl, morpholinyl carbonyl, amorpholinyl (lower alkyl) aminocarbonyl, N-pyrrylpyridinyl-lower alkyl; pyridylthio-lower alkyl; morpholinyl-lower alkyl; hydroxyphenylthio-lower alkyl; cyanophenylthio-lower alkyl; imidazolylthio-lower alkyl; triazolylthio-lower alkyl; triazolylphenylthio-lower alkyl; tetrazolylthio-lower alkyl; tetrazolylphenylthio-lower alkyl; aminophenylthio-lower alkyl; N,N-di-substituted aminophenylthio-lower alkyl wherein the amine substituents each independently represent lower alkyl amidinophenylthio-lower alkyl; phenylsultinyl-lower alkyl; or phenylsulfonyl lower alkyl; -lower alkyl-O-R18, wherein R18 is —PO2(OH)—M+ or —PO3(M+)2, wherein M+ is a pharmaceutically acceptable cation; —C(O)(CH2)2CO2—M+, or —SO3—M+; -lower alkylcarbonyl-lower alkyl; -carboxy lower alkyl; -lower alkylamino-lower alkyl; N,N-di-substituted amino lower alkyl-, wherein the substituents each independently represent lower alkyl; pyridyl-lower alkyl; imidazolyl-lower alkyl; imidazolyl-Y-lower alkyl wherein Y is thio or amino; morpholinyl-lower alkyl; pyrrolidinyl-lower alkyl; thiazolinyl-lower alkyl; piperidinyl-lower alkyl; morpholinyl-lower hydroxyalkyl; N-pyrryl; piperazinyl-lower alkyl; N-substituted piperazinyl-lower alkyl, wherein the amine substituent is lower alkyl; triazolyl-lower alkyl; tetrazolyl-lower alkyl; tetrazolylamino-lower alkyl; or thiazolyl-lower alkyl.
4. A pharmaceutical composition comprising an effective amount of the compound of claim 1 in a pharmaceutically acceptable carrier.
5. The compound of claim 2 further comprising a pharmaceutically acceptable carrier.
6. The compound of claim 3 further comprising a pharmaceutically acceptable carrier.
7. A method for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase in an animal, comprising administering an effective amount, to reduce formation of oxygen radicals, of a compound of claim 1 in a pharmaceutically acceptable carrier.
8. The method of claim 7, wherein the animal is a mammal.
9. The method of claim 8, wherein the mammal is a human.
10. The method of claim 8, wherein the mammal is equine.
11. The method of claim 8, wherein the mammal is canine.
12. The method of claim 8, wherein the mammal is bovine.
13. A method for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase in an animal, comprising administering an effective amount of a compound of claim 2 in a pharmaceutically acceptable carrier.
14. The method of claim 13, wherein the animal is a mammal.
15. The method of claim 14, wherein the mammal is a human.
16. The method of claim 14, wherein the mammal is equine.
17. The method of claim 14, wherein the mammal is canine.
18. The method of claim 14, wherein the mammal is bovine.
19. A method for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase in an animal, comprising administering an effective amount of a compound of claim 3 in a pharmaceutically acceptable carrier.
20. The method of claim 19, wherein the animal is a mammal.
21. The method of claim 20, wherein the mammal is a human.
22. The method of claim 20, wherein the mammal is equine.
23. The method of claim 20, wherein the mammal is canine.
24. The method of claim 20, wherein the mammal is bovine.
25. trans-2-[5-N′-methyl-N′-hydroxyureidylmethyl)-3-methoxy-4-p-chlorophenylthioethoxyphenyl]-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran.
US09/547,941 1992-07-13 2000-04-11 Compounds and methods for the treatment of inflammatory and immune disorders Abandoned US20020177723A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/547,941 US20020177723A1 (en) 1992-07-13 2000-04-11 Compounds and methods for the treatment of inflammatory and immune disorders

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US07/912,788 US5358938A (en) 1992-07-13 1992-07-13 Compounds and methods for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase
US07/933,991 US5434151A (en) 1992-08-24 1992-08-24 Compounds and methods for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase
US08/062,391 US5648486A (en) 1992-07-13 1993-05-12 Compounds and methods for the treatment of inflammatory and immune disorders
US08/469,073 US6294574B1 (en) 1992-07-13 1995-06-06 Compounds and methods for the treatment of inflammatory and immune disorders
US09/547,941 US20020177723A1 (en) 1992-07-13 2000-04-11 Compounds and methods for the treatment of inflammatory and immune disorders

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/469,073 Continuation US6294574B1 (en) 1992-07-13 1995-06-06 Compounds and methods for the treatment of inflammatory and immune disorders

Publications (1)

Publication Number Publication Date
US20020177723A1 true US20020177723A1 (en) 2002-11-28

Family

ID=27129612

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/469,073 Expired - Fee Related US6294574B1 (en) 1992-07-13 1995-06-06 Compounds and methods for the treatment of inflammatory and immune disorders
US09/547,941 Abandoned US20020177723A1 (en) 1992-07-13 2000-04-11 Compounds and methods for the treatment of inflammatory and immune disorders

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/469,073 Expired - Fee Related US6294574B1 (en) 1992-07-13 1995-06-06 Compounds and methods for the treatment of inflammatory and immune disorders

Country Status (13)

Country Link
US (2) US6294574B1 (en)
EP (1) EP0650485B1 (en)
JP (1) JPH08502243A (en)
AT (1) ATE196903T1 (en)
AU (1) AU666578B2 (en)
CA (1) CA2140034A1 (en)
DE (1) DE69329550T2 (en)
DK (1) DK0650485T3 (en)
ES (1) ES2152952T3 (en)
GR (1) GR3035063T3 (en)
HU (1) HUT72601A (en)
PT (1) PT650485E (en)
WO (1) WO1994001430A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3791880A1 (en) 2009-04-29 2021-03-17 Amarin Pharmaceuticals Ireland Limited Pharmaceutical compositions comprising epa

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639782A (en) * 1992-03-04 1997-06-17 Center For Innovative Technology Neolignan derivatives as platelet activating factor receptor antagonists and 5-lipoxygenase inhibitors
US5463083A (en) * 1992-07-13 1995-10-31 Cytomed, Inc. Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders
PT650485E (en) 1992-07-13 2001-03-30 Millennium Pharm Inc 2,5-DIARIL-TETRA-HYDRO-THIOPHENES -FURANES AND ANALOGS FOR THE TREATMENT OF INFLAMMATORY AND IMMUNE DISORDERS
US5434151A (en) * 1992-08-24 1995-07-18 Cytomed, Inc. Compounds and methods for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase
US5750565A (en) * 1995-05-25 1998-05-12 Cytomed, Inc. Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders
US5792776A (en) * 1994-06-27 1998-08-11 Cytomed, Inc., Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders
US5703093A (en) * 1995-05-31 1997-12-30 Cytomed, Inc. Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders
CN1151125C (en) * 1994-06-27 2004-05-26 千年药品公司 Compounds and methods for treatment of cardiovascular, imflammatory and immune disorders
AU4856199A (en) * 1998-07-03 2000-01-24 Millennium Pharmaceuticals, Inc. Substituted nitrogen and sulfur alicyclic compounds, including methods for synthesis thereof
MXPA01000232A (en) 1998-07-03 2003-02-10 Millennium Pharm Inc Substituted oxygen alicyclic compounds, including methods for synthesis thereof.
KR20010083083A (en) 1998-07-03 2001-08-31 밀레니엄 파머슈티컬스 인코퍼레이티드 Methods for synthesis of substituted tetrahydrofuran compound
US6255498B1 (en) 1998-10-16 2001-07-03 Millennium Pharmaceuticals, Inc. Method for synthesizing diaryl-substituted heterocyclic compounds, including tetrahydrofurans

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2690988A (en) 1952-12-24 1954-10-05 Stauffer Chemical Co Insecticidal substituted 1, 3-dithiolanes and method of application
US3852601A (en) 1971-07-15 1974-12-03 Ital Elettionica Spa Scanning device for scintigraphy according to three orthogonal planes
US4166452A (en) 1976-05-03 1979-09-04 Generales Constantine D J Jr Apparatus for testing human responses to stimuli
US4256108A (en) 1977-04-07 1981-03-17 Alza Corporation Microporous-semipermeable laminated osmotic system
US4265874A (en) 1980-04-25 1981-05-05 Alza Corporation Method of delivering drug with aid of effervescent activity generated in environment of use
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US4539332A (en) * 1983-11-14 1985-09-03 Merck & Co., Inc. 2,5-Diaryl tetrahydrofurans and analogs thereof as PAF-antagonists
US4656190A (en) 1983-11-14 1987-04-07 Merck & Co., Inc. Indene derivatives and their use as PAF-antagonists
US4757084A (en) * 1984-02-29 1988-07-12 Merck & Co., Inc. 2,5-diaryl tetrahydrothiophenes and analogs thereof as PAF-antagonists
US4595693A (en) 1984-06-04 1986-06-17 Merck & Co., Inc. Method of use of 2,5-diaryl tetrahydrofurans and analogs thereof as PAF-antagonists
US4871756A (en) 1985-03-20 1989-10-03 Merck Frosst Canada, Inc. Leukotriene antagonists
US4604407A (en) 1985-04-04 1986-08-05 E. R. Squibb & Sons, Inc. Hydroxamates
NZ215866A (en) * 1985-04-22 1989-11-28 Merck & Co Inc 2,5-di(aryl/heterocyclyl) tetrahydro-furans and pharmaceutical compositions
US4876346A (en) 1985-05-02 1989-10-24 American Home Products Corporation Quinoline compounds
US4891363A (en) 1985-07-26 1990-01-02 Sankyo Company Limited Cyclic ether derivatives and their use
DE3701344A1 (en) 1986-01-21 1987-07-23 Boehringer Ingelheim Kg Novel thieno-1,4-diazepines
FR2601016B1 (en) 1986-07-04 1988-10-07 Rhone Poulenc Sante NOVEL 1H, 3H-PYRROLO (1,2-C) THIAZOLE DERIVATIVES, THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
US4910206A (en) 1986-07-14 1990-03-20 Sandoz Pharmaceuticals Corp. 5-hetero-or aryl-substituted-imidazo(2,1-a)isoquinolines and their use as PAF receptor antagonists
DE3724031A1 (en) 1986-07-22 1988-01-28 Boehringer Ingelheim Kg Novel hetrazepines and process for their preparation
DE3724164A1 (en) 1986-07-25 1988-01-28 Boehringer Ingelheim Kg Novel 1,4-benzodiazepines, their preparation and use
EP0257921B1 (en) 1986-08-21 1992-04-15 Merck & Co. Inc. New 1,3-diaryl cyclopentanes and derivatives thereof as paf antagonists
US4841968A (en) 1986-09-26 1989-06-27 Southern Research Institute Antithrombotic/thrombolytic suture and methods of making and using the same
GB2197650A (en) * 1986-11-21 1988-05-25 Merck & Co Inc Process for preparing 2,5-diphenyl tetrahydrofurans and analogs thereof
US4873259A (en) 1987-06-10 1989-10-10 Abbott Laboratories Indole, benzofuran, benzothiophene containing lipoxygenase inhibiting compounds
CN1030415A (en) 1987-02-20 1989-01-18 山之内制药株式会社 Saturated heterocycle carboxamide derivatives and its preparation method
US4916145A (en) 1987-07-10 1990-04-10 Hoffmann-La Roche Inc. Substituted n-[(pyridyl)alkyl]aryl-carboxamide
GB2209031A (en) 1987-08-24 1989-04-26 Merck & Co Inc Processes for preparing 1,3-diaryl cyclopentanes and derivatives thereof as PAF antagonists
CA1334975C (en) 1987-11-13 1995-03-28 James H. Holms Furan and pyrrole containing lipoxygenase inhibiting compounds
JPH01149764A (en) 1987-12-07 1989-06-12 Green Cross Corp:The Bis-s-alkylbenzene derivative
US4959361A (en) 1987-12-18 1990-09-25 Hoffmann-La Roche Inc. Triazolo(4,3-A)(1,4)benzodiazepines and thieno (3,2-F)(1,2,4)triazolo(4,3-A)(1,4)diazepine compounds which have useful activity as platelet activating factor (PAF) antagonists
NZ227287A (en) * 1987-12-21 1992-01-29 Merck & Co Inc 2,5-diaryl tetrahydrofurans and medicaments
US4996203A (en) * 1987-12-21 1991-02-26 Merck & Co., Inc. 2,5-diaryl tetrahydrofurans and analogs thereof as PAF antagonists
US4845129A (en) 1988-03-14 1989-07-04 Sandoz Pharm. Corp. Diaryl substituted cyclopentane and cyclopentene derivatives
EP0338993A1 (en) 1988-04-21 1989-10-25 Sandoz Ag 6-Aryl-substituted-4h-thieno[2,3-e][1,2,4]triazolo [3,4-c][1,4]diazepines
US4992428A (en) 1988-05-05 1991-02-12 Sandoz Pharm. Corp. 5-aryl-substituted-2,3-dihydro-imidazo[1,2-a]furo- and thieno pyridines
EP0365089A3 (en) * 1988-10-18 1991-06-05 Merck & Co. Inc. 2-aryl-5(3-methoxy-5-(hydroxypropylsulfonyl)-4-propoxyphenyl) tetrahydrothiophen and analogs
FI95708C (en) 1988-10-31 1996-03-11 Eisai Co Ltd Analogous process for preparing a 1,4-diazepine derivative and its pharmaceutically acceptable salt
DE3936828A1 (en) 1988-11-06 1990-05-10 Boehringer Ingelheim Kg New poly:cyclic thieno-diazepine derivs. - useful as platelet-activating factor inhibitors
US5234950A (en) 1988-12-23 1993-08-10 Imperial Chemical Industries Plc Tetrahydrofuran derivatives
US5175183A (en) 1989-02-01 1992-12-29 Abbott Laboratories Lipoxygenase inhibiting compounds
DE4006471A1 (en) 1989-03-03 1990-09-06 Boehringer Ingelheim Kg New 2-substd. thieno-triazolo-di:azepine derivs. - are inhibitors of platelet activating factor for treating inflammation etc., and new organo-metallic intermediates
FR2644456B1 (en) 1989-03-17 1991-07-05 Rhone Poulenc Sante NOVEL 1H, 3H-PYRROLO (1,2-C) THIAZOLECARBOXAMIDE-7 DERIVATIVES, THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
GB8907401D0 (en) 1989-04-01 1989-05-17 Pfizer Ltd Therapeutic agents
US5011847A (en) * 1989-06-08 1991-04-30 Merck & Co., Inc. 2,5-diaryl tetrahydrofurans and analogs thereof as PAF antagonists
US4977146A (en) * 1989-06-08 1990-12-11 Merck & Co., Inc. 2,5-diaryl tetrahydrofurans and analogs thereof as PAF antagonists
US5001123A (en) * 1989-06-08 1991-03-19 Merck & Co., Inc. 2,5-diaryl tetrahydrofurans and analogs thereof as PAF antagonists
IL95584A (en) 1989-09-07 1995-03-15 Abbott Lab Indole-, benzofuran-, and benzothiophene-containing lipoxygenase- inhibiting compounds, and pharmaceutical compositions containing them.
US5037853A (en) 1989-12-28 1991-08-06 Abbott Laboratories Cyclopropyl derivative lipoxygenase inhibitors
GB9009469D0 (en) 1990-04-27 1990-06-20 British Bio Technology Compounds
US5244896A (en) 1990-09-14 1993-09-14 Marion Merrell Dow Inc. Carbocyclic adenosine analogs useful as immunosuppressants
JP3007138B2 (en) * 1990-11-27 2000-02-07 ファイザー製薬株式会社 Novel hydroxamic acid and N-hydroxyurea derivatives and compositions thereof
US5110831A (en) 1990-11-30 1992-05-05 Du Pont Merck Pharmaceutical Company Vinylogous hydroxamic acids and derivatives thereof as 5-lipoxygenase inhibitors
JPH0730061B2 (en) 1991-02-07 1995-04-05 ファイザー製薬株式会社 Hydroxamic acid derivatives and compositions
EP0574510B1 (en) 1991-03-04 2001-09-05 Center For Innovative Technology 2,4-diaryl-1,3-dithiolanes as platelet activating factor receptor antagonists and 5-lipoxygenase inhibitors
US5420164A (en) 1991-04-04 1995-05-30 Yoshitomi Pharmaceutical Industries, Ltd. Cycloalkylurea compounds
US5147893A (en) 1991-05-09 1992-09-15 G. D. Searle & Co. Cyclic phenolic thioethers
RU2059603C1 (en) 1991-05-09 1996-05-10 Хоффманн-Ля Рош АГ Derivatives of &&&-substituted arylacetic acids and pharmaceutical composition
GB9114337D0 (en) 1991-07-03 1991-08-21 British Bio Technology Compounds
US5183818A (en) 1991-08-27 1993-02-02 Abbott Laboratories Arylalkylether and arylalkylthioether inhibitors of lipoxygenase enzyme activity
GB9200210D0 (en) 1992-01-07 1992-02-26 British Bio Technology Compounds
GB9202791D0 (en) 1992-02-11 1992-03-25 British Bio Technology Compounds
US5169854A (en) 1992-02-26 1992-12-08 Abbott Laboratories N-substituted-furylalkenyl hydroxamic acid and N-hydroxyurea compounds having lipoxygenase inhibitory activity
US5639782A (en) 1992-03-04 1997-06-17 Center For Innovative Technology Neolignan derivatives as platelet activating factor receptor antagonists and 5-lipoxygenase inhibitors
US5187192A (en) 1992-03-13 1993-02-16 Abbott Laboratories Cyclobutyl derivatives having lipoxygenase inhibitory activity
US5326787A (en) 1992-05-12 1994-07-05 Abbott Laboratories Cycloalkyl N-hydroxy derivatives having lipoxygenase inhibitory activity
PT650485E (en) 1992-07-13 2001-03-30 Millennium Pharm Inc 2,5-DIARIL-TETRA-HYDRO-THIOPHENES -FURANES AND ANALOGS FOR THE TREATMENT OF INFLAMMATORY AND IMMUNE DISORDERS
US5358938A (en) 1992-07-13 1994-10-25 Cytomed, Inc. Compounds and methods for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase
US5463083A (en) 1992-07-13 1995-10-31 Cytomed, Inc. Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders
US5434151A (en) 1992-08-24 1995-07-18 Cytomed, Inc. Compounds and methods for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase
AU5016793A (en) 1992-08-20 1994-03-15 Cytomed, Inc Dual functional anti-inflammatory and immunosuppressive agents
US5288751A (en) 1992-11-06 1994-02-22 Abbott Laboratories [(Substituted) phenyalkyl]furylalkynyl-and [substituted) phenyalkyl] thienylalkynyl-N-hydroxyurea inhibitors or leukotriene biosynthesis
ES2062943B1 (en) 1993-03-23 1995-11-16 Uriach & Cia Sa J NEW DERIVATIVES OF (2-METHYL-3-PIRIDIL) CYANOMETILPIPERAZINES.
CN1151125C (en) 1994-06-27 2004-05-26 千年药品公司 Compounds and methods for treatment of cardiovascular, imflammatory and immune disorders

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3791880A1 (en) 2009-04-29 2021-03-17 Amarin Pharmaceuticals Ireland Limited Pharmaceutical compositions comprising epa
EP4008327A1 (en) 2009-04-29 2022-06-08 Amarin Pharmaceuticals Ireland Limited Pharmaceutical compositions comprising epa and a cardiovascular agent and methods of using the same

Also Published As

Publication number Publication date
DE69329550T2 (en) 2001-05-31
WO1994001430A1 (en) 1994-01-20
US6294574B1 (en) 2001-09-25
HU9500099D0 (en) 1995-03-28
EP0650485B1 (en) 2000-10-11
ATE196903T1 (en) 2000-10-15
EP0650485A1 (en) 1995-05-03
PT650485E (en) 2001-03-30
JPH08502243A (en) 1996-03-12
ES2152952T3 (en) 2001-02-16
GR3035063T3 (en) 2001-03-30
CA2140034A1 (en) 1994-01-20
HUT72601A (en) 1996-05-28
AU666578B2 (en) 1996-02-15
DK0650485T3 (en) 2001-01-22
DE69329550D1 (en) 2000-11-16
AU4772293A (en) 1994-01-31

Similar Documents

Publication Publication Date Title
US5856323A (en) Compounds and methods for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase
US5358938A (en) Compounds and methods for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase
US5780503A (en) Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders
AU696227B2 (en) Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders
CA2194064C (en) Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders
US5648486A (en) Compounds and methods for the treatment of inflammatory and immune disorders
US4595693A (en) Method of use of 2,5-diaryl tetrahydrofurans and analogs thereof as PAF-antagonists
US6294574B1 (en) Compounds and methods for the treatment of inflammatory and immune disorders
US6569895B1 (en) Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders
US5703093A (en) Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders
WO1994004537A2 (en) Dual functional anti-inflammatory and immunosuppressive agents
FR2981935A1 (en) NOVEL DI-SUBSTITUTED DIAMINO-3,4-CYCLOBUTENE-3-DIONE-1,2 COMPOUNDS USEFUL IN THE TREATMENT OF CHEMOKINE MEDIATED PATHOLOGIES.
WO1994006790A1 (en) 2,4-diaryl-1,3-dithiolanes; 2,4-diaryl-1,3-dioxolanes; 2,4-diaryl-1,3-oxathiolanes; and 2,5-diaryl-1,3-oxathiolanes as paf receptor antgonists and inhibitors of 5-lipoxygenase
US5530141A (en) 2,4-diaryl-1,3-dithiolanes; 2,4-diaryl-1,3-dioxolanes; 2,4-diaryl-1,3-oxathiolanes; and 2,5-diaryl-1,3-oxathiolanes for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase
US6201016B1 (en) Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders
JP3766896B2 (en) Compounds and methods for the treatment of cardiovascular, inflammatory and immune diseases

Legal Events

Date Code Title Description
AS Assignment

Owner name: LEUKOSITE, INC., MASSACHUSETTS

Free format text: MERGER;ASSIGNOR:CYTOMED, INC.;REEL/FRAME:011327/0780

Effective date: 20000315

Owner name: MILLENNIUM PHARMACEUTICALS, INC., MASSACHUSETTS

Free format text: MERGER;ASSIGNOR:LEUKOSITE, INC.;REEL/FRAME:011327/0776

Effective date: 20000315

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION