US20020145782A1 - Method and apparatus for transferring WDM signals between different wavelength division multiplexed optical communications systems in an optically transparent manner - Google Patents

Method and apparatus for transferring WDM signals between different wavelength division multiplexed optical communications systems in an optically transparent manner Download PDF

Info

Publication number
US20020145782A1
US20020145782A1 US10/099,888 US9988802A US2002145782A1 US 20020145782 A1 US20020145782 A1 US 20020145782A1 US 9988802 A US9988802 A US 9988802A US 2002145782 A1 US2002145782 A1 US 2002145782A1
Authority
US
United States
Prior art keywords
optical
wdm
wavelength components
node
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/099,888
Other languages
English (en)
Inventor
Thomas Strasser
Per Hansen
Jefferson Wagener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meriton Networks Inc USA
Original Assignee
Photuris Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photuris Inc filed Critical Photuris Inc
Priority to US10/099,888 priority Critical patent/US20020145782A1/en
Assigned to PHOTURIS, INC. reassignment PHOTURIS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HANSEN, PER BANG, STRASSER, THOMAS ANDREW, WAGENER, JEFFERSON L.
Publication of US20020145782A1 publication Critical patent/US20020145782A1/en
Assigned to JURISTA, MR. STEVEN Z. reassignment JURISTA, MR. STEVEN Z. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PHOTURIS, INC.
Assigned to MAHI NETWORKS, INC. reassignment MAHI NETWORKS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JURISTA, MR. STEVEN Z.
Assigned to MAHI NETWORKS, INC. reassignment MAHI NETWORKS, INC. SALE DUE TO BANKRUPTCY Assignors: PHOTURIS, INC.
Assigned to MERITON NETWORKS US INC. reassignment MERITON NETWORKS US INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: MAHI NETWORKS, INC.
Priority to US12/259,946 priority patent/US9258628B2/en
Priority to US15/003,037 priority patent/US20160142172A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29382Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM including at least adding or dropping a signal, i.e. passing the majority of signals
    • G02B6/29383Adding and dropping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29391Power equalisation of different channels, e.g. power flattening
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0205Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0217Multi-degree architectures, e.g. having a connection degree greater than two
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/022For interconnection of WDM optical networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0286WDM hierarchical architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/357Electrostatic force
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/3578Piezoelectric force
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3582Housing means or package or arranging details of the switching elements, e.g. for thermal isolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0206Express channels arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L2012/421Interconnected ring systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0024Construction using space switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0026Construction using free space propagation (e.g. lenses, mirrors)
    • H04Q2011/003Construction using free space propagation (e.g. lenses, mirrors) using switches based on microelectro-mechanical systems [MEMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects
    • H04Q2011/0092Ring

Definitions

  • the invention relates generally to wavelength division multiplexed optical communications systems, and more particularly to an interconnection device for transferring WDM signals between different wavelength division multiplexed optical communications systems in an optically transparent manner.
  • WDM systems have been deployed in long distance networks in a point-to-point configuration consisting of end terminals spaced from each other by one or more segments of optical fiber.
  • WDM systems having a ring or loop configuration are currently being developed.
  • Such systems typically include a plurality of nodes located along the ring.
  • At least one optical add/drop element, associated with each node, is typically connected to the ring with optical connectors.
  • the optical add/drop element permits both addition and extraction of channels to and from the ring.
  • a particular node that allows the addition and extraction of all the channels is commonly referred to as a hub or central office node, and typically has a plurality of associated add/drop elements for transmitting and receiving a corresponding plurality of channels to/from other nodes along the ring.
  • FIG. 1 shows a functional block diagram of a conventional WDM ring network 100 .
  • Ring network 100 includes a plurality of nodes 102 - 105 connected along a continuous, or looped, optical path 110 . Each of these nodes is typically linked by a segment of optical fiber.
  • FIG. 2 shows an exemplary node 200 in more detail.
  • nodes 102 - 108 have a construction similar to node 200 .
  • Node 200 generally includes an optical add/drop multiplexer (OADM), user interfaces, and a network management element.
  • OADM 210 includes trunk ports 214 and 216 , which are connected to optical path 110 for receiving and transmitting the WDM signals traversing the ring network 100 .
  • OADM 210 also includes local ports 220 1 , 220 2 , 220 3 , . . . 220 m that serve as sources and sinks of traffic. Local ports 220 1 , 220 2 , 220 3 , . . .
  • Each local port includes an add and a drop port so that each transponder serves as an access point to the ring network 100 for traffic to and from external users denoted by terminal equipment 240 1 , 240 2 , 240 3 , . . . 240 m (e.g., Internet routers, LANS, and individual users). Signals between the transponders and the terminal equipment may be communicated in optical or electric form depending on the nature of the equipment.
  • FIG. 3 shows a functional block diagram of a network 300 consisting of two interconnected rings 310 and 320 .
  • Ring network 310 includes OADM nodes 312 , 314 , 316 and 318 .
  • Ring network 320 includes OADM nodes 322 , 324 , 326 , and 328 .
  • the rings 310 and 320 are interconnected at a central office node 330 , which incorporates OADM node 316 of ring 310 and OADM node 328 of ring 320 .
  • Central office node 330 also includes an optical cross-connect (OXC) 340 that communicates with OADM nodes 316 and 328 .
  • OXC optical cross-connect
  • the OXC 340 is more flexible than an OADM and in some cases can redistribute the individual channel wavelengths onto any number of output paths.
  • OXC core switch is optical or electrical
  • current OXC's generally employ optoelectronic regeneration at their network interfaces, thus requiring optical-to-electrical interfaces into and out of the cross-connect.
  • the regeneration has historically been needed at such network interfaces because of propagation limitations of the optical signal due to loss, amplifier noise, chromatic dispersion, and or polarization mode dispersion.
  • OXCs with optical switching in the core of the fabric still require regeneration, however as transmission methods improve to mitigate the aforementioned transmission limitations, it would be desirable to pass through an all optical OXC without OEO regeneration to avoid the extensive cost this entails.
  • the current generation of OXCs have a relatively high insertion loss, which might still require regeneration, or at a minimum costly optical amplification of all incoming and/or outgoing signals.
  • the high insertion loss arises from passing through three discrete components: wavelength demultiplexer, M ⁇ M switch, and then a wavelength multiplexer.
  • such an arrangement gives rise to additional limitations, including the high cost of the components, and a lack of flexibility in routing the light between the input and output subsets of ports.
  • the current generation of the OXCs has undesirable limitations as a separate network element since it requires space, and must be maintained and configured nominally independently of the elements it is connecting to. Accordingly, it would be desirable to develop a multi-wavelength optical network interface that provides optically transparent signal routing between rings or networks, thereby avoiding the need for a separate OXC network element, including an expensive switch fabric as well as OEO regeneration for the input and/or output of each and every wavelength interconnection in the network.
  • the present invention provides, in a WDM optical communication system that includes a plurality of nodes interconnected by communication links, a node that includes an optical coupling arrangement having at least one input port for receiving a WDM signal and a plurality of output ports for selectively receiving one or more wavelength components of the WDM optical signal.
  • the optical coupling arrangement is adaptable to reconfigure its operational state to (i) selectively direct any one of the wavelength components received on the input port to any of the output ports independently of any other of the wavelength components and (ii) selectively direct any combination of two or more of the wavelength components from the input port to at least two of the output ports that serve as WDM output ports.
  • At least one optical WDM interface is optically coupled to a first of the WDM output ports.
  • the optical WDM interface is adapted to receive, at different times, a transponder and a transmission link through which a WDM signal can be communicated.
  • At least one transponder is coupled to a second of the WDM output ports.
  • an interconnection device for communicating in an all-optical manner a WDM signal between at least first and second WDM optical communication systems that each include a plurality of nodes interconnected by communication links.
  • the interconnection device includes a plurality of optical coupling arrangements each operatively associated with a different one of the communications systems for directing in an optically transparent manner wavelength components between the nodes in their respective communication systems.
  • Each of the optical coupling arrangements includes at least one first port for receiving a WDM optical signal from one of the communication systems and a plurality of second ports for selectively receiving any two or more wavelength components of the optical signal.
  • At least one of the optical coupling arrangements is adaptable to route in an optically transparent manner every wavelength component between the first input port and the plurality of second ports independently of every other wavelength component.
  • An optical waveguide supporting at least two wavelength components couples a second output of the first optical coupling arrangement to a second output of the second coupling arrangement.
  • a method for routing three or more wavelength components of a WDM optical signal within a first communication system and between a first communication system and a second communication system.
  • the first communication system includes a first node having a first optical path therethrough for transporting wavelengths components to other nodes in the first communication system and a second optical path therethrough for transporting wavelength components to the second communication system.
  • the method begins by routing in an optically transparent manner any combination of one or more wavelength components through the first optical path of the first node.
  • the method continues by routing in an optically transparent manner over a single optical waveguide any combination of two or more remaining wavelengths components over the second optical path between the first node of the first communication system and a node of the second communication system.
  • FIG. 1 shows a functional block diagram of a conventional WDM ring network.
  • FIG. 2 shows an exemplary node in detail.
  • FIG. 3 shows a functional block diagram of a conventional WDM network consisting of two interconnected rings.
  • FIG. 4 shows a ring network having secondary subtending rings constructed in accordance with the present invention.
  • FIG. 5 shows an arrangement of reconfigurable optical switches similar to that depicted in FIG. 4, which is employed in copending U.S. patent application Ser. No. ______ [PH01-00-04C] to provide a protection scheme in the event of a transponder failure.
  • FIG. 6 shows two interconnected ring networks constructed in accordance with the present invention.
  • FIG. 7 shows an exemplary reconfigurable all-optical switch that may be employed in the present invention.
  • the present inventors have recognized that instead of interconnecting ring networks with OADMs and OXCs such an interconnection may be achieved by all-optical reconfigurable switches, which are more flexible than the aforementioned OXCs and which also have much lower insertion losses and are less expensive.
  • An important advantage of all-optical reconfigurable switches for the purposes of the present invention is that they can add or drop any combination of multiple channels onto its WDM ports. Moreover, these switches can individually route the wavelength components between its WDM ports.
  • the term “route” refers both to the ability to selectively direct selected one or more wavelengths along a given path, while simultaneously being able to prevent the transmission of any other wavelengths not being directed along that same path.
  • this switch is not limited to providing connections between a subset of input ports and a subset of output ports, or vice versa. Rather, this switch can also provide a connection between two ports within the same subset (either input or output). While the present invention may employ any of the aforementioned reconfigurable optical switches, the optical switch disclosed in U.S. patent application Ser. No. ______ [PHO 1-00-02] will serve as an exemplary reconfigurable optical switch, and accordingly, additional details concerning this switch will be presented below.
  • the reconfigurable optical switch 800 comprises an optically transparent substrate 808 , a plurality of dielectric thin film filters 801 , 802 , 803 , and 804 , a plurality of collimating lens pairs 821 1 and 821 2 , 822 1 and 822 2 , 828 1 and 823 2 , 824 1 and 824 2 , a plurality of tiltable mirrors 815 , 816 , 817 , and 818 and a plurality of output ports 840 1 , 840 2 , . . . 840 n .
  • a first filter array is composed of thin film filters 801 and 803 and a second filter array is composed of thin film filters 802 and 804 .
  • Each thin film filter along with its associated collimating lens pair and tiltable mirror effectively forms a narrow band, free space switch, i.e. a switch that routes individual channels or wavelength components along different paths.
  • the tiltable mirrors are micro mirrors such as the MEMS (microelectromechanical systems) mirrors. Alternatively, other mechanisms may be employed to control the position of the mirrors, such as piezoelectric actuators, for example.
  • a WDM optical signal composed of different wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 is directed from the optical input port 812 to a collimator lens 814 .
  • the WDM signal traverses substrate 808 and is received by thin film filter 801 .
  • the optical component with wavelength ⁇ 1 is transmitted through the thin film filter 801 , while the other wavelength components are reflected and directed to thin film filter 802 via substrate 808 .
  • the wavelength component ⁇ 1 which is transmitted through the thin film filter 801 , is converged by the collimating lens 821 1 onto the tiltable mirror 815 .
  • Tiltable mirror 815 is positioned so that wavelength component ⁇ 1 is reflected from the mirror to a selected one of the output ports 840 1 - 840 n via thin film filters 802 - 804 , which all reflect wavelength component ⁇ 1 .
  • the particular output port that is selected to receive the wavelength component will determine the particular orientation of the mirror 815 .
  • wavelength component 2 is transmitted through thin film filter 802 and lens 822 , and directed to a selected output port by tiltable mirror 816 via thin film filters 803 - 804 , which all reflect wavelength component ⁇ 2 .
  • all other wavelength components are separated in sequence by the thin film filters 803 - 804 and subsequently directed by tiltable mirrors 817 - 818 to selected output ports.
  • each wavelength component can be directed to an output port that is selected independently of all other wavelength components.
  • FIG. 4 shows a ring network 400 constructed in accordance with the present invention, which includes a transmission path 710 interconnected by nodes 410 , 420 and 430 .
  • transmission path 710 is depicted as a single fiber transmitting in one direction, the entire system can of course be duplicated to support bi-directional communication.
  • Nodes 410 and 420 may be conventional nodes that contain OADMs of the type shown in FIG. 2 for adding and dropping traffic to the ring.
  • Ring network 400 also includes node 430 , which may, for convenience, be referred to as a central-office node.
  • central office node 430 includes a pair of serially connected reconfigurable optical switches 702 and 704 , which are located in transmission path 710 . Because of the additional functionality offered by the reconfigurable optical switches in comparison to OADMs, central-office node 430 can be interconnected with other network arrangements so that it serves as more than simply an access point for adding and dropping traffic. For example, FIG. 4 shows two subtending rings 712 and 714 that originate and terminate at central-office node 430 . More specifically, rings 712 and 714 receive channel wavelengths from reconfigurable switch 702 and add channel wavelengths to switch 704 .
  • an optical communication system refers to a plurality of nodes interconnected by a common optically transparent path while allowing each node to access at least one channel wavelength from a WDM signal traveling on the common path.
  • Subtending rings 712 and 714 can be employed to enhance the functionality of primary ring 400 .
  • rings 712 and 714 can aggregate local traffic from a particular region via network nodes 716 and transparently couple them back to the primary ring 400 in which reconfigurable optical switches 702 and 704 are situated.
  • This arrangement using the reconfigurable optical switches 702 and 704 to support local traffic can be provided because, unlike OADMs, the optical switches can add or drop any combination of multiple channels onto its WDM ports.
  • the subtending rings can each be treated from a transmission capability perspective as an extra transmission span.
  • One advantage of this arrangement is that local traffic can be aggregated without the need to enhance the functionality, and hence the cost, of the central-office node 430 . Moreover, there is no need to regenerate the traffic at the interface to the primary ring using an expensive optical-to-electrical-to-optical conversion process. That is, the traffic traverses the interface in an optically transparent manner. Since the regenerators represent the major cost in provisioning a new service, the ability to eliminate the regenerators represents a significant cost savings.
  • Another advantage of the subtending ring arrangement in FIG. 4 arises from the principle that it is generally desirable to collect traffic from as many nodes as possible (and to distribute traffic to as many nodes as possible) while requiring the traffic to traverse as few nodes as possible.
  • the subtending rings accomplish this goal because they can extend the geographic reach of the network without requiring the traffic to traverse the nodes of all of the subtending rings, except, of course, for those subtending rings on which the traffic may originate or terminate.
  • FIG. 4 An arrangement of reconfigurable optical switches such as depicted in FIG. 4 is employed in copending U.S. patent application Ser. No. ______ [PH01-00-04C] to provide a protection scheme in the event of a transponder (i.e., a transmitter/receiver pair in which an optical signal originates as, or terminates in, an electrical signal) failure.
  • a transponder i.e., a transmitter/receiver pair in which an optical signal originates as, or terminates in, an electrical signal
  • FIG. 5 employs four switches 514 , 516 , 518 and 520 .
  • FIGS. 4 and 5 it should be noted while FIG. 4 only depicts a single fiber path 710 transmitting in one direction, in FIG. 5 two fibers paths 530 and 540 are shown to support bi-directional communication (i.e., fiber path 710 in FIG.
  • transponder 4 corresponds to either of the fiber paths 530 and 540 in FIG. 5).
  • service can be maintained even if there is a failure in one of the switches.
  • the transponders are arranged in transponder pairs 522 - 527 located in adjacent slots. The individual transponders in each pair can serve as backup for the other in case of a failure.
  • the transponders in each pair communicate with different switches. For example, in pair 522 , transponder 522 1 receives and transmits via switches 514 and 516 , respectively, while transponder 522 2 receives and transmits via switches 520 and 518 , respectively.
  • any one or more of the transponder pairs 522 - 527 in FIG. 5 may be replaced with a subtending ring such as rings 712 and 714 in FIG. 4.
  • transponder pairs 522 and 527 may be replaced with a general-purpose optical interface (GPOI) that can be used in a variety of ways.
  • GPOI general-purpose optical interface
  • an optical interface can be used either to receive transponders, as in FIG. 5, or as an interface through which an additional transmission span may be situated, as in FIG. 4.
  • This type of an interface has an advantage over the prior art, which differentiates between these two service interfaces, and thus requires different equipment for each service which must be anticipated for and installed in the network.
  • prior art interfaces require accurate planning to ensure that all the correct interfaces are correctly installed at the appropriate points in the network where these services will be needed.
  • a GPOI in accordance with the present invention is initially built into the network so that it can be used for both optical service termination at a transponder or for transparent routing of an optical service to another physical location or network.
  • the system is designed in a modular fashion such that the total number of GPOIs is equal to the total number of wavelengths, the network operator will never be unprepared and without provision for these services or applications.
  • the present invention leverages the different types of flexibility of the optical switch to simultaneously supply the benefits of plug and play transponder interface interconnection with an optical interface that can extend the reach of an optical service beyond the immediate vicinity of the optical node. This approach is advantageous because optical interconnections and transponder drops at a node are both applications that in effect consume wavelengths, of which there are a limited number coming into a switch. Therefore, the use of the same pool of resources for both applications is naturally more efficient.
  • FIG. 6 shows another network arrangement that employs ring network 400 from FIG. 4, where the arrangement shown in the drawing is to be duplicated for a second direction in a conventional two fiber unidirectional system.
  • central office node 430 is interconnected to a second ring network 600 .
  • Second ring network 600 includes a central office node 630 , which, similar to central office node 430 , includes two serially connected reconfigurable optical switches 602 and 604 .
  • the local ports of switches 602 , 604 , 702 and 704 which as in FIG. 5 are usually reserved as transponder ports, are used as a cross-connect between the two rings 400 and 600 .
  • cross-connect traffic is passed to a second ring rather than being looped back to the original ring, as in the arrangement of FIG. 4.
  • This limitation can be largely mitigated for shared protection applications by providing a duplicate pair of interconnections between nodes 430 and 630 , which allows a signal incoming from the left in 430 to node 630 , and a signal incoming from the right of node 430 to exit from the right of node 630 .
  • this arrangement it is possible, depending on which interconnection port is used, to determine the routing direction of a given signal when entering a new ring independent of the routing direction in the source ring.
  • this arrangement also allows isolation of the protection reconfiguration to the ring or interconnect element that has failed. Consider for example, a signal traveling from node 420 through node 430 to node 630 and which is dropped at node 620 .
  • a protected signal can be routed through node 410 to node 430 , at which point it can be dropped along the interconnect port that will pass through a reconfigured switch in node 630 to directly reach node 620 .
  • the duplicate interconnection arrangement which allows the routing direction to be flexibly determined when entering the second ring, requires no change in the lightpath in the ring that exhibited no failure (i.e., node 600 ).
  • This shared protection arrangement reduces the number of network elements which participate in a protection switch, improving the reliability of the protection as well as reducing its complexity to implement. Finally, it reduces the maximum distance a protection signal must travel through the network along the protection path, which may in many instances allow the protection to be implemented without any optoelectronic regeneration.
US10/099,888 2001-03-16 2002-03-15 Method and apparatus for transferring WDM signals between different wavelength division multiplexed optical communications systems in an optically transparent manner Abandoned US20020145782A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/099,888 US20020145782A1 (en) 2001-03-16 2002-03-15 Method and apparatus for transferring WDM signals between different wavelength division multiplexed optical communications systems in an optically transparent manner
US12/259,946 US9258628B2 (en) 2001-03-16 2008-10-28 Method and apparatus for transferring WDM signals between different wavelength division multiplexed optical communications systems in an optically transparent manner
US15/003,037 US20160142172A1 (en) 2001-03-16 2016-01-21 Ring network including at least one subtending ring originating and terminating at a central-office node

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27631001P 2001-03-16 2001-03-16
US10/099,888 US20020145782A1 (en) 2001-03-16 2002-03-15 Method and apparatus for transferring WDM signals between different wavelength division multiplexed optical communications systems in an optically transparent manner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/259,946 Continuation US9258628B2 (en) 2001-03-16 2008-10-28 Method and apparatus for transferring WDM signals between different wavelength division multiplexed optical communications systems in an optically transparent manner

Publications (1)

Publication Number Publication Date
US20020145782A1 true US20020145782A1 (en) 2002-10-10

Family

ID=23056135

Family Applications (9)

Application Number Title Priority Date Filing Date
US10/099,890 Expired - Fee Related US7620323B2 (en) 2001-03-16 2002-03-15 Method and apparatus for interconnecting a plurality of optical transducers with a wavelength division multiplexed optical switch
US10/099,891 Expired - Fee Related US7676157B2 (en) 2001-03-16 2002-03-15 Method and apparatus for providing gain equalization to an optical signal in an optical communication system
US10/098,746 Expired - Lifetime US6614953B2 (en) 2001-03-16 2002-03-15 Modular all-optical cross-connect
US10/099,888 Abandoned US20020145782A1 (en) 2001-03-16 2002-03-15 Method and apparatus for transferring WDM signals between different wavelength division multiplexed optical communications systems in an optically transparent manner
US10/632,670 Expired - Fee Related US7469080B2 (en) 2001-03-16 2003-08-01 Modular all-optical cross-connect
US12/259,946 Expired - Fee Related US9258628B2 (en) 2001-03-16 2008-10-28 Method and apparatus for transferring WDM signals between different wavelength division multiplexed optical communications systems in an optically transparent manner
US12/343,422 Expired - Fee Related US7738748B2 (en) 2001-03-16 2008-12-23 Modular all-optical cross-connect
US12/620,512 Abandoned US20100098406A1 (en) 2001-03-16 2009-11-17 Method and apparatus for interconnecting a plurality of optical transducers with a wavelength division multiplexed optical switch
US15/003,037 Abandoned US20160142172A1 (en) 2001-03-16 2016-01-21 Ring network including at least one subtending ring originating and terminating at a central-office node

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/099,890 Expired - Fee Related US7620323B2 (en) 2001-03-16 2002-03-15 Method and apparatus for interconnecting a plurality of optical transducers with a wavelength division multiplexed optical switch
US10/099,891 Expired - Fee Related US7676157B2 (en) 2001-03-16 2002-03-15 Method and apparatus for providing gain equalization to an optical signal in an optical communication system
US10/098,746 Expired - Lifetime US6614953B2 (en) 2001-03-16 2002-03-15 Modular all-optical cross-connect

Family Applications After (5)

Application Number Title Priority Date Filing Date
US10/632,670 Expired - Fee Related US7469080B2 (en) 2001-03-16 2003-08-01 Modular all-optical cross-connect
US12/259,946 Expired - Fee Related US9258628B2 (en) 2001-03-16 2008-10-28 Method and apparatus for transferring WDM signals between different wavelength division multiplexed optical communications systems in an optically transparent manner
US12/343,422 Expired - Fee Related US7738748B2 (en) 2001-03-16 2008-12-23 Modular all-optical cross-connect
US12/620,512 Abandoned US20100098406A1 (en) 2001-03-16 2009-11-17 Method and apparatus for interconnecting a plurality of optical transducers with a wavelength division multiplexed optical switch
US15/003,037 Abandoned US20160142172A1 (en) 2001-03-16 2016-01-21 Ring network including at least one subtending ring originating and terminating at a central-office node

Country Status (8)

Country Link
US (9) US7620323B2 (zh)
EP (3) EP1368923B1 (zh)
JP (3) JP2004536485A (zh)
KR (5) KR20040000408A (zh)
CN (4) CN1993915B (zh)
AU (2) AU2002254262A1 (zh)
CA (4) CA2441045A1 (zh)
WO (4) WO2002075369A2 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659724A2 (en) * 2004-11-22 2006-05-24 Fujitsu Limited Optical ring network for extended broadcasting
US20060140625A1 (en) * 2004-12-28 2006-06-29 Fujitsu Limited Optical node and optical add/drop multiplexer
US7257288B1 (en) 2004-04-23 2007-08-14 Nistica, Inc. Tunable optical routing systems
US7408639B1 (en) 2004-04-23 2008-08-05 Nistica, Inc. Tunable optical routing systems
US20100119223A1 (en) * 2008-11-10 2010-05-13 Cisco Technology, Inc. Optical Safety Implementation in Protection Switching Modules
US20100239259A1 (en) * 2009-03-18 2010-09-23 Cisco Technology, Inc. OFDM Transponder Interface With Variable Bit Transfer Rate in Optical Communications Systems
US20110262141A1 (en) * 2010-04-21 2011-10-27 Lorenzo Ghioni Innovative architecture for fully non blocking service aggregation without o-e-o conversion in a dwdm multiring interconnection node
US20120082454A1 (en) * 2010-09-30 2012-04-05 Fujitsu Limited Optical network interconnect device
US20160140072A1 (en) * 2013-07-30 2016-05-19 Hewlett-Packard Development Company, L.P. Two-dimensional torus topology
EP2940501B1 (en) * 2013-06-21 2020-04-29 Huawei Technologies Co., Ltd. Optical path processing method and apparatus
US20200274735A1 (en) * 2019-02-26 2020-08-27 Ciena Corporation Detection of node isolation in subtended Ethernet ring topologies

Families Citing this family (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721508B1 (en) 1998-12-14 2004-04-13 Tellabs Operations Inc. Optical line terminal arrangement, apparatus and methods
US6618520B2 (en) * 1999-11-09 2003-09-09 Texas Instruments Incorporated Micromirror optical switch
US6922530B1 (en) 2000-04-06 2005-07-26 Fujitsu Limited Method and apparatus for optical channel switching in an optical add/drop multiplexer
US6633694B2 (en) * 2000-09-29 2003-10-14 Texas Instruments Incorporated Micromirror optical switch
JP2004536485A (ja) * 2001-03-16 2004-12-02 フォトゥリス,インク 異なる波長多重光通信システム間で、波長多重信号を光学的にトランスペアレントに伝送する方法及び装置
US6941071B2 (en) * 2001-05-25 2005-09-06 International Business Machines Corporation Test method and apparatus for parallel optical transceivers using serial equipment
GB0121308D0 (en) 2001-09-03 2001-10-24 Thomas Swan & Company Ltd Optical processing
JP3693020B2 (ja) * 2002-01-22 2005-09-07 日本電気株式会社 波長分割多重光伝送装置及びその装置を用いた通信システム
GB0203037D0 (en) * 2002-02-08 2002-03-27 Marconi Comm Ltd Telecommunications networks
US20030174935A1 (en) * 2002-03-14 2003-09-18 Miller Samuel Lee Channel balancer for WDM optical units
US7085242B2 (en) * 2002-03-22 2006-08-01 Telcordia Technologies, Inc. Virtual IP topology reconfiguration migration
US7231148B2 (en) * 2002-03-28 2007-06-12 Fujitsu Limited Flexible open ring optical network and method
US7116905B2 (en) * 2002-03-27 2006-10-03 Fujitsu Limited Method and system for control signaling in an open ring optical network
US7076163B2 (en) * 2002-03-27 2006-07-11 Fujitsu Limited Method and system for testing during operation of an open ring optical network
US7072584B1 (en) * 2002-04-22 2006-07-04 Atrica Israel Ltd. Network hub employing 1:N optical protection
US7184663B2 (en) 2002-05-29 2007-02-27 Fujitsu Limited Optical ring network with hub node and method
US7283740B2 (en) * 2002-05-29 2007-10-16 Fujitsu Limited Optical ring network with optical subnets and method
US7283739B2 (en) * 2002-05-29 2007-10-16 Fujitsu Limited Multiple subnets in an optical ring network and method
US6842562B2 (en) * 2002-05-30 2005-01-11 Fujitsu Network Communications, Inc. Optical add/drop node and method
US7085496B2 (en) 2002-05-30 2006-08-01 Fujitsu Limited Passive add/drop amplifier for optical networks and method
US7075712B2 (en) 2002-05-30 2006-07-11 Fujitsu Limited Combining and distributing amplifiers for optical network and method
US7813601B2 (en) * 2002-09-06 2010-10-12 Texas Instruments Incorporated Reconfigurable optical add/drop multiplexer
US20040052530A1 (en) * 2002-09-17 2004-03-18 Cechan Tian Optical network with distributed sub-band rejections
JP4183681B2 (ja) * 2002-09-23 2008-11-19 ビーエーエスエフ ソシエタス・ヨーロピア 高誘電率を有する酸化物材料の薄膜
US7715713B1 (en) * 2002-09-30 2010-05-11 Meriton Networks Us Inc. Method and apparatus for providing multiple optical channel protection switching mechanisms in optical rings
US7321729B2 (en) * 2003-05-29 2008-01-22 Fujitsu Limited Optical ring network with selective signal regeneration and wavelength conversion
US20050019034A1 (en) * 2003-07-25 2005-01-27 Fujitsu Network Communications, Inc. System and method for communicating optical traffic between ring networks
US7483636B2 (en) * 2003-07-28 2009-01-27 Fujitsu Limited Optical network with sub-band rejection and bypass
US6885798B2 (en) 2003-09-08 2005-04-26 Adc Telecommunications, Inc. Fiber optic cable and furcation module
DE10343615A1 (de) * 2003-09-20 2005-04-14 Marconi Communications Gmbh Netzknoten für ein optisches Nachrichtenübertragungsnetz
US20050095001A1 (en) * 2003-10-29 2005-05-05 Fujitsu Limited Method and system for increasing network capacity in an optical network
US7483637B2 (en) 2003-11-26 2009-01-27 Fujitsu Limited Optical ring network with optical subnets and method
US7570672B2 (en) * 2004-02-02 2009-08-04 Simplexgrinnell Lp Fiber optic multiplex modem
US20050175346A1 (en) * 2004-02-10 2005-08-11 Fujitsu Limited Upgraded flexible open ring optical network and method
US7369765B2 (en) * 2004-02-26 2008-05-06 Fujitsu Limited Optical network with selective mode switching
US20050196169A1 (en) * 2004-03-03 2005-09-08 Fujitsu Limited System and method for communicating traffic between optical rings
US20050232565A1 (en) * 2004-04-16 2005-10-20 Ross Heggestad Normal through optical panel
US20050286896A1 (en) * 2004-06-29 2005-12-29 Fujitsu Limited Hybrid optical ring network
US7450851B2 (en) * 2004-08-27 2008-11-11 Fujitsu Limited System and method for modularly scalable architecture for optical networks
US7639677B2 (en) * 2004-11-02 2009-12-29 Electronics And Telecommunications Research Institute Optical transponder having switching function
US7376322B2 (en) 2004-11-03 2008-05-20 Adc Telecommunications, Inc. Fiber optic module and system including rear connectors
US7120360B2 (en) * 2005-01-06 2006-10-10 Fujitsu Limited System and method for protecting traffic in a hubbed optical ring network
US7570844B2 (en) * 2005-01-18 2009-08-04 Doron Handelman Photonic integrated circuit device and elements thereof
US7412147B2 (en) * 2005-03-15 2008-08-12 Adc Telecommunications, Inc. Normal through optical panel
US7400813B2 (en) 2005-05-25 2008-07-15 Adc Telecommunications, Inc. Fiber optic splitter module
US7376323B2 (en) 2005-05-25 2008-05-20 Adc Telecommunications, Inc. Fiber optic adapter module
US7636507B2 (en) * 2005-06-17 2009-12-22 Adc Telecommunications, Inc. Compact blind mateable optical splitter
US8428461B2 (en) * 2005-06-22 2013-04-23 Tellabs Operations, Inc. Apparatus for managing an optical signal
US7346254B2 (en) * 2005-08-29 2008-03-18 Adc Telecommunications, Inc. Fiber optic splitter module with connector access
JP4673712B2 (ja) * 2005-09-28 2011-04-20 富士通株式会社 ネットワーク構成装置およびネットワーク構成方法
US7526198B1 (en) * 2005-11-30 2009-04-28 At&T Corp. Methods of restoration in an ultra-long haul optical network
US7639946B2 (en) * 2006-01-06 2009-12-29 Fujitsu Limited Distribution node for an optical network
US7418181B2 (en) 2006-02-13 2008-08-26 Adc Telecommunications, Inc. Fiber optic splitter module
KR100819035B1 (ko) 2006-09-29 2008-04-03 한국전자통신연구원 광회선분배기 시스템, 그 광회선분배기 시스템을 이용한wdm 시스템 및 그 wdm 시스템을 기반으로 하는광통신망
KR100833501B1 (ko) * 2006-11-17 2008-05-29 한국전자통신연구원 다차원 회선분배 시스템, 운용 방법 및 이를 이용한광통신망
US7391954B1 (en) 2007-05-30 2008-06-24 Corning Cable Systems Llc Attenuated optical splitter module
US20080298743A1 (en) * 2007-05-31 2008-12-04 Konstantinos Saravanos Microsplitter module for optical connectivity
US20080298748A1 (en) * 2007-05-31 2008-12-04 Terry Dean Cox Direct-connect optical splitter module
CN101355430B (zh) * 2007-07-27 2012-02-29 华为技术有限公司 交换框、集群路由器
US8798427B2 (en) 2007-09-05 2014-08-05 Corning Cable Systems Llc Fiber optic terminal assembly
US7536075B2 (en) 2007-10-22 2009-05-19 Adc Telecommunications, Inc. Wavelength division multiplexing module
US7885505B2 (en) 2007-10-22 2011-02-08 Adc Telecommunications, Inc. Wavelength division multiplexing module
EP2071377B1 (en) * 2007-12-12 2012-04-18 JDS Uniphase Corporation Packaging a reconfigurable optical add-drop module
US8107816B2 (en) 2008-01-29 2012-01-31 Adc Telecommunications, Inc. Wavelength division multiplexing module
US8045854B2 (en) * 2008-02-07 2011-10-25 Jds Uniphase Corporation M×N wavelength selective optical switch
US8213794B2 (en) * 2008-02-12 2012-07-03 Nec Laboratories America, Inc. Programmable optical network architecture
EP2255542B1 (en) * 2008-03-05 2016-12-07 Tellabs Operations, Inc. Constructing large wavelength selective switches using parallelism
US8943509B2 (en) * 2008-03-21 2015-01-27 International Business Machines Corporation Method, apparatus, and computer program product for scheduling work in a stream-oriented computer system with configurable networks
US8125984B2 (en) * 2008-03-21 2012-02-28 International Business Machines Corporation Method, system, and computer program product for implementing stream processing using a reconfigurable optical switch
CN102177668A (zh) * 2008-08-08 2011-09-07 惠普开发有限公司 用于在相对低基交换机物理网络上实现高基交换机拓扑结构的方法和系统
US8031703B2 (en) 2008-08-14 2011-10-04 Dell Products, Lp System and method for dynamic maintenance of fabric subsets in a network
WO2010020279A1 (en) * 2008-08-20 2010-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Switch node
WO2010040256A1 (en) 2008-10-09 2010-04-15 Corning Cable Systems Llc Fiber optic terminal having adapter panel supporting both input and output fibers from an optical splitter
US8879882B2 (en) 2008-10-27 2014-11-04 Corning Cable Systems Llc Variably configurable and modular local convergence point
WO2010083369A1 (en) * 2009-01-15 2010-07-22 Adc Telecommunications, Inc. Fiber optic module, chassis and adapter
EP2237091A1 (en) 2009-03-31 2010-10-06 Corning Cable Systems LLC Removably mountable fiber optic terminal
US8467651B2 (en) 2009-09-30 2013-06-18 Ccs Technology Inc. Fiber optic terminals configured to dispose a fiber optic connection panel(s) within an optical fiber perimeter and related methods
US9547144B2 (en) 2010-03-16 2017-01-17 Corning Optical Communications LLC Fiber optic distribution network for multiple dwelling units
US8792767B2 (en) 2010-04-16 2014-07-29 Ccs Technology, Inc. Distribution device
US20110262143A1 (en) * 2010-04-21 2011-10-27 Nec Laboratories America, Inc. Roadm systems and methods of operation
EP2564250A4 (en) 2010-04-27 2013-11-13 Adc Comm Shanghai Co Ltd GLASS FIBER MODULE AND CHASSIS
US8300995B2 (en) 2010-06-30 2012-10-30 Jds Uniphase Corporation M X N WSS with reduced optics size
US8547828B2 (en) * 2010-08-03 2013-10-01 Fujitsu Limited Method and system for implementing network element-level redundancy
US8553531B2 (en) * 2010-08-03 2013-10-08 Fujitsu Limited Method and system for implementing network element-level redundancy
JP5609463B2 (ja) * 2010-09-14 2014-10-22 富士通株式会社 伝送装置及び制御装置、並びに信号線の誤接続検出方法
AU2011317244A1 (en) 2010-10-19 2013-05-23 Corning Cable Systems Llc Transition box for multiple dwelling unit fiber optic distribution network
US9182563B2 (en) 2011-03-31 2015-11-10 Adc Telecommunications, Inc. Adapter plate for fiber optic module
US8768167B2 (en) * 2011-04-29 2014-07-01 Telcordia Technologies, Inc. System and method for automated provisioning of services using single step routing and wavelength assignment algorithm in DWDM networks
US8842947B2 (en) * 2011-06-03 2014-09-23 Futurewei Technologies, Inc. Method and apparatus for colorless add
WO2013033890A1 (en) 2011-09-06 2013-03-14 Adc Telecommunications, Inc. Adapter for fiber optic module
EP2582152B1 (en) * 2011-10-12 2018-08-29 ADVA Optical Networking SE Remote node and network architecture and data transmission method for a fiber-optic network, especially for low bit-rate data transmission
US9219546B2 (en) 2011-12-12 2015-12-22 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
CN102572621A (zh) * 2012-02-02 2012-07-11 中兴通讯股份有限公司 一种光模块及波分复用系统
US10110307B2 (en) 2012-03-02 2018-10-23 Corning Optical Communications LLC Optical network units (ONUs) for high bandwidth connectivity, and related components and methods
US8995832B2 (en) * 2012-04-02 2015-03-31 Nec Laboratories America, Inc. Transponder Aggregator-based optical loopback in a MD-ROADM
KR102110121B1 (ko) 2012-04-26 2020-05-13 휴렛 팩커드 엔터프라이즈 디벨롭먼트 엘피 광 슬래브
EP2859676B1 (de) 2012-05-04 2024-01-31 Deutsche Telekom AG VERFAHREN UND VORRICHTUNG FÜR DEN AUFBAU UND BETRIEB EINES MODULAREN, HOCH SKALIERBAREN, SEHR EINFACHEN, KOSTENEFFIZIENTEN UND NACHHALTIGEN TRANSPARENTEN OPTISCH GEROUTETEN NETZES FÜR NETZKAPAZITÄTEN GRÖßER ALS 1 PETABIT/S
US9004778B2 (en) 2012-06-29 2015-04-14 Corning Cable Systems Llc Indexable optical fiber connectors and optical fiber connector arrays
JP6007983B2 (ja) * 2012-07-02 2016-10-19 日本電気株式会社 光分岐装置及び光分岐方法
GB2504970A (en) 2012-08-15 2014-02-19 Swan Thomas & Co Ltd Optical device and methods to reduce cross-talk
US9274299B2 (en) 2012-08-29 2016-03-01 International Business Machines Corporation Modular optical backplane and enclosure
US9049500B2 (en) 2012-08-31 2015-06-02 Corning Cable Systems Llc Fiber optic terminals, systems, and methods for network service management
US8768116B2 (en) * 2012-09-28 2014-07-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical cross-connect assembly and method
US8909019B2 (en) 2012-10-11 2014-12-09 Ccs Technology, Inc. System comprising a plurality of distribution devices and distribution device
CN104904143A (zh) * 2012-11-26 2015-09-09 维斯柯科技有限公司 用于无源光交换的方法和系统
CN105324696B (zh) 2012-12-19 2019-05-17 泰科电子瑞侃有限公司 具有逐渐增加的分路器的分配装置
US9054955B2 (en) 2012-12-30 2015-06-09 Doron Handelman Apparatus and methods for enabling recovery from failures in optical networks
FR3002394B1 (fr) 2013-02-15 2015-03-27 Thales Sa Architecture de transmission d'informations a pont notamment pour application a l'avionique embarquee
FR3002393B1 (fr) * 2013-02-15 2016-06-24 Thales Sa Architecture de transmission d'informations notamment pour application a l'avionique embarquee
US10036396B2 (en) 2013-03-08 2018-07-31 Coriant Operations, Inc. Field configurable fan operational profiles
US9497519B2 (en) * 2013-03-18 2016-11-15 Oplink Communications, Inc. Twin multicast switch
US9819436B2 (en) 2013-08-26 2017-11-14 Coriant Operations, Inc. Intranodal ROADM fiber management apparatuses, systems, and methods
US9344187B2 (en) * 2013-09-17 2016-05-17 Doron Handelman Apparatus and methods for enabling recovery in optical networks
WO2015126472A2 (en) 2013-11-11 2015-08-27 Adc Telecommunications, Inc. Telecommunications module
EP3079274B1 (en) 2013-12-31 2018-08-01 Huawei Technologies Co., Ltd. Optical transmitter, transmission method, optical receiver and reception method
US20160327746A1 (en) * 2014-01-25 2016-11-10 Hewlett-Packard Development Company, L.P. Bidirectional optical multiplexing employing a high contrast grating
US9699074B2 (en) * 2014-04-10 2017-07-04 Fujitsu Limited Efficient utilization of transceivers for shared restoration in flexible grid optical networks
US10732370B2 (en) 2014-06-17 2020-08-04 CommScope Connectivity Belgium BVBA Cable distribution system
US9395509B2 (en) 2014-06-23 2016-07-19 Commscope Technologies Llc Fiber cable fan-out assembly and method
US9429712B2 (en) 2014-07-23 2016-08-30 Ii-Vi Incorporated Dual-ganged optical switch
WO2016024991A1 (en) * 2014-08-15 2016-02-18 Hewlett-Packard Development Company, Lp Optical mode matching
WO2016037262A1 (en) * 2014-09-09 2016-03-17 Viscore Technologies Inc. Low latency optically distributed dynamic optical interconnection networks
US10054753B2 (en) 2014-10-27 2018-08-21 Commscope Technologies Llc Fiber optic cable with flexible conduit
US10459174B2 (en) * 2014-12-19 2019-10-29 Hewlett Packard Enterprise Development Lp Bonded filter substrates
JP2016161802A (ja) * 2015-03-03 2016-09-05 富士通株式会社 可変光減衰器及び光モジュール
AU2015207954C1 (en) 2015-07-31 2022-05-05 Adc Communications (Australia) Pty Limited Cable breakout assembly
US10162131B2 (en) 2015-08-21 2018-12-25 Commscope Technologies Llc Telecommunications module
US10606009B2 (en) 2015-12-01 2020-03-31 CommScope Connectivity Belgium BVBA Cable distribution system with fan out devices
CN105572818B (zh) * 2015-12-29 2018-09-14 江苏奥雷光电有限公司 多通道并行光发射器件和多模远距离传输系统
EP3408701B1 (en) 2016-01-28 2023-04-26 CommScope Connectivity Belgium BVBA Modular telecommunications enclosure
CN108604929B (zh) * 2016-01-29 2021-05-25 国立大学法人名古屋大学 光开关装置
CN108780200B (zh) 2016-03-18 2021-05-07 康普技术有限责任公司 光纤电缆扇出管道结构、部件和方法
US10222571B2 (en) 2016-04-07 2019-03-05 Commscope Technologies Llc Telecommunications module and frame
EP3507633A4 (en) 2016-08-31 2020-04-01 Commscope Technologies LLC FIBER OPTIC CABLE TIGHTENING AND TIGHTENING DEVICE
CN107797181B (zh) * 2016-08-31 2020-04-28 华为技术有限公司 光开关矩阵及其控制方法
CN109716194B (zh) 2016-10-13 2021-07-16 康普技术有限责任公司 包含环氧树脂插塞和缆线应变消除件的光纤分支过渡组件
US10417364B2 (en) 2017-01-04 2019-09-17 Stmicroelectronics International N.V. Tool to create a reconfigurable interconnect framework
CN108269224B (zh) 2017-01-04 2022-04-01 意法半导体股份有限公司 可重新配置的互连
WO2018208518A1 (en) 2017-05-08 2018-11-15 Commscope Technologies Llc Fiber-optic breakout transition assembly
US10484121B2 (en) * 2017-06-30 2019-11-19 Sumitomo Electric Industries, Ltd. Receiver optical module implementing optical attenuator
CN108828720B (zh) * 2018-05-30 2020-09-15 中国科学院半导体研究所 全交换多模信号光开关架构
CN108761652B (zh) * 2018-05-30 2020-09-15 中国科学院半导体研究所 用于链路内模式交换和链路交换的多模光开关架构
CN110582034B (zh) * 2018-06-11 2022-04-26 台达电子工业股份有限公司 智能定义光隧道网络系统控制器及其控制方法
KR102041589B1 (ko) * 2018-07-26 2019-11-27 (주)코셋 파장다중 양방향 광송수신 장치
CN109991582B (zh) * 2019-03-13 2023-11-03 上海交通大学 硅基混合集成激光雷达芯片系统
US11139898B2 (en) 2019-07-12 2021-10-05 Hewlett Packard Enterprise Development Lp Node-division multiplexing with sub-WDM node ports for pseudo-all-to-all connected optical links
US11593609B2 (en) 2020-02-18 2023-02-28 Stmicroelectronics S.R.L. Vector quantization decoding hardware unit for real-time dynamic decompression for parameters of neural networks
US11381891B2 (en) * 2020-04-30 2022-07-05 Hewlett Packard Enterprise Development Lp Virtual fiber adapter for wavelength-as-a-service communications
US11531873B2 (en) 2020-06-23 2022-12-20 Stmicroelectronics S.R.L. Convolution acceleration with embedded vector decompression
CN113872697B (zh) * 2020-06-30 2023-09-12 华为技术有限公司 光发送机和光调制的方法
EP4009554A1 (en) * 2020-12-01 2022-06-08 Deutsche Telekom AG System and method providing failure protection based on a faulty port in an aggregation network being an optical transport network

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US615157A (en) * 1898-11-29 Traction-wheel
US5504609A (en) * 1995-05-11 1996-04-02 Ciena Corporation WDM optical communication system with remodulators
US5557439A (en) * 1995-07-25 1996-09-17 Ciena Corporation Expandable wavelength division multiplexed optical communications systems
US5608825A (en) * 1996-02-01 1997-03-04 Jds Fitel Inc. Multi-wavelength filtering device using optical fiber Bragg grating
US5712932A (en) * 1995-08-08 1998-01-27 Ciena Corporation Dynamically reconfigurable WDM optical communication systems with optical routing systems
US5909295A (en) * 1996-11-06 1999-06-01 Li; Jinghui Hybrid bi-directional wavelength division multiplexing device
US6005694A (en) * 1995-12-28 1999-12-21 Mci Worldcom, Inc. Method and system for detecting optical faults within the optical domain of a fiber communication network
US6046833A (en) * 1997-02-10 2000-04-04 Optical Networks, Inc. Method and apparatus for operation, protection, and restoration of heterogeneous optical communication networks
US6067389A (en) * 1998-07-27 2000-05-23 Lucent Technologies Inc. Wavelength-selective optical cross-connect
US6084694A (en) * 1997-08-27 2000-07-04 Nortel Networks Corporation WDM optical network with passive pass-through at each node
US6101011A (en) * 1997-05-29 2000-08-08 Ciena Corporation Modulation format adjusting optical transponders
US6192172B1 (en) * 1999-08-09 2001-02-20 Lucent Technologies Inc. Optical wavelength-space cross-connect switch architecture
US6288811B1 (en) * 2000-10-17 2001-09-11 Seneca Networks WDM optical communication system with channels supporting multiple data formats
US20010040710A1 (en) * 2000-02-18 2001-11-15 Michael Sharratt Optical communication system
US20020067888A1 (en) * 2000-12-04 2002-06-06 Morozov Valentine N. Spectral power equalizer for wavelength-multiplexed optical fiber communication links

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429803A (en) * 1991-04-18 1995-07-04 Lamina, Inc. Liquid specimen container and attachable testing modules
US5267309A (en) * 1990-11-20 1993-11-30 Alcatel Network Systems, Inc. Telephone line unit having programmable read-only memory
US5555477A (en) * 1992-04-08 1996-09-10 Hitachi, Ltd. Optical transmission system constructing method and system
JP3072047B2 (ja) * 1995-03-22 2000-07-31 株式会社東芝 波長多重光伝送装置および光中継器
JPH08278523A (ja) * 1995-04-05 1996-10-22 Hitachi Ltd 光増幅装置
US5583683A (en) 1995-06-15 1996-12-10 Optical Corporation Of America Optical multiplexing device
US5870216A (en) * 1995-10-26 1999-02-09 Trw Inc. Splitterless optical broadcast switch
US6108113A (en) * 1995-12-29 2000-08-22 Mci Communications Corporation Method and system for transporting ancillary network data
US5774245A (en) * 1996-07-08 1998-06-30 Worldcom Network Services, Inc. Optical cross-connect module
US6005697A (en) * 1996-07-23 1999-12-21 Macro-Vision Communications, L.L.C. Multi-wavelength cross-connect optical network
IT1283372B1 (it) * 1996-07-31 1998-04-17 Pirelli Cavi S P A Ora Pirelli Dispositivo per l'inserimento e l'estrazione di segnali ottici
US5793909A (en) * 1996-09-09 1998-08-11 Lucent Technologies Inc. Optical monitoring and test access module
US6208443B1 (en) * 1996-10-03 2001-03-27 International Business Machines Corporation Dynamic optical add-drop multiplexers and wavelength-routing networks with improved survivability and minimized spectral filtering
US6201909B1 (en) * 1996-10-25 2001-03-13 Arroyo Optics, Inc. Wavelength selective optical routers
US5881199A (en) * 1996-12-02 1999-03-09 Lucent Technologies Inc. Optical branching device integrated with tunable attenuators for system gain/loss equalization
JP3068018B2 (ja) * 1996-12-04 2000-07-24 日本電気株式会社 光波長分割多重リングシステム
US6295149B1 (en) * 1997-01-15 2001-09-25 Pirelli Cavi E Sistemi S.P.A. System and method of telecommunication with wavelength division multiplexing comprising a demultiplexer
US6028689A (en) 1997-01-24 2000-02-22 The United States Of America As Represented By The Secretary Of The Air Force Multi-motion micromirror
JP3013799B2 (ja) * 1997-01-28 2000-02-28 日本電気株式会社 波長多重光伝送用送信装置と受信装置
US6097859A (en) * 1998-02-12 2000-08-01 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6154587A (en) * 1997-03-21 2000-11-28 Oki Electric Industry Co., Ltd. Optical cross connector apparatus
JP3102379B2 (ja) * 1997-04-30 2000-10-23 日本電気株式会社 波長多重光伝送システム用監視制御方式
KR100265865B1 (ko) 1997-06-16 2000-09-15 윤덕용 광섬유가변형파장필터
US6151157A (en) 1997-06-30 2000-11-21 Uniphase Telecommunications Products, Inc. Dynamic optical amplifier
US5995256A (en) * 1997-09-30 1999-11-30 Mci Communications Corporation Method and system for managing optical subcarrier reception
KR20010024834A (ko) * 1998-01-05 2001-03-26 알프레드 엘. 미첼슨 부가/하락 광학 멀티플렉싱 장치
JP3085274B2 (ja) 1998-01-19 2000-09-04 日本電気株式会社 光送信器
US5999288A (en) * 1998-02-02 1999-12-07 Telcordia Technologies, Inc. Connection set-up and path assignment in wavelength division multiplexed ring networks
US6351581B1 (en) * 1998-03-17 2002-02-26 Agere Systems Optoelectronics Guardian Corp. Optical add-drop multiplexer having an interferometer structure
US6169994B1 (en) * 1998-04-02 2001-01-02 Lucent Technologies, Inc. Method for creating and modifying similar and dissimilar databases for use in hardware equipment configurations for telecommunication systems
US6321255B1 (en) * 1998-04-10 2001-11-20 Cisco Technology, Inc. Extensible storage of network device identification information
US6154728A (en) * 1998-04-27 2000-11-28 Lucent Technologies Inc. Apparatus, method and system for distributed and automatic inventory, status and database creation and control for remote communication sites
SE512226C2 (sv) * 1998-06-25 2000-02-14 Ericsson Telefon Ab L M Våglängdsselektiv switch och förfarande för switching av vågländskanaler i ett optiskt nätverk
US6195187B1 (en) * 1998-07-07 2001-02-27 The United States Of America As Represented By The Secretary Of The Air Force Wavelength-division multiplexed M×N×M cross-connect switch using active microring resonators
US6212315B1 (en) 1998-07-07 2001-04-03 Lucent Technologies Inc. Channel power equalizer for a wavelength division multiplexed system
US6449073B1 (en) * 1998-07-21 2002-09-10 Corvis Corporation Optical communication system
US6466341B1 (en) * 1998-08-03 2002-10-15 Agere Systems Guardian Corp. Add/drop filter for a multi-wavelength lightwave system
GB2346280A (en) * 1998-10-22 2000-08-02 Hewlett Packard Co Optical switching interface using transponders
US6272154B1 (en) * 1998-10-30 2001-08-07 Tellium Inc. Reconfigurable multiwavelength network elements
US6256430B1 (en) * 1998-11-23 2001-07-03 Agere Systems Inc. Optical crossconnect system comprising reconfigurable light-reflecting devices
US6192782B1 (en) * 1998-12-31 2001-02-27 John W. Rogers Torque control means for hydraulic motor
US6263123B1 (en) * 1999-03-12 2001-07-17 Lucent Technologies Pixellated WDM optical components
US6587470B1 (en) * 1999-03-22 2003-07-01 Cisco Technology, Inc. Flexible cross-connect with data plane
CN1159654C (zh) * 1999-05-26 2004-07-28 富士通株式会社 网络元件管理系统和方法
US6947670B1 (en) * 1999-06-30 2005-09-20 Lucent Technologies Inc. Optical add/drop arrangement for ring networks employing wavelength division multiplexing
JP2001053753A (ja) * 1999-08-09 2001-02-23 Fujitsu Ltd Atmネットワークにおける現用/予備回線の切替え方法及びこれを使用するatm交換機
CA2285128C (en) * 1999-10-06 2008-02-26 Nortel Networks Corporation Switch for optical signals
US6501877B1 (en) * 1999-11-16 2002-12-31 Network Photonics, Inc. Wavelength router
US6192174B1 (en) * 1999-12-21 2001-02-20 Dicon Fiberoptics, Inc. Wavelength selection switches for optical application
US6414765B1 (en) * 2000-03-07 2002-07-02 Corning, Inc. Protection switch in a two-fiber optical channel shared protection ring
JP2001268011A (ja) * 2000-03-21 2001-09-28 Fujitsu Ltd 光ノードシステム、及び、スイッチの接続方法
US6631222B1 (en) * 2000-05-16 2003-10-07 Photuris, Inc. Reconfigurable optical switch
DE60028551T2 (de) * 2000-06-05 2006-09-28 Pirelli Cavi E Sistemi S.P.A. Optisches wellenlängenmultiplexiertes System mit kombinierten wellenlängen Leitweglenkung und Leitweglenkung von optischen Fasern
US6754174B1 (en) * 2000-09-15 2004-06-22 Ciena Corporation Interface for communications among network elements
US6516105B1 (en) * 2000-10-10 2003-02-04 Teradyne, Inc. Optical backplane assembly and method of making same
US6721509B2 (en) * 2000-12-05 2004-04-13 Avanex Corporation Self-adjusting optical add-drop multiplexer and optical networks using same
US6411412B1 (en) * 2000-12-08 2002-06-25 Seneca Networks WDM optical communication network with data bridging plural optical channels between optical waveguides
US7013084B2 (en) * 2001-02-28 2006-03-14 Lambda Opticalsystems Corporation Multi-tiered control architecture for adaptive optical networks, and methods and apparatus therefor
JP2004536485A (ja) * 2001-03-16 2004-12-02 フォトゥリス,インク 異なる波長多重光通信システム間で、波長多重信号を光学的にトランスペアレントに伝送する方法及び装置
JP3798642B2 (ja) * 2001-03-26 2006-07-19 富士通株式会社 Wdmネットワークの管理装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US615157A (en) * 1898-11-29 Traction-wheel
US5504609A (en) * 1995-05-11 1996-04-02 Ciena Corporation WDM optical communication system with remodulators
US5557439A (en) * 1995-07-25 1996-09-17 Ciena Corporation Expandable wavelength division multiplexed optical communications systems
US5712932A (en) * 1995-08-08 1998-01-27 Ciena Corporation Dynamically reconfigurable WDM optical communication systems with optical routing systems
US6005694A (en) * 1995-12-28 1999-12-21 Mci Worldcom, Inc. Method and system for detecting optical faults within the optical domain of a fiber communication network
US5608825A (en) * 1996-02-01 1997-03-04 Jds Fitel Inc. Multi-wavelength filtering device using optical fiber Bragg grating
US5909295A (en) * 1996-11-06 1999-06-01 Li; Jinghui Hybrid bi-directional wavelength division multiplexing device
US6046833A (en) * 1997-02-10 2000-04-04 Optical Networks, Inc. Method and apparatus for operation, protection, and restoration of heterogeneous optical communication networks
US6101011A (en) * 1997-05-29 2000-08-08 Ciena Corporation Modulation format adjusting optical transponders
US6084694A (en) * 1997-08-27 2000-07-04 Nortel Networks Corporation WDM optical network with passive pass-through at each node
US6067389A (en) * 1998-07-27 2000-05-23 Lucent Technologies Inc. Wavelength-selective optical cross-connect
US6192172B1 (en) * 1999-08-09 2001-02-20 Lucent Technologies Inc. Optical wavelength-space cross-connect switch architecture
US20010040710A1 (en) * 2000-02-18 2001-11-15 Michael Sharratt Optical communication system
US6288811B1 (en) * 2000-10-17 2001-09-11 Seneca Networks WDM optical communication system with channels supporting multiple data formats
US20020067888A1 (en) * 2000-12-04 2002-06-06 Morozov Valentine N. Spectral power equalizer for wavelength-multiplexed optical fiber communication links

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408639B1 (en) 2004-04-23 2008-08-05 Nistica, Inc. Tunable optical routing systems
US7965911B1 (en) 2004-04-23 2011-06-21 Nistica, Inc. Method of operating a tunable optical device
US7639906B1 (en) * 2004-04-23 2009-12-29 Nistica, Inc. Tunable optical communication system
US7257288B1 (en) 2004-04-23 2007-08-14 Nistica, Inc. Tunable optical routing systems
EP1659724A3 (en) * 2004-11-22 2010-01-13 Fujitsu Limited Optical ring network for extended broadcasting
US7826743B2 (en) 2004-11-22 2010-11-02 Fujitsu Limited Optical ring network for extended broadcasting
US20060110162A1 (en) * 2004-11-22 2006-05-25 Fujitsu Network Communications, Inc. Optical ring network for extended broadcasting
EP1659724A2 (en) * 2004-11-22 2006-05-24 Fujitsu Limited Optical ring network for extended broadcasting
US20060140625A1 (en) * 2004-12-28 2006-06-29 Fujitsu Limited Optical node and optical add/drop multiplexer
US7711270B2 (en) * 2004-12-28 2010-05-04 Fujitsu Limited Optical node and optical add/drop multiplexer
US8396366B2 (en) * 2008-11-10 2013-03-12 Cisco Technology, Inc. Optical safety implementation in protection switching modules
US20100119223A1 (en) * 2008-11-10 2010-05-13 Cisco Technology, Inc. Optical Safety Implementation in Protection Switching Modules
US8879903B2 (en) 2008-11-10 2014-11-04 Cisco Technology, Inc. Optical safety implementation in protection switching modules
US20100239259A1 (en) * 2009-03-18 2010-09-23 Cisco Technology, Inc. OFDM Transponder Interface With Variable Bit Transfer Rate in Optical Communications Systems
US8218969B2 (en) * 2009-03-18 2012-07-10 Cisco Technology, Inc. OFDM transponder interface with variable bit transfer rate in optical communications systems
US20110262141A1 (en) * 2010-04-21 2011-10-27 Lorenzo Ghioni Innovative architecture for fully non blocking service aggregation without o-e-o conversion in a dwdm multiring interconnection node
US8412042B2 (en) * 2010-04-21 2013-04-02 Cisco Technology, Inc. Innovative architecture for fully non blocking service aggregation without O-E-O conversion in a DWDM multiring interconnection node
US20120082454A1 (en) * 2010-09-30 2012-04-05 Fujitsu Limited Optical network interconnect device
US8948593B2 (en) * 2010-09-30 2015-02-03 Fujitsu Limited Optical network interconnect device
EP2940501B1 (en) * 2013-06-21 2020-04-29 Huawei Technologies Co., Ltd. Optical path processing method and apparatus
US20160140072A1 (en) * 2013-07-30 2016-05-19 Hewlett-Packard Development Company, L.P. Two-dimensional torus topology
US10185691B2 (en) * 2013-07-30 2019-01-22 Hewlett Packard Enterprise Development Lp Two-dimensional torus topology
US20200274735A1 (en) * 2019-02-26 2020-08-27 Ciena Corporation Detection of node isolation in subtended Ethernet ring topologies
US10862706B2 (en) * 2019-02-26 2020-12-08 Ciena Corporation Detection of node isolation in subtended ethernet ring topologies

Also Published As

Publication number Publication date
CN1672351A (zh) 2005-09-21
EP1371162A4 (en) 2010-01-06
CA2441059A1 (en) 2002-09-26
CA2441045A1 (en) 2002-09-26
US9258628B2 (en) 2016-02-09
EP1368923A2 (en) 2003-12-10
US20020145779A1 (en) 2002-10-10
JP2004536485A (ja) 2004-12-02
CN1596517A (zh) 2005-03-16
US20020146198A1 (en) 2002-10-10
AU2002254262A1 (en) 2002-10-03
KR20040052492A (ko) 2004-06-23
JP2004536484A (ja) 2004-12-02
WO2002075403A1 (en) 2002-09-26
EP1368923A4 (en) 2010-01-06
US20090142060A1 (en) 2009-06-04
US7738748B2 (en) 2010-06-15
US7620323B2 (en) 2009-11-17
WO2002075999A2 (en) 2002-09-26
EP1368923B1 (en) 2013-04-24
EP1368924A1 (en) 2003-12-10
KR100993500B1 (ko) 2010-11-11
CN1993915B (zh) 2010-10-06
US20090196549A1 (en) 2009-08-06
US7676157B2 (en) 2010-03-09
WO2002075998A1 (en) 2002-09-26
KR20040000408A (ko) 2004-01-03
KR20030083742A (ko) 2003-10-30
KR20090106622A (ko) 2009-10-09
US6614953B2 (en) 2003-09-02
EP1371162A2 (en) 2003-12-17
CA2441303A1 (en) 2002-09-26
US20080166087A1 (en) 2008-07-10
WO2002075369A3 (en) 2003-05-01
KR100993182B1 (ko) 2010-11-10
US20020159679A1 (en) 2002-10-31
WO2002075369A2 (en) 2002-09-26
US20100098406A1 (en) 2010-04-22
KR20090107549A (ko) 2009-10-13
EP1368924A4 (en) 2010-01-06
WO2002075999A3 (en) 2002-11-21
AU2002255763A1 (en) 2002-10-03
US20160142172A1 (en) 2016-05-19
US7469080B2 (en) 2008-12-23
CN1993915A (zh) 2007-07-04
CA2441343A1 (en) 2002-09-26
CN1502183A (zh) 2004-06-02
JP2005502222A (ja) 2005-01-20

Similar Documents

Publication Publication Date Title
US9258628B2 (en) Method and apparatus for transferring WDM signals between different wavelength division multiplexed optical communications systems in an optically transparent manner
US6542268B1 (en) Optical channel cross connect for telecommunication systems in wdm technology (wavelength division multiplexing) having a double spatial switching structure of optical flows strictly not blocking and interposed functional units operating on single channels
US20020186434A1 (en) Transparent photonic switch architectures for optical communication networks
US20100284691A1 (en) Optical routing device and optical network using same
US20040190901A1 (en) Bi-directional optical network element and its control protocols for WDM rings
US7079723B2 (en) Optical wavelength cross connect architectures using wavelength routing elements
US7437075B2 (en) Integrated reconfigurable optical add/drop multiplexer
EP1089479B1 (en) Wavelength division add/drop multiplexer
US20020145778A1 (en) Wavelength division multiplexed optical communication system having a reconfigurable optical switch and a tunable backup laser transmitter
US20030152072A1 (en) Routing device for all optical networks
US6304351B1 (en) Universal branching unit
US6813408B2 (en) Methods for performing in-service upgrades of optical wavelength cross connects
WO2002021746A2 (en) Communication system
WO2003009510A1 (en) Optical filtering by using an add-drop node
Ghelfi et al. Optical cross connects architecture with per-node add&drop functionality
WO2001074111A1 (en) Routing device for all optical networks
WO2003043230A1 (en) Optical wdm transmission system having a distributed arrangement of regenerators

Legal Events

Date Code Title Description
AS Assignment

Owner name: PHOTURIS, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STRASSER, THOMAS ANDREW;HANSEN, PER BANG;WAGENER, JEFFERSON L.;REEL/FRAME:013021/0206;SIGNING DATES FROM 20020409 TO 20020410

AS Assignment

Owner name: JURISTA, MR. STEVEN Z., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PHOTURIS, INC.;REEL/FRAME:014990/0969

Effective date: 20040408

Owner name: JURISTA, MR. STEVEN Z.,NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PHOTURIS, INC.;REEL/FRAME:014990/0969

Effective date: 20040408

AS Assignment

Owner name: MAHI NETWORKS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JURISTA, MR. STEVEN Z.;REEL/FRAME:015147/0593

Effective date: 20040608

Owner name: MAHI NETWORKS, INC.,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JURISTA, MR. STEVEN Z.;REEL/FRAME:015147/0593

Effective date: 20040608

AS Assignment

Owner name: MAHI NETWORKS, INC.,CALIFORNIA

Free format text: SALE DUE TO BANKRUPTCY;ASSIGNOR:PHOTURIS, INC.;REEL/FRAME:016996/0483

Effective date: 20040506

Owner name: MAHI NETWORKS, INC., CALIFORNIA

Free format text: SALE DUE TO BANKRUPTCY;ASSIGNOR:PHOTURIS, INC.;REEL/FRAME:016996/0483

Effective date: 20040506

AS Assignment

Owner name: MERITON NETWORKS US INC.,DELAWARE

Free format text: MERGER;ASSIGNOR:MAHI NETWORKS, INC.;REEL/FRAME:016996/0958

Effective date: 20051110

Owner name: MERITON NETWORKS US INC., DELAWARE

Free format text: MERGER;ASSIGNOR:MAHI NETWORKS, INC.;REEL/FRAME:016996/0958

Effective date: 20051110

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION