US20020139253A1 - Connectionless food steamer with automatic electric steam trap - Google Patents

Connectionless food steamer with automatic electric steam trap Download PDF

Info

Publication number
US20020139253A1
US20020139253A1 US10/105,179 US10517902A US2002139253A1 US 20020139253 A1 US20020139253 A1 US 20020139253A1 US 10517902 A US10517902 A US 10517902A US 2002139253 A1 US2002139253 A1 US 2002139253A1
Authority
US
United States
Prior art keywords
steam
water
pressure
heating element
cooker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/105,179
Other versions
US6453802B1 (en
Inventor
Mark Manganiello
Mark Doran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Market Forge Industries Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/105,179 priority Critical patent/US6453802B1/en
Assigned to MARKET FORGE INDUSTRIES, INC. reassignment MARKET FORGE INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DORAN, MARK J., MANGANIELLO, MARK
Application granted granted Critical
Priority to US10/253,127 priority patent/US20030178411A1/en
Publication of US6453802B1 publication Critical patent/US6453802B1/en
Publication of US20020139253A1 publication Critical patent/US20020139253A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21BBAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
    • A21B3/00Parts or accessories of ovens
    • A21B3/04Air-treatment devices for ovens, e.g. regulating humidity
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • A47J27/04Cooking-vessels for cooking food in steam; Devices for extracting fruit juice by means of steam ; Vacuum cooking vessels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • A47J27/04Cooking-vessels for cooking food in steam; Devices for extracting fruit juice by means of steam ; Vacuum cooking vessels
    • A47J2027/043Cooking-vessels for cooking food in steam; Devices for extracting fruit juice by means of steam ; Vacuum cooking vessels for cooking food in steam
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • A47J27/14Cooking-vessels for use in hotels, restaurants, or canteens

Definitions

  • the present invention relates to a steam cooking apparatus and in particular to a connectionless steam cooker with an automatic cold air and steam outlet and close pressure control to enhance the efficiency of the cooker.
  • a wide variety of steam cookers are known. Market Forge Industries, Inc., the present assignee, manufactures a wide variety of steam cookers and food warmers that have found wide acceptance in the food service industry as a way to rapidly cook food, including frozen food, and/or maintain it at a serving temperature. While pressure cookers have long been used in homes and restaurants, the risks and extra costs of containing steam under high pressure have led to the growth of slow steam cookers that use steam to deliver heat to the food, but at a pressure that is typically just above atmosphere (1 to 2 inches of water). Most conventional slow (or “pressureless”) steam cookers have steam generators, typically boilers external to the cooking compartment and using electrical resistance or gas heaters that produce steam from a water supply.
  • U.S. Pat. Nos. 5,549,038 and 5,631,033 to Kolvites and assigned to Market Forge Industries describe one implementation of a commercial slow steam cooker.
  • the Kolvites cooker has permanent connections to a water supply and a drain. It can continuously replenish the supply of cold water. Periodically, on demand, it can draw water (e.g. at a rate of 30 gph) from the supply, heat the water to produce steam, circulate the steam in an oven chamber around the food to cook it and/or keep it warm until served, and then direct the steam and condensed water to the drain.
  • connectionless cookers Another type of steam cooker, commonly termed “connectionless”, avoids some of these constraints of connected cookers.
  • Connectionless cookers do not have permanent connection to a water supply. Rather, water is added manually to the unit. It is evaporated, condensed, collected, and reused.
  • This type of steamer can operate for comparatively long periods of time without adding additional water, and with significantly reduced water and power usage as compared to the connected steam cookers because cold water is not added on demand to form the steam, and then drained after use.
  • An earlier steamer sold by Market Forge Industries, Inc. under the trade designation “STEAM IT” is connectionless and holds a supply of water within its heating compartment. In general, connectionless steamers cook smaller quantities of food than connected ones, but are easier to maintain, more portable, and cost less to operate.
  • the opening and closing of this door produce a loss of steam, fluctuations in steam pressure, and introduce cold air into the compartment.
  • the efficiency and the quality of operation of the steam cooker is dependent upon the degree to which the temperature and pressure of the steam within the cavity can be maintained at or near a preselected optimal value, or within an optimal range of values.
  • connectionless steamers It is also important in all steamers to have reliable and effective controls to prevent burnout of the heater, typically caused by a low water condition.
  • a critical low water situation typically develops as steam is lost from the cooking compartment, and more water is boiled to replace it. (There is usually loss at least when the door is opened, and via a bleed orifice used to introduce some flow in the steam to keep it “active”.)
  • Known connectionless steamers have water level detection arrangements, but they can fail.
  • One particular problem is that certain foods when steam cooked release materials to the steam which collect in the condensed water and create a layer of foam on the water.
  • the amount of heat produced by a steam cooker also must accommodate variations in the quantity of food, its temperature, and its surface area. A small amount of room temperature food will be cooked quickly with the steam generator powered. Continued heating will generate a dangerous overpressure and overcook the food.
  • Various arrangements have therefore been employed to apply electrical power to a heater of a steam generator intermittently, as needed.
  • the aforementioned Kolvites '038 and '033 patents for example, use a pressure-sensitive switch connected in series in the power supply line. The switch responds to the steam pressure in a long outlet conduit from the oven.
  • Kolvites provides a switch responsive to an opening of the door that opens a valve in a fresh water supply line. The resulting cold water flow quenches steam in the steam generator and also cools a mechanical steam trap to open the steam outlet line to atmosphere.
  • Creamer et al U.S. Pat. No. 5,869,812 disclosed a float switch that controls the application of power to a heater mounted under the floor of a heating chamber, adjacent a pool of water.
  • the float switch operates by balancing atmospheric pressure on a supply of water in a reservoir external to the steam housing against the steam pressure in the cooker carried by a conduit from an upper portion of the chamber to the float switch. Depending on how this balance is struck, power to the heater is on or off.
  • Creamer et al. slope the floor of the heating chamber to one corner to facilitate drainage of the pool of water held there. Outlet steam is condensed and cooled in the reservoir, and then gravity recirculated by a conduit back to the water pool within the heating chamber.
  • Creamer et al. propose a solution to the problem of cold air trapped in the connectionless cooler of the '812 patent. They place a small hole (bleed orifice) in the steam outlet conduit leading to the float valve. The hole is continuously open to atmosphere. Cold air may escape, as may steam.
  • connectionless steam cooker that eliminates trapped cold air rapidly from the steamer while at the same time conserving water and steam and closely maintaining a preselected temperature and pressure range within the steamer.
  • a further object is to provide these advantages with a simple, reliable construction.
  • Another object is to provide a simple and reliable low-water detection system that is not sensitive to scaling, food debris or food foam.
  • Still another object is to provide these advantages together with ease of cleaning and maintenance, low water usage, low power consumption, and operator safety.
  • a connectionless steam cooker has a housing with insulated bottom, top and side inner and outer walls that define a cooking compartment or oven within the inner walls.
  • the floor of the oven and adjacent portions of the side walls hold a supply of water.
  • a heater in one form a plate-like assembly of cast metal with electrical heating elements embedded therein, is secured at the floor of the housing in a water well. In one form, this securing is replaceable, using a set of threaded studs that engage holes in a peripheral flange, with an edge seal gasket to hold water in the cooking compartment.
  • the heater is in direct contact with the water for efficient heat transfer. Operation of the heater generates steam that circulates through the oven.
  • a steam outlet is formed in a wall of the housing (e.g., a back wall of a cooking compartment) and in a lower half of the cooking compartment. In one form, it is located preferably immediately above the high water level in the cooking compartment so that steam generation drives cold air down to this outlet.
  • An electrically-operated solenoid valve is connected substantially directly to the steam outlet via a branched outlet conduit. One branch leads to the solenoid valve and the other branch leads to a pressure regulation/power control system.
  • the solenoid valve is normally open to atmosphere.
  • a thermostat that senses the temperature of the steam in the heating chamber is located adjacent the steam outlet, also just above the high water line. The thermostat is closely controlled to produce an output control signal when the sensed temperature is at or above a preselected set point, typically just under the boiling point of the water. This output signal closes the solenoid valve to block any significant loss of steam to the atmosphere while directing the outlet vapor via conduits to a set of pressure. sensitive microswitches.
  • the thermostat and solenoid valve so located and so connected constitute an automatic electric steam trap that also provides a ready path to eliminate cold air from the steamer. It is also rapidly and accurately responsive to the temperature of the steam in the heating compartment, e.g., that it is 205 to 210° F. in the cooking compartment.
  • the second branch conduit from the steam outlet can be a single conduit that itself branches into two conduits.
  • One branch directs the outlet vapor to a first or operating microswitch that cycles between “ON” and “OFF” states as sensed pressure moves between lower and upper preselected set pressure values, typical ones being 1 and 3 inches of water column pressure (“W. C.”), the normal operating range during cooking.
  • W. C.” water column pressure
  • the other branch conduit directs outlet steam vapor from the steam outlet to a second pressure-sensitive microswitch that is set to open the solenoid valve on rise at a pressure valve above an upper limit.
  • a typical value of the set limit point of the second switch is 9 inches W. C.
  • This second conduit branch and second switch is a safety feature to release steam if the pressure in the cavity exceeds a safe pressure relief. If this arrangement should fail, a check valve separate from the solenoid valve and in the second branch line from the steam outlet opens to release steam from the steam outlet to atmosphere.
  • the plate-like heating element is mounted within the cooking compartment at its floor or so as to be immersed in the cooking water when the steamer is operating. This provides an efficient heat transfer to the water.
  • the heater is also tilted with respect to the horizontal (defined by the water level). This tilt is preferably along a diagonal of a rectangular plate heater so that one corner is elevated slightly with respect to the other corner.
  • Heat sensors e.g., snap disc type sensors, are mounted on these raised and lowered portions of the heater. As water is lost, the raised (“primary”) sensor detects a temperature rise (e.g., to 310° F.) which can equal a low water condition. The switch automatically resets. If the lower sensor detects a temperature rise (e.g., to 378° F.), then it also signals a low water condition, turning off the power, and must be manually reset.
  • a temperature rise e.g., to 378° F.
  • the cooking cavity has a wire rack between a lowermost pan in the cooking compartment and the maximum water level.
  • the rack is sufficiently rigid to hold food to be warmed, sufficiently porous to promote the rise of steam into the cavity, and formed of sufficiently closely spaced wires to block an operator's hand from touching the hot water.
  • the power controls include a two-level power supply selector switch. In one position, the system supplies full power to the heating element, and in the second position supplies a reduced power, e.g., 6 KW reduced to 4 KW for a three-pan sized cooking compartment.
  • FIG. 1 is a view in perspective of a connectionless slow steam cooker according to the present invention with the door open and with pans in the cooking compartment;
  • FIG. 2 is a side view in side elevation of the steam cooker shown in FIG. 1;
  • FIG. 3 is a view in rear elevation of the cooker shown in FIGS. 1 and 2;
  • FIG. 4 is a schematic view in side elevation of the steam cooker shown in FIGS. 1 - 3 ;
  • FIG. 5 is a detailed view in front elevation and partially in section of the heating element shown in FIGS. 1 - 4 .
  • FIGS. 1 - 5 illustrate one embodiment of a connectionless steam cooker 10 .
  • the cooker includes a generally rectangular outer housing 12 formed principally of stainless steel having a floor 12 a, a top wall 12 b, and four side walls 12 c, d, e, and f .
  • Wall 12 f is the back wall of the unit; wall 12 c is the front wall that mounts a door 14 .
  • the housing encloses a cooking compartment 16 of generally rectangular internal configuration.
  • the inner walls 16 a - f (each adjacent and generally parallel to an outer wall 12 a - f with the same alphabetical reference) that define the cooking compartment are preferably insulated to retain heat and lower the energy costs for cooking.
  • the side interior walls of the cooking cavity contain a series of racks 18 which slideably receive the side edges or flanges on a set of cooking pans 20 that carry food to be cooked in the compartment 16 .
  • the lowermost portion of the cooking compartment 16 is recessed below the lower edge of the door opening to provide a water well 32 for a supply of water 22 that is manually poured into the cooking cavity through the open door 14 .
  • An internal drain 24 provides a convenient vehicle for emptying water from the cavity. It can also function as an automatic maximum water level control if a proper drain level is selected, e.g. one with a mar overflow 24 a (shown in phantom)or the like. In normal operation, however, excess water that will not exit via drain 24 , will discharge through a steam vent opening 48 formed in the rear wall 16 f of the cooking compartment 16 .
  • the initial water supply will be about the same regardless of the size of the cooking cavity, for example, one containing three or five standard sized cooking pans.
  • the pans are typically 1 foot wide by 20 inches long by 21 ⁇ 2 inches or 4 inches deep.
  • the cooker includes a drain pan 26 slideably mounted beneath the housing outer floor 12 a to collect condensate.
  • the cooker has four legs 28 which provide a clearance for the drain pan 26 comparible with countertop or stand mounting of the cooker (providing convenient chest-height access to the cooking cavity).
  • a typical height for the legs is 4 inches.
  • a typical size for a three-pan capacity steamer 10 is a overall external width of about 2 feet, a depth of about 21 ⁇ 2 feet from front to back, and a height of approximately 251 ⁇ 2 inches, including the legs from top to bottom for a three-pan capacity. For a five-pan capacity steamer, a typical height is 32 inches.
  • the cooker 10 is therefore not only comparatively affordable, as compared to steam cookers which require permanent water and drain connections, but also relatively compact.
  • the water 22 is preferably a low-mineral-content water to minimize the scaling that is produced by boiling.
  • two gallons of water are added to the cooker 10 initially using a plate-like heating element 30 that is normally immersed completely in the water.
  • a relatively small amount of scaling accumulates during a day of operation (the boiling of typically 8 gallons of water.) This compares extremely favorably with typical usage rates of 30 gallons per hour for conventional connected cookers.
  • cleaning to remove and control the build-up of scaling is much easier and much faster than with connected conventional steam cookers. Wiping the heating element with a vinegar solution at the end of the operating day is usually sufficient.
  • the water level is at a maximum 22 a (shown in dashed line in FIGS. 1, 4, and 5 ). This level is sufficient to hold a supply of water which will sustain cooking for several hours of normal cooking and warming operations.
  • the water supply is replenished when the water level falls to a level 22 b (FIG. 5) where the water level no longer completely immerses the heating element.
  • a feature of the present invention is that the plate-like heating element 30 is tilted along a diagonal, that is, downwardly both in a back-to-front and side-to-side directions, to thereby produce an elevated comer 30 a and a lowered comer 30 b diametrically opposite from one another.
  • Heat sensors 34 a, 34 b e.g., of the snap-disc type, are secured to the heating element, preferably at the underside as shown. These sensors are preset to generate an electrical output signal when the sensed temperature of the adjacent portion of the heating element rises above a preselected set temperature.
  • the elevated comer 30 a and its associated sensor 34 a are set at a lower temperature, e.g., 320° F., to provide a primary, automatic reset, sensing for a lower water condition within the cooker 10 . If sensor 34 a were to fall, and the 3 water level continues to fall, then sensor 34 b will open on temperature rise. The sensor 34 b is set to produce an output signal at a further elevated temperature, e.g., 375° F., to provide a secondary low-water condition signal which requires a manual reset.
  • a lower temperature e.g., 320° F.
  • Both sensors 34 a and 34 b can trigger a beeper on a control panel 36 at the right front of the cooker 10 , or other alarm such as a warning light and/or can interrupt the supply of power to the heating element through a suitable conventional control circuit mounted on electrical control board 40 .
  • the heating element 30 is preferably formed in the general configuration shown of cast aluminum with electrical resistance heating members imbedded therein. Its exterior surfaces are preferably nickel-plated. Projecting from its lower periphery are a set of threaded mounting studs 38 which engage suitable mating openings formed in a mounting flange forming a portion of the lower wall 16 a of the cooking compartment.
  • the heating element is sealed to this mounting flange with a suitable gasket, preferably a one-piece rubber gasket with suitable heat-resistance and sealing qualities for the given operating environment.
  • the cooker 10 can be connected to any standard electrical outlet found in commercial cooking establishments, e.g., one supplying 208, 220, and up to 480 volts of either one or three-phase electrical power. This power is supplied under the control of the electrical control circuitry 40 mounted internal to the cooker 10 to the electrical resistance heating elements 30 . The power supply is initiated by an external manual ON/OFF control switch 42 on the front control panel 36 .
  • the control circuitry 40 includes the ability through a selector switch 44 , also on the control panel 36 , to provide full-power operation, e.g., 6 or 9 kilowatts for a three or five-pan cooker 10 , respectively, or a low-power (power conservation) setting to supply either 4 or 6 kilowatts of maximum power input for the same three or five-pan sized cookers 10 , respectively.
  • the control panel 36 also has an external timer 45 that has a “HOLD” position where energization of the heater is under the control of a hold thermostat 72 mounted on the outside of wall 16 e .
  • the thermostat 72 e.g., of the snap-disk type, is preset at a desired “hold” temperature associated with normal operations.
  • Another feature of the present invention is a temperature and pressure control system, designated generally by the reference numeral 46 , that provides close control over the pressure of the steam within the cooking cavity during normal operation, and which also has the added advantage of rapidly evacuating cold air from the cooking chamber to conserve power, enhance the speed of operation, and provide a stable, uniform temperature and pressure gradient within the cooking cavity.
  • the cold air evacuation features of the system 46 are also utilized in combination with other components of the pressure-regulating system, as described below, to provide overpressure relief.
  • the system 46 includes the steam vent opening 48 formed in the rear wall 16 f at a point in the lower half of the cooking cavity 16 , and preferably at or closely spaced above the high water level 22 a. This location ensures that as steam is generated and rises within the cavity, the trapped cold air within the cavity when the door is closed is forced downwardly to a region adjacent the vent opening 48 where it can exit.
  • a solenoid valve 50 Located adjacent this vent opening is a solenoid valve 50 , which can be best seen in FIG. 3.
  • the vent 48 feeds branched outlets 51 a and 51 b in direct fluid communication with the steam vent port opening 48 .
  • Outlet branch 51 a directs the vented fluids to the solenoid valve 50 which is electrically actuated to close from a normally open position in response to the presence or absence of an output signal from a thermostat 52 (best seen in FIG. 1).
  • valve 50 In its normally open position, the valve 50 is a low-resistance flow path from the cooking chamber, via vent 48 , to atmosphere, via the valve outlet drain port 50 c.
  • a drain conduit 54 directs the outlet steam, condensed water, and any solid matter carried by the steam or water to the drain pan 26 via a drain port 56 .
  • This port is formed in the housing floor 12 a , but at a point exterior to a rear wall 16 f of the cooking compartment which holds the water 22 in the water well 32 inside the cooking compartment.
  • the thermostat 52 is located in a lower portion of the steam compartment, and preferably, as shown, closely spaced from the steam vent opening 48 and at generally the same horizontal level as the steam vent opening 48 .
  • Both are preferably slightly above the high water level 22 a within the cooking compartment.
  • This location and relationship with respect to the steam vent opening allows the thermostat to sense the temperature of the vapor at the outlet port, particularly during the preheat cycle after the steam cooker is first powered. As noted above, during this preheat period the generation of steam drives cold air to the outlet port.
  • the thermostat 52 senses the temperature of this air and then its increasing temperature.
  • the thermostat is set at a preselected temperature just below that of the boiling point of water, and with a tight tolerance (a typical value being 200° F. ⁇ 7° F.). When this temperature is sensed, the thermostat generates an output signal which is applied to the solenoid valve 50 over line 53 , causing the valve to close.
  • the thermostat and solenoid valve so positioned form a reliable and accurately responsive electric steam trap that rapidly evacuate cold air from the heating chamber during the preheat period, and then retain to a high degree the steam that is generated.
  • the solenoid valve 50 blocks an outlet flow via branch 51 a in favor of branch 51 b.
  • Steam exiting the cooking compartment via the steam vent opening 48 and branch 51 b is in fluid communication with a conduit 58 .
  • This conduit has branches 58 a and 58 b that in turn are in fluid communication with miniature pressure switches 60 and 62 , respectively, mounted on the upper outer surface of the rear wall 16 f of the cooker 10 .
  • the microswitch 60 cycles between ON and OFF positions in response to a sensed water column (W. C.) pressure of the steam at the outlet vent port 48 , as conducted via conduit 58 , to regulate the application of electrical power to the heating element 30 (whether at a high or low setting set by the selector switch 44 ).
  • W. C. sensed water column
  • the preselected set points for operation of the switch 60 maintain the steam pressure for cooking or warming within a closely-controlled range.
  • a typical value for this range is 1 to 3 inches of water column pressure, which is about equivalent to blowing bubbles through a straw immersed in a glass of water. If the water column pressure falls below 1 inch, the switch 60 closes, which applies electrical power to the heating element. If the switch 60 senses a pressure of 3 inches W. C. or more, it opens to interrupt the supply of power to the heating element 30 .
  • the conduit branch 58 b directs the same sensed outlet steam pressure to a second miniature pressure microswitch 62 which is set at a higher set point, e.g., 9 inches of W. C. pressure.
  • the switch 62 is preset to open on rise at this preset value to send an output signal over line 63 to operate the solenoid valve 50 , causing it to open. This rapidly releases any unsafe pressures that may develop within the cooking compartment.
  • the microswitch 62 in addition to providing overpressure protection, also assists in responding to sudden pressure fluctuations associated with opening the door 14 or closing it, particularly a slam closing.
  • a pressure spike that is sensed at more than the preselected set pressure of the switch 62 e.g., 9 inches W. C., will generate a signal that opens the solenoid valve 50 to dissipate the pressure spike.
  • the switch then rapidly closes the solenoid valve 50 , and the switch 60 resumes control of the pressure regulation within the cooking cavity.
  • the thermostat 52 will sense the accumulation of cold air at the bottom of the cooking compartment and may, depending on whether or not the temperature has fallen sufficiently low, also open the valve 50 to vent the cold air.
  • the system 46 also includes a check valve 64 in fluid communication with the conduit 68 b and branch 51 b such that should the valve 50 remain in the closed position in an overpressure situation, the check valve will open, causing a venting of the overpressure to atmosphere directly through the solenoid valve 50 and the check valve 64 and drain line 68 to a drain port 70 .
  • the check valve has a preset trip pressure of 1 ⁇ 2 psi (pounds per square inch).
  • the temperature and pressure control system 46 as described provides rapid, efficient, and well-controlled heating of the cooking compartment while also providing a high degree of safety.
  • all of the components of the system 46 are conventional components and they are readily accessible for inspection and/or maintenance.
  • the cooker also includes a small bleed vent orifice 66 formed in the rear wall 16 f of the cooking compartment which feeds a branch 68 a of a drain conduit 68 .
  • the branch 68 b of the conduit 68 connects the outlet of the check valve 64 to the port 70 .
  • the bleed orifice is very small to retain most of the steam within the cooking compartment while allowing a small bleed-off of the steam to keep the steam moving and “live” within the cooking compartment.
  • a typical diameter of the orifice is in the range of 0.08 to 0.09 inch.
  • the heating element 30 Given the large surface area of the heating element 30 , and given the wattages of electrical power applied to the heating element, it will be evident to those skilled in the art that the heating element 30 has a comparatively low wattage density. This is important in controlling possible damage to the heating element through thermal shock, as comparatively cold water is added to the water well to replenish the supply while the heating element is still hot.
  • FIG. 1 also illustrates a rack 74 secured within the cooking cavity at a point below the bottom of the lowermost pan held in the cooking cavity and above the maximum water level 22 a.
  • This rack is formed of an open pattern of stiff wire, akin to a conventional oven rack. It has sufficient structural strength to hold a plate or plates of food for warming while also having a sufficiently opened structure so as not to impede the flow of steam from the water supply 22 into the cooking compartment.
  • the spacing between the wires forming the rack preferably is sufficiently close that an operator cannot readily pass his hand or fingers therebetween to touch the heated water 22 . If permanently installed or routinely left in place, the rack 74 thus also enhances operator safety.
  • the steam cooker 10 as described above thus provides all of the known advantages of connectionless cooking while improving the efficiency, reliability and safety of connectionless cooking operation, as well as providing extreme ease in cleaning and routine maintenance, particularly accessibility to the heating elements and interior surfaces where deliming or cooking residue removal is required.
  • the control system provide a close degree of control over the operating conditions within the cooking cavity, including pressure spikes associated with opening and closing the access door, and the problem of eliminating cold air which is present initially in the cooking compartment and may be added as the door is opened to gain access to the food being cooked.
  • the present invention offers good power usage and water usage characteristics.
  • the present invention avoids problems associated with control systems relying on the movement of mechanical parts that are exposed to and can be degraded by the presence of particulate matter such as scaling particles which are carried by the steam or condensed water.
  • the present cooker and its regulation system does not utilize any recirculation of water from the cooking compartment through the regulating system. Any steam that exits the cooking compartment through the steam outlet opening 48 and condenses will almost entirely be drained to the drain pan 26 , not returned to the water supply 22 .
  • thermostat and steam vent port may be located farther apart, or at less than a precise horizontal alignment, or at a point raised farther above the maximum water level 22 a, but all with associated reductions in the faithfulness with which the system senses the actual temperature and pressure within the cooking compartment, particularly at its lowest point, and therefore less faithfully controls the operating parameters within the cooking compartment to the desired optimal levels.

Abstract

A connectionless steam cooker has an insulated housing that surrounds an internal cooking compartment accessible through a door. A supply of water is held in the compartment and immerses a plate-like heating element mounted at the floor, preferably of the electrical resistance type. A steam outlet located above the maximum water level is in fluid communication with and adjacent an electrically-operated solenoid valve that is normally open to atmosphere. A temperature sensor in close physical proximity to the steam outlet and the solenoid valve closes the solenoid wherein the sensed steam temperature is at or above a set level. The outlet steam is also connected to a pair of water column pressure-responsive microswitches. One microswitch controls power to the heating element. It is set closely, e.g. to cycle between ON and OFF in response to a sensed pressure range of 1 and 3 inches of water W. C.) The second microswitch responds to a higher set pressure (e.g. 9 inches W. C.) indicative of an unsafe over-pressure to open the solenoid valve to vent the steam to atmosphere. The heating element is mounted with a tilt with respect to the horizontal water level. Two heat-sensing elements are secured on upper and lower portions of the tilted heater plate, preferably diagonally opposite comers. The temperature sensors are each set to produce an output alarm signal when the adjacent region of the heating element is not immersed in water.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a steam cooking apparatus and in particular to a connectionless steam cooker with an automatic cold air and steam outlet and close pressure control to enhance the efficiency of the cooker. [0001]
  • A wide variety of steam cookers are known. Market Forge Industries, Inc., the present assignee, manufactures a wide variety of steam cookers and food warmers that have found wide acceptance in the food service industry as a way to rapidly cook food, including frozen food, and/or maintain it at a serving temperature. While pressure cookers have long been used in homes and restaurants, the risks and extra costs of containing steam under high pressure have led to the growth of slow steam cookers that use steam to deliver heat to the food, but at a pressure that is typically just above atmosphere (1 to 2 inches of water). Most conventional slow (or “pressureless”) steam cookers have steam generators, typically boilers external to the cooking compartment and using electrical resistance or gas heaters that produce steam from a water supply. [0002]
  • U.S. Pat. Nos. 5,549,038 and 5,631,033 to Kolvites and assigned to Market Forge Industries describe one implementation of a commercial slow steam cooker. The Kolvites cooker has permanent connections to a water supply and a drain. It can continuously replenish the supply of cold water. Periodically, on demand, it can draw water (e.g. at a rate of 30 gph) from the supply, heat the water to produce steam, circulate the steam in an oven chamber around the food to cook it and/or keep it warm until served, and then direct the steam and condensed water to the drain. [0003]
  • While such units offer many advantages, such as rapid, efficient cooking of large volumes of food, including frozen food, their disadvantages include the need for water and drain hookups, a relatively large water usage, attendant high power requirements to heat the water, and burdensome maintenance requirements such as daily, monthly and annual cleanings to remove scaling (“deliming”) on heating coils, tubes and other components produced by the boiling, as well as to remove residue from the cooking process itself. These units are typically large and comparatively complex in their construction. They also are constrained in that a flow of steam is condensed to hot water that must usually be cooled before it can be drained into public sewer systems. [0004]
  • Another type of steam cooker, commonly termed “connectionless”, avoids some of these constraints of connected cookers. Connectionless cookers, as the term suggests, do not have permanent connection to a water supply. Rather, water is added manually to the unit. It is evaporated, condensed, collected, and reused. This type of steamer can operate for comparatively long periods of time without adding additional water, and with significantly reduced water and power usage as compared to the connected steam cookers because cold water is not added on demand to form the steam, and then drained after use. An earlier steamer sold by Market Forge Industries, Inc. under the trade designation “STEAM IT” is connectionless and holds a supply of water within its heating compartment. In general, connectionless steamers cook smaller quantities of food than connected ones, but are easier to maintain, more portable, and cost less to operate. [0005]
  • Steam cookers of both types—connected and connectionless—use a door to gain access to the cooking compartment to add and remove the food, typically food held in one or more pans that slide onto racks mounted on the side walls of the cooking compartment. The opening and closing of this door produce a loss of steam, fluctuations in steam pressure, and introduce cold air into the compartment. The efficiency and the quality of operation of the steam cooker is dependent upon the degree to which the temperature and pressure of the steam within the cavity can be maintained at or near a preselected optimal value, or within an optimal range of values. [0006]
  • It is also important in all steamers to have reliable and effective controls to prevent burnout of the heater, typically caused by a low water condition. In connectionless steamers, a critical low water situation typically develops as steam is lost from the cooking compartment, and more water is boiled to replace it. (There is usually loss at least when the door is opened, and via a bleed orifice used to introduce some flow in the steam to keep it “active”.) Eventually the water supply is depleted, causing the electric resistance heating element to overheat. Known connectionless steamers have water level detection arrangements, but they can fail. One particular problem is that certain foods when steam cooked release materials to the steam which collect in the condensed water and create a layer of foam on the water. This foam can interfere with the operation of the water level detectors, causing the heating element to overheat to the degree that causes permanent damage. Another problem with known connectionless steamers is that scaling (mineral deposits) produced by evaporation of the water, as well as the accumulation of residue from the cooking process, can be carried by fluids and interfere with the operation movement of moving components used to control the cooking process. [0007]
  • Another problem with steamers—and particularly connectionless steamers that are inherently closed systems—is that on start-up, or after the door is opened during cooking, cold air is trapped in the cooking compartment. The cold air takes heat energy from the cooking and makes the heat gradient and cooking rate within the over uneven. While mechanical steam vents, bleed orifices, check valves, and the like have been used, the rapid and controlled elimination of trapped cold air from the cooking compartment, without also losing any significant volume of steam, remains a problem. [0008]
  • The amount of heat produced by a steam cooker also must accommodate variations in the quantity of food, its temperature, and its surface area. A small amount of room temperature food will be cooked quickly with the steam generator powered. Continued heating will generate a dangerous overpressure and overcook the food. Various arrangements have therefore been employed to apply electrical power to a heater of a steam generator intermittently, as needed. The aforementioned Kolvites '038 and '033 patents, for example, use a pressure-sensitive switch connected in series in the power supply line. The switch responds to the steam pressure in a long outlet conduit from the oven. To control a possible dangerous outrush of steam when the oven door is opened, Kolvites provides a switch responsive to an opening of the door that opens a valve in a fresh water supply line. The resulting cold water flow quenches steam in the steam generator and also cools a mechanical steam trap to open the steam outlet line to atmosphere. [0009]
  • In connectionless steamers, Creamer et al, U.S. Pat. No. 5,869,812 disclosed a float switch that controls the application of power to a heater mounted under the floor of a heating chamber, adjacent a pool of water. The float switch operates by balancing atmospheric pressure on a supply of water in a reservoir external to the steam housing against the steam pressure in the cooker carried by a conduit from an upper portion of the chamber to the float switch. Depending on how this balance is struck, power to the heater is on or off. Creamer et al. slope the floor of the heating chamber to one corner to facilitate drainage of the pool of water held there. Outlet steam is condensed and cooled in the reservoir, and then gravity recirculated by a conduit back to the water pool within the heating chamber. [0010]
  • In U.S. Pat. Nos. 6,175,100 and 6,107,605, Creamer et al. propose a solution to the problem of cold air trapped in the connectionless cooler of the '812 patent. They place a small hole (bleed orifice) in the steam outlet conduit leading to the float valve. The hole is continuously open to atmosphere. Cold air may escape, as may steam. [0011]
  • It is a principal object of the present invention to provide a connectionless steam cooker that eliminates trapped cold air rapidly from the steamer while at the same time conserving water and steam and closely maintaining a preselected temperature and pressure range within the steamer. [0012]
  • A further object is to provide these advantages with a simple, reliable construction. [0013]
  • Another object is to provide a simple and reliable low-water detection system that is not sensitive to scaling, food debris or food foam. [0014]
  • Still another object is to provide these advantages together with ease of cleaning and maintenance, low water usage, low power consumption, and operator safety. [0015]
  • SUMMARY OF THE INVENTION
  • A connectionless steam cooker has a housing with insulated bottom, top and side inner and outer walls that define a cooking compartment or oven within the inner walls. The floor of the oven and adjacent portions of the side walls hold a supply of water. A heater, in one form a plate-like assembly of cast metal with electrical heating elements embedded therein, is secured at the floor of the housing in a water well. In one form, this securing is replaceable, using a set of threaded studs that engage holes in a peripheral flange, with an edge seal gasket to hold water in the cooking compartment. The heater is in direct contact with the water for efficient heat transfer. Operation of the heater generates steam that circulates through the oven. [0016]
  • A steam outlet is formed in a wall of the housing (e.g., a back wall of a cooking compartment) and in a lower half of the cooking compartment. In one form, it is located preferably immediately above the high water level in the cooking compartment so that steam generation drives cold air down to this outlet. An electrically-operated solenoid valve is connected substantially directly to the steam outlet via a branched outlet conduit. One branch leads to the solenoid valve and the other branch leads to a pressure regulation/power control system. [0017]
  • The solenoid valve is normally open to atmosphere. A thermostat that senses the temperature of the steam in the heating chamber is located adjacent the steam outlet, also just above the high water line. The thermostat is closely controlled to produce an output control signal when the sensed temperature is at or above a preselected set point, typically just under the boiling point of the water. This output signal closes the solenoid valve to block any significant loss of steam to the atmosphere while directing the outlet vapor via conduits to a set of pressure. sensitive microswitches. The thermostat and solenoid valve so located and so connected constitute an automatic electric steam trap that also provides a ready path to eliminate cold air from the steamer. It is also rapidly and accurately responsive to the temperature of the steam in the heating compartment, e.g., that it is 205 to 210° F. in the cooking compartment. [0018]
  • The second branch conduit from the steam outlet can be a single conduit that itself branches into two conduits. One branch directs the outlet vapor to a first or operating microswitch that cycles between “ON” and “OFF” states as sensed pressure moves between lower and upper preselected set pressure values, typical ones being 1 and 3 inches of water column pressure (“W. C.”), the normal operating range during cooking. When the steamer is started, power is supplied through a preheat stage until it generates steam, and the steam fills the cooking compartment at the preselected operating pressure. As the sensed pressure rises to the upper limit, the first switch interrupts the supply of electrical power to the heater. As the steam then cools, the pressure falls until the falling pressure trips the lower limit of the first switch to supply power again. [0019]
  • The other branch conduit directs outlet steam vapor from the steam outlet to a second pressure-sensitive microswitch that is set to open the solenoid valve on rise at a pressure valve above an upper limit. For an upper limit of 3 inches W. C. at the first operating switch, a typical value of the set limit point of the second switch is 9 inches W. C. This second conduit branch and second switch is a safety feature to release steam if the pressure in the cavity exceeds a safe pressure relief. If this arrangement should fail, a check valve separate from the solenoid valve and in the second branch line from the steam outlet opens to release steam from the steam outlet to atmosphere. [0020]
  • The plate-like heating element is mounted within the cooking compartment at its floor or so as to be immersed in the cooking water when the steamer is operating. This provides an efficient heat transfer to the water. The heater is also tilted with respect to the horizontal (defined by the water level). This tilt is preferably along a diagonal of a rectangular plate heater so that one corner is elevated slightly with respect to the other corner. Heat sensors, e.g., snap disc type sensors, are mounted on these raised and lowered portions of the heater. As water is lost, the raised (“primary”) sensor detects a temperature rise (e.g., to 310° F.) which can equal a low water condition. The switch automatically resets. If the lower sensor detects a temperature rise (e.g., to 378° F.), then it also signals a low water condition, turning off the power, and must be manually reset. [0021]
  • The cooking cavity has a wire rack between a lowermost pan in the cooking compartment and the maximum water level. The rack is sufficiently rigid to hold food to be warmed, sufficiently porous to promote the rise of steam into the cavity, and formed of sufficiently closely spaced wires to block an operator's hand from touching the hot water. [0022]
  • The power controls include a two-level power supply selector switch. In one position, the system supplies full power to the heating element, and in the second position supplies a reduced power, e.g., 6 KW reduced to 4 KW for a three-pan sized cooking compartment. [0023]
  • These and other features and objects of the present invention will be better understood from the following detailed description of the invention which should be read in light of the accompanying drawings.[0024]
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a view in perspective of a connectionless slow steam cooker according to the present invention with the door open and with pans in the cooking compartment; [0025]
  • FIG. 2 is a side view in side elevation of the steam cooker shown in FIG. 1; [0026]
  • FIG. 3 is a view in rear elevation of the cooker shown in FIGS. 1 and 2; [0027]
  • FIG. 4 is a schematic view in side elevation of the steam cooker shown in FIGS. [0028] 1-3; and
  • FIG. 5 is a detailed view in front elevation and partially in section of the heating element shown in FIGS. [0029] 1-4.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIGS. [0030] 1-5 illustrate one embodiment of a connectionless steam cooker 10. The cooker includes a generally rectangular outer housing 12 formed principally of stainless steel having a floor 12 a, a top wall 12 b, and four side walls 12 c, d, e, and f. Wall 12 f is the back wall of the unit; wall 12 c is the front wall that mounts a door 14. As is best seen in FIGS. 2 and 3, the housing encloses a cooking compartment 16 of generally rectangular internal configuration. The inner walls 16 a-f (each adjacent and generally parallel to an outer wall 12 a-f with the same alphabetical reference) that define the cooking compartment are preferably insulated to retain heat and lower the energy costs for cooking. As shown in FIG. 1, the side interior walls of the cooking cavity contain a series of racks 18 which slideably receive the side edges or flanges on a set of cooking pans 20 that carry food to be cooked in the compartment 16.
  • The lowermost portion of the [0031] cooking compartment 16 is recessed below the lower edge of the door opening to provide a water well 32 for a supply of water 22 that is manually poured into the cooking cavity through the open door 14. An internal drain 24 provides a convenient vehicle for emptying water from the cavity. It can also function as an automatic maximum water level control if a proper drain level is selected, e.g. one with a weit overflow 24 a (shown in phantom)or the like. In normal operation, however, excess water that will not exit via drain 24, will discharge through a steam vent opening 48 formed in the rear wall 16 f of the cooking compartment 16.
  • The initial water supply will be about the same regardless of the size of the cooking cavity, for example, one containing three or five standard sized cooking pans. The pans are typically 1 foot wide by 20 inches long by 2½ inches or 4 inches deep. The cooker includes a [0032] drain pan 26 slideably mounted beneath the housing outer floor 12 a to collect condensate.
  • As shown, the cooker has four [0033] legs 28 which provide a clearance for the drain pan 26 comparible with countertop or stand mounting of the cooker (providing convenient chest-height access to the cooking cavity). A typical height for the legs is 4 inches. A typical size for a three-pan capacity steamer 10 is a overall external width of about 2 feet, a depth of about 2½ feet from front to back, and a height of approximately 25½ inches, including the legs from top to bottom for a three-pan capacity. For a five-pan capacity steamer, a typical height is 32 inches. The cooker 10 is therefore not only comparatively affordable, as compared to steam cookers which require permanent water and drain connections, but also relatively compact.
  • It will be understood that the [0034] water 22 is preferably a low-mineral-content water to minimize the scaling that is produced by boiling. Typically, two gallons of water are added to the cooker 10 initially using a plate-like heating element 30 that is normally immersed completely in the water. There is good heat transfer, and a relatively small amount of scaling accumulates during a day of operation (the boiling of typically 8 gallons of water.) This compares extremely favorably with typical usage rates of 30 gallons per hour for conventional connected cookers. In addition, cleaning to remove and control the build-up of scaling is much easier and much faster than with connected conventional steam cookers. Wiping the heating element with a vinegar solution at the end of the operating day is usually sufficient.
  • With a maximum supply of [0035] water 22 in the well 32, the water level is at a maximum 22 a (shown in dashed line in FIGS. 1, 4, and 5). This level is sufficient to hold a supply of water which will sustain cooking for several hours of normal cooking and warming operations. The water supply is replenished when the water level falls to a level 22 b (FIG. 5) where the water level no longer completely immerses the heating element.
  • A feature of the present invention is that the plate-[0036] like heating element 30 is tilted along a diagonal, that is, downwardly both in a back-to-front and side-to-side directions, to thereby produce an elevated comer 30 a and a lowered comer 30 b diametrically opposite from one another. Heat sensors 34 a, 34 b, e.g., of the snap-disc type, are secured to the heating element, preferably at the underside as shown. These sensors are preset to generate an electrical output signal when the sensed temperature of the adjacent portion of the heating element rises above a preselected set temperature. The elevated comer 30 a and its associated sensor 34 a are set at a lower temperature, e.g., 320° F., to provide a primary, automatic reset, sensing for a lower water condition within the cooker 10. If sensor 34 a were to fall, and the 3 water level continues to fall, then sensor 34 b will open on temperature rise. The sensor 34 b is set to produce an output signal at a further elevated temperature, e.g., 375° F., to provide a secondary low-water condition signal which requires a manual reset. Both sensors 34 a and 34 b can trigger a beeper on a control panel 36 at the right front of the cooker 10, or other alarm such as a warning light and/or can interrupt the supply of power to the heating element through a suitable conventional control circuit mounted on electrical control board 40.
  • The [0037] heating element 30 is preferably formed in the general configuration shown of cast aluminum with electrical resistance heating members imbedded therein. Its exterior surfaces are preferably nickel-plated. Projecting from its lower periphery are a set of threaded mounting studs 38 which engage suitable mating openings formed in a mounting flange forming a portion of the lower wall 16 a of the cooking compartment. The heating element is sealed to this mounting flange with a suitable gasket, preferably a one-piece rubber gasket with suitable heat-resistance and sealing qualities for the given operating environment. This use of an tilt-mounted heating element and associated temperature sensors to detect water level in connection with a steam cooker provides a high degree of reliability for the low water detection system.
  • The [0038] cooker 10 can be connected to any standard electrical outlet found in commercial cooking establishments, e.g., one supplying 208, 220, and up to 480 volts of either one or three-phase electrical power. This power is supplied under the control of the electrical control circuitry 40 mounted internal to the cooker 10 to the electrical resistance heating elements 30. The power supply is initiated by an external manual ON/OFF control switch 42 on the front control panel 36. The control circuitry 40 includes the ability through a selector switch 44, also on the control panel 36, to provide full-power operation, e.g., 6 or 9 kilowatts for a three or five-pan cooker 10, respectively, or a low-power (power conservation) setting to supply either 4 or 6 kilowatts of maximum power input for the same three or five-pan sized cookers 10, respectively. The control panel 36 also has an external timer 45 that has a “HOLD” position where energization of the heater is under the control of a hold thermostat 72 mounted on the outside of wall 16 e. The thermostat 72, e.g., of the snap-disk type, is preset at a desired “hold” temperature associated with normal operations.
  • Another feature of the present invention is a temperature and pressure control system, designated generally by the [0039] reference numeral 46, that provides close control over the pressure of the steam within the cooking cavity during normal operation, and which also has the added advantage of rapidly evacuating cold air from the cooking chamber to conserve power, enhance the speed of operation, and provide a stable, uniform temperature and pressure gradient within the cooking cavity. The cold air evacuation features of the system 46 are also utilized in combination with other components of the pressure-regulating system, as described below, to provide overpressure relief.
  • The [0040] system 46 includes the steam vent opening 48 formed in the rear wall 16 f at a point in the lower half of the cooking cavity 16, and preferably at or closely spaced above the high water level 22 a. This location ensures that as steam is generated and rises within the cavity, the trapped cold air within the cavity when the door is closed is forced downwardly to a region adjacent the vent opening 48 where it can exit. Immediately adjacent this vent opening is a solenoid valve 50, which can be best seen in FIG. 3. The vent 48 feeds branched outlets 51 a and 51 b in direct fluid communication with the steam vent port opening 48. Outlet branch 51 a directs the vented fluids to the solenoid valve 50 which is electrically actuated to close from a normally open position in response to the presence or absence of an output signal from a thermostat 52 (best seen in FIG. 1).
  • In its normally open position, the [0041] valve 50 is a low-resistance flow path from the cooking chamber, via vent 48, to atmosphere, via the valve outlet drain port 50 c. A drain conduit 54 directs the outlet steam, condensed water, and any solid matter carried by the steam or water to the drain pan 26 via a drain port 56. This port is formed in the housing floor 12 a, but at a point exterior to a rear wall 16 f of the cooking compartment which holds the water 22 in the water well 32 inside the cooking compartment. The thermostat 52 is located in a lower portion of the steam compartment, and preferably, as shown, closely spaced from the steam vent opening 48 and at generally the same horizontal level as the steam vent opening 48. Both are preferably slightly above the high water level 22 a within the cooking compartment. This location and relationship with respect to the steam vent opening allows the thermostat to sense the temperature of the vapor at the outlet port, particularly during the preheat cycle after the steam cooker is first powered. As noted above, during this preheat period the generation of steam drives cold air to the outlet port. The thermostat 52 senses the temperature of this air and then its increasing temperature. The thermostat is set at a preselected temperature just below that of the boiling point of water, and with a tight tolerance (a typical value being 200° F.±7° F.). When this temperature is sensed, the thermostat generates an output signal which is applied to the solenoid valve 50 over line 53, causing the valve to close. The thermostat and solenoid valve so positioned form a reliable and accurately responsive electric steam trap that rapidly evacuate cold air from the heating chamber during the preheat period, and then retain to a high degree the steam that is generated.
  • In its closed position, the [0042] solenoid valve 50 blocks an outlet flow via branch 51 a in favor of branch 51 b. Steam exiting the cooking compartment via the steam vent opening 48 and branch 51 b is in fluid communication with a conduit 58. This conduit has branches 58 a and 58 b that in turn are in fluid communication with miniature pressure switches 60 and 62, respectively, mounted on the upper outer surface of the rear wall 16 f of the cooker 10. The microswitch 60 cycles between ON and OFF positions in response to a sensed water column (W. C.) pressure of the steam at the outlet vent port 48, as conducted via conduit 58, to regulate the application of electrical power to the heating element 30 (whether at a high or low setting set by the selector switch 44). The preselected set points for operation of the switch 60 maintain the steam pressure for cooking or warming within a closely-controlled range. A typical value for this range is 1 to 3 inches of water column pressure, which is about equivalent to blowing bubbles through a straw immersed in a glass of water. If the water column pressure falls below 1 inch, the switch 60 closes, which applies electrical power to the heating element. If the switch 60 senses a pressure of 3 inches W. C. or more, it opens to interrupt the supply of power to the heating element 30.
  • Simultaneously, the [0043] conduit branch 58 b directs the same sensed outlet steam pressure to a second miniature pressure microswitch 62 which is set at a higher set point, e.g., 9 inches of W. C. pressure. The switch 62 is preset to open on rise at this preset value to send an output signal over line 63 to operate the solenoid valve 50, causing it to open. This rapidly releases any unsafe pressures that may develop within the cooking compartment.
  • The [0044] microswitch 62, in addition to providing overpressure protection, also assists in responding to sudden pressure fluctuations associated with opening the door 14 or closing it, particularly a slam closing. A pressure spike that is sensed at more than the preselected set pressure of the switch 62, e.g., 9 inches W. C., will generate a signal that opens the solenoid valve 50 to dissipate the pressure spike. When the pressure spike dissipates, the switch then rapidly closes the solenoid valve 50, and the switch 60 resumes control of the pressure regulation within the cooking cavity. In addition, if any significant amount of cold air has entered the cooking cavity while the door is open, then the thermostat 52 will sense the accumulation of cold air at the bottom of the cooking compartment and may, depending on whether or not the temperature has fallen sufficiently low, also open the valve 50 to vent the cold air.
  • The [0045] system 46 also includes a check valve 64 in fluid communication with the conduit 68 b and branch 51 b such that should the valve 50 remain in the closed position in an overpressure situation, the check valve will open, causing a venting of the overpressure to atmosphere directly through the solenoid valve 50 and the check valve 64 and drain line 68 to a drain port 70. For the illustrative pressure values given hereinabove as typical, the check valve has a preset trip pressure of ½ psi (pounds per square inch). The temperature and pressure control system 46 as described provides rapid, efficient, and well-controlled heating of the cooking compartment while also providing a high degree of safety. In addition, all of the components of the system 46 are conventional components and they are readily accessible for inspection and/or maintenance.
  • It should be noted that the cooker also includes a small [0046] bleed vent orifice 66 formed in the rear wall 16 f of the cooking compartment which feeds a branch 68 a of a drain conduit 68. The branch 68 b of the conduit 68 connects the outlet of the check valve 64 to the port 70. The bleed orifice is very small to retain most of the steam within the cooking compartment while allowing a small bleed-off of the steam to keep the steam moving and “live” within the cooking compartment. A typical diameter of the orifice is in the range of 0.08 to 0.09 inch.
  • Given the large surface area of the [0047] heating element 30, and given the wattages of electrical power applied to the heating element, it will be evident to those skilled in the art that the heating element 30 has a comparatively low wattage density. This is important in controlling possible damage to the heating element through thermal shock, as comparatively cold water is added to the water well to replenish the supply while the heating element is still hot.
  • FIG. 1 also illustrates a [0048] rack 74 secured within the cooking cavity at a point below the bottom of the lowermost pan held in the cooking cavity and above the maximum water level 22 a. This rack is formed of an open pattern of stiff wire, akin to a conventional oven rack. It has sufficient structural strength to hold a plate or plates of food for warming while also having a sufficiently opened structure so as not to impede the flow of steam from the water supply 22 into the cooking compartment. The spacing between the wires forming the rack preferably is sufficiently close that an operator cannot readily pass his hand or fingers therebetween to touch the heated water 22. If permanently installed or routinely left in place, the rack 74 thus also enhances operator safety.
  • The [0049] steam cooker 10 as described above thus provides all of the known advantages of connectionless cooking while improving the efficiency, reliability and safety of connectionless cooking operation, as well as providing extreme ease in cleaning and routine maintenance, particularly accessibility to the heating elements and interior surfaces where deliming or cooking residue removal is required. The control system provide a close degree of control over the operating conditions within the cooking cavity, including pressure spikes associated with opening and closing the access door, and the problem of eliminating cold air which is present initially in the cooking compartment and may be added as the door is opened to gain access to the food being cooked. The present invention offers good power usage and water usage characteristics. In particular, the present invention avoids problems associated with control systems relying on the movement of mechanical parts that are exposed to and can be degraded by the presence of particulate matter such as scaling particles which are carried by the steam or condensed water. In particular, the present cooker and its regulation system does not utilize any recirculation of water from the cooking compartment through the regulating system. Any steam that exits the cooking compartment through the steam outlet opening 48 and condenses will almost entirely be drained to the drain pan 26, not returned to the water supply 22.
  • While the invention has been described with respect to its present preferred embodiments, it will be understood by those skilled in the art that various modifications and alterations will occur from reading the foregoing specification in light of the accompanying drawings. For example, while the invention has been described with respect to a system utilizing a drain pan, the [0050] drain ports 56 and 70 could be permanently connected to a drain line. Further, the system 46 could be utilized in conjunction with other known heating elements, e.g. gas-fired, and other known water level control arrangements. Further, it will be understood that the particular configuration of the interconnections of the components forming the temperature and control system 46 can assume a variety of forms and utilize components a variety of sizes and manufacturing types, provided that they operate in conformity with the operating principles described hereinabove. For example, the thermostat and steam vent port may be located farther apart, or at less than a precise horizontal alignment, or at a point raised farther above the maximum water level 22 a, but all with associated reductions in the faithfulness with which the system senses the actual temperature and pressure within the cooking compartment, particularly at its lowest point, and therefore less faithfully controls the operating parameters within the cooking compartment to the desired optimal levels. These and other modifications are intended to fall within the scope of the appended claims.

Claims (13)

What is claimed is:
1. A connectionless steam cooker comprising:
A) a housing,
B) a cooking compartment located within the housing that is accessible through a door mounted on the housing, said cooking compartment holding a supply of water,
C) a heating element disposed to heat said water supply to produce steam in said cooking compartment,
D) a steam outlet formed in said housing and in fluid communication with the interior of said cooking compartment at a point above the level of said water supply, and
E) an automatic electric steam trap connected to said vapor outlet, said steam trap being normally open to the atmosphere, and closing when the temperature of the steam in the cooking cavity measured adjacent said steam outlet is at or over a preselected operating temperature.
2. The steam cooker of claim I wherein said electric steam trap comprises a temperature sensor mounted in said housing to sense the temperature of said steam in said cavity, and a normally-open solenoid valve that is open to atmosphere.
3. The steam cooker of claim 2 wherein said temperature sensor and said solenoid valve are adjacent one another and said vapor outlet.
4. The steam cooker of claim 3 wherein the floor of said heating compartment holds said water supply and said temperature sensor and vapor outlet are located in a lower half of said cooking compartment, immediately above the maximum water level of said water supply.
5. The steam cooker of claim 4 wherein said temperature sensor is closely regulated.
6. The steam cooker of claim 5 wherein said preselected operating temperature is about 200° F.±7° F.
7. The connectionless steamer according to any of the foregoing claims further comprising a controller for the operation of said heating element, said controller being responsive to the steam pressure at said steam outlet.
8. The steam cooker of claim 7 wherein said controller comprises a first water-column-pressure (WC)-actuated microswitch operatively coupled via a first conduit to said steam pressure at said steam outlet and set to control the degree of energization of said heating element to maintain said steam pressure within said cooking compartment within a closely-controlled operating range.
9. The steam cooker of claim 8 wherein said controller further includes a second water-column-pressure (WC)-actuated microswitch operatively coupled via said first conduit to the steam pressure at said steam outlet, but operable to produce an output control signal at a set pressure in excess of said closely-controlled range of pressures
10. The steam cooker of claim 9 wherein said operative coupling includes a branched conduit in fluid communication between said steam outlet and said first and second microswitches.
11. The steam cooker of claim 1 wherein said heating element has a generally plate-like configuration and is mounted on the floor of said cooking compartment with a tilt from the horizontal, and further comprising temperature-sensing members disposed at raised and lowered ends of said tilt-mounted heater plate an set to produce an output signal when the sensed heater temperature rises to a level indicative of the absence of water at the adjacent portion of said heating plate.
12. The steam cooker of claim 10 wherein said heat-sensing members are of a snap disk type.
13. The steam cooker of claim 1 wherein said heating element comprises at least one electric resistance heating member embedded in a plate of cast aluminum.
US10/105,179 2001-03-27 2002-03-25 Connectionless food steamer with automatic electric steam trap Expired - Fee Related US6453802B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/105,179 US6453802B1 (en) 2001-03-27 2002-03-25 Connectionless food steamer with automatic electric steam trap
US10/253,127 US20030178411A1 (en) 2002-03-25 2002-09-24 Food steamer with automatic electric steam trap, power modulation and automatic connected water supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27919201P 2001-03-27 2001-03-27
US10/105,179 US6453802B1 (en) 2001-03-27 2002-03-25 Connectionless food steamer with automatic electric steam trap

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/253,127 Continuation-In-Part US20030178411A1 (en) 2002-03-25 2002-09-24 Food steamer with automatic electric steam trap, power modulation and automatic connected water supply

Publications (2)

Publication Number Publication Date
US6453802B1 US6453802B1 (en) 2002-09-24
US20020139253A1 true US20020139253A1 (en) 2002-10-03

Family

ID=26802328

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/105,179 Expired - Fee Related US6453802B1 (en) 2001-03-27 2002-03-25 Connectionless food steamer with automatic electric steam trap

Country Status (1)

Country Link
US (1) US6453802B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1500356A1 (en) * 2003-07-22 2005-01-26 Frima Sa Method and apparatus for controlling and regulating of the pressure conditions during cooking of food in a cooking chamber of a cooking appiance
DE102004011390B3 (en) * 2004-03-05 2005-10-06 Rational Ag Cooking vessel`s pressure regulating method, involves controlling heating device after completing specified heating period based on parameter of pulse width modulation, and difference between data detected in vessel and reference pressure
EP1680993A1 (en) * 2004-12-15 2006-07-19 Frima Sa Saucepan and procedure for the use of a saucepan
EP2202466A3 (en) * 2002-12-23 2014-09-17 Premark FEG L.L.C. An oven for cooking food
WO2014180760A1 (en) * 2013-05-08 2014-11-13 BSH Bosch und Siemens Hausgeräte GmbH Steam cooking device
CN110326979A (en) * 2019-05-24 2019-10-15 上海国为食品有限公司 Utilize the method for the food materials annealing device heat treatment food materials for having humidification function

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0026629D0 (en) * 2000-11-01 2000-12-13 Mono Equipment Ltd Deck Oven
US20030178411A1 (en) * 2002-03-25 2003-09-25 Mark Manganiello Food steamer with automatic electric steam trap, power modulation and automatic connected water supply
US6658994B1 (en) * 2002-04-10 2003-12-09 Chromalox, Inc. Modular assembly for a holding cabinet controller
US6964146B2 (en) * 2002-05-21 2005-11-15 Adaptive Manufacturing Technologies, Inc. Portable pouch opening machine
DE10245464A1 (en) * 2002-09-28 2004-04-08 Werner & Pfleiderer Lebensmitteltechnik Gmbh oven
US20040068790A1 (en) * 2002-10-15 2004-04-15 Simpkins James Bradford Professional water bath
CN1245230C (en) * 2003-01-06 2006-03-15 姚林林 Liquid preparation method and equipment
US7024104B2 (en) 2003-05-16 2006-04-04 Delaware Capital Formation, Inc. Boilerless steamer apparatus
US20040187700A1 (en) * 2003-06-09 2004-09-30 Tippmann Robert T. Method and apparatus for accelerating steam in a steam oven
DE10342657A1 (en) * 2003-09-16 2005-04-07 Werner & Pfleiderer Lebensmitteltechnik Gmbh oven
FR2861974B1 (en) * 2003-11-06 2006-02-10 Brandt Ind METHOD AND STEAMING OVEN HAVING PERFECTED WATER SUPPLY
JP3764743B2 (en) * 2004-05-14 2006-04-12 シャープ株式会社 Steam cooker
ITMI20040319U1 (en) * 2004-06-30 2004-09-30 Whirlpool Co STEAM GENERATOR FOR COOKING FOOD IN AN OVEN
US7049551B2 (en) * 2004-09-30 2006-05-23 Middleby Marshall, Inc. Natural convection steam cooking device
ES2320885T3 (en) * 2004-11-19 2009-05-29 Whirlpool Corporation STEAM GENERATOR FOR KITCHEN APPLIANCE.
US6965094B1 (en) 2004-11-30 2005-11-15 Nitai Friedman Controlled heat steamer
US7537004B2 (en) * 2005-05-03 2009-05-26 Whirlpool Corporation Steam oven with fluid supply and drain vessel
US20060249137A1 (en) * 2005-05-03 2006-11-09 Malcolm Reay System and method for draining water from a steam oven
US20060251785A1 (en) 2005-05-06 2006-11-09 Stefania Fraccon Method for cooking food using steam
US20070114222A1 (en) * 2005-11-24 2007-05-24 Samsung Electronics Co., Ltd. Steam cooking apparatus
US20070186786A1 (en) * 2006-02-15 2007-08-16 Chitwood Richard E Pan bumper for steam cooker door
US7867534B2 (en) * 2006-10-18 2011-01-11 Whirlpool Corporation Cooking appliance with steam generator
US8651126B2 (en) * 2007-11-21 2014-02-18 Teva Pharmaceutical Industries, Ltd. Controllable and cleanable steam trap apparatus
US20090136640A1 (en) * 2007-11-26 2009-05-28 Whirlpool Corporation Method for Baking a Casserole Using Steam
US8207477B2 (en) 2007-11-26 2012-06-26 Whirlpool Corporation Method for cooking vegetables using steam
CA2709459A1 (en) * 2008-01-09 2009-07-16 Unified Brands, Inc. Boilerless combination convection steamer oven
US9066523B2 (en) * 2009-01-19 2015-06-30 Accutemp Products, Inc. Method and apparatus for directing steam distribution in a steam cooker
KR101609390B1 (en) * 2009-05-11 2016-04-05 엘지전자 주식회사 Cooker
AU2010250111B2 (en) * 2009-05-19 2016-10-06 Teva Pharmaceutical Industries Ltd. Programmable steam trap apparatus
KR101063336B1 (en) 2009-11-12 2011-09-07 리나스대성(주) Steam convection oven
CN101869427B (en) * 2010-06-22 2012-07-04 晶辉科技(深圳)有限公司 Electric steamer and control method thereof
US20120055459A1 (en) * 2010-09-03 2012-03-08 American Equipment Corporation Steam oven with quick recovery feature and method
EP2783610A1 (en) 2011-02-15 2014-10-01 Duke Manufacturing Co. Holding oven
US9618211B2 (en) * 2014-01-27 2017-04-11 Illinois Tool Works Inc. Commercial cooking oven with removable door assembly
US10208964B2 (en) 2014-12-05 2019-02-19 Illinois Tool Works Inc. Steam cooking oven and method
US20160157658A1 (en) * 2014-12-05 2016-06-09 Timothy L. Cupp Steam cooking oven and method
CN105816048A (en) * 2016-04-25 2016-08-03 山东省滨州市亨瑞商用厨具有限公司 Cabinet door of rice steaming cabinet
US10955281B1 (en) 2018-05-17 2021-03-23 Accutemp Products, Inc. Monitoring with a radially magnetized magnet and hall effect sensor
CN114680601A (en) * 2020-12-31 2022-07-01 广东美的厨房电器制造有限公司 Steam generator and cooking utensil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3518498C1 (en) * 1985-05-23 1987-02-05 Lechmetall Landsberg Gmbh Device for regulating the heat treatment of food
US5235903A (en) * 1992-03-17 1993-08-17 Tippmann Eugene R Subatmospheric pressure cook-and-hold steaming oven
US5549038A (en) * 1995-11-16 1996-08-27 Market Forge Industries Modulated steam cooker
US6107605A (en) * 1997-09-12 2000-08-22 Middleby-Marshall, Inc. Pressure regulator for steam oven
US5869812A (en) * 1997-09-12 1999-02-09 Middleby-Marshall, Inc. Pressure regulator for steam oven

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2202466A3 (en) * 2002-12-23 2014-09-17 Premark FEG L.L.C. An oven for cooking food
EP1500356A1 (en) * 2003-07-22 2005-01-26 Frima Sa Method and apparatus for controlling and regulating of the pressure conditions during cooking of food in a cooking chamber of a cooking appiance
DE102004011390B3 (en) * 2004-03-05 2005-10-06 Rational Ag Cooking vessel`s pressure regulating method, involves controlling heating device after completing specified heating period based on parameter of pulse width modulation, and difference between data detected in vessel and reference pressure
EP1680993A1 (en) * 2004-12-15 2006-07-19 Frima Sa Saucepan and procedure for the use of a saucepan
WO2014180760A1 (en) * 2013-05-08 2014-11-13 BSH Bosch und Siemens Hausgeräte GmbH Steam cooking device
CN105324613A (en) * 2013-05-08 2016-02-10 Bsh家用电器有限公司 Steam cooking device
CN110326979A (en) * 2019-05-24 2019-10-15 上海国为食品有限公司 Utilize the method for the food materials annealing device heat treatment food materials for having humidification function

Also Published As

Publication number Publication date
US6453802B1 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
US6453802B1 (en) Connectionless food steamer with automatic electric steam trap
US20030178411A1 (en) Food steamer with automatic electric steam trap, power modulation and automatic connected water supply
US4281636A (en) Steam processor
US6175100B1 (en) Pressure regulator for steam oven
US5869812A (en) Pressure regulator for steam oven
US6267046B1 (en) Convection steamer
US5549038A (en) Modulated steam cooker
US20080283040A1 (en) High efficiency atmospheric steamer
US20060249136A1 (en) Steam oven with fluid supply and drain vessel
US20060120700A1 (en) Boilerless steamer apparatus
US20060249137A1 (en) System and method for draining water from a steam oven
EP0517681A2 (en) Steam cooking oven
US6904903B1 (en) Convection steamer with forced recirculation through steam bath
CA2144911C (en) Boiler control system with steam sensor thermally isolated from a water reservoir
US4593169A (en) Water heater
CA2625750C (en) Method and apparatus for a steam system
WO2006085317A2 (en) Combination heating and steaming oven
KR100826925B1 (en) Heating cooker and method of controlling the same
CA2442398A1 (en) Food steamer with automatic electric steam trap, power modulation and automatic connected water supply
CN210276870U (en) Intelligent rice steaming box
US5496447A (en) Water distilling apparatus
US20060068068A1 (en) Accelerated steam generation method for convection steam cooking device
KR910009438Y1 (en) Electricity steam oven
KR102336126B1 (en) A cooking apparatus for control a cooking mode based on leakage vapor level
JP3753135B2 (en) High-frequency heating device with steam generation function

Legal Events

Date Code Title Description
AS Assignment

Owner name: MARKET FORGE INDUSTRIES, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MANGANIELLO, MARK;DORAN, MARK J.;REEL/FRAME:012741/0040

Effective date: 20020322

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140924