US20020112888A1 - Drilling system and method - Google Patents

Drilling system and method Download PDF

Info

Publication number
US20020112888A1
US20020112888A1 US09/737,851 US73785100A US2002112888A1 US 20020112888 A1 US20020112888 A1 US 20020112888A1 US 73785100 A US73785100 A US 73785100A US 2002112888 A1 US2002112888 A1 US 2002112888A1
Authority
US
United States
Prior art keywords
pressure
flow
well
fluid
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/737,851
Inventor
Christian Leuchtenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISG SECURE DRILLING HOLDINGS Ltd
Secure Drilling International LP
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24965564&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20020112888(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US09/737,851 priority Critical patent/US20020112888A1/en
Assigned to IMPACT ENGINEERING SOLUTIONS LIMITED reassignment IMPACT ENGINEERING SOLUTIONS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEUCHTENBERG, CHRISTIAN
Priority to EA200300693A priority patent/EA006054B1/en
Priority to DK01271487T priority patent/DK1356186T3/en
Priority to CA002432119A priority patent/CA2432119C/en
Priority to ES01271487T priority patent/ES2244554T3/en
Priority to AU2002219322A priority patent/AU2002219322B2/en
Priority to DE60111781T priority patent/DE60111781T2/en
Priority to AT01271487T priority patent/ATE298835T1/en
Priority to AU1932202A priority patent/AU1932202A/en
Priority to EP01271487A priority patent/EP1356186B1/en
Priority to MXPA03005396A priority patent/MXPA03005396A/en
Priority to PCT/GB2001/005593 priority patent/WO2002050398A1/en
Priority to BRPI0116306-0A priority patent/BR0116306B1/en
Publication of US20020112888A1 publication Critical patent/US20020112888A1/en
Priority to US10/261,654 priority patent/US7044237B2/en
Priority to NO20032655A priority patent/NO326132B1/en
Priority to US11/264,020 priority patent/US7367411B2/en
Priority to US11/263,857 priority patent/US7278496B2/en
Assigned to SECURE DRILLING INTERNATIONAL, L.P, reassignment SECURE DRILLING INTERNATIONAL, L.P, ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISG SECURE DRILLING HOLDINGS LIMITED
Assigned to ISG SECURE DRILLING HOLDINGS LIMITED reassignment ISG SECURE DRILLING HOLDINGS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IMPACT SOLUTIONS GROUP LIMITED
Priority to AU2006252289A priority patent/AU2006252289B2/en
Priority to US11/900,178 priority patent/US7650950B2/en
Priority to AU2009222591A priority patent/AU2009222591B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
    • E21B21/085Underbalanced techniques, i.e. where borehole fluid pressure is below formation pressure

Definitions

  • the present invention deals with a closed-loop system for drilling wells where a series of equipment, for the monitoring of the flow rates in and out of the well, as well as for adjusting the back pressure, allows the regulation of the out flow so that the in and out flows are constantly balanced at all times.
  • a pressure containment device keeps the well closed at all times. Since this provides a much safer operation, its application for exploratory wells will greatly reduce the risk of blow-outs. In environments with narrow margin between the pore and fracture pressure, it will create a step change compared to conventional drilling practice. In this context, applications in deep and ultra-deep water are included.
  • a method for drilling, using said system is also disclosed. The drilling system and method are suited for all types of wells, onshore and offshore.
  • Drilling oil/gas/geothermal wells has been done in a similar way for decades. Basically, a drilling fluid with a density high enough to counter balance the pressure of the fluids in the reservoir rock, is used inside the wellbore to avoid uncontrolled production of such fluids. However, in many situations, it can happen that the bottomhole pressure is reduced below the reservoir fluid pressure. At this moment, an influx of gas, oil, or water occurs, named a kick. If the kick is detected in the early stages, it is relatively simple and safe to circulate the invaded fluid out of the well. After the original situation is restored, the drilling activity can proceed. However, if, by any means, the detection of such a kick takes a long time, the situation can become out of control leading to a blowout.
  • the well In the traditional drilling practice, the well is open to the atmosphere, and the drilling fluid pressure (static pressure plus dynamic pressure when the fluid is circulating) at the bottom of the hole is the sole factor for preventing the formation fluids from entering the well.
  • This induced well pressure which by default, is greater than the reservoir pressure causes a lot of damage, i.e., reduction of near wellbore permeability, through fluid loss to the formation, reducing the productivity of the reservoir in the majority of cases.
  • UBD underbalanced drilling
  • This technique implies a concomitant production of the reservoir fluids while drilling the well.
  • Special equipment has been developed to keep the well closed at all times, as the wellhead pressure in this case is not atmospheric, as in the traditional drilling method.
  • special separation equipment must be provided to properly separate the drilling fluid from the gas, and/or oil, and/or water and drilled cuttings.
  • annular pressure data can be used to make adjustments to mud weight.
  • the drilling method is the conventional one, with some more parameters being recorded and controlled. Sometimes, calculations with these parameters are necessary to define the mud weight required to kill the well.
  • annular pressure data recorded during kill operations have also revealed that conventional killing procedures do not always succeed in keeping the bottomhole pressure constant.
  • U.S. Pat. No. 4,867,254 teaches a method of real time control of fluid influxes into an oil well from an underground formation during drilling.
  • the injection pressure p i and return pressure p r and the flow rate Q of the drilling mud circulating in the well are measured.
  • the value of the mass of gas M g in the annulus is determined, and the changes in this value monitored in order to determine either a fresh gas entry into the annulus or a drilling mud loss into the formation being drilled.
  • U.S. Pat. No. 5,080,182 teaches a method of real time analysis and control of a fluid influx from an underground formation into a wellbore being drilled with a drill string while drilling and circulating from the surface down to the bottom of the hole into the drill string and flowing back to the surface in the annulus defined between the wall of the wellbore and the drill string, the method comprising the steps of shutting-in the well, when the influx is detected; measuring the inlet pressure P i or outlet pressure P o of the drilling mud as a function of time at the surface; determining from the increase of the mud pressure measurement, the time t c corresponding to the minimum gradient in the increase of the mud pressure and controlling the well from the time t c .
  • the kicks are merely controlled.
  • the present application relates to a new concept of drilling whereby a method and corresponding instrumentation allows that kicks may be detected early and controlled much quicker and safer or even eliminated/mitigated than in state-of-the-art methods.
  • a collapse pressure (pressure that causes the wellbore wall to fall into the well) curve is the lower limit, rather than the pore pressure curve. But, for the sake of simplicity, just the two curves should be considered, the pore pressure and fracture pressure one.
  • a phase of the well is defined by the maximum and minimum possible mud weight, considering the curves mentioned previously and some design criteria that varies among the operators, such as kick tolerance and tripping margin.
  • kick tolerance is the change in this bottomhole pressure for a certain volume of gas kick taken.
  • Tripping margin is the value that the operators use to allow for pressure swab when tripping out of the hole, to change a bit, for example. In this situation, a reduction in bottomhole pressure, caused by the upward movement of the drill string can lead to an influx.
  • FIG. 1 based on state-of-the-art designing of wells for drilling, typically a margin of 0.3 pound per gallon (ppg) is added to the pore pressure to allow a safety factor when stopping circulation of the fluid and subtracted from the fracture pressure, reducing even more the narrow margin, as shown by the dotted lines. Since the plot shown in FIG. 1 is always referenced to the static mud pressure, the compensation of 0.3 ppg allows for the dynamic effect while drilling also. The compensation varies from scenario to scenario but typically lies between 0.2 and 0.5 ppg.
  • ppg pound per gallon
  • underbalanced flow drilling which involves flowing fluids from the reservoir continuously into the wellbore is described and documented in the literature
  • mud-cap drilling which involves continuous loss of drilling fluid to the formation, in which fluid can be overbalanced, balanced or underbalanced is also documented
  • air drilling where air or other gas phase is used as the drilling fluid.
  • underbalanced and air drilling are limited to formations with stable wellbores, and there are significant equipment and procedural limitations in handling produced effluent from the wellbore.
  • the underbalanced method is used for limited sections of the wellbore, typically the reservoir section.
  • Air drilling is limited to dry formations due to its limited capability to handle fluid influxes.
  • Mud-Cap drilling is limited to specific reservoir sections (typically highly fractured vugular carbonates).
  • the present invention is directed to a system and method of drilling a well by monitoring the flow in and out of the well, as well as monitoring of the flow rates in and out, together with other parameters that produce an early detection of influx or loss independent of the mass flow in and out at that point in time, the well drilled being closed with a pressure containment device at all times.
  • Monitoring of flow may be by measurement of mass and/or volume flow.
  • the system and method of the invention comprises monitoring the mass flow in and out of the well. Preferably monitoring is constant throughout a given drilling operation.
  • the back pressure in the well is automatically adjusted by pressure/flow control device, controlled by a central control device.
  • This central control device regulates the out flow to keep the flows in and out balanced at all times, or to preemptively adjust the backpressure to change the ECD (Equivalent Circulating Density) instantaneously in response to an early detection of influx or fluid loss.
  • ECD Equivalent Circulating Density
  • the system of the present invention for drilling a well while injecting a drilling fluid through an injection line of said well and recovering through a return line of said well where the well being drilled is closed at all times comprises a pressure containment device and pressure/flow control device to a wellbore to establish/maintain a back pressure on the well, means to monitor the fluid flow in and out, means to monitor flow of any other material in and out, means to monitor parameters affecting the monitored flow value and means to predict a calculated value of flow out at any given time and to obtain real time information on discrepancy between predicted and monitored flow out and converting to a value for adjusting the pressure/flow control device and restoring the predicted flow value.
  • the corresponding method of the present invention comprises, in relation to the system of the invention as hereinbefore defined, the following steps of injecting drilling fluid through said injection line through which said fluid is made to contact said means for monitoring flow and recovering drilling fluid through said return line; collecting any other material at the surface; measuring the flow in and out of the well and collecting flow and flow rate signals; measuring parameters affecting the monitored flow value and means; directing all the collected flow, correction and flow rate signals to the said central data acquisition and control system; monitoring parameters affecting the monitored flow value and means to predict a calculated value of flow out at any given time and to obtain real time information on discrepancy between predicted and monitored flow out and converting to a value for adjusting the pressure/flow control device and restoring the predicted flow value.
  • system and method of the invention provide additional advantages in terms of allowing operation with a reduced reservoir volume of fluid, by virtue of closed operation under back pressure. Moreover the system and method can be operated efficiently, without the need for repeated balancing of the system after any operational pause in drilling, by virtue of the ability to continuously circulate fluid even during pauses in drilling, avoiding any undue changes in fluid density and temperature.
  • the system for drilling a well while injecting a drilling fluid through an injection line of said well and recovering through a return line of said well where the well being drilled is closed at all times comprises:
  • the means c) for measuring mass flow comprises a volume flow meter and at least one pressure sensor to obtain pressure signals and at least one temperature sensor to obtain temperature signals; and may be a mass flow meter comprising integral pressure and temperature sensors to compensate for changes in density and temperature; and the means c) for measuring flow rate comprises means for assessing the volume of the hole at any given time, as a dynamic value having regard to the continuous drilling of the hole. At least one additional pressure and temperature sensor may be provided to monitor other parameters that produce an early detection of influx or loss independent of the mass flow in and out at that point in time.
  • the means d) comprise means for measuring cuttings volume/mass out.
  • the system comprises:
  • a method for drilling a well while injecting a drilling fluid through an injection line of said well and recovering through a return line of said well where the well being drilled is closed at all times comprising the following steps:
  • a pressure containment device suitably of a type that allows passage of pipe under pressure, to a wellbore
  • the method comprises additionally providing a means of measurement of drill cuttings rate, mass or volume, when required, to measure the rate of cuttings being produced from the well.
  • the system and method comprise additionally means to pressurize the wellbore through the annulus, and a step of pressurising the wellbore through the annulus, independently of the current fluid injection path.
  • the present invention provides a safe method for drilling wells, since not only is the well being drilled closed at all times, but also any fluid loss or influx that occurs is more accurately and faster determined and subsequently controlled than in state-of-the-art methods.
  • One advantage of the present method over state-of-the-art methods is that it is able to instantly change the ECD (Equivalent Circulating Density) by adjusting the backpressure on the wellbore by closing or opening the pressure/flow control device.
  • ECD Equivalent Circulating Density
  • the method herein described and claimed incorporates early detection methods of influx/loss that are existing or yet to be developed as part of the method herein described and claimed, e.g., tools under development or that may be developed that can detect trace hydrocarbon influx, small temperature variations, pressure pulses etc.
  • the output of these tools or technology that indicates a kick or fluid loss can be used as a feedback parameter to yield an instant reaction to the detected kick or fluid loss, thus controlling the drilling operation at all times.
  • the method of the invention allows that drilling operations be carried out in a continuous manner, while in state-of-the-art methods drilling is stopped and mud weight is corrected in a lengthy, time-consuming step, before drilling can be resumed, after a kick or fluid loss is detected.
  • the present invention provides also a method of drilling where the bottomhole pressure can be very close to the pore pressure, thus reducing the overbalanced pressure usually applied on the reservoir, and consequently reducing the risk of fluid losses and subsequent contamination of the wellbore causing damage, the overall effect being that the well productivity is increased.
  • the present invention provides further a method to drill with the exact bottomhole pressure needed, with a direct determination of the pore pressure.
  • the present invention provides also a method for the direct determination of the fracture pressure if needed.
  • the present invention allows a significant reduction of risk by determining either the pore pressure or the fracture pressure, or, in more critical situations, both the pore and fracture pressure curves in a very accurate mode while drilling the well. Therefore by eliminating uncertainties from pore and fracture pressures and being able to quickly react to correct any undesired event, the present method is consequently much safer than state-of-the-art drilling methods.
  • the present invention provides further a drilling method where the elimination of the kick tolerance and tripping margin on the design of the well is made possible, since the pore and fracture pressure will be determined in real time while drilling the well, and, therefore, no safety margin or only a small one is necessary when designing the well.
  • the kick tolerance is not needed since there will be no interruption in the drilling operation to circulate out any gas that might have entered into the well.
  • the tripping margin is not necessary because it will be replaced by the back pressure on the well, adjusted automatically when stopping circulation.
  • the present invention allows the well control procedure to be much simpler, faster, and safer, since no time is wasted in checking the flow, closing the well, measuring the pressure, changing the mud weight if needed, and circulating the kick out of the well.
  • FIG. 1 attached is a state-of-the-art log of pore and fracture pressure curves indicated hereinbefore. Included in this figure are the kick tolerance and tripping margin, used for designing the casing setting points, in this case taken as 0.3 ppg below the fracture pressure and above the pore pressure, respectively. This value is commonly used in the industry.
  • the kick tolerance and tripping margin used for designing the casing setting points, in this case taken as 0.3 ppg below the fracture pressure and above the pore pressure, respectively. This value is commonly used in the industry.
  • the number and diameter of the casing strings required to safely drill this well using the current conventional drilling method is shown. As pointed out before, the two curves shown are estimated before drilling. Actual values might never be determined by the current conventional drilling method.
  • FIG. 2 attached is a log of the same curves according to the invention, without the kick tolerance and tripping margin of 0.3 ppg included. On the right hand side the number of casing strings required can be seen.
  • the drilling method described in the present application the elimination of the kick tolerance and tripping margin on the design of the well is made possible, since the pore and fracture pressure will be determined in real time while drilling the well, with the well being drilled closed at all times, and, therefore, no safety margin is necessary when designing the well.
  • FIG. 3 attached is a state-of-the-art schematics of the circulating system of a standard rig, with the return flow open to the atmosphere.
  • FIG. 4 attached is a schematic of the circulating system of a rig with the drilling method described in the application.
  • a pressure containment device located at the wellhead, mass flow and fluid flow rate meters on the inlet and outlet streams, pressure and temperature sensors, cuttings mass/volume measurement device, and other pieces of equipment have been added to the standard drilling rig configuration.
  • the control system receives all the data gathered and actuates the pressure/flow control device on the outlet stream.
  • FIG. 5 attached is a general block diagram of the method described in the present invention.
  • FIG. 6 attached is a flowsheet that schematically illustrates the method of the invention.
  • the present system and method of drilling wells is based on a closed-loop system.
  • the inventive method and system is applied to oil and gas wells, as well as to geothermal wells.
  • the circulation of the drilling fluid down the wellbore may be through the drill string and the return through the annulus, as in state-of-the-art methods, but not limited to it.
  • any way of circulation of the drilling fluid may be successfully employed in the practice of the present system and method, no matter where the fluids are injected or returned.
  • the system and method of the invention comprises adjusting the wellbore pressure with the aid of a pressure/flow control device to correct the bottomhole pressure to prevent fluid influx or losses in a pro-active as opposed to the state-of-the-art reactive manner.
  • FIG. 3 illustrates a drilling method according to state-of-the-art techniques.
  • a drilling fluid is injected through the drill string ( 1 ), down the wellbore through the bit ( 2 ) and up the annulus ( 3 ).
  • the fluid that is under atmospheric pressure is directed to the shale shaker ( 4 ) for solid/liquid separation.
  • the liquid is directed to the mud tank ( 5 ) from where the mud pumps ( 6 ) suck the fluid to inject it through the drill string ( 1 ) and close the circuit.
  • the BOP ( 8 ) In case of a kick, normally detected by mud tank volume variation indicated by level sensors ( 7 ), the BOP ( 8 ) must be closed to allow kick control.
  • Improvements in state-of-the-art drilling methods are generally directed to, for example, improve the measurement of volume increase or decrease in tank ( 5 ). However, such improvements bring only minor changes to the kick detection procedure; furthermore, no fundamental modifications are known directed to the improvement of safety and/or to keeping the drilling method continuous, this modification being only brought about by the present invention.
  • the drilling fluid is injected through the drill string ( 1 ), going down towards the bottom hole through the bit ( 2 ) and up the annulus ( 3 ) and is diverted by a pressure containment device ( 26 ) through a closed return line ( 27 ) under pressure.
  • BOP ( 8 ) remains open during drilling.
  • the fluid is made to contact pressure and temperature sensors ( 9 ), fluid flow meter ( 10 ), mass flow meter ( 11 ), flow/pressure control device ( 12 ), degasser ( 13 ) then to the shale shaker ( 4 ).
  • the shale shaker ( 4 ) separates the cuttings (drill solids) from the liquid and the solids have their mass/volume determined ( 19 ) while the liquid is directed to the mud tank ( 5 ) having the mass/volume determined as well ( 20 ). All standard drilling parameters are acquired by a device ( 21 ) normally called mud logging. Downhole parameters are acquired by a device ( 24 ) located close to the bit ( 2 ). The mass/volume of gas separated in degasser ( 13 ) is measured by a device ( 25 ).
  • the drilling fluid is injected with the aid of pump ( 6 ) through an injection line ( 14 ) through which said fluid is made to contact mass flow meter ( 15 ), fluid flow meter ( 16 ), pressure and temperature sensors ( 17 ).
  • Devices ( 7 ), ( 9 ), ( 10 ), ( 11 ), ( 15 ), ( 16 ), ( 17 ), ( 19 ), ( 20 ), ( 21 ), ( 24 ), ( 25 ) all acquire data as signals that are directed to a central data acquisition and control system ( 18 ).
  • System ( 18 ) sends a signal to the pressure/flow control device ( 12 ) to open or close it.
  • a pump ( 23 ) may send fluid directly to the annulus ( 3 ) through a dedicated injection line ( 22 ) via a mass flow meter ( 28 ), fluid flow meter ( 28 ) and pressure and temperature sensors ( 28 ).
  • This injection line may be incorporated as part of the standard circulation system, or embodied in other ways, the purpose being to provide an independent, of normal drilling circulation, means of flow into wellbore.
  • the central data acquisition and control system ( 18 ) acquires data from device ( 28 ).
  • a pressure containment device ( 26 ) diverts the drilling fluid and keeps it under pressure.
  • Device ( 26 ) may be a rotating BOP or a rotating control head, but not limited to it.
  • the location of device ( 26 ) is not critical. It may be located at the surface or at some point further down e.g. on the sea floor, inside the wellbore, or at any other suitable location.
  • the drilling fluid is diverted to a closed pipe ( 27 ) and then to a surface system.
  • the type and design of the device ( 26 ) is not critical and depends on each well being drilled. It is a standard equipment that is commercially available or readily adapted from existing designs.
  • the pressure/flow control device ( 12 ) opens or closes to allow decrease or increase of the backpressure at the well head so that the outflow can be restored to the predicted value determined by system ( 18 ).
  • Two or more of these pressure/flow control devices ( 12 ) can be installed in parallel with isolation valves to allow redundant operation.
  • Devices ( 12 ) can be positioned downstream of the pressure containment device ( 26 ) at any suitable point in the surface system. Some surface systems may incorporate two or more of such devices ( 12 ) at different nodes.
  • One critical aspect of the present method is the accurate measurement of the injected and returned mass and fluid flow rates.
  • the equipment used to carry out such measurement is mass flow meters ( 11 , 15 ) and fluid flow meters ( 10 , 16 ).
  • the equipment is installed in the injected ( 14 ) and return ( 27 ) fluid lines. These meters may also be installed at the gas outlet ( 25 ) of the degasser ( 13 ) and somewhere ( 20 ) on the fluid line between shale shaker ( 4 ) and tank ( 5 ). Also they may be installed on the independent injection line ( 22 ).
  • the mass and fluid flow meters are commercially available equipment. Multi-phase meters are also commercially available and may be used. The precision of this equipment, allows accurate measurement, subsequent control and safer drilling.
  • the cuttings mass/volume rate can be measured by commercially available equipment ( 19 ) to verify that the mass of cuttings being received back at the surface is correlated with the rate of penetration and wellbore geometry. This data allows correction of the mass flow data and allows identification of trouble events.
  • the measurements of mass and fluid flow rates provide data that are collected and directed to a central data acquisition and control system ( 18 ).
  • the central data acquisition and control system ( 18 ) is provided with a software designed to predict an expected, ideal value for the outflow, said value being based on calculations taking into account several parameters including but not restricted to rate of penetration, rock and drilling fluid density, well diameter, in and out flow rates, cuttings return rate, bottomhole and wellhead pressures and temperatures.
  • Said software compares the said predicted ideal value with the actual, return flow rate value as measured by the mass flow meters ( 11 , 15 ) and fluid flow meters ( 10 , 16 ). If the comparison yields any discrepancy, the software automatically sends a command to a pressure/flow control device ( 12 ) designed to adjust the return flow rate so as to restore the said return flow rate to the predicted, ideal value.
  • Said software can also receive as input any early detection parameters available or being developed or capable of being developed. Such input will trigger a chain of investigation of probable scenarios, checking of actual other parameter and any other means (databased or software or mathematical) to ascertain that an influx/loss event has occurred. Said software will in such cases pre-emptively adjust backpressure to immediately control the event.
  • Said software will allow for override of the standard detection (state-of-the-art) by the early detection system of the invention and will compensate and filter for any conflict in fluid/mass flow indication.
  • Said software may have filters, databases, historical learning and/or any other mathematical methods, fuzzy logic or other software means to optimize control of the system.
  • the pressure/flow control device ( 12 ) used to restore the ideal flow is an equipment chosen according to the well parameters such as diameter of the return line, pressure and flow requirements.
  • the pressure/flow control device ( 12 ) is, as previously stated, standard, commercially available equipment. Alternatively, it may be specifically designed for the required purpose.
  • the flow rates in and out of the wellbore are controlled, and the pressure inside the wellbore is adjusted by the pressure/flow control device ( 12 ) installed on the return line ( 27 ) or further downstream in the surface system.
  • control system ( 18 ) will proactively adjust the backpressure by opening or closing pressure/flow control device ( 12 ) to suit the occurred event.
  • the system acts in order to adjust the rate of return flow and/or pressure thus increasing or decreasing the backpressure, while creating the desired condition downhole of no inflow from the exposed formation or no loss of fluid to the same exposed formation.
  • This is coupled with a feedback loop to constantly monitor the reaction to each action, as well as the necessary software design, and any necessary decision system including but not limited to databases and fuzzy logic filters to ensure consistent operation.
  • mass flow means the total mass flow being injected and returned, comprised of liquid, solids, and possibly gas.
  • any improvements in mass/flow rate measurements or any other measuring device can be incorporated into the method. Also comprised within the scope of the application are any improvements in the accuracy and time lag to detect influx or fluid losses as well as any improvements in the system ( 18 ) to manipulate the data and make decisions related to restore the predicted flow value.
  • This mass flow metering principle is extended to include other subcomponents of the system where accuracy can be improved, such as, but not limited to measuring the mass flux of cuttings ( 19 ) being produced at the shakers ( 4 ) and mass outflow of gas ( 25 ) from degasser ( 13 ), to allow verification and/or improvement of the mass balance being continuously applied to the system.
  • Another very important device used in the method and system of this invention is the pressure containment equipment ( 26 ), to keep the well flowing under pressure at all times.
  • a pressure/flow control device ( 12 ) on the return line ( 27 ) the bottomhole pressure can be quickly adjusted to the desired value so as to eliminate the losses or gains being detected.
  • the assessment of the pore and fracture pressures according to the method of the invention is carried out the following way: if the central data acquisition and control system ( 18 ) detects any discrepancy and a decision to actuate the pressure/flow control device ( 12 ) is made, it is a sign that either a fluid loss or influx is occurring. The Applicant has thus ascertained that if there is a fluid loss this means that the bottomhole pressure being recorded is equivalent to the fracture pressure of the formation.
  • the variables pore pressure and fracture pressure can be estimated.
  • the bottomhole pressure is not one of the variables being recorded and only the wellhead or surface pressure is the pressure variable being acquired.
  • the pore pressure and the fracture pressure can then be indirectly estimated by adding to the obtained value the hydrostatic head and friction losses within the wellbore.
  • the software pertaining to the central data and control system ( 18 ) would include all the necessary algorithms, empirical correlations or other method to allow accurate estimation of the hydrostatic head and friction losses including any transient effects like, but not limited to, changing temperature profile along the wellbore.
  • the pore and fracture pressure may be directly determined while drilling the well. This entails great savings as regards safety and time, two parameters of utmost importance in drilling operations.
  • the bottomhole pressure is adjusted by increasing or reducing the mud weight.
  • the increase or reduction in mud weight is most of the time effected based on quasi-empirical methods, which by definition implies inaccuracies, which are handled by an iterative process of: —adjusting mud weight, measuring mud weight—this process being repeated until the desired value is reached.
  • the method and system of the invention allows for a precise adjustment of increase or reduction in bottomhole pressure.
  • the pressure/flow control device ( 12 ) to restore the equilibrium and pressures inside the wellbore, the adjustment is much faster achieved, avoiding the hazardous situation of well-known methods.
  • the speed of adjustment is much greater in the present method, as opposed to the conventional situation, where increasing the density (weighting up) or decreasing the density (cutting back) is a very time consuming process.
  • the ECD is the actual pressure that needs to overcome the formation pressure to avoid influx.
  • the friction loss is zero and thus the ECD reduces to the hydrostatic value of the mud weight.
  • the margin can be as low as 0.2 ppg. In these cases, it is common to observe influxes when circulation is interrupted, increasing substantially the risks of drilling with the conventional drilling system.
  • the back pressure adjustment can be applied by pumping fluid, independent of the normal circulating flow path, into the wellbore, to compensate for the loss in friction head, and effecting a continuous flow that allows easy control of the back pressure by adjustment of the pressure/flow control device ( 12 ).
  • This fluid flow may be achieved completely independent of the normal circulating path by means of a mud pump ( 23 ) and injection line ( 22 ).
  • a circulation bypass composed of a pump ( 23 ) and a dedicated injection line ( 22 ) to the wellbore annulus allows keeping a constant pressure downhole during circulation stops and continuously detecting any changes in the mass balance indicative of an influx or loss during the circulation stop.
  • This method also renders possible to run the mud density at a value slightly lower than that required to balance the formation pressure and using the backpressure on the well to exert an extremely controllable ECD at the bottomhole that has the flexibility to be instantaneously adjusted up or down. This will be the preferred method in wells with very narrow pore pressure/fracture pressure margins as occur in some drilling scenarios.
  • the method of the invention allows, by creating an instant control mud weight window, controlling the ECD by increasing or decreasing the backpressure, controlled by the positioning of the pressure/flow control device, to create the conditions for staying within the narrow margin.
  • the central data acquisition and control system ( 18 ) has a direct output for actuation of the pressure/flow control device(s) ( 12 ) downstream the wellhead opening or closing the flow out of the well to restore the expected value. At this point, if an action is needed, the bottomhole pressure is recorded and associated to the pore or fracture pressure, if a gain or loss is being observed, respectively.
  • the function of the rotating pressure containment device ( 26 ) is to allow the drill string ( 1 ) to pass through it and rotate, if a rotating drilling activity is carried on.
  • the drill string ( 1 ) is stripped through the rotating pressure containment device; the annulus between the outside of the drill pipe and the inside of the wellbore/casing/riser is closed by this equipment.
  • the rotating pressure containment device ( 26 ) can be replaced by a simplified pressure containment device such as the stripper(s) (a type of BOP designed to allow continuous passage of non-jointed pipe) on coiled tubing operations.
  • the return flow of drilling fluid is, therefore, diverted to a closed pipe ( 27 ) to the surface treatment package.
  • This surface package should be composed of at least a degasser ( 13 ) and shale shaker ( 4 ) for solids separation. This way the influxes can be automatically handled.
  • a closed 3-phase separator (liquid, solid and gas) could be installed replacing the degasser ( 13 ). In this case a fully closed system is achieved. This may be desirable when dealing with hostile fluids or fluids posing environmentally risks.
  • the central data acquisition and control system ( 18 ) receives all the signals of different drilling parameters, including but not limited to injection and return flow rates, injection and return mass flow rates, back-pressure at the surface, down-hole pressure, cuttings mass rates, rate of penetration, mud density, rock lithology, and wellbore diameter. It is not necessary to use all these parameters with the drilling method herein proposed.
  • the central data acquisition and control system ( 18 ) processes the signals received and looks for any deviation from expected behavior. If a deviation is detected, the central data acquisition and control system ( 18 ) activates the flow pressure/flow control device ( 12 ) to adjust the back-pressure on the return line ( 27 ). This is coupled with a feedback loop to constantly monitor the reaction to each action, as well as the necessary software design, and any necessary decision system including but not limited to databases and fuzzy logic filters to ensure consistent operation.
  • an influx may be detected by other means including but not limited to downhole temperature effects, downhole hydrocarbon detection, pressure changes, pressure pulses; said system pre-emptively adjusting backpressure on the wellbore based on influx or loss indication before surface system detection.
  • This deviation may also be a signal from an early detection device.
  • the first option (flow opening) is applied in case a fluid loss is detected and the second one (flow restriction), if a fluid gain is observed.
  • the changes in flow are done in steps previously defined steps. These step changes can be adjusted as the well is drilled and the effective pore and fracture pressures are determined.
  • FIG. 5 A block diagram of the method described in the present invention is shown in FIG. 5.
  • the present system and method implies many variations and modifications within its scope and as such it can be applied to all kinds of wells, onshore as well as offshore, and the equipment location and distribution can vary according to the well, risks, application and restrictions of each case.
  • FIG. 6 is a flowchart illustrating the drilling method of the invention in a schematic mode, with the decision-making process that leads to the restoration of the predicted flow as determined by the central data acquisition and control system.
  • UBD underbalanced drilling
  • mud-cap drilling mud-cap drilling
  • air drilling air drilling
  • TABLE 1 shows the key differences among the traditional drilling system (Conv.), compared with the underbalanced drilling system (UBD) and the present drilling method herein proposed. It can be seen that the key points addressed by the present application are not covered or considered by either the traditional conventional drilling system or by the underbalanced drilling method currently used by the industry. TABLE 1 Feature UBD Conv.
  • the present method is applicable to the whole wellbore from the first casing string with a BOP connection, and to any type of well (gas, oil or geothermal), and to any environment (land, offshore, deep offshore, ultra-deep offshore). It can be implemented and adopted to any rig or drilling installation that uses the conventional method with very few exceptions and limitations.
  • the present method can be called INTELLIGENT SAFE DRILLING, since the response to influx or losses is nearly immediate and so smoothly done that the drilling can go on without any break in the normal course of action, this representing an unusual and unknown feature in the technique.

Abstract

A closed-loop drilling system and method of drilling oil, gas, or geothermal wells is described, whereby through the control of the flow rates in and out of the wellbore, and by adjusting the pressure inside the wellbore by a pressure/flow control device installed on the return line, surface pressure being increased or decreased as required, this in turn decreasing or increasing downhole pressure, occurrence of kicks and fluid losses may be greatly minimized and quickly controlled. Through the method of the invention the elimination of the kick tolerance and tripping margin on the design of the well is made possible, since the pore and fracture pressure will be determined in real-time while drilling the well, and, therefore, nearly no safety margin is necessary when designing the well, reducing significantly the number of casing strings necessary. The inventive method can be called intelligent safe drilling since the response to influx or fluid loss is nearly immediate and so smoothly done that the drilling can go on without any break in the normal course of action. The new method is applicable to the whole wellbore from the first casing string with a BOP connection, and it can be implemented and adopted to any rig or drilling installation that uses the conventional method with very few exceptions and limitations. The new method is applicable to all types of wells, onshore, offshore, deepwater and ultra-deepwater, with huge safety improvement in difficult drilling scenarios.

Description

    FIELD OF THE INVENTION
  • The present invention deals with a closed-loop system for drilling wells where a series of equipment, for the monitoring of the flow rates in and out of the well, as well as for adjusting the back pressure, allows the regulation of the out flow so that the in and out flows are constantly balanced at all times. A pressure containment device keeps the well closed at all times. Since this provides a much safer operation, its application for exploratory wells will greatly reduce the risk of blow-outs. In environments with narrow margin between the pore and fracture pressure, it will create a step change compared to conventional drilling practice. In this context, applications in deep and ultra-deep water are included. A method for drilling, using said system, is also disclosed. The drilling system and method are suited for all types of wells, onshore and offshore. [0001]
  • BACKGROUND INFORMATION
  • Drilling oil/gas/geothermal wells has been done in a similar way for decades. Basically, a drilling fluid with a density high enough to counter balance the pressure of the fluids in the reservoir rock, is used inside the wellbore to avoid uncontrolled production of such fluids. However, in many situations, it can happen that the bottomhole pressure is reduced below the reservoir fluid pressure. At this moment, an influx of gas, oil, or water occurs, named a kick. If the kick is detected in the early stages, it is relatively simple and safe to circulate the invaded fluid out of the well. After the original situation is restored, the drilling activity can proceed. However, if, by any means, the detection of such a kick takes a long time, the situation can become out of control leading to a blowout. According to Skalle, P. and Podio, A. L. in “Trends extracted from 800 Gulf Coast blow-outs during 1960-1996” IADC/SPE 39354, Dallas, Tex., March 1998, nearly 0.16% of the kicks lead to a blowout, due to several causes, including equipment failures and human errors. [0002]
  • On the other hand, if the wellbore pressure is excessively high, it overcomes the fracture strength of the rock. In this case loss of drilling fluid to the formation is observed, causing potential danger due to the reduction in hydrostatic head inside the wellbore. This reduction can lead to a subsequent kick. [0003]
  • In the traditional drilling practice, the well is open to the atmosphere, and the drilling fluid pressure (static pressure plus dynamic pressure when the fluid is circulating) at the bottom of the hole is the sole factor for preventing the formation fluids from entering the well. This induced well pressure, which by default, is greater than the reservoir pressure causes a lot of damage, i.e., reduction of near wellbore permeability, through fluid loss to the formation, reducing the productivity of the reservoir in the majority of cases. [0004]
  • In the last 10 years, a new drilling technique, underbalanced drilling (UBD) is becoming more and more popular. This technique implies a concomitant production of the reservoir fluids while drilling the well. Special equipment has been developed to keep the well closed at all times, as the wellhead pressure in this case is not atmospheric, as in the traditional drilling method. Also, special separation equipment must be provided to properly separate the drilling fluid from the gas, and/or oil, and/or water and drilled cuttings. [0005]
  • The UBD technique has been developed initially to overcome severe problems faced while drilling, such as massive loss of circulation, stuck pipe due to differential pressure when drilling depleted reservoirs, as well as to increase the rate of penetration. In many situations, however, it will not be possible to drill a well in the underbalanced mode, e.g., in regions where to keep the wellbore walls stable a high pressure inside the wellbore is needed. In this case, if the wellbore pressure is reduced to low levels to allow production of fluids the wall collapses and drilling cannot proceed. [0006]
  • Since among the most dangerous events while drilling conventionally is to take a kick, there have been several methods, equipment, procedures, and techniques documented to detect a kick as early as possible. The easiest and most popular method is to compare the injection flow rate to the return flow rate. Disregarding the drilled cuttings and any loss of fluid to the formation, the return flow rate should be the same as the injected one. If there are any significant discrepancies, drilling is stopped to check if the well is flowing with the mud pumps off. If the well is flowing, the next action to take is to close the blow-out preventer equipment (BOP), check the pressures developed without circulation, and then circulate the kick out, adjusting the mud weight accordingly to prevent further influx. [0007]
  • This procedure takes time and increases the risk of blow-out, if the rig crew does not quickly suspect and react to the occurrence of a kick. Procedure to shut-in the well can fail at some point, and the kick can be suddenly out of control. In addition to the time spent to control the kicks and to adjust drilling parameters, the risk of a blow-out is significant when drilling conventionally, with the well open to the atmosphere at all times. [0008]
  • Among the methods available to quickly detect a kick the most recent ones are presented by Hutchinson, M and Rezmer-Cooper, I. in “Using Downhole Annular Pressure Measurements to Anticipate Drilling Problems”, SPE 49114, SPE Annual Technical Conference and Exhibition, New Orleans, La., 27-30 September, 1998. Measurement of different parameters, such as downhole annular pressure in conjunction with special control systems, adds more safety to the whole procedure. The paper discusses such important parameters as the influence of ECD (Equivalent Circulating Density, which is the hydrostatic pressure plus the friction losses while circulating the fluid, converted to equivalent mud density at the bottom of the well) on the annular pressure. It is also pointed out that if there is a tight margin between the pore pressure and fracture gradients, then annular pressure data can be used to make adjustments to mud weight. But, essentially, the drilling method is the conventional one, with some more parameters being recorded and controlled. Sometimes, calculations with these parameters are necessary to define the mud weight required to kill the well. However, annular pressure data recorded during kill operations have also revealed that conventional killing procedures do not always succeed in keeping the bottomhole pressure constant. [0009]
  • Other publications deal with methods to circulate the kick out of the well. For example, U.S. Pat. No. 4,867,254 teaches a method of real time control of fluid influxes into an oil well from an underground formation during drilling. The injection pressure p[0010] i and return pressure pr and the flow rate Q of the drilling mud circulating in the well are measured. From the pressure and flow rate values, the value of the mass of gas Mg in the annulus is determined, and the changes in this value monitored in order to determine either a fresh gas entry into the annulus or a drilling mud loss into the formation being drilled.
  • U.S. Pat. No. 5,080,182 teaches a method of real time analysis and control of a fluid influx from an underground formation into a wellbore being drilled with a drill string while drilling and circulating from the surface down to the bottom of the hole into the drill string and flowing back to the surface in the annulus defined between the wall of the wellbore and the drill string, the method comprising the steps of shutting-in the well, when the influx is detected; measuring the inlet pressure P[0011] i or outlet pressure Po of the drilling mud as a function of time at the surface; determining from the increase of the mud pressure measurement, the time tc corresponding to the minimum gradient in the increase of the mud pressure and controlling the well from the time tc.
  • It is observed that in all the cited literature where the drilling method is the conventional one, the shut-in procedure is carried out in the same way. That is, literature methods are directed to the detection and correction of a problem (the kick), while there are no known methods directed to eliminating said problem, by changing or improving the conventional method of drilling wells. [0012]
  • Thus, according to drilling methods cited in the literature, the kicks are merely controlled. On the contrary, the present application relates to a new concept of drilling whereby a method and corresponding instrumentation allows that kicks may be detected early and controlled much quicker and safer or even eliminated/mitigated than in state-of-the-art methods. [0013]
  • Further, it should be noted that the present method operates with the well closed at all times. That is why it can be said that the method, herein disclosed and claimed, is much safer than conventional ones. [0014]
  • In wells with severe loss of circulation, there is no possibility to detect an influx by observing the return flow rate. Schubert, I. J. and Wright, J. C. in “Early kick detection through liquid level monitoring in the wellbore”, IADC/SPE 39400, Dallas, Tex., March 1998 propose a method of early detection of a kick through liquid level monitoring in the wellbore. Having the wellbore open to atmosphere, here again the immediate step after detecting a kick is to close the BOP and contain the well. [0015]
  • The excellent review of 800 blow-outs occurred in Alabama, Texas, Louisiana, Mississipi, and offshore in the Gulf of Mexico cited hereinbefore by Skalle, P. and Podio, A. L. in “Trends extracted from 800 Gulf Coast blow-outs during 1960-1996” IADC/SPE 39354, Dallas, Tex., March 1998 shows that the main cause of blow-outs is human error and equipment failure. [0016]
  • Nowadays, more and more oil exploration and production is moving towards challenging environments, such as deep and ultra-deepwater. Also, wells are now drilled in areas with increasing environmental and technical risks. In this context, one of the big problems today, in many locations, is the narrow margin between the pore pressure (pressure of the fluids—water, gas, or oil—inside the pores of the rock) and the fracture pressure of the formation (pressure that causes the rock to fracture). The well is designed based on these two curves, used to define the extent of the wellbore that can be left exposed, i.e., not cased off with pipe or other form of isolation, which prevents the direct transmission of fluid pressure to the formation. The period or interval between isolation implementation is known as a phase. [0017]
  • In some situations a collapse pressure (pressure that causes the wellbore wall to fall into the well) curve is the lower limit, rather than the pore pressure curve. But, for the sake of simplicity, just the two curves should be considered, the pore pressure and fracture pressure one. A phase of the well is defined by the maximum and minimum possible mud weight, considering the curves mentioned previously and some design criteria that varies among the operators, such as kick tolerance and tripping margin. In case of a kick of gas, the movement of the gas upward the well causes changes in the bottomhole pressure. The bottomhole pressure increases when the gas goes up with the well closed. Kick tolerance is the change in this bottomhole pressure for a certain volume of gas kick taken. [0018]
  • Tripping margin, on the other hand, is the value that the operators use to allow for pressure swab when tripping out of the hole, to change a bit, for example. In this situation, a reduction in bottomhole pressure, caused by the upward movement of the drill string can lead to an influx. [0019]
  • According to FIG. 1 attached, based on state-of-the-art designing of wells for drilling, typically a margin of 0.3 pound per gallon (ppg) is added to the pore pressure to allow a safety factor when stopping circulation of the fluid and subtracted from the fracture pressure, reducing even more the narrow margin, as shown by the dotted lines. Since the plot shown in FIG. 1 is always referenced to the static mud pressure, the compensation of 0.3 ppg allows for the dynamic effect while drilling also. The compensation varies from scenario to scenario but typically lies between 0.2 and 0.5 ppg. [0020]
  • From FIG. 1, it can be seen that the last phase of the well can only have a maximum length of 3,000 ft, since the mud weight at this point starts to fracture the rock, causing mud losses. If a lower mud weight is used, a kick will happen at the lower portion of the well. It is not difficult to imagine the problems created by drilling in a narrow margin, with the requirement of several casing strings, increasing tremendously the cost of the well. In some critical cases, a difference as small as 0.2 ppg is found between the pore and fracture pressures. Moreover, the current well design shown in FIG. 1 does not allow to reach the total depth required, since the bit size is continuously reduced to install the several casing strings needed. In most of these wells, drilling is interrupted to check if the well is flowing, and frequent mud losses are also encountered. In many cases wells need to be abandoned, leaving the operators with huge losses. [0021]
  • These problems are further compounded and complicated by the density variations caused by temperature changes along the wellbore, especially in deepwater wells. This can lead to significant problems, relative to the narrow margin, when wells are shut in to detect kicks/fluid losses. The cooling effect and subsequent density changes can modify the ECD due to the temperature effect on mud viscosity, and due to the density increase leading to further complications on resuming circulation. Thus using the conventional method for wells in ultra deep water is rapidly reaching technical limits. [0022]
  • On the contrary, in the present application the 0.3 ppg margins referred to in FIG. 1 are dispensed with during the planning of the well since the actual required values of pore and fracture pressures will be determined during drilling. Thus, the phase of the well can be further extended and consequently the number of casing strings required is greatly reduced, with significant savings. If the case of FIG. 1 is considered, the illustrated number of casings is 10, while by graphically applying the method of the invention this number is reduced to 6, according to FIG. 2 attached. This may be readily seen by considering only the solid lines of pore and fracture gradient to define the extent of each phase, rather than the dotted lines denoting the limits that are in conventional use.. [0023]
  • In order to overcome these problems, the industry has devoted a lot of time and resources to develop alternatives. Most of these alternatives deal with the dual-density concept, which implies a variable pressure profile along the well, making it possible to reduce the number of casing strings required. [0024]
  • The idea is to have a curved pressure profile, following the pore pressure curve. There are two basic options: [0025]
  • injection of a lower density fluid (oil, gas, liquid with hollow glass spheres) at some point; [0026]
  • placement of a pump at the bottom of the sea to lift the fluid up to the surface installation. [0027]
  • There are advantages and disadvantages of each system proposed above. The industry has mainly taken the direction of the second alternative, due to arguments that well control and understanding of two-phase flow complicates the whole drilling operation with gas injection. [0028]
  • Thus, according to the IADC/SPE 59160 paper “Reeled Pipe Technology for Deepwater Drilling Utilizing a Dual Gradient Mud System”, by P. Fontana and G. Sjoberg, it is possible to reduce casing strings required to achieve the final depth of the well by returning the drilling fluid to the vessel with the use of a subsea pumping system. The combination of seawater gradient at the mud line and drilling fluid in the wellbore results in a bottomhole equivalent density that can be increased as illustrated in FIG. 2 of the paper. The result is a greater depth for each casing string and reduction in total number of casing strings. It is alleged that larger casing can then be set in the producing formation and deeper overall well depths can be achieved. The mechanism used to create a dual gradient system is based on a pump located at the sea bottom. [0029]
  • However, there are several technical issues to be overcome with this option, which will delay field application for some years. The cost of such systems is also another negative aspect. Potential problems with subsea equipment will make any repair or problem turn into a long down-time for the rig, increasing even further the cost of exploration. [0030]
  • There are three other main methods of closed system drilling: a) underbalanced flow drilling, which involves flowing fluids from the reservoir continuously into the wellbore is described and documented in the literature; b) mud-cap drilling, which involves continuous loss of drilling fluid to the formation, in which fluid can be overbalanced, balanced or underbalanced is also documented; c) air drilling, where air or other gas phase is used as the drilling fluid. These methods have limited application, i.e., underbalanced and air drilling are limited to formations with stable wellbores, and there are significant equipment and procedural limitations in handling produced effluent from the wellbore. The underbalanced method is used for limited sections of the wellbore, typically the reservoir section. This limited application makes it a specialist alternative to conventional drilling under the right conditions and design criteria. Air drilling is limited to dry formations due to its limited capability to handle fluid influxes. Similarly Mud-Cap drilling is limited to specific reservoir sections (typically highly fractured vugular carbonates). [0031]
  • Thus, the open literature is extremely rich in pointing out methods for detecting kicks, and then methods for circulating kicks out of the wellbore. Generally all references teach methods that operate under conventional drilling conditions, that is, with the well being open to the atmosphere. However, there is no suggestion nor description of a modified drilling method and system, which, by operating with the well closed, controlling the flow rates in and out of the wellbore, and adjusting the pressure inside the wellbore as required, causing that influxes (kicks) and fluid losses do not occur or are extremely minimized, such method and system being described and claimed in the present application. [0032]
  • SUMMARY OF THE INVENTION
  • In its broadest aspect the present invention is directed to a system and method of drilling a well by monitoring the flow in and out of the well, as well as monitoring of the flow rates in and out, together with other parameters that produce an early detection of influx or loss independent of the mass flow in and out at that point in time, the well drilled being closed with a pressure containment device at all times. Monitoring of flow may be by measurement of mass and/or volume flow. In a particularly preferred embodiment the system and method of the invention comprises monitoring the mass flow in and out of the well. Preferably monitoring is constant throughout a given drilling operation. [0033]
  • The back pressure in the well is automatically adjusted by pressure/flow control device, controlled by a central control device. This central control device regulates the out flow to keep the flows in and out balanced at all times, or to preemptively adjust the backpressure to change the ECD (Equivalent Circulating Density) instantaneously in response to an early detection of influx or fluid loss. [0034]
  • Accordingly the system of the present invention for drilling a well while injecting a drilling fluid through an injection line of said well and recovering through a return line of said well where the well being drilled is closed at all times comprises a pressure containment device and pressure/flow control device to a wellbore to establish/maintain a back pressure on the well, means to monitor the fluid flow in and out, means to monitor flow of any other material in and out, means to monitor parameters affecting the monitored flow value and means to predict a calculated value of flow out at any given time and to obtain real time information on discrepancy between predicted and monitored flow out and converting to a value for adjusting the pressure/flow control device and restoring the predicted flow value. [0035]
  • In a further aspect the corresponding method of the present invention comprises, in relation to the system of the invention as hereinbefore defined, the following steps of injecting drilling fluid through said injection line through which said fluid is made to contact said means for monitoring flow and recovering drilling fluid through said return line; collecting any other material at the surface; measuring the flow in and out of the well and collecting flow and flow rate signals; measuring parameters affecting the monitored flow value and means; directing all the collected flow, correction and flow rate signals to the said central data acquisition and control system; monitoring parameters affecting the monitored flow value and means to predict a calculated value of flow out at any given time and to obtain real time information on discrepancy between predicted and monitored flow out and converting to a value for adjusting the pressure/flow control device and restoring the predicted flow value. [0036]
  • We have found by means of the system and method of the invention that the generation of real time metering using a full mass balance and time compensation as a dynamic predictive tool, which can be compensated also for any operational pause in drilling or fluid injection enables for the first time an adjustment of fluid injection rate while continuing normal operations. This is in contrast to known open well methods which require pausing fluid injection and drilling to unload excess fluid, and add additional fluid, by trial and error until pressure is restored, which can take a matter of hours of fluid circulation to restore levels. Moreover the system and method provide for the first time a means for immediate restoration of pressure, by virtue of the use of a closed system whereby addition or unloading of fluid immediately affects the well backpressure. [0037]
  • We have also found that the system and method of the invention provide additional advantages in terms of allowing operation with a reduced reservoir volume of fluid, by virtue of closed operation under back pressure. Moreover the system and method can be operated efficiently, without the need for repeated balancing of the system after any operational pause in drilling, by virtue of the ability to continuously circulate fluid even during pauses in drilling, avoiding any undue changes in fluid density and temperature. [0038]
  • Preferably the system for drilling a well while injecting a drilling fluid through an injection line of said well and recovering through a return line of said well where the well being drilled is closed at all times comprises: [0039]
  • a) a pressure containment device; [0040]
  • b) a pressure/flow control device on the outlet stream; [0041]
  • c) means for measuring mass and/or volumetric flow and flow rate on the inlet and outlet streams to obtain real time mass or volumetric flow signals; [0042]
  • d) means for measuring mass and/or volumetric flow and flow rate of any other materials in and out; [0043]
  • e) means for directing all the flow, pressure and temperature signals so obtained to a central data acquisition and control system; and [0044]
  • g) a central data acquisition and control system programmed with a software that can determine a real time predicted out flow and compare it to the actual out flow estimated from the mass and volumetric flow rate values and other relevant parameters. [0045]
  • Preferably the means c) for measuring mass flow comprises a volume flow meter and at least one pressure sensor to obtain pressure signals and at least one temperature sensor to obtain temperature signals; and may be a mass flow meter comprising integral pressure and temperature sensors to compensate for changes in density and temperature; and the means c) for measuring flow rate comprises means for assessing the volume of the hole at any given time, as a dynamic value having regard to the continuous drilling of the hole. At least one additional pressure and temperature sensor may be provided to monitor other parameters that produce an early detection of influx or loss independent of the mass flow in and out at that point in time. [0046]
  • Preferably the means d) comprise means for measuring cuttings volume/mass out. [0047]
  • Most preferably the system comprises: [0048]
  • a) a pressure containment device; [0049]
  • b) a pressure/flow control device on the outlet stream; [0050]
  • c) means for measuring mass flow rate on the inlet and outlet streams; [0051]
  • d) means for measuring volumetric flow rate on the inlet and outlet streams; [0052]
  • e) at least one pressure sensor to obtain pressure data; [0053]
  • f) at least one temperature sensor to obtain temperature data; [0054]
  • g) a central data acquisition and control system that sets a value for an expected out flow and compares it to the actual out flow estimated from data gathered by the mass and volumetric flow rate meters as well as from pressure and temperature data, and in case of a discrepancy between the expected and actual flow values, adjusting the said pressure/flow control device to restore the outflow to the expected value. [0055]
  • In a further aspect of the invention there is provided a method for drilling a well while injecting a drilling fluid through an injection line of said well and recovering through a return line of said well where the well being drilled is closed at all times comprising the following steps: [0056]
  • a) providing a pressure containment device, suitably of a type that allows passage of pipe under pressure, to a wellbore; [0057]
  • b) providing a pressure/flow control device to control the flow out of the well and to keep a back pressure on the well; [0058]
  • c) providing a central data acquisition and control system and related software; [0059]
  • d) providing mass flow meters in both injection and return lines; [0060]
  • e) providing flow rate meters in both injection and return lines; [0061]
  • f) providing at least one pressure sensor; [0062]
  • g) providing at least one temperature sensor; [0063]
  • h) injecting drilling fluid through said injection line through which said fluid is made to contact said mass flow meters, said fluid flow meters and said pressure and temperature sensors, and recovering drilling fluid through said return line; [0064]
  • i) collecting drill cuttings at the surface; [0065]
  • j) measuring the mass flow in and out of the well and collecting mass flow signals; [0066]
  • k) measuring the fluid flow rates in and out of the well and collecting fluid flow signals; [0067]
  • l) measuring pressure and temperature of fluid and collecting pressure and temperature signals; [0068]
  • m) directing all the collected flow, pressure and temperature signals to the said central data acquisition and control system; [0069]
  • n) the software of the central data acquisition and control system considering, at each time, the predicted flow out of the well taking into account several parameters; [0070]
  • o) having the actual and predicted out flows compared and checked for any discrepancy, compensated for time lags in between input and output; [0071]
  • p) in case of a discrepancy, having a signal sent by the central data acquisition and control system to adjust the pressure/flow control device and restore the predicted out flow rate, without interruption of the drilling operation. [0072]
  • Optionally the method comprises additionally providing a means of measurement of drill cuttings rate, mass or volume, when required, to measure the rate of cuttings being produced from the well. [0073]
  • Preferably the system and method comprise additionally means to pressurize the wellbore through the annulus, and a step of pressurising the wellbore through the annulus, independently of the current fluid injection path. [0074]
  • Therefore, the present invention provides a safe method for drilling wells, since not only is the well being drilled closed at all times, but also any fluid loss or influx that occurs is more accurately and faster determined and subsequently controlled than in state-of-the-art methods. [0075]
  • One advantage of the present method over state-of-the-art methods is that it is able to instantly change the ECD (Equivalent Circulating Density) by adjusting the backpressure on the wellbore by closing or opening the pressure/flow control device. In this manner the method herein described and claimed incorporates early detection methods of influx/loss that are existing or yet to be developed as part of the method herein described and claimed, e.g., tools under development or that may be developed that can detect trace hydrocarbon influx, small temperature variations, pressure pulses etc. The output of these tools or technology that indicates a kick or fluid loss can be used as a feedback parameter to yield an instant reaction to the detected kick or fluid loss, thus controlling the drilling operation at all times. [0076]
  • As a consequence, in a patentably distinguishing manner, the method of the invention allows that drilling operations be carried out in a continuous manner, while in state-of-the-art methods drilling is stopped and mud weight is corrected in a lengthy, time-consuming step, before drilling can be resumed, after a kick or fluid loss is detected. [0077]
  • This leads to significant time savings as the traditional approach to dealing with influxes is very time-consuming: stopping drilling, shutting in the well, observing, measuring pressures, circulating out the influx by the accepted methods, and adjusting the mud weight. Similarly a loss of drilling fluid to the formation leads to analogous series of time-consuming events. [0078]
  • The present invention provides also a method of drilling where the bottomhole pressure can be very close to the pore pressure, thus reducing the overbalanced pressure usually applied on the reservoir, and consequently reducing the risk of fluid losses and subsequent contamination of the wellbore causing damage, the overall effect being that the well productivity is increased. [0079]
  • The present invention provides further a method to drill with the exact bottomhole pressure needed, with a direct determination of the pore pressure. [0080]
  • The present invention provides also a method for the direct determination of the fracture pressure if needed. [0081]
  • Since both the fracture and pore pressure curves are estimated and usually are not accurate, the present invention allows a significant reduction of risk by determining either the pore pressure or the fracture pressure, or, in more critical situations, both the pore and fracture pressure curves in a very accurate mode while drilling the well. Therefore by eliminating uncertainties from pore and fracture pressures and being able to quickly react to correct any undesired event, the present method is consequently much safer than state-of-the-art drilling methods. [0082]
  • The present invention provides further a drilling method where the elimination of the kick tolerance and tripping margin on the design of the well is made possible, since the pore and fracture pressure will be determined in real time while drilling the well, and, therefore, no safety margin or only a small one is necessary when designing the well. The kick tolerance is not needed since there will be no interruption in the drilling operation to circulate out any gas that might have entered into the well. Also, the tripping margin is not necessary because it will be replaced by the back pressure on the well, adjusted automatically when stopping circulation. [0083]
  • By the fast detection of any influx and by having the well closed and under pressure at all times while drilling, the present invention allows the well control procedure to be much simpler, faster, and safer, since no time is wasted in checking the flow, closing the well, measuring the pressure, changing the mud weight if needed, and circulating the kick out of the well.[0084]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 attached is a state-of-the-art log of pore and fracture pressure curves indicated hereinbefore. Included in this figure are the kick tolerance and tripping margin, used for designing the casing setting points, in this case taken as 0.3 ppg below the fracture pressure and above the pore pressure, respectively. This value is commonly used in the industry. On the right hand side the number and diameter of the casing strings required to safely drill this well using the current conventional drilling method is shown. As pointed out before, the two curves shown are estimated before drilling. Actual values might never be determined by the current conventional drilling method. [0085]
  • FIG. 2 attached is a log of the same curves according to the invention, without the kick tolerance and tripping margin of 0.3 ppg included. On the right hand side the number of casing strings required can be seen. With the drilling method described in the present application the elimination of the kick tolerance and tripping margin on the design of the well is made possible, since the pore and fracture pressure will be determined in real time while drilling the well, with the well being drilled closed at all times, and, therefore, no safety margin is necessary when designing the well. [0086]
  • FIG. 3 attached is a state-of-the-art schematics of the circulating system of a standard rig, with the return flow open to the atmosphere. [0087]
  • FIG. 4 attached is a schematic of the circulating system of a rig with the drilling method described in the application. A pressure containment device located at the wellhead, mass flow and fluid flow rate meters on the inlet and outlet streams, pressure and temperature sensors, cuttings mass/volume measurement device, and other pieces of equipment have been added to the standard drilling rig configuration. The control system receives all the data gathered and actuates the pressure/flow control device on the outlet stream. [0088]
  • FIG. 5 attached is a general block diagram of the method described in the present invention. [0089]
  • FIG. 6 attached is a flowsheet that schematically illustrates the method of the invention.[0090]
  • PREFERRED MODE—DETAILED DESCRIPTION
  • As pointed out hereinbefore, the present system and method of drilling wells is based on a closed-loop system. The inventive method and system is applied to oil and gas wells, as well as to geothermal wells. [0091]
  • As regards the mud circuit, the circulation of the drilling fluid down the wellbore may be through the drill string and the return through the annulus, as in state-of-the-art methods, but not limited to it. As a matter of fact, any way of circulation of the drilling fluid may be successfully employed in the practice of the present system and method, no matter where the fluids are injected or returned. [0092]
  • In a very broad way, the system and method of the invention comprises adjusting the wellbore pressure with the aid of a pressure/flow control device to correct the bottomhole pressure to prevent fluid influx or losses in a pro-active as opposed to the state-of-the-art reactive manner. [0093]
  • While several of the devices being described have been used in some configuration or combination, and several of the parameter measurements have been included in descriptive methods on patents or literature, none have ever: [0094]
  • 1. Simultaneously combined the measurement of all critical parameters to ensure the necessary accuracy required allowing such a system to effectively function as a whole method. [0095]
  • 2. Utilized mass flow meters simultaneously on inlet and outlet flows. [0096]
  • 3. Utilized mass measurement of cuttings in conjunction with mass flow measurement on inlet and outlet. [0097]
  • 4. Utilized a pressure/flow control device as an instant control of ECD during drilling for the purpose of preventing and controlling influx or losses. [0098]
  • 5. Defined the use of a pressure/flow control device as a pro-active method for adjusting ECD based on early detection of influx/loss events. [0099]
  • The method and system of the invention will now be described in more detail based on the appended FIGURES. [0100]
  • FIG. 3 illustrates a drilling method according to state-of-the-art techniques. Thus, a drilling fluid is injected through the drill string ([0101] 1), down the wellbore through the bit (2) and up the annulus (3). At the surface the fluid that is under atmospheric pressure is directed to the shale shaker (4) for solid/liquid separation. The liquid is directed to the mud tank (5) from where the mud pumps (6) suck the fluid to inject it through the drill string (1) and close the circuit. In case of a kick, normally detected by mud tank volume variation indicated by level sensors (7), the BOP (8) must be closed to allow kick control. At this point the drilling operation is stopped to check pressure and adjust the mud weight to avoid further influxes. Improvements in state-of-the-art drilling methods are generally directed to, for example, improve the measurement of volume increase or decrease in tank (5). However, such improvements bring only minor changes to the kick detection procedure; furthermore, no fundamental modifications are known directed to the improvement of safety and/or to keeping the drilling method continuous, this modification being only brought about by the present invention.
  • On the contrary, according to FIG. 4 that illustrates one embodiment of the invention, the drilling fluid is injected through the drill string ([0102] 1), going down towards the bottom hole through the bit (2) and up the annulus (3) and is diverted by a pressure containment device (26) through a closed return line (27) under pressure. BOP (8) remains open during drilling. The fluid is made to contact pressure and temperature sensors (9), fluid flow meter (10), mass flow meter (11), flow/pressure control device (12), degasser (13) then to the shale shaker (4). The shale shaker (4) separates the cuttings (drill solids) from the liquid and the solids have their mass/volume determined (19) while the liquid is directed to the mud tank (5) having the mass/volume determined as well (20). All standard drilling parameters are acquired by a device (21) normally called mud logging. Downhole parameters are acquired by a device (24) located close to the bit (2). The mass/volume of gas separated in degasser (13) is measured by a device (25).
  • The drilling fluid is injected with the aid of pump ([0103] 6) through an injection line (14) through which said fluid is made to contact mass flow meter (15), fluid flow meter (16), pressure and temperature sensors (17). Devices (7), (9), (10), (11), (15), (16), (17), (19), (20), (21), (24), (25) all acquire data as signals that are directed to a central data acquisition and control system (18). System (18) sends a signal to the pressure/flow control device (12) to open or close it. Whenever it is deemed necessary, a pump (23) may send fluid directly to the annulus (3) through a dedicated injection line (22) via a mass flow meter (28), fluid flow meter (28) and pressure and temperature sensors (28). For figure simplification these three devices are shown in just one piece of equipment. This injection line may be incorporated as part of the standard circulation system, or embodied in other ways, the purpose being to provide an independent, of normal drilling circulation, means of flow into wellbore. The central data acquisition and control system (18) acquires data from device (28).
  • According to the concept of the present invention, as illustrated in FIG. 4, a pressure containment device ([0104] 26) diverts the drilling fluid and keeps it under pressure. Device (26) may be a rotating BOP or a rotating control head, but not limited to it. The location of device (26) is not critical. It may be located at the surface or at some point further down e.g. on the sea floor, inside the wellbore, or at any other suitable location. The drilling fluid is diverted to a closed pipe (27) and then to a surface system. The type and design of the device (26) is not critical and depends on each well being drilled. It is a standard equipment that is commercially available or readily adapted from existing designs.
  • As described hereinbefore, upon a signal received from control system ([0105] 18) the pressure/flow control device (12) opens or closes to allow decrease or increase of the backpressure at the well head so that the outflow can be restored to the predicted value determined by system (18). Two or more of these pressure/flow control devices (12) can be installed in parallel with isolation valves to allow redundant operation. Devices (12) can be positioned downstream of the pressure containment device (26) at any suitable point in the surface system. Some surface systems may incorporate two or more of such devices (12) at different nodes.
  • One critical aspect of the present method is the accurate measurement of the injected and returned mass and fluid flow rates. The equipment used to carry out such measurement is mass flow meters ([0106] 11,15) and fluid flow meters (10,16). The equipment is installed in the injected (14) and return (27) fluid lines. These meters may also be installed at the gas outlet (25) of the degasser (13) and somewhere (20) on the fluid line between shale shaker (4) and tank (5). Also they may be installed on the independent injection line (22). The mass and fluid flow meters are commercially available equipment. Multi-phase meters are also commercially available and may be used. The precision of this equipment, allows accurate measurement, subsequent control and safer drilling.
  • To further improve the accuracy of the method the cuttings mass/volume rate can be measured by commercially available equipment ([0107] 19) to verify that the mass of cuttings being received back at the surface is correlated with the rate of penetration and wellbore geometry. This data allows correction of the mass flow data and allows identification of trouble events.
  • The measurements of mass and fluid flow rates provide data that are collected and directed to a central data acquisition and control system ([0108] 18).
  • The central data acquisition and control system ([0109] 18) is provided with a software designed to predict an expected, ideal value for the outflow, said value being based on calculations taking into account several parameters including but not restricted to rate of penetration, rock and drilling fluid density, well diameter, in and out flow rates, cuttings return rate, bottomhole and wellhead pressures and temperatures.
  • Said software compares the said predicted ideal value with the actual, return flow rate value as measured by the mass flow meters ([0110] 11,15) and fluid flow meters (10,16). If the comparison yields any discrepancy, the software automatically sends a command to a pressure/flow control device (12) designed to adjust the return flow rate so as to restore the said return flow rate to the predicted, ideal value.
  • Said software can also receive as input any early detection parameters available or being developed or capable of being developed. Such input will trigger a chain of investigation of probable scenarios, checking of actual other parameter and any other means (databased or software or mathematical) to ascertain that an influx/loss event has occurred. Said software will in such cases pre-emptively adjust backpressure to immediately control the event. [0111]
  • Said software will allow for override of the standard detection (state-of-the-art) by the early detection system of the invention and will compensate and filter for any conflict in fluid/mass flow indication. [0112]
  • Said software may have filters, databases, historical learning and/or any other mathematical methods, fuzzy logic or other software means to optimize control of the system. [0113]
  • The pressure/flow control device ([0114] 12) used to restore the ideal flow is an equipment chosen according to the well parameters such as diameter of the return line, pressure and flow requirements. The pressure/flow control device (12) is, as previously stated, standard, commercially available equipment. Alternatively, it may be specifically designed for the required purpose.
  • According to the present method, the flow rates in and out of the wellbore are controlled, and the pressure inside the wellbore is adjusted by the pressure/flow control device ([0115] 12) installed on the return line (27) or further downstream in the surface system.
  • Thus, if the drilling fluid volume returning from the wellbore is increasing, after compensating for all possible factors it is a sign that an influx is happening. In this case the surface pressure should be increased to restore the bottomhole pressure in such a way as to overcome the reservoir pressure. [0116]
  • On the other hand, if the fluid volume returning is decreasing, after compensating for all possible factors it means the pressure inside the wellbore is higher than the fracture pressure of the rock, or that the sealing of the drilling mud is not effective. Therefore, it is necessary to reduce the wellbore pressure, and the reduction will take place by lowering the surface back pressure sufficiently to restore the normal condition. [0117]
  • If an early detection signal is confirmed, control system ([0118] 18) will proactively adjust the backpressure by opening or closing pressure/flow control device (12) to suit the occurred event.
  • Thus, upon any undesired event, the system acts in order to adjust the rate of return flow and/or pressure thus increasing or decreasing the backpressure, while creating the desired condition downhole of no inflow from the exposed formation or no loss of fluid to the same exposed formation. This is coupled with a feedback loop to constantly monitor the reaction to each action, as well as the necessary software design, and any necessary decision system including but not limited to databases and fuzzy logic filters to ensure consistent operation. [0119]
  • The system and method of drilling oil, gas and geothermal wells according to the present invention is based on the principle of mass conservation, a universal law. [0120]
  • While drilling a well, loss of fluid to the rock or influx from the reservoir is common, and should be avoided to eliminate several problems. By applying the principle of mass conservation, the difference in mass being injected and returned from the well, compensated for increase in hole volume, additional mass of rock returning and other relevant factors, including but not limited to thermal expansion/contraction and compressibility changes, is a clear indication of what is happening downhole. [0121]
  • Therefore, the expression “mass flow” as used herein means the total mass flow being injected and returned, comprised of liquid, solids, and possibly gas. [0122]
  • In order to increase the accuracy of the method and to expedite detection of any undesired event, the flow rates in and out of the well are also monitored at all times. This way, the calculation of the predicted, ideal return flow of the well can be done with a certain redundancy and the detection of any discrepancy can be made with reduced risks. [0123]
  • It should be understood that all the devices used in the present system and method, such as flow metering system, pressure containment device, pressure and temperature sensors, pressure/flow control device are commercial devices and as such do not constitute an object of the invention. [0124]
  • Further, it is within the scope of the application that any improvements in mass/flow rate measurements or any other measuring device can be incorporated into the method. Also comprised within the scope of the application are any improvements in the accuracy and time lag to detect influx or fluid losses as well as any improvements in the system ([0125] 18) to manipulate the data and make decisions related to restore the predicted flow value.
  • Thus, improved detection, measurement or actuation tools are all comprised within the scope of the application. [0126]
  • It has been shown that measurement of the flow rate only is not accurate enough to provide a clear indication of losses or gains while drilling. That is why the present method envisages the addition of an accurate mass flow metering ([0127] 11,15) system that allows the present drilling method to be much safer than state-of-the-art drilling methods.
  • This mass flow metering principle is extended to include other subcomponents of the system where accuracy can be improved, such as, but not limited to measuring the mass flux of cuttings ([0128] 19) being produced at the shakers (4) and mass outflow of gas (25) from degasser (13), to allow verification and/or improvement of the mass balance being continuously applied to the system.
  • Another very important device used in the method and system of this invention is the pressure containment equipment ([0129] 26), to keep the well flowing under pressure at all times. By controlling the pressure inside the well with a pressure/flow control device (12) on the return line (27) the bottomhole pressure can be quickly adjusted to the desired value so as to eliminate the losses or gains being detected.
  • By having a pressure sensor ([0130] 24) at the bottom of the string (1) and another one (9) at the surface, the pore and fracture pressures of the formations can be directly determined, dramatically improving the accuracy of such pressure values.
  • The assessment of the pore and fracture pressures according to the method of the invention is carried out the following way: if the central data acquisition and control system ([0131] 18) detects any discrepancy and a decision to actuate the pressure/flow control device (12) is made, it is a sign that either a fluid loss or influx is occurring. The Applicant has thus ascertained that if there is a fluid loss this means that the bottomhole pressure being recorded is equivalent to the fracture pressure of the formation.
  • On the contrary, if an influx is detected, this means that the bottomhole pressure being recorded is equivalent to the pore pressure of the formation. [0132]
  • Further, in case of the absence of the pressure sensor in the bottomhole, the variables pore pressure and fracture pressure can be estimated. Thus, the bottomhole pressure is not one of the variables being recorded and only the wellhead or surface pressure is the pressure variable being acquired. The pore pressure and the fracture pressure can then be indirectly estimated by adding to the obtained value the hydrostatic head and friction losses within the wellbore. [0133]
  • The software pertaining to the central data and control system ([0134] 18) would include all the necessary algorithms, empirical correlations or other method to allow accurate estimation of the hydrostatic head and friction losses including any transient effects like, but not limited to, changing temperature profile along the wellbore.
  • Usually, indirect estimation made before drilling, based on correlations from logs, or during drilling using drilling parameters are the best alternatives to determine the pore pressure. Similarly, fracture pressure is also indirectly estimated from logs before drilling. In some situations the fracture pressure is determined at certain points while drilling, usually when a casing shoe is set, not along the whole well. [0135]
  • Advantageously, when using the method and system of the invention the pore and fracture pressure may be directly determined while drilling the well. This entails great savings as regards safety and time, two parameters of utmost importance in drilling operations. [0136]
  • In state-of-the-art methods, the bottomhole pressure is adjusted by increasing or reducing the mud weight. The increase or reduction in mud weight is most of the time effected based on quasi-empirical methods, which by definition implies inaccuracies, which are handled by an iterative process of: —adjusting mud weight, measuring mud weight—this process being repeated until the desired value is reached. To further complicate the matter, due to the time lag, caused by the circulation time (i.e., time for a full loop movement of a unit element of mud), the adjustments must be made in stages, e.g., in order to quickly contain an influx, a higher density mud is introduced into the system to produce an increase in ECD (Equivalent Circulating Density). At the point where additional hydrostatic head of this higher density mud, coupled with the hydrostatic head of lower density mud, initially in circulation, becomes close to being sufficient to contain the influx, another variation in density of mud must be executed in order not to increase the ECD to the point of creating losses. This is further complicated by the fact that such density adjustments affect the rheology (viscosity, yield point, etc.) of the mud system leading to changes in the friction component, which in turn has a direct effect on the ECD. So, in practice, the adjustment of mud weight is not always successful in restoring the desired equilibrium of fluid circulation in the system. Inaccuracy, depending on its extent, may lead to hazardous situations such as blowouts. [0137]
  • On the contrary, the method and system of the invention allows for a precise adjustment of increase or reduction in bottomhole pressure. By using the pressure/flow control device ([0138] 12) to restore the equilibrium and pressures inside the wellbore, the adjustment is much faster achieved, avoiding the hazardous situation of well-known methods.
  • It should also be pointed out that in state-of-the-art methods the needed bottomhole pressures needed to restore the equilibrium are estimated under static conditions, since these determinations are made without fluid circulation. However, the influxes or fluid losses are events that occur under dynamic conditions. This implies in even more errors and inaccuracies. [0139]
  • Also the speed of adjustment is much greater in the present method, as opposed to the conventional situation, where increasing the density (weighting up) or decreasing the density (cutting back) is a very time consuming process. It has been cited before that while drilling the ECD is the actual pressure that needs to overcome the formation pressure to avoid influx. However, when the circulation is stopped to make a connection, for example, the friction loss is zero and thus the ECD reduces to the hydrostatic value of the mud weight. In scenarios of very narrow mud window, the margin can be as low as 0.2 ppg. In these cases, it is common to observe influxes when circulation is interrupted, increasing substantially the risks of drilling with the conventional drilling system. [0140]
  • On the contrary, since the present method operates with the well closed at all times which implies a back pressure at all times, this back pressure may be adjusted to compensate for dynamic friction losses when the mud circulation is interrupted, avoiding the influx of reservoir fluids (kick). Thus the improved safety of the method of the invention relative to the state-of-the-art drilling methods may be clearly seen. [0141]
  • Replacement of the dynamic friction loss when the pump stops can be accomplished by slowly reducing the circulation rate through the normal flow path and simultaneously closing the pressure flow/contol device and trapping a backpressure that compensates for the loss in friction head. [0142]
  • This same purpose of keeping an unchanging pressure at the bottomhole during circulation stops can be more readily achieved by the following method: the back pressure adjustment can be applied by pumping fluid, independent of the normal circulating flow path, into the wellbore, to compensate for the loss in friction head, and effecting a continuous flow that allows easy control of the back pressure by adjustment of the pressure/flow control device ([0143] 12). This fluid flow may be achieved completely independent of the normal circulating path by means of a mud pump (23) and injection line (22).
  • Therefore, a circulation bypass composed of a pump ([0144] 23) and a dedicated injection line (22) to the wellbore annulus allows keeping a constant pressure downhole during circulation stops and continuously detecting any changes in the mass balance indicative of an influx or loss during the circulation stop.
  • By using the method and system of the invention, the errors from estimating the required mud weight based on static conditions are avoided since the measurements are effected under the same dynamic conditions as those when the actual events occur. [0145]
  • This method also renders possible to run the mud density at a value slightly lower than that required to balance the formation pressure and using the backpressure on the well to exert an extremely controllable ECD at the bottomhole that has the flexibility to be instantaneously adjusted up or down. This will be the preferred method in wells with very narrow pore pressure/fracture pressure margins as occur in some drilling scenarios. [0146]
  • In this case one of the parameters mentioned in Table 1, which is the advantage of having three safety barriers is negated. However, the current technical limit on some ultra-deep water wells, due to the narrow margin, when drilling with the state-of-the art method, leads to a sequence of fluid influxes/losses due to the inaccuracies in manually controlling the mud density and subsequent ECD as described above, that can lead to loss of control of the drilling situation and has resulted in the abandonment of such wells due to the safety risks and technical inability to recover from the situation. [0147]
  • However, the method of the invention allows, by creating an instant control mud weight window, controlling the ECD by increasing or decreasing the backpressure, controlled by the positioning of the pressure/flow control device, to create the conditions for staying within the narrow margin. This results in the technical ability to drill wells in very adverse conditions as in narrow mud weight window, under full control with the consequent improvement in safety as the well is at all times in a stable circulating condition, while still retaining two barriers ie. the BOP (blow-out preventer), and the pressure containment device. [0148]
  • The central data acquisition and control system ([0149] 18) has a direct output for actuation of the pressure/flow control device(s) (12) downstream the wellhead opening or closing the flow out of the well to restore the expected value. At this point, if an action is needed, the bottomhole pressure is recorded and associated to the pore or fracture pressure, if a gain or loss is being observed, respectively.
  • In case an influx of gas occurs, the circulation of the gas out of the well is immediately effected. By closing the pressure/flow control device ([0150] 12) to restore the balance of flow and the predicted value, the bottomhole pressure reaches back a value that avoids any further influx. At this point no more gas will enter the well and the problem is limited to circulating out the small amount of gas that might have entered the well. Since the well that is being drilled is closed at all times, there is no need to stop circulation, check if the well is flowing, shut-in the BOP, measure the pressures, adjust the mud weight, and then circulate the kick out of the well as in standard methods. The mass flow together with the flow rate measurements provide a very efficient and fast way of detecting an inflow of gas. Also, the complete removal of the gas from the well is easily determined by the combination of the mass flow and flow rates in and out of the well.
  • Also the incorporation of early detection of influx/loss devices, which can preemptively result in opening or closing the pressure/flow control device ([0151] 12), as part of the system, will allow pro-active reaction to influx/losses not achieved by state-of the-art systems.
  • The function of the rotating pressure containment device ([0152] 26) is to allow the drill string (1) to pass through it and rotate, if a rotating drilling activity is carried on. Thus, the drill string (1) is stripped through the rotating pressure containment device; the annulus between the outside of the drill pipe and the inside of the wellbore/casing/riser is closed by this equipment. The rotating pressure containment device (26) can be replaced by a simplified pressure containment device such as the stripper(s) (a type of BOP designed to allow continuous passage of non-jointed pipe) on coiled tubing operations. The return flow of drilling fluid is, therefore, diverted to a closed pipe (27) to the surface treatment package. This surface package should be composed of at least a degasser (13) and shale shaker (4) for solids separation. This way the influxes can be automatically handled.
  • In a more appropriate configuration, a closed 3-phase separator (liquid, solid and gas) could be installed replacing the degasser ([0153] 13). In this case a fully closed system is achieved. This may be desirable when dealing with hostile fluids or fluids posing environmentally risks.
  • The central data acquisition and control system ([0154] 18) receives all the signals of different drilling parameters, including but not limited to injection and return flow rates, injection and return mass flow rates, back-pressure at the surface, down-hole pressure, cuttings mass rates, rate of penetration, mud density, rock lithology, and wellbore diameter. It is not necessary to use all these parameters with the drilling method herein proposed.
  • The central data acquisition and control system ([0155] 18) processes the signals received and looks for any deviation from expected behavior. If a deviation is detected, the central data acquisition and control system (18) activates the flow pressure/flow control device (12) to adjust the back-pressure on the return line (27). This is coupled with a feedback loop to constantly monitor the reaction to each action, as well as the necessary software design, and any necessary decision system including but not limited to databases and fuzzy logic filters to ensure consistent operation.
  • In spite of the fact that some early-detection means have been described, it should be understood that the present method and system is not limited to the described items. Thus, an influx may be detected by other means including but not limited to downhole temperature effects, downhole hydrocarbon detection, pressure changes, pressure pulses; said system pre-emptively adjusting backpressure on the wellbore based on influx or loss indication before surface system detection. [0156]
  • The drilling of the well is done with the rotating pressure containment device ([0157] 26) closed against the drill string. If a deviation outside the predicted values of the return flow and mass flow rates is observed, the control system (18) sends a signal either to open the flow, reducing the back-pressure or restricting the flow, increasing the back-pressure.
  • This deviation may also be a signal from an early detection device. [0158]
  • The first option (flow opening) is applied in case a fluid loss is detected and the second one (flow restriction), if a fluid gain is observed. The changes in flow are done in steps previously defined steps. These step changes can be adjusted as the well is drilled and the effective pore and fracture pressures are determined. [0159]
  • The whole drilling operation is continuously monitored so that a switch to a manual control can be implemented, if anything goes wrong. Any adjustments and modifications can also be implemented as the drilling progresses. If at all desired, restoring to the state-of-the-art drilling method is easily done, by not using anymore the rotating pressure containment device ([0160] 26) against the drill string (1), allowing the annulus to be open to the atmosphere again.
  • A block diagram of the method described in the present invention is shown in FIG. 5. [0161]
  • In fact, the present system and method implies many variations and modifications within its scope and as such it can be applied to all kinds of wells, onshore as well as offshore, and the equipment location and distribution can vary according to the well, risks, application and restrictions of each case. [0162]
  • FIG. 6 is a flowchart illustrating the drilling method of the invention in a schematic mode, with the decision-making process that leads to the restoration of the predicted flow as determined by the central data acquisition and control system. [0163]
  • It has been mentioned before that in the conventional drilling methods the hydrostatic pressure exerted by the mud column is responsible for keeping the reservoir fluids from flowing into the well. This is called a primary safety barrier. All drilling operations should have two safety barriers, the second one usually being the blow-out preventer equipment, which can be closed in case an influx occurs. The drilling method and system herein described introduces for the first time three safety barriers during drilling, these being the drilling fluid, the blow-out preventer equipment, and the rotating pressure containment device. [0164]
  • In underbalanced drilling (UBD) operations, there are just two barriers, the rotating pressure containment device and the blow-out preventer, since the drilling fluid inside the wellbore must exert a bottomhole pressure smaller than the reservoir pressure to allow production while drilling. [0165]
  • As noted before, there are three other main methods of closed system drilling, known as underbalanced drilling (UBD), mud-cap drilling, and air drilling. All three methods have restricted operating scenarios applicable to small portions of the wellbore, with mud-cap drilling and air drilling only usable under very specific conditions, whereas the method herein described is applicable to the entire length of the wellbore. [0166]
  • TABLE 1 below shows the key differences among the traditional drilling system (Conv.), compared with the underbalanced drilling system (UBD) and the present drilling method herein proposed. It can be seen that the key points addressed by the present application are not covered or considered by either the traditional conventional drilling system or by the underbalanced drilling method currently used by the industry. [0167]
    TABLE 1
    Feature UBD Conv. INVENTION
    Well closed at all times Yes No Yes
    Production of reservoir fluids while Yes No No
    drilling
    Flow rates measured in and out Yes Yes Yes
    Mass flow measured in No No Yes
    Mass flow measured out Yes No Yes
    Pressure/flow control device on the Yes No Yes
    return line
    Return flow adjusted automatically No No Yes
    according to mass balance
    Degasser device on the return line Yes No Yes
    Kick detection accurate and fast N/A No Yes
    Real time1 kick/loss detection while No No Yes
    drilling
    Can instantly utilize input from early N/A No Yes
    detection of kick/loss
    Bottom-hole pressure instantly2 adjusted No No Yes
    from surface with small action
    Three safety barriers while drilling No No Yes
    Accurate pore and fracture pressure No No Yes
    determination while drilling
    Can keep a constant pressure at bottom No No Yes
    hole during connections and trips
    Immediate control of the well in case of N/A No Yes
    kick
    Can be used to drill the entire well No Yes Yes
    Can be used to drill safely within a very No No Yes
    narrow pore/fracture pressure margin
  • The present method is applicable to the whole wellbore from the first casing string with a BOP connection, and to any type of well (gas, oil or geothermal), and to any environment (land, offshore, deep offshore, ultra-deep offshore). It can be implemented and adopted to any rig or drilling installation that uses the conventional method with very few exceptions and limitations. [0168]
  • Thus the present method can be called INTELLIGENT SAFE DRILLING, since the response to influx or losses is nearly immediate and so smoothly done that the drilling can go on without any break in the normal course of action, this representing an unusual and unknown feature in the technique. [0169]
  • Therefore, the present system and method of drilling makes possible: [0170]
  • i) accurate and fast determination of any difference between the in and out flow, detecting any fluid losses or influx; [0171]
  • ii) easy and fast control of the influx or losses; [0172]
  • iii) strong increase of drilling operations safety in challenging environments, such as when drilling in narrow margin between pore and fracture pressures; [0173]
  • iv) strong increase of drilling operations safety when drilling in locations with pore pressure uncertainty, such as exploration wells; [0174]
  • v) strong increase of drilling operations safety when drilling in locations with high pore pressure; [0175]
  • vi) easy switch to underbalanced or conventional drilling modes; [0176]
  • vii) drilling with minimum overbalance, increasing the productivity of the wells, increasing the rate of penetration and thus reducing the overall drilling time; [0177]
  • viii) direct determination of both the pore and fracture pressures; [0178]
  • ix) a large reduction in time and therefore cost spent weighting (increasing density) and cutting back (decreasing density) mud systems; [0179]
  • x) a large reduction in the cost of wells by reduction in the number of necessary casing strings; [0180]
  • xi) a significant cost reduction in the cost of wells by significantly reducing or eliminating completely the time spent on the problems of differential sticking, lost circulation; [0181]
  • xii) significantly reducing the risk of underground blow-outs; [0182]
  • xiii) a significant reduction of risk to personnel compared to conventional drilling due to the fact that the wellbore is closed at all times, e.g., exposure to sour gas; [0183]
  • xiv) a significant cost reduction due to lowering quantities of mud lost to formations; [0184]
  • xv) a significant improvement in productivity of producing horizons by reduction of fluid loss and consequential permeability reduction (damage); [0185]
  • xvi) a significant improvement in exploration success as fluid invasion due to overweighted mud is limited. Such fluid invasion can mask the presence of hydrocarbons during evaluation by electric logs; [0186]
  • xv) to drill wells in ultra deep water that are reaching technical limit with conventional state-of-the art method; [0187]
  • xvi) to economically drill ultra-deep wells onshore and offshore by increasing the reach of casing strings. [0188]

Claims (28)

I claim:
1. A system for drilling a well while injecting a drilling fluid through an injection line of said well and recovering through a return line of said well where the well being drilled is closed at all times comprises a pressure containment device and pressure/flow control device to a wellbore to establish/maintain a back pressure on the well, means to monitor the fluid flow in and out, means to monitor flow of any other material in and out, means to monitor parameters affecting the monitored flow value and means to predict a calculated value of flow out at any given time and to obtain real time information on discrepancy between predicted and monitored flow out and converting to a value for adjusting the pressure/flow control device and restoring the predicted flow value.
2. A system of drilling a well while being drilled with a drill string having a drilling fluid circulated therethrough, while the well is kept closed at all times, wherein the system comprises:
a) a pressure containment device;
b) a pressure/flow control device on the outlet stream;
c) means for measuring mass or volumetric flow and flow rate on the inlet and outlet streams to obtain real time mass or volumetric flow signals;
d) means for measuring mass or volumetric flow and flow rate of any other materials in and out;
e) means for directing all the flow, pressure and temperature signals so obtained to a central data acquisition and control system; and
f) a central data acquisition and control system programmed with a software that can determine a real time predicted out flow and compare it to the actual out flow estimated from the mass and volumetric flow rate values and other relevant parameters.
3. A system of drilling a well while being drilled with a drill string having a drilling fluid circulated therethrough, while the well is kept closed at all times, wherein said system comprises:
a) a pressure containment device;
b) a pressure/flow control device on the outlet stream;
c) means for measuring mass flow rate on the inlet and outlet streams;
d) means for measuring volumetric flow rate on the inlet and outlet streams;
e) at least one pressure sensor to obtain pressure data;
f) at least one temperature sensor to obtain temperature data;
g) a central data acquisition and control system that sets a value for an expected out flow and compares it to the actual out flow estimated from data gathered by the mass and volumetric flow rate meters as well as from pressure and temperature data, and in case of a discrepancy between the expected and actual flow values, adjusting the said pressure/flow control device to restore the outflow to the expected value.
4. A system according to claim 1 wherein the well is a gas, oil or geothermal well.
5. A system according to claim 3 wherein the at least one pressure sensor is located at the wellhead.
6. A system according to claim 3 wherein the system comprises two pressure sensors.
7. A system according to claim 6, wherein one pressure sensor is at the wellhead and the other one at the bottomhole.
8. A system according to claim 1 wherein the said central data acquisition and control system is provided with a time-based software to allow for lag time between in and out flux.
9. A system according to claims 1 or 8 wherein said software is provided with detection filters and/or processing filters to eliminate/reduce false indications on the received mass and fluid flow data, and any other measured or detected parameters.
10. A system according to claim 1 which comprises three safety barriers, the drilling fluid, the blow-out preventer equipment and the pressure containment device.
11. Method comprising, in relation to the system according to claim 1, the following steps of injecting drilling fluid through said injection line through which said fluid is made to contact said means for monitoring flow and recovering drilling fluid through said return line; collecting any other material at the surface; measuring the flow in and out of the well and collecting flow and flow rate signals; measuring parameters affecting the monitored flow value and means; directing all the collected flow, correction and flow rate signals to the said central data acquisition and control system; monitoring parameters affecting the monitored flow value and means to predict a calculated value of flow out at any given time and to obtain real time information on discrepancy between predicted and monitored flow out and converting to a value for adjusting the pressure/flow control device and restoring the predicted flow value.
12. A method of drilling a well while being drilled with a drill string having a drilling fluid circulated therethrough, while the well is kept closed at all times, said method comprising the steps of:
a) providing a pressure containment device to the wellbore;
b) providing a pressure/flow control device to control the flow out of the well and to keep a back pressure on the well;
c) providing a central data acquisition and control system and related software;
d) providing mass flow meters in both injection and return lines;
e) providing flow rate meters in both injection and return lines;
f) providing at least one pressure sensor;
g) providing at least one temperature sensor;
h) injecting drilling fluid through an injection line through which said fluid is made to contact said mass flow meters, said fluid flow meters, and said pressure and temperature sensors, and recovering drilling fluid through a return line;
i) collecting drill cuttings at the surface;
j) measuring the mass flow in and out of the well and collecting mass flow signals;
k) measuring the fluid flow rates in and out of the well and collecting fluid flow signals;
l) measuring pressure and temperature of fluid and collecting pressure and temperature signals;
m) directing all the collected flow, pressure and temperature signals to the said central data acquisition and control system;
n) the software of the central data acquisition and control system considering, at each time, the predicted flow out of the well;
o) having the actual and predicted out flows compared and checked for any discrepancy;
p) in case of a discrepancy, having a signal sent by the central data acquisition and control system to adjust the pressure/flow control device and restore the predicted out flow rate, without interruption of the drilling operation.
13. A method of continuous, safe drilling of a well being drilled with a drill string having a drilling fluid circulated therethrough, while the well is kept closed at all times, said method comprising the steps of:
a) providing a pressure containment device to the wellbore;
b) providing a pressure/flow control device to control the flow out of the well and to keep a back pressure on the well;
c) providing a central data acquisition and control system and related software;
d) providing mass flow meters in both injection and return lines;
e) providing flow rate meters in both injection and return lines;
f) providing at least one pressure sensor to measure pressure;
g) providing at least one temperature sensor to measure temperature;
h) injecting drilling fluid through an injection line through which said fluid is made to contact said mass flow meters, said fluid flow meters and said pressure and temperature sensors, and recovering drilling fluid through return line;
i) collecting drill cuttings at the surface;
j)measuring the mass flow in and out of the well and collecting mass flow signals;
k) measuring the fluid flow rates in and out of the well and collecting fluid flow signals;
l) measuring pressure and temperature of fluid and collecting pressure and temperature signals;
m) directing all the collected flow, pressure and temperature signals to the said central data acquisition and control system;
n) the software of the central data acquisition and control system considering, at each time, the predicted flow out of the well;
o) having the actual and predicted out flows compared and checked for any discrepancy;
p) in case of a discrepancy, having a signal sent by the central data acquisition and control system to adjust the pressure/flow control device and restore the predicted out flow rate without interruption of the drilling operation.
14. A method according to claims 12 or 13 wherein the well is a gas, oil or geothermal well.
15. A method according to claims 12 or 13 wherein the at least one pressure sensor is located at the wellhead.
16. A method according to claims 12 or 13 wherein the method comprises two pressure sensors.
17. A method according to claim 16, wherein one pressure sensor is at the wellhead and the other one is at the bottomhole.
18. A method according to claims 12 or 13 wherein the Equivalent Circulating Density of the well being drilled is adjusted by closing or opening the pressure/flow control device.
19. A method according to claims 12 or 13 wherein the discrepancy between actual and predicted out flows is a fluid loss and the adjustment of the pressure/flow control device comprises opening said device to the extent required to counteract fluid loss and reduce backpressure.
20. A method according to claims 12 or 13 wherein the discrepancy between actual and predicted out flows is a fluid gain and the adjustment of the pressure/flow control device comprises closing said device to the extent required to counteract fluid gain and increase backpressure.
21. A method according to claims 12 or 13 wherein the predicted ideal value for the outflow is based on calculations taking into account among others rate of penetration, rock and drilling fluid density, well diameter, in and out flow rates, cuttings return rate, bottomhole and wellhead pressures and temperatures.
22. A method according to claims 12 or 13 wherein the software provided to the central data acquisition and control system receives as input any early detection parameters to ascertain that an influx/loss has occurred.
23. A method according to claims 12 or 13 wherein the mass flow metering comprises any subcomponents designed to improve accuracy of the measurement.
24. A method according to claim 23, wherein the subcomponents comprise measuring the mass flux of cuttings being produced at the shakers and mass outflow of gas from the said degasser.
25. A method according to claims 12 or 13 wherein means are provided to pressurize the well bore through the annulus, independently of the current fluid injection path.
26. A method according to claim 23, wherein the subcomponents comprise measuring the mass flow and fluid flow into the well bore through the annulus, independently of the current fluid injection path.
27. A method for the real time determination of the fracture pressure of a well being drilled with a drill string and drilling fluid circulated therethrough, while the well is kept closed at all times, said method comprising the steps of:
a) providing a pressure sensor at the bottom of the drill string;
b) having fluid and mass flow data generated collected and directed to a central data acquisition and control device that sets an expected value for fluid and mass flow;
c) the said central data acquisition and control device continuously comparing the said expected fluid and mass flow to the actual fluid and mass flow;
d) in case of a discrepancy between the expected and actual value, the said central data acquisition and control device activating a pressure/flow control device;
e) the detected discrepancy being a fluid loss, the value of the fracture pressure being obtained from a direct reading of the bottomhole pressure.
28. A method for the real-time determination of the pore pressure of a well being drilled with a drill string and drilling fluid circulated therethrough, while the well is kept closed at all times, said method comprising the steps of:
a) providing a pressure sensor at the bottom of the drill string;
b) having fluid and mass flow data generated collected and directed to a central data acquisition and control device that sets an expected value for fluid and mass flow;
c) the said central data acquisition and control device continuously comparing the said expected fluid and mass flow to the actual fluid and mass flow;
d) in case of a discrepancy between the expected and actual value, the said central data acquisition and control device activating a pressure/flow control device;
e) the detected discrepancy being an influx, the value of the pore pressure being obtained from a direct reading of the bottomhole pressure provided by the said pressure sensor.
US09/737,851 2000-12-18 2000-12-18 Drilling system and method Abandoned US20020112888A1 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
US09/737,851 US20020112888A1 (en) 2000-12-18 2000-12-18 Drilling system and method
PCT/GB2001/005593 WO2002050398A1 (en) 2000-12-18 2001-12-14 Cloded loop fluid-handing system for well drilling
AU1932202A AU1932202A (en) 2000-12-18 2001-12-14 Cloded loop fluid-handing system for well drilling
EP01271487A EP1356186B1 (en) 2000-12-18 2001-12-14 Closed loop fluid-handing system for well drilling
BRPI0116306-0A BR0116306B1 (en) 2000-12-18 2001-12-14 "SYSTEM AND METHOD FOR DRILLING A WELL".
CA002432119A CA2432119C (en) 2000-12-18 2001-12-14 Drilling system and method
ES01271487T ES2244554T3 (en) 2000-12-18 2001-12-14 FLUID HANDLING SYSTEM IN CLOSED CIRCUIT FOR WELL PERFORATION.
AU2002219322A AU2002219322B2 (en) 2000-12-18 2001-12-14 Closed loop fluid-handing system for well drilling
DE60111781T DE60111781T2 (en) 2000-12-18 2001-12-14 FLUID PIPING SYSTEM WITH CLOSED CIRCUIT FOR USE IN DRILLING
AT01271487T ATE298835T1 (en) 2000-12-18 2001-12-14 CLOSED CIRCUIT FLUID LINE SYSTEM FOR USE IN DEEP DRILLING
DK01271487T DK1356186T3 (en) 2000-12-18 2001-12-14 Fluid treatment system with closed circuit for fire drilling
EA200300693A EA006054B1 (en) 2000-12-18 2001-12-14 Drilling system and method
MXPA03005396A MXPA03005396A (en) 2000-12-18 2001-12-14 Cloded loop fluid-handing system for well drilling.
US10/261,654 US7044237B2 (en) 2000-12-18 2002-10-02 Drilling system and method
NO20032655A NO326132B1 (en) 2000-12-18 2003-06-12 Drilling system and feed rate
US11/263,857 US7278496B2 (en) 2000-12-18 2005-11-02 Drilling system and method
US11/264,020 US7367411B2 (en) 2000-12-18 2005-11-02 Drilling system and method
AU2006252289A AU2006252289B2 (en) 2000-12-18 2006-12-29 Closed loop fluid handling system for well drilling
US11/900,178 US7650950B2 (en) 2000-12-18 2007-09-10 Drilling system and method
AU2009222591A AU2009222591B2 (en) 2000-12-18 2009-10-07 Closed loop fluid handling system for well drilling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/737,851 US20020112888A1 (en) 2000-12-18 2000-12-18 Drilling system and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/261,654 Continuation-In-Part US7044237B2 (en) 2000-12-18 2002-10-02 Drilling system and method

Publications (1)

Publication Number Publication Date
US20020112888A1 true US20020112888A1 (en) 2002-08-22

Family

ID=24965564

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/737,851 Abandoned US20020112888A1 (en) 2000-12-18 2000-12-18 Drilling system and method
US10/261,654 Expired - Lifetime US7044237B2 (en) 2000-12-18 2002-10-02 Drilling system and method
US11/264,020 Expired - Lifetime US7367411B2 (en) 2000-12-18 2005-11-02 Drilling system and method
US11/263,857 Expired - Fee Related US7278496B2 (en) 2000-12-18 2005-11-02 Drilling system and method
US11/900,178 Expired - Fee Related US7650950B2 (en) 2000-12-18 2007-09-10 Drilling system and method

Family Applications After (4)

Application Number Title Priority Date Filing Date
US10/261,654 Expired - Lifetime US7044237B2 (en) 2000-12-18 2002-10-02 Drilling system and method
US11/264,020 Expired - Lifetime US7367411B2 (en) 2000-12-18 2005-11-02 Drilling system and method
US11/263,857 Expired - Fee Related US7278496B2 (en) 2000-12-18 2005-11-02 Drilling system and method
US11/900,178 Expired - Fee Related US7650950B2 (en) 2000-12-18 2007-09-10 Drilling system and method

Country Status (13)

Country Link
US (5) US20020112888A1 (en)
EP (1) EP1356186B1 (en)
AT (1) ATE298835T1 (en)
AU (4) AU1932202A (en)
BR (1) BR0116306B1 (en)
CA (1) CA2432119C (en)
DE (1) DE60111781T2 (en)
DK (1) DK1356186T3 (en)
EA (1) EA006054B1 (en)
ES (1) ES2244554T3 (en)
MX (1) MXPA03005396A (en)
NO (1) NO326132B1 (en)
WO (1) WO2002050398A1 (en)

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030079912A1 (en) * 2000-12-18 2003-05-01 Impact Engineering Solutions Limited Drilling system and method
WO2003071091A1 (en) * 2002-02-20 2003-08-28 Shell Internationale Research Maatschappij B.V. Dynamic annular pressure control apparatus and method
US20030162670A1 (en) * 2002-02-25 2003-08-28 Sweatman Ronald E. Methods of discovering and correcting subterranean formation integrity problems during drilling
US20030196804A1 (en) * 2002-02-20 2003-10-23 Riet Egbert Jan Van Dynamic annular pressure control apparatus and method
US6745852B2 (en) 2002-05-08 2004-06-08 Anadarko Petroleum Corporation Platform for drilling oil and gas wells in arctic, inaccessible, or environmentally sensitive locations
US20040124009A1 (en) * 2002-12-31 2004-07-01 Schlumberger Technology Corporation Methods and systems for averting or mitigating undesirable drilling events
US20040178003A1 (en) * 2002-02-20 2004-09-16 Riet Egbert Jan Van Dynamic annular pressure control apparatus and method
WO2005017308A1 (en) * 2003-08-19 2005-02-24 Shell Internationale Research Maatschappij B.V. Drilling system and method
US20050096848A1 (en) * 2003-10-31 2005-05-05 Xutian Hou Automatic control system and method for bottom hole pressure in the underbalance drilling
US20050242002A1 (en) * 2004-04-29 2005-11-03 Lyndon Stone Adjustable basket vibratory separator
US20050252286A1 (en) * 2004-05-12 2005-11-17 Ibrahim Emad B Method and system for reservoir characterization in connection with drilling operations
US20060086538A1 (en) * 2002-07-08 2006-04-27 Shell Oil Company Choke for controlling the flow of drilling mud
US20060113220A1 (en) * 2002-11-06 2006-06-01 Eric Scott Upflow or downflow separator or shaker with piezoelectric or electromagnetic vibrator
US7100708B2 (en) 2003-12-23 2006-09-05 Varco I/P, Inc. Autodriller bit protection system and method
US20060207795A1 (en) * 2005-03-16 2006-09-21 Joe Kinder Method of dynamically controlling open hole pressure in a wellbore using wellhead pressure control
US20060243643A1 (en) * 2002-11-06 2006-11-02 Eric Scott Automatic separator or shaker with electromagnetic vibrator apparatus
US20070056772A1 (en) * 2003-12-23 2007-03-15 Koederitz William L Autoreaming systems and methods
US20070068671A1 (en) * 2003-10-01 2007-03-29 Shell Oil Companyu Expandable wellbore assembly
US20070163186A1 (en) * 2003-04-08 2007-07-19 Baugh Benton F Arctic platform
US20070168056A1 (en) * 2006-01-17 2007-07-19 Sara Shayegi Well control systems and associated methods
US7331469B2 (en) 2004-04-29 2008-02-19 Varco I/P, Inc. Vibratory separator with automatically adjustable beach
US20080105434A1 (en) * 2006-11-07 2008-05-08 Halliburton Energy Services, Inc. Offshore Universal Riser System
US20080128334A1 (en) * 2002-11-06 2008-06-05 Eric Landon Scott Automatic vibratory separator
US7548068B2 (en) 2004-11-30 2009-06-16 Intelliserv International Holding, Ltd. System for testing properties of a network
US20090272580A1 (en) * 2008-05-01 2009-11-05 Schlumberger Technology Corporation Drilling system with drill string valves
US20100006282A1 (en) * 2006-11-23 2010-01-14 Rolf Dirdal Assembly for pressure control when drilling and method to control pressure when drilling in a formation with unpredictable high formation pressure
US7696900B2 (en) 2004-08-10 2010-04-13 Intelliserv, Inc. Apparatus for responding to an anomalous change in downhole pressure
US20100235002A1 (en) * 2002-11-06 2010-09-16 National Oilwell Varco, L.P. Magnetic Vibratory Screen Clamping
US20100288507A1 (en) * 2006-10-23 2010-11-18 Jason Duhe Method and apparatus for controlling bottom hole pressure in a subterranean formation during rig pump operation
US20110024189A1 (en) * 2009-07-30 2011-02-03 Halliburton Energy Services, Inc. Well drilling methods with event detection
US20110139506A1 (en) * 2008-12-19 2011-06-16 Halliburton Energy Services, Inc. Pressure and flow control in drilling operations
US20110203802A1 (en) * 2010-02-25 2011-08-25 Halliburton Energy Services, Inc. Pressure control device with remote orientation relative to a rig
US20110214882A1 (en) * 2010-03-05 2011-09-08 Safekick Americas Llc System and method for safe well control operations
CN101586452B (en) * 2009-06-17 2011-09-14 中国矿业大学 Method of monitoring coal mining solid pack pressure
US20110284288A1 (en) * 2009-02-11 2011-11-24 M-I L.L.C. Apparatus and process for wellbore characterization
US20110290562A1 (en) * 2009-10-05 2011-12-01 Halliburton Energy Services, Inc. Integrated geomechanics determinations and wellbore pressure control
WO2012016045A1 (en) * 2010-07-30 2012-02-02 Shell Oil Company Monitoring of drilling operations with flow and density measurement
US8201628B2 (en) 2010-04-27 2012-06-19 Halliburton Energy Services, Inc. Wellbore pressure control with segregated fluid columns
US8316557B2 (en) 2006-10-04 2012-11-27 Varco I/P, Inc. Reclamation of components of wellbore cuttings material
US8556083B2 (en) 2008-10-10 2013-10-15 National Oilwell Varco L.P. Shale shakers with selective series/parallel flow path conversion
US8622220B2 (en) 2007-08-31 2014-01-07 Varco I/P Vibratory separators and screens
US20140076632A1 (en) * 2012-09-20 2014-03-20 Baker Hughes Incoroporated Method to predict overpressure uncertainty from normal compaction trendline uncertainty
US8739863B2 (en) 2010-11-20 2014-06-03 Halliburton Energy Services, Inc. Remote operation of a rotating control device bearing clamp
US8820405B2 (en) 2010-04-27 2014-09-02 Halliburton Energy Services, Inc. Segregating flowable materials in a well
US8833488B2 (en) 2011-04-08 2014-09-16 Halliburton Energy Services, Inc. Automatic standpipe pressure control in drilling
RU2539089C1 (en) * 2013-10-11 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Method and system of automated determination and recording of hardness of mine rock of working face during well drilling
US9073104B2 (en) 2008-08-14 2015-07-07 National Oilwell Varco, L.P. Drill cuttings treatment systems
US9080407B2 (en) 2011-05-09 2015-07-14 Halliburton Energy Services, Inc. Pressure and flow control in drilling operations
US9079222B2 (en) 2008-10-10 2015-07-14 National Oilwell Varco, L.P. Shale shaker
US9163473B2 (en) 2010-11-20 2015-10-20 Halliburton Energy Services, Inc. Remote operation of a rotating control device bearing clamp and safety latch
WO2015174991A1 (en) * 2014-05-15 2015-11-19 Halliburton Energy Services, Inc. Monitoring of drilling operations using discretized fluid flows
US9249638B2 (en) 2011-04-08 2016-02-02 Halliburton Energy Services, Inc. Wellbore pressure control with optimized pressure drilling
US9435162B2 (en) 2006-10-23 2016-09-06 M-I L.L.C. Method and apparatus for controlling bottom hole pressure in a subterranean formation during rig pump operation
US9447647B2 (en) 2011-11-08 2016-09-20 Halliburton Energy Services, Inc. Preemptive setpoint pressure offset for flow diversion in drilling operations
US9605507B2 (en) 2011-09-08 2017-03-28 Halliburton Energy Services, Inc. High temperature drilling with lower temperature rated tools
US9643111B2 (en) 2013-03-08 2017-05-09 National Oilwell Varco, L.P. Vector maximizing screen
US20170138168A1 (en) * 2015-11-13 2017-05-18 Baker Hughes Incorporated Apparatus and related methods to determine hole cleaning, well bore stability and volumetric cuttings measurements
RU2624472C1 (en) * 2016-04-12 2017-07-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" Method of "chisel-face" system transformation coefficient determination
US9874081B2 (en) 2012-10-05 2018-01-23 Halliburton Energy Services, Inc. Detection of influxes and losses while drilling from a floating vessel
US10062044B2 (en) * 2014-04-12 2018-08-28 Schlumberger Technology Corporation Method and system for prioritizing and allocating well operating tasks
WO2019060236A1 (en) * 2017-09-19 2019-03-28 Noble Drilling Services Inc. Method for detecting fluid influx or fluid loss in a well and detecting changes in fluid pump efficiency
US10329860B2 (en) 2012-08-14 2019-06-25 Weatherford Technology Holdings, Llc Managed pressure drilling system having well control mode
US10415333B2 (en) * 2017-05-02 2019-09-17 Schlumberger Technology Corporation Reversing differential pressure sticking
US10443329B2 (en) 2014-04-15 2019-10-15 Managed Pressure Operations Pte. Ltd. Drilling system and method of operating a drilling system
CN111364978A (en) * 2020-03-02 2020-07-03 中国海洋石油集团有限公司 Well kick and leakage monitoring device and monitoring method
US10711605B2 (en) * 2014-04-04 2020-07-14 Halliburton Energy Services, Inc. Isotopic analysis from a controlled extractor in communication to a fluid system on a drilling rig
CN111456654A (en) * 2020-04-30 2020-07-28 中国石油天然气集团有限公司 Continuous grouting device and method for tripping
CN111502640A (en) * 2020-04-22 2020-08-07 中国海洋石油集团有限公司 Device and method for measuring formation pore pressure and leakage pressure
US10738551B1 (en) * 2016-05-06 2020-08-11 WellWorc, Inc Real time flow analysis methods and continuous mass balance and wellbore pressure calculations from real-time density and flow measurements
CN111721615A (en) * 2020-07-10 2020-09-29 中国石油天然气集团有限公司 Device and method for evaluating stress corrosion cracking sensitivity of pipe in oil casing annular pollution environment
CN111927439A (en) * 2020-09-03 2020-11-13 中国石油天然气集团有限公司 Bottom hole pressure control method
US10914293B2 (en) 2018-06-20 2021-02-09 David Alan McBay Method, system and apparatus for extracting heat energy from geothermal briny fluid
CN113385309A (en) * 2021-04-29 2021-09-14 浙江大学 Liquid discharge control device and method for supergravity centrifugal model
CN113468646A (en) * 2021-07-07 2021-10-01 常州大学 Method for detecting geothermal well risk based on geomechanical model and machine learning
CN113605878A (en) * 2021-08-09 2021-11-05 中国石油大学(华东) Inversion system and method for formation information in pressure control drilling process
US11242744B1 (en) 2016-05-06 2022-02-08 WellWorc, Inc. Real time flow analysis methods and continuous mass balance and wellbore pressure calculations from real-time density and flow measurements
US11280190B2 (en) 2019-10-30 2022-03-22 Baker Hughes Oilfield Operations Llc Estimation of a downhole fluid property distribution
CN114352269A (en) * 2021-12-17 2022-04-15 核工业北京地质研究院 Method for dividing positions of heat storage layers of high-temperature geothermal field
US11307324B2 (en) * 2018-03-21 2022-04-19 Massachusetts Institute Of Technology Systems and methods for detecting seismo-electromagnetic conversion
US11326589B2 (en) * 2016-05-03 2022-05-10 Schlumberger Technology Corporation Linear hydraulic pump and its application in well pressure control
WO2022204821A1 (en) * 2021-04-01 2022-10-06 Opla Energy Ltd. Internet of things in managed pressure drilling operations
CN116974312A (en) * 2023-09-22 2023-10-31 广东海洋大学深圳研究院 Method for controlling pressure of drilling and production shaft of natural gas hydrate
US11821312B2 (en) 2018-12-21 2023-11-21 Terra Sonic International, LLC Drilling rig and methods using multiple types of drilling for installing geothermal systems
US20240035362A1 (en) * 2022-07-28 2024-02-01 Baker Hughes Oilfield Operations Llc Closed loop monitoring and control of a chemical injection system

Families Citing this family (208)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080262737A1 (en) * 2007-04-19 2008-10-23 Baker Hughes Incorporated System and Method for Monitoring and Controlling Production from Wells
US8682589B2 (en) * 1998-12-21 2014-03-25 Baker Hughes Incorporated Apparatus and method for managing supply of additive at wellsites
US7529742B1 (en) * 2001-07-30 2009-05-05 Ods-Petrodata, Inc. Computer implemented system for managing and processing supply
GB2404988B (en) * 2002-04-10 2006-04-12 Schlumberger Technology Corp Method,apparatus and system for pore pressure prediction in presence of dipping formations
US6810960B2 (en) * 2002-04-22 2004-11-02 Weatherford/Lamb, Inc. Methods for increasing production from a wellbore
US6739414B2 (en) * 2002-04-30 2004-05-25 Masi Technologies, L.L.C. Compositions and methods for sealing formations
US6892812B2 (en) 2002-05-21 2005-05-17 Noble Drilling Services Inc. Automated method and system for determining the state of well operations and performing process evaluation
US8955619B2 (en) 2002-05-28 2015-02-17 Weatherford/Lamb, Inc. Managed pressure drilling
US6820702B2 (en) 2002-08-27 2004-11-23 Noble Drilling Services Inc. Automated method and system for recognizing well control events
US7350590B2 (en) * 2002-11-05 2008-04-01 Weatherford/Lamb, Inc. Instrumentation for a downhole deployment valve
US7255173B2 (en) * 2002-11-05 2007-08-14 Weatherford/Lamb, Inc. Instrumentation for a downhole deployment valve
US7836946B2 (en) 2002-10-31 2010-11-23 Weatherford/Lamb, Inc. Rotating control head radial seal protection and leak detection systems
US7413018B2 (en) * 2002-11-05 2008-08-19 Weatherford/Lamb, Inc. Apparatus for wellbore communication
US7950463B2 (en) * 2003-03-13 2011-05-31 Ocean Riser Systems As Method and arrangement for removing soils, particles or fluids from the seabed or from great sea depths
NO318220B1 (en) * 2003-03-13 2005-02-21 Ocean Riser Systems As Method and apparatus for performing drilling operations
US6973977B2 (en) * 2003-08-12 2005-12-13 Halliburton Energy Systems, Inc. Using fluids at elevated temperatures to increase fracture gradients
US7320370B2 (en) * 2003-09-17 2008-01-22 Schlumberger Technology Corporation Automatic downlink system
US20050092523A1 (en) * 2003-10-30 2005-05-05 Power Chokes, L.P. Well pressure control system
CA2457329A1 (en) * 2004-02-10 2005-08-10 Richard T. Hay Downhole drilling fluid heating apparatus and method
US7416026B2 (en) * 2004-02-10 2008-08-26 Halliburton Energy Services, Inc. Apparatus for changing flowbore fluid temperature
US7946356B2 (en) * 2004-04-15 2011-05-24 National Oilwell Varco L.P. Systems and methods for monitored drilling
KR101262318B1 (en) * 2004-09-21 2013-05-08 벤틱 지오테크 피티와이 리미티드 Remote gas monitoring apparatus for seabed drilling
WO2006032663A1 (en) * 2004-09-22 2006-03-30 Shell Internationale Research Maatschappij B.V. Method of drilling a lossy formation
US8826988B2 (en) 2004-11-23 2014-09-09 Weatherford/Lamb, Inc. Latch position indicator system and method
US7926593B2 (en) 2004-11-23 2011-04-19 Weatherford/Lamb, Inc. Rotating control device docking station
US8344905B2 (en) 2005-03-31 2013-01-01 Intelliserv, Llc Method and conduit for transmitting signals
US20070235223A1 (en) * 2005-04-29 2007-10-11 Tarr Brian A Systems and methods for managing downhole pressure
US7444242B2 (en) * 2005-06-13 2008-10-28 Halliburton Energy Services, Inc. Method and system for statistical pressure gradient and fluid contact analysis
JP2009503306A (en) * 2005-08-04 2009-01-29 シュルンベルジェ ホールディングス リミテッド Interface for well telemetry system and interface method
US9109439B2 (en) * 2005-09-16 2015-08-18 Intelliserv, Llc Wellbore telemetry system and method
US7836973B2 (en) 2005-10-20 2010-11-23 Weatherford/Lamb, Inc. Annulus pressure control drilling systems and methods
MY144810A (en) * 2005-10-20 2011-11-15 Transocean Sedco Forex Ventures Ltd Apparatus and method for managed pressure drilling
US7711487B2 (en) * 2006-10-10 2010-05-04 Halliburton Energy Services, Inc. Methods for maximizing second fracture length
US7946340B2 (en) 2005-12-01 2011-05-24 Halliburton Energy Services, Inc. Method and apparatus for orchestration of fracture placement from a centralized well fluid treatment center
US7836949B2 (en) * 2005-12-01 2010-11-23 Halliburton Energy Services, Inc. Method and apparatus for controlling the manufacture of well treatment fluid
US7740072B2 (en) * 2006-10-10 2010-06-22 Halliburton Energy Services, Inc. Methods and systems for well stimulation using multiple angled fracturing
US7841394B2 (en) * 2005-12-01 2010-11-30 Halliburton Energy Services Inc. Method and apparatus for centralized well treatment
EA015325B1 (en) * 2006-01-05 2011-06-30 ЭТ БЭЛЭНС АМЕРИКАС ЭлЭлСи Method for determining formation fluid entry into or drilling fluid loss from a borehole using a dynamic annular pressure control system
US20070201305A1 (en) * 2006-02-27 2007-08-30 Halliburton Energy Services, Inc. Method and apparatus for centralized proppant storage and metering
US20070227774A1 (en) * 2006-03-28 2007-10-04 Reitsma Donald G Method for Controlling Fluid Pressure in a Borehole Using a Dynamic Annular Pressure Control System
WO2007124330A2 (en) * 2006-04-20 2007-11-01 At Balance Americas Llc Pressure safety system for use with a dynamic annular pressure control system
US20070261888A1 (en) * 2006-04-29 2007-11-15 Richard Urquhart Mud pump systems for drilling operations
US7644611B2 (en) * 2006-09-15 2010-01-12 Schlumberger Technology Corporation Downhole fluid analysis for production logging
US8190369B2 (en) 2006-09-28 2012-05-29 Baker Hughes Incorporated System and method for stress field based wellbore steering
US8149133B2 (en) * 2006-10-20 2012-04-03 Hydril Usa Manufacturing Llc MUX BOP database mirroring
US8145464B2 (en) * 2006-11-02 2012-03-27 Schlumberger Technology Corporation Oilfield operational system and method
EP2129868A4 (en) * 2007-02-27 2015-10-28 Precision Energy Services Inc System and method for reservoir characterization using underbalanced drilling data
US20080257544A1 (en) * 2007-04-19 2008-10-23 Baker Hughes Incorporated System and Method for Crossflow Detection and Intervention in Production Wellbores
US7711486B2 (en) * 2007-04-19 2010-05-04 Baker Hughes Incorporated System and method for monitoring physical condition of production well equipment and controlling well production
US7805248B2 (en) * 2007-04-19 2010-09-28 Baker Hughes Incorporated System and method for water breakthrough detection and intervention in a production well
US8073663B2 (en) * 2007-04-20 2011-12-06 The Permedia Research Group Inc. Method and system for modelling petroleum migration
US7542853B2 (en) * 2007-06-18 2009-06-02 Conocophillips Company Method and apparatus for geobaric analysis
US7596452B2 (en) 2007-06-28 2009-09-29 Baker Hughes Incorporated Compensated caliper using combined acoustic and density measurements
US7931082B2 (en) * 2007-10-16 2011-04-26 Halliburton Energy Services Inc., Method and system for centralized well treatment
US7997345B2 (en) 2007-10-19 2011-08-16 Weatherford/Lamb, Inc. Universal marine diverter converter
US8286734B2 (en) 2007-10-23 2012-10-16 Weatherford/Lamb, Inc. Low profile rotating control device
US8844652B2 (en) 2007-10-23 2014-09-30 Weatherford/Lamb, Inc. Interlocking low profile rotating control device
US9299480B2 (en) * 2007-11-13 2016-03-29 Chevron U.S.A. Inc. Subsea power umbilical
US7949470B2 (en) * 2007-11-21 2011-05-24 Westerngeco L.L.C. Processing measurement data in a deep water application
US7963325B2 (en) * 2007-12-05 2011-06-21 Schlumberger Technology Corporation Method and system for fracturing subsurface formations during the drilling thereof
US20090178847A1 (en) * 2008-01-10 2009-07-16 Perry Slingsby Systems, Inc. Method and Device for Subsea Wire Line Drilling
US8033338B2 (en) * 2008-01-22 2011-10-11 National Oilwell Varco, L.P. Wellbore continuous circulation systems and method
EP2260176B1 (en) * 2008-03-03 2018-07-18 Intelliserv International Holding, Ltd Monitoring downhole conditions with drill string distributed measurement system
US7886847B2 (en) * 2008-05-23 2011-02-15 Tesco Corporation Monitoring flow rates while retrieving bottom hole assembly during casing while drilling operations
US8061445B2 (en) * 2008-08-13 2011-11-22 National Oilwell Varco L.P. Drilling fluid pump systems and methods
US9097085B2 (en) * 2008-08-15 2015-08-04 Lubrizol Oilfield Solutions, Inc. Multiphase drilling systems and methods
US7984770B2 (en) * 2008-12-03 2011-07-26 At-Balance Americas, Llc Method for determining formation integrity and optimum drilling parameters during drilling
CA2742623C (en) * 2008-12-19 2013-11-19 Halliburton Energy Services, Inc. Pressure and flow control in drilling operations
US8322432B2 (en) 2009-01-15 2012-12-04 Weatherford/Lamb, Inc. Subsea internal riser rotating control device system and method
US9359853B2 (en) 2009-01-15 2016-06-07 Weatherford Technology Holdings, Llc Acoustically controlled subsea latching and sealing system and method for an oilfield device
US7823656B1 (en) 2009-01-23 2010-11-02 Nch Corporation Method for monitoring drilling mud properties
GB0905633D0 (en) 2009-04-01 2009-05-13 Managed Pressure Operations Ll Apparatus for and method of drilling a subterranean borehole
US9528334B2 (en) 2009-07-30 2016-12-27 Halliburton Energy Services, Inc. Well drilling methods with automated response to event detection
US8347983B2 (en) 2009-07-31 2013-01-08 Weatherford/Lamb, Inc. Drilling with a high pressure rotating control device
US8757254B2 (en) * 2009-08-18 2014-06-24 Schlumberger Technology Corporation Adjustment of mud circulation when evaluating a formation
MY168844A (en) * 2009-09-15 2018-12-04 Managed Pressure Operations Method of drilling a subterranean borehole
GB2473672B (en) 2009-09-22 2013-10-02 Statoilhydro Asa Control method and apparatus for well operations
US8899348B2 (en) 2009-10-16 2014-12-02 Weatherford/Lamb, Inc. Surface gas evaluation during controlled pressure drilling
AU2010246382A1 (en) * 2009-11-23 2011-06-09 The University Of Manchester Method and apparatus for valuation of a resource
US8715545B2 (en) 2009-11-30 2014-05-06 Exxonmobil Upstream Research Company Systems and methods for forming high performance compressible objects
AU2015200308B2 (en) * 2010-01-05 2017-03-02 Halliburton Energy Services, Inc. Well control systems and methods
AU2010340366B2 (en) * 2010-01-05 2014-10-23 Halliburton Energy Services, Inc. Well control systems and methods
US9594186B2 (en) 2010-02-12 2017-03-14 Exxonmobil Upstream Research Company Method and system for partitioning parallel simulation models
CA2786584C (en) 2010-03-12 2017-07-18 Exxonmobil Upstream Research Company Dynamic grouping of domain objects via smart groups
CN102979500B (en) 2010-04-12 2019-01-08 国际壳牌研究有限公司 The method for controlling the drilling direction of the drill string for forming aperture in subsurface formations
US8347982B2 (en) 2010-04-16 2013-01-08 Weatherford/Lamb, Inc. System and method for managing heave pressure from a floating rig
HUE028166T2 (en) * 2010-05-11 2016-12-28 Autoagronom Israel Ltd Oxygen availability-based irrigation system
US9284799B2 (en) * 2010-05-19 2016-03-15 Smith International, Inc. Method for drilling through nuisance hydrocarbon bearing formations
NO338372B1 (en) * 2010-06-03 2016-08-15 Statoil Petroleum As System and method for passing matter in a flow passage
US8240398B2 (en) 2010-06-15 2012-08-14 Halliburton Energy Services, Inc. Annulus pressure setpoint correction using real time pressure while drilling measurements
US9175542B2 (en) 2010-06-28 2015-11-03 Weatherford/Lamb, Inc. Lubricating seal for use with a tubular
US8469116B2 (en) * 2010-07-30 2013-06-25 National Oilwell Varco, L.P. Control system for mud cleaning apparatus
WO2012027245A1 (en) * 2010-08-26 2012-03-01 Halliburton Energy Services, Inc. System and method for managed pressure drilling
GB2483671B (en) 2010-09-15 2016-04-13 Managed Pressure Operations Drilling system
US8448711B2 (en) 2010-09-23 2013-05-28 Charles J. Miller Pressure balanced drilling system and method using the same
US8684109B2 (en) 2010-11-16 2014-04-01 Managed Pressure Operations Pte Ltd Drilling method for drilling a subterranean borehole
US10318663B2 (en) 2011-01-26 2019-06-11 Exxonmobil Upstream Research Company Method of reservoir compartment analysis using topological structure in 3D earth model
US20120232705A1 (en) * 2011-03-10 2012-09-13 Mesquite Energy Partners, LLC Methods and apparatus for enhanced recovery of underground resources
US9016381B2 (en) 2011-03-17 2015-04-28 Hydril Usa Manufacturing Llc Mudline managed pressure drilling and enhanced influx detection
GB2562192B (en) * 2011-03-24 2019-02-06 Schlumberger Holdings Managed pressure drilling with rig heave compensation
US8775086B2 (en) 2011-03-30 2014-07-08 Weatherford/Lamb, Inc. Lag calculation with caving correction in open hole
US20120278053A1 (en) * 2011-04-28 2012-11-01 Baker Hughes Incorporated Method of Providing Flow Control Devices for a Production Wellbore
US9222350B2 (en) 2011-06-21 2015-12-29 Diamond Innovations, Inc. Cutter tool insert having sensing device
NO20110918A1 (en) * 2011-06-27 2012-12-28 Aker Mh As Fluid diverter system for a drilling device
NO2726707T3 (en) 2011-06-29 2018-07-21
US20130008654A1 (en) * 2011-07-05 2013-01-10 Halliburton Energy Services, Inc. Method for Drilling and Completion Operations with Settable Resin Compositions
US8783381B2 (en) 2011-07-12 2014-07-22 Halliburton Energy Services, Inc. Formation testing in managed pressure drilling
US9394783B2 (en) 2011-08-26 2016-07-19 Schlumberger Technology Corporation Methods for evaluating inflow and outflow in a subterranean wellbore
US20130049983A1 (en) 2011-08-26 2013-02-28 John Rasmus Method for calibrating a hydraulic model
US8965703B2 (en) * 2011-10-03 2015-02-24 Schlumberger Technology Corporation Applications based on fluid properties measured downhole
US9677337B2 (en) 2011-10-06 2017-06-13 Schlumberger Technology Corporation Testing while fracturing while drilling
CA2853274C (en) * 2011-10-25 2016-08-09 Halliburton Energy Services, Inc. Methods and systems for providing a package of sensors to enhance subterranean operations
EP2776657B1 (en) * 2011-11-08 2017-07-19 Halliburton Energy Services, Inc. Preemptive setpoint pressure offset for flow diversion in drilling operations
US9243489B2 (en) 2011-11-11 2016-01-26 Intelliserv, Llc System and method for steering a relief well
CA2795818C (en) 2011-11-16 2015-03-17 Weatherford/Lamb, Inc. Managed pressure cementing
CA2852710C (en) 2011-11-30 2016-10-11 Halliburton Energy Services, Inc. Use of downhole pressure measurements while drilling to detect and mitigate influxes
US9593567B2 (en) 2011-12-01 2017-03-14 National Oilwell Varco, L.P. Automated drilling system
US9080427B2 (en) 2011-12-02 2015-07-14 General Electric Company Seabed well influx control system
US9033048B2 (en) * 2011-12-28 2015-05-19 Hydril Usa Manufacturing Llc Apparatuses and methods for determining wellbore influx condition using qualitative indications
EP2798147B1 (en) 2011-12-31 2019-03-27 Saudi Arabian Oil Company Real-time dynamic data validation apparatus, system, program code, computer readable medium, and methods for intelligent fields
WO2013105930A1 (en) 2012-01-09 2013-07-18 Halliburton Energy Services Inc. System and method for improved cuttings measurements
WO2013115766A1 (en) * 2012-01-30 2013-08-08 Landmark Graphics Corporation Systems and methods for modeling and triggering safety barriers
US9328575B2 (en) * 2012-01-31 2016-05-03 Weatherford Technology Holdings, Llc Dual gradient managed pressure drilling
AU2012370472B2 (en) * 2012-02-24 2015-10-01 Halliburton Energy Services, Inc. Well drilling systems and methods with pump drawing fluid from annulus
US9157313B2 (en) 2012-06-01 2015-10-13 Intelliserv, Llc Systems and methods for detecting drillstring loads
CN103470201B (en) * 2012-06-07 2017-05-10 通用电气公司 Fluid control system
US9494033B2 (en) 2012-06-22 2016-11-15 Intelliserv, Llc Apparatus and method for kick detection using acoustic sensors
EP2867439B1 (en) * 2012-07-02 2018-03-14 Halliburton Energy Services, Inc. Pressure control in drilling operations with offset applied in response to predetermined conditions
US20140012506A1 (en) * 2012-07-05 2014-01-09 Intelliserv, Llc Method and System for Measuring and Calculating a Modified Equivalent Circulating Density (ECDm) in Drilling Operations
US9151126B2 (en) * 2012-07-11 2015-10-06 Landmark Graphics Corporation System, method and computer program product to simulate drilling event scenarios
MX2015001362A (en) * 2012-08-01 2015-09-16 Schlumberger Technology Bv Assessment, monitoring and control of drilling operations and/or geological-characteristic assessment.
GB2506400B (en) * 2012-09-28 2019-11-20 Managed Pressure Operations Drilling method for drilling a subterranean borehole
US20140090888A1 (en) * 2012-10-02 2014-04-03 National Oilwell Varco, L.P. Apparatus, System, and Method for Controlling the Flow of Drilling Fluid in a Wellbore
US9175531B2 (en) 2012-10-22 2015-11-03 Safekick Ltd. Method and system for identifying a self-sustained influx of formation fluids into a wellbore
US20140209384A1 (en) * 2013-01-31 2014-07-31 Chevron U.S.A. Inc. Method and system for detecting changes in drilling fluid flow during drilling operations
MX2015010070A (en) 2013-03-08 2016-01-25 Halliburton Energy Services Inc Systems and methods for optimizing analysis of subterranean well bores and fluids using noble gases.
AU2013204013B2 (en) * 2013-03-15 2015-09-10 Franklin Electric Company, Inc. System and method for operating a pump
CN105143600B (en) 2013-05-31 2018-11-16 哈利伯顿能源服务公司 Well monitoring, sensing, control and well fluid logging about double-gradient well drilling
US10584570B2 (en) 2013-06-10 2020-03-10 Exxonmobil Upstream Research Company Interactively planning a well site
MX2014012787A (en) 2013-06-14 2015-07-06 Reme L L C Multiple gamma controller assembly.
NO345522B1 (en) * 2013-08-13 2021-03-29 Intelligent Mud Solutions As SYSTEM AND PROCEDURE FOR INCREASED CONTROL OF A DRILLING PROCESS
US9664003B2 (en) 2013-08-14 2017-05-30 Canrig Drilling Technology Ltd. Non-stop driller manifold and methods
US20160230484A1 (en) * 2013-09-19 2016-08-11 Schlumberger Technology Corporation Wellbore hydraulic compliance
US9650884B2 (en) 2013-09-20 2017-05-16 Weatherford Technology Holdings, Llc Use of downhole isolation valve to sense annulus pressure
US9864098B2 (en) 2013-09-30 2018-01-09 Exxonmobil Upstream Research Company Method and system of interactive drill center and well planning evaluation and optimization
GB2534734B (en) * 2013-11-12 2020-07-08 Halliburton Energy Services Inc Systems and methods for optimizing drilling operations using transient cuttings modeling and real-time data
US10248920B2 (en) * 2013-11-13 2019-04-02 Schlumberger Technology Corporation Automatic wellbore activity schedule adjustment method and system
US10787900B2 (en) 2013-11-26 2020-09-29 Weatherford Technology Holdings, Llc Differential pressure indicator for downhole isolation valve
GB2521404C (en) 2013-12-18 2021-03-24 Managed Pressure Operations Connector assembly for connecting a hose to a tubular
GB2542928B (en) * 2014-04-15 2020-12-30 Halliburton Energy Services Inc Determination of downhole conditions using circulated non-formation gasses
GB2525396B (en) * 2014-04-22 2020-10-07 Managed Pressure Operations Method of operating a drilling system
US10227836B2 (en) 2014-04-25 2019-03-12 Weatherford Technology Holdings, Llc System and method for managed pressure wellbore strengthening
CA2949675C (en) 2014-05-19 2022-10-25 Danny Spencer A system for controlling wellbore pressure during pump shutdowns
CN104533407A (en) * 2014-07-10 2015-04-22 中国石油天然气集团公司 Underground state determination method and device and state control method and device
EP2985408A1 (en) * 2014-08-11 2016-02-17 Services Petroliers Schlumberger Apparatus and methods for well cementing
AU2015317297B2 (en) * 2014-09-19 2018-11-08 Weatherford Technology Holdings, Llc Coriolis flow meter having flow tube with equalized pressure differential
US9500035B2 (en) * 2014-10-06 2016-11-22 Chevron U.S.A. Inc. Integrated managed pressure drilling transient hydraulic model simulator architecture
US9995098B2 (en) 2014-10-08 2018-06-12 Weatherford Technology Holdings, Llc Choke control tuned by flow coefficient for controlled pressure drilling
US10174571B2 (en) 2015-01-05 2019-01-08 Weatherford Technology Holdings, Llc Control of multiple hydraulic chokes in managed pressure drilling
US10920579B2 (en) * 2015-02-17 2021-02-16 Board Of Regents, The University Of Texas System Method and apparatus for early detection of kicks
US10060208B2 (en) * 2015-02-23 2018-08-28 Weatherford Technology Holdings, Llc Automatic event detection and control while drilling in closed loop systems
EP3283727B1 (en) * 2015-04-14 2020-01-08 BP Corporation North America Inc. System and method for drilling using pore pressure
US10718172B2 (en) 2015-06-25 2020-07-21 Schlumberger Technology Corporation Fluid loss and gain for flow, managed pressure and underbalanced drilling
US20170037690A1 (en) * 2015-08-06 2017-02-09 Schlumberger Technology Corporation Automatic and integrated control of bottom-hole pressure
WO2017039652A1 (en) 2015-09-02 2017-03-09 Halliburton Energy Services, Inc. Wrinkled capsules for treatment of subterranean formations
US10550652B2 (en) * 2015-09-23 2020-02-04 Covar Applied Technologies, Inc. Ballooning diagnostics
US20170122092A1 (en) 2015-11-04 2017-05-04 Schlumberger Technology Corporation Characterizing responses in a drilling system
US10316618B2 (en) * 2015-12-14 2019-06-11 Bj Services, Llc System and method of customizable material injection for well cementing
US10591101B2 (en) * 2016-01-23 2020-03-17 Ronald E. Smith Pulsation dampening system for high-pressure fluid lines
US11384886B2 (en) * 2016-01-23 2022-07-12 Ronald E. Smith Pulsation dampening system for high-pressure fluid lines
WO2017129523A1 (en) * 2016-01-25 2017-08-03 Shell Internationale Research Maatschappij B.V. Method and system for automated adjustment of drilling mud properties
US10107052B2 (en) 2016-02-05 2018-10-23 Weatherford Technology Holdings, Llc Control of hydraulic power flowrate for managed pressure drilling
US10227838B2 (en) 2016-05-10 2019-03-12 Weatherford Technology Holdings, Llc Drilling system and method having flow measurement choke
EP3455456B1 (en) * 2016-05-12 2021-11-17 Enhanced Drilling AS System and methods for controlled mud cap drilling
GB2551141B (en) 2016-06-07 2020-05-13 Equinor Energy As Method and system for managed pressure drilling
US10443328B2 (en) 2016-06-13 2019-10-15 Martin Culen Managed pressure drilling system with influx control
US10648315B2 (en) * 2016-06-29 2020-05-12 Schlumberger Technology Corporation Automated well pressure control and gas handling system and method
US10452794B2 (en) 2016-08-25 2019-10-22 Baker Hughes, A Ge Company, Llc Generating a script for performing a well operation job
US10655455B2 (en) * 2016-09-20 2020-05-19 Cameron International Corporation Fluid analysis monitoring system
US11422999B2 (en) 2017-07-17 2022-08-23 Schlumberger Technology Corporation System and method for using data with operation context
US10648259B2 (en) * 2017-10-19 2020-05-12 Safekick Americas Llc Method and system for controlled delivery of unknown fluids
CA3072887C (en) 2017-11-10 2023-06-27 Landmark Graphics Corporation Automatic abnormal trend detection of real time drilling data for hazard avoidance
US11378506B2 (en) 2017-12-12 2022-07-05 Baker Hughes, A Ge Company, Llc Methods and systems for monitoring drilling fluid rheological characteristics
US20190309614A1 (en) * 2018-01-19 2019-10-10 Motive Drilling Technologies, Inc. System and Method for Well Drilling Control Based on Borehole Cleaning
US10988997B2 (en) * 2018-01-22 2021-04-27 Safekick Americas Llc Method and system for safe pressurized mud cap drilling
US10883357B1 (en) 2018-01-24 2021-01-05 ADS Services LLC Autonomous drilling pressure control system
WO2019226149A1 (en) 2018-05-21 2019-11-28 Newpark Drilling Fluids Llc System for simulating in situ downhole drilling conditions and testing of core samples
US10890060B2 (en) 2018-12-07 2021-01-12 Schlumberger Technology Corporation Zone management system and equipment interlocks
US10907466B2 (en) 2018-12-07 2021-02-02 Schlumberger Technology Corporation Zone management system and equipment interlocks
WO2020122945A1 (en) * 2018-12-14 2020-06-18 Halliburton Energy Services, Inc. System and method to optimize pumping
CN109854194A (en) * 2019-01-29 2019-06-07 长江大学 Drilling-fluid circulation system, the method and apparatus for reducing drilling well trip-out swabbing pressure
AU2019279953B2 (en) 2019-02-12 2023-02-02 Halliburton Energy Services, Inc. Bias correction for a gas extractor and fluid sampling system
WO2020231996A1 (en) * 2019-05-16 2020-11-19 Ameriforge Group Inc. Improved closed-loop hydraulic drilling
WO2021029874A1 (en) * 2019-08-12 2021-02-18 Halliburton Energy Services, Inc. Determining the volume of cuttings
US20210293130A1 (en) * 2020-03-19 2021-09-23 Exebenus AS System and method to predict value and timing of drilling operational parameters
CA3114513A1 (en) * 2020-04-09 2021-10-09 Opla Energy Ltd. Monobore drilling methods with managed pressure drilling
CN111997544B (en) * 2020-10-22 2022-08-02 中国电建集团河南工程有限公司 Sedimentary potted landscape ultra-deep layer heat storage geothermal well drilling construction method
US11028648B1 (en) 2020-11-05 2021-06-08 Quaise, Inc. Basement rock hybrid drilling
US20220155117A1 (en) * 2020-11-16 2022-05-19 Sensia Llc System and method for quantitative verification of flow measurements
CN113135304B (en) * 2021-04-26 2022-08-12 上海卫星工程研究所 Fluid circuit filling method for calculating return displacement of liquid reservoir
US11834931B2 (en) * 2021-08-20 2023-12-05 Schlumberger Technology Corporation Wellbore planner
US11746648B2 (en) 2021-11-05 2023-09-05 Saudi Arabian Oil Company On demand annular pressure tool
US20230175393A1 (en) * 2021-12-08 2023-06-08 Halliburton Energy Services, Inc. Estimating composition of drilling fluid in a wellbore using direct and indirect measurements
CN114482885B (en) * 2022-01-25 2024-03-29 西南石油大学 Intelligent control system for pressure-controlled drilling
CN114893327B (en) * 2022-04-15 2023-12-26 西安航天动力研究所 Method for detecting uniformity of liquid film on outer ring of pintle injector
WO2024050009A1 (en) * 2022-09-01 2024-03-07 Schlumberger Technology Corporation Drilling fluid framework
CN116733396B (en) * 2023-08-11 2023-10-31 四川奥达测控装置有限公司 Drilling outlet flow monitoring and well control overflow and leakage early warning system and method
CN116971770B (en) * 2023-09-22 2023-11-28 西南石油大学 Well site carbon emission monitoring system

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443643A (en) 1966-12-30 1969-05-13 Cameron Iron Works Inc Apparatus for controlling the pressure in a well
US3429385A (en) 1966-12-30 1969-02-25 Cameron Iron Works Inc Apparatus for controlling the pressure in a well
US3470971A (en) 1967-04-28 1969-10-07 Warren Automatic Tool Co Apparatus and method for automatically controlling fluid pressure in a well bore
US3470972A (en) 1967-06-08 1969-10-07 Warren Automatic Tool Co Bottom-hole pressure regulation apparatus
US3552502A (en) 1967-12-21 1971-01-05 Dresser Ind Apparatus for automatically controlling the killing of oil and gas wells
US3550696A (en) 1969-07-25 1970-12-29 Exxon Production Research Co Control of a well
US3677353A (en) 1970-07-15 1972-07-18 Cameron Iron Works Inc Apparatus for controlling well pressure
US3827511A (en) 1972-12-18 1974-08-06 Cameron Iron Works Inc Apparatus for controlling well pressure
US4440239A (en) * 1981-09-28 1984-04-03 Exxon Production Research Co. Method and apparatus for controlling the flow of drilling fluid in a wellbore
US4527425A (en) * 1982-12-10 1985-07-09 Nl Industries, Inc. System for detecting blow out and lost circulation in a borehole
US4733233A (en) 1983-06-23 1988-03-22 Teleco Oilfield Services Inc. Method and apparatus for borehole fluid influx detection
US4733232A (en) 1983-06-23 1988-03-22 Teleco Oilfield Services Inc. Method and apparatus for borehole fluid influx detection
NO162881C (en) 1983-06-23 1990-02-28 Teleco Oilfield Services Inc PROCEDURE AND APPARATUS FOR DETECTION OF FLUIDUM FLOW DRAWINGS IN DRILL.
US4570480A (en) 1984-03-30 1986-02-18 Nl Industries, Inc. Method and apparatus for determining formation pressure
US4577689A (en) 1984-08-24 1986-03-25 Completion Tool Company Method for determining true fracture pressure
US4606415A (en) * 1984-11-19 1986-08-19 Texaco Inc. Method and system for detecting and identifying abnormal drilling conditions
DK150665C (en) 1985-04-11 1987-11-30 Einar Dyhr THROTTLE VALVE FOR REGULATING THROUGH FLOW AND THEN REAR PRESSURE I
US4630675A (en) 1985-05-28 1986-12-23 Smith International Inc. Drilling choke pressure limiting control system
US4700739A (en) 1985-11-14 1987-10-20 Smith International, Inc. Pneumatic well casing pressure regulating system
US4653597A (en) 1985-12-05 1987-03-31 Atlantic Richfield Company Method for circulating and maintaining drilling mud in a wellbore
FR2618181B1 (en) * 1987-07-15 1989-12-15 Forex Neptune Sa METHOD FOR DETECTING A VENT OF FLUID WHICH MAY PREDICT AN ERUPTION IN A WELL DURING DRILLING.
FR2619156B1 (en) 1987-08-07 1989-12-22 Forex Neptune Sa PROCESS FOR CONTROLLING VENUES OF FLUIDS IN HYDROCARBON WELLS
FR2619155B1 (en) 1987-08-07 1989-12-22 Forex Neptune Sa PROCESS OF DYNAMIC ANALYSIS OF THE VENUES OF FLUIDS IN THE WELLS OF HYDROCARBONS
GB2212611B (en) * 1987-11-14 1991-08-14 Forex Neptune Sa A method of monitoring the drilling operations by analysing the circulating drilling mud
GB2226412B (en) * 1988-12-21 1993-04-28 Forex Neptune Sa Monitoring drilling mud compositions using flowing liquid junction electrodes
FR2641320B1 (en) 1988-12-30 1991-05-03 Inst Francais Du Petrole REMOTE EQUIPMENT OPERATION DEVICE COMPRISING A NEEDLE-NEEDLE SYSTEM
US5006845A (en) * 1989-06-13 1991-04-09 Honeywell Inc. Gas kick detector
GB2237305B (en) * 1989-10-28 1993-03-31 Schlumberger Prospection Analysis of drilling solids samples
US5063776A (en) * 1989-12-14 1991-11-12 Anadrill, Inc. Method and system for measurement of fluid flow in a drilling rig return line
GB2239279B (en) 1989-12-20 1993-06-16 Forex Neptune Sa Method of analysing and controlling a fluid influx during the drilling of a borehole
FR2659387A1 (en) 1990-03-12 1991-09-13 Forex Neptune Sa Method for estimating the pore pressure of an underground formation
US5010966A (en) 1990-04-16 1991-04-30 Chalkbus, Inc. Drilling method
US5275040A (en) 1990-06-29 1994-01-04 Anadrill, Inc. Method of and apparatus for detecting an influx into a well while drilling
US5154078A (en) 1990-06-29 1992-10-13 Anadrill, Inc. Kick detection during drilling
GB9016272D0 (en) 1990-07-25 1990-09-12 Shell Int Research Detecting outflow or inflow of fluid in a wellbore
US5144589A (en) 1991-01-22 1992-09-01 Western Atlas International, Inc. Method for predicting formation pore-pressure while drilling
DE69107606D1 (en) 1991-02-07 1995-03-30 Sedco Forex Tech Inc Method for determining inflows or coil losses when drilling using floating drilling rigs.
US5205166A (en) 1991-08-07 1993-04-27 Schlumberger Technology Corporation Method of detecting fluid influxes
US5200929A (en) 1992-03-31 1993-04-06 Exxon Production Research Company Method for estimating pore fluid pressure
GB2290330B (en) * 1992-04-08 1996-06-05 Baroid Technology Inc Methods for controlling the execution of a well drilling plan
US5305836A (en) 1992-04-08 1994-04-26 Baroid Technology, Inc. System and method for controlling drill bit usage and well plan
FR2699222B1 (en) 1992-12-14 1995-02-24 Inst Francais Du Petrole Device and method for remote actuation of equipment comprising timing means - Application to a drilling rig.
CA2094313C (en) 1993-04-19 1999-08-24 Bobbie Joe Bowden Automatic drilling system
EP1048819B1 (en) * 1996-05-03 2004-02-25 Baker Hughes Incorporated Closed loop fluid-handling system for use during drilling of wellbores
US5857522A (en) 1996-05-03 1999-01-12 Baker Hughes Incorporated Fluid handling system for use in drilling of wellbores
US6035952A (en) 1996-05-03 2000-03-14 Baker Hughes Incorporated Closed loop fluid-handling system for use during drilling of wellbores
US5635636A (en) * 1996-05-29 1997-06-03 Alexander; Lloyd G. Method of determining inflow rates from underbalanced wells
US5890549A (en) * 1996-12-23 1999-04-06 Sprehe; Paul Robert Well drilling system with closed circulation of gas drilling fluid and fire suppression apparatus
US6434435B1 (en) * 1997-02-21 2002-08-13 Baker Hughes Incorporated Application of adaptive object-oriented optimization software to an automatic optimization oilfield hydrocarbon production management system
US6148912A (en) 1997-03-25 2000-11-21 Dresser Industries, Inc. Subsurface measurement apparatus, system, and process for improved well drilling control and production
WO1999000575A2 (en) 1997-06-27 1999-01-07 Baker Hughes Incorporated Drilling system with sensors for determining properties of drilling fluid downhole
US6119772A (en) 1997-07-14 2000-09-19 Pruet; Glen Continuous flow cylinder for maintaining drilling fluid circulation while connecting drill string joints
CA2231947C (en) * 1998-03-12 2006-05-30 Lloyd G. Alexander Method of determining fluid inflow rates
US6325159B1 (en) 1998-03-27 2001-12-04 Hydril Company Offshore drilling system
FR2778428B1 (en) * 1998-05-07 2000-08-04 Geoservices DEVICE AND METHOD FOR MEASURING THE FLOW OF DRILL CUTTINGS
US6234030B1 (en) * 1998-08-28 2001-05-22 Rosewood Equipment Company Multiphase metering method for multiphase flow
US6668943B1 (en) * 1999-06-03 2003-12-30 Exxonmobil Upstream Research Company Method and apparatus for controlling pressure and detecting well control problems during drilling of an offshore well using a gas-lifted riser
GC0000342A (en) 1999-06-22 2007-03-31 Shell Int Research Drilling system
GB9916022D0 (en) * 1999-07-09 1999-09-08 Sensor Highway Ltd Method and apparatus for determining flow rates
US6412554B1 (en) 2000-03-14 2002-07-02 Weatherford/Lamb, Inc. Wellbore circulation system
US6374925B1 (en) 2000-09-22 2002-04-23 Varco Shaffer, Inc. Well drilling method and system
US6394195B1 (en) 2000-12-06 2002-05-28 The Texas A&M University System Methods for the dynamic shut-in of a subsea mudlift drilling system
US20020112888A1 (en) * 2000-12-18 2002-08-22 Christian Leuchtenberg Drilling system and method
US6484816B1 (en) 2001-01-26 2002-11-26 Martin-Decker Totco, Inc. Method and system for controlling well bore pressure
US6571873B2 (en) 2001-02-23 2003-06-03 Exxonmobil Upstream Research Company Method for controlling bottom-hole pressure during dual-gradient drilling
US6575244B2 (en) 2001-07-31 2003-06-10 M-I L.L.C. System for controlling the operating pressures within a subterranean borehole
US6904981B2 (en) 2002-02-20 2005-06-14 Shell Oil Company Dynamic annular pressure control apparatus and method
US6755261B2 (en) * 2002-03-07 2004-06-29 Varco I/P, Inc. Method and system for controlling well fluid circulation rate
US6820702B2 (en) * 2002-08-27 2004-11-23 Noble Drilling Services Inc. Automated method and system for recognizing well control events

Cited By (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7650950B2 (en) 2000-12-18 2010-01-26 Secure Drilling International, L.P. Drilling system and method
US7278496B2 (en) 2000-12-18 2007-10-09 Christian Leuchtenberg Drilling system and method
US20030079912A1 (en) * 2000-12-18 2003-05-01 Impact Engineering Solutions Limited Drilling system and method
US20060113110A1 (en) * 2000-12-18 2006-06-01 Impact Engineering Solutions Limited Drilling system and method
US7044237B2 (en) * 2000-12-18 2006-05-16 Impact Solutions Group Limited Drilling system and method
US7367411B2 (en) 2000-12-18 2008-05-06 Secure Drilling International, L.P. Drilling system and method
US6904981B2 (en) 2002-02-20 2005-06-14 Shell Oil Company Dynamic annular pressure control apparatus and method
WO2003071091A1 (en) * 2002-02-20 2003-08-28 Shell Internationale Research Maatschappij B.V. Dynamic annular pressure control apparatus and method
US7185719B2 (en) 2002-02-20 2007-03-06 Shell Oil Company Dynamic annular pressure control apparatus and method
US20030196804A1 (en) * 2002-02-20 2003-10-23 Riet Egbert Jan Van Dynamic annular pressure control apparatus and method
US20040178003A1 (en) * 2002-02-20 2004-09-16 Riet Egbert Jan Van Dynamic annular pressure control apparatus and method
US20060266107A1 (en) * 2002-02-25 2006-11-30 Hulliburton Energy Services, Inc. Methods of improving well bore pressure containment integrity
US7311147B2 (en) 2002-02-25 2007-12-25 Halliburton Energy Services, Inc. Methods of improving well bore pressure containment integrity
US6926081B2 (en) 2002-02-25 2005-08-09 Halliburton Energy Services, Inc. Methods of discovering and correcting subterranean formation integrity problems during drilling
US20030181338A1 (en) * 2002-02-25 2003-09-25 Sweatman Ronald E. Methods of improving well bore pressure containment integrity
US7308936B2 (en) 2002-02-25 2007-12-18 Halliburton Energy Services, Inc. Methods of improving well bore pressure containment integrity
WO2003071090A1 (en) * 2002-02-25 2003-08-28 Halliburton Energy Service, Inc. Methods of discovering and correcting subterranean formation integrity problems during drilling
US7213645B2 (en) 2002-02-25 2007-05-08 Halliburton Energy Services, Inc. Methods of improving well bore pressure containment integrity
US20060266519A1 (en) * 2002-02-25 2006-11-30 Sweatman Ronald E Methods of improving well bore pressure containment integrity
US20030162670A1 (en) * 2002-02-25 2003-08-28 Sweatman Ronald E. Methods of discovering and correcting subterranean formation integrity problems during drilling
US7314082B2 (en) 2002-02-25 2008-01-01 Halliburton Energy Services, Inc. Methods of improving well bore pressure containment integrity
US6745852B2 (en) 2002-05-08 2004-06-08 Anadarko Petroleum Corporation Platform for drilling oil and gas wells in arctic, inaccessible, or environmentally sensitive locations
US20100143044A1 (en) * 2002-05-08 2010-06-10 Kadaster Ali G Method and System for Building Modular Structures from Which Oil and Gas Wells are Drilled
US20060086538A1 (en) * 2002-07-08 2006-04-27 Shell Oil Company Choke for controlling the flow of drilling mud
US20070240875A1 (en) * 2002-07-08 2007-10-18 Van Riet Egbert J Choke for controlling the flow of drilling mud
US8746459B2 (en) 2002-10-17 2014-06-10 National Oilwell Varco, L.P. Automatic vibratory separator
US20060243643A1 (en) * 2002-11-06 2006-11-02 Eric Scott Automatic separator or shaker with electromagnetic vibrator apparatus
US20100235002A1 (en) * 2002-11-06 2010-09-16 National Oilwell Varco, L.P. Magnetic Vibratory Screen Clamping
US20060113220A1 (en) * 2002-11-06 2006-06-01 Eric Scott Upflow or downflow separator or shaker with piezoelectric or electromagnetic vibrator
US7571817B2 (en) 2002-11-06 2009-08-11 Varco I/P, Inc. Automatic separator or shaker with electromagnetic vibrator apparatus
US20080128334A1 (en) * 2002-11-06 2008-06-05 Eric Landon Scott Automatic vibratory separator
US8695805B2 (en) 2002-11-06 2014-04-15 National Oilwell Varco, L.P. Magnetic vibratory screen clamping
US8312995B2 (en) 2002-11-06 2012-11-20 National Oilwell Varco, L.P. Magnetic vibratory screen clamping
US8561805B2 (en) 2002-11-06 2013-10-22 National Oilwell Varco, L.P. Automatic vibratory separator
US6868920B2 (en) * 2002-12-31 2005-03-22 Schlumberger Technology Corporation Methods and systems for averting or mitigating undesirable drilling events
US20040124009A1 (en) * 2002-12-31 2004-07-01 Schlumberger Technology Corporation Methods and systems for averting or mitigating undesirable drilling events
US7410327B2 (en) * 2003-04-08 2008-08-12 Anadarko Petroleum Corporation Arctic platform
US20080286053A1 (en) * 2003-04-08 2008-11-20 Baugh Benton F Arctic platform
US20070163186A1 (en) * 2003-04-08 2007-07-19 Baugh Benton F Arctic platform
US20080292412A1 (en) * 2003-04-08 2008-11-27 Baugh Benton F Arctic platform
US20080292411A1 (en) * 2003-04-08 2008-11-27 Baugh Benton F Arctic platform
US8226326B2 (en) 2003-04-08 2012-07-24 Anadarko Petroleum Corporation Arctic platform
US7395878B2 (en) 2003-08-19 2008-07-08 At-Balance Americas, Llc Drilling system and method
US7350597B2 (en) 2003-08-19 2008-04-01 At-Balance Americas Llc Drilling system and method
US20060175090A1 (en) * 2003-08-19 2006-08-10 Reitsma Donald G Drilling system and method
EA008422B1 (en) * 2003-08-19 2007-04-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Drilling system and method
US20070151763A1 (en) * 2003-08-19 2007-07-05 Reitsma Donald G Drilling system and method
WO2005017308A1 (en) * 2003-08-19 2005-02-24 Shell Internationale Research Maatschappij B.V. Drilling system and method
US8061423B2 (en) 2003-10-01 2011-11-22 Shell Oil Company Expandable wellbore assembly
US20070068671A1 (en) * 2003-10-01 2007-03-29 Shell Oil Companyu Expandable wellbore assembly
US20050096848A1 (en) * 2003-10-31 2005-05-05 Xutian Hou Automatic control system and method for bottom hole pressure in the underbalance drilling
US7158886B2 (en) 2003-10-31 2007-01-02 China Petroleum & Chemical Corporation Automatic control system and method for bottom hole pressure in the underbalance drilling
US7100708B2 (en) 2003-12-23 2006-09-05 Varco I/P, Inc. Autodriller bit protection system and method
US7422076B2 (en) 2003-12-23 2008-09-09 Varco I/P, Inc. Autoreaming systems and methods
US20070056772A1 (en) * 2003-12-23 2007-03-15 Koederitz William L Autoreaming systems and methods
US20050242002A1 (en) * 2004-04-29 2005-11-03 Lyndon Stone Adjustable basket vibratory separator
US7278540B2 (en) 2004-04-29 2007-10-09 Varco I/P, Inc. Adjustable basket vibratory separator
US7331469B2 (en) 2004-04-29 2008-02-19 Varco I/P, Inc. Vibratory separator with automatically adjustable beach
US20050252286A1 (en) * 2004-05-12 2005-11-17 Ibrahim Emad B Method and system for reservoir characterization in connection with drilling operations
US7571644B2 (en) 2004-05-12 2009-08-11 Halliburton Energy Services, Inc. Characterizing a reservoir in connection with drilling operations
US20080099241A1 (en) * 2004-05-12 2008-05-01 Halliburton Energy Services, Inc., A Delaware Corporation Characterizing a reservoir in connection with drilling operations
US7337660B2 (en) 2004-05-12 2008-03-04 Halliburton Energy Services, Inc. Method and system for reservoir characterization in connection with drilling operations
US7762131B2 (en) 2004-05-12 2010-07-27 Ibrahim Emad B System for predicting changes in a drilling event during wellbore drilling prior to the occurrence of the event
US20080097735A1 (en) * 2004-05-12 2008-04-24 Halliburton Energy Services, Inc., A Delaware Corporation System for predicting changes in a drilling event during wellbore drilling prior to the occurrence of the event
US7696900B2 (en) 2004-08-10 2010-04-13 Intelliserv, Inc. Apparatus for responding to an anomalous change in downhole pressure
US7548068B2 (en) 2004-11-30 2009-06-16 Intelliserv International Holding, Ltd. System for testing properties of a network
US20060207795A1 (en) * 2005-03-16 2006-09-21 Joe Kinder Method of dynamically controlling open hole pressure in a wellbore using wellhead pressure control
US7407019B2 (en) * 2005-03-16 2008-08-05 Weatherford Canada Partnership Method of dynamically controlling open hole pressure in a wellbore using wellhead pressure control
US7610251B2 (en) 2006-01-17 2009-10-27 Halliburton Energy Services, Inc. Well control systems and associated methods
US20070168056A1 (en) * 2006-01-17 2007-07-19 Sara Shayegi Well control systems and associated methods
US8316557B2 (en) 2006-10-04 2012-11-27 Varco I/P, Inc. Reclamation of components of wellbore cuttings material
US8533974B2 (en) 2006-10-04 2013-09-17 Varco I/P, Inc. Reclamation of components of wellbore cuttings material
US9435162B2 (en) 2006-10-23 2016-09-06 M-I L.L.C. Method and apparatus for controlling bottom hole pressure in a subterranean formation during rig pump operation
US20100288507A1 (en) * 2006-10-23 2010-11-18 Jason Duhe Method and apparatus for controlling bottom hole pressure in a subterranean formation during rig pump operation
US8490719B2 (en) 2006-10-23 2013-07-23 M-I L.L.C. Method and apparatus for controlling bottom hole pressure in a subterranean formation during rig pump operation
US8881831B2 (en) 2006-11-07 2014-11-11 Halliburton Energy Services, Inc. Offshore universal riser system
US8033335B2 (en) 2006-11-07 2011-10-11 Halliburton Energy Services, Inc. Offshore universal riser system
US20080105434A1 (en) * 2006-11-07 2008-05-08 Halliburton Energy Services, Inc. Offshore Universal Riser System
US9051790B2 (en) 2006-11-07 2015-06-09 Halliburton Energy Services, Inc. Offshore drilling method
US8776894B2 (en) 2006-11-07 2014-07-15 Halliburton Energy Services, Inc. Offshore universal riser system
US9157285B2 (en) 2006-11-07 2015-10-13 Halliburton Energy Services, Inc. Offshore drilling method
US9085940B2 (en) 2006-11-07 2015-07-21 Halliburton Energy Services, Inc. Offshore universal riser system
US9127512B2 (en) 2006-11-07 2015-09-08 Halliburton Energy Services, Inc. Offshore drilling method
US8887814B2 (en) 2006-11-07 2014-11-18 Halliburton Energy Services, Inc. Offshore universal riser system
US9376870B2 (en) 2006-11-07 2016-06-28 Halliburton Energy Services, Inc. Offshore universal riser system
US9127511B2 (en) 2006-11-07 2015-09-08 Halliburton Energy Services, Inc. Offshore universal riser system
US20100018715A1 (en) * 2006-11-07 2010-01-28 Halliburton Energy Services, Inc. Offshore universal riser system
US20100006282A1 (en) * 2006-11-23 2010-01-14 Rolf Dirdal Assembly for pressure control when drilling and method to control pressure when drilling in a formation with unpredictable high formation pressure
US8622220B2 (en) 2007-08-31 2014-01-07 Varco I/P Vibratory separators and screens
US8307913B2 (en) * 2008-05-01 2012-11-13 Schlumberger Technology Corporation Drilling system with drill string valves
US20090272580A1 (en) * 2008-05-01 2009-11-05 Schlumberger Technology Corporation Drilling system with drill string valves
US9073104B2 (en) 2008-08-14 2015-07-07 National Oilwell Varco, L.P. Drill cuttings treatment systems
US8556083B2 (en) 2008-10-10 2013-10-15 National Oilwell Varco L.P. Shale shakers with selective series/parallel flow path conversion
US9677353B2 (en) 2008-10-10 2017-06-13 National Oilwell Varco, L.P. Shale shakers with selective series/parallel flow path conversion
US9079222B2 (en) 2008-10-10 2015-07-14 National Oilwell Varco, L.P. Shale shaker
US8281875B2 (en) 2008-12-19 2012-10-09 Halliburton Energy Services, Inc. Pressure and flow control in drilling operations
US20110139506A1 (en) * 2008-12-19 2011-06-16 Halliburton Energy Services, Inc. Pressure and flow control in drilling operations
US9228433B2 (en) * 2009-02-11 2016-01-05 M-I L.L.C. Apparatus and process for wellbore characterization
US20110284288A1 (en) * 2009-02-11 2011-11-24 M-I L.L.C. Apparatus and process for wellbore characterization
CN101586452B (en) * 2009-06-17 2011-09-14 中国矿业大学 Method of monitoring coal mining solid pack pressure
US20110024189A1 (en) * 2009-07-30 2011-02-03 Halliburton Energy Services, Inc. Well drilling methods with event detection
US20110290562A1 (en) * 2009-10-05 2011-12-01 Halliburton Energy Services, Inc. Integrated geomechanics determinations and wellbore pressure control
US9328573B2 (en) * 2009-10-05 2016-05-03 Halliburton Energy Services, Inc. Integrated geomechanics determinations and wellbore pressure control
US8286730B2 (en) 2009-12-15 2012-10-16 Halliburton Energy Services, Inc. Pressure and flow control in drilling operations
US20110139509A1 (en) * 2009-12-15 2011-06-16 Halliburton Energy Services, Inc. Pressure and flow control in drilling operations
US8397836B2 (en) 2009-12-15 2013-03-19 Halliburton Energy Services, Inc. Pressure and flow control in drilling operations
US20110203802A1 (en) * 2010-02-25 2011-08-25 Halliburton Energy Services, Inc. Pressure control device with remote orientation relative to a rig
US9169700B2 (en) 2010-02-25 2015-10-27 Halliburton Energy Services, Inc. Pressure control device with remote orientation relative to a rig
AU2011222568B2 (en) * 2010-03-05 2014-01-09 Safekick Americas Llc System and method for safe well control operations
US20110214882A1 (en) * 2010-03-05 2011-09-08 Safekick Americas Llc System and method for safe well control operations
US8528660B2 (en) 2010-03-05 2013-09-10 Safekick Americas Llc System and method for safe well control operations
EA022742B1 (en) * 2010-03-05 2016-02-29 Сейфкик Америкас Ллк System and method for safe well control operations
WO2011109748A1 (en) * 2010-03-05 2011-09-09 Safekick Americas Llc System and method for safe well control operations
US8820405B2 (en) 2010-04-27 2014-09-02 Halliburton Energy Services, Inc. Segregating flowable materials in a well
US8261826B2 (en) 2010-04-27 2012-09-11 Halliburton Energy Services, Inc. Wellbore pressure control with segregated fluid columns
US8201628B2 (en) 2010-04-27 2012-06-19 Halliburton Energy Services, Inc. Wellbore pressure control with segregated fluid columns
WO2012016045A1 (en) * 2010-07-30 2012-02-02 Shell Oil Company Monitoring of drilling operations with flow and density measurement
US8739863B2 (en) 2010-11-20 2014-06-03 Halliburton Energy Services, Inc. Remote operation of a rotating control device bearing clamp
US9163473B2 (en) 2010-11-20 2015-10-20 Halliburton Energy Services, Inc. Remote operation of a rotating control device bearing clamp and safety latch
US10145199B2 (en) 2010-11-20 2018-12-04 Halliburton Energy Services, Inc. Remote operation of a rotating control device bearing clamp and safety latch
US9249638B2 (en) 2011-04-08 2016-02-02 Halliburton Energy Services, Inc. Wellbore pressure control with optimized pressure drilling
US8833488B2 (en) 2011-04-08 2014-09-16 Halliburton Energy Services, Inc. Automatic standpipe pressure control in drilling
US9080407B2 (en) 2011-05-09 2015-07-14 Halliburton Energy Services, Inc. Pressure and flow control in drilling operations
US9605507B2 (en) 2011-09-08 2017-03-28 Halliburton Energy Services, Inc. High temperature drilling with lower temperature rated tools
US9447647B2 (en) 2011-11-08 2016-09-20 Halliburton Energy Services, Inc. Preemptive setpoint pressure offset for flow diversion in drilling operations
US10233708B2 (en) 2012-04-10 2019-03-19 Halliburton Energy Services, Inc. Pressure and flow control in drilling operations
US10329860B2 (en) 2012-08-14 2019-06-25 Weatherford Technology Holdings, Llc Managed pressure drilling system having well control mode
US20210332694A1 (en) * 2012-09-20 2021-10-28 Baker Hughes, A Ge Company, Llc Method to predict overpressure uncertainty from normal compaction trendline uncertainty
US11591900B2 (en) * 2012-09-20 2023-02-28 Baker Hughes, A Ge Company, Llc Method to predict overpressure uncertainty from normal compaction trendline uncertainty
US20140076632A1 (en) * 2012-09-20 2014-03-20 Baker Hughes Incoroporated Method to predict overpressure uncertainty from normal compaction trendline uncertainty
US9874081B2 (en) 2012-10-05 2018-01-23 Halliburton Energy Services, Inc. Detection of influxes and losses while drilling from a floating vessel
US9643111B2 (en) 2013-03-08 2017-05-09 National Oilwell Varco, L.P. Vector maximizing screen
US10556196B2 (en) 2013-03-08 2020-02-11 National Oilwell Varco, L.P. Vector maximizing screen
RU2539089C1 (en) * 2013-10-11 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Method and system of automated determination and recording of hardness of mine rock of working face during well drilling
US10711605B2 (en) * 2014-04-04 2020-07-14 Halliburton Energy Services, Inc. Isotopic analysis from a controlled extractor in communication to a fluid system on a drilling rig
US10062044B2 (en) * 2014-04-12 2018-08-28 Schlumberger Technology Corporation Method and system for prioritizing and allocating well operating tasks
US10443329B2 (en) 2014-04-15 2019-10-15 Managed Pressure Operations Pte. Ltd. Drilling system and method of operating a drilling system
WO2015174991A1 (en) * 2014-05-15 2015-11-19 Halliburton Energy Services, Inc. Monitoring of drilling operations using discretized fluid flows
US10352159B2 (en) 2014-05-15 2019-07-16 Halliburton Energy Services, Inc. Monitoring of drilling operations using discretized fluid flows
GB2540685B (en) * 2014-05-15 2017-07-05 Halliburton Energy Services Inc Monitoring of drilling operations using discretized fluid flows
GB2540685A (en) * 2014-05-15 2017-01-25 Halliburton Energy Services Inc Monitoring of drilling operations using discretized fluid flows
US20170138168A1 (en) * 2015-11-13 2017-05-18 Baker Hughes Incorporated Apparatus and related methods to determine hole cleaning, well bore stability and volumetric cuttings measurements
RU2624472C1 (en) * 2016-04-12 2017-07-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" Method of "chisel-face" system transformation coefficient determination
US11326589B2 (en) * 2016-05-03 2022-05-10 Schlumberger Technology Corporation Linear hydraulic pump and its application in well pressure control
US11242744B1 (en) 2016-05-06 2022-02-08 WellWorc, Inc. Real time flow analysis methods and continuous mass balance and wellbore pressure calculations from real-time density and flow measurements
US10738551B1 (en) * 2016-05-06 2020-08-11 WellWorc, Inc Real time flow analysis methods and continuous mass balance and wellbore pressure calculations from real-time density and flow measurements
US10415333B2 (en) * 2017-05-02 2019-09-17 Schlumberger Technology Corporation Reversing differential pressure sticking
US11566480B2 (en) 2017-09-19 2023-01-31 Noble Drilling Services Inc. Method for detecting fluid influx or fluid loss in a well and detecting changes in fluid pump efficiency
WO2019060236A1 (en) * 2017-09-19 2019-03-28 Noble Drilling Services Inc. Method for detecting fluid influx or fluid loss in a well and detecting changes in fluid pump efficiency
US11307324B2 (en) * 2018-03-21 2022-04-19 Massachusetts Institute Of Technology Systems and methods for detecting seismo-electromagnetic conversion
US10914293B2 (en) 2018-06-20 2021-02-09 David Alan McBay Method, system and apparatus for extracting heat energy from geothermal briny fluid
US11692530B2 (en) 2018-06-20 2023-07-04 David Alan McBay Method, system and apparatus for extracting heat energy from geothermal briny fluid
US11225951B2 (en) 2018-06-20 2022-01-18 David Alan McBay Method, system and apparatus for extracting heat energy from geothermal briny fluid
US11821312B2 (en) 2018-12-21 2023-11-21 Terra Sonic International, LLC Drilling rig and methods using multiple types of drilling for installing geothermal systems
US11280190B2 (en) 2019-10-30 2022-03-22 Baker Hughes Oilfield Operations Llc Estimation of a downhole fluid property distribution
CN111364978A (en) * 2020-03-02 2020-07-03 中国海洋石油集团有限公司 Well kick and leakage monitoring device and monitoring method
CN111502640A (en) * 2020-04-22 2020-08-07 中国海洋石油集团有限公司 Device and method for measuring formation pore pressure and leakage pressure
CN111456654A (en) * 2020-04-30 2020-07-28 中国石油天然气集团有限公司 Continuous grouting device and method for tripping
CN111721615A (en) * 2020-07-10 2020-09-29 中国石油天然气集团有限公司 Device and method for evaluating stress corrosion cracking sensitivity of pipe in oil casing annular pollution environment
CN111927439A (en) * 2020-09-03 2020-11-13 中国石油天然气集团有限公司 Bottom hole pressure control method
WO2022204821A1 (en) * 2021-04-01 2022-10-06 Opla Energy Ltd. Internet of things in managed pressure drilling operations
US11885213B2 (en) 2021-04-01 2024-01-30 Opla Energy Ltd. Internet of things in managed pressure drilling operations
CN113385309A (en) * 2021-04-29 2021-09-14 浙江大学 Liquid discharge control device and method for supergravity centrifugal model
CN113468646A (en) * 2021-07-07 2021-10-01 常州大学 Method for detecting geothermal well risk based on geomechanical model and machine learning
CN113605878A (en) * 2021-08-09 2021-11-05 中国石油大学(华东) Inversion system and method for formation information in pressure control drilling process
CN114352269A (en) * 2021-12-17 2022-04-15 核工业北京地质研究院 Method for dividing positions of heat storage layers of high-temperature geothermal field
US20240035362A1 (en) * 2022-07-28 2024-02-01 Baker Hughes Oilfield Operations Llc Closed loop monitoring and control of a chemical injection system
CN116974312A (en) * 2023-09-22 2023-10-31 广东海洋大学深圳研究院 Method for controlling pressure of drilling and production shaft of natural gas hydrate

Also Published As

Publication number Publication date
US20080041149A1 (en) 2008-02-21
WO2002050398A1 (en) 2002-06-27
NO326132B1 (en) 2008-10-06
ES2244554T3 (en) 2005-12-16
ATE298835T1 (en) 2005-07-15
EA006054B1 (en) 2005-08-25
US7278496B2 (en) 2007-10-09
DE60111781D1 (en) 2005-08-04
WO2002050398B1 (en) 2002-09-06
US7650950B2 (en) 2010-01-26
US20030079912A1 (en) 2003-05-01
US20060037781A1 (en) 2006-02-23
CA2432119C (en) 2009-07-28
CA2432119A1 (en) 2002-06-27
US7044237B2 (en) 2006-05-16
AU1932202A (en) 2002-07-01
AU2006252289A1 (en) 2007-01-25
US7367411B2 (en) 2008-05-06
AU2002219322B2 (en) 2006-10-05
DK1356186T3 (en) 2005-10-24
AU2006252289B2 (en) 2009-11-12
EP1356186B1 (en) 2005-06-29
NO20032655L (en) 2003-08-11
AU2009222591A1 (en) 2009-10-29
AU2009222591B2 (en) 2012-01-19
EA200300693A1 (en) 2004-02-26
DE60111781T2 (en) 2006-05-18
US20060113110A1 (en) 2006-06-01
BR0116306B1 (en) 2014-04-22
EP1356186A1 (en) 2003-10-29
NO20032655D0 (en) 2003-06-12
MXPA03005396A (en) 2004-10-14
BR0116306A (en) 2004-03-02

Similar Documents

Publication Publication Date Title
EP1356186B1 (en) Closed loop fluid-handing system for well drilling
US11035184B2 (en) Method of drilling a subterranean borehole
US7562723B2 (en) Method for determining formation fluid entry into or drilling fluid loss from a borehole using a dynamic annular pressure control system
EP1485574B1 (en) Method and system for controlling well circulation rate
US20070227774A1 (en) Method for Controlling Fluid Pressure in a Borehole Using a Dynamic Annular Pressure Control System
US9650884B2 (en) Use of downhole isolation valve to sense annulus pressure
US20180135365A1 (en) Automatic managed pressure drilling utilizing stationary downhole pressure sensors
US11643891B2 (en) Drilling system and method using calibrated pressure losses
Chopty et al. Managed pressure drilling as a tool to reduce risks and non-productive time: an update on field experience
Bybee Managed-Pressure Drilling: Kick Detection and Well Control

Legal Events

Date Code Title Description
AS Assignment

Owner name: IMPACT ENGINEERING SOLUTIONS LIMITED, UNITED KINGD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEUCHTENBERG, CHRISTIAN;REEL/FRAME:011542/0220

Effective date: 20001218

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ISG SECURE DRILLING HOLDINGS LIMITED, UNITED KINGD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IMPACT SOLUTIONS GROUP LIMITED;REEL/FRAME:018061/0353

Effective date: 20060803

Owner name: SECURE DRILLING INTERNATIONAL, L.P,, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ISG SECURE DRILLING HOLDINGS LIMITED;REEL/FRAME:018061/0389

Effective date: 20060803