US20020109066A1 - Vacuum actuated active decoupler mount - Google Patents
Vacuum actuated active decoupler mount Download PDFInfo
- Publication number
- US20020109066A1 US20020109066A1 US09/780,857 US78085701A US2002109066A1 US 20020109066 A1 US20020109066 A1 US 20020109066A1 US 78085701 A US78085701 A US 78085701A US 2002109066 A1 US2002109066 A1 US 2002109066A1
- Authority
- US
- United States
- Prior art keywords
- mount
- orifice plate
- decoupler
- plate assembly
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F13/00—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
- F16F13/04—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
- F16F13/26—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
- F16F13/268—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for acting dynamically on the walls bounding an equilibration chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/18—Control arrangements
- F16F2230/183—Control arrangements fluid actuated
Definitions
- the present invention pertains to a hydraulic mount, particularly adapted for motor vehicle applications, including a vacuum actuated decoupler operable to modify the dynamic stiffness of the mount.
- the mount is desirably made to provide lower dynamic stiffness at the frequency of vibration related to the second order of engine speed (revolutions per minute). Accordingly, if the dynamic stiffness of the mount assembly can be varied and can be made lower than the static stiffness of the mount, improved vibration isolation can be obtained to reduce noise and vibration transmitted from the engine into the vehicle structure. It is to these ends that the present invention has been developed.
- the present invention provides a mount, particularly adapted for automotive vehicle powertrain mount applications, which utilizes one or more decouplers which can be controlled to provide a lower dynamic stiffness of the mount assembly at predetermined frequencies to thereby provide improved vibration isolation between the structure supported by the mount and the structure supporting the mount.
- a hydraulic engine mount which is characterized by an elastomer body defining a fluid pumping chamber, a partition interposed the elastomer body and a fluid reservoir and an orifice track communicating hydraulic fluid between the pumping chamber and the reservoir.
- the reservoir is preferably delimited by a flexible diaphragm and the mount includes an elastomer type decoupler to aid in isolating relatively high frequency, low displacement vibrations.
- the decoupler may be modified in its performance characteristics by applying a vacuum to one side of the decoupler to modify the performance of the mount, particularly by substantially reducing the dynamic stiffness of the mount at predetermined vibration frequencies.
- a hydraulic type mount which includes one or more active decouplers which may be controlled by solenoid operated valves, respectively, and a source of vacuum to modify the dynamic stiffness of the mount to isolate vibrations at particular frequencies.
- the decoupler or decouplers may be actuated at the same frequency as the vibrations being input to the mount and the phase angle of actuation of the decoupler may be selectively varied.
- the dynamic stiffness of the mount may be modified to be lower than the static stiffness to improve the vibration isolation characteristics of the mount, particularly for low amplitude relatively high frequency vibrations.
- a hydraulic mount which includes opposed pumping chambers and opposed vacuum actuated active decouplers which may be selectively actuated to provide for a wider range of stiffness of the mount at selected frequencies. For example, if the mount was supporting an engine that generates large second order shaking forces, the decouplers could vibrate in phase with these forces which would make the mount softer and operable to isolate such forces.
- FIG. 1 is a longitudinal central section view of a vacuum actuated active decoupler mount in accordance with the present invention
- FIG. 2 is a diagram illustrating a force versus frequency characteristic for the mount shown in FIG. 1;
- FIG. 3 is a longitudinal central section view of an alternate embodiment of a vacuum actuated active decoupler mount in accordance with the invention.
- the mount 10 includes a generally cylindrical cup shaped formed metal base number 12 suitably secured to a mounting member or bracket assembly 14 in a conventional manner.
- the base number 12 includes a peripheral sidewall 16 and a circumferential radially outwardly projecting flange 18 .
- the mount 10 is further characterized by a generally cylindrical molded elastomer body 20 which is reinforced by an encapsulated, flexible, thin walled metal core part 22 .
- the body 20 is molded to a central metal hub member 24 which supports a threaded mounting member 26 for connecting the mount 10 to an engine assembly or the like.
- the elastomer body 20 includes a central, generally cylindrical depending portion 28 which, in the position shown, is engageable with an orifice track assembly 32 .
- Orifice track assembly 32 includes an upper, generally planar, cylindrical orifice plate 34 and a lower, generally planar, cylindrical orifice plate 36 .
- Orifice plates 34 and 36 are shown in assembly to define an annular passage or orifice track 38 which opens through a port 40 to a fluid pumping chamber 42 formed between the body 20 and the orifice plate assembly 32 .
- a circumferentially spaced port 29 communicates hydraulic fluid between orifice track 38 and a second fluid chamber or reservoir 60 .
- Lower orifice plate 36 also defines a generally cylindrical central recess 44 in which is disposed an elastomeric cylindrical disc shaped decoupler member 46 which is preferably dimensioned to include opposed, shallow, annular recess or channel portions 48 and 50 .
- Recess 44 is defined by a peripheral outer wall 52 and a reduced diameter generally planar bottom wall surface 54 which is relieved to provide a space between wall surface 54 and a major part of a disc shaped body portion 49 of decoupler 46 , as shown.
- the decoupler 46 is also characterized by a circumferential rim part 47 which is trapped in fluid tight sealing engagement between the upper orifice plate 34 and the lower orifice plate 36 . However, a major part of the body 49 of the decoupler 48 , radially inward of the rim 47 , is allowed limited space within the recess 44 between the wall surface 54 and the upper orifice plate 34 .
- Upper orifice plate 34 is also provided with a relieved cylindrical wall surface 37 to provide space between decoupler 46 and orifice plate 34 except at the rim 47 .
- the space defined between the wall surface 54 and the decoupler 46 may be vented through a port 57 formed in an otherwise fluid tight plug 58 shown disposed in a suitable opening formed in the lower orifice plate 36 .
- Plug 58 also includes a flange or head 59 engaged with a central hub portion of a generally cup shaped flexible elastomer diaphragm 62 . Diaphragm 62 delimits the reservoir 60 , as shown in FIG. 1.
- the hydraulic mount 10 is shown in a position wherein the cylindrical body portion 28 of the elastomer body 20 rests on the orifice plate 34 . However, under mount operating conditions, hydraulic fluid is also present in a pumping chamber portion 43 which is in direct communication with the chamber 42 . Moreover, as mentioned above, the decoupler member 46 is dimensioned such that there is some free space for movement between the decoupler and the orifice plates 34 and 36 . Suitable passages 35 are formed in the orifice plate 34 to allow communication of fluid between the pumping chamber 42 , 43 and the space between the decoupler 46 and the orifice plate 34 .
- the hydraulic mount 10 also includes the aforementioned fluid reservoir 60 defined by and between the flexible diaphragm 62 and the orifice plate 36 .
- the diaphragm 62 includes a circumferential rim portion 64 which is shown nested in a suitable annular groove 65 formed in the lower orifice plate 36 .
- the mount 10 may be assembled by securing the rim 64 of the diaphragm 62 between the flange 18 of the base member 12 and the periphery of the orifice plate 36 .
- the orifice plates 34 and 36 are also held in fluid tight assembly with each other at their peripheral edges by a circumferential rim portion 21 of the body 20 which is suitably displaced to form a radially inwardly directed peripheral flange 23 contiguous with the base member flange 18 .
- a suitable rivet type plug 66 projects through the wall of the body 20 and closes a fill port for filling the pumping chamber 42 , 43 and the reservoir chamber 60 with a suitable hydraulic fluid, such as a mixture of water and ethylene glycol.
- the mount 10 includes a suitable connector 70 for a conduit 72 which extends through an opening 12 a in the base plate and extends to a control valve 74 .
- Control valve 74 is operable to be in communication with a source of vacuum 76 which, for example, may be a conventional vacuum reservoir onboard an automotive vehicle used for other vacuum operated components of the vehicle.
- the control valve 74 may, as shown, comprise a two position solenoid actuated valve and is preferably connected to a suitable controller 78 which may include a vibration sensor 78 a and/or an engine speed sensor 78 b operably connected thereto.
- Controller 78 is also operably connected to a source of electrical power, not shown, and the controller is operable to control the valve 74 to impose a vacuum on the space within recess 44 disposed between the decoupler 46 and the wall surface 54 to deflect the decoupler as a consequence of changes in fluid pressure acting on the decoupler.
- the space between decoupler 46 and wall surface 54 may be “vented” to atmospheric pressure or merely blocked wherein the vented condition would not see any change in pressure acting on the decoupler.
- the valve 74 may be energized to move cyclically between positions a and b to cause the decoupler 46 to be actuated at the same frequency as a particular input vibration imposed on the mount 10 and at a predetermined phase angle to the input vibration displacement such that a substantial reduction in the resistance to motion of the mount is obtained.
- the mount 10 may be operated in such a way as to be “softer” at certain vibration frequencies to which the mount is exposed.
- the dynamic stiffness of the mount 10 can be reduced substantially at selected vibration frequencies and thereby provide excellent isolation between an engine and a body or frame structure of an automotive vehicle, for example.
- the controller 78 and valve 74 may be operated to provide selective isolation characteristics for the mount 10 at certain frequencies related to engine crankshaft speed (rpm).
- the mount 10 can be made to provide lower dynamic stiffness at a frequency related to the second order of the rotational speed (rpm) of the engine crankshaft of an inline four cylinder engine.
- FIG. 2 there is illustrated a diagram of force in Newtons (N) versus time in seconds (sec).
- the curves of FIG. 2 illustrate operating conditions wherein the mount 10 is vibrated at an input displacement thereto at a frequency of thirty Hertz (Hz) and the force required to move the mount at a particular displacement was recorded.
- the curve 80 indicates the forces required to move the mount 10 at a vibration frequency of thirty Hertz and a vibration displacement of 0.1 millimeters (mm) peak-to-peak when the space between the decoupler 46 and the wall surface 54 is continuously vented to atmosphere, for example.
- the curve 82 indicates the forces required to move the mount 10 at the same vibration displacement and frequency when the aforementioned space is connected to the source of vacuum 76 and vented to atmosphere, alternately, at a frequency of thirty Hertz and an appropriate phase angle with respect to the oscillatory vibration input to the mount.
- the aforementioned phase angle will be dependent on response time of valve 74 , and materials and geometry of the components of the mount 10 . It may be observed from FIG. 2 that the forces required to effect displacement of the mount 10 for the vibration displacement and frequency mentioned above are less for the vacuum actuated decoupler 46 as compared with the situation where the decoupler is continuously vented directly to atmospheric pressure, for example.
- the mount 10 being of a decoupled typed, may be operated to respond to input vibrations in a manner which is softened versus a nondecoupled mount or a non-externally actuated decoupler mount of the same general configuration.
- the orifice track 38 is subject to design variations with regard to predetermined track cross sectional areas and length, depending on the so-called design tuning frequency of the mount.
- the configuration of the mount 10 exhibits damping forces much lower than a nondecoupled mount since some of the fluid within the mount deflects the decoupler 46 .
- the pumping stiffness of the chamber 42 , 43 may be modified by the decoupler 46 and the vacuum chamber defined between the decoupler and the wall surface 54 , resulting in a softer feel in a vehicle wherein the vehicle engine is supported by mounts such as the mount 10 .
- the orifice plates 34 and 36 are dimensioned such that sufficient motion of the decoupler 46 is allowed without the decoupler impinging strongly on the orifice plates.
- the pumping stiffness of the mount 10 increases further and all the additional pumping pushes fluid through the orifice track 38 .
- FIG. 3 there is illustrated, in somewhat schematic form, an alternate embodiment of a vacuum actuated hydraulic mount in accordance with the invention and generally designated by the numeral 90 .
- the hydraulic mount 90 is characterized by opposed, somewhat frustoconical shaped elastomeric body members 92 and 94 between which is disposed a generally cylindrical partition 96 .
- the body members 92 and 94 include generally circular peripheral rim portions 93 and 95 , respectively, which are engaged with opposed faces 97 and 99 of partition 96 and are forcibly secured thereto fluid tight sealed relationship by a generally cylindrical circumferential collar part 100 of a generally cylindrical can-shaped support base member 102 .
- the cylindrical collar 100 is formed with a reentrant circumferential edge 103 spaced from and opposed to a circumferential flange portion 105 for clamping the rim portions 93 and 95 of the body members to the partition 96 .
- Body members 92 and 94 are, respectively, suitably secured to mounting element hub members 106 and 108 which are, in turn, secured to a generally rectangular ring shaped mounting bracket 110 .
- Mounting bracket 110 is preferably formed as a generally rectangular perimeter or ring shaped member to allow clearance for the body members 92 and 94 between opposed side parts 112 and 114 which are interconnected by further opposed side parts 116 , one shown, to provide a generally rectangular perimeter configuration of the mounting bracket.
- FIG. 112 and 114 are suitably fixed to hub members 106 and 108 , respectively.
- a threaded shank part 118 is suitably secured to the side part 112 of mounting bracket 110 .
- a threaded shank type mounting element 120 is coaxial with and extends in a direction opposite to the direction of the mounting element 118 and is secured to a bottom wall 102 a of base member 102 .
- Partition 96 is characterized by opposed, separable, generally circular disc orifice plate members 128 and 130 which include, respectively, generally circular centrally positioned recesses 132 and 134 formed therein. Recesses 132 and 134 are isolated from each other by a third plate member of partition 96 and generally designated by numeral 136 . Plate member 136 is formed with two opposed annular rims 138 and 140 which are engageable, respectively, with the peripheral edges of circular disc elastomer decoupler members 142 and 144 , respectively.
- the decoupler members 142 and 144 are retained in the recesses 132 and 134 by the plate member 136 when the plate members 128 and 130 are assembled to form the partition 96 and retained forcibly engaged with each other by the clamping arrangement provided by the collar 100 .
- Decoupler members 142 and 144 are in communication with fluid in the chambers 124 and 126 through respective ports 146 and 148 formed in the plate members 128 and 130 and opening into the recesses 132 and 134 , respectively.
- the decoupler members 142 and 144 also, respectively, form opposed chambers 150 and 152 between the respective decoupler members and the partition plate 136 .
- Chamber 150 is in fluid flow communication with a vacuum conduit 153 by way of a passage 154 formed in plate 128 .
- chamber 152 is in fluid flow communication with a conduit 155 by way of a passage 156 formed in partition plate 130 .
- the partition plates 128 and 130 are also formed with an orifice track formed by partial annular channel portions 160 and 162 which overlap with each other sufficiently to provide communication of hydraulic fluid between chambers 124 and 126 through the channel portions 160 and 162 and via a port 164 which opens from channel portion 160 to chamber 124 and a port 166 which opens from channel portion 162 to chamber 126 .
- the mount 90 is adapted to be controlled by a controller 78 d similar to the controller 78 but adapted for controlling two solenoid operated valves 74 , each operable to be in fluid flow communication with vacuum source 76 and with the conduits 153 and 155 , as shown in FIG. 3.
- Controller 78 d is also operable to receive signals from a vibration sensor 78 a and/or a engine speed (RPM) sensor 78 b.
- RPM engine speed
- the mount 90 may be operated in a manner similar to the mount 10 but has the added advantage of being capable of changing its stiffness over a wider range of frequencies and vibration amplitudes by employing opposed vacuum actuated active decouplers 142 and 144 to increase the range of stiffness of the mount.
- the mount 90 may be operated in generally the same manner as the mount 10 .
- mounts 10 and 90 The construction and operation of the mounts 10 and 90 is believed to be understandable to those of ordinary skill in the art based on the foregoing description and the drawing figures. Conventional engineering materials may be used to construct the mounts 10 and 90 .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combined Devices Of Dampers And Springs (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
Abstract
Description
- The present invention pertains to a hydraulic mount, particularly adapted for motor vehicle applications, including a vacuum actuated decoupler operable to modify the dynamic stiffness of the mount.
- Conventional automotive vehicle powertrain mounts exist in many variations and generally operate to provide engine vibration isolation while also controlling engine motion with respect to the vehicle frame or body structure. In many applications of engine and powertrain mounts, it is desirable to vary the dynamic stiffness of the mount to provide selective isolation of vibrations at certain frequencies related to engine speed, for example.
- By way of example, for a four cylinder engine, the mount is desirably made to provide lower dynamic stiffness at the frequency of vibration related to the second order of engine speed (revolutions per minute). Accordingly, if the dynamic stiffness of the mount assembly can be varied and can be made lower than the static stiffness of the mount, improved vibration isolation can be obtained to reduce noise and vibration transmitted from the engine into the vehicle structure. It is to these ends that the present invention has been developed.
- The present invention provides a mount, particularly adapted for automotive vehicle powertrain mount applications, which utilizes one or more decouplers which can be controlled to provide a lower dynamic stiffness of the mount assembly at predetermined frequencies to thereby provide improved vibration isolation between the structure supported by the mount and the structure supporting the mount.
- In accordance with an important aspect of the present invention, a hydraulic engine mount is provided which is characterized by an elastomer body defining a fluid pumping chamber, a partition interposed the elastomer body and a fluid reservoir and an orifice track communicating hydraulic fluid between the pumping chamber and the reservoir. The reservoir is preferably delimited by a flexible diaphragm and the mount includes an elastomer type decoupler to aid in isolating relatively high frequency, low displacement vibrations. However, the decoupler may be modified in its performance characteristics by applying a vacuum to one side of the decoupler to modify the performance of the mount, particularly by substantially reducing the dynamic stiffness of the mount at predetermined vibration frequencies.
- In accordance with another aspect of the present invention, a hydraulic type mount is provided which includes one or more active decouplers which may be controlled by solenoid operated valves, respectively, and a source of vacuum to modify the dynamic stiffness of the mount to isolate vibrations at particular frequencies. The decoupler or decouplers may be actuated at the same frequency as the vibrations being input to the mount and the phase angle of actuation of the decoupler may be selectively varied. The dynamic stiffness of the mount may be modified to be lower than the static stiffness to improve the vibration isolation characteristics of the mount, particularly for low amplitude relatively high frequency vibrations.
- In accordance with still another aspect of the present invention, a hydraulic mount is provided which includes opposed pumping chambers and opposed vacuum actuated active decouplers which may be selectively actuated to provide for a wider range of stiffness of the mount at selected frequencies. For example, if the mount was supporting an engine that generates large second order shaking forces, the decouplers could vibrate in phase with these forces which would make the mount softer and operable to isolate such forces.
- Those skilled in the art will further appreciate the above mentioned advantages and features of the invention together with other important aspects thereof upon reading the detailed description which follows in conjunction with the drawing.
- FIG. 1 is a longitudinal central section view of a vacuum actuated active decoupler mount in accordance with the present invention;
- FIG. 2 is a diagram illustrating a force versus frequency characteristic for the mount shown in FIG. 1; and
- FIG. 3 is a longitudinal central section view of an alternate embodiment of a vacuum actuated active decoupler mount in accordance with the invention.
- In the description which follows, like parts are marked throughout the specification and drawing with the same reference numerals, respectively. The drawings are not necessarily to scale and certain features may be shown in somewhat generalized or schematic form in the interest of clarity and conciseness.
- Referring to FIG. 1, there is illustrated a hydraulic mount in accordance with the invention and generally designated by the
numeral 10. Themount 10 includes a generally cylindrical cup shaped formedmetal base number 12 suitably secured to a mounting member orbracket assembly 14 in a conventional manner. Thebase number 12 includes aperipheral sidewall 16 and a circumferential radially outwardly projectingflange 18. Themount 10 is further characterized by a generally cylindrical moldedelastomer body 20 which is reinforced by an encapsulated, flexible, thin walledmetal core part 22. Thebody 20 is molded to a centralmetal hub member 24 which supports a threadedmounting member 26 for connecting themount 10 to an engine assembly or the like. Theelastomer body 20 includes a central, generally cylindrical dependingportion 28 which, in the position shown, is engageable with anorifice track assembly 32. Orificetrack assembly 32 includes an upper, generally planar,cylindrical orifice plate 34 and a lower, generally planar,cylindrical orifice plate 36. Orificeplates orifice track 38 which opens through aport 40 to afluid pumping chamber 42 formed between thebody 20 and theorifice plate assembly 32. A circumferentially spacedport 29 communicates hydraulic fluid betweenorifice track 38 and a second fluid chamber orreservoir 60. -
Lower orifice plate 36 also defines a generally cylindricalcentral recess 44 in which is disposed an elastomeric cylindrical disc shapeddecoupler member 46 which is preferably dimensioned to include opposed, shallow, annular recess orchannel portions Recess 44 is defined by a peripheralouter wall 52 and a reduced diameter generally planarbottom wall surface 54 which is relieved to provide a space betweenwall surface 54 and a major part of a disc shapedbody portion 49 ofdecoupler 46, as shown. Thedecoupler 46 is also characterized by acircumferential rim part 47 which is trapped in fluid tight sealing engagement between theupper orifice plate 34 and thelower orifice plate 36. However, a major part of thebody 49 of thedecoupler 48, radially inward of therim 47, is allowed limited space within therecess 44 between thewall surface 54 and theupper orifice plate 34. -
Upper orifice plate 34 is also provided with a relievedcylindrical wall surface 37 to provide space betweendecoupler 46 andorifice plate 34 except at therim 47. The space defined between thewall surface 54 and thedecoupler 46, for example, may be vented through aport 57 formed in an otherwise fluidtight plug 58 shown disposed in a suitable opening formed in thelower orifice plate 36.Plug 58 also includes a flange orhead 59 engaged with a central hub portion of a generally cup shapedflexible elastomer diaphragm 62.Diaphragm 62 delimits thereservoir 60, as shown in FIG. 1. - The
hydraulic mount 10 is shown in a position wherein thecylindrical body portion 28 of theelastomer body 20 rests on theorifice plate 34. However, under mount operating conditions, hydraulic fluid is also present in apumping chamber portion 43 which is in direct communication with thechamber 42. Moreover, as mentioned above, thedecoupler member 46 is dimensioned such that there is some free space for movement between the decoupler and theorifice plates Suitable passages 35 are formed in theorifice plate 34 to allow communication of fluid between thepumping chamber decoupler 46 and theorifice plate 34. - The
hydraulic mount 10 also includes theaforementioned fluid reservoir 60 defined by and between theflexible diaphragm 62 and theorifice plate 36. Thediaphragm 62 includes acircumferential rim portion 64 which is shown nested in a suitableannular groove 65 formed in thelower orifice plate 36. - As further shown in FIG. 1, the
mount 10 may be assembled by securing therim 64 of thediaphragm 62 between theflange 18 of thebase member 12 and the periphery of theorifice plate 36. Theorifice plates circumferential rim portion 21 of thebody 20 which is suitably displaced to form a radially inwardly directedperipheral flange 23 contiguous with thebase member flange 18. A suitablerivet type plug 66 projects through the wall of thebody 20 and closes a fill port for filling thepumping chamber reservoir chamber 60 with a suitable hydraulic fluid, such as a mixture of water and ethylene glycol. - Referring still further to FIG. 1, the
mount 10 includes asuitable connector 70 for aconduit 72 which extends through anopening 12 a in the base plate and extends to acontrol valve 74.Control valve 74 is operable to be in communication with a source ofvacuum 76 which, for example, may be a conventional vacuum reservoir onboard an automotive vehicle used for other vacuum operated components of the vehicle. Thecontrol valve 74 may, as shown, comprise a two position solenoid actuated valve and is preferably connected to asuitable controller 78 which may include avibration sensor 78 a and/or anengine speed sensor 78 b operably connected thereto.Controller 78 is also operably connected to a source of electrical power, not shown, and the controller is operable to control thevalve 74 to impose a vacuum on the space withinrecess 44 disposed between thedecoupler 46 and thewall surface 54 to deflect the decoupler as a consequence of changes in fluid pressure acting on the decoupler. In the position a ofvalve 74 the space betweendecoupler 46 andwall surface 54 may be “vented” to atmospheric pressure or merely blocked wherein the vented condition would not see any change in pressure acting on the decoupler. - For example, the
valve 74 may be energized to move cyclically between positions a and b to cause thedecoupler 46 to be actuated at the same frequency as a particular input vibration imposed on themount 10 and at a predetermined phase angle to the input vibration displacement such that a substantial reduction in the resistance to motion of the mount is obtained. In this way, a large reduction in the dynamic stiffness of themount 10 may be obtained. Accordingly, themount 10 may be operated in such a way as to be “softer” at certain vibration frequencies to which the mount is exposed. By actuating or deflecting thedecoupler 46 by the imposition of vacuum pressure thereon, the dynamic stiffness of themount 10 can be reduced substantially at selected vibration frequencies and thereby provide excellent isolation between an engine and a body or frame structure of an automotive vehicle, for example. Thecontroller 78 andvalve 74 may be operated to provide selective isolation characteristics for themount 10 at certain frequencies related to engine crankshaft speed (rpm). For example, themount 10 can be made to provide lower dynamic stiffness at a frequency related to the second order of the rotational speed (rpm) of the engine crankshaft of an inline four cylinder engine. - Referring to FIG. 2, there is illustrated a diagram of force in Newtons (N) versus time in seconds (sec). The curves of FIG. 2 illustrate operating conditions wherein the
mount 10 is vibrated at an input displacement thereto at a frequency of thirty Hertz (Hz) and the force required to move the mount at a particular displacement was recorded. Thecurve 80 indicates the forces required to move themount 10 at a vibration frequency of thirty Hertz and a vibration displacement of 0.1 millimeters (mm) peak-to-peak when the space between thedecoupler 46 and thewall surface 54 is continuously vented to atmosphere, for example. Thecurve 82 indicates the forces required to move themount 10 at the same vibration displacement and frequency when the aforementioned space is connected to the source ofvacuum 76 and vented to atmosphere, alternately, at a frequency of thirty Hertz and an appropriate phase angle with respect to the oscillatory vibration input to the mount. The aforementioned phase angle will be dependent on response time ofvalve 74, and materials and geometry of the components of themount 10. It may be observed from FIG. 2 that the forces required to effect displacement of themount 10 for the vibration displacement and frequency mentioned above are less for the vacuum actuateddecoupler 46 as compared with the situation where the decoupler is continuously vented directly to atmospheric pressure, for example. - Those skilled in the art will appreciate from the foregoing description and drawing figures that the
mount 10, being of a decoupled typed, may be operated to respond to input vibrations in a manner which is softened versus a nondecoupled mount or a non-externally actuated decoupler mount of the same general configuration. Of course, theorifice track 38 is subject to design variations with regard to predetermined track cross sectional areas and length, depending on the so-called design tuning frequency of the mount. - Still further, the configuration of the
mount 10 exhibits damping forces much lower than a nondecoupled mount since some of the fluid within the mount deflects thedecoupler 46. The pumping stiffness of thechamber decoupler 46 and the vacuum chamber defined between the decoupler and thewall surface 54, resulting in a softer feel in a vehicle wherein the vehicle engine is supported by mounts such as themount 10. Theorifice plates decoupler 46 is allowed without the decoupler impinging strongly on the orifice plates. When the input amplitude is sufficient to move thedecoupler 46 forcibly against thewall surface 54, the pumping stiffness of themount 10 increases further and all the additional pumping pushes fluid through theorifice track 38. - Referring now to FIG. 3, there is illustrated, in somewhat schematic form, an alternate embodiment of a vacuum actuated hydraulic mount in accordance with the invention and generally designated by the numeral90. The
hydraulic mount 90 is characterized by opposed, somewhat frustoconical shapedelastomeric body members cylindrical partition 96. Thebody members peripheral rim portions partition 96 and are forcibly secured thereto fluid tight sealed relationship by a generally cylindricalcircumferential collar part 100 of a generally cylindrical can-shaped support base member 102. Thecylindrical collar 100 is formed with a reentrantcircumferential edge 103 spaced from and opposed to acircumferential flange portion 105 for clamping therim portions partition 96.Body members element hub members bracket 110. Mountingbracket 110 is preferably formed as a generally rectangular perimeter or ring shaped member to allow clearance for thebody members opposed side parts opposed side parts 116, one shown, to provide a generally rectangular perimeter configuration of the mounting bracket.Side parts hub members shank part 118 is suitably secured to theside part 112 of mountingbracket 110. In like manner, a threaded shanktype mounting element 120 is coaxial with and extends in a direction opposite to the direction of the mountingelement 118 and is secured to a bottom wall 102 a of base member 102. -
chambers body member 92 and thepartition 96 and between thebody member 94 and thepartition 96, respectively, as illustrated.Partition 96 is characterized by opposed, separable, generally circular discorifice plate members recesses Recesses partition 96 and generally designated bynumeral 136.Plate member 136 is formed with two opposedannular rims elastomer decoupler members 142 and 144, respectively. Thedecoupler members 142 and 144 are retained in therecesses plate member 136 when theplate members partition 96 and retained forcibly engaged with each other by the clamping arrangement provided by thecollar 100. Decouplermembers 142 and 144 are in communication with fluid in thechambers respective ports plate members recesses - The
decoupler members 142 and 144 also, respectively, form opposedchambers partition plate 136.Chamber 150 is in fluid flow communication with avacuum conduit 153 by way of apassage 154 formed inplate 128. In like manner,chamber 152 is in fluid flow communication with aconduit 155 by way of apassage 156 formed inpartition plate 130. Thepartition plates annular channel portions chambers channel portions port 164 which opens fromchannel portion 160 tochamber 124 and aport 166 which opens fromchannel portion 162 tochamber 126. - The
mount 90 is adapted to be controlled by acontroller 78 d similar to thecontroller 78 but adapted for controlling two solenoid operatedvalves 74, each operable to be in fluid flow communication withvacuum source 76 and with theconduits Controller 78 d is also operable to receive signals from avibration sensor 78 a and/or a engine speed (RPM)sensor 78 b. - Accordingly, the
mount 90 may be operated in a manner similar to themount 10 but has the added advantage of being capable of changing its stiffness over a wider range of frequencies and vibration amplitudes by employing opposed vacuum actuatedactive decouplers 142 and 144 to increase the range of stiffness of the mount. Themount 90 may be operated in generally the same manner as themount 10. - The construction and operation of the
mounts mounts - Although a preferred embodiment has been described in detail therein, those skilled in the art will recognize that various substitutions and modifications may be made to the invention without departing from the scope and spirit of the appended claims.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/780,857 US6422545B1 (en) | 2001-02-09 | 2001-02-09 | Vacuum actuated active decoupler mount |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/780,857 US6422545B1 (en) | 2001-02-09 | 2001-02-09 | Vacuum actuated active decoupler mount |
Publications (2)
Publication Number | Publication Date |
---|---|
US6422545B1 US6422545B1 (en) | 2002-07-23 |
US20020109066A1 true US20020109066A1 (en) | 2002-08-15 |
Family
ID=25120917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/780,857 Expired - Fee Related US6422545B1 (en) | 2001-02-09 | 2001-02-09 | Vacuum actuated active decoupler mount |
Country Status (1)
Country | Link |
---|---|
US (1) | US6422545B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030150172A1 (en) * | 1999-09-09 | 2003-08-14 | Hector Valencia | Aseismic system |
US20040244207A1 (en) * | 2003-06-07 | 2004-12-09 | Andreas Stihl Ag & Co., Kg | Manually operated implement |
US20050178943A1 (en) * | 2004-02-13 | 2005-08-18 | Tokai Rubber Industries, Ltd. | Engine mount |
WO2007103003A2 (en) * | 2006-02-23 | 2007-09-13 | Cooper-Standard Automotive Inc. | Hydraulic engine mount with side fill assembly |
US20140175255A1 (en) * | 2012-12-26 | 2014-06-26 | Toyo Tire & Rubber Co., Ltd. | Vibration isolation device |
DE102014217670A1 (en) * | 2014-09-04 | 2016-03-10 | Contitech Vibration Control Gmbh | Hydro bearing and motor vehicle with such a hydraulic bearing |
JP2017223366A (en) * | 2016-06-16 | 2017-12-21 | ベイジンウェスト・インダストリーズ・カンパニー・リミテッドBeijingwest Industries Co., Ltd. | Multi-stage damping assembly |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003097632A (en) * | 2001-07-16 | 2003-04-03 | Tokai Rubber Ind Ltd | Fluid-sealed vibration-proof device |
US20040045614A1 (en) * | 2002-09-10 | 2004-03-11 | Viswanathan Subramanian | Hydraulic interface plate |
US7159855B2 (en) | 2002-11-07 | 2007-01-09 | Delphi Technologies, Inc. | Hydraulic mount with reciprocating secondary orifice track-mass |
US20040135300A1 (en) * | 2003-01-14 | 2004-07-15 | Delphi Technologies Inc. | Controllable decoupler |
US20040150145A1 (en) * | 2003-01-31 | 2004-08-05 | Delphi Technologies Inc. | Bi-state rate dip hydraulic mount |
US6799754B1 (en) | 2003-04-08 | 2004-10-05 | Delphi Technologies, Inc. | Dual track variable orifice mount |
US7063191B2 (en) * | 2004-02-10 | 2006-06-20 | Delphi Technologies, Inc. | Reversed decoupler assembly for MR mount |
JP4120828B2 (en) * | 2004-06-30 | 2008-07-16 | 東海ゴム工業株式会社 | Fluid filled active vibration isolator |
JP4077018B2 (en) * | 2004-11-24 | 2008-04-16 | 東洋ゴム工業株式会社 | Liquid filled vibration isolator and liquid filled vibration isolator unit |
FR2916736B1 (en) * | 2007-06-04 | 2009-09-04 | Airbus France Sa | APPARATUS FOR HANDLING AN AIRCRAFT TURBOPROPULSER COMPRISING HYDRAULIC FASTENING MEANS. |
CN201093028Y (en) * | 2007-07-27 | 2008-07-30 | 比亚迪股份有限公司 | Hydraulic pressure suspending and filling device |
US7995816B2 (en) * | 2007-09-24 | 2011-08-09 | Baxter International Inc. | Detecting access disconnect by pattern recognition |
US9074653B2 (en) * | 2008-10-21 | 2015-07-07 | GM Global Technology Operations LLC | Multistate switchable engine mount and system |
JP2013011315A (en) * | 2011-06-30 | 2013-01-17 | Tokai Rubber Ind Ltd | Fluid sealed vibration control device |
KR101628512B1 (en) * | 2014-11-04 | 2016-06-08 | 현대자동차주식회사 | Electronic Semi Active Mount having Variable Air Chamber |
US10001191B2 (en) | 2015-01-16 | 2018-06-19 | Ford Global Technologies, Llc | Pneumatically tuned vehicle powertrain mounts |
US10145443B2 (en) | 2015-01-26 | 2018-12-04 | Itt Manufacturing Enterprises Llc | Compliant elastomeric shock absorbing apparatus |
US9895965B2 (en) | 2015-10-27 | 2018-02-20 | Ford Global Technologies, Llc | Passively controlled dual-state vacuum switchable mount |
DE102016116079A1 (en) * | 2016-08-29 | 2018-03-01 | Vibracoustic Gmbh | hydromount |
JP7438000B2 (en) * | 2020-04-08 | 2024-02-26 | Toyo Tire株式会社 | Liquid-filled vibration isolator |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4991826A (en) * | 1989-10-02 | 1991-02-12 | General Motors Corporation | Hydraulic mount with voltage controlled fluid |
JPH06105096B2 (en) * | 1990-06-12 | 1994-12-21 | 東海ゴム工業株式会社 | Fluid-filled mount device and manufacturing method thereof |
JP2510903B2 (en) * | 1991-06-03 | 1996-06-26 | 東海ゴム工業株式会社 | Fluid-filled mount device and manufacturing method thereof |
JP2924317B2 (en) * | 1991-06-18 | 1999-07-26 | 東海ゴム工業株式会社 | Fluid-filled mounting device |
DE4238752C1 (en) * | 1992-11-17 | 1994-05-11 | Boge Gmbh | Hydraulically damping engine mount |
US6176477B1 (en) * | 1997-05-20 | 2001-01-23 | Toyoda Gosei Co. Ltd. | Liquid-sealing type variation isolating apparatus |
JP3539067B2 (en) * | 1996-05-23 | 2004-06-14 | 東海ゴム工業株式会社 | Fluid-filled mounting device |
JP3557837B2 (en) * | 1997-03-25 | 2004-08-25 | 東海ゴム工業株式会社 | Fluid-filled vibration isolator |
JPH11230245A (en) * | 1998-02-10 | 1999-08-27 | Tokai Rubber Ind Ltd | Pneumatically oscillating active damper |
-
2001
- 2001-02-09 US US09/780,857 patent/US6422545B1/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030150172A1 (en) * | 1999-09-09 | 2003-08-14 | Hector Valencia | Aseismic system |
US6826873B2 (en) * | 1999-09-09 | 2004-12-07 | Hector Valencia | Aseismic system |
US20040244207A1 (en) * | 2003-06-07 | 2004-12-09 | Andreas Stihl Ag & Co., Kg | Manually operated implement |
FR2857897A1 (en) * | 2003-06-07 | 2005-01-28 | Stihl Ag & Co Kg Andreas | GUIDED WORK TOOL MANUALLY |
US20050178943A1 (en) * | 2004-02-13 | 2005-08-18 | Tokai Rubber Industries, Ltd. | Engine mount |
US7182306B2 (en) * | 2004-02-13 | 2007-02-27 | Tokai Rubber Industries, Ltd. | Engine mount |
WO2007103003A2 (en) * | 2006-02-23 | 2007-09-13 | Cooper-Standard Automotive Inc. | Hydraulic engine mount with side fill assembly |
WO2007103003A3 (en) * | 2006-02-23 | 2008-02-21 | Cooper Standard Automotive Inc | Hydraulic engine mount with side fill assembly |
US20140175255A1 (en) * | 2012-12-26 | 2014-06-26 | Toyo Tire & Rubber Co., Ltd. | Vibration isolation device |
US9382967B2 (en) * | 2012-12-26 | 2016-07-05 | Toyo Tire & Rubber Co., Ltd. | Vibration isolation device |
DE102014217670A1 (en) * | 2014-09-04 | 2016-03-10 | Contitech Vibration Control Gmbh | Hydro bearing and motor vehicle with such a hydraulic bearing |
JP2017223366A (en) * | 2016-06-16 | 2017-12-21 | ベイジンウェスト・インダストリーズ・カンパニー・リミテッドBeijingwest Industries Co., Ltd. | Multi-stage damping assembly |
Also Published As
Publication number | Publication date |
---|---|
US6422545B1 (en) | 2002-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6422545B1 (en) | Vacuum actuated active decoupler mount | |
US5217211A (en) | Fluid-filled elastic mount having vacuum-receiving chamber partially defined by flexible diaphragm with rigid restriction member | |
US5642873A (en) | Fluid-filled elastic mount having pushing member for controlling fluid communication through orifice passage | |
JP4896616B2 (en) | Fluid filled vibration isolator | |
JP4348553B2 (en) | Fluid-filled vibration isolator and manufacturing method thereof | |
US20020005607A1 (en) | Fluid-filled vibration damping device having pressure receiving chamber whose spring stiffness is controllable | |
US7857293B2 (en) | Fluid filled type vibration damping device | |
JPH11315881A (en) | Hydraulic shock absorbing bearing | |
JP5977141B2 (en) | Fluid filled vibration isolator | |
US6708963B2 (en) | Fluid-filled vibration-damping device and method of controlling the same | |
US6244578B1 (en) | Switchable, hydraulically dampening bearing | |
US6547226B2 (en) | Bi-state hydraulic mount with annular decoupler | |
JPH04231746A (en) | Hydraulic type shock absorber | |
JP2009243510A (en) | Fluid-filled type engine mount for automobile | |
JP3505475B2 (en) | Hydraulic damping bearing | |
JP4158110B2 (en) | Pneumatic switching type fluid-filled engine mount | |
JPH08240242A (en) | Engine mount | |
JP4158108B2 (en) | Pneumatic switching type fluid-filled engine mount | |
JP4158111B2 (en) | Pneumatic switching type fluid-filled engine mount | |
JP3721913B2 (en) | Fluid filled vibration isolator | |
JP4210851B2 (en) | Fluid-filled engine mount for vehicles | |
JPH11101294A (en) | Fluid-filled mount device | |
JPH0729317Y2 (en) | Fluid-filled mounting device | |
JPH04277341A (en) | Fluid-filled type mount device | |
JP2005207530A (en) | Fluid enclosed type vibration isolating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DELPHI TECHNOLOGIES, INC., CORPORATION OF DELAWAR Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAUDENDISTEL, THOMAS A.;TEWANI, SANJIV G.;LONG, MARK W.;AND OTHERS;REEL/FRAME:011543/0225;SIGNING DATES FROM 20010126 TO 20010131 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
AS | Assignment |
Owner name: BWI COMPANY LIMITED S.A., LUXEMBOURG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DELPHI AUTOMOTIVE SYSTEMS, LLC;REEL/FRAME:024892/0813 Effective date: 20091101 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100723 |