US20020096133A1 - Water-cooled remote fan drive - Google Patents

Water-cooled remote fan drive Download PDF

Info

Publication number
US20020096133A1
US20020096133A1 US09/768,902 US76890201A US2002096133A1 US 20020096133 A1 US20020096133 A1 US 20020096133A1 US 76890201 A US76890201 A US 76890201A US 2002096133 A1 US2002096133 A1 US 2002096133A1
Authority
US
United States
Prior art keywords
fan
pulley
water
engine
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/768,902
Other versions
US6439172B1 (en
Inventor
Kevin McGovern
Dale Stretch
Guenther Muehlbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BorgWarner Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/768,902 priority Critical patent/US6439172B1/en
Assigned to BORG WARNER, INC. reassignment BORG WARNER, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUEHLBACH, GUENTHER F., MCGOVEM, KEVIN M., STRETCH, DALE A.
Priority to EP01309565A priority patent/EP1227226B1/en
Priority to DE60120629T priority patent/DE60120629T2/en
Priority to JP2002012725A priority patent/JP4124596B2/en
Publication of US20020096133A1 publication Critical patent/US20020096133A1/en
Application granted granted Critical
Publication of US6439172B1 publication Critical patent/US6439172B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/042Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using fluid couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/046Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using mechanical drives

Definitions

  • the invention relates generally to cooling systems and more specifically to water-cooled remote fan drives.
  • Cooling systems are used on vehicles today to provide cooling to an engine during operation.
  • Fan drives are typically driven by the engine crankshaft at a fixed ratio to cool engine coolant as it flows through a radiator.
  • the fan drive speed is correspondingly reduced.
  • the fan drive speed correspondingly increases.
  • cooling systems for example truck cooling systems, suffer from inefficient or insufficient cooling capabilities.
  • many cooling systems suffer from insufficient idle and peak air cooling, poor fan efficiencies, no or inadequate fan drive pulley ratios, and/or poor fan orientation relative to radiators.
  • the proposed system should be able to be used with currently available engine and radiator locations, should allow a minimum radial displacement between an engine and a radiator, should allow for axial motion of the engine, should maximize fan size within a predetermined packaging volume, and have a predetermined torque capability for driving the fan.
  • the present invention incorporates an additional pulley that is either mounted on the shroud of the radiator or mounted to the front of the water pump and crank pulleys.
  • This additional pulley is sized smaller than the crank pulley to create extra overdrive. This allows the fan to rotate at a faster speed, which improves the cooling efficiency of the radiator.
  • these remote fan drives are water-cooled by making them integral to the water pump or by coupling them to the water pump to improve heat dissipation and reduce weight and packaging size.
  • more than one additional pulley may be added.
  • this system provides a shroud mounted fan with high efficiencies due to tight blade tip clearance, ideal fan orientation, and large overdrive ratio options because of water-cooled heat dissipation. Also, there is the potential for using dual fans in these systems, which could also improve fan efficiency and fan orientation.
  • FIG. 1 is a schematic representation of a cooling system according to the prior art
  • FIG. 2 is a cooling system having an auxiliary pulley set according to one embodiment of the present invention
  • FIG. 2A is a section view of the water-cooled drive mechanism of FIG. 2;
  • FIG. 3 is a cooling system having an auxiliary pulley set mounted to the shroud of a radiator according to another embodiment of the present invention.
  • FIG. 3A is a section view of the water-cooled drive mechanism of FIG. 3.
  • FIG. 1 a vehicle 10 is illustrated having a cooling system 12 according to one embodiment in the prior art.
  • the cooling system 12 depicted has a powertrain control module 20 , a computer control harness 22 , a check engine lamp driver 24 , a cylinder head temperature sensor 26 , a check engine light 28 , a vehicle speed sensor 30 , a fuse panel 32 , an integrated water pump/fan drive, commonly called a water cooled fan drive 34 , an engine coolant sensor 36 , an ambient temperature sensor 38 , one or more cooling fans 40 , a flow control valve 42 , a throttle position sensor 44 , and a radiator 46 .
  • a powertrain control module 20 has a powertrain control module 20 , a computer control harness 22 , a check engine lamp driver 24 , a cylinder head temperature sensor 26 , a check engine light 28 , a vehicle speed sensor 30 , a fuse panel 32 , an integrated water pump/fan drive, commonly called a water cooled fan drive 34 , an engine coolant sensor 36
  • coolant enters the water-cooled fan drive 34 through a branch duct 50 from the radiator 46 . Coolant is then pumped out of the water-cooled fan drive 34 through a return duct 52 and into the cooling passages (not shown) of the engine 48 . The coolant flows through the engine to the flow control valve 42 . Coolant will then flow back to the radiator 46 through the supply duct 54 or be bypassed through the branch duct 50 depending upon the engine coolant temperature as determined by the engine coolant temperature sensor 36 . When the engine 48 is cool, the flow control valve 42 directs the coolant through the branch duct 50 .
  • the flow control valve 42 directs the coolant through the supply duct 54 to the radiator 46 , where the coolant is cooled.
  • One or more cooling fans 40 coupled to the water-cooled fan drive 34 blow cool air on the radiator to cool the engine coolant.
  • Cooling systems such as in FIG. 1 suffer from insufficient idle and peak air-cooling, poor fan efficiencies, no or inadequate fan drive pulley ratios, and/or poor fan orientation relative to radiators. This is especially true in truck systems.
  • a cooling system 59 is depicted in which an additional auxiliary pulley 62 is mounted in front of and concentrically to a crankshaft 64 .
  • This auxiliary pulley 62 is bearing mounted to the crankshaft 64 and a transfer drive mechanism 66 which transfers torque to a radiator mounted fan 68 .
  • a fan support 70 is placed behind the fan 68 with a bearings 72 to fix the fan 68 to a dished hub 76 of the radiator 78 . It is believed that the fan 68 will have better airflow to the radiator 78 when the fan support 70 is between the radiator 78 and the fan 68 .
  • the transfer drive mechanism 66 is in the form of a flexible link such as a u-joint.
  • crankshaft 64 rotates at a rate equal to the engine speed.
  • a crankshaft pulley 80 is mounted concentrically to the crankshaft 64 behind the auxiliary pulley 62 rotates in response to the crankshaft 64 , which in turn causes a belt 82 coupled to the crankshaft pulley 80 to rotate.
  • This belt 82 is coupled with a fan drive pulley 84 of the water-cooled drive mechanism 81 . As best seen in FIG.
  • the water-cooled drive mechanism 81 essentially consists of the fan drive pulley 84 , a water pump drive shaft 86 coupled to the fan drive pulley 84 , a clutch 90 , and an impeller 87 coupled to the clutch 90 .
  • the rotation of the fan drive pulley 84 drives a water pump shaft 86 coupled to the pulley 84 to drive the impeller 87 to provide flow of engine coolant from the radiator 78 to the engine block (not shown) through the water-cooled drive mechanism 81 within the cooling system 59 .
  • viscous fluid typically a silicone-based fluid
  • a working chamber 88 between the pulley 84 and a clutch 90 is sheared, typically by grooves 92 , 94 contained on the pulley 84 and clutch 90 .
  • This shearing causes the clutch 90 to rotate, producing torque proportional to the amount of slip (generally torque increases as a square of the rpm of the input member) to drive a fan drive shaft 85 that is coupled to the clutch 90 .
  • torque proportional to the amount of slip generally torque increases as a square of the rpm of the input member
  • heat that is generated by the shearing action of the viscous fluid in proportion to the amount of torque generated is dissipated by the engine coolant contained within the impeller chamber 91 that is defined between the clutch 90 and the outer housing 93 of the water-cooled drive mechanism 81 .
  • a second fan drive pulley 87 rotates in response to the fan drive shaft 85 rotation, which causes a belt 88 coupled to this second fan drive pulley 87 to turn.
  • the rotational speed of the transfer drive mechanism 66 may be adjusted by varying the size (diameter) of the crankshaft pulley 80 relative to the auxiliary pulley 62 .
  • this pulley size ratio is approximately 1.5/1.
  • the time necessary for a complete revolution of the auxiliary pulley 62 decreases, resulting in the speed of rotation of the transfer drive mechanism 66 increasing. This in turn increases the rotational speed of the fan 68 , which results in more airflow for cooling of engine coolant within the radiator 78 .
  • the rotational speed of the transfer drive mechanism 66 may be adjusted by varying the size of the crankshaft pulley 80 relative to the fan drive pulley 84 , by adjusting the size of the fan drive pulley 84 to the auxiliary pulley 62 , or by adjusting the size of the crankshaft pulley 80 relative to the second fan pulley 87 .
  • a second smaller fan (not shown) could be mounted within the large fan 68 .
  • the smaller fan could be used as a “hub” and actually be built within the large fan 68 .
  • the pair of auxiliary pulleys 102 , 104 are mounted to the shroud 106 of a radiator 108 using bearings (not shown) as compared to being bearing mounted on the crankshaft 64 and coupled to the water-cooled drive mechanism 81 as in FIG. 2.
  • Auxiliary pulley 102 is coupled to the fan 114 via a transfer drive mechanism 116 which transfers torque to a shroud mounted fan 114 .
  • Transfer drive mechanism 116 is also bearing mounted to the shroud 106 .
  • Second fan drive pulley 104 is coupled with a fan drive pulley 120 of the water-cooled mechanism 122 by a second transfer drive mechanism 124 .
  • the second transfer drive mechanism 124 is in the form of a flexible link such as a u-joint.
  • crankshaft 128 When an internal combustion engine (not shown) is running, the crankshaft 128 rotates at a rate equal to the engine speed.
  • a crankshaft pulley 130 is mounted concentrically to the crankshaft 128 and rotates in response to the crankshaft 128 , which in turn causes a belt 132 coupled to the crankshaft pulley 130 to rotate.
  • This belt 132 is coupled with the fan drive pulley 120 of the water-cooled drive mechanism 122 .
  • the water-cooled drive mechanism 122 essentially consists of the fan drive pulley 120 , a water pump drive shaft 134 coupled to the fan drive pulley 120 , a clutch 136 , and an impeller 138 coupled to the clutch 136 .
  • the rotation of the fan drive pulley 120 drives a water pump shaft 134 coupled to the fan drive pulley 120 to drive the impeller 138 to provide flow of engine coolant from the radiator 108 to the engine block (not shown) through the water-cooled drive mechanism 122 within the cooling system.
  • the rotation of the clutch 136 itself could drive the impellers 138 to provide flow of engine coolant through the cooling system.
  • viscous fluid typically a silicone-based fluid
  • a working chamber 140 between the fan drive pulley 120 and a clutch 136
  • This shearing causes the clutch 136 to rotate, producing torque proportional to the amount of slip (generally torque increases as a square of the rpm of the input member) to drive a transfer drive mechanism 124 that is coupled to the clutch 136 .
  • torque proportional to the amount of slip generally torque increases as a square of the rpm of the input member
  • heat that is generated by the shearing action of the viscous fluid in proportion to the amount of torque generated is dissipated by the engine coolant contained within the impeller chamber 146 that is defined between the clutch 136 and the outer housing 148 of the water-cooled drive mechanism 122 .
  • second fan drive pulley 104 coupled to the second transfer drive mechanism 124 rotates in response to the second transfer drive mechanism 124 rotation, which causes a belt 126 coupled to this second fan drive pulley 104 to turn.
  • the rotational speed of the transfer drive mechanism 116 may be adjusted by varying the size of the crankshaft pulley 130 relative to the auxiliary pulley 102 .
  • this pulley size ratio is approximately 1.5/1.
  • the time necessary for a complete revolution of the auxiliary pulley 102 decreases, resulting in the speed of rotation of the transfer drive mechanism 116 increasing. This in turn increases the rotational speed of the fan 114 , which results in more airflow for cooling of engine coolant within the radiator 108 .
  • the rotational speed of the transfer drive mechanism 116 may be adjusted by varying the size of the crankshaft pulley 130 relative to the fan drive pulley 120 , by varying the size of the second fan drive pulley 104 relative to the auxiliary pulley 102 , or by varying the size of the crankshaft pulley 130 relative to the second fan drive pulley 104 .
  • a second smaller fan (not shown) could be mounted within the large fan 114 .
  • the smaller fan could be used as a “hub” and actually be built within the large fan 114 .
  • the above invention offers many improvements over currently available fan cooling systems.
  • larger overdrive ratios i.e. pulley ratios
  • the efficiency of the fan is improved due to tight fan blade tip to shroud clearance and better fan orientation to the radiator.
  • the efficiency of cooling can be improved further by mounting a second smaller fan to the transfer drive mechanism to create larger effective fan area.
  • water-cooled viscous couplings could add a second set of additional pulleys to create a second drive mechanism and still fall within the spirit of the invention.
  • a viscous coupling having a water jacket could be coupled to a water pump to dissipate the heat buildup created by slippage between the fan drive pulley and the clutch, instead of combining the viscous coupling with the water pump into a water-cooled drive mechanism as in FIGS. 2 and 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

A water-cooled remote fan assembly 59, 100 having an extra pulley set mounted between a water drive mechanism 81, 122 and a cooling fan 68, 114 for creating a second overdrive mechanism used to increase the rotational speed of the fan 68, 114 relative to the engine input speed. This provides the pulley-driven engine cooling system with improved cooling capabilities at low engine speeds. By decreasing the radius of one of the pair of auxiliary pulleys 62, 102, 87, 104 mounted to a transfer drive mechanism 66, 116 relative to the radius of a crankshaft pulley 80, 130, the transfer drive mechanism 66, 116 can rotate at a faster rate than the crankshaft pulley 80, 130. One or both of the pair of auxiliary pulleys 102, 104 may be mounted on a shroud 106 of the radiator 108 to provide better fan orientation and higher efficiencies for fan performance.

Description

    TECHNICAL FIELD
  • The invention relates generally to cooling systems and more specifically to water-cooled remote fan drives. [0001]
  • BACKGROUND ART
  • Cooling systems are used on vehicles today to provide cooling to an engine during operation. Fan drives are typically driven by the engine crankshaft at a fixed ratio to cool engine coolant as it flows through a radiator. Thus, as the engine speed is reduced, as is the trend in vehicles today to reduce emissions, the fan drive speed is correspondingly reduced. Similarly, as the engine speed increases, the fan drive speed correspondingly increases. [0002]
  • Many cooling systems, for example truck cooling systems, suffer from inefficient or insufficient cooling capabilities. For example, many cooling systems suffer from insufficient idle and peak air cooling, poor fan efficiencies, no or inadequate fan drive pulley ratios, and/or poor fan orientation relative to radiators. [0003]
  • It is thus highly desirable to create extra overdrive in a cooling system to improve the cooling capabilities of cooling systems to overcome some of the above described prior art deficiencies. The proposed system should be able to be used with currently available engine and radiator locations, should allow a minimum radial displacement between an engine and a radiator, should allow for axial motion of the engine, should maximize fan size within a predetermined packaging volume, and have a predetermined torque capability for driving the fan. [0004]
  • SUMMARY OF THE INVENTION
  • The above and other objects of the invention are met by the present invention that is an improvement over known fan drive systems. [0005]
  • The present invention incorporates an additional pulley that is either mounted on the shroud of the radiator or mounted to the front of the water pump and crank pulleys. This additional pulley is sized smaller than the crank pulley to create extra overdrive. This allows the fan to rotate at a faster speed, which improves the cooling efficiency of the radiator. Further, these remote fan drives are water-cooled by making them integral to the water pump or by coupling them to the water pump to improve heat dissipation and reduce weight and packaging size. In an alternative arrangement, more than one additional pulley may be added. [0006]
  • Further, in the case of the fan mounted on the shroud, this system provides a shroud mounted fan with high efficiencies due to tight blade tip clearance, ideal fan orientation, and large overdrive ratio options because of water-cooled heat dissipation. Also, there is the potential for using dual fans in these systems, which could also improve fan efficiency and fan orientation. [0007]
  • Other features, benefits and advantages of the present invention will become apparent from the following description of the invention, when viewed in accordance with the attached drawings and appended claims.[0008]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic representation of a cooling system according to the prior art; [0009]
  • FIG. 2 is a cooling system having an auxiliary pulley set according to one embodiment of the present invention; [0010]
  • FIG. 2A is a section view of the water-cooled drive mechanism of FIG. 2; [0011]
  • FIG. 3 is a cooling system having an auxiliary pulley set mounted to the shroud of a radiator according to another embodiment of the present invention; and [0012]
  • FIG. 3A is a section view of the water-cooled drive mechanism of FIG. 3. [0013]
  • BEST MODE(S) FOR CARRYING OUT THE INVENTION
  • Referring now to FIG. 1, a [0014] vehicle 10 is illustrated having a cooling system 12 according to one embodiment in the prior art. The cooling system 12 depicted has a powertrain control module 20, a computer control harness 22, a check engine lamp driver 24, a cylinder head temperature sensor 26, a check engine light 28, a vehicle speed sensor 30, a fuse panel 32, an integrated water pump/fan drive, commonly called a water cooled fan drive 34, an engine coolant sensor 36, an ambient temperature sensor 38, one or more cooling fans 40, a flow control valve 42, a throttle position sensor 44, and a radiator 46.
  • In operation, when an [0015] internal combustion engine 48 is started, coolant (not shown) enters the water-cooled fan drive 34 through a branch duct 50 from the radiator 46. Coolant is then pumped out of the water-cooled fan drive 34 through a return duct 52 and into the cooling passages (not shown) of the engine 48. The coolant flows through the engine to the flow control valve 42. Coolant will then flow back to the radiator 46 through the supply duct 54 or be bypassed through the branch duct 50 depending upon the engine coolant temperature as determined by the engine coolant temperature sensor 36. When the engine 48 is cool, the flow control valve 42 directs the coolant through the branch duct 50. If the engine 48 is warm, the flow control valve 42 directs the coolant through the supply duct 54 to the radiator 46, where the coolant is cooled. One or more cooling fans 40 coupled to the water-cooled fan drive 34 blow cool air on the radiator to cool the engine coolant.
  • Cooling systems such as in FIG. 1 suffer from insufficient idle and peak air-cooling, poor fan efficiencies, no or inadequate fan drive pulley ratios, and/or poor fan orientation relative to radiators. This is especially true in truck systems. [0016]
  • To remedy some of these problems, in one preferred embodiment, as shown in FIGS. 2 and 2A, a [0017] cooling system 59 is depicted in which an additional auxiliary pulley 62 is mounted in front of and concentrically to a crankshaft 64. This auxiliary pulley 62 is bearing mounted to the crankshaft 64 and a transfer drive mechanism 66 which transfers torque to a radiator mounted fan 68. A fan support 70 is placed behind the fan 68 with a bearings 72 to fix the fan 68 to a dished hub 76 of the radiator 78. It is believed that the fan 68 will have better airflow to the radiator 78 when the fan support 70 is between the radiator 78 and the fan 68. In this embodiment, the transfer drive mechanism 66 is in the form of a flexible link such as a u-joint.
  • When an internal combustion engine (not shown) is running, the [0018] crankshaft 64 rotates at a rate equal to the engine speed. A crankshaft pulley 80 is mounted concentrically to the crankshaft 64 behind the auxiliary pulley 62 rotates in response to the crankshaft 64, which in turn causes a belt 82 coupled to the crankshaft pulley 80 to rotate. This belt 82 is coupled with a fan drive pulley 84 of the water-cooled drive mechanism 81. As best seen in FIG. 2A, the water-cooled drive mechanism 81 essentially consists of the fan drive pulley 84, a water pump drive shaft 86 coupled to the fan drive pulley 84, a clutch 90, and an impeller 87 coupled to the clutch 90. The rotation of the fan drive pulley 84 drives a water pump shaft 86 coupled to the pulley 84 to drive the impeller 87 to provide flow of engine coolant from the radiator 78 to the engine block (not shown) through the water-cooled drive mechanism 81 within the cooling system 59.
  • As the [0019] fan drive pulley 84 rotates, viscous fluid, typically a silicone-based fluid, sealed within a working chamber 88 between the pulley 84 and a clutch 90, is sheared, typically by grooves 92, 94 contained on the pulley 84 and clutch 90. This shearing causes the clutch 90 to rotate, producing torque proportional to the amount of slip (generally torque increases as a square of the rpm of the input member) to drive a fan drive shaft 85 that is coupled to the clutch 90. At low speeds, little torque is produced. At higher speeds, lots of torque is produced. In addition, heat that is generated by the shearing action of the viscous fluid in proportion to the amount of torque generated is dissipated by the engine coolant contained within the impeller chamber 91 that is defined between the clutch 90 and the outer housing 93 of the water-cooled drive mechanism 81.
  • Referring back to FIG. 2, a second [0020] fan drive pulley 87 rotates in response to the fan drive shaft 85 rotation, which causes a belt 88 coupled to this second fan drive pulley 87 to turn. This in turn causes the auxiliary pulley 62, which is coupled to the belt 88, to rotate, which in turn causes the transfer drive mechanism 66 to transfer torque to the fan 68, thereby causing the fan 68 to spin and cool the radiator 78.
  • The rotational speed of the [0021] transfer drive mechanism 66, and correspondingly the rotational speed of the fan 68, may be adjusted by varying the size (diameter) of the crankshaft pulley 80 relative to the auxiliary pulley 62. In a preferred embodiment, this pulley size ratio is approximately 1.5/1. As the auxiliary pulley 62 is made smaller, the time necessary for a complete revolution of the auxiliary pulley 62 decreases, resulting in the speed of rotation of the transfer drive mechanism 66 increasing. This in turn increases the rotational speed of the fan 68, which results in more airflow for cooling of engine coolant within the radiator 78.
  • Similarly, the rotational speed of the [0022] transfer drive mechanism 66, and correspondingly the rotational speed of the fan 68, may be adjusted by varying the size of the crankshaft pulley 80 relative to the fan drive pulley 84, by adjusting the size of the fan drive pulley 84 to the auxiliary pulley 62, or by adjusting the size of the crankshaft pulley 80 relative to the second fan pulley 87.
  • To improve the fan effective surface area available for cooling the engine coolant, a second smaller fan (not shown) could be mounted within the [0023] large fan 68. Alternatively, the smaller fan could be used as a “hub” and actually be built within the large fan 68.
  • In another preferred embodiment of the water cooled remote fan drive [0024] 100, as shown in FIGS. 3 and 3A, the pair of auxiliary pulleys 102, 104 are mounted to the shroud 106 of a radiator 108 using bearings (not shown) as compared to being bearing mounted on the crankshaft 64 and coupled to the water-cooled drive mechanism 81 as in FIG. 2.
  • [0025] Auxiliary pulley 102 is coupled to the fan 114 via a transfer drive mechanism 116 which transfers torque to a shroud mounted fan 114. Transfer drive mechanism 116 is also bearing mounted to the shroud 106.
  • Second fan drive [0026] pulley 104 is coupled with a fan drive pulley 120 of the water-cooled mechanism 122 by a second transfer drive mechanism 124. In this embodiment, the second transfer drive mechanism 124 is in the form of a flexible link such as a u-joint.
  • When an internal combustion engine (not shown) is running, the [0027] crankshaft 128 rotates at a rate equal to the engine speed. A crankshaft pulley 130 is mounted concentrically to the crankshaft 128 and rotates in response to the crankshaft 128, which in turn causes a belt 132 coupled to the crankshaft pulley 130 to rotate. This belt 132 is coupled with the fan drive pulley 120 of the water-cooled drive mechanism 122. As best seen in FIG. 3A, the water-cooled drive mechanism 122 essentially consists of the fan drive pulley 120, a water pump drive shaft 134 coupled to the fan drive pulley 120, a clutch 136, and an impeller 138 coupled to the clutch 136. The rotation of the fan drive pulley 120 drives a water pump shaft 134 coupled to the fan drive pulley 120 to drive the impeller 138 to provide flow of engine coolant from the radiator 108 to the engine block (not shown) through the water-cooled drive mechanism 122 within the cooling system. Of course, in alternative embodiments as are known in the art, the rotation of the clutch 136 itself could drive the impellers 138 to provide flow of engine coolant through the cooling system.
  • As the fan drive [0028] pulley 120 rotates, viscous fluid, typically a silicone-based fluid, sealed within a working chamber 140 between the fan drive pulley 120 and a clutch 136 is sheared, typically by grooves 142, 144 contained on the fan drive pulley 120 and clutch 136. This shearing causes the clutch 136 to rotate, producing torque proportional to the amount of slip (generally torque increases as a square of the rpm of the input member) to drive a transfer drive mechanism 124 that is coupled to the clutch 136. At low speeds, little torque is produced. At higher speeds, lots of torque is produced. In addition, heat that is generated by the shearing action of the viscous fluid in proportion to the amount of torque generated is dissipated by the engine coolant contained within the impeller chamber 146 that is defined between the clutch 136 and the outer housing 148 of the water-cooled drive mechanism 122.
  • Referring back to FIG. 3, second fan drive [0029] pulley 104 coupled to the second transfer drive mechanism 124 rotates in response to the second transfer drive mechanism 124 rotation, which causes a belt 126 coupled to this second fan drive pulley 104 to turn. This in turn causes the auxiliary pulley 102, which is also coupled to the belt 126, to rotate, which in turn causes the transfer drive mechanism 116 to transfer torque to the fan 114, thereby causing the fan 114 to spin and cool the radiator 108.
  • The rotational speed of the [0030] transfer drive mechanism 116, and correspondingly the rotational speed of the fan 114, may be adjusted by varying the size of the crankshaft pulley 130 relative to the auxiliary pulley 102. In a preferred embodiment, this pulley size ratio is approximately 1.5/1. As the auxiliary pulley 102 is made smaller, the time necessary for a complete revolution of the auxiliary pulley 102 decreases, resulting in the speed of rotation of the transfer drive mechanism 116 increasing. This in turn increases the rotational speed of the fan 114, which results in more airflow for cooling of engine coolant within the radiator 108.
  • Similarly, the rotational speed of the [0031] transfer drive mechanism 116, and correspondingly the rotational speed of the fan 114, may be adjusted by varying the size of the crankshaft pulley 130 relative to the fan drive pulley 120, by varying the size of the second fan drive pulley 104 relative to the auxiliary pulley 102, or by varying the size of the crankshaft pulley 130 relative to the second fan drive pulley 104.
  • To improve the fan effective surface area available for cooling the engine coolant, a second smaller fan (not shown) could be mounted within the [0032] large fan 114. Alternatively, the smaller fan could be used as a “hub” and actually be built within the large fan 114.
  • The above invention offers many improvements over currently available fan cooling systems. First, the addition of a second pulley set creates a second overdrive mechanism, wherein this second overdrive mechanism increases the air cooling capabilities of the cooling system at lower engine speed or idle conditions by increasing the rotational speed of the fan relative to the input speed from the engine. Second, by integrating the fan drive into the water pump, heat dissipation of the fan drive mechanism is improved while decreasing packaging space and reducing weight. By water cooling the fan drive, larger overdrive ratios (i.e. pulley ratios) are possible to increase cooling efficiency without overheating the fan drive at high engine speeds. Third, by mounting the fan on the shroud of the radiator, the efficiency of the fan is improved due to tight fan blade tip to shroud clearance and better fan orientation to the radiator. Fourth, the efficiency of cooling can be improved further by mounting a second smaller fan to the transfer drive mechanism to create larger effective fan area. [0033]
  • Of course, in alternative embodiments as are known in the art, one of the possible many variations of water-cooled viscous couplings could add a second set of additional pulleys to create a second drive mechanism and still fall within the spirit of the invention. Also, for example, a viscous coupling having a water jacket could be coupled to a water pump to dissipate the heat buildup created by slippage between the fan drive pulley and the clutch, instead of combining the viscous coupling with the water pump into a water-cooled drive mechanism as in FIGS. 2 and 3. [0034]
  • While the invention has been described in terms of preferred embodiments, it will be understood, of course, that the invention is not limited thereto since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings. [0035]

Claims (20)

What is claimed is:
1. A water-cooled remote fan drive assembly 59, 100 comprising:
an engine crankshaft 64, 128 coupled to an engine, said engine having an engine block;
a radiator 78, 108 in fluid communication with said engine block;
a fan 68, 114 mounted on said radiator 78, 108;
a transfer drive mechanism 66, 116 coupled to said fan 68, 114;
a water-cooled drive mechanism 81, 122 having a fan drive pulley 84, 120, a clutch 90, 136, a working chamber 88, 140 defined between said fan drive pulley 84, 120 and said clutch 90, 136, a quantity of viscous fluid contained within said working chamber 88, 140, and an impeller 98, 138 contained within an impeller chamber 91, 146 coupled to said clutch 90, 136, said impeller chamber 91, 140 in fluid communication with said radiator 78, 108 and said engine block;
a second fan drive pulley 87, 104 coupled to said clutch 90, 136;
a crankshaft pulley 80, 130 mounted to said engine crankshaft 64, 128, said crankshaft pulley 80, 130 having a first radius;
a belt 82, 132 rotatably coupled to said crankshaft pulley 80, 130 and said fan drive pulley 84, 120;
an auxiliary pulley 62, 102 coupled to said transfer drive mechanism 66, 116 having a second radius, wherein said first radius and said second radius are sized to create a second overdrive mechanism to provide a desired rotational speed of said fan 68, 114 relative to engine speed; and
a second belt 88, 126 rotatably coupled to said auxiliary pulley 62, 102 and said second fan drive pulley 87, 104.
2. The water-cooled remote fan drive assembly 59, 100 of claim 1, wherein said desired rotational speed of said fan 68, 114 is a function of a desired cooling rate for engine coolant within said radiator 78, 108 at low engine speeds or engine idle speeds.
3. The water-cooled remote fan drive assembly 59 of claim 1, wherein said auxiliary pulley 62 is bearing supported on said crankshaft 64 and wherein said second drive pulley 87 is coupled to said clutch 90 via a fan drive shaft 85.
4. The water-cooled remote fan drive assembly 100 of claim 1, wherein said second fan pulley 104 is bearing 118 mounted to a shroud 106 of said radiator 108 and coupled to said clutch 136 via a second transfer drive mechanism 124 and wherein said auxiliary pulley 102 is bearing mounted on said shroud 106.
5. The water-cooled remote fan drive assembly 59 of claim 3, wherein said first radius is approximately twice said second radius.
6. The water-cooled remote fan drive assembly 100 of claim 4, wherein said first radius is approximately twice said second radius.
7. A method for improving cooling capabilities at low engine speeds or engine idle conditions in a pulley-driven cooling system 59, 81, wherein the pulley-driven cooling system having a radiator 78, 108, a fan 68, 114 for cooling the radiator 78, 108, a water-cooled drive mechanism 81, 122 for rotating the fan 68, 114, and a crankshaft pulley 80, 130 coupled to a crankshaft 64, 128 of an engine for rotating the fan drive at a speed proportional to engine speed, the method comprising the step of:
coupling a second overdrive mechanism between the water-cooled drive mechanism 81, 122 and the fan 68, 114 to increase the rotational speed of a fan 68, 114 relative to the speed of the engine.
8. The method of claim 7, wherein the step of coupling a second overdrive mechanism to the pulley-driven cooling system comprises the step of coupling a second pulley set between the water-cooled drive mechanism 81, 122 and the fan 68, 114, said second pulley set comprising a second fan drive pulley 87, 104 and an auxiliary pulley 62,102, wherein a radius of said auxiliary pulley 62, 102 is sized smaller than the crankshaft pulley 80, 130 radius to create extra overdrive to drive the fan 68, 114 at an increased rotational speed relative to the speed on the engine.
9. The method of claim 8, wherein said radius of said auxiliary pulley 62, 102 is approximately one-half the radius of the crankshaft pulley 80, 130.
10. The method of claim 8, wherein said auxiliary pulley 62 is bearing mounted on the crankshaft 64 and said second fan drive pulley 87 is coupled to a fan drive shaft 85, said fan drive shaft 85 being coupled with a clutch 90 of the water-cooled drive mechanism 81.
11. The method of claim 8, wherein said auxiliary pulley 102 and said second fan drive pulley 104 are bearing mounted on a shroud 106 of said radiator 108, wherein said second fan drive pulley 104 is coupled with a clutch 136 of the water-cooled mechanism 122 by a second transfer drive mechanism 124.
12. The method of claim 7 further comprising the step of mounting a smaller fan within the fan 68, 114, wherein said smaller fan improves the effective surface area available for cooling said radiator 78, 108.
13. A remote fan drive assembly 59, 100 comprising:
an engine crankshaft 64, 128 coupled to an engine, said engine having an engine block;
a radiator 78, 108 in fluid communication with said engine block;
a fan 68, 114 mounted on said radiator 78, 108;
a transfer drive mechanism 66, 116 coupled to said fan 68, 114;
a water-cooled drive mechanism 81, 122 having a fan drive pulley 84, 120, said water-cooled drive mechanism 81, 122 in fluid communication between said radiator 78, 108 and said engine block;
a second fan drive pulley 87, 104 coupled to said water-cooled drive mechanism 81, 122;
a crankshaft pulley 80, 130 mounted to said engine crankshaft 64, 128, said crankshaft pulley 80, 130 having a first radius;
a belt 88, 132 rotatably coupled to said crankshaft pulley 80, 130 and said fan drive pulley 84, 120;
an auxiliary pulley 62, 102 coupled to said transfer drive mechanism 66, 116 having a second radius, wherein said first radius and said second radius are sized to create a second overdrive mechanism to provide a desired rotational speed of said fan 68, 114 relative to engine speed; and
a second belt 88, 126 rotatably coupled to said auxiliary pulley 62, 102 and said second fan drive pulley 87, 104.
14. The remote fan drive assembly 59 of claim 13, wherein said second fan drive pulley 87 is integral with said water-cooled drive mechanism 81.
15. The remote fan drive assembly 100 of claim 13, wherein said second fan drive pulley 104 is coupled to said water-cooled drive mechanism 122 using a second transfer drive mechanism 124.
16. The remote fan drive assembly of claim 13, wherein said water-cooled drive mechanism 81, 122 comprises a water jacket-cooled viscous coupling coupled to a water pump, said water pump in fluid communication with said radiator 78, 108 and said engine block.
17. The remote fan drive assembly of claim 13, wherein said water-cooled drive mechanism 81, 122 comprises a fan drive pulley 84, 120, a clutch 90, 136, a working chamber 88, 140 defined between said fan drive pulley 84, 120 and said clutch 90, 136, a quantity of viscous fluid contained within said working chamber 88, 140, and an impeller 98, 138 contained within an impeller chamber 91, 146 coupled to said clutch 90, 136, said impeller chamber 91, 146 in fluid communication with said radiator 78, 108 and said engine block.
18. The water-cooled remote fan drive assembly 59 of claim 14, wherein said auxiliary pulley 62 is bearing supported on said crankshaft 64 and wherein said second drive pulley 87 is coupled to said clutch 90 via a fan drive shaft 85.
19. The water-cooled remote fan drive assembly 100 of claim 15, wherein said second fan pulley 104 is bearing mounted to a shroud 106 of said radiator 108 and coupled to said clutch 136 via a second transfer drive mechanism 124 and wherein said auxiliary pulley 102 is bearing mounted on said shroud 106.
20. The water-cooled remote fan drive assembly 59, 100 of claim 13, wherein said first radius is approximately twice said second radius.
US09/768,902 2001-01-24 2001-01-24 Water-cooled remote fan drive Expired - Lifetime US6439172B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/768,902 US6439172B1 (en) 2001-01-24 2001-01-24 Water-cooled remote fan drive
EP01309565A EP1227226B1 (en) 2001-01-24 2001-11-13 Water-cooled remote fan drive
DE60120629T DE60120629T2 (en) 2001-01-24 2001-11-13 Water cooled fan drive
JP2002012725A JP4124596B2 (en) 2001-01-24 2002-01-22 Water-cooled remote control fan drive assembly and method for improving its cooling capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/768,902 US6439172B1 (en) 2001-01-24 2001-01-24 Water-cooled remote fan drive

Publications (2)

Publication Number Publication Date
US20020096133A1 true US20020096133A1 (en) 2002-07-25
US6439172B1 US6439172B1 (en) 2002-08-27

Family

ID=25083823

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/768,902 Expired - Lifetime US6439172B1 (en) 2001-01-24 2001-01-24 Water-cooled remote fan drive

Country Status (4)

Country Link
US (1) US6439172B1 (en)
EP (1) EP1227226B1 (en)
JP (1) JP4124596B2 (en)
DE (1) DE60120629T2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120288377A1 (en) * 2011-05-12 2012-11-15 Cnh America Llc Engine cooling fan speed control system
US20120328454A1 (en) * 2009-10-17 2012-12-27 Borgwarner Inc. Hybrid fan drive with cvt and electric motor
US20140031156A1 (en) * 2011-04-11 2014-01-30 Litens Automotive Partnership Multi-speed drive for transferring power to a load
CN104153867A (en) * 2014-07-29 2014-11-19 北京福田戴姆勒汽车有限公司 Engine component and automobile with same
US20180162217A1 (en) * 2015-05-19 2018-06-14 Horton, Inc. Angled Torque Transmission System and Method
CN109080646A (en) * 2018-07-27 2018-12-25 中车大连机车研究所有限公司 A kind of shunter electric transmission power pouring-basket cooling system
US20190118611A1 (en) * 2017-10-19 2019-04-25 B & D Technologies, LLC Air conditioning system for use with unenclosed mowers
RU2699159C1 (en) * 2018-08-31 2019-09-03 Открытое акционерное общество "БЕЛАЗ" - управляющая компания холдинга "БЕЛАЗ-ХОЛДИНГ" Internal combustion engine cooling system
CN114434844A (en) * 2022-01-28 2022-05-06 软控股份有限公司 Mechanical drum turning device and mechanical drum
CN115045747A (en) * 2022-06-01 2022-09-13 中国第一汽车股份有限公司 Mechanical fan cooling system for vehicle, control method and vehicle

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659198U (en) * 1993-01-29 1994-08-16 ブリヂストンサイクル株式会社 Locking mechanism for folding bicycle frame
US7234433B2 (en) * 2003-05-22 2007-06-26 Electromechanical Research Laboratories, Inc. Cylinder sleeve support for an internal combustion engine
US6766774B1 (en) * 2003-06-18 2004-07-27 General Motors Corporation Cooling module with axial blower and pressure regulated cross-flow fan
ITMI20042530A1 (en) * 2004-12-28 2005-03-28 Baruffaldi Spa MOTION TRANSMISSION DEVICE FOR COOLING FANS COAXIALLY PROVIDED TO THE AXIS OF THE VEHICLE MOTOR SHAFT
EP1683948A3 (en) 2004-12-28 2008-07-02 Baruffaldi S.p.A. Device for transmitting the movement to fans, in particular of vehicles
ITMI20050056U1 (en) * 2005-01-26 2006-08-27 Foussianes Nicholas B MOTION TRANSMISSION DEVICE FOR ROTATION TO A SHAFT DRIVEN SHAFT FOR FLUID RECIRCULATION PUMPS
US7597070B2 (en) * 2008-02-06 2009-10-06 Ford Global Technologies, Llc Dual drive radiator fan and coolant pump system for an internal combustion engine
US8851028B2 (en) * 2008-03-12 2014-10-07 Borg Warner Inc. Cooling system for clutch
GB2466488B (en) * 2008-12-23 2013-05-22 Leyland Trucks Ltd Internal combustion engine cooling fan drive train
US9976558B2 (en) * 2015-02-26 2018-05-22 Hewlett-Packard Development Company, L.P. Fan module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272188A (en) 1964-03-02 1966-09-13 Eaton Mfg Co Combination fan and water pump drive
US3444748A (en) 1967-02-01 1969-05-20 Eaton Yale & Towne Drive mechanism
US3845666A (en) 1972-10-02 1974-11-05 Fmc Corp Multi-speed motion transmitting mechanism
DE2931305A1 (en) 1979-08-01 1981-02-19 Maschf Augsburg Nuernberg Ag Radiator fan for large IC engine - has thermostatically controlled mechanical two speed drive for efficient temp. regulation
DE3440428A1 (en) 1983-11-17 1985-05-30 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen TEMPERATURE CONTROLLED FAN DRIVE FOR MACHINES WITH HIGH PERFORMANCE
DE4335342B4 (en) 1993-10-16 2004-10-28 Behr Gmbh & Co. Kg Fluid friction clutch with cooling by a liquid coolant
US5871412A (en) * 1997-02-04 1999-02-16 Behr America, Inc. Technical field
US6021747A (en) 1998-02-16 2000-02-08 Eaton Corporation Water cooled viscous fan drive

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120328454A1 (en) * 2009-10-17 2012-12-27 Borgwarner Inc. Hybrid fan drive with cvt and electric motor
US9181850B2 (en) * 2009-10-17 2015-11-10 Borgwarner Inc. Hybrid fan drive with CVT and electric motor
US20140031156A1 (en) * 2011-04-11 2014-01-30 Litens Automotive Partnership Multi-speed drive for transferring power to a load
US9169904B2 (en) * 2011-04-11 2015-10-27 Litens Automotive Partnership Multi-speed drive for transferring power to a load
US20120288377A1 (en) * 2011-05-12 2012-11-15 Cnh America Llc Engine cooling fan speed control system
US8714116B2 (en) * 2011-05-12 2014-05-06 Cnh Industrial America Llc Engine cooling fan speed control system
CN104153867A (en) * 2014-07-29 2014-11-19 北京福田戴姆勒汽车有限公司 Engine component and automobile with same
CN104153867B (en) * 2014-07-29 2016-10-19 北京福田戴姆勒汽车有限公司 Engine pack and the automobile with it
US20180162217A1 (en) * 2015-05-19 2018-06-14 Horton, Inc. Angled Torque Transmission System and Method
US10589619B2 (en) * 2015-05-19 2020-03-17 Horton, Inc. Angled torque transmission system and method
US20190118611A1 (en) * 2017-10-19 2019-04-25 B & D Technologies, LLC Air conditioning system for use with unenclosed mowers
US11052723B2 (en) * 2017-10-19 2021-07-06 B & D Technologies, LLC Air conditioning system for use with unenclosed mowers
CN109080646A (en) * 2018-07-27 2018-12-25 中车大连机车研究所有限公司 A kind of shunter electric transmission power pouring-basket cooling system
WO2020019455A1 (en) * 2018-07-27 2020-01-30 中车大连机车研究所有限公司 Electric transmission power pack cooling system for switch engine
RU2699159C1 (en) * 2018-08-31 2019-09-03 Открытое акционерное общество "БЕЛАЗ" - управляющая компания холдинга "БЕЛАЗ-ХОЛДИНГ" Internal combustion engine cooling system
CN114434844A (en) * 2022-01-28 2022-05-06 软控股份有限公司 Mechanical drum turning device and mechanical drum
CN115045747A (en) * 2022-06-01 2022-09-13 中国第一汽车股份有限公司 Mechanical fan cooling system for vehicle, control method and vehicle

Also Published As

Publication number Publication date
EP1227226B1 (en) 2006-06-14
JP2002309938A (en) 2002-10-23
US6439172B1 (en) 2002-08-27
JP4124596B2 (en) 2008-07-23
DE60120629T2 (en) 2006-10-19
EP1227226A1 (en) 2002-07-31
DE60120629D1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
US6439172B1 (en) Water-cooled remote fan drive
US6561770B2 (en) Engine water pump with temperature responsive drive
US7331437B2 (en) Friction clutch assembly having a spiral snap ring friction liner retention device
JP2009503364A (en) Coolant pump for internal combustion engine
US6644933B2 (en) Water pump with electronically controlled viscous coupling drive
US6543396B2 (en) Electronically controlled magnetorheological fluid based cooling fan drive assembly
EP1211398B1 (en) Water pump driven by viscous coupling
US4153389A (en) Fan-fan drive assembly
US8336692B2 (en) Fan drive
US5617817A (en) Fan drive with a fluid-friction clutch
US20060021843A1 (en) Clutchless viscous fan drive wherein input member serves as the body and the cover carries seal
US6725813B1 (en) Temperature-controlled variable speed water pump
US6070560A (en) Cooling fan system for a motor vehicle
US7100544B1 (en) Pneumatic cone clutch fan drive having threaded attachment method for drive shaft of clutch to hub mounting
JPS606600Y2 (en) Fluid coupling device for engine cooling system
US5899176A (en) Apparatus for reducing engine fan noise
CN218780408U (en) Water pump integrated with silicone oil fan, V-shaped engine and vehicle
KR100411040B1 (en) Water pump for vehicle
KR100264172B1 (en) Fluid fan clutch
JPH0728261U (en) Transmission oil cooling system
JPH09287452A (en) Radiator cooling system
JP2513322Y2 (en) Water pump structure
JPH0732959Y2 (en) Coupling fan
JP2002115547A (en) Driving gear of cooler for engine
KR19980059824A (en) Car water pump

Legal Events

Date Code Title Description
AS Assignment

Owner name: BORG WARNER, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCGOVEM, KEVIN M.;STRETCH, DALE A.;MUEHLBACH, GUENTHER F.;REEL/FRAME:011673/0868;SIGNING DATES FROM 20010320 TO 20010326

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12