US20020070388A1 - Lateral polysilicon pin diode and method for so fabricating - Google Patents
Lateral polysilicon pin diode and method for so fabricating Download PDFInfo
- Publication number
- US20020070388A1 US20020070388A1 US09/734,624 US73462400A US2002070388A1 US 20020070388 A1 US20020070388 A1 US 20020070388A1 US 73462400 A US73462400 A US 73462400A US 2002070388 A1 US2002070388 A1 US 2002070388A1
- Authority
- US
- United States
- Prior art keywords
- pin diode
- lateral pin
- diode according
- forming
- polysilicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 229910021420 polycrystalline silicon Inorganic materials 0.000 title claims description 43
- 229920005591 polysilicon Polymers 0.000 title claims description 42
- 238000002955 isolation Methods 0.000 claims description 29
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 25
- 239000004065 semiconductor Substances 0.000 claims description 25
- 229910052710 silicon Inorganic materials 0.000 claims description 25
- 239000010703 silicon Substances 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 19
- 239000007943 implant Substances 0.000 claims description 18
- 230000000873 masking effect Effects 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 5
- 238000000059 patterning Methods 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 2
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- 238000000407 epitaxy Methods 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 claims 2
- 239000004020 conductor Substances 0.000 claims 1
- 239000003989 dielectric material Substances 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 229910000577 Silicon-germanium Inorganic materials 0.000 abstract description 3
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 6
- 238000002161 passivation Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 238000002513 implantation Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 210000000746 body region Anatomy 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000000348 solid-phase epitaxy Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/868—PIN diodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Definitions
- the present invention relates to PIN diodes and particularly a diode structure wherein the various conductive regions are laterally disposed.
- Electronic switches are key for a large variety of applications, in particular, the very high volume consumer wireless 1-2 GHz market where they serve to switch the antenna in a mobile phone between receive and transmit circuits.
- a good switch must possess several important properties. First, the resistance should be low when the switch is on. Second, the isolation should be good when the switch is off. Finally, the switch should be able to handle a signal of sufficient strength without distorting it (i.e. without the signal itself causing the switch to turn further on or off compared to its initial state).
- PIN diode which consists of an intrinsic or “I” region sandwiched between P and N regions.
- I region When this diode is reverse biased (P region at a negative voltage compared with the N region), the switch is off. When the diode is forward biased, the switch turns on.
- a great deal of charge gets stored in the “I” region of the device. This charge serves two purposes—it helps reduce the resistance of the switch, and, since the charge must be removed to turn the switch off, it slows down the speed at which the switch can go from on to off. This is important because it means that high-frequency signals passing through the switch won't influence the on/off state of the switch itself (i.e.
- volume of stored charge is related to two numbers—the volume of the I region, and the lifetime of carriers in the I region.
- the current state of RF technologies tends to build all the transistors and other front-end-of-the-line devices in a thin epitaxial layer grown on top of a substrate.
- the current art limits the dimensions of the I region, and therefore the charge capacity of prior art, vertically-disposed PIN diodes, by the thickness of the epitaxial layer.
- the process commences with a substrate into which is implanted a heavily-doped N + subcollector layer.
- a thin, typically less than 1 micrometer, epitaxial layer is grown over the N + layer.
- the N+ layer diffuses upward leaving at most a 0.5 micrometer layer to comprise the I-region.
- the present invention provides an improved and novel lateral PIN diode structure that laterally extends the intrinsic region thereby extending the charge storage area.
- the present invention provides for reduced parasitic capacitance by placing the diode on an oxide layer.
- the present invention provides a lateral PIN diode comprising large-grained polysilicon and having an extended intrinsic region formed over thick oxide isolation.
- the present invention provides an extended charge storage, lateral PIN diode comprising a first semiconductor layer ( 1 ) of a first conductivity type; field isolation means ( 2 ) formed on a major surface of said first semiconductor layer; a second semiconductor layer ( 4 ) formed above and on a major surface of said field isolation means, wherein said second semiconductor layer comprises N-type, intrinsic, and P-type regions, and wherein said intrinsic region lies between and abuts said N-type and said P-type regions; an oxide film ( 7 ) formed on a major surface of said second semiconductor layer; and a masking module which module may optionally be an emitter module, formed on a major surface of said oxide film wherein said masking module is aligned above said intrinsic region and wherein said masking module masks the edges of the N-type and P-type regions.
- the present invention provides a extended charge storage, lateral PIN diode optionally comprising: an opening formed through said field isolation means communicating with said first semiconductor layer; wherein a portion of said second semiconductor layer fills said optional opening and abuts said first semiconductor layer.
- the PIN device comprises, in a first embodiment, large-grain silicon, and in a preferred embodiment, comprises single crystal silicon.
- the present invention provides a means of making a PIN diode with an enlarged I-region such that can be integrated into a modern RF process.
- the present invention provides that the current flows laterally instead of vertically and scales the I-region by enlarging the lateral dimension between the P and N regions.
- the present invention uses process steps common to typical RF device fabrication so that much of the PIN diode comes for free with the existing process.
- the present invention uses several such steps for free.
- the body of the PIN diode is formed from the layer emplaced for the base of the bipolar transistor and/or the gates of the FETs.
- the invention provides that the emitter module is used to mask off the I-region during subsequent implantation of the P and N contacts of the diode.
- the present invention employs polysilicon as the initial material from which the body of PIN is made.
- Polysilicon doesn't have a great carrier lifetime because carriers can recombine at grain boundaries. This serves to decrease the stored charge, counteracting our attempt to make a large I-layer.
- the first embodiment of the invention provides a PIN that can be integrated into an RF chip and which comes for free with the conventional processing steps.
- This embodiment provides an implant to amorphize the polysilicon and then an anneal step to regrow it as large grain polysilicon to reduce the grain boundaries and improve the carrier lifetime.
- the polysilicon comprising the PIN diode layer is caused to pass through an opening in the underlying dielectric layer and to contact the single crystal substrate.
- the polycrystalline silicon is amorphized and annealed.
- the surface of the single crystal silicon acts as a seed causing the PIN diode layer to recrystallize as single crystal silicon in a process known as solid phase epitaxy.
- solid phase epitaxy a process known as solid phase epitaxy.
- the invention further provides reduced parasitic capacitances by virtue of building the PIN diode in its own layer atop a layer of isolation oxide (or other dielectric) instead of building the PIN diode into the bulk silicon.
- FIG. 1 illustrates a conventional PIN diode
- FIG. 2 illustrates a lateral PIN diode in a first embodiment
- FIGS. 3 - 6 illustrate steps in the fabrication of the second embodiment of the inventive PIN structure.
- FIG. 7 illustrates the laterally extended intrinsic PIN diode finished with wiring.
- the first version comes for free in an epitaxial-base bipolar process such as silicon-germanium BICMOS technology.
- the semiconductor substrate 1 is standard as is the about 2800 ⁇ oxide layer 2 provided on a top surface.
- the base polysilicon is used to form the body of the PIN diode and is appropriately masked and doped to yield N+ 3 , intrinsic (I) 4 , and P+ 5 regions.
- Emitter-base passivation 7 is used to form the passivating layer for the polysilicon, to help reduce the surface recombination by using a high-quality thermal oxide interface.
- the emitter polysilicon 6 forms a masking layer that prevents future implants from getting into the body of the diode.
- the edges of the masks for P+ and N+ implants on either side of the PIN diode body are defined.
- Prior art PIN diodes are restricted to I-regions of about 0.5 ⁇ by the thickness of the epitaxial layer in which it is formed. By arranging the I-region laterally, the present invention achieves an I-region of about 5-10 micrometers in extent.
- the emitter module polysilicon and emitter-base passivation mask the implantation and thus define the I-region. Such an embodiment comes for free in a BiCMOS process. However, other structures including a temporary photomask might be substituted where it is desired not to have an emitter module.
- the terms “emitter module” and masking module are used interchangeably to describe the structure that masks and defines the edges of the I-region for purposes of implantation.
- an extra mask can be used to open a region of the base polysilicon over the single crystal base, through the emitter-base passivation.
- the amorphous silicon layer used for the passivation can then be deposited and annealed. This results in epitaxial lateral growth of the amorphous silicon from the seed area in the single crystal base. This results in a single crystal structure which has reduced recombination current.
- a passivation and masking layer can be formed on top, and the P+ and N+ implants can be defined into opposite ends of the diode body.
- FIG. 3 a sequence of steps for fabrication of a second embodiment is recited.
- This recitation refers to a preferred embodiment wherein the substrate is silicon. Therefore, silicon-specific means, such as silicon-specific isolations and process steps are recited.
- silicon-specific means such as silicon-specific isolations and process steps are recited.
- the present invention is capable of being realized in substrates other than silicon and using means appropriate to those other substrates including appropriate isolations and processing steps. The recitation is therefore to be understood as illustrative and not restrictive.
- a layer of monocrystalline semiconductor material 1 is provided.
- This monocrystalline layer may comprise bulk substrate or may comprise an epitaxial layer.
- the material of this layer may comprise silicon or gallium arsenide.
- a layer of field isolation 2 is applied over semiconductor layer 1 .
- Field isolation preferentially comprises thick oxide, typically silicon dioxide of from about 1000 to about 5000 ⁇ thick and preferentially 2800 ⁇ thick.
- Other dielectric films compatible with silicon processing may be used such as silicon nitride.
- An aspect of the invention is that this dielectric could represent isolation oxide such as shallow trench or LOCOS.
- the opening will be displaced from about 1 to about 10 micrometers from the edge of the PIN diode body. Opening 3 is etched through dielectric 2 all the way down to silicon 1 .
- a film of polysilicon 4 is deposited and patterned. Where opening 3 is present, this film must be patterned such that it enters the opening 3 and contacts the underlying silicon 1 .
- film 4 will be shared with an existing BiCMOS processing step (FET gate polysilicon layer, bipolar base layer, or in a double-poly base process the bipolar extrinsic base contact layer). Thus this film comes for “free” in the process.
- the crystal grain structure of polysilicon film 4 is enlarged.
- a non-doping species e.g. silicon or germanium
- An anneal step recrystallizes the film into large-grain polysilicon.
- the silicon surface 1 will induce film 4 to undergo solid-state epitaxy into single crystal silicon, starting from the opening 3 and proceeding laterally towards the end of the patterned edges. Control of grain size permits increased charge carrier lifetimes.
- a SiO 2 layer 7 is formed on the polysilicon film. Preferentially, this layer is >300 ⁇ , and more preferentially it should be about 500 ⁇ thick. Layer 7 should be native or thermal oxide, not deposited. Polysilicon film 9 is deposited, the film is typically about 1000-5000 ⁇ thick. Film 9 is patterned yielding a width equal to the desired lateral dimension of the PIN diode body, typically 1-10 micrometers.
- the upper limit on the lateral dimension of the I-region is governed by the effective distance of the solid phase epitaxy process.
- Film 9 may be replaced by deposition and patterning of a material other than polysilicon, such as another dielectric or a temporary photoresist film. Such alternative step would not come “for free” in a typical BiCMOS process.
- a temporary mask e.g. photoresist 13 is applied and a heavy n-type dopant (e.g. phosphorous or arsenic) is implanted to one side of the diode body.
- a heavy n-type dopant e.g. phosphorous or arsenic
- the particular side chosen is a matter of design choice.
- the final dopant concentration in film 4 should be in excess of 1 ⁇ 10 18 atoms/centimete 3 .
- the implant step may be shared with, for example, a CMOS NFET source/drain implant step, so that it comes “for free” in a BiCMOS process.
- the top polysilicon 9 which comes “for free” in a bipolar or BiCMOS process, serves to mask implant 10 from getting into the lower silicon film 4 , the body region of the PIN diode, thus self-aligning the implant to one edge of the PIN diode body.
- a temporary mask e.g. photoresist 14 is applied and a heavy p-type dopant, e.g. boron, is implanted to one side of the diode body.
- a heavy p-type dopant e.g. boron
- the side implanted with p-type dopants is immaterial except that it must be the opposite side from that in which the n-type dopant was implanted.
- the particular side chosen is a matter of design choice.
- the final dopant concentration in film 4 should be in excess of 1 ⁇ 10 18 atoms/centimeter 3 .
- the implant step may be shared with, for example, a CMOS PFET source/drain implant step, so that it comes “for free” in a BiCMOS process.
- the top polysilicon 9 which comes “for free” in a bipolar or BiCMOS process, serves to mask implant 11 from getting into lower silicon film 4 , the body region of the PIN diode, thus self-aligning the implant to one edge of the PIN diode body. Notice that polysilicon 9 has shielded a region 5 which is thus the intrinsic region of the PIN diode.
- electrical contacts may be put into place to connect lateral PIN diode electrically with other devices.
- the oxide film on top of the lower silicon/large-grain polysilicon layer may be removed immediately beneath contacts for good electrical connection using a short wet etchant dip (such as in hydrofluoric acid, HF) prior to deposition of the metal.
- silicon/large-grain polysilicon beneath contacts may be silicided (deposited with titanium or cobalt, followed by an anneal to react chemically with the silicon) for better contact.
- Ti or Co silicide formation is a standard process step in any modem silicon processing facility and is thus not described herein.
Landscapes
- Microelectronics & Electronic Packaging (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- Electrodes Of Semiconductors (AREA)
- Bipolar Integrated Circuits (AREA)
- Bipolar Transistors (AREA)
- Element Separation (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
- The present invention relates to PIN diodes and particularly a diode structure wherein the various conductive regions are laterally disposed.
- Electronic switches are key for a large variety of applications, in particular, the very high volume consumer wireless 1-2 GHz market where they serve to switch the antenna in a mobile phone between receive and transmit circuits. A good switch must possess several important properties. First, the resistance should be low when the switch is on. Second, the isolation should be good when the switch is off. Finally, the switch should be able to handle a signal of sufficient strength without distorting it (i.e. without the signal itself causing the switch to turn further on or off compared to its initial state).
- One type of switch has been very successful at high frequencies is the PIN diode, which consists of an intrinsic or “I” region sandwiched between P and N regions. When this diode is reverse biased (P region at a negative voltage compared with the N region), the switch is off. When the diode is forward biased, the switch turns on. In addition, a great deal of charge gets stored in the “I” region of the device. This charge serves two purposes—it helps reduce the resistance of the switch, and, since the charge must be removed to turn the switch off, it slows down the speed at which the switch can go from on to off. This is important because it means that high-frequency signals passing through the switch won't influence the on/off state of the switch itself (i.e. a large signal excursion won't turn the switch off). Thus, an important factor for good PIN diode performance is the volume of stored charge. The volume of stored charge, in turn, is related to two numbers—the volume of the I region, and the lifetime of carriers in the I region.
- It is standard in the art to make individual, discrete PIN diodes comprising large I regions. However, customers increasingly require integrated solutions. For reasons of cost, reliability, and compactness, customers want to be able to put switches directly on the chips that implement their RF transmitters and receivers, to make complete or partial systems-on-a-chip.
- The current state of RF technologies, for example silicon-germanium BiCMOS, tends to build all the transistors and other front-end-of-the-line devices in a thin epitaxial layer grown on top of a substrate. The current art limits the dimensions of the I region, and therefore the charge capacity of prior art, vertically-disposed PIN diodes, by the thickness of the epitaxial layer. Typically, the process commences with a substrate into which is implanted a heavily-doped N+ subcollector layer. A thin, typically less than 1 micrometer, epitaxial layer is grown over the N+ layer. The N+ layer diffuses upward leaving at most a 0.5 micrometer layer to comprise the I-region. There simply isn't enough thickness of material to make a large I region in a PIN diode by growing the I-layer in the vertical direction.
- A need exists for a PIN diode having a sufficiently large I-region that is capable of being integrated into modern RF processes.
- A need exists for such a PIN diode capable of being fabricated using typical processing steps current in the art of making such RF devices. Such a PIN diode would then come substantially for free with current process steps.
- Other objects and advantages will become apparent from the following disclosure.
- The present invention provides an improved and novel lateral PIN diode structure that laterally extends the intrinsic region thereby extending the charge storage area.
- The present invention provides for reduced parasitic capacitance by placing the diode on an oxide layer.
- The present invention provides a lateral PIN diode comprising large-grained polysilicon and having an extended intrinsic region formed over thick oxide isolation.
- Referring to FIG. 2, the present invention provides an extended charge storage, lateral PIN diode comprising a first semiconductor layer (1) of a first conductivity type; field isolation means (2) formed on a major surface of said first semiconductor layer; a second semiconductor layer (4) formed above and on a major surface of said field isolation means, wherein said second semiconductor layer comprises N-type, intrinsic, and P-type regions, and wherein said intrinsic region lies between and abuts said N-type and said P-type regions; an oxide film (7) formed on a major surface of said second semiconductor layer; and a masking module which module may optionally be an emitter module, formed on a major surface of said oxide film wherein said masking module is aligned above said intrinsic region and wherein said masking module masks the edges of the N-type and P-type regions.
- The present invention provides a extended charge storage, lateral PIN diode optionally comprising: an opening formed through said field isolation means communicating with said first semiconductor layer; wherein a portion of said second semiconductor layer fills said optional opening and abuts said first semiconductor layer.
- The present invention provides that the PIN device comprises, in a first embodiment, large-grain silicon, and in a preferred embodiment, comprises single crystal silicon.
- The present invention provides a means of making a PIN diode with an enlarged I-region such that can be integrated into a modern RF process. The present invention provides that the current flows laterally instead of vertically and scales the I-region by enlarging the lateral dimension between the P and N regions.
- The present invention uses process steps common to typical RF device fabrication so that much of the PIN diode comes for free with the existing process. The present invention uses several such steps for free. First, the body of the PIN diode is formed from the layer emplaced for the base of the bipolar transistor and/or the gates of the FETs. Second, the invention provides that the emitter module is used to mask off the I-region during subsequent implantation of the P and N contacts of the diode.
- The present invention employs polysilicon as the initial material from which the body of PIN is made. Polysilicon doesn't have a great carrier lifetime because carriers can recombine at grain boundaries. This serves to decrease the stored charge, counteracting our attempt to make a large I-layer.
- The first embodiment of the invention provides a PIN that can be integrated into an RF chip and which comes for free with the conventional processing steps. This embodiment provides an implant to amorphize the polysilicon and then an anneal step to regrow it as large grain polysilicon to reduce the grain boundaries and improve the carrier lifetime.
- In a second embodiment of the invention, the polysilicon comprising the PIN diode layer is caused to pass through an opening in the underlying dielectric layer and to contact the single crystal substrate. The polycrystalline silicon is amorphized and annealed. The surface of the single crystal silicon acts as a seed causing the PIN diode layer to recrystallize as single crystal silicon in a process known as solid phase epitaxy. Thus the I-layer of the PIN diode will be caused to have high carrier lifetimes.
- The invention further provides reduced parasitic capacitances by virtue of building the PIN diode in its own layer atop a layer of isolation oxide (or other dielectric) instead of building the PIN diode into the bulk silicon.
- Still other objects and advantages of the present invention will become readily apparent by those skilled in the art from the following detailed description, wherein it is shown and described preferred embodiments of the invention, simply by way of illustration of the best mode contemplated of carrying out the invention. As will be realized the invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, without departing from the invention. Accordingly, the description is to be regarded as illustrative in nature and not as restrictive.
- The invention is best understood from the following detailed description when read in connection with the accompanying drawing. It is emphasized that, according to common practice, the various features of the drawing are not to scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawing are the following figures:
- FIG. 1 illustrates a conventional PIN diode;
- FIG. 2 illustrates a lateral PIN diode in a first embodiment;
- FIGS.3-6 illustrate steps in the fabrication of the second embodiment of the inventive PIN structure; and
- FIG. 7 illustrates the laterally extended intrinsic PIN diode finished with wiring.
- Reference is made to the figures to illustrate selected embodiments and preferred modes of carrying out the invention. In the various figures, similar numerals refer to similar features. It is to be understood that the invention is not hereby limited to those aspects depicted in the figures.
- First Embodiment.
- Referring now to FIG. 2. The first version comes for free in an epitaxial-base bipolar process such as silicon-germanium BICMOS technology. The
semiconductor substrate 1 is standard as is the about 2800Å oxide layer 2 provided on a top surface. The base polysilicon is used to form the body of the PIN diode and is appropriately masked and doped to yieldN+ 3, intrinsic (I) 4, andP+ 5 regions. Emitter-base passivation 7 is used to form the passivating layer for the polysilicon, to help reduce the surface recombination by using a high-quality thermal oxide interface. Theemitter polysilicon 6 forms a masking layer that prevents future implants from getting into the body of the diode. On this polysilicon layer, the edges of the masks for P+ and N+ implants on either side of the PIN diode body are defined. Prior art PIN diodes are restricted to I-regions of about 0.5 Å by the thickness of the epitaxial layer in which it is formed. By arranging the I-region laterally, the present invention achieves an I-region of about 5-10 micrometers in extent. In preferred embodiments, the emitter module polysilicon and emitter-base passivation mask the implantation and thus define the I-region. Such an embodiment comes for free in a BiCMOS process. However, other structures including a temporary photomask might be substituted where it is desired not to have an emitter module. Thus, for purposes of this disclosure, the terms “emitter module” and masking module are used interchangeably to describe the structure that masks and defines the edges of the I-region for purposes of implantation. - It is known that the grain-boundaries in the poly will give rise to a much higher recombination than in single-crystal silicon. However, in the case of a PIN diode, as long as the leakage is still acceptable, the reduction in device parasitics will result in better performance. Special techniques such as hydrogen annealing can be done to reduce the recombination centers, or, alternatively, grain size growth by long anneals at 600-650° C. The grain size can be enlarged by, for example, amorphizing the layer and then annealing at intermediate temperatures.
- Second Embodiment.
- In an alternative embodiment, an extra mask can be used to open a region of the base polysilicon over the single crystal base, through the emitter-base passivation. The amorphous silicon layer used for the passivation can then be deposited and annealed. This results in epitaxial lateral growth of the amorphous silicon from the seed area in the single crystal base. This results in a single crystal structure which has reduced recombination current. In a fashion similar to the first embodiment, a passivation and masking layer can be formed on top, and the P+ and N+ implants can be defined into opposite ends of the diode body.
- Turning now to FIG. 3, a sequence of steps for fabrication of a second embodiment is recited. This recitation refers to a preferred embodiment wherein the substrate is silicon. Therefore, silicon-specific means, such as silicon-specific isolations and process steps are recited. However, it is to be understood that the present invention is capable of being realized in substrates other than silicon and using means appropriate to those other substrates including appropriate isolations and processing steps. The recitation is therefore to be understood as illustrative and not restrictive.
- A layer of
monocrystalline semiconductor material 1 is provided. This monocrystalline layer may comprise bulk substrate or may comprise an epitaxial layer. The material of this layer may comprise silicon or gallium arsenide. A layer offield isolation 2 is applied oversemiconductor layer 1. Field isolation preferentially comprises thick oxide, typically silicon dioxide of from about 1000 to about 5000 Å thick and preferentially 2800 Å thick. Other dielectric films compatible with silicon processing may be used such as silicon nitride. An aspect of the invention is that this dielectric could represent isolation oxide such as shallow trench or LOCOS. In the presently described embodiment, we exercise the option to form anopening 3 in the dielectric. Masking is performed such that the opening, when created, will be immediately to one side of the subsequently formed PIN diode body. Typically, the opening will be displaced from about 1 to about 10 micrometers from the edge of the PIN diode body.Opening 3 is etched throughdielectric 2 all the way down tosilicon 1. To form the body of the lateral PIN diode a film ofpolysilicon 4 is deposited and patterned. Whereopening 3 is present, this film must be patterned such that it enters theopening 3 and contacts theunderlying silicon 1. In the most efficient implementation of this process,film 4 will be shared with an existing BiCMOS processing step (FET gate polysilicon layer, bipolar base layer, or in a double-poly base process the bipolar extrinsic base contact layer). Thus this film comes for “free” in the process. - Optionally, the crystal grain structure of
polysilicon film 4 is enlarged. A non-doping species, e.g. silicon or germanium, is implanted intofilm 4 to destroy crystal grains and amorphize. An anneal step recrystallizes the film into large-grain polysilicon. Whenoptional opening 3 is present, thesilicon surface 1 will inducefilm 4 to undergo solid-state epitaxy into single crystal silicon, starting from theopening 3 and proceeding laterally towards the end of the patterned edges. Control of grain size permits increased charge carrier lifetimes. - Now with reference to FIG. 4 formation of the emitter module is described. These steps may be combined with the steps used to form the polysilicon emitter of the bipolar transistor in a BiCMOS process, allowing for processing efficiency. Thus these steps come for “free” in this process. A SiO2 layer 7 is formed on the polysilicon film. Preferentially, this layer is >300 Å, and more preferentially it should be about 500 Å thick.
Layer 7 should be native or thermal oxide, not deposited.Polysilicon film 9 is deposited, the film is typically about 1000-5000 Å thick.Film 9 is patterned yielding a width equal to the desired lateral dimension of the PIN diode body, typically 1-10 micrometers. The upper limit on the lateral dimension of the I-region is governed by the effective distance of the solid phase epitaxy process.Film 9 may be replaced by deposition and patterning of a material other than polysilicon, such as another dielectric or a temporary photoresist film. Such alternative step would not come “for free” in a typical BiCMOS process. - Now, with reference to FIG. 5, formation of the N-
region 6 of the PIN and the N-implant 10 is described. A temporary mask,e.g. photoresist 13 is applied and a heavy n-type dopant (e.g. phosphorous or arsenic) is implanted to one side of the diode body. The particular side chosen is a matter of design choice. The final dopant concentration infilm 4 should be in excess of 1×1018 atoms/centimete3. For processing efficiency, the implant step may be shared with, for example, a CMOS NFET source/drain implant step, so that it comes “for free” in a BiCMOS process. Thetop polysilicon 9, which comes “for free” in a bipolar or BiCMOS process, serves to maskimplant 10 from getting into thelower silicon film 4, the body region of the PIN diode, thus self-aligning the implant to one edge of the PIN diode body. - With reference to FIG. 6, formation of the P-
region 15 of the PIN and the P-implant 11 is described. A temporary mask,e.g. photoresist 14 is applied and a heavy p-type dopant, e.g. boron, is implanted to one side of the diode body. The side implanted with p-type dopants is immaterial except that it must be the opposite side from that in which the n-type dopant was implanted. The particular side chosen is a matter of design choice. The final dopant concentration infilm 4 should be in excess of 1×1018 atoms/centimeter3. For processing efficiency, the implant step may be shared with, for example, a CMOS PFET source/drain implant step, so that it comes “for free” in a BiCMOS process. Thetop polysilicon 9, which comes “for free” in a bipolar or BiCMOS process, serves to mask implant 11 from getting intolower silicon film 4, the body region of the PIN diode, thus self-aligning the implant to one edge of the PIN diode body. Notice thatpolysilicon 9 has shielded aregion 5 which is thus the intrinsic region of the PIN diode. - Now, with reference to FIG. 7, the completed PIN diode is described.
- After subsequent processing steps to create other devices on the wafer, electrical contacts may be put into place to connect lateral PIN diode electrically with other devices. The oxide film on top of the lower silicon/large-grain polysilicon layer may be removed immediately beneath contacts for good electrical connection using a short wet etchant dip (such as in hydrofluoric acid, HF) prior to deposition of the metal. Optionally, silicon/large-grain polysilicon beneath contacts may be silicided (deposited with titanium or cobalt, followed by an anneal to react chemically with the silicon) for better contact. Ti or Co silicide formation is a standard process step in any modem silicon processing facility and is thus not described herein.
- It will, therefore, be appreciated by those skilled in the art having the benefit of this disclosure that this invention is capable of producing an extended lateral PIN diode Furthermore, it is to be understood that the form of the invention shown and described is to be taken as presently preferred embodiments. Various modifications and changes may be made to each and every processing step as would be obvious to a person skilled in the art having the benefit of this disclosure. It is intended that the following claims be interpreted to embrace all such modifications and changes and, accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. Moreover, it is intended that the appended claims be construed to include alternative embodiments. Specifically, the invention is disclosed and claimed in terms specific to silicon processes. However, it is to be understood that the invention may be embodied in semiconductor materials other than silicon.
Claims (28)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/734,624 US6426547B1 (en) | 2000-12-12 | 2000-12-12 | Lateral polysilicon pin diode and method for so fabricating |
CNB011385359A CN1205675C (en) | 2000-12-12 | 2001-11-15 | Transverse polycrystal silicon PIN diode and its manufacture |
TW090130374A TWI243485B (en) | 2000-12-12 | 2001-12-07 | Lateral polysilicon pin diode and method for so fabricating |
AT01310302T ATE364901T1 (en) | 2000-12-12 | 2001-12-10 | LATERAL PIN DIODE MADE OF POLYSILICON AND METHOD FOR PRODUCING IT |
EP01310302A EP1215733B1 (en) | 2000-12-12 | 2001-12-10 | Lateral polysilicon pin diode and method for its fabricating |
DE60128883T DE60128883T2 (en) | 2000-12-12 | 2001-12-10 | Lateral polysilicon pin diode and method of manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/734,624 US6426547B1 (en) | 2000-12-12 | 2000-12-12 | Lateral polysilicon pin diode and method for so fabricating |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020070388A1 true US20020070388A1 (en) | 2002-06-13 |
US6426547B1 US6426547B1 (en) | 2002-07-30 |
Family
ID=24952439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/734,624 Expired - Fee Related US6426547B1 (en) | 2000-12-12 | 2000-12-12 | Lateral polysilicon pin diode and method for so fabricating |
Country Status (6)
Country | Link |
---|---|
US (1) | US6426547B1 (en) |
EP (1) | EP1215733B1 (en) |
CN (1) | CN1205675C (en) |
AT (1) | ATE364901T1 (en) |
DE (1) | DE60128883T2 (en) |
TW (1) | TWI243485B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040026613A1 (en) * | 2002-05-30 | 2004-02-12 | Bateman Robert Harold | Mass spectrometer |
US20050077577A1 (en) * | 2003-10-09 | 2005-04-14 | Chartered Semiconductor Manufacturing Ltd. | Novel ESD protection device |
US20090280629A1 (en) * | 2008-05-06 | 2009-11-12 | Chartered Semiconductor Manufacturing Ltd. | Integrated circuit system employing grain size enlargement |
US20100142878A1 (en) * | 2008-12-10 | 2010-06-10 | Electronics And Telecommunications Research Institute | Absorption modulator and manufacturing method thereof |
CN103151393A (en) * | 2013-02-28 | 2013-06-12 | 溧阳市宏达电机有限公司 | Electrode structure of PIN diode |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1137055A1 (en) * | 2000-03-24 | 2001-09-26 | Infineon Technologies AG | Method for manufacturing a high-frequency semiconductor structure and high-frequency semiconductor structure |
JP4241446B2 (en) * | 2003-03-26 | 2009-03-18 | キヤノン株式会社 | Multilayer photovoltaic device |
DE10344609B3 (en) * | 2003-09-25 | 2005-07-21 | Infineon Technologies Ag | RF diode |
US7026211B1 (en) * | 2004-03-08 | 2006-04-11 | Advanced Micro Devices, Inc. | Semiconductor component and method of manufacture |
US7405465B2 (en) | 2004-09-29 | 2008-07-29 | Sandisk 3D Llc | Deposited semiconductor structure to minimize n-type dopant diffusion and method of making |
KR100759682B1 (en) * | 2006-03-30 | 2007-09-17 | 삼성에스디아이 주식회사 | Organic light emitting diode |
CN100552991C (en) * | 2006-09-27 | 2009-10-21 | 中国科学院半导体研究所 | Phonon regulation and control indirect gap semiconductor material transverse electric implantation light-emitting device |
US7812370B2 (en) | 2007-07-25 | 2010-10-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Tunnel field-effect transistor with narrow band-gap channel and strong gate coupling |
DE102007058003B4 (en) * | 2007-12-03 | 2019-12-05 | Infineon Technologies Ag | Semiconductor device, sensor element, use of a semiconductor device and methods for the defense against light attacks |
US7834345B2 (en) | 2008-09-05 | 2010-11-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Tunnel field-effect transistors with superlattice channels |
US8587075B2 (en) | 2008-11-18 | 2013-11-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Tunnel field-effect transistor with metal source |
WO2010080751A1 (en) * | 2009-01-06 | 2010-07-15 | Next Biometrics As | Low noise reading architecture for active sensor arrays |
CN102376775B (en) * | 2010-08-26 | 2014-04-16 | 上海华虹宏力半导体制造有限公司 | Parasitic PIN (Personal Identification Number) device in BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) process and manufacturing method thereof |
CN102403233B (en) * | 2011-12-12 | 2014-06-11 | 复旦大学 | Method for manufacturing tunnel transistor of vertical channel |
CN103280397B (en) * | 2013-05-30 | 2015-09-23 | 中国电子科技集团公司第十三研究所 | A kind of preparation method of horizontal grapheme PIN junction |
US10571631B2 (en) | 2015-01-05 | 2020-02-25 | The Research Foundation For The State University Of New York | Integrated photonics including waveguiding material |
CN106847901A (en) * | 2016-12-20 | 2017-06-13 | 西安科锐盛创新科技有限公司 | The manufacture method of AlAs Ge AlAs structures base plasma pin diodes in multilayer holographic antenna |
CN109599441B (en) * | 2018-12-29 | 2022-03-18 | 上海华力微电子有限公司 | SOI diode |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2268355B1 (en) | 1974-04-16 | 1978-01-20 | Thomson Csf | |
US4751193A (en) * | 1986-10-09 | 1988-06-14 | Q-Dot, Inc. | Method of making SOI recrystallized layers by short spatially uniform light pulses |
US5268310A (en) | 1992-11-25 | 1993-12-07 | M/A-Com, Inc. | Method for making a mesa type PIN diode |
JP3192546B2 (en) * | 1994-04-15 | 2001-07-30 | シャープ株式会社 | Semiconductor device and method of manufacturing the same |
US5610790A (en) * | 1995-01-20 | 1997-03-11 | Xilinx, Inc. | Method and structure for providing ESD protection for silicon on insulator integrated circuits |
US5731619A (en) | 1996-05-22 | 1998-03-24 | International Business Machines Corporation | CMOS structure with FETS having isolated wells with merged depletions and methods of making same |
US5966605A (en) * | 1997-11-07 | 1999-10-12 | Advanced Micro Devices, Inc. | Reduction of poly depletion in semiconductor integrated circuits |
US5886374A (en) | 1998-01-05 | 1999-03-23 | Motorola, Inc. | Optically sensitive device and method |
-
2000
- 2000-12-12 US US09/734,624 patent/US6426547B1/en not_active Expired - Fee Related
-
2001
- 2001-11-15 CN CNB011385359A patent/CN1205675C/en not_active Expired - Fee Related
- 2001-12-07 TW TW090130374A patent/TWI243485B/en not_active IP Right Cessation
- 2001-12-10 AT AT01310302T patent/ATE364901T1/en not_active IP Right Cessation
- 2001-12-10 EP EP01310302A patent/EP1215733B1/en not_active Expired - Lifetime
- 2001-12-10 DE DE60128883T patent/DE60128883T2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040026613A1 (en) * | 2002-05-30 | 2004-02-12 | Bateman Robert Harold | Mass spectrometer |
US6794641B2 (en) * | 2002-05-30 | 2004-09-21 | Micromass Uk Limited | Mass spectrometer |
US20050077577A1 (en) * | 2003-10-09 | 2005-04-14 | Chartered Semiconductor Manufacturing Ltd. | Novel ESD protection device |
US6936895B2 (en) * | 2003-10-09 | 2005-08-30 | Chartered Semiconductor Manufacturing Ltd. | ESD protection device |
US20090280629A1 (en) * | 2008-05-06 | 2009-11-12 | Chartered Semiconductor Manufacturing Ltd. | Integrated circuit system employing grain size enlargement |
US7833888B2 (en) * | 2008-05-06 | 2010-11-16 | Chartered Semiconductor Manufacturing Ltd. | Integrated circuit system employing grain size enlargement |
US20100142878A1 (en) * | 2008-12-10 | 2010-06-10 | Electronics And Telecommunications Research Institute | Absorption modulator and manufacturing method thereof |
US8180184B2 (en) * | 2008-12-10 | 2012-05-15 | Electronics And Telecommunications Research Institute | Absorption modulator and manufacturing method thereof |
CN103151393A (en) * | 2013-02-28 | 2013-06-12 | 溧阳市宏达电机有限公司 | Electrode structure of PIN diode |
Also Published As
Publication number | Publication date |
---|---|
EP1215733A2 (en) | 2002-06-19 |
EP1215733A3 (en) | 2004-05-19 |
TWI243485B (en) | 2005-11-11 |
CN1205675C (en) | 2005-06-08 |
CN1357926A (en) | 2002-07-10 |
DE60128883D1 (en) | 2007-07-26 |
EP1215733B1 (en) | 2007-06-13 |
US6426547B1 (en) | 2002-07-30 |
DE60128883T2 (en) | 2008-02-14 |
ATE364901T1 (en) | 2007-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6426547B1 (en) | Lateral polysilicon pin diode and method for so fabricating | |
US7485537B2 (en) | Method of fabricating a vertical bipolar transistor with a majority carrier accumulation layer as a subcollector for SOI BiCMOS with reduced buried oxide thickness | |
US9553177B2 (en) | Vertically base-connected bipolar transistor | |
EP0437939A1 (en) | Integratable DMOS transistor and method of making the same | |
US5118634A (en) | Self-aligned integrated circuit bipolar transistor having monocrystalline contacts | |
US6011297A (en) | Use of multiple slots surrounding base region of a bipolar junction transistor to increase cumulative breakdown voltage | |
US11791334B2 (en) | Heterojunction bipolar transistor with buried trap rich isolation region | |
KR100554465B1 (en) | SiGe BiCMOS DEVICE ON SOI SUBSTRATE AND METHOD OF FABRICATING THE SAME | |
US5134454A (en) | Self-aligned integrated circuit bipolar transistor having monocrystalline contacts | |
US6440810B1 (en) | Method in the fabrication of a silicon bipolar transistor | |
US7217609B2 (en) | Semiconductor fabrication process, lateral PNP transistor, and integrated circuit | |
WO2005117104A1 (en) | Semiconductor device and method of manufacturing such a device | |
US6404038B1 (en) | Complementary vertical bipolar junction transistors fabricated of silicon-on-sapphire utilizing wide base PNP transistors | |
US20230352570A1 (en) | Bipolar junction transistor | |
CN114388497A (en) | Heterojunction bipolar transistor with buried trap rich isolation region | |
CN113206108A (en) | Semiconductor-on-insulator substrate, semiconductor structure and forming method thereof | |
KR100395159B1 (en) | Method of manufacturing a BICMOS device using Si-Ge | |
US11855197B2 (en) | Vertical bipolar transistors | |
US20240339527A1 (en) | Low capacitance and low resistance devices | |
Suligoj et al. | Horizontal current bipolar transistor (HCBT) for the low-cost BiCMOS technology | |
US20240136400A1 (en) | Lateral bipolar transistor with gated collector | |
US20230075949A1 (en) | Lateral bipolar transistor | |
CN117995894A (en) | Heterojunction bipolar transistor with amorphous semiconductor region | |
JPH06267971A (en) | Semiconductor device and manufacture thereof | |
US7268376B2 (en) | Bipolar transistor for increasing signal transfer efficiency and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GREENBERG, DAVID R.;JADUS, DALE K.;SUBBANNA, SESHADRI;AND OTHERS;REEL/FRAME:011383/0983;SIGNING DATES FROM 20001207 TO 20001208 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140730 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001 Effective date: 20150629 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001 Effective date: 20150910 |