US20020063283A1 - Passivation of sidewalls of a word line stack - Google Patents

Passivation of sidewalls of a word line stack Download PDF

Info

Publication number
US20020063283A1
US20020063283A1 US09/577,835 US57783500A US2002063283A1 US 20020063283 A1 US20020063283 A1 US 20020063283A1 US 57783500 A US57783500 A US 57783500A US 2002063283 A1 US2002063283 A1 US 2002063283A1
Authority
US
United States
Prior art keywords
layer
forming
sidewalls
nitride spacers
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/577,835
Inventor
Pai-Hung Pan
Martin Roberts
Gurtej Sandhu
Weimin Li
Christopher Hill
Vishnu Agarwal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/577,835 priority Critical patent/US20020063283A1/en
Publication of US20020063283A1 publication Critical patent/US20020063283A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor

Definitions

  • the present invention relates generally to semiconductor devices and, more particularly, to the fabrication of word line stacks.
  • field effect transistor (FET) gate electrodes and gate electrode interconnects are etched from a thick conductive layer that covers other circuitry.
  • FET field effect transistor
  • gate electrode interconnect wherever a word lines passes over a field oxide region, it functions as a gate electrode interconnect; wherever the word line passes over a gate dielectric layer overlying an active region, the word line functions as a gate electrode.
  • gate electrodes and electrode interconnects were often etched from a heavily-doped polycrystalline silicon (polySi) layer.
  • polySi polycrystalline silicon
  • fast operational speeds and low stack heights that are desirable for some applications could not be obtained using the polySi layer.
  • Faster operational speeds for example, are required for certain high-speed processor and memory circuits.
  • Reduced stack heights are desirable for increasing the planarity of the integrated circuit to obtain better photolithographic resolution.
  • a significant improvement in the conductivity of gate electrodes and gate interconnects was obtained by forming a low-resistance metal silicide layer on top of the electrode/interconnect layer.
  • a silicide is a binary compound formed by the reaction of a metal and silicon (Si) at an elevated temperature.
  • Refractory metal silicides for example, include a refractory metal, such as tungsten (W) or titanium (Ti), and have relatively high melting points in the range of about 1,400 degrees Celsius (° C.) to greater than about 3,400° C.
  • Metals with a high melting point are preferred for structures, such as gates, that are created early in the fabrication process because the processing of integrated circuit typically involves a series of steps performed at elevated temperatures.
  • a metal layer formed at the end of the fabrication process need not have a particularly high melting point.
  • aluminum which has a melting point of only about 660° C., generally is used only for the upper level interconnect lines and is applied to the circuitry only after no further processing of the wafer above about 600° C. is required.
  • metal silicides have significantly higher conductivity than heavily-doped polySi, a silicide is about an order of magnitude more resistive than the pure metal from which it is formed.
  • Tungsten for example, is of particular interest because it is relatively inexpensive, has a high melting point (approximately 3,410° C.), and is known to be compatible with current manufacturing techniques.
  • the use of unreacted tungsten metal as a conductive word line layer can create certain problems during the fabrication process of the integrated circuit.
  • the word line materials often must be capable of withstanding high temperature processing in an oxidizing environment. For example, shortly after the word line stack is patterned, a source/drain reoxidation is performed to repair damage that occurs to the gate oxide near the corners of source and drain regions as a result of etching the word line.
  • the source/drain reoxidation reduces the electric field strength at the gate edge by upwardly chamfering the edge, thereby reducing the “hot electron” effect that can cause threshold voltage shifts.
  • a method of fabricating an integrated circuit on a wafer includes forming a gate electrode stack over a gate dielectric and forming nitride spacers along sidewalls of the gate electrode stack other than along lowermost portions of the sidewalls. Subsequently, a reoxidation process is performed with respect to the gate dielectric.
  • a word line stack is formed over a gate dielectric.
  • Forming the word line stack includes forming a polySilicon layer on the gate dielectric and forming a metal layer above the polySilicon layer.
  • Nitride spacers are formed along portions of sidewalls of the word line stack adjacent the metal layer. At least lower portions of sidewalls of the polySilicon layer are not covered by the nitride spacers. Subsequently, a reoxidation process is performed.
  • Forming the nitride spacers can include forming a nitride layer over the wafer, and etching the nitride layer to form the nitride spacers.
  • the nitride layer can be formed, for example, by chemical vapor deposition, and etching the nitride layer can include performing an anisotropic etch such as reactive ion etch process.
  • an oxide layer can be formed adjacent the lowermost portions of the sidewalls of the stack.
  • the oxide layer can be formed, for example, using a high density plasma process, a collimated sputtering process or a flowfill technique. Such techniques can be advantageous in forming an oxide which is thicker on horizontal surfaces of the wafer than on vertical surfaces, such as the sidewalls of stack.
  • an isotropic etch is used to remove portions of the oxide layer so as to expose the sidewalls of the metal layer and/or the conductive barrier layer prior to forming the nitride spacers.
  • a portion or substantially all of the oxide formed on the horizontal surfaces can be removed prior to performing the reoxidation.
  • the oxide can be removed from the horizontal surfaces, for example, using a selective wet etch.
  • an integrated circuit includes a semiconductor wafer and a gate dielectric film disposed on a surface of the wafer.
  • a gate electrode stack which includes multiple layers, is disposed on the gate dielectric film.
  • Nitride spacers extend along sidewalls of the gate electrode stack other than along lowermost portions of the sidewalls.
  • Some implementations include a polySilicon layer on the gate dielectric film and a metal layer above the polySilicon layer with the spacers extending along sidewalls of the metal layer.
  • the stack also can include a conductive barrier layer between the polySilicon layer and the metal layer, with the spacers extending along sidewalls of the barrier layer as well. In some situations, the spacers have a thickness in the range of about 50 ⁇ to about 500 ⁇ .
  • nitride spacers along the exposed surfaces of the metal layer and/or the conductive barrier layer, those surfaces can be passivated, thereby preventing or reducing the conversion of those layers to non-conductive compounds.
  • the nitride spacers can be formed so that they do not interfere with the subsequent reoxidation process.
  • the electrical properties of the resulting devices can be improved.
  • metals such as tungsten can be used as the metal layer of the word line stack to take advantage of tungsten's relatively low expense, high melting point and compatibility with current manufacturing techniques. Reoxidation of the gate dielectric can be performed quickly and efficiently so as to repair damage to the gate dielectric that may occur during earlier fabrication steps, thereby reducing the hot electron effect that can cause threshold voltage shifts.
  • forming a non-conformal oxide layer which is thicker on horizontal surfaces of the wafer than on the sidewalls of the gate stack, prior to etching the nitride spacers can help reduce or eliminate pitting of the underlying semiconductor substrate.
  • FIG. 1 illustrates a cross-section of an exemplary word line stack.
  • FIGS. 2 through 4 illustrate cross-sections of an exemplary word line stack during passivation of the sidewalls of the stack according to the invention.
  • FIG. 5 illustrates the word line stack during a drain/source reoxidation according to the invention.
  • FIG. 6 illustrates the word line stack during a drain/source reoxidation according to an alternative embodiment of the invention.
  • FIG. 7 illustrates the word line stack during a drain/source reoxidation according to yet another embodiment of the invention.
  • FIGS. 8 and 9 illustrate passivation of the sidewalls of the word line stack according to another embodiment of the invention.
  • FIG. 10 is a flow chart of a method according to the invention.
  • FIG. 11 illustrates a cross-section of an exemplary integrated circuit including word line stacks passivated according to the invention.
  • an exemplary word line stack 10 includes a polySilicon layer 11 , a conductive barrier layer 12 , a metal layer 13 , and a cap which can include, for example, a silicon dioxide (SiO 2 ) layer 14 and a nitride layer 15 .
  • the barrier layer 12 should be impermeable to silicon and metal atoms and, in some embodiments, can include tungsten nitride (WN x ) or titanium nitride (TiN x )
  • the metal layer 13 can comprise, for example, aluminum (Al), copper (Cu), or a metal or metal alloy.
  • Exemplary metals include tungsten (W), titanium (Ti), platinum (Pt), palladium (Pd), cobalt (Co), molybdenum (Mo), nickel (Ni), rhodium (Rh) and iridium (Ir).
  • the word line stack 10 overlies a Si wafer 14 with source and drain regions 19 formed on either side of the stack 10 .
  • the polySi layer 11 is insulated from the substrate 17 by a gate dielectric layer 16 .
  • the word line stack 10 can be formed by conventional techniques.
  • the substrate 17 can be oxidized to form the gate dielectric layer 16 .
  • Materials for the polySi layer, the barrier layer 12 , the metal layer 13 , the SiO 2 layer 14 and the nitride layer 15 are deposited sequentially, and subsequently are etched to form the stack 10 .
  • the word line stack 10 as shown in FIG. 1 includes an unpassivated barrier layer 12 and metal layer 13 and represents a starting point for the techniques described in greater detail below.
  • the techniques can be used to help passivate the exposed edges or sidewalls 18 of the metal layer 13 and the barrier layer 12 so that the word line stack 10 can be processed further in an oxidizing environment without undergoing conversion of the tungsten or other metal to a non-conductive compound. Additionally, the techniques can allow the oxidizing species to diffuse relatively quickly to the corners of the source and drain regions during the subsequent source/drain reoxidation process.
  • an oxide layer 20 is formed over the word line stack 10 and the gate dielectric layer 16 .
  • the oxide layer 20 should be formed so that a relatively thick oxide film with a height h is provided over horizontal surfaces of the wafer, whereas a relatively thin oxide film with a thickness t is provided along the vertical surfaces including the sidewalls or edges 18 of the stack 10 .
  • the oxide layer 20 is formed, for example, using a high density plasma (HDP) technique or a collimated sputtering technique.
  • the oxide layer 20 is formed using a flowfill technique.
  • Such techniques are suitable for providing an oxide layer with the height h greater than the thickness t.
  • the height h of the oxide layer 20 along the horizontal surfaces should not extend above the lower surface of the polySi layer 11 .
  • the height h and thickness t of the oxide layer 20 will depend on the particular process parameters used and the topography of the devices formed on the wafer.
  • the height h of the oxide layer 20 on the horizontal surfaces can be on the order of about 200 angstroms ( ⁇ ), whereas the thickness t of the oxide layer 20 formed along the sidewalls 18 is only about 50 ⁇ . In that case, the ratio of the height h to the thickness t would be on the order of about 4 to 1.
  • the height h of the oxide layer 20 on the horizontal surfaces is on the order of about 1,000 angstroms ( ⁇ ), whereas the thickness t of the oxide layer 20 formed along the sidewalls 18 is only about 400 ⁇ .
  • the temperature during formation of the oxide layer 20 should be kept sufficiently low so that little or none of the barrier layer and metal layer 12 , 13 is converted to oxide.
  • the oxide layer 20 can be formed at a temperature in the range of about 30° C. to about 650° C.
  • the semiconductor wafer with the word line stack 10 can be placed in a reaction chamber, such as a parallel plate CVD chamber, with silane gas and hydrogen peroxide provided to the chamber interior in the vicinity of the wafer.
  • the silane gas and the hydrogen peroxide react to form SiOH 4 .
  • the temperature should be about 0 degrees celsius (° C.) or lower. Ratios of the height h of the oxide layer 20 to its thickness t along the sidewalls of the stack 10 can be on the order of about 10 to 1, and even as high as about 100 to 1.
  • an elevated temperature treatment can be performed to help reduce the water content of the oxide film.
  • elevated temperature treatments include, for example, anneal processes at a temperature greater than 100° C., and typically in the range of about 300-500° C.
  • a plasma treatment or a radiation treatment can be performed.
  • an isotropic etch optionally is performed to remove substantially all the oxide 20 from the sidewalls 18 (FIG. 3).
  • a hydrofluoric acid (HF) solution or a N,N,N, trimethyl hydroxide (TMAH) and HF solution can be used.
  • TMAH trimethyl hydroxide
  • a dry isotropic etch can be used to remove the oxide 20 from the sidewalls 18 .
  • the etchant should be selected so that the layers that form the word line stack 10 are not etched. In some applications, little or no oxide may be formed along the sidewalls 18 and, thus, the isotropic etch to remove the oxide 20 need not be performed.
  • a substantially conformal nitride layer is deposited over the wafer, for example, by chemical vapor deposition (CVD) or plasma-enhanced CVD (PECVD), and an anisotropic or directional etch is carried out to form nitride spacers 22 along the surfaces or sidewalls 18 of the stack 10 (FIG. 4).
  • CVD chemical vapor deposition
  • PECVD plasma-enhanced CVD
  • RIE reactive ion etching
  • sputtering technique can be used to form the nitride spacers 22 which, in some implementations, have a thickness in the range of about 50 ⁇ to about 500 ⁇ .
  • the nitride spacers 22 which can comprise, for example, silicon nitride (Si x N y ), should extend at least along portions of the sidewalls 18 at which the metal layer 13 and the barrier layer 12 previously were exposed.
  • the nitride spacers 22 do not extend to the lower portion of the sidewalls of the polySi layer 11 which remains covered by the oxide layer 20 .
  • Use of a non-conformal oxide layer 20 which is relatively thick over the horizontal surfaces of the substrate, can help avoid pitting of the silicon substrate during etching of the nitride spacers.
  • a source/drain dopant anneal can be performed, and a source/drain reoxidation is carried out using standard techniques.
  • the reoxidation process can include providing an oxygen-containing gas, such as H 2 O or O 2 to a vicinity of the wafer.
  • the reoxidation is carried out with the oxide layer 20 intact (FIG. 5). As the reoxidation process takes place, oxygen diffuses through the oxide layer 20 to the corners of the source and drain regions 19 .
  • the duration of the reoxidation process may be slightly longer than if it were performed in the absence of the oxide layer 20 because the oxygen must first diffuse through the oxide layer. Nevertheless, compared to an oxide layer 20 formed using a sputtering or high density plasma technique, an oxide layer 20 formed using a flowfill technique can have a density which allows for a relatively high flux of the oxidizing species to diffuse through the oxide layer toward the source and drain regions 19 .
  • the nitride spacers 22 serve as a barrier to prevent the oxygen from interacting with the metal layer 13 and the barrier layer 12 .
  • the spacers 22 therefore, passivate those layers and prevent the conversion of those layers to a metal oxide or metal oxynitride.
  • the combination of the nitride spacers 22 and the oxide layer 20 allows reoxidation near the corners of the source and drain regions 19 while at the same time preventing or reducing oxidation of the barrier and metal layers 11 , 12 in the word line stack 10 .
  • a selective wet etch can be performed to remove a portion of the oxide layer 20 remaining over the source and drain regions 19 (FIG. 6) or to remove substantially all of the oxide layer 20 remaining over the source and drain regions 19 (FIG. 7).
  • the source/drain reoxidation process then is performed with the nitride spacers 22 acting as a barrier to the oxygen atoms to prevent oxidation of the metal and/or barrier layers 12 , 13 .
  • the upper portion of the nitride spacers 22 may extend beyond the top of the stack 10 .
  • nitride spacers that extend beyond the top of the stack 10 are not desirable because they make subsequent processing more difficult.
  • the nitride spacers 22 can be over-etched slightly during formation of the spacers (see FIG. 8). The extent of the over-etching that is desirable will depend on the amount of the oxide layer 20 that is to be subsequently removed prior to the source/drain reoxidation.
  • the amount of over-etching of the nitride spacers 22 can be controlled so that following removal of part of all of the oxide layer 20 the top of the stack 10 and the top of the nitride spacers 22 are at about the same height (see FIG. 9).
  • FIG. 10 is a flow chart of some of the acts that are performed during some implementations.
  • an exemplary semiconductor memory device 30 incorporates word line stacks that form gate electrodes 44 with nitride spacers 48 which extend partially along the sidewalls of the word line stacks.
  • the device 30 includes an n-type well 34 formed in a p-type silicon substrate 32 , and a p-type well 36 formed in the n-type well 34 . At the surface of the p-type well 36 , a pair of transistors 38 are formed and constitute a memory cell of the device 30 . Field oxide regions 45 separate the transistors 38 from other devices formed on the semiconductor wafer.
  • Each of the transistors 38 includes n-type source/drain regions 40 A, 40 B, 40 C, a gate dielectric film 42 , and a stacked gate electrode 44 .
  • Each stacked gate electrode 44 can include a polySilicon layer, a conductive barrier layer, a metal layer, and a cap which can include a SiO 2 layer 14 and a nitride layer, as described above with respect to FIG. 1.
  • Nitride spacers 48 extend partially along the sidewalls of the gate electrodes 44 and, in particular, cover the sidewalls of the respective barrier and metal layers.
  • a first interlayer insulating film 50 is formed over gate electrodes 44 , and a metal bit line 52 is connected to the source/drain region 40 B through a contact hole 54 .
  • the bit line 52 is covered with a second interlayer insulating film 56 .
  • Capacitive elements are formed above the insulating film 56 .
  • the stacked-type capacitive elements include a lower electrode 58 , a capacitor insulating film 60 , and an upper electrode 62 .
  • Each of the paired lower electrodes 58 is electrically connected to a respective one of the source/drain regions 40 A, 40 C through contact holes 64 which extend through the first and second interlayer insulating films 50 , 56 .
  • the capacitive elements are covered with a third interlayer insulating film 66 , and metal wiring 68 is provided on the surface of the third interlayer insulating film to access bit lines, capacitor nodes and/or transistors.
  • the nitride spacers 48 do not extend all the way to the bottom of the stacked gate electrodes 44 . Specifically, the nitride spacers 48 do not completely cover the sidewalls of the polySilicon layer that forms the lowermost layer of the gate electrodes 44 . As discussed previously, the nitride spacers 48 allow reoxidation of the gate dielectric film 42 near the corners or edges of the source and drain regions 40 A, 40 B, 40 C while at the same time preventing or reducing oxidation of the barrier and metal layers in the gate electrode stacks 44 . The invention, thus, allows devices with increased operational speeds to be obtained by incorporating, for example, pure metal layers such as tungsten into the word line stack. Moreover, reoxidation of the gate dielectric can be performed quickly and efficiently so as to repair damage to the gate dielectric that may occur during earlier fabrication steps, thereby reducing the hot electron effect that can cause threshold voltage shifts.

Abstract

A method of fabricating an integrated circuit on a wafer includes forming a gate electrode stack over a gate dielectric and forming nitride spacers along sidewalls of the gate electrode stack other than along lowermost portions of the sidewalls. Subsequently, a reoxidation process is performed with respect to the gate dielectric. By providing the nitride spacers along exposed surfaces of conductive barrier and metal layers of the word line stack, those surfaces can be passivated, thereby preventing or reducing the conversion of those layers to non-conductive compounds during the reoxidation process. At the same time, the nitride spacers can be formed so that they do not interfere with the subsequent reoxidation of the gate dielectric. An integrated circuit having a gate electrode stack with nitride spacers extending along sidewalls of the gate electrode stack other than along lowermost portions of the sidewalls is also disclosed.

Description

    BACKGROUND
  • The present invention relates generally to semiconductor devices and, more particularly, to the fabrication of word line stacks. [0001]
  • During the manufacture of some integrated circuits, field effect transistor (FET) gate electrodes and gate electrode interconnects are etched from a thick conductive layer that covers other circuitry. For example, in semiconductor memory circuits, wherever a word lines passes over a field oxide region, it functions as a gate electrode interconnect; wherever the word line passes over a gate dielectric layer overlying an active region, the word line functions as a gate electrode. [0002]
  • In early generations of integrated circuits, gate electrodes and electrode interconnects were often etched from a heavily-doped polycrystalline silicon (polySi) layer. However, fast operational speeds and low stack heights that are desirable for some applications could not be obtained using the polySi layer. Faster operational speeds, for example, are required for certain high-speed processor and memory circuits. Reduced stack heights are desirable for increasing the planarity of the integrated circuit to obtain better photolithographic resolution. To achieve increased operational speeds and lower stack heights in subsequent generations of integrated circuits, it became necessary to reduce the sheet resistance of the conductive layer from which the gates and gate interconnects were formed. A significant improvement in the conductivity of gate electrodes and gate interconnects was obtained by forming a low-resistance metal silicide layer on top of the electrode/interconnect layer. [0003]
  • A silicide is a binary compound formed by the reaction of a metal and silicon (Si) at an elevated temperature. Refractory metal silicides, for example, include a refractory metal, such as tungsten (W) or titanium (Ti), and have relatively high melting points in the range of about 1,400 degrees Celsius (° C.) to greater than about 3,400° C. Metals with a high melting point are preferred for structures, such as gates, that are created early in the fabrication process because the processing of integrated circuit typically involves a series of steps performed at elevated temperatures. In contrast, a metal layer formed at the end of the fabrication process need not have a particularly high melting point. Thus, aluminum (Al), which has a melting point of only about 660° C., generally is used only for the upper level interconnect lines and is applied to the circuitry only after no further processing of the wafer above about 600° C. is required. Although metal silicides have significantly higher conductivity than heavily-doped polySi, a silicide is about an order of magnitude more resistive than the pure metal from which it is formed. [0004]
  • To improve the properties of gates and gate interconnects even further, integrated circuit manufacturers are investigating the use of pure metal layers. Tungsten, for example, is of particular interest because it is relatively inexpensive, has a high melting point (approximately 3,410° C.), and is known to be compatible with current manufacturing techniques. [0005]
  • The use of unreacted tungsten metal as a conductive word line layer can create certain problems during the fabrication process of the integrated circuit. The word line materials often must be capable of withstanding high temperature processing in an oxidizing environment. For example, shortly after the word line stack is patterned, a source/drain reoxidation is performed to repair damage that occurs to the gate oxide near the corners of source and drain regions as a result of etching the word line. The source/drain reoxidation reduces the electric field strength at the gate edge by upwardly chamfering the edge, thereby reducing the “hot electron” effect that can cause threshold voltage shifts. However, during such a reoxidation process, exposed tungsten along the edges or sidewalls of the stack is converted quickly to tungsten trioxide gas at high temperatures in the presence of oxygen. Moreover, sublimation of the tungsten oxide is not self-limiting. The oxidation of the tungsten layer as well as oxidation of the barrier layer degrades the electrical properties of the word line. Accordingly, passivation of the exposed edges or sidewalls of the tungsten layer and the barrier layer is desirable. [0006]
  • Various techniques have been proposed for passivating the sidewalls of the word line stack prior to reoxidation of the gate dielectric. However, some of the proposed techniques are not easily integrated into standard device fabrication processes, while other techniques do not result in sufficient reoxidation of the gate dielectric in a sufficiently short period of time. [0007]
  • SUMMARY
  • In general, techniques are disclosed for passivating exposed surfaces of a word line stack such as sidewalls of a metal layer or a conductive barrier layer to help prevent conversion of those layers to a non-conductive compound during a subsequent oxidation process. [0008]
  • According to one aspect, a method of fabricating an integrated circuit on a wafer includes forming a gate electrode stack over a gate dielectric and forming nitride spacers along sidewalls of the gate electrode stack other than along lowermost portions of the sidewalls. Subsequently, a reoxidation process is performed with respect to the gate dielectric. [0009]
  • According to another aspect, a word line stack is formed over a gate dielectric. Forming the word line stack includes forming a polySilicon layer on the gate dielectric and forming a metal layer above the polySilicon layer. Nitride spacers are formed along portions of sidewalls of the word line stack adjacent the metal layer. At least lower portions of sidewalls of the polySilicon layer are not covered by the nitride spacers. Subsequently, a reoxidation process is performed. [0010]
  • Various implementations include one or more of the following features. Forming the nitride spacers can include forming a nitride layer over the wafer, and etching the nitride layer to form the nitride spacers. The nitride layer can be formed, for example, by chemical vapor deposition, and etching the nitride layer can include performing an anisotropic etch such as reactive ion etch process. [0011]
  • Prior to forming the nitride spacers, an oxide layer can be formed adjacent the lowermost portions of the sidewalls of the stack. The oxide layer can be formed, for example, using a high density plasma process, a collimated sputtering process or a flowfill technique. Such techniques can be advantageous in forming an oxide which is thicker on horizontal surfaces of the wafer than on vertical surfaces, such as the sidewalls of stack. In some implementations, an isotropic etch is used to remove portions of the oxide layer so as to expose the sidewalls of the metal layer and/or the conductive barrier layer prior to forming the nitride spacers. [0012]
  • Following formation of the nitride spacers, a portion or substantially all of the oxide formed on the horizontal surfaces can be removed prior to performing the reoxidation. The oxide can be removed from the horizontal surfaces, for example, using a selective wet etch. [0013]
  • According to another aspect, an integrated circuit includes a semiconductor wafer and a gate dielectric film disposed on a surface of the wafer. A gate electrode stack, which includes multiple layers, is disposed on the gate dielectric film. Nitride spacers extend along sidewalls of the gate electrode stack other than along lowermost portions of the sidewalls. [0014]
  • Some implementations include a polySilicon layer on the gate dielectric film and a metal layer above the polySilicon layer with the spacers extending along sidewalls of the metal layer. The stack also can include a conductive barrier layer between the polySilicon layer and the metal layer, with the spacers extending along sidewalls of the barrier layer as well. In some situations, the spacers have a thickness in the range of about 50 Å to about 500 Å. [0015]
  • One or more of the following advantages are present in some implementations. By providing the nitride spacers along the exposed surfaces of the metal layer and/or the conductive barrier layer, those surfaces can be passivated, thereby preventing or reducing the conversion of those layers to non-conductive compounds. At the same time, the nitride spacers can be formed so that they do not interfere with the subsequent reoxidation process. Thus, the electrical properties of the resulting devices can be improved. In particular, metals such as tungsten can be used as the metal layer of the word line stack to take advantage of tungsten's relatively low expense, high melting point and compatibility with current manufacturing techniques. Reoxidation of the gate dielectric can be performed quickly and efficiently so as to repair damage to the gate dielectric that may occur during earlier fabrication steps, thereby reducing the hot electron effect that can cause threshold voltage shifts. [0016]
  • In addition, forming a non-conformal oxide layer, which is thicker on horizontal surfaces of the wafer than on the sidewalls of the gate stack, prior to etching the nitride spacers can help reduce or eliminate pitting of the underlying semiconductor substrate. [0017]
  • Other features and advantages will be readily apparent from the following detailed description, the accompanying drawings, and the claims.[0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a cross-section of an exemplary word line stack. [0019]
  • FIGS. 2 through 4 illustrate cross-sections of an exemplary word line stack during passivation of the sidewalls of the stack according to the invention. [0020]
  • FIG. 5 illustrates the word line stack during a drain/source reoxidation according to the invention. [0021]
  • FIG. 6 illustrates the word line stack during a drain/source reoxidation according to an alternative embodiment of the invention. [0022]
  • FIG. 7 illustrates the word line stack during a drain/source reoxidation according to yet another embodiment of the invention. [0023]
  • FIGS. 8 and 9 illustrate passivation of the sidewalls of the word line stack according to another embodiment of the invention. [0024]
  • FIG. 10 is a flow chart of a method according to the invention. [0025]
  • FIG. 11 illustrates a cross-section of an exemplary integrated circuit including word line stacks passivated according to the invention.[0026]
  • DETAILED DESCRIPTION
  • Referring to FIG. 1, an exemplary [0027] word line stack 10 includes a polySilicon layer 11, a conductive barrier layer 12, a metal layer 13, and a cap which can include, for example, a silicon dioxide (SiO2) layer 14 and a nitride layer 15.
  • The [0028] barrier layer 12 should be impermeable to silicon and metal atoms and, in some embodiments, can include tungsten nitride (WNx) or titanium nitride (TiNx) The metal layer 13 can comprise, for example, aluminum (Al), copper (Cu), or a metal or metal alloy. Exemplary metals include tungsten (W), titanium (Ti), platinum (Pt), palladium (Pd), cobalt (Co), molybdenum (Mo), nickel (Ni), rhodium (Rh) and iridium (Ir).
  • The [0029] word line stack 10 overlies a Si wafer 14 with source and drain regions 19 formed on either side of the stack 10. The polySi layer 11 is insulated from the substrate 17 by a gate dielectric layer 16.
  • The [0030] word line stack 10 can be formed by conventional techniques. For example, the substrate 17 can be oxidized to form the gate dielectric layer 16. Materials for the polySi layer, the barrier layer 12, the metal layer 13, the SiO2 layer 14 and the nitride layer 15 are deposited sequentially, and subsequently are etched to form the stack 10.
  • The [0031] word line stack 10 as shown in FIG. 1 includes an unpassivated barrier layer 12 and metal layer 13 and represents a starting point for the techniques described in greater detail below. The techniques can be used to help passivate the exposed edges or sidewalls 18 of the metal layer 13 and the barrier layer 12 so that the word line stack 10 can be processed further in an oxidizing environment without undergoing conversion of the tungsten or other metal to a non-conductive compound. Additionally, the techniques can allow the oxidizing species to diffuse relatively quickly to the corners of the source and drain regions during the subsequent source/drain reoxidation process.
  • Referring to FIG. 2, an [0032] oxide layer 20 is formed over the word line stack 10 and the gate dielectric layer 16. Preferably, the oxide layer 20 should be formed so that a relatively thick oxide film with a height h is provided over horizontal surfaces of the wafer, whereas a relatively thin oxide film with a thickness t is provided along the vertical surfaces including the sidewalls or edges 18 of the stack 10.
  • According to one implementation, the [0033] oxide layer 20 is formed, for example, using a high density plasma (HDP) technique or a collimated sputtering technique. According to another implementation, the oxide layer 20 is formed using a flowfill technique. Such techniques are suitable for providing an oxide layer with the height h greater than the thickness t. Preferably, the height h of the oxide layer 20 along the horizontal surfaces should not extend above the lower surface of the polySi layer 11.
  • In general, using either a HDP or collimated sputtering technique, the height h and thickness t of the [0034] oxide layer 20 will depend on the particular process parameters used and the topography of the devices formed on the wafer. In one exemplary implementation, the height h of the oxide layer 20 on the horizontal surfaces can be on the order of about 200 angstroms (Å), whereas the thickness t of the oxide layer 20 formed along the sidewalls 18 is only about 50 Å. In that case, the ratio of the height h to the thickness t would be on the order of about 4 to 1. In another exemplary implementation, the height h of the oxide layer 20 on the horizontal surfaces is on the order of about 1,000 angstroms (Å), whereas the thickness t of the oxide layer 20 formed along the sidewalls 18 is only about 400 Å. The temperature during formation of the oxide layer 20 should be kept sufficiently low so that little or none of the barrier layer and metal layer 12, 13 is converted to oxide. Thus, for example, if the barrier layer 12 comprises WNx and the metal layer 13 comprises W, the oxide layer 20 can be formed at a temperature in the range of about 30° C. to about 650° C.
  • To form the [0035] oxide layer 20 using a flowfill technique, the semiconductor wafer with the word line stack 10 can be placed in a reaction chamber, such as a parallel plate CVD chamber, with silane gas and hydrogen peroxide provided to the chamber interior in the vicinity of the wafer. The silane gas and the hydrogen peroxide react to form SiOH4. Preferably, the temperature should be about 0 degrees celsius (° C.) or lower. Ratios of the height h of the oxide layer 20 to its thickness t along the sidewalls of the stack 10 can be on the order of about 10 to 1, and even as high as about 100 to 1.
  • Optionally, if a flowfill technique is used to form the [0036] oxide layer 20, an elevated temperature treatment can be performed to help reduce the water content of the oxide film. Such elevated temperature treatments include, for example, anneal processes at a temperature greater than 100° C., and typically in the range of about 300-500° C. Alternatively, a plasma treatment or a radiation treatment can be performed.
  • Following formation of the [0037] oxide layer 20, an isotropic etch optionally is performed to remove substantially all the oxide 20 from the sidewalls 18 (FIG. 3). In one particular implementation, a hydrofluoric acid (HF) solution or a N,N,N, trimethyl hydroxide (TMAH) and HF solution can be used. Alternatively, a dry isotropic etch can be used to remove the oxide 20 from the sidewalls 18. In any event, the etchant should be selected so that the layers that form the word line stack 10 are not etched. In some applications, little or no oxide may be formed along the sidewalls 18 and, thus, the isotropic etch to remove the oxide 20 need not be performed.
  • Next, a substantially conformal nitride layer is deposited over the wafer, for example, by chemical vapor deposition (CVD) or plasma-enhanced CVD (PECVD), and an anisotropic or directional etch is carried out to form [0038] nitride spacers 22 along the surfaces or sidewalls 18 of the stack 10 (FIG. 4). For example, a reactive ion etching (RIE) technique or a sputtering technique can be used to form the nitride spacers 22 which, in some implementations, have a thickness in the range of about 50 Å to about 500 Å. The nitride spacers 22, which can comprise, for example, silicon nitride (SixNy), should extend at least along portions of the sidewalls 18 at which the metal layer 13 and the barrier layer 12 previously were exposed. The nitride spacers 22, however, do not extend to the lower portion of the sidewalls of the polySi layer 11 which remains covered by the oxide layer 20. Use of a non-conformal oxide layer 20, which is relatively thick over the horizontal surfaces of the substrate, can help avoid pitting of the silicon substrate during etching of the nitride spacers.
  • Following formation of the [0039] nitride spacers 22, a source/drain dopant anneal can be performed, and a source/drain reoxidation is carried out using standard techniques. The reoxidation process can include providing an oxygen-containing gas, such as H2O or O2 to a vicinity of the wafer. In one implementation, the reoxidation is carried out with the oxide layer 20 intact (FIG. 5). As the reoxidation process takes place, oxygen diffuses through the oxide layer 20 to the corners of the source and drain regions 19.
  • The duration of the reoxidation process may be slightly longer than if it were performed in the absence of the [0040] oxide layer 20 because the oxygen must first diffuse through the oxide layer. Nevertheless, compared to an oxide layer 20 formed using a sputtering or high density plasma technique, an oxide layer 20 formed using a flowfill technique can have a density which allows for a relatively high flux of the oxidizing species to diffuse through the oxide layer toward the source and drain regions 19.
  • During the reoxidation process, the [0041] nitride spacers 22 serve as a barrier to prevent the oxygen from interacting with the metal layer 13 and the barrier layer 12. The spacers 22, therefore, passivate those layers and prevent the conversion of those layers to a metal oxide or metal oxynitride. Thus, the combination of the nitride spacers 22 and the oxide layer 20 allows reoxidation near the corners of the source and drain regions 19 while at the same time preventing or reducing oxidation of the barrier and metal layers 11, 12 in the word line stack 10.
  • Alternatively, prior to performing the source/drain reoxidation process, a selective wet etch can be performed to remove a portion of the [0042] oxide layer 20 remaining over the source and drain regions 19 (FIG. 6) or to remove substantially all of the oxide layer 20 remaining over the source and drain regions 19 (FIG. 7). The source/drain reoxidation process then is performed with the nitride spacers 22 acting as a barrier to the oxygen atoms to prevent oxidation of the metal and/or barrier layers 12, 13.
  • As can be seen from FIGS. 6 and 7, if the [0043] oxide layer 20 is partially or completely removed prior to the source/drain reoxidation, the upper portion of the nitride spacers 22 may extend beyond the top of the stack 10. In general, nitride spacers that extend beyond the top of the stack 10 are not desirable because they make subsequent processing more difficult. To provide spacers that extend to about the same height as the resulting stack 10, the nitride spacers 22 can be over-etched slightly during formation of the spacers (see FIG. 8). The extent of the over-etching that is desirable will depend on the amount of the oxide layer 20 that is to be subsequently removed prior to the source/drain reoxidation. The amount of over-etching of the nitride spacers 22 can be controlled so that following removal of part of all of the oxide layer 20 the top of the stack 10 and the top of the nitride spacers 22 are at about the same height (see FIG. 9).
  • FIG. 10 is a flow chart of some of the acts that are performed during some implementations. [0044]
  • Referring to FIG. 11, an exemplary [0045] semiconductor memory device 30 incorporates word line stacks that form gate electrodes 44 with nitride spacers 48 which extend partially along the sidewalls of the word line stacks.
  • The [0046] device 30 includes an n-type well 34 formed in a p-type silicon substrate 32, and a p-type well 36 formed in the n-type well 34. At the surface of the p-type well 36, a pair of transistors 38 are formed and constitute a memory cell of the device 30. Field oxide regions 45 separate the transistors 38 from other devices formed on the semiconductor wafer.
  • Each of the [0047] transistors 38 includes n-type source/drain regions 40A, 40B, 40C, a gate dielectric film 42, and a stacked gate electrode 44. Each stacked gate electrode 44 can include a polySilicon layer, a conductive barrier layer, a metal layer, and a cap which can include a SiO2 layer 14 and a nitride layer, as described above with respect to FIG. 1. Nitride spacers 48 extend partially along the sidewalls of the gate electrodes 44 and, in particular, cover the sidewalls of the respective barrier and metal layers.
  • A first [0048] interlayer insulating film 50 is formed over gate electrodes 44, and a metal bit line 52 is connected to the source/drain region 40B through a contact hole 54. The bit line 52 is covered with a second interlayer insulating film 56. Capacitive elements are formed above the insulating film 56. The stacked-type capacitive elements include a lower electrode 58, a capacitor insulating film 60, and an upper electrode 62. Each of the paired lower electrodes 58 is electrically connected to a respective one of the source/drain regions 40A, 40C through contact holes 64 which extend through the first and second interlayer insulating films 50, 56. The capacitive elements are covered with a third interlayer insulating film 66, and metal wiring 68 is provided on the surface of the third interlayer insulating film to access bit lines, capacitor nodes and/or transistors.
  • As can be seen in FIG. 11, the [0049] nitride spacers 48 do not extend all the way to the bottom of the stacked gate electrodes 44. Specifically, the nitride spacers 48 do not completely cover the sidewalls of the polySilicon layer that forms the lowermost layer of the gate electrodes 44. As discussed previously, the nitride spacers 48 allow reoxidation of the gate dielectric film 42 near the corners or edges of the source and drain regions 40A, 40B, 40C while at the same time preventing or reducing oxidation of the barrier and metal layers in the gate electrode stacks 44. The invention, thus, allows devices with increased operational speeds to be obtained by incorporating, for example, pure metal layers such as tungsten into the word line stack. Moreover, reoxidation of the gate dielectric can be performed quickly and efficiently so as to repair damage to the gate dielectric that may occur during earlier fabrication steps, thereby reducing the hot electron effect that can cause threshold voltage shifts.
  • Other implementations are within the scope of the following claims. [0050]

Claims (30)

What is claimed is:
1. A method of fabricating an integrated circuit on a wafer, the method comprising:
forming a gate electrode stack over a gate dielectric;
forming nitride spacers along sidewalls of the gate electrode stack other than along lowermost portions of the sidewalls; and
subsequently performing a reoxidation process with respect to the gate dielectric..
2. The method of claim 1 further including:
forming an oxide layer adjacent the lowermost portions of the sidewalls prior to forming the nitride spacers.
3. The method of claim 2 wherein the oxide layer is formed using a high density plasma process.
4. The method of claim 2 wherein the oxide layer is formed using a collimated sputtering process.
5. The method of claim 2 wherein the oxide layer is formed using a flowfill technique.
6. The method of claim 2 further including removing portions of the oxide layer to expose upper portions of the sidewalls prior to forming the nitride spacers.
7. The method of claim 2 wherein the oxide layer is formed using a process that results in a thicker oxide being formed on horizontal surfaces of the wafer than along the sidewalls of the gate electrode stack.
8. The method of claim 7 wherein, following the act of forming the nitride spacers, at least a portion of the oxide formed on the horizontal surfaces is removed prior to performing the reoxidation.
9. The method of claim 7 wherein the oxide is removed from the horizontal surfaces using a selective wet etch.
10. The method of claim 7 wherein substantially all the oxide is removed from the horizontal surfaces prior to performing the reoxidation.
11. The method of claim 2 wherein forming nitride spacers includes:
forming a nitride layer over the wafer; and
etching the nitride layer to form the nitride spacers.
12. The method of claim 11 wherein forming a nitride layer includes depositing a nitride layer by chemical vapor deposition.
13. The method of claim 11 wherein etching the nitride layer includes performing an anisotropic etch.
14. The method of claim 11 wherein etching the nitride layer includes performing a reactive ion etch process.
15. A method of fabricating an integrated circuit on a wafer, the method comprising:
forming a word line stack over a gate dielectric, wherein forming the word line stack includes forming a polySilicon layer on the gate dielectric and forming a metal layer above the polySilicon layer;
forming nitride spacers along portions of sidewalls of the word line stack adjacent the metal layer, wherein at least lower portions of sidewalls of the polySilicon layer are not covered by the nitride spacers; and
subsequently performing a reoxidation process.
16. The method of claim 15 wherein forming a word line stack further includes forming a barrier layer above the polySilicon layer, and wherein forming nitride spacers includes forming nitride spacers along portions of the sidewalls of the word line stack adjacent the barrier layer.
17. The method of claim 15 further including:
forming an oxide layer over the wafer prior to forming the nitride spacers, wherein the oxide layer is thicker on substantially horizontal surfaces than along substantially vertical surfaces.
18. The method of claim 16 wherein the oxide layer is at least about four times thicker on the substantially horizontal surfaces than along the substantially vertical surfaces.
19. The method of claim 16 wherein the oxide layer is at least about ten times thicker on the substantially horizontal surfaces than along the substantially vertical surfaces.
20. The method of claim 16 wherein the oxide layer is formed using a high density plasma process.
21. The method of claim 16 wherein the oxide layer is formed using a collimated sputtering process.
22. The method of claim 16 wherein the oxide layer is formed using a flowfill technique.
23. The method of claim 16 further including removing portions of the oxide layer to expose the portions of the sidewalls adjacent the metal layer prior to forming the nitride spacers.
24. A method of fabricating an integrated circuit on a wafer, the method comprising:
sequentially forming a polySilicon layer, a conductive barrier layer, and a metal layer over a gate dielectric formed on the wafer;
etching the polySilicon, conductive barrier and metal layers to form at least one gate electrode stack;
forming an oxide layer adjacent lower portions of sidewalls of the polySilicon layer;
providing nitride spacers along sidewalls of the conductive barrier and metal layers; and
performing a reoxidation process with the nitride spacers serving as a barrier to prevent an oxidizing species from interacting with the metal layer and the barrier layer.
25. An integrated circuit comprising:
a semiconductor wafer;
a gate dielectric film disposed on a surface of the wafer;
a gate electrode stack disposed on the gate dielectric film, wherein the stack includes a plurality of layers; and
nitride spacers extending along sidewalls of the gate electrode stack other than along lowermost portions of the sidewalls.
26. The integrated circuit of claim 25 wherein the stack includes a polySilicon layer on the gate dielectric film and a metal layer above the polySilicon layer, and wherein the spacers extend along sidewalls of the metal layer.
27. The integrated circuit of claim 26 wherein the metal layer comprises a material selected from a group consisting of a refractory metal or a refractory metal alloy.
28. The integrated circuit of claim 26 wherein the stack includes a conductive barrier layer between the polySilicon layer and the metal layer, and wherein the spacers extend along sidewalls of the barrier layer.
29. The integrated circuit of claim 28 wherein the barrier layer is substantially impermeable to silicon and metal a toms.
30. The integrated circuit of claim 25 wherein the spacers have a thickness in the range of about 50 Å to about 500 Å.
US09/577,835 1999-08-18 2000-05-25 Passivation of sidewalls of a word line stack Abandoned US20020063283A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/577,835 US20020063283A1 (en) 1999-08-18 2000-05-25 Passivation of sidewalls of a word line stack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/376,232 US6198144B1 (en) 1999-08-18 1999-08-18 Passivation of sidewalls of a word line stack
US09/577,835 US20020063283A1 (en) 1999-08-18 2000-05-25 Passivation of sidewalls of a word line stack

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/376,232 Division US6198144B1 (en) 1999-08-18 1999-08-18 Passivation of sidewalls of a word line stack

Publications (1)

Publication Number Publication Date
US20020063283A1 true US20020063283A1 (en) 2002-05-30

Family

ID=23484191

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/376,232 Expired - Lifetime US6198144B1 (en) 1999-08-18 1999-08-18 Passivation of sidewalls of a word line stack
US09/577,835 Abandoned US20020063283A1 (en) 1999-08-18 2000-05-25 Passivation of sidewalls of a word line stack

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/376,232 Expired - Lifetime US6198144B1 (en) 1999-08-18 1999-08-18 Passivation of sidewalls of a word line stack

Country Status (1)

Country Link
US (2) US6198144B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020042A1 (en) * 2003-02-19 2005-01-27 Seong-Jun Heo Methods of forming a semiconductor device having a metal gate electrode and associated devices
US20060186491A1 (en) * 2003-02-19 2006-08-24 Park Hee-Sook Methods of forming semiconductor devices having metal gate electrodes and related devices
US8580635B2 (en) * 2011-12-05 2013-11-12 International Business Machines Corporation Method of replacing silicon with metal in integrated circuit chip fabrication
US9324724B1 (en) 2015-09-21 2016-04-26 United Microelectronics Corporation Method of fabricating a memory structure

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274292B1 (en) * 1998-02-25 2001-08-14 Micron Technology, Inc. Semiconductor processing methods
US7804115B2 (en) * 1998-02-25 2010-09-28 Micron Technology, Inc. Semiconductor constructions having antireflective portions
US6268282B1 (en) 1998-09-03 2001-07-31 Micron Technology, Inc. Semiconductor processing methods of forming and utilizing antireflective material layers, and methods of forming transistor gate stacks
US6281100B1 (en) 1998-09-03 2001-08-28 Micron Technology, Inc. Semiconductor processing methods
US6828683B2 (en) * 1998-12-23 2004-12-07 Micron Technology, Inc. Semiconductor devices, and semiconductor processing methods
US6429108B1 (en) * 1999-09-02 2002-08-06 Advanced Micro Devices, Inc. Non-volatile memory device with encapsulated tungsten gate and method of making same
JP2001102580A (en) * 1999-09-30 2001-04-13 Nec Corp Semiconductor device and manufacturing method thereof
US6277719B1 (en) * 1999-11-15 2001-08-21 Vanguard International Semiconductor Corporation Method for fabricating a low resistance Poly-Si/metal gate
US6337274B1 (en) * 1999-12-06 2002-01-08 Micron Technology, Inc. Methods of forming buried bit line memory circuitry
US6440860B1 (en) * 2000-01-18 2002-08-27 Micron Technology, Inc. Semiconductor processing methods of transferring patterns from patterned photoresists to materials, and structures comprising silicon nitride
US6509254B1 (en) * 2000-01-20 2003-01-21 Matsushita Electric Industrial Co., Ltd. Method of forming electrode structure and method of fabricating semiconductor device
US6420250B1 (en) 2000-03-03 2002-07-16 Micron Technology, Inc. Methods of forming portions of transistor structures, methods of forming array peripheral circuitry, and structures comprising transistor gates
TW463341B (en) * 2000-08-01 2001-11-11 United Microelectronics Corp Multi-level covering layer structure suitable for a silicide process
US6455441B1 (en) 2000-08-31 2002-09-24 Micron Technology, Inc. Sputtered insulating layer for wordline stacks
KR100351907B1 (en) * 2000-11-17 2002-09-12 주식회사 하이닉스반도체 method for forming gate electrode semiconductor device
US6613656B2 (en) * 2001-02-13 2003-09-02 Micron Technology, Inc. Sequential pulse deposition
US6503844B2 (en) * 2001-06-06 2003-01-07 Infineon Technologies, Ag Notched gate configuration for high performance integrated circuits
US7358171B2 (en) * 2001-08-30 2008-04-15 Micron Technology, Inc. Method to chemically remove metal impurities from polycide gate sidewalls
DE10153619B4 (en) * 2001-10-31 2004-07-29 Infineon Technologies Ag Method for producing a gate layer stack for an integrated circuit arrangement and integrated circuit arrangement
US6509221B1 (en) * 2001-11-15 2003-01-21 International Business Machines Corporation Method for forming high performance CMOS devices with elevated sidewall spacers
US6696345B2 (en) * 2002-01-07 2004-02-24 Intel Corporation Metal-gate electrode for CMOS transistor applications
DE10220189B4 (en) * 2002-05-06 2009-04-23 Qimonda Ag Gate structure for a transistor and method for its production
US6724054B1 (en) 2002-12-17 2004-04-20 Infineon Technologies Ag Self-aligned contact formation using double SiN spacers
US7118999B2 (en) * 2004-01-16 2006-10-10 International Business Machines Corporation Method and apparatus to increase strain effect in a transistor channel
US7078748B2 (en) * 2004-06-14 2006-07-18 Infineon Technologies Ag Multi-layer gate stack structure comprising a metal layer for a FET device, and method for fabricating the same
DE102004031741B4 (en) 2004-06-30 2010-04-01 Qimonda Ag Method for producing a contact arrangement for field effect transistor structures with gate electrodes with a metal layer and use of the method for producing field effect transistor arrangements in a cell array
KR100583609B1 (en) * 2004-07-05 2006-05-26 삼성전자주식회사 Method of manufacturing a gate structure in a semiconductor device and method of manufacturing a cell gate structure in non-volatile memory device using the same
US20060110913A1 (en) * 2004-11-24 2006-05-25 Haiwei Xin Gate structure having diffusion barrier layer
US7501673B2 (en) * 2005-04-04 2009-03-10 Samsung Electronics Co., Ltd. Semiconductor device multilayer structure, fabrication method for the same, semiconductor device having the same, and semiconductor device fabrication method
US7439176B2 (en) * 2005-04-04 2008-10-21 Samsung Electronics Co., Ltd. Semiconductor device multilayer structure, fabrication method for the same, semiconductor device having the same, and semiconductor device fabrication method
US8883592B2 (en) * 2011-08-05 2014-11-11 Silicon Storage Technology, Inc. Non-volatile memory cell having a high K dielectric and metal gate
CN102623320B (en) * 2012-03-22 2015-04-22 上海华力微电子有限公司 Method for characterizing polycrystalline silicon resistor in multilayer grid electrode
US10204960B2 (en) * 2015-09-17 2019-02-12 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming polysilicon gate structure in image sensor device
US9991363B1 (en) * 2017-07-24 2018-06-05 Globalfoundries Inc. Contact etch stop layer with sacrificial polysilicon layer
TWI730677B (en) 2020-03-18 2021-06-11 力晶積成電子製造股份有限公司 Memory device and manufacturing method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774201A (en) 1988-01-07 1988-09-27 Intel Corporation Tungsten-silicide reoxidation technique using a CVD oxide cap
US4833099A (en) 1988-01-07 1989-05-23 Intel Corporation Tungsten-silicide reoxidation process including annealing in pure nitrogen and subsequent oxidation in oxygen
US5168072A (en) * 1990-10-12 1992-12-01 Texas Instruments Incorporated Method of fabricating an high-performance insulated-gate field-effect transistor
US6780718B2 (en) * 1993-11-30 2004-08-24 Stmicroelectronics, Inc. Transistor structure and method for making same
US5736455A (en) 1995-12-22 1998-04-07 Micron Technology, Inc. Method for passivating the sidewalls of a tungsten word line
US5612249A (en) * 1996-05-14 1997-03-18 Advanced Micro Devices, Inc. Post-gate LOCOS
US5739066A (en) * 1996-09-17 1998-04-14 Micron Technology, Inc. Semiconductor processing methods of forming a conductive gate and line
US5956614A (en) * 1996-12-17 1999-09-21 Texas Instruments Incorporated Process for forming a metal-silicide gate for dynamic random access memory
US5691223A (en) 1996-12-20 1997-11-25 Mosel Vitelic Inc. Method of fabricating a capacitor over a bit line DRAM process
US5817562A (en) * 1997-01-24 1998-10-06 Taiwan Semiconductor Manufacturing Company, Ltd Method for making improved polysilicon FET gate electrode structures and sidewall spacers for more reliable self-aligned contacts (SAC)
US6015997A (en) * 1997-02-19 2000-01-18 Micron Technology, Inc. Semiconductor structure having a doped conductive layer
TW340958B (en) * 1997-02-25 1998-09-21 Winbond Electronics Corp The producing method for self-aligned isolating gate flash memory unit
US5925918A (en) * 1997-07-30 1999-07-20 Micron, Technology, Inc. Gate stack with improved sidewall integrity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020042A1 (en) * 2003-02-19 2005-01-27 Seong-Jun Heo Methods of forming a semiconductor device having a metal gate electrode and associated devices
US20060186491A1 (en) * 2003-02-19 2006-08-24 Park Hee-Sook Methods of forming semiconductor devices having metal gate electrodes and related devices
US7098123B2 (en) * 2003-02-19 2006-08-29 Samsung Electronics Co., Ltd. Methods of forming a semiconductor device having a metal gate electrode and associated devices
US8580635B2 (en) * 2011-12-05 2013-11-12 International Business Machines Corporation Method of replacing silicon with metal in integrated circuit chip fabrication
US9324724B1 (en) 2015-09-21 2016-04-26 United Microelectronics Corporation Method of fabricating a memory structure

Also Published As

Publication number Publication date
US6198144B1 (en) 2001-03-06

Similar Documents

Publication Publication Date Title
US6198144B1 (en) Passivation of sidewalls of a word line stack
JP3851752B2 (en) Manufacturing method of semiconductor device
US7030012B2 (en) Method for manufacturing tungsten/polysilicon word line structure in vertical DRAM
US8026542B2 (en) Low resistance peripheral local interconnect contacts with selective wet strip of titanium
KR100530401B1 (en) Semiconductor device having a low-resistance gate electrode
US6613654B1 (en) Fabrication of semiconductor devices with transition metal boride films as diffusion barriers
US5736455A (en) Method for passivating the sidewalls of a tungsten word line
US20060275991A1 (en) Method of manufacturing a semiconductor integrated circuit device
JP4342131B2 (en) Capacitance element manufacturing method and semiconductor device manufacturing method
US20080023774A1 (en) Semiconductor device and method for fabricating the same
KR100867476B1 (en) Semiconductor device with transistor and capacitor and its manufacture method
US6214724B1 (en) Semiconductor device and manufacturing method therefor
US6660620B2 (en) Method of forming noble metal pattern
US6265262B1 (en) Semiconductor device and method of fabricating the same
US6833300B2 (en) Method of forming integrated circuit contacts
EP0926741A2 (en) Gate structure and method of forming same
US6306666B1 (en) Method for fabricating ferroelectric memory device
US20030038314A1 (en) Semiconductor device and method of manufacturing the same
JP3929743B2 (en) Capacitor element manufacturing method
JP4162879B2 (en) Manufacturing method of semiconductor device
WO1998037583A1 (en) Method for manufacturing semiconductor device
KR20020052455A (en) Manufacturing method for semiconductor device
JP2002033461A (en) Semiconductor device and its fabricating method
KR980011872A (en) Method for manufacturing semiconductor device
KR20080075702A (en) Manufacturing method of bit line for semiconductor device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION