US20020055078A1 - Flat flame burners - Google Patents

Flat flame burners Download PDF

Info

Publication number
US20020055078A1
US20020055078A1 US09/512,307 US51230700A US2002055078A1 US 20020055078 A1 US20020055078 A1 US 20020055078A1 US 51230700 A US51230700 A US 51230700A US 2002055078 A1 US2002055078 A1 US 2002055078A1
Authority
US
United States
Prior art keywords
fuel
combustion
burner
flame
burner according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/512,307
Other versions
US6461145B1 (en
Inventor
Patrick Giraud
Jean-Claude Montgermont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fives Stein SA
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to STEIN HEURTEY reassignment STEIN HEURTEY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GIRAUD, PATRICK, MONTGERMONT, JEAN-CLAUDE
Publication of US20020055078A1 publication Critical patent/US20020055078A1/en
Application granted granted Critical
Publication of US6461145B1 publication Critical patent/US6461145B1/en
Assigned to FIVES STEIN reassignment FIVES STEIN CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: STEIN HEURTEY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/40Inducing local whirls around flame

Definitions

  • the present invention relates to improvements to a flat-flame burner intended for equipping reheat, holding or heat-treatment furnaces, in particular for iron and steel products, so as to lower its NOx production appreciably.
  • FIGS. 1 to 4 of the appended drawings which illustrate, respectively:
  • FIG. 1 a schematic view in longitudinal axial section, of a furnace of known type for reheating iron and steel products
  • FIG. 2 a schematic view, in vertical axial section, of an embodiment of a roof burner according to the prior art, which can be mounted in a furnace as in FIG. 1;
  • FIG. 3 a schematic sectional view, in vertical axial section, of an alternative embodiment of a roof burner according to the prior art, which can be used in the furnace forming the subject of FIG. 1;
  • FIG. 4 also a schematic view, in vertical axial section, of a flat-flame burner according to the prior art, designed so as to reduce the amount of NOx produced by this burner.
  • FIG. 1 therefore illustrates an embodiment of a furnace for reheating iron and steel products, with top and bottom heating.
  • the products to be reheated denoted by the reference 1 , are supported and transported within the furnace by a system of fixed and walking beams 2 and 3 .
  • the walking beams are moved in a motion comprising a rectangular cycle by virtue of the conjugate actions of a translation frame 4 and a lifting frame 5 , in an arrangement well known to those skilled in the art.
  • the furnace is produced in the form of a thermally insulated chamber 6 in which long-flame burners 7 and flat-flame burners 8 are placed, the latter burners being fitted into the roof of the furnace.
  • the present invention relates to improvements to the flat-flame burners 8 .
  • FIGS. 2 and 3 illustrate two embodiments of roof burners according to the prior art.
  • FIG. 2 at 9 Shown schematically in the FIG. 2 at 9 is the combustion tunnel of a burner which has a flared opening, the shape of which is substantially in the form of a quadrant of a circle so as to propagate the stream of air and the flame of the burner along the profile of the combustion tunnel, by the Coanda effect, and along the plane P of the roof.
  • the burner is fed with combustion air, which may or may not be preheated, via a feed pipe 10 and this air is distributed in the body of the burner through orifices 11 made in the air distributor, these orifices causing the combustion air to swirl so that this air flows helically around the fuel-injection pipe 12 .
  • the latter lies along the axis of the burner so as to bring the fuel or fuels into a zone conducive to obtaining good mixing with the combustion air.
  • Introduction of the fuel or fuels takes place through one or more orifices 14 so as to obtain the flow portrayed by the arrow 15 in this FIG. 2.
  • a disc 13 is provided on the injection end of the pipe 12 , the function of this disc 13 being to force the combustion air to be pressed against the internal wall of the combustion tunnel 9 so as to promote the formation of a flat flame and create a suction vortex for the combustion gases in the burner head.
  • this vortex is portrayed by the arrow 16 .
  • the combustion gases within the chamber of the furnace are therefore recirculated at the burner head by induction of the vortex 16 created by the high-speed circulation of the air/gas mixture coming from the burner.
  • the flame produced by this air-gas mixture spreads, as at 17 , following the profile of the combustion tunnel 9 and the plane P of the roof of the furnace.
  • the roof burners may also be provided with twin fuel-injection pipes 18 and 19 having respective injection orifices 20 and 14 .
  • this known type of burner is similar to the burner forming the subject of FIG. 2, the twin injection pipe allowing the use of two different types of fuel.
  • a single injection of fuel via the orifices 20 may be employed, for example during the burner ignition phase, allowing better attachment of the flame at low fuel rates, particularly when the temperature of the furnace chamber is less than 750° C. (no spontaneous ignition of the mixture).
  • FIG. 4 of the appended drawings shows a burner according to the prior art, designed so as to reduce the amount of NOx produced.
  • the fuel is injected right at the very end of the combustion tunnel of the burner, into the vortex 16 of the combustion products.
  • the burner has a fuel-injection pipe lying along its axis and emerging in the combustion tunnel via a number of radial injectors 14 .
  • the fuel is injected radially at high speed, through the said injectors 14 , into the combustion air level with the tunnel in a zone in which the combustion air is diluted with the gases from the furnace environment.
  • This high-speed fuel injection via a small number of radial injectors furthermore divides the flame into several “small flames” which are less intensive and whose total volume is increased with respect to a single flame.
  • the object of the present invention is to reduce the amount of NOx produced by flat-flame burners using the principle of flame dilution for the purpose of reducing its temperature and lowering the oxygen partial pressure in its reaction zone.
  • a flat-flame burner having at least one fuel-injection pipe lying along the axis of the body of the burner and a combustion-air feed, this burner being characterized in that the fuel is introduced via the said injection pipe or pipes, through one or more axial orifices lying in a plane close to the external plane of the combustion tunnel, into the combustion products so as to produce a first dilution of the fuel in these combustion products and in that the fuel/combustion products mixture thus obtained is diluted further in the combustion air.
  • FIG. 5 is a schematic view, in vertical axial section, of an improved burner according to the invention.
  • the burner forming the subject of the invention uses the principle of flame dilution in order to reduce its temperature and lower the oxygen partial pressure in its reaction zone. This flame dilution is achieved with the combustion products located within the furnace chamber.
  • the novelty of the present invention lies in the fact that the fuel is introduced in two steps so as to obtain double dilution: a first dilution of the fuel with the combustion products of the furnace and then a second dilution of the fuel/combustion products mixture thus obtained with the combustion air.
  • FIG. 5 The embodiment of the invention illustrated by FIG. 5 includes a double fuel-feed system.
  • the improvements according to the invention being able to be employed on a burner with a single fuel feed. Again in this burner there is the combustion tunnel 9 , the air feed 10 , the air being possibly preheated and being distributed in the body of the burner via the orifices 11 , and the system of two fuel-injection pipes 18 and 19 , the injection taking place along the axis of the burner.
  • the fuel is introduced via one or more axial orifices with which the injection pipes such as 18 and 19 are provided, thereby making it possible for the fuel to be fed with a low momentum.
  • the fuel-injection pipe or pipes 18 and 19 is/are made of materials resistant to high temperatures, especially refractory materials, such as chrome steel or nickel steel or ceramics.
  • This dilution is promoted by the positioning of the orifices 25 which allow the fuel to be premixed with the recirculated combustion gases at the burner head.
  • the axial fuel-injection orifice or orifices 25 is/are of large diameter so as to limit the momentum of the fuel in order to achieve mixing with the combustion gases. This low momentum does not disturb the vortex of recirculating the combustion products induced at the burner head by the combustion air, unlike high-momentum radial injection which “cuts” the vortex and disturbs this recirculation.
  • the burner forming the subject of the present invention makes it possible to achieve a double dilution—of the fuel and the combustion products and of the combustion air and the combustion products—and finally to mix the two diluted premixtures.
  • This optimization of the “combustion air +fuel +combustion products” mixture makes it possible to obtain a non-intensive flat flame which reduces the emissions of pollutants, particularly of NOx, it being possible for this reduction to be in a ratio of above two with respect to a burner of the same type, according to the prior art.
  • the burner according to the present invention may retain the double fuel feed, with fuel being injected at different levels in the combustion tunnel 9 , so as to control the mixing between the fuel or fuels, the combustion air and the recirculated combustion gases at the burner head.
  • the two fuel-injection pipes may be used separately or simultaneously, with the flow of fuel being divided between the two injections, so as to control the shape of the flame, the quality of the premixture and the emission of pollutants.
  • One of the injection pipes may be used for starting the burner, for example when the temperature of the furnace is less than 700° C. in order to obtain better flame attachment, the other possibly being used in the steady state for reducing the amount of pollutants produced.
  • the invention therefore makes it possible to solve the problem of reducing the amount of NOx produced by a flat-flame burner, ensuring combustion of the fuel within a large volume (mixing of the combustion air, fuel and combustion products of the furnace) which makes it possible to produce a flame of lower temperature, the oxygen partial pressure of which reaction zone is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

Flat-flame burner for reheat, holding and heat-treatment furnaces for iron and steel products, comprising at least one fuel-injection pipe lying along the axis of the body of the burner, a combustion tunnel and a combustion-air feed, the air being distributed in and by the said body, wherein the fuel is introduced via the injection pipe or pipes through at least one axial orifice lying in a plane close to the external plane of the combustion tunnel, into the combustion products so as to produce a first dilution of the fuel in these combustion products, the fuel/combustion products mixture thus obtained being diluted further in the combustion air.

Description

  • The present invention relates to improvements to a flat-flame burner intended for equipping reheat, holding or heat-treatment furnaces, in particular for iron and steel products, so as to lower its NOx production appreciably.[0001]
  • In order to properly understand the technical field to which the improvements forming the subject of the present invention apply, as well as the corresponding prior art, reference will firstly be made to FIGS. [0002] 1 to 4 of the appended drawings which illustrate, respectively:
  • FIG. 1: a schematic view in longitudinal axial section, of a furnace of known type for reheating iron and steel products; [0003]
  • FIG. 2: a schematic view, in vertical axial section, of an embodiment of a roof burner according to the prior art, which can be mounted in a furnace as in FIG. 1; [0004]
  • FIG. 3: a schematic sectional view, in vertical axial section, of an alternative embodiment of a roof burner according to the prior art, which can be used in the furnace forming the subject of FIG. 1; and [0005]
  • FIG. 4: also a schematic view, in vertical axial section, of a flat-flame burner according to the prior art, designed so as to reduce the amount of NOx produced by this burner.[0006]
  • FIG. 1 therefore illustrates an embodiment of a furnace for reheating iron and steel products, with top and bottom heating. The products to be reheated, denoted by the reference [0007] 1, are supported and transported within the furnace by a system of fixed and walking beams 2 and 3. The walking beams are moved in a motion comprising a rectangular cycle by virtue of the conjugate actions of a translation frame 4 and a lifting frame 5, in an arrangement well known to those skilled in the art. The furnace is produced in the form of a thermally insulated chamber 6 in which long-flame burners 7 and flat-flame burners 8 are placed, the latter burners being fitted into the roof of the furnace. The present invention relates to improvements to the flat-flame burners 8.
  • FIGS. 2 and 3 illustrate two embodiments of roof burners according to the prior art. [0008]
  • Shown schematically in the FIG. 2 at [0009] 9 is the combustion tunnel of a burner which has a flared opening, the shape of which is substantially in the form of a quadrant of a circle so as to propagate the stream of air and the flame of the burner along the profile of the combustion tunnel, by the Coanda effect, and along the plane P of the roof. The burner is fed with combustion air, which may or may not be preheated, via a feed pipe 10 and this air is distributed in the body of the burner through orifices 11 made in the air distributor, these orifices causing the combustion air to swirl so that this air flows helically around the fuel-injection pipe 12. The latter lies along the axis of the burner so as to bring the fuel or fuels into a zone conducive to obtaining good mixing with the combustion air. Introduction of the fuel or fuels takes place through one or more orifices 14 so as to obtain the flow portrayed by the arrow 15 in this FIG. 2.
  • A [0010] disc 13 is provided on the injection end of the pipe 12, the function of this disc 13 being to force the combustion air to be pressed against the internal wall of the combustion tunnel 9 so as to promote the formation of a flat flame and create a suction vortex for the combustion gases in the burner head. In FIG. 2, this vortex is portrayed by the arrow 16. The combustion gases within the chamber of the furnace are therefore recirculated at the burner head by induction of the vortex 16 created by the high-speed circulation of the air/gas mixture coming from the burner. The flame produced by this air-gas mixture spreads, as at 17, following the profile of the combustion tunnel 9 and the plane P of the roof of the furnace.
  • According to the prior art (FIG. 3), the roof burners may also be provided with twin fuel-[0011] injection pipes 18 and 19 having respective injection orifices 20 and 14. Moreover, this known type of burner is similar to the burner forming the subject of FIG. 2, the twin injection pipe allowing the use of two different types of fuel. A single injection of fuel via the orifices 20 may be employed, for example during the burner ignition phase, allowing better attachment of the flame at low fuel rates, particularly when the temperature of the furnace chamber is less than 750° C. (no spontaneous ignition of the mixture).
  • Until recently, the prior art of the flat-flame burner illustrated in FIGS. 2 and 3 was technically satisfactory from the standpoint of controlling the flame geometry and the heat flux distribution. The technique according to the prior art was optimized entirely according to combustion criteria for the purpose of obtaining an intensive flame of suitable shape. In this approach, the emission of pollutants, particularly of NOx, was regarded as secondary. [0012]
  • The trend in local, European and world-wide regulations has forced operators to reduce NOx emissions from their plants. Research on burner design has incorporated this constraint, particularly in the case of flat-flame burners which generate much greater amounts of NOx than long-flame burners and which have formed the subject of extensive research and numerous improvements for the purpose of limiting their discharge. [0013]
  • It is known that the production of NOx gases in a flame depends on its temperature and on the oxygen partial pressure in the reaction zone of this flame. In particular, it is known that the amount of NOx produced increases significantly for flame temperatures greater than 1200° C. All research on reduction of NOx products has therefore been carried out so as to reduce the temperature of the burner flame and to increase the volume of its reaction zone, particularly by diluting it with the combustion products contained within the furnace chamber and recirculated at the burner head. [0014]
  • FIG. 4 of the appended drawings shows a burner according to the prior art, designed so as to reduce the amount of NOx produced. In this type of burner, the fuel is injected right at the very end of the combustion tunnel of the burner, into the [0015] vortex 16 of the combustion products. The burner has a fuel-injection pipe lying along its axis and emerging in the combustion tunnel via a number of radial injectors 14. By this means, the fuel is injected radially at high speed, through the said injectors 14, into the combustion air level with the tunnel in a zone in which the combustion air is diluted with the gases from the furnace environment. This high-speed fuel injection via a small number of radial injectors furthermore divides the flame into several “small flames” which are less intensive and whose total volume is increased with respect to a single flame.
  • Based on this prior art, the object of the present invention is to reduce the amount of NOx produced by flat-flame burners using the principle of flame dilution for the purpose of reducing its temperature and lowering the oxygen partial pressure in its reaction zone. [0016]
  • This technical problem is solved by a flat-flame burner having at least one fuel-injection pipe lying along the axis of the body of the burner and a combustion-air feed, this burner being characterized in that the fuel is introduced via the said injection pipe or pipes, through one or more axial orifices lying in a plane close to the external plane of the combustion tunnel, into the combustion products so as to produce a first dilution of the fuel in these combustion products and in that the fuel/combustion products mixture thus obtained is diluted further in the combustion air. [0017]
  • Further features and advantages of the present invention will emerge from the description given below with reference to FIG. 5 of the appended drawings which illustrate one embodiment thereof, this being devoid of any limiting character. This FIG. 5 is a schematic view, in vertical axial section, of an improved burner according to the invention. [0018]
  • As will have been understood and as mentioned above, the burner forming the subject of the invention uses the principle of flame dilution in order to reduce its temperature and lower the oxygen partial pressure in its reaction zone. This flame dilution is achieved with the combustion products located within the furnace chamber. The novelty of the present invention lies in the fact that the fuel is introduced in two steps so as to obtain double dilution: a first dilution of the fuel with the combustion products of the furnace and then a second dilution of the fuel/combustion products mixture thus obtained with the combustion air. [0019]
  • The embodiment of the invention illustrated by FIG. 5 includes a double fuel-feed system. This is a non-limiting example, the improvements according to the invention being able to be employed on a burner with a single fuel feed. Again in this burner there is the [0020] combustion tunnel 9, the air feed 10, the air being possibly preheated and being distributed in the body of the burner via the orifices 11, and the system of two fuel- injection pipes 18 and 19, the injection taking place along the axis of the burner.
  • According to the invention, the fuel is introduced via one or more axial orifices with which the injection pipes such as [0021] 18 and 19 are provided, thereby making it possible for the fuel to be fed with a low momentum. The fuel-injection pipe or pipes 18 and 19 is/are made of materials resistant to high temperatures, especially refractory materials, such as chrome steel or nickel steel or ceramics.
  • Axial introduction of the fuel (arrow [0022] 21) through one or more axial injection orifices 25 in the pipe 19, these lying, according to the invention, in the immediate vicinity of the plane of flame development, takes place in the combustion products (arrow 22) from the furnace environment, thereby allowing the first dilution to be achieved. This dilution is promoted by the positioning of the orifices 25 which allow the fuel to be premixed with the recirculated combustion gases at the burner head. The axial fuel-injection orifice or orifices 25 is/are of large diameter so as to limit the momentum of the fuel in order to achieve mixing with the combustion gases. This low momentum does not disturb the vortex of recirculating the combustion products induced at the burner head by the combustion air, unlike high-momentum radial injection which “cuts” the vortex and disturbs this recirculation.
  • The fuel/combustion gas mixture thus obtained, portrayed by the arrow [0023] 23 in FIG. 5, is entrained by the vortex existing at the burner head and then diluted with the combustion air (arrow 24) which is itself diluted with some of the recirculated combustion products (arrow 22) at the burner head.
  • Thus, the burner forming the subject of the present invention makes it possible to achieve a double dilution—of the fuel and the combustion products and of the combustion air and the combustion products—and finally to mix the two diluted premixtures. This optimization of the “combustion air +fuel +combustion products” mixture makes it possible to obtain a non-intensive flat flame which reduces the emissions of pollutants, particularly of NOx, it being possible for this reduction to be in a ratio of above two with respect to a burner of the same type, according to the prior art. [0024]
  • As illustrated in FIG. 5, the burner according to the present invention may retain the double fuel feed, with fuel being injected at different levels in the [0025] combustion tunnel 9, so as to control the mixing between the fuel or fuels, the combustion air and the recirculated combustion gases at the burner head. The two fuel-injection pipes may be used separately or simultaneously, with the flow of fuel being divided between the two injections, so as to control the shape of the flame, the quality of the premixture and the emission of pollutants.
  • One of the injection pipes may be used for starting the burner, for example when the temperature of the furnace is less than 700° C. in order to obtain better flame attachment, the other possibly being used in the steady state for reducing the amount of pollutants produced. [0026]
  • The invention therefore makes it possible to solve the problem of reducing the amount of NOx produced by a flat-flame burner, ensuring combustion of the fuel within a large volume (mixing of the combustion air, fuel and combustion products of the furnace) which makes it possible to produce a flame of lower temperature, the oxygen partial pressure of which reaction zone is reduced. [0027]
  • Of course, it remains the case that the present invention is not limited to the embodiments described and/or mentioned above, rather it encompasses all variants thereof. [0028]

Claims (9)

1. Flat-flame burner for reheat, holding and heat-treatment furnaces for iron and steel products, comprising at least one fuel-injection pipe lying along the axis of the body of the burner, a combustion tunnel and a combustion-air feed, the air being distributed in and by the said body, wherein the fuel is introduced via the injection pipe or pipes through at least one axial orifice lying in a plane close to the external plane of the combustion tunnel, into the combustion products so as to produce a first dilution of the fuel in these combustion products, the fuel/combustion products mixture thus obtained being diluted further in the combustion air.
2. Burner according to claim 1, further including at least one fuel-injection pipe provided with at least one axial orifice for introducing the fuel, said orifice lying in the immediate vicinity of the plane of flame development so as to premix the fuel with the recirculated combustion products at the burner head.
3. Burner according to claim 1, further comprising at least one injection pipe for introducing the fuel axially with a low momentum.
4. Burner according to claim 2, wherein the axial fuel-injection orifices have a large diameter so as to limit the momentum of the fuel.
5. Burner according to claim 1, wherein the injection pipe or pipes is or are made of materials resistant to high temperatures, such as chrome steel, nickel steel and ceramics.
6. Burner according to claim 1, further comprising two fuel injection means, these being fitted at different levels in the combustion tunnel, for controling the mixing between the fuel or fuels, the combustion air and the recirculated combustion products at the head of the said burner.
7. Burner according to claim 6, wherein the said fuel injection means are used separately with the flow of fuel being divised between the two injection means, for controling the shape of the flame, the quality of the premixture and the emission of pollutants.
8. Burner according to claim 6, wherein the said fuel injection means are used simultaneously with the flow of fuel being divised between the two injection means, for controling the shape of the flame, the quality of the premixture and the emission of pollutants.
9. Burner according to claim 6, wherein one of the said injection means are used for igniting the burner and the other is used to reduce the amount of pollutants produced.
US09/512,307 1999-02-25 2000-02-24 Flat flame burners Expired - Lifetime US6461145B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9902378A FR2790309B1 (en) 1999-02-25 1999-02-25 IMPROVEMENTS IN OR RELATING TO FLAT BURNERS
FR9902378 1999-02-25

Publications (2)

Publication Number Publication Date
US20020055078A1 true US20020055078A1 (en) 2002-05-09
US6461145B1 US6461145B1 (en) 2002-10-08

Family

ID=9542546

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/512,307 Expired - Lifetime US6461145B1 (en) 1999-02-25 2000-02-24 Flat flame burners

Country Status (9)

Country Link
US (1) US6461145B1 (en)
EP (1) EP1031790B1 (en)
JP (1) JP2000249312A (en)
CN (1) CN1139743C (en)
AT (1) ATE279688T1 (en)
CA (1) CA2299530C (en)
DE (2) DE60014727T2 (en)
ES (1) ES2153802T3 (en)
FR (1) FR2790309B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100227284A1 (en) * 2006-01-31 2010-09-09 Tenova S.P.A. Flat-flame vault burner with low polluting emissions
KR20160024855A (en) * 2013-06-28 2016-03-07 테노바 에스.피.에이. Industrial furnace and process for controlling the combustion inside
US20170114999A1 (en) * 2013-11-26 2017-04-27 Fives Stein Burner for a reheating furnace or heat treatment furnace for steel industry

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7637739B2 (en) * 2004-09-30 2009-12-29 Fives North American Combustion, Inc. Heating method and apparatus
US7878798B2 (en) * 2006-06-14 2011-02-01 John Zink Company, Llc Coanda gas burner apparatus and methods
US8485813B2 (en) * 2008-01-11 2013-07-16 Hauck Manufacturing Company Three stage low NOx burner system with controlled stage air separation
JP2012102911A (en) * 2010-11-08 2012-05-31 Air Liquide Japan Ltd Combustion burner
EP2458279B1 (en) * 2010-11-11 2017-06-07 VDEh-Betriebsforschungsinstitut GmbH Flat flame burner
EA024686B1 (en) * 2011-05-31 2016-10-31 Ототек Оюй Burner arrangement and burner assembly
JP5774431B2 (en) * 2011-09-28 2015-09-09 中外炉工業株式会社 Wall surface radiant burner unit
JP5878420B2 (en) * 2012-04-19 2016-03-08 中外炉工業株式会社 Wall radiant burner
CN103727539A (en) * 2012-10-11 2014-04-16 丹阳市江南工业炉有限公司 Flat flame nozzle of heating furnace
US20140157790A1 (en) * 2012-12-10 2014-06-12 Zilkha Biomass Power Llc Combustor assembly and methods of using same
CN103206708B (en) * 2013-03-20 2018-05-11 洛阳腾节炉业科技有限公司 Heat accumulating type burner
JP6229424B2 (en) * 2013-10-15 2017-11-15 株式会社デンソー Fuel injection valve
WO2016158081A1 (en) 2015-03-31 2016-10-06 三菱日立パワーシステムズ株式会社 Combustion burner and boiler provided therewith
CN107429911B (en) * 2015-03-31 2021-12-28 三菱动力株式会社 Burner and boiler
JP6642912B2 (en) 2015-09-11 2020-02-12 三菱日立パワーシステムズ株式会社 Combustion burner and boiler provided with the same
ES2809462T5 (en) 2016-03-11 2024-01-15 Air Prod & Chem Burner device and combustion method
CN115628450A (en) * 2022-10-18 2023-01-20 南京年达炉业科技有限公司 Gas burner, gas heating system and marching type copper ingot gas heating furnace

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2762428A (en) * 1953-02-05 1956-09-11 Selas Corp Of America Gas-fueled radiant burner
US3368605A (en) * 1966-02-03 1968-02-13 Zink Co John Burner assembly for lean fuel gases
US3481680A (en) * 1967-11-20 1969-12-02 Midland Ross Corp Direct fired burner
US3576384A (en) * 1968-11-29 1971-04-27 British American Oil Co Multinozzle system for vortex burners
FR2038651A5 (en) * 1969-03-28 1971-01-08 Stein Surface
FR2093258A5 (en) * 1970-06-08 1972-01-28 Gaz De France
US3836315A (en) * 1971-10-14 1974-09-17 Pyronics Inc Burner apparatus for flame propagation control
BE795438A (en) * 1972-02-23 1973-05-29 Heurtey Sa FLAT FLAME BURNER USING HEAVY LIQUID FUELS
SU595589A2 (en) * 1973-11-06 1978-02-28 Институт газа Украинской ССР Gas flat flame burner
US3922137A (en) * 1974-02-22 1975-11-25 Gulf Oil Canada Ltd Apparatus for admixing fuel and combustion air
RO60886A2 (en) * 1974-03-21 1976-10-15
US3905751A (en) * 1974-03-21 1975-09-16 Midland Ross Corp Gas burner
US4004789A (en) * 1975-02-05 1977-01-25 Bethlehem Steel Corporation Tunnelized burner for panel type furnace
DE2517756A1 (en) * 1975-04-22 1976-11-04 Christian Coulon PROCESS AND EQUIPMENT FOR DUSTING AND BURNING LIQUID FUELS
JPS51128034A (en) * 1975-04-28 1976-11-08 Mitsui Ekika Gas Kk Flat-flame gas burner
IT1117662B (en) * 1977-01-14 1986-02-17 Italimpianti RADIANT BURNER FOR LIQUID AND GASEOUS FUEL
IT1133435B (en) * 1980-06-06 1986-07-09 Italimpianti Vaulting radiant burner
US4431403A (en) * 1981-04-23 1984-02-14 Hauck Manufacturing Company Burner and method
US4443182A (en) * 1981-11-10 1984-04-17 Hauck Manufacturing Company Burner and method
JPS59161606A (en) * 1983-03-05 1984-09-12 Babcock Hitachi Kk Denitrated combustion device for pulverized coal
JPS60200008A (en) * 1984-03-22 1985-10-09 Babcock Hitachi Kk Pulverized coal burner
DE3529290A1 (en) * 1985-09-05 1987-02-26 Vnii Metall Teplotechniki Method for the combustion of gaseous fuel and burner for implementing the same
DD268505A1 (en) * 1988-01-22 1989-05-31 Freiberg Brennstoffinst DEVICE FOR STABILIZING THE FLAMES OF GAS BURNERS
JPH01315731A (en) * 1988-03-17 1989-12-20 Fuji Photo Film Co Ltd Silver halide photographic sensitive material
NL8902963A (en) * 1989-12-01 1991-07-01 Int Flame Research Foundation PROCESS FOR BURNING FUEL OF LOW NOX CONTENT IN THE COMBUSTION GASES USING THROUGH STAGE FUEL SUPPLY AND BURNER.
DE9007627U1 (en) * 1990-01-18 1993-06-03 Kraft-Industriewärmetechnik Dr. Ricke GmbH, 8759 Hösbach Burners with low NOx emissions
JP2522583B2 (en) * 1990-04-27 1996-08-07 株式会社日立製作所 Pulverized coal combustion method and pulverized coal boiler
US5131838A (en) * 1991-11-21 1992-07-21 Selas Corporation Of America Staged superposition burner
JPH07260357A (en) * 1994-03-22 1995-10-13 Tokyo Gas Co Ltd Ash-melting furnace apparatus
JPH07260110A (en) * 1994-03-23 1995-10-13 Tokyo Gas Co Ltd Swirl burner device
JPH08159420A (en) * 1994-12-03 1996-06-21 Osaka Gas Co Ltd Flat plane flame gas burner
JP3526938B2 (en) * 1994-12-26 2004-05-17 東京瓦斯株式会社 Flat frame burner
JPH09101008A (en) * 1995-10-03 1997-04-15 Babcock Hitachi Kk Radiation burner
US5697776A (en) * 1996-06-25 1997-12-16 Selas Corporation Of America Vortex burner
US5813846A (en) * 1997-04-02 1998-09-29 North American Manufacturing Company Low NOx flat flame burner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100227284A1 (en) * 2006-01-31 2010-09-09 Tenova S.P.A. Flat-flame vault burner with low polluting emissions
US8480394B2 (en) * 2006-01-31 2013-07-09 Tenova S.P.A. Flat-flame vault burner with low polluting emissions
KR20160024855A (en) * 2013-06-28 2016-03-07 테노바 에스.피.에이. Industrial furnace and process for controlling the combustion inside
US10371376B2 (en) 2013-06-28 2019-08-06 Tenova S.P.A. Industrial furnace and process for controlling the combustion inside
KR20200091474A (en) * 2013-06-28 2020-07-30 테노바 에스.피.에이. Industrial furnace and process for controlling the combustion inside
KR102301782B1 (en) 2013-06-28 2021-09-14 테노바 에스.피.에이. Industrial furnace and process for controlling the combustion inside
KR102302875B1 (en) 2013-06-28 2021-09-16 테노바 에스.피.에이. Industrial furnace and process for controlling the combustion inside
US20170114999A1 (en) * 2013-11-26 2017-04-27 Fives Stein Burner for a reheating furnace or heat treatment furnace for steel industry
US10260743B2 (en) * 2013-11-26 2019-04-16 Fives Stein Burner for a reheating furnace or heat treatment furnace for steel industry

Also Published As

Publication number Publication date
DE60014727D1 (en) 2004-11-18
US6461145B1 (en) 2002-10-08
FR2790309A1 (en) 2000-09-01
ATE279688T1 (en) 2004-10-15
JP2000249312A (en) 2000-09-12
CN1265456A (en) 2000-09-06
CA2299530C (en) 2008-08-12
EP1031790A1 (en) 2000-08-30
CA2299530A1 (en) 2000-08-25
DE60014727T2 (en) 2005-11-03
FR2790309B1 (en) 2001-05-11
ES2153802T1 (en) 2001-03-16
CN1139743C (en) 2004-02-25
EP1031790B1 (en) 2004-10-13
DE1031790T1 (en) 2001-07-05
ES2153802T3 (en) 2005-04-01

Similar Documents

Publication Publication Date Title
US6461145B1 (en) Flat flame burners
JP4264004B2 (en) Improved burner system with low NOx emission
US10240779B2 (en) Low NOx burner for ethylene cracking furnaces and other heating applications
US6705855B2 (en) Low-NOx burner and combustion method of low-NOx burner
CA1066608A (en) Fuel combustion apparatus
US8202470B2 (en) Low NOx fuel injection for an indurating furnace
MXPA06005938A (en) Low polluting emission gas burner.
JP4140774B2 (en) Burner tip and seal to optimize burner performance
EP1714074B1 (en) A method of operating a burner, and a burner for liquid and/or gaseous fuels
CN107580669B (en) Low-nitrogen oxide combustion system for movable grate type pellet equipment
CN104132343A (en) Radiant tube combustor
CN106247319A (en) A kind of gas industry boiler combustion device and combustion gas hierarchical arrangement method thereof
CN112189113A (en) Fuel nozzle system
CN105531541B (en) For burn gas fuel or fluid combustion device assembly and method
CA2031228A1 (en) Method for the codmbustion of fuel by stepped fuel feed and burner for use with it
CN211146484U (en) Ultralow nitrogen combustion device
CN107990315B (en) Central ignition low-nitrogen emission fuel gun for process heating furnace burner
US20170114999A1 (en) Burner for a reheating furnace or heat treatment furnace for steel industry
KR100372144B1 (en) Dust coal burner
KR101729201B1 (en) Oxy fuel burner
KR100560814B1 (en) Two-staged low NOx burner equipped with single biased primary air nozzle
CN214581053U (en) Burner and boiler
CN217978872U (en) Burner and boiler
CN211176785U (en) Low nitrogen oxide discharges combustor
KR950003880Y1 (en) Nozzle for burner

Legal Events

Date Code Title Description
AS Assignment

Owner name: STEIN HEURTEY, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GIRAUD, PATRICK;MONTGERMONT, JEAN-CLAUDE;REEL/FRAME:010619/0019

Effective date: 20000125

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: FIVES STEIN, FRANCE

Free format text: CHANGE OF NAME;ASSIGNOR:STEIN HEURTEY;REEL/FRAME:022127/0870

Effective date: 19911213

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12